WO2014002980A1 - Particulate supply device and spraying method using same - Google Patents

Particulate supply device and spraying method using same Download PDF

Info

Publication number
WO2014002980A1
WO2014002980A1 PCT/JP2013/067331 JP2013067331W WO2014002980A1 WO 2014002980 A1 WO2014002980 A1 WO 2014002980A1 JP 2013067331 W JP2013067331 W JP 2013067331W WO 2014002980 A1 WO2014002980 A1 WO 2014002980A1
Authority
WO
WIPO (PCT)
Prior art keywords
granular material
casing
powder
tank
vibration
Prior art date
Application number
PCT/JP2013/067331
Other languages
French (fr)
Japanese (ja)
Inventor
荒木 昭俊
八田 建次
伊藤 和幸
貴光 室川
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Publication of WO2014002980A1 publication Critical patent/WO2014002980A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/0454Volumetric measuring devices, e.g. for consecutively delivering predetermined volumes of ingredients
    • B28C7/0459Volumetric measuring devices, e.g. for consecutively delivering predetermined volumes of ingredients the ingredients being first supplied into measuring chambers, e.g. containers or skips
    • B28C7/0468Volumetric measuring devices, e.g. for consecutively delivering predetermined volumes of ingredients the ingredients being first supplied into measuring chambers, e.g. containers or skips the measuring chambers being provided on a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/06Supplying the solid ingredients, e.g. by means of endless conveyors or jigging conveyors
    • B28C7/10Supplying the solid ingredients, e.g. by means of endless conveyors or jigging conveyors by means of rotary members, e.g. inclinable screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/06Implements for applying plaster, insulating material, or the like
    • E04F21/08Mechanical implements
    • E04F21/12Mechanical implements acting by gas pressure, e.g. steam pressure

Definitions

  • the present invention relates to a granular material supply device for supplying a granular material accommodated in a tank to a transport pipe via a rotary feeder and a spraying method using the same.
  • Patent Document 1 a tank containing powder particles, and a powder particle fallen and discharged from the tank into a casing whose upper part is connected to a discharge part at the bottom of the tank, A granular material transporting device having a rotary feeder that sequentially feeds to the bottom of the casing with the rotation of the inner rotor, and a transport pipe for transporting the granular material fed to the bottom of the casing with compressed air.
  • this powder particle transport apparatus is used for transport of quick setting materials supplied to cementitious materials.
  • the conventional powder supply device generates abnormal noise in the rotary feeder, which becomes a noise source, or the load on the motor that rotates the rotor of the rotary feeder becomes large and the motor stops. Sometimes things happened.
  • the object of the present invention is to identify the cause of abnormal noise in the rotary feeder or to stop the motor and to prevent them.
  • the size of the interval between the left and right side surfaces of the rotor and the inner side wall of the casing facing the left and right side surfaces may cause abnormal noise in the rotary feeder and rotate the rotor. This was done by identifying the cause of the motor being stopped.
  • the granular material supply apparatus includes a tank containing the granular material, and the granular material that is dropped and discharged from the tank into a casing having an upper portion connected to a discharge portion at the bottom of the tank.
  • a rotary feeder that sequentially feeds the bottom of the casing with rotation of the inner rotor, and a transport pipe for transporting the granular material fed to the bottom of the casing with compressed air.
  • the distance between the left and right side surfaces of the rotor in the rotary feeder and the inner side wall of the casing facing the left and right side surfaces is 0.05 to 0.6 mm, respectively. It is characterized in that it is adjusted to the range of.
  • the casing has a structure in which a casing body provided at a position facing the outer peripheral surface of the rotor is sandwiched between right and left casing lids each having the inner wall.
  • a packing is sandwiched between the casing main body and the left and right casing lids in a replaceable manner, and the interval can be adjusted by changing the thickness of the packing. preferable. By doing in this way, it becomes easy to adjust the said space
  • the rotor has a gear-shaped outer peripheral shape in which convex portions and concave portions are alternately arranged in the circumferential direction. If it does in this way, a granular material can be sent out to a transportation pipe, measuring in the above-mentioned crevice.
  • the granular material supply device of the present invention includes a granular material discharging device that promotes the falling and discharging of the granular material to the casing in the tank, and the granular material discharging device includes A support plate sandwiched by elastic connecting members from above and below at the connecting portion between the discharge portion of the tank bottom and the casing is interposed inside the connecting portion leaving an opening that allows the powder particles to fall, and the support It is preferable that the apparatus is configured to vibrate the vibration plate provided on the support plate inside the connection portion to promote the fall and discharge of the granular material by vibrating the plate. If it does in this way, the smooth fall of the granular material from a tank to a casing can be maintained.
  • a part of the support plate extends outward from the connection portion, and a vibration device is attached to the outward extension portion of the support plate. It is preferable that the vibration applied to the support plate by the vibration device is mainly vibration in the thickness direction of the vibration plate in order to easily vibrate the vibration plate effectively.
  • the height of the diaphragm is preferably 1 to 5 times the inner diameter of the discharge part, When the opening of the discharge part is square, it is preferable that the height of the diaphragm is 1 to 3 times the length of the opening in the longitudinal direction.
  • the tank is preferably a pressure tank in which pressure is applied.
  • the powder and granular material supply device of the present invention can be preferably used for supplying cement cement.
  • the spraying method of the present invention is the compressed air in which the transport pipe of the powder supply apparatus is connected in the middle of a pressure feed pipe of cement concrete for transporting cement concrete, and the powder is passed through a dehumidifier. Transporting the inside of the transport pipe with the above, and mixing and mixing with the cement concrete transported through the pressure feed pipe of the cement concrete, and jetting and spraying the mixture of the powder and the cement concrete from the nozzle It has the characteristics.
  • cement concrete is a general term for cement paste, mortar, and concrete.
  • the present invention can suppress the generation of a large abnormal noise and the rotation stop of the rotor due to an increase in load, and can realize quantitative transport of powder particles.
  • FIG. 2 is a right side cross-sectional view of a part of the powder and granular material supply device shown in FIG. It is front sectional drawing which left the partial non-cross-section part which shows the other example of the supply apparatus of the granular material which concerns on this invention. It is right side sectional drawing which left the partial non-cross-section part of the supply apparatus of the granular material shown by FIG. It is an enlarged view of a rotor. It is an expanded sectional view of a rotary feeder. It is an expansion perspective view around a diaphragm. It is explanatory drawing of the spraying system using the transportation by a piston pump or a squeeze pump.
  • FIG. 1 and FIG. 2 is a first example in which the granular material supply device of the present invention does not have a granular material discharge device, and the supply device according to the present invention illustrated in FIG. 3 and FIG. It is a 2nd example which has the discharge apparatus of a granular material.
  • the rotor and the rotary feeder shown in FIGS. 5 and 6 are common to the first example and the second example, and the vibration plate 1 and its peripheral members shown in FIG. 7 are provided in the second example. is there.
  • the tank 2 accommodates the granular material 3.
  • the tank 2 is preferably a pressure tank.
  • a pressure tank refers to a container designed to store gas and granular material in a state where a pressure equal to or higher than atmospheric pressure is applied.
  • An openable and closable upper lid 4 for replenishing the granular material 3 is provided at the upper part of the tank 2, and the bottom part of the tank 2 is a discharge part 5 that is tub-like and opened at the lower end.
  • a rotary feeder 6 that receives the granular material 3 dropped and discharged from the tank 2.
  • a rotor 8 Inside the casing 7 of the rotary feeder 6 is housed a rotor 8 having a gear-shaped outer peripheral shape in which convex portions and concave portions are alternately arranged in the circumferential direction.
  • the rotor 8 is provided so as to be able to rotate in the casing 7.
  • a distance d is provided between the left and right side surfaces of the rotor 8 and the inner side wall of the casing 7 facing the left and right side surfaces, respectively.
  • the distance d is adjusted in the range of 0.05 to 0.6 mm.
  • the upper part of the casing 7 is connected to the discharge part 5 of the tank 2.
  • the granular material 3 that drops and discharges from the lower part in the tank 2 to the upper part in the casing 7 falls into the recesses (grooves) of the gears of the rotor 8 and sequentially and quantitatively moves to the bottom part of the casing 7 as the rotor 8 rotates. It is to be sent out.
  • a motor with a transmission such as a ring cone or a motor with a frequency variable device such as an inverter can be used. By changing the number of rotations of the rotor 8, it is possible to change the supply amount of the granular material.
  • the rotor 8 has a gear shape as shown in FIG. 5, and has a structure in which the granular material 3 is dropped into the gear groove by the rotation of the rotor 8 and sent out.
  • the number and depth of the grooves of the gear-type rotor 8 are not particularly limited, but the number of grooves is preferably 10 to 40 and the depth of the grooves is preferably in the range of 0.5 to 4 cm. Although depending on the number of rotations of the rotor 8, if the number of grooves and the depth of the grooves are out of the above ranges, the quantitativeness of the amount of the powder that is sent out may be lowered.
  • a transport pipe 9 is connected to the bottom of the casing 7 of the rotary feeder 6 for transporting the granular material 3 fed to the bottom of the casing 7 with compressed air.
  • a compression device usually equipped with a dryer
  • a blower or a compressor such as a blower or a compressor.
  • the distance d shown in FIG. 6 is adjusted to 0.05 to 0.6 mm as described above, but is preferably 0.1 to 0.5 mm. If the distance d is less than 0.05 mm, the casing 7 and the rotor 8 may be easily worn when the powder enters the gap. If the distance d exceeds 0.6 mm, a large amount of the powder 3 is present. May enter the gap and increase the load on the rotor 8 to cause rotation failure, or the granular material 3 may be transported by compressed air through the gap and the quantitativeness may be lowered.
  • the casing 7 has a structure in which a casing body 7 a provided at a position facing the outer peripheral surface of the rotor 8 is sandwiched between left and right casing lids 7 b each having an inner wall, and the casing body 7 a
  • the packing P is not particularly limited, but is made of rubber packing such as chloroprene rubber, nitrile rubber, urethane rubber, packing made of resin such as polyethylene, fluororesin, cloth phenol, leather made of tanned cowhide, etc. Packing made of metal such as brass or aluminum can be used.
  • the granular material can be stably supplied without any operation trouble. it can.
  • the compressed air supplied to the transport pipe 9 is usually at a pressure of 0.8 MPa or less, and part of the compressed air enters the tank 2 through a slight gap between the rotor 8 and the casing 7 and enters the tank 2.
  • Increase internal pressure Accordingly, the tank 2 is preferably designed to withstand a pressure of up to 1.0 MPa so that it can withstand the increase in internal pressure, although it depends on the pressure of the compressed air.
  • the second example shown in FIG. 3 and FIG. 4 is basically the same as the first example shown in FIG. 1 and FIG. 2, but the fall discharge of the granular material 3 in the tank 2 to the casing 7 is performed. It is equipped with a device for discharging powder particles to be promoted. More specifically, as shown in FIGS. 3, 4, and 7, the powder particle discharging device includes a vibration plate 1 positioned in a connection portion between the discharge portion 5 at the bottom of the tank 2 and the casing 7, and a vibration plate. 1, a support plate 10 erected, elastic connection bodies 11 a and 11 b that sandwich the support plate 10 from above and below, and a vibration device 12 provided on a part of the support plate 10 that extends outward from the connection portion. I have.
  • the support plate 10 is interposed inside the connection portion leaving an opening 16 that allows the powder particles 3 to fall, and the diaphragm 1 is erected on the support plate 10 inside the connection portion.
  • the support plate 10 and the elastic connecting members 11 a and 11 b positioned above and below the support plate 10 include a flange portion 13 provided at the lower end edge of the discharge portion 5, and the rotary feeder 6.
  • the flange portion 14 provided at the upper edge of the casing 7 is bolted and connected, the flange portion 13 is sandwiched between the flange portions 13 and 14.
  • the vibration device 12 provided in the powder particle discharging device vibrates the entire support plate 10 while elastically deforming both elastic connecting members 11a and 11b, and also vibrates the vibration plate 1 standing on the support plate 10. Is.
  • the bolting between the flange portions 13 and 14 does not cause the leakage of the granular material 3 or the displacement of the connection. Therefore, it is preferable to set the tightening force to such a degree that both elastic connecting members 11a and 11b are easily elastically deformed.
  • the bolting is performed by passing a bolt through the bolt hole 18.
  • the support plate 10 is a rectangular frame having an opening 16 at a position slightly offset from one side.
  • the opening 16 is for dropping and discharging the powdery granular material 3, and has a shape that is substantially the same size as the opening of the discharge unit 5 of the tank 2.
  • the shape of the support plate 10 and its opening 16 in this example is a square, for example, if the outer shape and the opening shape of the discharge part 5 of the tank 2 are circular, it is preferable to have the same circular shape.
  • the vibration device 12 is for vibrating the vibration plate 1 via the support plate 10, and mainly applies vibration in the thickness direction of the vibration plate 1 to the support plate 10. It is preferable.
  • the vibration plate 1 vibrates in a direction in which the vibration plate 1 is easily bent, and the vibration plate 1 is easily vibrated, and the vibration of the vibration plate 1 is effectively transmitted to the powder body 3. be able to.
  • the vibration in the above direction is a substantially horizontal vibration, and it is possible to prevent the vibration from being dispersed and attenuated to the tank 2 and the rotary feeder 6 by the elastic connecting members 11a and 11b.
  • the vibration device 12 As the vibration device 12, a known vibration motor or the like can be used.
  • the vibration device 12 having a structure as shown in FIG. 7 can exert its effect with a vibration motor having a relatively small vibration force.
  • the vibration motor mainly applies vibration in the vertical direction to the installation surface, in order to be able to apply vibration in the above direction to the support plate 10, FIG. And as shown in FIG. 7, it is preferable to attach a vibration motor (vibration apparatus 12) sideways.
  • the lower end of the diaphragm 1 is inserted so as to cross the central portion in the opening 16 of the support plate 10, and the lower end of the diaphragm 1 is fixed to the peripheral edge of the opening 16.
  • the diaphragm 1 is erected on the support plate 10. Examples of the material of the support plate 10 and the diaphragm 1 include general steel materials (soft steel, stainless steel, etc.).
  • the vibration plate 1 can be attached to the support plate 10 by welding or screwing.
  • the support plate 10 is preferably mounted substantially horizontally so that the vibration can be transmitted to the granular material 3 without any deviation, and the vibration plate 1 is preferably provided substantially vertically with respect to the support plate 10. .
  • the height of the diaphragm 1 depends on the size, shape, thickness, etc. of the diaphragm 1, but is preferably 1 to 5 times the inner diameter of the discharge part 5 when the opening of the discharge part 5 is circular. When the opening of the discharge part 5 is square, it is preferably 1 to 3 times the length of the opening in the longitudinal direction. If the height of the diaphragm 1 is too small, the vibration of the diaphragm 1 is reduced, the vibration transmitted to the powder body 3 is also reduced, and it may be difficult to obtain a high discharge promoting effect. Conversely, if the height of the diaphragm 1 is too high, the amplitude of the diaphragm 1 increases, and the joint between the diaphragm 1 and the support plate 10 may be easily damaged.
  • the diaphragm 1 may be a square or rectangular flat plate, but in order to make the tip (upper end side) easy to bend, to form a trapezoid with a narrow upper end side, or to increase the connection area with the support plate 10, It is also possible to increase the thickness on the base (support plate 10 side) side and reduce the thickness on the distal end side to make a wedge or a cone shape.
  • the elastic connecting members 11a and 11b have a shape (usually circular or square) sandwiched between the flange portions 13 and 14, and have openings 17a and 17b corresponding to the openings 16 of the support plate 10 at the center. It is comprised with the cyclic
  • the elastic connecting members 11a and 11b can transmit the vibration of the vibration device 12 to the support plate 10 without greatly reducing the vibration, and other elastic members such as a spring in addition to the rubber plate as in this example. Can also be used. However, when using a spring or the like, it is necessary to surround the connecting portion between the discharge portion 5 of the tank 2 and the rotary feeder 6 with a flexible material to prevent leakage of the granular material.
  • the elastic connecting members 11a and 11b serve as packing for the connecting portions, and are preferable because the structure is simple.
  • general-purpose rubber such as NBR, SBR, and silicone rubber can be used as a material for the elastic connectors 11a and 11b made of rubber plate.
  • the granular material that drops, discharges, and is supplied according to the present invention is not particularly limited, but examples include general granular materials as well as cementitious materials and rapid setting agents.
  • the quick set any commercially available powder set can be used.
  • the component of the quick setting agent one containing one or more substances selected from calcium aluminates, aluminates, silicates, carbonates, sulfates, nitrates and hydroxides can be used. .
  • Calcium aluminates are obtained by heat-treating a mixture of CaO raw material and Al 2 O 3 raw material, such as baking in a kiln, melting in an electric furnace, etc., and sodium, potassium as other components Calcium aluminate in which an alkali metal salt such as lithium is partly dissolved, calcium aluminate containing SiO 2 , calcium aluminate containing SO 3, and the like.
  • the particle size of the calcium aluminate is preferably 3000 cm 2 / g or more in terms of a brain value. Calcium aluminates can be used either crystalline or amorphous.
  • Inorganic salts other than calcium aluminates may include aluminates, silicates, carbonates, sulfates, nitrates, hydroxides, and the like.
  • aluminates include lithium aluminate, sodium aluminate, potassium aluminate, and calcium hexafluoroaluminate.
  • silicates include lithium silicate, sodium silicate, potassium silicate, and magnesium silicate.
  • Examples of carbonates include lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, trona ash and the like.
  • Examples of sulfates include lithium sulfate, sodium sulfate, potassium sulfate, calcium sulfate, magnesium sulfate, aluminum sulfate, and alum.
  • Examples of nitrates include lithium nitrate, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, lithium nitrite, sodium nitrite, potassium nitrite, calcium nitrite, and magnesium nitrite.
  • Examples of the hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • the use amount of the quick setting agent is preferably 3 to 20 parts, more preferably 5 to 15 parts, and most preferably 7 to 10 parts per 100 parts of cement in terms of solid content.
  • the particle size of the inorganic salt is not particularly limited, but it is preferably a particle size that does not cause segregation or blocking when dropping from the tank 2 and discharging.
  • various cement admixtures may be used in combination as long as the performance is not adversely affected.
  • water reducing agents, antifoaming agents, air entraining agents, rust inhibitors, clay minerals, slags such as blast furnace slag and slow-cooled slag siliceous powders such as silica stone powder, silica fume and fly ash, Portland cement, water repellent Agent, powder polymer, ⁇ -type dicalcium silicate, alumina cement, thickener, shrinkage reducing agent and the like.
  • spraying can be performed by the spraying system shown in FIGS.
  • the compressed air is produced by a compressor 19 and dried through a moisture dehumidifying device (dryer) 20 that dehumidifies moisture through a pipe.
  • the discharge capacity of the compressed air of the compressor 19 is preferably 2 m 3 / min or more.
  • the moisture dehumidifying device 20 for removing moisture is not particularly limited, but a commercially available air dryer (refrigerated compressed air dehumidifying device) can be used.
  • a mist separator tank can also be used as the moisture dehumidifying device 20 for removing moisture. These can be used in combination depending on the environmental conditions used.
  • the dried compressed air passes the granular material supply apparatus 24 of the present invention, and transports the granular material through a tube.
  • cement concrete is transported through a pipe by means of a cement concrete supply device (concrete pump 21).
  • Examples of transportation include pneumatic transportation and pump transportation.
  • FIG. 8 shows an example in which a piston pump or a squeeze pump is used as the concrete pump 21.
  • FIG. 9 shows an example in which an air conveyance pump is used as the concrete pump 21.
  • Cement concrete can be either wet type using wet cement concrete that has been pre-mixed with water, or dry type cement concrete that is mixed with a small amount of water that does not add water or maintains a granular state. It is. In the case of using wet cement concrete, for example, it may be pumped by a concrete pump 21 such as a piston pump or a squeeze pump, and compressed air may be introduced from one of the Y-shaped pipes 22 to blow the cement concrete and transport it.
  • a concrete pump 21 such as a piston pump or a squeeze pump
  • the cement concrete may be blown away and transported by, for example, an air conveyance type sprayer using an air conveyance pump.
  • the discharge capacity of the concrete pump 21 is 30 m 3 / hr at the maximum, and the rotor 8 in which the size of the rotor 8, the depth of the gear groove of the rotor 8, and the pitch of the rotor 8 are changed according to the capacity can be applied.
  • the cement concrete transported in this way is mixed and mixed with compressed air from one pipe of the Y-shaped pipe 23 provided in the middle of the transport pipe, and the mixture of the cement concrete and the powder from the nozzle 25 is mixed. Spray. In some cases, when the wet cement concrete is sprayed, it is possible to spray the cement concrete only with compressed air for supplying the granular material.
  • the powder quick-setting agent may be mixed and mixed with cement concrete.
  • water or a liquid accelerating agent is pumped to the accelerating agent by the pump 26, and the slurry pipe 27 provided in the middle is merged and mixed with the compressed air.
  • the present invention can also be applied to a spraying method in which a slurry-like quick setting agent is joined and mixed into cement concrete from one of the joining and mixing tubes 28.
  • An addition device (not shown) for adding water or a liquid quickening agent is connected to the pump 26.
  • the cement concrete according to the present invention contains cement, water, aggregate and the like.
  • a water reducing agent including a high performance water reducing agent may be used in accordance with the temperature condition and the construction condition.
  • Examples of the cement include various portland cements such as normal, early strength, medium heat, and ultra early strength, and various mixed cements obtained by mixing blast furnace slag and fly ash with these various portland cements.
  • the aggregate is not particularly limited, but preferably has low water absorption and high aggregate strength.
  • the maximum size of the aggregate is not particularly limited as long as it can be sprayed.
  • fine aggregates include river sand, mountain sand, sea sand, lime sand, and quartz sand.
  • coarse aggregate include river gravel, mountain gravel, and lime gravel. Crushed sand and crushed stone can also be used.
  • High performance water reducing agents such as alkylallyl sulfonic acid type, naphthalene sulfonic acid type, melamine sulfonic acid type, lignin sulfonic acid type, polycarboxylic acid type and polyethylene glycol type (including high performance AE water reducing agent) ) And the like.
  • the amount of water reducing agent used is preferably 0.05 to 5 parts, more preferably 0.1 to 3 parts in terms of solid content with respect to 100 parts of cement.
  • the blend of cement concrete according to the present invention is preferably a unit cement amount of 300 to 600 kg / m 3 .
  • the amount of water in the cement concrete according to the present invention is preferably 35 to 80%, more preferably 40 to 70% in terms of water-cement ratio (W / C).
  • the fine aggregate ratio of the cement concrete according to the present invention is preferably 50% by volume or more.
  • Experiment No. 1-1 to 1-8 used the granular material supply apparatus shown in FIGS. 1 and 2, and Experiment Nos. 1-9 to 1-17 used the granular material supply apparatus shown in FIGS.
  • the tank for storing the granular material is a pressurized tank
  • the rotor is a gear type (number of grooves: 25, groove depth: 1.5 cm)
  • the distance d between the rotor and casing is expressed using packing P. It adjusted so that it might become a value shown in 1.
  • powder particles a mixture [mixture of calcium aluminate and gypsum (powder particles a)] having an average particle diameter of 10 ⁇ m and an angle of repose of 50 degrees was used.
  • a 250 liter vertical tank having a discharge portion opened in a rectangular shape having a length of 200 mm and a width of 80 mm and a bottom surface inclined at 50 degrees toward the discharge portion was used.
  • the above-mentioned powder was added to this tank.
  • the amount of the added granular material was 200 kg in each test.
  • a rectangular flat plate having a width of 78 mm, a thickness of 10 mm, and a height of 400 mm was used.
  • NBR rubber plates were used as the elastic connectors provided above and below the support plate.
  • a vibration motor was used, and the vibration force was set to 50 kg.
  • the transport pipe connected to the rotary feeder was supplied with compressed air having a flow rate of 3.0 m 3 / min and a pressure of 0.4 MPa, and the rotational speed of the rotor of the rotary feeder was 6 rpm.
  • the length of the opening of the discharge part in the longitudinal direction is 200 mm.
  • FIGS. 11 and 12 show the relationship between the amount of mass reduction of the granular material for each elapsed time.
  • FIG. 1-1 no. 1-2, no. 1-5, No. 1 1-7, No. 1 An experimental example 1-8 will be described.
  • FIG. 1-9 No. 1 1-10, No. 1 1-14, No. 1 1-16, No. 1 An experimental example 1-17 will be described.
  • -Powder body a- Calcium aluminate (main component 12CaO ⁇ 7Al 2 O 3 , amorphous, brane specific surface area 5900 cm 2 / g) and gypsum [anhydrous gypsum (commercial product)] mixed at a weight ratio of 50:50
  • the distance d between the left and right side surfaces of the rotor and the inner wall of the casing facing the left and right side surfaces must be 0.05 to 0.6 mm from the viewpoint of less trouble with the rotor. is there.
  • Experiment No. 2-1 uses the powder and granular material supply apparatus shown in FIGS. 2-2, No. 1-14, No. 1 2-3, no. 2-4 used the granular material supply apparatus shown in FIGS. Experiment No. 2-5 and no. In 2-6, the tank was not pressurized (an unsealed tank was used, a bag filter was attached to the upper lid, and the scattered dust was removed).
  • a mixture [mixture of calcium aluminate and gypsum (powder a)) having an average particle diameter of 10 ⁇ m and an angle of repose of 50 degrees was used.
  • a 250 liter vertical tank having a discharge portion opened in a rectangular shape having a length of 200 mm and a width of 80 mm and a bottom surface inclined at 50 degrees toward the discharge portion was used.
  • the above-mentioned powder was added to this tank. The amount added was 200 kg for each test.
  • a rectangular flat plate having a thickness of 10 mm and having a height h and a width w changed as described later was used.
  • NBR rubber plates were used as the elastic connectors provided above and below the support plate.
  • a vibration motor was used, and the vibration force was set to 50 kg.
  • the transport pipe connected to the rotary feeder was supplied with compressed air having a flow rate of 3.0 m 3 / min and a pressure of 0.4 MPa, and the rotational speed of the rotor of the rotary feeder was 6 rpm.
  • the distance d between the left and right side surfaces of the rotor and the inner side wall of the casing facing the left and right side surfaces was 0.3 mm.
  • Results are shown in FIG. 13 and FIG. FIG. 13 and FIG. 14 show the relationship of the mass reduction amount of the granular material for each elapsed time.
  • FIGS. 13 and 14 also show approximation formulas when linear approximation is performed by the least square method.
  • Y is the mass loss (kg)
  • X is the elapsed time (minutes).
  • the height of the diaphragm 1 is preferably 1 to 3 times the length of the opening in the longitudinal direction.
  • a powder quick setting agent (powder fluid a) was mixed and mixed with the compressed air and sprayed.
  • the quick setting agent supply apparatus Experiment No. A powder supply apparatus having the conditions of 1-14, and Experiment No. A powder and particle supply device having the conditions of 2-6 was used.
  • Experiment No. 1-14 pressurized tank and experiment no. 100 kg of powder quick-setting agent is added to each hopper of 2-6, and the rotational speed of the rotary feeder is theoretically 6.7 kg / min (7 parts for 100 parts of cement) for both conditions.
  • the present invention is as described above, and by appropriately adjusting the distance d between the side surface of the rotor 8 and the inner wall surface of the casing 7, it is possible to realize quantitative transport of the granular material. it can.
  • a discharge device that promotes discharge of the granular material while applying vibration by the diaphragm of the present invention at the connection portion between the discharge portion 5 at the bottom of the tank 2 and the rotary feeder 6,
  • there is no bridge or the like of the granular material 3 and more quantitative transportation of the granular material becomes possible.
  • a constant quick-setting agent is added. It is possible to reduce the number and to construct a safe and high quality sprayed cement concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

The present invention is a particulate supply device, comprising a tank (2) accommodating particulates, a rotary feeder (6) for feeding particulates ejected down from the tank (2) to the bottom section along with the rotation of a rotor (8) inside a casing (7), and a transport tube (9) for transporting the particulates fed out from the casing (7) by means of compressed air; wherein the gaps (d) between the left and right side surfaces of the rotor (8) and the inside walls of the casing (7) facing the respective left and right side surfaces are both adjusted to a range of 0.05 to 0.6 mm. This configuration makes it possible to keep the rotor from ceasing to rotate due to overloading or the occurrence of abnormal sounds.

Description

粉粒体の供給装置及びそれを用いた吹付け工法Powder body supply device and spraying method using the same
 本発明は、タンク内に収容した粉粒体を、ロータリーフィーダーを介して輸送管へ供給する粉粒体の供給装置及びそれを用いた吹き付け工法に関する。 [Technical Field] The present invention relates to a granular material supply device for supplying a granular material accommodated in a tank to a transport pipe via a rotary feeder and a spraying method using the same.
 従来、例えば、特許文献1に示されるように、粉粒体を収容したタンクと、上部がこのタンク底部の排出部に接続されたケーシング内へ前記タンクから落下排出される粉粒体を、ケーシング内のローターの回転に伴って順次ケーシングの底部へと送り出すロータリーフィーダーと、ケーシングの底部へ送り出された前記粉粒体を圧縮空気で輸送するための輸送管とを有する粉粒体の輸送装置が知られている。また、この粉粒体の輸送装置を、セメント系材料へ供給する急結材の輸送に使用することも特許文献1に開示されている。 Conventionally, for example, as shown in Patent Document 1, a tank containing powder particles, and a powder particle fallen and discharged from the tank into a casing whose upper part is connected to a discharge part at the bottom of the tank, A granular material transporting device having a rotary feeder that sequentially feeds to the bottom of the casing with the rotation of the inner rotor, and a transport pipe for transporting the granular material fed to the bottom of the casing with compressed air. Are known. Further, Patent Document 1 discloses that this powder particle transport apparatus is used for transport of quick setting materials supplied to cementitious materials.
特開平11-208770号公報Japanese Patent Laid-Open No. 11-208770
 しかしながら、従来の粉粒体の供給装置は、ロータリーフィーダーに異音を生じ、騒音源となったり、ロータリーフィーダーのローターを回転させるモーターへの負荷が大きくなって、モーターが停止してしまったりする事態を生じる場合があった。 However, the conventional powder supply device generates abnormal noise in the rotary feeder, which becomes a noise source, or the load on the motor that rotates the rotor of the rotary feeder becomes large and the motor stops. Sometimes things happened.
 本発明は、ロータリーフィーダーに異音が発生したり、そのモーターが停止してしまったりする原因を突き止めてこれらを防止できるようにすることを目的とする。 The object of the present invention is to identify the cause of abnormal noise in the rotary feeder or to stop the motor and to prevent them.
 本発明は、前記ロータリーフィーダーにおける前記ローターの左右の側面と、該左右の側面にそれぞれ対向する前記ケーシングの内側壁との間隔の大きさが、ロータリーフィーダーでの異音の発生や、ローターを回転させるモーターが停止してしまう原因となっていることを突き止めたことによってなされたものである。 In the rotary feeder, the size of the interval between the left and right side surfaces of the rotor and the inner side wall of the casing facing the left and right side surfaces may cause abnormal noise in the rotary feeder and rotate the rotor. This was done by identifying the cause of the motor being stopped.
 本発明の粉粒体の供給装置は、粉粒体を収容したタンクと、上部が前記タンク底部の排出部に接続されたケーシング内へ前記タンクから落下排出される前記粉粒体を、前記ケーシング内のローターの回転に伴って順次前記ケーシングの底部へと送り出すロータリーフィーダーと、前記ケーシングの底部へ送り出された前記粉粒体を圧縮空気で輸送するための輸送管とを有する。そして、本発明の粉粒体の供給装置は、前記ロータリーフィーダーにおける前記ローターの左右の側面と、該左右の側面にそれぞれ対向する前記ケーシングの内側壁との間隔がそれぞれ0.05~0.6mmの範囲に調整されている点に特徴を有する。 The granular material supply apparatus according to the present invention includes a tank containing the granular material, and the granular material that is dropped and discharged from the tank into a casing having an upper portion connected to a discharge portion at the bottom of the tank. A rotary feeder that sequentially feeds the bottom of the casing with rotation of the inner rotor, and a transport pipe for transporting the granular material fed to the bottom of the casing with compressed air. In the powder particle supply apparatus of the present invention, the distance between the left and right side surfaces of the rotor in the rotary feeder and the inner side wall of the casing facing the left and right side surfaces is 0.05 to 0.6 mm, respectively. It is characterized in that it is adjusted to the range of.
 本発明の粉粒体の供給装置は、前記ケーシングが、前記ローターの外周面との対向位置に設けられたケーシング本体を、それぞれ前記内側壁を備えた左右のケーシング蓋で挟み込んだ構造を有していると共に、前記ケーシング本体と、前記左右のケーシング蓋との間にそれぞれパッキングが交換可能に挟み込まれており、該パッキングの厚さを変えることにより、前記間隔が調整可能となっていることが好ましい。このようにすることによって、前記間隔を最適な大きさに調整しやすくなる。 In the granular material supply device of the present invention, the casing has a structure in which a casing body provided at a position facing the outer peripheral surface of the rotor is sandwiched between right and left casing lids each having the inner wall. In addition, a packing is sandwiched between the casing main body and the left and right casing lids in a replaceable manner, and the interval can be adjusted by changing the thickness of the packing. preferable. By doing in this way, it becomes easy to adjust the said space | interval to the optimal magnitude | size.
 本発明の粉粒体の供給装置は、前記ローターが、凸部と凹部が周方向に交互に連なった歯車型の外周形状を有することが好ましい。このようにすると、前記凹部で計量しながら粉粒体を輸送管へと送り出すことができる。 In the granular material supply device of the present invention, it is preferable that the rotor has a gear-shaped outer peripheral shape in which convex portions and concave portions are alternately arranged in the circumferential direction. If it does in this way, a granular material can be sent out to a transportation pipe, measuring in the above-mentioned crevice.
 本発明の粉粒体の供給装置は、前記タンク内の前記粉粒体の前記ケーシングへの落下排出を促進する粉粒体の排出装置を備えており、該粉粒体の排出装置が、前記タンク底部の排出部と前記ケーシングとの接続部に、上下から弾性接続体で挟んだ支持板を、前記粉粒体の落下を許容する開口を残して前記接続部の内側に介在させ、前記支持板を振動させることにより、前記接続部の内側で前記支持板に立設された振動板を振動させて前記粉粒体の落下排出を促進する装置であることが好ましい。このようにすると、タンクからケーシングへの粉粒体の円滑な落下を維持することができる。 The granular material supply device of the present invention includes a granular material discharging device that promotes the falling and discharging of the granular material to the casing in the tank, and the granular material discharging device includes A support plate sandwiched by elastic connecting members from above and below at the connecting portion between the discharge portion of the tank bottom and the casing is interposed inside the connecting portion leaving an opening that allows the powder particles to fall, and the support It is preferable that the apparatus is configured to vibrate the vibration plate provided on the support plate inside the connection portion to promote the fall and discharge of the granular material by vibrating the plate. If it does in this way, the smooth fall of the granular material from a tank to a casing can be maintained.
 簡便な装置で前記支持板を振動させるために、前記支持板の一部が前記接続部から外方に延出され、前記支持板の外方への延出部に振動装置が取り付けられていることが好ましく、振動版を効果的に振動させやすくするために、前記振動装置によって前記支持板に対して付与される振動が、主に前記振動板の肉厚方向の振動であることが好ましい。 In order to vibrate the support plate with a simple device, a part of the support plate extends outward from the connection portion, and a vibration device is attached to the outward extension portion of the support plate. It is preferable that the vibration applied to the support plate by the vibration device is mainly vibration in the thickness direction of the vibration plate in order to easily vibrate the vibration plate effectively.
 粉粒体の円滑な落下を維持するために、前記排出部の開口が円形である場合には、前記振動板の高さが前記排出部の内径の1乃至5倍であることが好ましく、前記排出部の開口が方形である場合には、前記振動板の高さが該開口の長手方向の長さの1乃至3倍であることが好ましい。また、同様の理由から、前記タンクが、内部に圧力が加えられる圧力タンクであることが好ましい。 In order to maintain a smooth fall of the granular material, when the opening of the discharge part is circular, the height of the diaphragm is preferably 1 to 5 times the inner diameter of the discharge part, When the opening of the discharge part is square, it is preferable that the height of the diaphragm is 1 to 3 times the length of the opening in the longitudinal direction. For the same reason, the tank is preferably a pressure tank in which pressure is applied.
 本発明の粉粒体の供給装置は、セメントの急結剤の供給に好ましく用いることができる。 The powder and granular material supply device of the present invention can be preferably used for supplying cement cement.
 本発明の吹き付け工法は、上記の粉粒体の供給装置の前記輸送管を、セメントコンクリートを輸送するセメントコンクリートの圧送管の途中に接続し、前記粉粒体を、除湿装置に通した圧縮空気で前記輸送管中を輸送して、前記セメントコンクリートの圧送管中を輸送されてくる前記セメントコンクリートに合流させて混合し、前記粉粒体と前記セメントコンクリートの混合物をノズルから噴出させて吹き付けることに特徴を有する。 The spraying method of the present invention is the compressed air in which the transport pipe of the powder supply apparatus is connected in the middle of a pressure feed pipe of cement concrete for transporting cement concrete, and the powder is passed through a dehumidifier. Transporting the inside of the transport pipe with the above, and mixing and mixing with the cement concrete transported through the pressure feed pipe of the cement concrete, and jetting and spraying the mixture of the powder and the cement concrete from the nozzle It has the characteristics.
 なお、セメントコンクリートとは、セメントペースト、モルタル、コンクリートの総称である。 In addition, cement concrete is a general term for cement paste, mortar, and concrete.
 本発明は、大きな異音の発生や、負荷の増大によるローターの回転停止を抑制できると共に、定量的な粉粒体の輸送を実現することができる。 The present invention can suppress the generation of a large abnormal noise and the rotation stop of the rotor due to an increase in load, and can realize quantitative transport of powder particles.
本発明に係る粉粒体の供給装置の一例を示す正面断面図である。It is front sectional drawing which shows an example of the supply apparatus of the granular material which concerns on this invention. 図1に示される粉粒体の供給装置の一部非断面部を残した右側面断面図である。FIG. 2 is a right side cross-sectional view of a part of the powder and granular material supply device shown in FIG. 本発明に係る粉粒体の供給装置の他の例を示す、一部非断面部を残した正面断面図である。It is front sectional drawing which left the partial non-cross-section part which shows the other example of the supply apparatus of the granular material which concerns on this invention. 図3に示される粉粒体の供給装置の一部非断面部を残した右側面断面図である。It is right side sectional drawing which left the partial non-cross-section part of the supply apparatus of the granular material shown by FIG. ローターの拡大図である。It is an enlarged view of a rotor. ロータリーフィーダーの拡大断面図である。It is an expanded sectional view of a rotary feeder. 振動板周りの拡大斜視図である。It is an expansion perspective view around a diaphragm. ピストンポンプ又はスクイズポンプによる輸送を用いた吹付けシステムの説明図である。It is explanatory drawing of the spraying system using the transportation by a piston pump or a squeeze pump. 空気搬送ポンプによる輸送を用いた吹付けシステムの説明図である。It is explanatory drawing of the spraying system using the conveyance by an air conveyance pump. 水や液体急結剤を添加して吹付ける吹き付けシステムの説明図である。It is explanatory drawing of the spraying system which adds and sprays water or a liquid quick-setting agent. 経過時間毎の粉粒体の質量減少量の関係を示すグラフである。It is a graph which shows the relationship of the mass decrease amount of the granular material for every elapsed time. 経過時間毎の粉粒体の質量減少量の関係を示すグラフである。It is a graph which shows the relationship of the mass decrease amount of the granular material for every elapsed time. 経過時間毎の粉粒体と質量減少量の関係を示すグラフである。It is a graph which shows the relationship between the granular material for every elapsed time, and mass loss. 経過時間毎の粉粒体と質量減少量の関係を示すグラフである。It is a graph which shows the relationship between the granular material for every elapsed time, and mass loss.
 以下、本発明を図面を参照して説明する。なお、以下に参照する図面において、同じ符号は同様の構成要素を示す。本発明では、特記しない限り、部、%の単位は質量である。 Hereinafter, the present invention will be described with reference to the drawings. In the drawings referred to below, the same reference numerals indicate the same components. In the present invention, unless otherwise specified, the unit of parts and% is mass.
 図1及び図2に示す本発明の粉粒体の供給装置は、粉粒体の排出装置を有していない第1の例で、図3および図4に示す本発明に係る供給装置は、粉粒体の排出装置を有している第2の例である。図5及び図6に示すローターとロータリーフィーダーは、第1の例と第2の例に共通で、図7に示す振動版1及びその周辺の部材は第2の例に設けられているものである。 1 and FIG. 2 is a first example in which the granular material supply device of the present invention does not have a granular material discharge device, and the supply device according to the present invention illustrated in FIG. 3 and FIG. It is a 2nd example which has the discharge apparatus of a granular material. The rotor and the rotary feeder shown in FIGS. 5 and 6 are common to the first example and the second example, and the vibration plate 1 and its peripheral members shown in FIG. 7 are provided in the second example. is there.
 図1乃至図4において、タンク2は粉粒体3を収容している。タンク2は、圧力タンクが好ましい。圧力タンクとは、大気圧以上の圧力が加えられた状態で、気体、粉粒体を貯留するように設計された容器をいう。タンク2の上部には粉粒体3の補充用の開閉可能な上蓋4が設けられ、タンク2の底部は漏斗状につぼまって下端が開放された排出部5となっている。 1 to 4, the tank 2 accommodates the granular material 3. The tank 2 is preferably a pressure tank. A pressure tank refers to a container designed to store gas and granular material in a state where a pressure equal to or higher than atmospheric pressure is applied. An openable and closable upper lid 4 for replenishing the granular material 3 is provided at the upper part of the tank 2, and the bottom part of the tank 2 is a discharge part 5 that is tub-like and opened at the lower end.
 タンク2の下方には、タンク2から落下排出される粉粒体3を受け入れるロータリーフィーダー6が位置している。このロータリーフィーダー6のケーシング7の内部には、凸部と凹部が周方向に交互に連なった歯車型の外周形状を有するローター8が内蔵されている。このローター8は、ケーシング7内で回転できるように設けられている。 Below the tank 2 is a rotary feeder 6 that receives the granular material 3 dropped and discharged from the tank 2. Inside the casing 7 of the rotary feeder 6 is housed a rotor 8 having a gear-shaped outer peripheral shape in which convex portions and concave portions are alternately arranged in the circumferential direction. The rotor 8 is provided so as to be able to rotate in the casing 7.
 図6に示すように、ローター8の左右の側面と、この左右の側面にそれぞれ対向するケーシング7の内側壁との間には、それぞれ間隔dが設けられている。この間隔dは、0.05~0.6mmの範囲で調製されている。 As shown in FIG. 6, a distance d is provided between the left and right side surfaces of the rotor 8 and the inner side wall of the casing 7 facing the left and right side surfaces, respectively. The distance d is adjusted in the range of 0.05 to 0.6 mm.
 ケーシング7の上部は上記タンク2の排出部5に接続されている。タンク2内の下部からケーシング7内の上部へ落下排出する粉粒体3は、ローター8の歯車の凹部(溝)に落ち、ローター8の回転に伴って順次定量的にケーシング7の底部へと送り出されるものとなっている。ローター8の回転には、リングコーン等の変速機付モーターやインバーター等の周波数可変装置付モーターが使用できる。ローター8の回転数を変えることによって、粉粒体の供給量を変えることが可能である。 The upper part of the casing 7 is connected to the discharge part 5 of the tank 2. The granular material 3 that drops and discharges from the lower part in the tank 2 to the upper part in the casing 7 falls into the recesses (grooves) of the gears of the rotor 8 and sequentially and quantitatively moves to the bottom part of the casing 7 as the rotor 8 rotates. It is to be sent out. For rotation of the rotor 8, a motor with a transmission such as a ring cone or a motor with a frequency variable device such as an inverter can be used. By changing the number of rotations of the rotor 8, it is possible to change the supply amount of the granular material.
 ローター8は、図5に示すように歯車状であり、ローター8の回転によって粉粒体3が歯車の溝に落下し送り出される構造となっている。歯車型のローター8の溝の数や深さは特に限定するものではないが、溝の数は10~40個、溝の深さは、0.5~4cmの範囲が好ましい。ローター8の回転数にもよるが、溝の数や溝の深さが上記範囲外となると粉粒体を送り出す量の定量性が低下する場合がある。 The rotor 8 has a gear shape as shown in FIG. 5, and has a structure in which the granular material 3 is dropped into the gear groove by the rotation of the rotor 8 and sent out. The number and depth of the grooves of the gear-type rotor 8 are not particularly limited, but the number of grooves is preferably 10 to 40 and the depth of the grooves is preferably in the range of 0.5 to 4 cm. Although depending on the number of rotations of the rotor 8, if the number of grooves and the depth of the grooves are out of the above ranges, the quantitativeness of the amount of the powder that is sent out may be lowered.
 図1、図3、図6に示すように、ロータリーフィーダー6のケーシング7の底部には、ケーシング7の底部へと送り出された粉粒体3を圧縮空気で搬送するための輸送管9が接続されている。この輸送管9の一端側には、図示はされていないが、ブロア又はコンプレッサー等の圧縮装置(通常、ドライヤーを備えている)が接続されている。 As shown in FIGS. 1, 3, and 6, a transport pipe 9 is connected to the bottom of the casing 7 of the rotary feeder 6 for transporting the granular material 3 fed to the bottom of the casing 7 with compressed air. Has been. Although not shown, one end of the transport pipe 9 is connected to a compression device (usually equipped with a dryer) such as a blower or a compressor.
 図6に示す間隔dは前記のように0.05~0.6mmに調整されているが、0.1~0.5mmが好ましい。間隔dが0.05mm未満だと、粉粒体がその隙間に入り込んだ場合にケーシング7とローター8の摩耗が進行しやすくなる場合があり、0.6mmを超えると、粉粒体3が多量に隙間に入り込み、ローター8への負荷が大きくなり回転不良が起きたり、隙間を通って粉粒体3が圧縮空気で輸送され、定量性が低くなったりする場合がある。 The distance d shown in FIG. 6 is adjusted to 0.05 to 0.6 mm as described above, but is preferably 0.1 to 0.5 mm. If the distance d is less than 0.05 mm, the casing 7 and the rotor 8 may be easily worn when the powder enters the gap. If the distance d exceeds 0.6 mm, a large amount of the powder 3 is present. May enter the gap and increase the load on the rotor 8 to cause rotation failure, or the granular material 3 may be transported by compressed air through the gap and the quantitativeness may be lowered.
 図6に示すように、ケーシング7を、ローター8の外周面と対向位置に設けられたケーシング本体7aを、それぞれ内側壁を備えた左右のケーシング蓋7bで挟み込んだ構造とし、ケーシング本体7aと、左右のケーシング蓋7bとの間にそれぞれパッキングPを交換可能に挟み込んでおくと、間隔dの調製をパッキングPの厚さを変えることで行うことができる。パッキンPとしては、特に限定するものではないが、クロロプレンゴム、ニトリルゴム、ウレタンゴム等のゴム製のパッキン、ポリエチレン、フッ素樹脂、布入りフェノール等の樹脂製のパッキン、牛皮等をなめした皮製のパッキン、真鍮やアルミニウム等の金属製のパッキンを用いることができる。 As shown in FIG. 6, the casing 7 has a structure in which a casing body 7 a provided at a position facing the outer peripheral surface of the rotor 8 is sandwiched between left and right casing lids 7 b each having an inner wall, and the casing body 7 a When the packing P is sandwiched between the left and right casing lids 7b, the distance d can be adjusted by changing the thickness of the packing P. The packing P is not particularly limited, but is made of rubber packing such as chloroprene rubber, nitrile rubber, urethane rubber, packing made of resin such as polyethylene, fluororesin, cloth phenol, leather made of tanned cowhide, etc. Packing made of metal such as brass or aluminum can be used.
 このように、ローター8の左右の側面と、この左右の側面にそれぞれ対向するケーシング7の内側壁との間の間隔dを調整することで、より運転トラブルがなく安定的に粉粒体を供給できる。 In this way, by adjusting the distance d between the left and right side surfaces of the rotor 8 and the inner side wall of the casing 7 facing the left and right side surfaces, the granular material can be stably supplied without any operation trouble. it can.
 上記輸送管9に供給される圧縮空気は、通常、0.8MPa以下の圧力のもので、その一部はローター8とケーシング7間のわずかな隙間を通ってタンク2内に侵入してタンク2の内圧を高める。従って、タンク2は、上記圧縮空気の圧力にもよるが、この内圧の上昇に耐えられるよう、1.0MPaまでの圧力に耐えられるように設計することが好ましい。 The compressed air supplied to the transport pipe 9 is usually at a pressure of 0.8 MPa or less, and part of the compressed air enters the tank 2 through a slight gap between the rotor 8 and the casing 7 and enters the tank 2. Increase internal pressure. Accordingly, the tank 2 is preferably designed to withstand a pressure of up to 1.0 MPa so that it can withstand the increase in internal pressure, although it depends on the pressure of the compressed air.
 図3及び図4に示す第2の例は、基本的には図1及び図2に示す第1の例と同様であるが、タンク2内の粉粒体3のケーシング7への落下排出を促進する粉粒体の排出装置を備えたものとなっている。更に説明すると、図3、図4及び図7に示すように、粉粒体の排出装置は、タンク2の底部の排出部5とケーシング7との接続部内に位置する振動板1と、振動板1が立設された支持板10と、支持板10を上下から挟む弾性接続体11a,11bと、接続部から外方に延出した支持板10の一部に設けられた振動装置12とを備えている。支持板10は、粉粒体3の落下を許容する開口16を残して接続部の内側に介在されており、振動板1は接続部の内側で支持板10に立設されている。支持板10と、支持板10の上下に位置する弾性接続体11a,11bとは、図3および図4に示すように、排出部5の下端縁に設けられたフランジ部13と、ロータリーフィーダー6のケーシング7上端縁に設けられたフランジ部14とをボルト締めして接続する際に、両フランジ部13,14間に挟み込まれているものである。 The second example shown in FIG. 3 and FIG. 4 is basically the same as the first example shown in FIG. 1 and FIG. 2, but the fall discharge of the granular material 3 in the tank 2 to the casing 7 is performed. It is equipped with a device for discharging powder particles to be promoted. More specifically, as shown in FIGS. 3, 4, and 7, the powder particle discharging device includes a vibration plate 1 positioned in a connection portion between the discharge portion 5 at the bottom of the tank 2 and the casing 7, and a vibration plate. 1, a support plate 10 erected, elastic connection bodies 11 a and 11 b that sandwich the support plate 10 from above and below, and a vibration device 12 provided on a part of the support plate 10 that extends outward from the connection portion. I have. The support plate 10 is interposed inside the connection portion leaving an opening 16 that allows the powder particles 3 to fall, and the diaphragm 1 is erected on the support plate 10 inside the connection portion. As shown in FIGS. 3 and 4, the support plate 10 and the elastic connecting members 11 a and 11 b positioned above and below the support plate 10 include a flange portion 13 provided at the lower end edge of the discharge portion 5, and the rotary feeder 6. When the flange portion 14 provided at the upper edge of the casing 7 is bolted and connected, the flange portion 13 is sandwiched between the flange portions 13 and 14.
 上記粉粒体の排出装置に設ける振動装置12は、両弾性接続体11a,11bを弾性変形させつつ支持板10全体を振動させ、この支持板10に立設された振動板1をも振動させるものである。この振動装置12による振動を効率的に振動板1の振動として伝えるために、上記両フランジ部13,14間のボルト締めは、粉粒体3の漏れを生じたり接続のずれを生じたりしない範囲で、両弾性接続体11a,11bが弾性変形しやすい程度の締め付け力としておくことが好ましい。例えば、ボルト締めは、ボルト孔18にボルトを通すことにより行う。 The vibration device 12 provided in the powder particle discharging device vibrates the entire support plate 10 while elastically deforming both elastic connecting members 11a and 11b, and also vibrates the vibration plate 1 standing on the support plate 10. Is. In order to efficiently transmit the vibration by the vibration device 12 as the vibration of the diaphragm 1, the bolting between the flange portions 13 and 14 does not cause the leakage of the granular material 3 or the displacement of the connection. Therefore, it is preferable to set the tightening force to such a degree that both elastic connecting members 11a and 11b are easily elastically deformed. For example, the bolting is performed by passing a bolt through the bolt hole 18.
 支持板10は、図7に明示するように、やや一方に片寄った位置に開口部16を有する長方形の枠状体となっている。この開口部16は粉粒体3を落下排出するためのもので、タンク2の排出部5の開口とほぼ同じ大きさの形状となっている。本例における支持板10及びその開口部16の形状は方形であるが、例えばタンク2の排出部5の外形及び開口形状が円形であれば、これと同じ円形とすることが好ましい。 As shown in FIG. 7, the support plate 10 is a rectangular frame having an opening 16 at a position slightly offset from one side. The opening 16 is for dropping and discharging the powdery granular material 3, and has a shape that is substantially the same size as the opening of the discharge unit 5 of the tank 2. Although the shape of the support plate 10 and its opening 16 in this example is a square, for example, if the outer shape and the opening shape of the discharge part 5 of the tank 2 are circular, it is preferable to have the same circular shape.
 支持板10の一辺側は、タンク2の排出部5と、ロータリーフィーダー6との間の接続部の外へ延出しており、この外部へ延出した部分に振動装置12が取り付けられている。振動装置12は、前述のように、支持板10を介して振動板1を振動させるためのもので、支持板10に対し、主に振動板1の肉厚方向の振動を付与するものであることが好ましい。このような方向に振動を付与すると、振動板1が撓みやすい方向に振動することになり、振動板1が振動しやすくなると共に、この振動板1の振動を効果的に粉粒体3に伝えることができる。上記方向の振動はほぼ水平方向の振動であり、振動がタンク2やロータリーフィーダー6へと分散して減衰するのを弾性接続体11a,11bで防止することができる。 One side of the support plate 10 extends outside a connecting portion between the discharge portion 5 of the tank 2 and the rotary feeder 6, and a vibration device 12 is attached to a portion extending to the outside. As described above, the vibration device 12 is for vibrating the vibration plate 1 via the support plate 10, and mainly applies vibration in the thickness direction of the vibration plate 1 to the support plate 10. It is preferable. When vibration is applied in such a direction, the vibration plate 1 vibrates in a direction in which the vibration plate 1 is easily bent, and the vibration plate 1 is easily vibrated, and the vibration of the vibration plate 1 is effectively transmitted to the powder body 3. be able to. The vibration in the above direction is a substantially horizontal vibration, and it is possible to prevent the vibration from being dispersed and attenuated to the tank 2 and the rotary feeder 6 by the elastic connecting members 11a and 11b.
 振動装置12としては、周知の振動モーター等を用いることができる。図7に示すような構造の振動装置12は、比較的小さい振動力の振動モーターで効果を発揮させることができる。通常、振動モーターは設置面に対して主に垂直方向の振動を付与するものであることから、支持板10に対して上記のような方向の振動を付与できるようにするためには、図3及び図7に示すように、振動モーター(振動装置12)を横向きに取り付けることが好ましい。 As the vibration device 12, a known vibration motor or the like can be used. The vibration device 12 having a structure as shown in FIG. 7 can exert its effect with a vibration motor having a relatively small vibration force. Usually, since the vibration motor mainly applies vibration in the vertical direction to the installation surface, in order to be able to apply vibration in the above direction to the support plate 10, FIG. And as shown in FIG. 7, it is preferable to attach a vibration motor (vibration apparatus 12) sideways.
 支持板10の開口部16内の中央部を横断するように、振動板1の下端部が差し込まれており、開口部16の周縁部に振動板1の下端部が固定されていることで、支持板10に振動板1が立設されている。支持板10や振動板1の材料としては、一般鋼材(軟鋼、ステンレス鋼等)が挙げられる。支持板10への振動板1の取り付けは、熔接やねじ止めによって行うことができる。 The lower end of the diaphragm 1 is inserted so as to cross the central portion in the opening 16 of the support plate 10, and the lower end of the diaphragm 1 is fixed to the peripheral edge of the opening 16. The diaphragm 1 is erected on the support plate 10. Examples of the material of the support plate 10 and the diaphragm 1 include general steel materials (soft steel, stainless steel, etc.). The vibration plate 1 can be attached to the support plate 10 by welding or screwing.
 片寄りなく振動を粉粒体3に伝えることができるよう、支持板10はほぼ水平に取り付けられることが好ましく、振動板1は支持板10に対してほぼ垂直に立設されていることが好ましい。 The support plate 10 is preferably mounted substantially horizontally so that the vibration can be transmitted to the granular material 3 without any deviation, and the vibration plate 1 is preferably provided substantially vertically with respect to the support plate 10. .
 振動板1の高さは、振動板1の大きさ、形状、厚み等にもよるが、排出部5の開口が円形である場合、排出部5の内径の1乃至5倍であることが好ましく、排出部5の開口が方形である場合、開口の長手方向の長さの1乃至3倍であることが好ましい。振動板1の高さが小さ過ぎると、振動板1の振動が小さくなり、粉粒体3へ伝わる振動も小さくなって、高い排出促進効果が得にくくなる場合がある。逆に振動板1の高さが高過ぎると、振動板1の振幅が大きくなり、振動板1と支持板10の接合部が破損しやすくなる場合がある。 The height of the diaphragm 1 depends on the size, shape, thickness, etc. of the diaphragm 1, but is preferably 1 to 5 times the inner diameter of the discharge part 5 when the opening of the discharge part 5 is circular. When the opening of the discharge part 5 is square, it is preferably 1 to 3 times the length of the opening in the longitudinal direction. If the height of the diaphragm 1 is too small, the vibration of the diaphragm 1 is reduced, the vibration transmitted to the powder body 3 is also reduced, and it may be difficult to obtain a high discharge promoting effect. Conversely, if the height of the diaphragm 1 is too high, the amplitude of the diaphragm 1 increases, and the joint between the diaphragm 1 and the support plate 10 may be easily damaged.
 振動板1は正方形や長方形の平板でもよいが、先端(上端側)を撓みやすくするために、上端側の幅を狭くした台形状としたり、支持板10との接続面積を広くするために、肉厚を基部(支持板10側)側で大きくし、先端側で小さくした楔又は錐形状としたりすることもできる。 The diaphragm 1 may be a square or rectangular flat plate, but in order to make the tip (upper end side) easy to bend, to form a trapezoid with a narrow upper end side, or to increase the connection area with the support plate 10, It is also possible to increase the thickness on the base (support plate 10 side) side and reduce the thickness on the distal end side to make a wedge or a cone shape.
 弾性接続体11a,11bは、前記両フランジ部13,14間に挟み込まれる形状(通常、円形又は方形)であり、その中央部に支持板10の開口部16に対応する開口部17a,17bを有する環状のゴム板で構成されている。弾性接続体11a,11bは、振動装置12の振動を大きく減衰させることなく支持板10へ伝えることができるようにするもので、本例のようなゴム板の他、スプリング等の他の弾性部材を用いたものとすることもできる。しかし、スプリング等を用いる場合、タンク2の排出部5とロータリーフィーダー6との間の接続部を可撓性材料で囲んで粉粒体の漏れを防止する必要があるのに対し、ゴム板製の弾性接続体11a,11bはこの接続部のパッキンとしての役割をもなしており、構造が簡略であるので好ましい。ゴム板製の弾性接続体11a,11bの材質としては、NBR、SBR、シリコーンゴム等の汎用ゴムを使用することができる。 The elastic connecting members 11a and 11b have a shape (usually circular or square) sandwiched between the flange portions 13 and 14, and have openings 17a and 17b corresponding to the openings 16 of the support plate 10 at the center. It is comprised with the cyclic | annular rubber plate which has. The elastic connecting members 11a and 11b can transmit the vibration of the vibration device 12 to the support plate 10 without greatly reducing the vibration, and other elastic members such as a spring in addition to the rubber plate as in this example. Can also be used. However, when using a spring or the like, it is necessary to surround the connecting portion between the discharge portion 5 of the tank 2 and the rotary feeder 6 with a flexible material to prevent leakage of the granular material. The elastic connecting members 11a and 11b serve as packing for the connecting portions, and are preferable because the structure is simple. As a material for the elastic connectors 11a and 11b made of rubber plate, general-purpose rubber such as NBR, SBR, and silicone rubber can be used.
 本発明により落下し、排出し、供給する粉粒体としては、特に限定されるものではないが、一般の粉粒体は勿論のこと、セメント系材料や急結剤を挙げることができる。急結剤としては、一般に市販されている粉体急結剤であれば何れも使用できる。急結剤の成分としては、カルシウムアルミネート類、アルミン酸塩類、ケイ酸塩類、炭酸塩類、硫酸塩類、硝酸塩類、水酸化物から選ばれる物質を1種又は2種以上含有するものが使用できる。 The granular material that drops, discharges, and is supplied according to the present invention is not particularly limited, but examples include general granular materials as well as cementitious materials and rapid setting agents. As the quick set, any commercially available powder set can be used. As the component of the quick setting agent, one containing one or more substances selected from calcium aluminates, aluminates, silicates, carbonates, sulfates, nitrates and hydroxides can be used. .
 カルシウムアルミネート類としては、CaO原料やAl23原料を混合したものをキルンでの焼成、電気炉等での溶融等の熱処理をして得られるものであり、その他の成分としてナトリウム、カリウム、リチウム等のアルカリ金属塩が一部固溶したカルシウムアルミネート、SiO2を含有するカルシウムアルミネート、SO3を含有するカルシウムアルミネート等が挙げられる。カルシウムアルミネートの粒度はブレーン値で3000cm2/g以上が好ましい。カルシウムアルミネート類は、結晶質と非晶質の何れでも使用できる。 Calcium aluminates are obtained by heat-treating a mixture of CaO raw material and Al 2 O 3 raw material, such as baking in a kiln, melting in an electric furnace, etc., and sodium, potassium as other components Calcium aluminate in which an alkali metal salt such as lithium is partly dissolved, calcium aluminate containing SiO 2 , calcium aluminate containing SO 3, and the like. The particle size of the calcium aluminate is preferably 3000 cm 2 / g or more in terms of a brain value. Calcium aluminates can be used either crystalline or amorphous.
 カルシウムアルミネート類以外の無機塩としては、アルミン酸塩類、ケイ酸塩類、炭酸塩類、硫酸塩類、硝酸塩類、水酸化物等を含んでいてもよい。
(1)アルミン酸塩類としては、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、六フッ化アルミン酸カルシウム等が挙げられる。
(2)ケイ酸塩類としては、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸マグネシウム等が挙げられる。
(3)炭酸塩類としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、重炭酸リチウム、重炭酸ナトリウム、重炭酸カリウム、トロナ灰等が挙げられる。
(4)硫酸塩類としては、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、ミョウバン類等が挙げられる。
(5)硝酸塩類としては、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸カルシウム、硝酸マグネシウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸マグネシウム等が挙げられる。
(6)水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等が挙げられる。
Inorganic salts other than calcium aluminates may include aluminates, silicates, carbonates, sulfates, nitrates, hydroxides, and the like.
(1) Examples of aluminates include lithium aluminate, sodium aluminate, potassium aluminate, and calcium hexafluoroaluminate.
(2) Examples of silicates include lithium silicate, sodium silicate, potassium silicate, and magnesium silicate.
(3) Examples of carbonates include lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, trona ash and the like.
(4) Examples of sulfates include lithium sulfate, sodium sulfate, potassium sulfate, calcium sulfate, magnesium sulfate, aluminum sulfate, and alum.
(5) Examples of nitrates include lithium nitrate, sodium nitrate, potassium nitrate, calcium nitrate, magnesium nitrate, lithium nitrite, sodium nitrite, potassium nitrite, calcium nitrite, and magnesium nitrite.
(6) Examples of the hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like.
 急結剤の使用量は、固形分換算で、セメント100部に対して3~20部が好ましく、5~15部がより好ましく、7~10部が最も好ましい。 The use amount of the quick setting agent is preferably 3 to 20 parts, more preferably 5 to 15 parts, and most preferably 7 to 10 parts per 100 parts of cement in terms of solid content.
 上記無機塩の粒度は特に限定するものではないが、タンク2から落下し、排出するときに偏析やブロッキング等が起きない程度の粒度であることが好ましい。これらの急結剤を構成する成分以外に、性能に悪影響を与えない範囲で、各種セメント混和剤を併用しても構わない。例えば、減水剤、消泡剤、空気連行剤、防錆剤、粘土鉱物類、高炉スラグや徐冷スラグ等のスラグ類、珪石粉、シリカフュームやフライアッシュ等のシリカ質粉末、ポルトランドセメント、撥水剤、粉末ポリマー、γ型ケイ酸2カルシウム、アルミナセメント、増粘剤、収縮低減剤等が挙げられる。 The particle size of the inorganic salt is not particularly limited, but it is preferably a particle size that does not cause segregation or blocking when dropping from the tank 2 and discharging. In addition to the components constituting these quick setting agents, various cement admixtures may be used in combination as long as the performance is not adversely affected. For example, water reducing agents, antifoaming agents, air entraining agents, rust inhibitors, clay minerals, slags such as blast furnace slag and slow-cooled slag, siliceous powders such as silica stone powder, silica fume and fly ash, Portland cement, water repellent Agent, powder polymer, γ-type dicalcium silicate, alumina cement, thickener, shrinkage reducing agent and the like.
 次に、本発明に係る吹付け工法について説明する。 Next, the spraying method according to the present invention will be described.
 本発明では、図8及び図9に示す吹付けシステムによって吹付け施工を行うことができる。 In the present invention, spraying can be performed by the spraying system shown in FIGS.
 圧縮空気はコンプレッサー19で製造し、管を介して水分を除湿する水分除湿装置(ドライヤー)20を通し圧縮空気を乾燥する。コンプレッサー19の圧縮空気の吐出能力は、2m3/min以上が好ましい。水分を除去する水分除湿装置20は、特に限定するものではないが、一般的に市販されているエアドライヤー(冷凍式圧縮空気除湿装置)が使用できる。水分を除去する水分除湿装置20としては、ミストセパレータータンクも使用可能である。使用する環境条件によっては、これらを組み合わせて使用できる。次に、乾燥された圧縮空気は、本発明の粉粒体の供給装置24を通り、粉粒体を管を介して輸送する。 The compressed air is produced by a compressor 19 and dried through a moisture dehumidifying device (dryer) 20 that dehumidifies moisture through a pipe. The discharge capacity of the compressed air of the compressor 19 is preferably 2 m 3 / min or more. The moisture dehumidifying device 20 for removing moisture is not particularly limited, but a commercially available air dryer (refrigerated compressed air dehumidifying device) can be used. A mist separator tank can also be used as the moisture dehumidifying device 20 for removing moisture. These can be used in combination depending on the environmental conditions used. Next, the dried compressed air passes the granular material supply apparatus 24 of the present invention, and transports the granular material through a tube.
 一方、セメントコンクリートを供給する装置(コンクリートポンプ21)で、管を介してセメントコンクリートを輸送する。輸送としては、空気輸送やポンプ輸送等が挙げられる。 On the other hand, cement concrete is transported through a pipe by means of a cement concrete supply device (concrete pump 21). Examples of transportation include pneumatic transportation and pump transportation.
 図8は、コンクリートポンプ21として、ピストンポンプ又はスクイズポンプを用いた例である。図9は、コンクリートポンプ21として空気搬送ポンプを用いた例である。セメントコンクリートは予め水を加えて練り混ぜた湿式セメントコンクリートを用いる湿式方式や、水を全く加えないか、粉粒体状を保つ程度の水を少量加えて混合した乾式セメントコンクリートの何れも使用可能である。湿式セメントコンクリートを用いる場合は、例えばピストンポンプやスクイズポンプといったコンクリートポンプ21で圧送し、途中でY字管22の一方より圧縮空気を導入してセメントコンクリートを吹き飛ばし輸送すればよい。乾式セメントコンクリートを用いる場合は、例えば空気搬送ポンプを用いた空気搬送方式の吹付け機でセメントコンクリートを吹き飛ばし輸送すればよい。コンクリートポンプ21の吐出能力は最大30m3/hrであり、その能力に合せて、ローター8の大きさ、ローター8の歯車の溝の深さ、ローター8のピッチを変えたローター8が適用できる。 FIG. 8 shows an example in which a piston pump or a squeeze pump is used as the concrete pump 21. FIG. 9 shows an example in which an air conveyance pump is used as the concrete pump 21. Cement concrete can be either wet type using wet cement concrete that has been pre-mixed with water, or dry type cement concrete that is mixed with a small amount of water that does not add water or maintains a granular state. It is. In the case of using wet cement concrete, for example, it may be pumped by a concrete pump 21 such as a piston pump or a squeeze pump, and compressed air may be introduced from one of the Y-shaped pipes 22 to blow the cement concrete and transport it. In the case of using dry cement concrete, the cement concrete may be blown away and transported by, for example, an air conveyance type sprayer using an air conveyance pump. The discharge capacity of the concrete pump 21 is 30 m 3 / hr at the maximum, and the rotor 8 in which the size of the rotor 8, the depth of the gear groove of the rotor 8, and the pitch of the rotor 8 are changed according to the capacity can be applied.
 このようにして輸送されるセメントコンクリートに、輸送管の途中に設けたY字管23の一方の管より圧縮空気と共に粉粒体を合流混合し、ノズル25からセメントコンクリートと粉粒体の混合物を吹付ける。場合によっては、湿式セメントコンクリートを吹付ける際に、粉粒体を供給するための圧縮空気のみで、セメントコンクリートを吹付けることも可能である。 The cement concrete transported in this way is mixed and mixed with compressed air from one pipe of the Y-shaped pipe 23 provided in the middle of the transport pipe, and the mixture of the cement concrete and the powder from the nozzle 25 is mixed. Spray. In some cases, when the wet cement concrete is sprayed, it is possible to spray the cement concrete only with compressed air for supplying the granular material.
 粉粒体として粉体急結剤を使用する場合、図10に示すように、粉体急結剤をセメントコンクリートに合流混合してもよい。本発明は、セメントコンクリートに合流混合する直前で、急結剤に水や液体急結剤をポンプ26で圧送し、途中に設けたスラリー管27で圧縮空気と合流混合し、スラリー状急結剤として合流混合管28の一方より、セメントコンクリートにスラリー状急結剤を合流混合する吹付け工法へも適用できる。水や液体急結剤の添加装置(図示せず)は、ポンプ26に接続する。 When using a powder quick-setting agent as the granular material, as shown in FIG. 10, the powder quick-setting agent may be mixed and mixed with cement concrete. In the present invention, immediately before merging and mixing with cement concrete, water or a liquid accelerating agent is pumped to the accelerating agent by the pump 26, and the slurry pipe 27 provided in the middle is merged and mixed with the compressed air. As an example, the present invention can also be applied to a spraying method in which a slurry-like quick setting agent is joined and mixed into cement concrete from one of the joining and mixing tubes 28. An addition device (not shown) for adding water or a liquid quickening agent is connected to the pump 26.
 本発明に係るセメントコンクリートは、セメント、水、骨材等を含有する。温度条件や施工条件に合わせて、高性能減水剤を含む減水剤等を使用しても良い。 The cement concrete according to the present invention contains cement, water, aggregate and the like. A water reducing agent including a high performance water reducing agent may be used in accordance with the temperature condition and the construction condition.
 セメントとしては、普通、早強、中庸熱、及び超早強等の各種ポルトランドセメントや、これら各種ポルトランドセメントに高炉スラグやフライアッシュを混合した各種混合セメント等が挙げられる。 Examples of the cement include various portland cements such as normal, early strength, medium heat, and ultra early strength, and various mixed cements obtained by mixing blast furnace slag and fly ash with these various portland cements.
 骨材としては、特に限定されるものではないが、吸水率が低くて、骨材強度が高いものが好ましい。骨材の最大寸法は、吹付けできれば特に限定されるものではない。細骨材としては、川砂、山砂、海砂、石灰砂、及び珪砂等が挙げられる。粗骨材としては、川砂利、山砂利、及び石灰砂利等が挙げられる。砕砂、砕石も使用可能である。 The aggregate is not particularly limited, but preferably has low water absorption and high aggregate strength. The maximum size of the aggregate is not particularly limited as long as it can be sprayed. Examples of fine aggregates include river sand, mountain sand, sea sand, lime sand, and quartz sand. Examples of coarse aggregate include river gravel, mountain gravel, and lime gravel. Crushed sand and crushed stone can also be used.
 高性能減水剤としては、アルキルアリルスルホン酸系、ナフタレンスルホン酸系、メラミンスルホン酸系、リグニンスルホン酸系、ポリカルボン酸系及びポリエチレングリコール系等の高性能減水剤(高性能AE減水剤を含む)等が挙げられる。 High performance water reducing agents such as alkylallyl sulfonic acid type, naphthalene sulfonic acid type, melamine sulfonic acid type, lignin sulfonic acid type, polycarboxylic acid type and polyethylene glycol type (including high performance AE water reducing agent) ) And the like.
 減水剤の使用量は、セメント100部に対して、固形分換算で0.05~5部が好ましく、0.1~3部がより好ましい。 The amount of water reducing agent used is preferably 0.05 to 5 parts, more preferably 0.1 to 3 parts in terms of solid content with respect to 100 parts of cement.
 本発明に係るセメントコンクリートの配合は、単位セメント量300~600kg/m3が好ましい。本発明に係るセメントコンクリートの水の量は、水セメント比(W/C)で35~80%が好ましく、40~70%がより好ましい。本発明に係るセメントコンクリートの細骨材率は、50体積%以上が好ましい。 The blend of cement concrete according to the present invention is preferably a unit cement amount of 300 to 600 kg / m 3 . The amount of water in the cement concrete according to the present invention is preferably 35 to 80%, more preferably 40 to 70% in terms of water-cement ratio (W / C). The fine aggregate ratio of the cement concrete according to the present invention is preferably 50% by volume or more.
 以下、実施例及び比較例によって本発明を更に説明する。 Hereinafter, the present invention will be further described with reference to examples and comparative examples.
 <実験例1>
 表1に示す粉粒体の供給装置を稼働し、その性能を評価した。
<Experimental example 1>
The apparatus for supplying granular material shown in Table 1 was operated and its performance was evaluated.
 実験No.1-1~1-8は図1及び図2に示す粉粒体供給装置を用い、実験No1-9~1-17は図3及び図4に示す粉粒体供給装置を用いた。粉粒体を貯蔵するタンクは加圧タンクとし、ローターとしては歯車型(溝の数25個、溝の深さ1.5cm)を用い、ローターとケーシングの間隔dを、パッキンPを用いて表1に示す値になるように調整した。 Experiment No. 1-1 to 1-8 used the granular material supply apparatus shown in FIGS. 1 and 2, and Experiment Nos. 1-9 to 1-17 used the granular material supply apparatus shown in FIGS. The tank for storing the granular material is a pressurized tank, the rotor is a gear type (number of grooves: 25, groove depth: 1.5 cm), and the distance d between the rotor and casing is expressed using packing P. It adjusted so that it might become a value shown in 1.
 粉粒体としては、平均粒径10μm、安息角50度の混合物[カルシウムアルミネート類とセッコウの混合物(粉粒体a)]を用いた。加圧タンクは、縦200mm、横80mmの長方形に開口した排出部と、この排出部に向かって50度に傾斜した底面とを有する250リットルの縦型タンクを用いた。各試験ともこのタンクに上記粉粒体を加えて実施した。加えた粉粒体の量は、各試験ともに200kgとした。 As the powder particles, a mixture [mixture of calcium aluminate and gypsum (powder particles a)] having an average particle diameter of 10 μm and an angle of repose of 50 degrees was used. As the pressurized tank, a 250 liter vertical tank having a discharge portion opened in a rectangular shape having a length of 200 mm and a width of 80 mm and a bottom surface inclined at 50 degrees toward the discharge portion was used. In each test, the above-mentioned powder was added to this tank. The amount of the added granular material was 200 kg in each test.
 振動板としては、幅78mm、厚さ10mm、高さ400mmの長方形平板を用いた。支持板の上下に設ける弾性接続体としては、NBRのゴム板を用いた。振動装置としては、振動モーターを用い、振動力を50kgに設定した。 As the diaphragm, a rectangular flat plate having a width of 78 mm, a thickness of 10 mm, and a height of 400 mm was used. NBR rubber plates were used as the elastic connectors provided above and below the support plate. As the vibration device, a vibration motor was used, and the vibration force was set to 50 kg.
 ロータリーフィーダーに接続された輸送管には流量3.0m3/min、圧力0.4MPaの圧縮空気を供給し、ロータリーフィーダーのローターの回転数は6rpmとした。尚、排出部の開口の長手方向の長さは200mmである。 The transport pipe connected to the rotary feeder was supplied with compressed air having a flow rate of 3.0 m 3 / min and a pressure of 0.4 MPa, and the rotational speed of the rotor of the rotary feeder was 6 rpm. In addition, the length of the opening of the discharge part in the longitudinal direction is 200 mm.
 表2にトラブル状態の観察結果、図11及び図12に経過時間毎の粉粒体の質量減少量の関係を示す。図11では、実験No.1-1、No.1-2、No.1-5、No.1-7、No.1-8の実験例について示す。図12では、実験No.1-9、No.1-10、No.1-14、No.1-16、No.1-17の実験例について示す。 Table 2 shows the observation results of the trouble state, and FIGS. 11 and 12 show the relationship between the amount of mass reduction of the granular material for each elapsed time. In FIG. 1-1, no. 1-2, no. 1-5, No. 1 1-7, No. 1 An experimental example 1-8 will be described. In FIG. 1-9, No. 1 1-10, No. 1 1-14, No. 1 1-16, No. 1 An experimental example 1-17 will be described.
 (粉粒体の種類と使用材料)
 -粉粒体a-
 カルシウムアルミネート類(主成分12CaO・7Al23、非晶質、ブレーン比表面積5900cm2/g)とセッコウ[無水セッコウ(市販品)]を重量比50:50で混合した混合物
(Types of powder and materials used)
-Powder body a-
Calcium aluminate (main component 12CaO · 7Al 2 O 3 , amorphous, brane specific surface area 5900 cm 2 / g) and gypsum [anhydrous gypsum (commercial product)] mixed at a weight ratio of 50:50
 (評価方法)
 -安息角-
 JIS R 9301-2-2に従った。
 -ブレーン比表面積-
 JIS R 5201の比表面積試験に従った。
 -ローターのトラブル状態の観察-
 過負荷による停止の有無、異音の有無を観察した。
(Evaluation methods)
-Angle of repose-
According to JIS R 9301-2-2.
-Blaine specific surface area-
The specific surface area test of JIS R 5201 was followed.
-Observation of rotor trouble state-
The presence or absence of a stop due to overload and the presence or absence of abnormal noise were observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、ローターの左右の側面と、この左右の側面にそれぞれ対向するケーシングの内側壁との間隔dは、ローターのトラブルが少ない点で、0.05~0.6mmとすることが必要である。 From Table 2, the distance d between the left and right side surfaces of the rotor and the inner wall of the casing facing the left and right side surfaces must be 0.05 to 0.6 mm from the viewpoint of less trouble with the rotor. is there.
 <実験例2>
 表3に示す粉粒体供給装置を稼働したこと以外は、実験例1と同様に行った。
<Experimental example 2>
The same operation as in Experimental Example 1 was performed except that the powder and particle supply apparatus shown in Table 3 was operated.
 実験No.2-1は図1及び図2に示す粉粒体供給装置を用い、実験No.2-2、No.1-14、No.2-3、No.2-4は図3及び図4に示す粉粒体供給装置を用いた。実験No.2-5とNo.2-6は、タンクを加圧しない方法で実施した(非密閉式のタンクを用い、上蓋にバグフィルターを取り付け、飛散する粉塵を除去した)。 Experiment No. 2-1 uses the powder and granular material supply apparatus shown in FIGS. 2-2, No. 1-14, No. 1 2-3, no. 2-4 used the granular material supply apparatus shown in FIGS. Experiment No. 2-5 and no. In 2-6, the tank was not pressurized (an unsealed tank was used, a bag filter was attached to the upper lid, and the scattered dust was removed).
 粉粒体としては、平均粒径10μm、安息角50度の混合物[カルシウムアルミネートとセッコウの混合物(粉粒体a)]を用いた。加圧タンクは、縦200mm、横80mmの長方形に開口した排出部と、この排出部に向かって50度に傾斜した底面とを有する250リットルの縦型タンクを用いた。各実験ともこのタンクに上記粉粒体を加えて実施した。加えた量は、各試験ともに200kgとした。 As the powder, a mixture [mixture of calcium aluminate and gypsum (powder a)) having an average particle diameter of 10 μm and an angle of repose of 50 degrees was used. As the pressurized tank, a 250 liter vertical tank having a discharge portion opened in a rectangular shape having a length of 200 mm and a width of 80 mm and a bottom surface inclined at 50 degrees toward the discharge portion was used. In each experiment, the above-mentioned powder was added to this tank. The amount added was 200 kg for each test.
 振動板としては、厚さ10mmで、高さhと幅wを後述するように変えた長方形平板を用いた。支持板の上下に設ける弾性接続体としては、NBRのゴム板を用いた。振動装置としては、振動モーターを用い、振動力を50kgに設定した。ロータリーフィーダーに接続された輸送管には流量3.0m3/min、圧力0.4MPaの圧縮空気を供給し、ロータリーフィーダーのローターの回転数は6rpmとした。ローターの左右の側面と、この左右の側面にそれぞれ対向するケーシングの内側壁との間隔dは0.3mmとした。 As the diaphragm, a rectangular flat plate having a thickness of 10 mm and having a height h and a width w changed as described later was used. NBR rubber plates were used as the elastic connectors provided above and below the support plate. As the vibration device, a vibration motor was used, and the vibration force was set to 50 kg. The transport pipe connected to the rotary feeder was supplied with compressed air having a flow rate of 3.0 m 3 / min and a pressure of 0.4 MPa, and the rotational speed of the rotor of the rotary feeder was 6 rpm. The distance d between the left and right side surfaces of the rotor and the inner side wall of the casing facing the left and right side surfaces was 0.3 mm.
 結果を図13及び図14に示す。図13及び図14に経過時間毎の粉粒体の質量減少量の関係を示す。また、図13及び図14に、最小二乗法により直線近似した場合の近似式も示した。Yは質量減少量(kg)、Xは経過時間(分)である。 Results are shown in FIG. 13 and FIG. FIG. 13 and FIG. 14 show the relationship of the mass reduction amount of the granular material for each elapsed time. In addition, FIGS. 13 and 14 also show approximation formulas when linear approximation is performed by the least square method. Y is the mass loss (kg), and X is the elapsed time (minutes).
 (評価方法)
 -質量減少量-
 粉粒体の供給装置を、粉粒体を加えたまま計量器に載せて質量を測定した。2分間隔で、粒体の供給装置の質量減少量を測定し、定量性を評価した。定量性に優れる場合は、粉粒体が十分な量存在するときから、粉粒体の量が残り少なくなるまで、経過時間と減少量の関係は正比例関係に近くなる。
(Evaluation methods)
-Mass loss-
The powder feeder was placed on a measuring instrument with the powder added, and the mass was measured. At an interval of 2 minutes, the amount of mass reduction of the granule supply device was measured to evaluate the quantitativeness. When the quantitative property is excellent, the relationship between the elapsed time and the amount of decrease is close to a direct proportional relationship from when there is a sufficient amount of powder particles until the amount of powder particles is reduced.
 (振動板の種類と寸法)
 -振動板A-
 h=200mm、h:w=1:1
 -振動板B-
 h=400mm、h:w=2:1
 -振動板C-
 h=600mm、h:w=3:1
 -振動板D-
 h=700mm、h:w=3.5:1
(Types and dimensions of diaphragm)
-Diaphragm A-
h = 200 mm, h: w = 1: 1
-Diaphragm B-
h = 400 mm, h: w = 2: 1
-Diaphragm C-
h = 600 mm, h: w = 3: 1
-Diaphragm D-
h = 700 mm, h: w = 3.5: 1
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 定量性が高い程、切片(座標軸とグラフとの交点の座標)はゼロに近い値を示す。加圧タンクを使用した実験No.2-1、No.1-14は、非加圧タンクを使用した実験No.2-5、2-6に比べ切片の値が小さいことから、定量性に優れている。特に、振動板が有る場合は、より切片がゼロに近い値を示していることから、振動板の定量性向上効果が大きい。 The higher the quantitativeness, the closer the intercept (coordinate of the intersection of the coordinate axis and the graph) is to zero. Experiment No. using a pressurized tank 2-1. No. 1-14 is an experiment No. 1 using a non-pressurized tank. Compared with 2-5 and 2-6, the value of the intercept is small, so that the quantitative property is excellent. In particular, when there is a diaphragm, since the intercept shows a value closer to zero, the effect of improving the quantitativeness of the diaphragm is great.
 <実験例3>
 振動板の種類による影響を確認したこと以外は実験例1と同様に行った。結果を図14に示す。
<Experimental example 3>
The experiment was performed in the same manner as in Experimental Example 1 except that the influence of the type of diaphragm was confirmed. The results are shown in FIG.
 試験の結果、上記振動板A~Cの何れの場合も、安定した排出状態を維持している。振動板の幅と高さの比率が大きくなると、振動が振動板全体に均一に伝わりにくくなるためか定量性は低下する傾向を示す(実験No.2-4)。振動板1の高さは、排出部5の開口が方形である場合、開口の長手方向の長さの1~3倍であることが好ましい。 As a result of the test, a stable discharge state is maintained in any of the diaphragms A to C. When the ratio between the width and height of the diaphragm increases, the quantitativeness tends to decrease because the vibration is not easily transmitted to the entire diaphragm (Experiment No. 2-4). When the opening of the discharge portion 5 is square, the height of the diaphragm 1 is preferably 1 to 3 times the length of the opening in the longitudinal direction.
 <実験例4>
 振動板の材質をシリコーンゴムに変えたこと以外は、実験例1の実験No.1-3と同様に行い、近似式を求めた。結果を表4に示す
<Experimental example 4>
Except for changing the material of the diaphragm to silicone rubber, Experiment No. An approximate expression was obtained in the same manner as in 1-3. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実験の結果、上記振動板がNBR、シリコーンゴムの何れの場合も、安定した排出状態を維持している。 As a result of the experiment, a stable discharge state is maintained regardless of whether the diaphragm is NBR or silicone rubber.
 <実験例5>
 粉粒体の種類を変えたこと以外は実験例1の実験No.1-14の条件と同様に行い、近似式を求めた。結果を表5に示す。
<Experimental example 5>
Experiment No. 1 in Experimental Example 1 except that the type of the granular material was changed. An approximate expression was obtained under the same conditions as in 1-14. The results are shown in Table 5.
 (粉粒体の種類と使用材料)
 -粉粒体b-
 普通ポルトランドセメント単体
 -粉粒体c-
 カルシウムアルミネート(主成分12CaO・7Al23、非晶質、ブレーン比表面積5900cm2/g)単体
 -粉粒体d-
 粉粒体cとセッコウ(無水セッコウ)と炭酸ナトリウムを重量比50:40:10で混合した混合物
 -粉粒体e-
 粉粒体dと硫酸アルミニウムを重量比90:10で混合した混合物
 -粉粒体f-
 粉粒体dとアルミン酸ナトリウムを重量比80:20で混合した混合物
 -粉粒体g-
 炭酸ナトリウムとアルミン酸ナトリウムを重量比50:50で混合した混合物
(Types of powder and materials used)
-Granules b-
Ordinary Portland cement alone -Powder and granular material c-
Calcium aluminate (main component 12CaO · 7Al 2 O 3 , amorphous, Blaine specific surface area 5900 cm 2 / g) simple substance -powder body d-
Mixture of powder c, gypsum (anhydrous gypsum) and sodium carbonate mixed at a weight ratio of 50:40:10 -powder e-
Mixture in which granular material d and aluminum sulfate are mixed at a weight ratio of 90:10 -powder body f-
Mixture of powder d and sodium aluminate mixed at a weight ratio of 80:20 -powder g-
A mixture of sodium carbonate and sodium aluminate in a weight ratio of 50:50
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実験の結果、上記粉粒体が何れの場合でも安定した排出状態を維持している。 As a result of the experiment, a stable discharge state is maintained in any case of the above-mentioned powder particles.
 <実験例6>
 各材料の単位量をセメント400kg/m3、細骨材1058kg/m3、粗骨材710kg/m3、水200kg/m3及び高性能減水剤4kg/m3として吹付けコンクリートを調製し、この吹付けコンクリートを吹付け圧力0.4MPa、吹付け速度10m3/hの条件下で、コンクリート圧送機「MKW-25SMT」(シンテック社製)によりポンプ圧送した。急結剤が合流するY字管から3m後方の位置で圧縮空気を導入して吹付けコンクリートを空気搬送した。Y字管の一方より、粉体急結剤(粉流体a)を圧縮空気と共に吹付けコンクリートに合流混合させて吹付けた。急結剤供給装置としては、実験No.1-14の条件を有する粉粒体の供給装置と、実験No.2-6の条件を有する粉粒体の供給装置を用いた。実験No.1-14の加圧タンクと実験No.2-6のホッパーには、それぞれ粉体急結剤を100kg加え、ロータリーフィーダーの回転数は両条件ともに、理論上6.7kg/min(セメント100部に対して7部)の粉体急結剤が添加されるように調製した。粉体急結剤を吹付けコンクリートに添加してから1分後、5分後、10分後、15分後にプルアウト試験用の試験体を採取し、1時間後の引抜き強度から推定した圧縮強度を測定した。結果を表6に示す。
<Experimental example 6>
The unit quantity of each material cement 400 kg / m 3, fine aggregates 1058kg / m 3, the shotcrete was prepared as coarse aggregate 710 kg / m 3, water 200 kg / m 3 and superplasticizer 4 kg / m 3, The sprayed concrete was pumped by a concrete pumping machine “MKW-25SMT” (manufactured by Shintech Co., Ltd.) under a spraying pressure of 0.4 MPa and a spraying speed of 10 m 3 / h. Compressed air was introduced at a position 3 m behind the Y-tube where the quick-setting agent merges, and the shotcrete was conveyed by air. From one side of the Y-shaped tube, a powder quick setting agent (powder fluid a) was mixed and mixed with the compressed air and sprayed. As the quick setting agent supply apparatus, Experiment No. A powder supply apparatus having the conditions of 1-14, and Experiment No. A powder and particle supply device having the conditions of 2-6 was used. Experiment No. 1-14 pressurized tank and experiment no. 100 kg of powder quick-setting agent is added to each hopper of 2-6, and the rotational speed of the rotary feeder is theoretically 6.7 kg / min (7 parts for 100 parts of cement) for both conditions. Prepared to add agent. Compressive strength estimated from pull-out strength after 1 hour after taking a specimen for pull-out test 1 minute, 5 minutes, 10 minutes, and 15 minutes after adding the powder quick-setting agent to shotcrete Was measured. The results are shown in Table 6.
 (使用材料)
 -セメント-
 普通ポルトランドセメント、市販品、ブレーン値3,200cm2/g、比重3.16
 -粗骨材-
 新潟県糸魚川市姫川産川砂利、表乾状態、比重2.66、最大寸法13mm
 -細骨材-
 新潟県糸魚川市姫川産川砂、表乾状態、比重2.62
 -高性能減水剤-
 ポリカルボン酸系高性能減水剤(市販品)
 -粉体急結剤-
 カルシウムアルミネートとセッコウの混合物(粉粒体a)
(Materials used)
-cement-
Ordinary Portland cement, commercial product, 3,200 cm 2 / g of brain value, 3.16 specific gravity
-Coarse aggregate-
Niigata prefecture Itoigawa city Himekawa production river gravel, surface dry condition, specific gravity 2.66, maximum dimension 13mm
-Fine aggregate-
Niigata prefecture Itoigawa city Himekawa production river sand, surface dry condition, specific gravity 2.62
-High performance water reducing agent-
Polycarboxylic acid high-performance water reducing agent (commercially available)
-Powder setting agent-
Mixture of calcium aluminate and gypsum (powder granule a)
 (評価方法)
 -圧縮強度-
 プルアウト試験により評価した。幅25cm×長さ25cmのプルアウト型枠に設置したピンを、プルアウト型枠表面から急結性吹付けコンクリートで被覆し、型枠の裏側よりピンを引き抜き、その時の引き抜き強度を求め、(圧縮強度)=(引き抜き強度)×4/(供試体接触面積)の式から圧縮強度を算出した。
(Evaluation methods)
-Compressive strength-
Evaluation was made by a pull-out test. A pin placed in a 25cm wide x 25cm long pullout formwork is covered with quick setting spray concrete from the surface of the pullout formwork, the pin is pulled out from the back side of the formwork, and the pullout strength at that time is obtained (compressive strength ) = (Pullout strength) × 4 / (Test specimen contact area) The compressive strength was calculated.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 加圧タンクを使用した実験No.6-1は、非加圧タンクを使用した実験No.6-2に比べ圧縮強度が大きい。 Experiment No. using pressurized tank 6-1 is an experiment No. using an unpressurized tank. Compressive strength is higher than 6-2.
 本発明は、以上説明した通りのものであり、ローター8の側面とケーシング7の内壁面との間の間隔dを適切に調製することで、定量的な粉粒体の輸送を実現することができる。好ましくは、本発明の振動板による振動を与えながら粉粒体の排出を促進する排出装置をタンク2底部の排出部5と、ロータリーフィーダー6との間の接続部に設けることで、タンク2内での粉粒体3のブリッジ等はなくなり、より定量的な粉粒体の輸送が可能となる。本発明の装置を用いた吹付け施工では、タンク2内の粉体急結剤の量が残り少なくなっても一定の急結剤が添加されるので、吹付けセメントコンクリートの強度発現性のばらつきを少なくでき、安全で高い品質の吹付けセメントコンクリートの施工が可能となる。 The present invention is as described above, and by appropriately adjusting the distance d between the side surface of the rotor 8 and the inner wall surface of the casing 7, it is possible to realize quantitative transport of the granular material. it can. Preferably, by providing a discharge device that promotes discharge of the granular material while applying vibration by the diaphragm of the present invention at the connection portion between the discharge portion 5 at the bottom of the tank 2 and the rotary feeder 6, Thus, there is no bridge or the like of the granular material 3, and more quantitative transportation of the granular material becomes possible. In spraying construction using the apparatus of the present invention, even if the amount of powder quick-setting agent in the tank 2 remains, a constant quick-setting agent is added. It is possible to reduce the number and to construct a safe and high quality sprayed cement concrete.
 1 振動板
 2 タンク
 3 粉粒体
 4 上蓋
 5 排出部
 6 ロータリーフィーダー
 7 ケーシング
 7a ケーシング本体
 7b ケーシング蓋
 8 ローター
 9 輸送管
 10 支持板
 11a,11b 弾性接続体
 12 振動装置
 13 フランジ部
 14 フランジ部
 16 開口部
 17a,17b 開口部
 18 ボルト孔
 19 コンプレッサー
 20 ドライヤー
 21 コンクリートポンプ
 22 Y字管
 23 Y字管
 24 粉粒体の供給装置
 25 ノズル
 26 水又は液体急結剤のポンプ
 27 スラリー化管
 28 合流混合管
 d ローターの左右の側面とケーシングの内側壁との間の間隔
 P パッキン
DESCRIPTION OF SYMBOLS 1 Diaphragm 2 Tank 3 Powder body 4 Top cover 5 Discharge part 6 Rotary feeder 7 Casing 7a Casing main body 7b Casing cover 8 Rotor 9 Transport pipe 10 Support plate 11a, 11b Elastic connection body 12 Vibration apparatus 13 Flange part 14 Flange part 16 Opening Part 17a, 17b Opening part 18 Bolt hole 19 Compressor 20 Dryer 21 Concrete pump 22 Y-shaped pipe 23 Y-shaped pipe 24 Powder supply device 25 Nozzle 26 Pump of water or liquid quick setting agent 27 Slurry pipe 28 Confluence mixing pipe d Distance between the left and right side surfaces of the rotor and the inner wall of the casing P Packing

Claims (11)

  1.  粉粒体を収容したタンクと、上部が前記タンク底部の排出部に接続されたケーシング内へ前記タンクから落下排出される前記粉粒体を、前記ケーシング内のローターの回転に伴って順次前記ケーシングの底部へと送り出すロータリーフィーダーと、前記ケーシングの底部へ送り出された前記粉粒体を圧縮空気で輸送するための輸送管とを有する粉粒体の供給装置において、
     前記ロータリーフィーダーにおける前記ローターの左右の側面と、該左右の側面にそれぞれ対向する前記ケーシングの内側壁との間隔dがそれぞれ0.05~0.6mmの範囲に調整されていることを特徴とする粉粒体の供給装置。
    A tank containing powder particles and the powder particles that are dropped and discharged from the tank into a casing whose upper part is connected to the discharge part at the bottom of the tank, as the rotor in the casing rotates. In a granular material supply apparatus having a rotary feeder that is fed to the bottom of the casing and a transport pipe for transporting the granular material fed to the bottom of the casing with compressed air,
    The distance d between the left and right side surfaces of the rotor in the rotary feeder and the inner side wall of the casing facing the left and right side surfaces is adjusted in a range of 0.05 to 0.6 mm, respectively. Powder and particle feeder.
  2.  前記ケーシングが、前記ローターの外周面との対向位置に設けられたケーシング本体を、それぞれ前記内側壁を備えた左右のケーシング蓋で挟み込んだ構造を有していると共に、前記ケーシング本体と、前記左右のケーシング蓋との間にそれぞれパッキングが交換可能に挟み込まれており、該パッキングの厚さを変えることにより、前記間隔dが調整可能となっていることを特徴とする粉粒体の供給装置。 The casing has a structure in which a casing body provided at a position facing the outer peripheral surface of the rotor is sandwiched between left and right casing lids each having the inner wall, and the casing body, An apparatus for supplying granular material, characterized in that a packing is inserted in a replaceable manner between the casing lid and the gap d can be adjusted by changing the thickness of the packing.
  3.  前記ローターが、凸部と凹部が周方向に交互に連なった歯車型の外周形状を有することを特徴とする請求項1又は2に項記載の粉粒体の供給装置。 3. The granular material supply apparatus according to claim 1, wherein the rotor has a gear-shaped outer peripheral shape in which convex portions and concave portions are alternately arranged in the circumferential direction.
  4.  前記タンク内の前記粉粒体の前記ケーシングへの落下排出を促進する粉粒体の排出装置を備えており、該粉粒体の排出装置が、前記タンク底部の排出部と前記ケーシングとの接続部に、上下から弾性接続体で挟んだ支持板を、前記粉粒体の落下を許容する開口を残して前記接続部の内側に介在させ、前記支持板を振動させることにより、前記接続部の内側で前記支持板に立設された振動板を振動させて前記粉粒体の落下排出を促進する装置であることを特徴とする請求項1乃至3のいずれか1項に記載の粉粒体の供給装置。 A discharge device for the granular material that promotes the fall and discharge of the granular material in the tank to the casing; and the discharge device for the granular material is connected to the discharge portion of the tank bottom and the casing A support plate sandwiched between elastic connections from above and below is interposed inside the connection portion leaving an opening that allows the powder particles to fall, and the support plate is vibrated to vibrate the connection portion. The granular material according to any one of claims 1 to 3, wherein the granular material is a device that vibrates a vibration plate provided on the support plate on the inside to promote falling and discharging of the granular material. Feeding device.
  5.  前記支持板の一部が前記接続部から外方に延出されており、前記支持板の外方への延出部に振動装置が取り付けられていることを特徴とする請求項4に記載の粉粒体の供給装置。 The part of the support plate is extended outward from the connection portion, and a vibration device is attached to the outward extension portion of the support plate. Powder and particle feeder.
  6.  前記振動装置によって前記支持板に対して付与される振動が、主に前記振動板の肉厚方向の振動であることを特徴とする請求項5に記載の粉粒体の供給装置。 6. The granular material supply apparatus according to claim 5, wherein the vibration applied to the support plate by the vibration device is mainly vibration in a thickness direction of the vibration plate.
  7.  前記排出部の開口が円形で、前記振動板の高さが前記排出部の内径の1乃至5倍であることを特徴とする請求項4乃至6のいずれか一項に項記載の粉粒体の供給装置。 The granular material according to any one of claims 4 to 6, wherein the opening of the discharge portion is circular, and the height of the diaphragm is 1 to 5 times the inner diameter of the discharge portion. Feeding device.
  8.  前記排出部の開口が方形で、前記振動板の高さが該開口の長手方向の長さの1乃至3倍であることを特徴とする請求項4乃至6のいずれか一項に項記載の粉粒体の供給装置。 The opening of the discharge part is a square, and the height of the diaphragm is 1 to 3 times the length of the longitudinal direction of the opening. Powder and particle feeder.
  9.  前記タンクが、内部に圧力が加えられる圧力タンクであることを特徴とする請求項1~8のいずれか一項に記載の粉粒体の供給装置。 The powder and granular material supply device according to any one of claims 1 to 8, wherein the tank is a pressure tank to which pressure is applied.
  10.  前記粉粒体が、セメントの急結剤であることを特徴とする請求1乃至9のいずれか一項に記載の粉粒体の供給装置。 The powder and granular material supply device according to any one of claims 1 to 9, wherein the granular material is a cement quick setting agent.
  11.  請求項1乃至10のいずれか一項に記載の粉粒体の供給装置の前記輸送管を、セメントコンクリートを輸送するセメントコンクリートの圧送管の途中に接続し、前記粉粒体を、水分除湿装置に通した圧縮空気で前記輸送管中を輸送して、前記セメントコンクリートの圧送管中を輸送されてくる前記セメントコンクリートに合流させて混合し、前記粉粒体と前記セメントコンクリートの混合物をノズルから噴出させて吹き付けることを特徴とする吹き付け工法。 The transport pipe of the granular material supply device according to any one of claims 1 to 10 is connected in the middle of a cement concrete pressure-feed pipe for transporting cement concrete, and the granular material is connected to a moisture dehumidifier. The compressed air passed through the transport pipe is transported in the transport pipe, and the cement concrete transported through the cement concrete is mixed and mixed with the cement concrete, and the mixture of the powder and the cement concrete is discharged from the nozzle. A spraying method characterized by spraying and spraying.
PCT/JP2013/067331 2012-06-25 2013-06-25 Particulate supply device and spraying method using same WO2014002980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142239A JP2015163537A (en) 2012-06-25 2012-06-25 Particulate matter feeding device and spray method using the same
JP2012-142239 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002980A1 true WO2014002980A1 (en) 2014-01-03

Family

ID=49783126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067331 WO2014002980A1 (en) 2012-06-25 2013-06-25 Particulate supply device and spraying method using same

Country Status (2)

Country Link
JP (1) JP2015163537A (en)
WO (1) WO2014002980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961270A (en) * 2022-07-28 2022-08-30 徐州硕勤机械制造有限公司 Concrete sprayer for building engineering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108153232B (en) * 2016-12-05 2021-03-12 南京梅山冶金发展有限公司 Automatic control system and control method for feeding to converter high-level stock bin
JP6743093B2 (en) * 2018-07-19 2020-08-19 株式会社流機エンジニアリング Powder supply device and cement concrete spraying device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298365A (en) * 1993-04-12 1994-10-25 Sanko Air Plant Ltd Rotary feeder for high temperature and abrasive powder /grain material pneumatic transport and continuous constant flow rate feeder thereof
JPH08119457A (en) * 1994-10-25 1996-05-14 Sekisui Plant Syst Kk Rotary feeder
JP3058836U (en) * 1998-11-02 1999-06-22 株式会社コスモテックス Rotary valve
JPH11208770A (en) * 1998-01-29 1999-08-03 Denki Kagaku Kogyo Kk Discharging method, discharging device and feeding device for powder/granular material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298365A (en) * 1993-04-12 1994-10-25 Sanko Air Plant Ltd Rotary feeder for high temperature and abrasive powder /grain material pneumatic transport and continuous constant flow rate feeder thereof
JPH08119457A (en) * 1994-10-25 1996-05-14 Sekisui Plant Syst Kk Rotary feeder
JPH11208770A (en) * 1998-01-29 1999-08-03 Denki Kagaku Kogyo Kk Discharging method, discharging device and feeding device for powder/granular material
JP3058836U (en) * 1998-11-02 1999-06-22 株式会社コスモテックス Rotary valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961270A (en) * 2022-07-28 2022-08-30 徐州硕勤机械制造有限公司 Concrete sprayer for building engineering

Also Published As

Publication number Publication date
JP2015163537A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5268648B2 (en) Quick setting agent and spraying method using the same
JP5364497B2 (en) Spraying method for quick setting sprayed cement concrete
WO2014002980A1 (en) Particulate supply device and spraying method using same
JP5687950B2 (en) Shotcrete production apparatus and method
WO2019102850A1 (en) Mixture formation system
JP2000220969A (en) Spraying method for monolithic refractory
JP2011208837A (en) Device and method for spraying construction of unshaped refractory
JPH10265257A (en) Refractory coating composition for wet spraying
JP5895625B2 (en) Mortar construction method
JP5785444B2 (en) Cement concrete spraying system
JP5424541B2 (en) Method for producing hardened cementitious body
JPWO2013147080A1 (en) Airflow conveying type spray construction method for irregular refractories
JP3998227B2 (en) Quick setting sprayed cement concrete and spraying method using the same
JP2010007230A (en) Sprayed concrete manufacturing equipment, sprayed concrete spraying method and sprayed concrete manufacturing method, using the same
JP6177598B2 (en) Manufacturing method of fiber-filled fast concrete
JP4099056B2 (en) Rock wool spraying method
JP6744777B2 (en) Cement admixture for spraying material, spraying material and spraying method using the same
WO2006106879A1 (en) Method of applying castable refractory material by spraying
JP2007093019A (en) Spray application method of monolithic refractory, spray material using the same, and application device
JP4144975B2 (en) Concrete spraying method
JP2003292355A (en) Quick setting agent for shotcrete, production method therefor, and method for application of the shotcrete
JP2002048481A (en) Method for executing wet spray of monolithic refractory
WO2022230388A1 (en) Pumpability improver, cement concrete, and spraying cement concrete
JP2000297600A (en) Concrete spraying method and spraying device
JP2017185413A (en) Rock wool spraying method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP