WO2019102850A1 - Mixture formation system - Google Patents

Mixture formation system Download PDF

Info

Publication number
WO2019102850A1
WO2019102850A1 PCT/JP2018/041333 JP2018041333W WO2019102850A1 WO 2019102850 A1 WO2019102850 A1 WO 2019102850A1 JP 2018041333 W JP2018041333 W JP 2018041333W WO 2019102850 A1 WO2019102850 A1 WO 2019102850A1
Authority
WO
WIPO (PCT)
Prior art keywords
admixture
slurry
liquid
supply
concrete
Prior art date
Application number
PCT/JP2018/041333
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 伊藤
一裕 相澤
彰宏 保利
盛岡 実
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2019555246A priority Critical patent/JP7145171B2/en
Priority to CN201880074481.7A priority patent/CN111356564A/en
Publication of WO2019102850A1 publication Critical patent/WO2019102850A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast

Definitions

  • the present invention relates to a mixture generation system for mixing powdered admixtures in concrete or mortar.
  • Admixtures are materials other than cement, water and aggregate, and are materials added as needed before casting in order to impart special properties to concrete and the like. Admixture materials may be used by being added to a mixer at the time of kneading, in addition to cases where they are already mixed with cement at the time of kneading of concrete.
  • the admixture for cement grout described in Patent Document 1 can be added to a cement grout by introducing it into a stirrer such as an agitator car at a cement grout placing site or a field installation type agitator, or a mixer installed at the site. It is added.
  • the admixture is in powder form, adding the admixture directly to the agitator car may result in insufficient dispersion of the admixture in the concrete. In that case, a mass of the admixture remains in the concrete, and the mass may cause variations in the physical properties of the hardened concrete or adversely affect the concrete.
  • it is possible to mix the admixture with the concrete without dispersion by the method of performing re-kneading after adding the powdery admixture to the concrete it is necessary to separately prepare a mixer at the construction site.
  • the present inventors diligently researched to achieve the above-mentioned purpose, and have come up with a system capable of performing kneading, supply to an agitator car from measurement of powdery admixtures without relying on human power. .
  • the system can minimize human error of mistaking the volume ratio between the admixture and the liquid when slurrying the powdered admixture.
  • the present invention is based on the above findings, and the gist of the present invention is as follows.
  • Slurry production means for producing a slurry of admixture from powdery admixture and liquid, admixture supply means for feeding admixture to the slurry production means, liquid feed means for feeding liquid to the slurry production means
  • a metering means for measuring the supply amount of the mixing material supplied to the slurry production means and the supply amount of the liquid;
  • a setting means for setting the supply amount of the mixing material to be supplied to the slurry production means and the supply amount of the liquid;
  • the supply amount of the mixing material supplied by the mixing material supply means and the liquid supply means are supplied so that the supply amount of the mixing material to the manufacturing means and the supply amount of the liquid become the set supply amount set by the setting means.
  • Control means for controlling the supply amount of the liquid, pumping means for feeding the admixture slurry produced by the slurry producing means to
  • the fluctuation range of the supply amount of the mixing material controlled to the set supply amount by the control means is 3 mass% or less, and is set by the control means.
  • the fluctuation range of the supply amount of liquid controlled to be the supply amount is 2 mass% or less, and the admixture slurry is supplied to the storage and agitation mechanism through a pressure hose, concrete and admixture Mixture generation system to obtain a mixture with the slurry.
  • a liquid storage means for storing liquid and a power supply means for supplying power for driving the control means are further provided, and the means other than the concrete transport means are mounted on the same movable carriage.
  • the mixture generation system according to any one of (1) to (4).
  • the admixture feed means includes a powder feed screw shaft which is rotationally driven about its axis and feeds the admixture in the axial direction, and a variable speed drive motor which rotationally drives the powder feed screw shaft so as to change its speed.
  • the mixture production system according to any one of the above (1) to (6), wherein the supply amount of the admixture is adjusted by the rotation speed thereof.
  • the slurry production means comprises a stirring tank, a rotary shaft provided at the bottom of the stirring tank and extending vertically in the stirring tank, and a stirring blade attached to the rotary shaft, and the stirring blade is connected to the rotary shaft And the plurality of stirring blades extending radially outward from the central portion, the stirring blades extend radially outward from the periphery of the central portion, and the front end of the stirring blades is higher than the rear end
  • the material passing portion is formed by providing the stirring blades at an interval between adjacent stirring blades so as to form a material passing portion, and the auxiliary wing portion is fixed to the tip end side in the radial direction of the stirring blades.
  • the wing portion has an annular shape or a flat plate shape obtained by dividing an annular shape, and is provided on the outer side of the material passage portion in the inside and outside directions of the rotation diameter, and the tip of the stirring blade in the radial direction With a portion located more radially outward than Mixture generation system according to any one of the serial (1) to (7).
  • Admixture materials are fly ash, blast furnace slag fine powder, silica fume, expansive material, quick hardwood, quick-setting material, admixture for high strength, limestone fine powder, crushed stone powder, sludge powder and sewage sludge fine powder
  • FIG. 1 is a diagram for explaining a mixture generation system 1 in an embodiment of the present invention.
  • Fig.2 (a) is a figure for demonstrating the slurry manufacturing apparatus in the mixture production system 1 in one Embodiment of this invention
  • FIG.2 (b) demonstrates the stirring blade provided in the said slurry manufacturing apparatus.
  • FIG. FIG. 3 is a figure for demonstrating the admixture supply apparatus in the mixture production system 1 in one Embodiment of this invention.
  • FIG. 4 is a view for explaining cleaning of the agitator wheel in the modification of the mixture generation system 1 according to the embodiment of the present invention.
  • FIG. 5 is a view for explaining the mounting on a movable carriage of a modified example of the mixture generation system 1 according to an embodiment of the present invention.
  • FIG. 6 is a figure for demonstrating a mortar continuous kneading apparatus.
  • a mixture generation system 1 in one embodiment of the present invention obtains a mixture of concrete and the admixture slurry 4.
  • a mixture generation system 1 according to an embodiment of the present invention includes a slurry producing means 10 for producing an admixture slurry 4 from a powdery admixture 2 and a liquid 3, and an admixture for supplying the admixture 2 to the slurry producing means 10.
  • the setting means 51 for setting the supply amount of the admixture 2 and the supply amount of the liquid 3 supplied to the production means 10, and the supply amount of the admixture 2 and the supply amount of the liquid 3 to the slurry production means 10 Supply amount of the miscible material 2 supplied by the miscible material supply unit 20 and the supply amount of the liquid 3 supplied by the liquid supply unit 30 so that the set supply amount set by It has a control means 50 for controlling, a pumping means 60 for supplying the admixture material slurry 4 produced by the slurry producing means 10 to the pumping hose 61, and a concrete conveying means 70 having a storage and stirring mechanism 71 for storing and stirring concrete.
  • the mixture generation system 1 efficiently mixes powdery admixture material with fresh concrete transported by an agitator vehicle to a construction site by having the above-described configuration. Can.
  • the slurry production means 10 produces the admixture slurry 4 from the powdered admixture 2 and the liquid 3.
  • the slurry production means 10 is, for example, a slurry production apparatus 10 shown in FIG. The slurry production apparatus 10 will be described in more detail with reference to FIG.
  • FIG.2 (a) is a figure for demonstrating the slurry production apparatus 10 in the mixture production system 1 in one Embodiment of this invention
  • FIG.2 (b) demonstrates the stirring blade provided in the slurry production apparatus 10
  • the slurry production apparatus 10 is an apparatus for producing a admixture slurry by stirring and mixing a powdered admixture and a liquid.
  • the slurry manufacturing apparatus 10 is provided at the stirring tank 11 and at the bottom of the stirring tank 11, and attached to the rotating shaft 12 extending vertically in the stirring tank 11, the drive device 13 for rotationally driving the rotating shaft 12, and the rotating shaft 12 And the stirring blade 14.
  • the stirring tank 11 contains the admixture 2 supplied from the admixture supply means 20 and the liquid 3 supplied from the liquid supply means 30, and also accommodates the admixture material slurry 4 produced from the admixture 2 and the liquid 3 .
  • the shape of the stirring tank 11 is not particularly limited, but it is preferable that the stirring tank 11 be a rectangular housing in plan view with the upper part opened.
  • the rotating shaft 12 transmits the driving force generated by the driving device 13 to the stirring blade 14 to rotate the stirring blade 14.
  • the bottom of the stirring tank 11 is provided with the through-hole regarding the inside and outside, and the rotating shaft is passed through the through-hole. Between the inner periphery of the through hole and the rotary shaft 12, in order to prevent the material contained in the stirring tank 11 from leaking, it is sealed by a known sealing means (not shown).
  • a stirring blade side pulley 121 is provided below the rotation shaft 12, and the driving force by the drive device 13 is transmitted to the rotation shaft 12 via the belt 15.
  • the driving force by the drive device 13 may be transmitted to the rotating shaft 12 via the gear.
  • a drive may be disposed below the rotation shaft 12 so that the drive rotates the rotation shaft directly.
  • the rotational speed of the rotating shaft 12 is, for example, 750 to 1000 rpm.
  • the driving device 13 is an internal combustion engine or a motor that generates a driving force for rotating the stirring blade 14.
  • a drive device-side pulley 131 is provided below the drive device 13, and the driving force is transmitted to the belt 15 via the drive device-side pulley 131. Then, as described above, the driving force transmitted to the belt 15 is transmitted to the rotary shaft 12 via the stirring blade side pulley 121, whereby the stirring blade 14 is rotated.
  • the stirring blade 14 stirs and mixes the admixture 2 supplied from the admixture supply means 20 and the liquid 3 supplied from the liquid supply means 30. This produces an admixture slurry.
  • the stirring blade 14 includes a central portion 141 connected to the rotation shaft, and a plurality of stirring blades 142 extending radially outward from the central portion 141.
  • the stirring blade 142 extends radially outward from the periphery of the central portion 141, and is obliquely provided such that the front end of the stirring blade 142 is higher than the rear end.
  • the stirring blade 14 preferably has 2 to 10, more preferably 3 to 6, and more preferably 3 to 4 stirring blades.
  • a material passing portion 143 is formed by providing the stirring blades 142 at intervals between adjacent stirring blades 142.
  • the stirring blade 14 By rotating the stirring blade 14 by the rotation of the rotating shaft 12, the admixture slurry in the stirring tank 11 can be moved downward from the material passing portion 143 by the stirring blade 142.
  • the vortex of the admixture slurry generated in the stirring tank 11 can be enlarged, and the admixture and the liquid can be mixed uniformly throughout the entire stirring tank 11, and the uniform admixture slurry can be made in a short time. It can be manufactured.
  • An auxiliary wing portion 144 is fixed to the radial tip end of the stirring blade 142.
  • the auxiliary wing portion 144 has an annular shape, and is provided on the outer side of the material passing portion 143 in the inward and outward directions of the rotation diameter, and is radially outer than the radial tip of the agitating blade 142 It has a part located on the.
  • the auxiliary wing portion 144 can suppress the material which is pushed downward from the material passing portion 143 by the stirring blade 142 and bounces back at the bottom of the stirring tank 11 going upward.
  • the auxiliary wing portion 144 may have the shape of a flat plate obtained by dividing an annular shape.
  • the slurry manufacturing apparatus 10 supplies a discharge port 16 for discharging the manufactured admixture material slurry, a discharge port lid 17 for controlling the opening and closing of the discharge port 16, and the pumped mixture means 60 for supplying the discharged admixture material slurry.
  • the discharge chute 18 is further provided. By producing the admixture slurry while the outlet 16 is closed by the outlet lid 17, the admixture slurry can be produced batchwise. Then, after the admixture slurry is manufactured, by moving the discharge port lid 17 in the direction of the arrow in FIG. Can be supplied.
  • the slurry production means 10 can produce a uniform admixture slurry from admixture and liquid in a short time by having the above-described configuration.
  • the time from the supply of the admixture and the liquid to the slurry production apparatus 10 to the completion of the admixture slurry by the slurry production apparatus 10 is preferably within 120 seconds, more preferably within 90 seconds, and further, Preferably, it is within 60 seconds. This makes it possible to shorten the waiting time after arriving at the agitator vehicle site even if the slurry vehicle is started after the agitator vehicle arrives at the construction site.
  • the completed admixture slurry is a slurry in which no lumps of admixture remain.
  • the admixture used for producing the slurry is not particularly limited as long as it is a powdered admixture.
  • Admixture materials include, for example, fly ash, blast furnace slag fine powder, silica fume, expansive agent, quick hardwood, quick-setting agent, high strength admixture, limestone fine powder, crushed stone powder, sludge powder and sewage sludge fine powder At least one admixture selected from the group.
  • the admixture used in the mixture generation system 1 in one embodiment of the present invention is preferably an admixture added to concrete at a construction site. Such admixtures include, for example, quick hardwoods, quickeners and expansives.
  • calcium fluoroaluminate (11CaO ⁇ 7Al 2 O 3 CaF 2 ) -based rapid hardening material
  • amorphous calcium aluminate (12CaO ⁇ 7Al 2 O 3 ) -based rapid-harding materials
  • auin-based rapid-harding materials alumina cement-based rapid-harding materials
  • water-glass-based rapid-harding materials and the like.
  • the quick-setting agent used for the mixture production system 1 in one embodiment of the present invention includes, for example, inorganic salt-based fasting agents and cement mineral-based fasting agents.
  • inorganic salt-based quick-setting agents include sodium-containing carbonates, aluminates, silicates, aluminum sulfate, alum and the like.
  • cement mineral-based accelerators include calcium aluminate and calcium sulfoaluminate.
  • Examples of the expansive material used in the mixture generation system 1 according to an embodiment of the present invention include calcium sulfoaluminate (CSA) -based expansive material, lime-based expansive material, lime-CSA-based expansive material, and the like.
  • CSA calcium sulfoaluminate
  • the expansion material can not be uniformly dispersed by the agitator car, the introduction of the expansion material into the agitator car and the kneading thereof are prohibited.
  • the expansion material can be uniformly dispersed in the concrete.
  • the liquid used to produce the slurry is not particularly limited as long as it can be added to concrete.
  • the liquid is, for example, water or a liquid containing water.
  • the liquid containing water may contain, for example, a liquid admixture as well as water.
  • Liquid admixtures include, for example, AE agents, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, fluidizers, shrinkage reducing agents, durability improving agents, accelerators, dust reducing agents
  • quick-hardening materials setting / hardening time control agents, thickeners, separation reducing agents, waterproofing agents, anti-corrosion agents, cold resistance accelerators, foaming agents, foaming agents and the like.
  • the slurry production means used in the mixture production system according to an embodiment of the present invention is shown in FIG. 1 or 2 as long as it can produce a slurry of admixtures from a powdered admixture and a liquid. It is not limited to the slurry manufacturing apparatus 10.
  • the mortar continuous kneading apparatus shown in FIG. 6 can be used as a slurry production means.
  • the mortar continuous kneading apparatus will be described with reference to FIG.
  • FIG. 6 is a view for explaining the mortar continuous kneading device 10C.
  • the mortar continuous kneading apparatus 10C is an apparatus for continuously producing mortar, but it is also possible to produce an admixture slurry from powdered admixture and liquid.
  • the mortar continuous kneading device 10C includes a powder supply unit 11C and a slurry kneading unit 12C.
  • the powder supply unit 11C includes a powder supply screw shaft 114C and a variable speed drive motor 116C, and is configured to be able to adjust the supply amount of the admixture by the rotation speed of the powder supply screw shaft 114C.
  • the powder feed screw shaft 114C is rotationally driven by the variable-speed drive motor 116C around an axial center inside the hollow cylindrical casing 113C to feed (move) the admixture material in the axial direction.
  • the powder feed screw shaft 114C is preferably a horizontal shaft, but may be inclined.
  • the powder feed screw shaft 114C is located on the upstream side (right side in the figure) of the helical blade 114Ca provided in the vicinity of the discharge port (left side in the figure) and the helical blade 114Ca and feeds the helical blade 114Ca while loosening the admixture. It has a plurality of stirring plates 114Cb.
  • the spiral blade 114Ca is a continuous spiral blade having three or more pitches, and is configured to trap the admixture material and supply it in the axial left direction with the hollow cylindrical tube 115C surrounding it.
  • the hollow cylindrical tube 115C is fixed in the casing 113C so as not to rotate.
  • Stirring plate 114Cb is a radially extending flat plate or inclined plate, and is an admixture material uniformly dispersed in spiral blade 114Ca by moving leftward in the axial direction while loosening the admixture material having formed a mass inside casing 113C.
  • Agitation plate 114Cb is not limited to this configuration, and may be a spiral blade having a larger pitch than that of spiral blade 114Ca and divided at a predetermined pitch.
  • variable-speed drive motor 116C is an electric motor with a reduction gear, and is preferably inverter-controlled to rotationally drive the powder supply screw shaft 114C so as to change its speed.
  • the mixed material is supplied as a solid, the mixed material is loosened and uniformly dispersed by the stirring plate 114Cb, and the uniformly dispersed mixed material is stably supplied to the spiral blade 114Ca, and the spiral blade 114Ca
  • the mixing material can be confined between the hollow cylindrical tube 115C and the hollow cylindrical tube 115C to supply a supply amount substantially proportional to the rotational speed.
  • the powder supply unit 11C further includes a powder hopper 118C.
  • the powder hopper 118C is located above the powder feed screw shaft 114C and receives and holds the admixture from above.
  • the powder hopper 118C has a rectangular opening at its lower end along the powder feed screw shaft 114C, and is in the shape of a funnel having an upper portion extending in the width direction.
  • the slurry kneading unit 12C has a slurry kneading shaft 124C and a variable speed drive motor 126C, and is configured to be able to adjust the property of the admixture slurry by the rotational speed of the slurry kneading shaft 124C.
  • the slurry kneading shaft 124C is rotationally driven by the variable-speed drive motor 126C around the axial center inside the hollow cylindrical casing 123C, and kneading is performed while mixing the admixture and the liquid to continuously produce the admixture slurry.
  • a slurry kneading shaft 124C connects a plurality of inclined plates 124Ca which move the admixture material slurry in the axial direction while mixing admixtures and liquid, and an outer peripheral portion of adjacent two inclined plates 124Ca. And a plurality of kneading plates 124Cb extending in the direction.
  • the inclined plate 124Ca is a radially extending rectangular inclined plate, and is adapted to move the admixture slurry in the axial direction (leftward in the drawing) while mixing the admixture and the liquid on its inclined surface.
  • the kneading plate 124Cb is a flat plate extending in the axial direction, and promotes kneading of the admixture slurry to obtain the necessary admixture slurry properties.
  • the hollow cylindrical casing 123C is connected to the lower end on the outlet side of the casing 113C of the powder supply section 11C via a swing shaft 122C. Moreover, it has a fixing bracket (not shown) which fixes casing 123C in the inclined state. With this configuration, the axis of the slurry kneading shaft 124C can be variably adjusted within a range of about ⁇ 30 degrees with respect to the horizontal.
  • the axis of the slurry kneading shaft 124C is about 30 degrees from horizontal so that the slurry kneading shaft 124C is low on the supply side of the admixture (right in the figure) and high on the outlet side of the admixture slurry (left in the figure).
  • the moving speed and the discharging speed of the admixture slurry can be adjusted by the inclination angle.
  • By lowering the outlet side (left side in the figure) of the admixture slurry it is possible to increase the moving speed and discharging speed of the mortar, and to facilitate drainage when the inside is cleaned.
  • variable-speed drive motor 126C is a motor with a reduction gear, and is preferably inverter-controlled to rotationally drive the slurry kneading shaft 124C so as to change its speed.
  • the mortar continuous kneading apparatus 10C can produce a uniform admixture slurry from admixtures and liquids in a short time by having the above-described configuration.
  • the above-mentioned slurry production apparatus and the above-mentioned mortar continuous kneading apparatus are preferable as a slurry production means, and the above-mentioned slurry production apparatus is more preferable.
  • the slurry production means is not limited to the above-mentioned slurry production apparatus and the above-mentioned mortar continuous kneading apparatus, as long as a homogeneous admixture material slurry can be produced in a short time from the admixture material and liquid.
  • a drum gravity mixer, a tilting cylinder gravity mixer, a pan type forced mixer and a pug mill type forced mixer can be used as the slurry producing means.
  • a commercially available mixer can be used as a slurry production means used by the mixture production system in one embodiment of the present invention.
  • a grout mixer "OKZ-30” (model number)
  • a grout mixer “OKZ-50N” (model number)
  • a grout mixer “OKZ-100N” (model number)
  • a grout mixer “OKZ-150N” (manufactured by Okasan Kiko Co., Ltd.) Model number etc.
  • Model number etc. can be used as a slurry production means.
  • the slurry produced by the mixture generation system in one embodiment of the present invention may contain materials other than the admixture material and the liquid.
  • the slurry manufactured by the mixture production system in one embodiment of the present invention preferably excludes concrete, mortar and cement paste.
  • the admixture material supply means 20 supplies the admixture material 2 to the slurry production means 10.
  • the admixture material supply means 20 is, for example, the admixture material supply device 20 shown in FIG.
  • the admixture supply device 20 will be described in more detail with reference to FIG.
  • the admixture feed device 20 includes a powder feed screw shaft 24 rotationally driven about an axial center and feeding the admixture in the axial direction, and a variable speed drive motor rotatably driving the powder feed screw shaft 24 in a variable manner. And adjust the feed rate of the admixture by the rotation speed.
  • the powder feed screw shaft 24 is rotationally driven by the variable-speed drive motor 26 about an axial center inside the hollow cylindrical casing 23 to feed (move) the admixture material in the axial direction.
  • the powder feed screw shaft 24 has a spiral blade 24a.
  • the spiral blade 24a is a continuous spiral blade with three or more pitches, and is supplied to the left in the axial direction.
  • the variable speed drive motor 26 is an electric motor with a reduction gear, and is preferably inverter-controlled to rotationally drive the powder supply screw shaft 24 so as to change its speed.
  • the admixture feed system 20 further comprises a powder hopper 28.
  • a powder hopper 28 is located above the powder feed screw shaft 24 and receives and holds the admixture from above.
  • the powder hopper 28 has a rectangular opening at its lower end along the powder feed screw shaft 24 and is in the shape of a funnel which is spread in the width direction at the top.
  • the hopper 28 has an internal volume of, for example, 100 kg or more, and in a state where the large flexible container 4 (for example, ton pack) is lifted, the lower end is opened so that a large amount of admixture material can be replenished in a batch from the top. It has become.
  • the capacity of the hopper 28 can be selected according to the application.
  • the admixture supply device 20 has a admixture supply rate higher than the maximum processing amount of the slurry production means 10, detects the remaining amount of the raw material powder 1 in the slurry production means 10 with a sensor not shown, and turns it on / off. The admixture is intermittently supplied. The mixed material is discharged from the outlet 29 of the mixed material supply device 20 and supplied to the slurry manufacturing device 10.
  • the admixture material supply means used in the mixture generation system in one embodiment of the present invention may be the admixture material shown in FIG. 1 or 3 as long as it can supply powdered admixture material to the slurry production means. It is not limited to the supply device 20.
  • a belt feeder capable of conveying powdered admixture, or a pipe capable of circulating powdered admixture can be used as a means for feeding admixture.
  • the liquid supply means 30 supplies the liquid 3 to the slurry production means 10.
  • the liquid supply means 30 is, for example, a submersible pump 30 that pumps up the liquid stored in the liquid storage means 31 and sends the pumped liquid to the slurry manufacturing means 10 (see FIG. 1).
  • the liquid supply means 30 is not limited to the submersible pump as long as the liquid 3 can be supplied to the slurry production means 10.
  • the liquid supply means 30 may be a liquid storage tank provided on the upper side of the slurry production means 10. In this case, gravity is used to supply the liquid from the liquid storage tank to the slurry production means 10, and the amount of liquid supplied to the slurry production means 10 is adjusted using a valve provided in the liquid storage tank. Further, in order to control the amount of liquid supplied to the slurry production means 10, a flow meter may be provided between the liquid supply means 30 and the slurry production means 10.
  • the measuring means 40 measures the supply amount of the admixture 2 and the supply amount of the liquid 3 supplied to the slurry production means 10.
  • the measuring means 40 may be, for example, a load cell 40 for measuring the mass of the admixture and liquid supplied to the slurry producing means 10 (see FIG. 1). For example, the mass (W1) of the slurry production apparatus 10 before supplying the admixture and the liquid is measured by the load cell 40, and then the mass (W2) of the slurry production apparatus 10 after supplying the admixture is measured by the load cell 40 Do. Thereby, the mass (W2-W1) of the admixture material supplied to the slurry production apparatus 10 can be calculated.
  • the mass (W3) of the slurry production apparatus 10 after supplying the liquid is measured by the load cell 40.
  • the mass (W3-W2) of the liquid supplied to the slurry production apparatus 10 can be calculated.
  • the liquid may be supplied first to measure the mass of the slurry production apparatus 10, and then the admixture may be supplied to measure the mass of the slurry production apparatus 10.
  • the measuring means may measure the mass of the admixture and the liquid, or may measure the volume.
  • the measuring unit 40 is not limited to the load cell 40 as long as it can measure the supply amount of the admixture and the supply amount of the liquid supplied to the slurry production unit 10.
  • the measuring means is provided between the slurry producing means and the miscible material feeding means, and the measuring tank for measuring the feeding amount of the miscible material and the slurry producing means and the liquid feeding means is provided. It may be a tank.
  • the setting unit 51 sets the supply amount of the admixture and the supply amount of the liquid supplied to the slurry production unit 10.
  • the setting means 51 is, for example, a control panel 51 of the control device 50 (see FIG. 1).
  • the setting unit is not limited to the control panel 51 of the control device 50 as long as the supply amount of the admixture to be supplied to the slurry production unit 10 and the supply amount of the liquid can be set.
  • the setting means may be a setting input device provided separately from the control device 50 for inputting and setting the supply amount of the admixture and the supply amount of the liquid.
  • the control means 50 mixes the mixed material supplied by the mixed material supply means 20 so that the supply amount of the mixed material 2 to the slurry production means 10 and the supplied amount of the liquid 3 become the set supply amount set by the setting means 50.
  • the supply amount of the material 2 and the supply amount of the liquid 3 supplied by the liquid supply means 30 are controlled.
  • the control means 50 is, for example, the control device 50 shown in FIG.
  • the control device 50 has, for example, a microprocessor and its peripheral circuits, executes a control program stored in the ROM using the RAM as a work area, and performs various controls.
  • the controller 50 controls, for example, the supply amount of the admixture and the supply amount of the liquid as follows.
  • the flow rate of the liquid to the slurry production apparatus 10 is measured by a flow meter (not shown), and the mass of the liquid supplied to the slurry production apparatus 10 is measured using the load cell 40. This operation is performed by changing the flow rate of the liquid to the slurry production apparatus 10. Then, using the measurement result of the flow rate of the liquid measured by the flow meter and the measurement result of the supply amount of the liquid to the slurry manufacturing apparatus 10 measured by the load cell 40, the flow rate of the liquid measured by the flow meter The relationship with the actual supply amount of liquid supplied to the manufacturing apparatus 10 is examined. That is, calibration of the liquid is performed.
  • the supply amount of the admixture supplied to the slurry manufacturing apparatus 10 is measured using the load cell 40, and the relationship between the inverter frequency of the variable speed drive motor 26 and the supply of the admixture supplied to the slurry manufacturing apparatus 10 Examine. That is, calibration of the admixture is performed.
  • the control device 50 controls the amount by which the liquid in the submersible pump 30 is pumped up so that the flow rate of the liquid measured by the flow meter becomes the flow rate corresponding to the set supply amount set by the setting means 50. Furthermore, the controller 50 controls the inverter frequency of the variable-speed drive motor 26 so that the inverter frequency of the variable-speed drive motor 26 of the admixture supply device 30 becomes the inverter frequency corresponding to the set supply amount set by the setting unit 50. Control. Thereby, the control device 50 is supplied by the admixture material supply device 20 so that the supply amount of the admixture material to the slurry manufacturing device 10 and the supply amount of the liquid become the set supply amount set by the setting means 50. The feed rate of the admixture and the feed rate of the liquid fed by the submersible pump 30 can be controlled.
  • the fluctuation range of the supply amount of the mixing material controlled to be the set supply amount by the control means 50 is 3% by mass or less And preferably less than 2% by weight. Furthermore, the fluctuation range of the liquid supply amount controlled to be the set supply amount by the control means 50 can be 2 mass% or less, preferably 1 mass% or less.
  • the fluctuation range of the supply amount of the miscible material controlled to be the set supply amount by the control means 50 can be 3% by mass or less, and the liquid controlled to be the set supply amount by the control means 50
  • the control method of the control means is not limited to the control method by the calibration described above as long as the fluctuation range of the supply amount can be made 2 mass% or less.
  • the supply amount of the mixing material and the liquid of the mixing material so that the supply amount of the mixing material and the supply amount of the liquid become the set supply amount.
  • the supply amount may be controlled.
  • the slurry producing means 10 first, only the liquid is supplied to the slurry producing means 10 while measuring the supply amount of the liquid using the measuring means 40, and the supply of the liquid is stopped when the supply amount of the liquid reaches the set supply amount.
  • the admixture is supplied to the slurry production means 10 while supplying the liquid and measuring the feed of the admixture using the measuring means 40, and when the feed of the admixture reaches the set feed, Stop the supply of admixtures. Then, mixing of the admixture and the liquid is started. In this case, the admixture may be supplied first, and then the liquid may be supplied.
  • the pumping means 60 supplies the admixture material slurry 4 produced by the slurry production means 10 to the pumping hose 61.
  • the pumping means 60 is, for example, a pumping pump 60 (see FIG. 1).
  • the pressure feed pump 60 can supply the slurry produced by the slurry production apparatus 10 to the concrete conveyance means 70 separated by, for example, 50 to 100 m via the pressure feed hose 61. Thereby, even if the distance between the slurry production means 10 and the concrete conveyance means 70 is large, the admixture material slurry produced by the slurry production means 10 can be supplied to the storage and stirring mechanism 71 of the concrete conveyance means 70.
  • the pressure pump 60 Since the slurry produced by the slurry production apparatus 10 is pressureless or low pressure, the pressure pump 60 needs a pressure capacity sufficient to be supplied to a remote place via the pressure feed hose 61.
  • a known snake pump can be used as the pressure feed pump 60.
  • the pumping means is not limited to the pumping pump 60 as long as the admixture slurry produced by the slurry production means can be supplied to the pumping hose.
  • the pumping means may be a piston pump or a squeeze pump.
  • the concrete transport means 70 has a storage and stirring mechanism 71 for storing and stirring concrete.
  • the concrete transport means 70 is, for example, an agitator car 70 (see FIG. 1).
  • the agitator wheel 70 has a mixer drum 71 for storing and stirring concrete.
  • the mixer drum 71 is internally provided with a spiral blade, and when the mixer drum 71 rotates, the concrete stored in the mixer drum 71 is agitated.
  • the concrete conveyance means is not limited to the agitator vehicle 70 as long as it has a storage and stirring mechanism 71 for storing and stirring concrete.
  • the concrete transport means may be a track mixer.
  • the admixture slurry is supplied to the storage and agitation mechanism 71 through the pressure feed hose 61.
  • the stirring function of the storage and stirring mechanism 71 the admixture material slurry can be uniformly mixed with the concrete stored in the storage and stirring mechanism 71.
  • the time from supply of the liquid or admixture to the slurry production means 10 to supply of the admixture slurry to the storage and agitation mechanism 71 is preferably 7 Within minutes, more preferably within 5 minutes.
  • the mixture production system 1 in an embodiment of the present invention can be modified as follows.
  • the mixture generation system 1A in the first modification of the mixture generation system 1 includes a retarder water storage unit 150 for storing the retarder water 5 and the retarder water 5.
  • the apparatus further comprises a retarder water pressure feeding means 160 for feeding the agent water pressure feeding hose 161, and then using the delaying agent water pressure feeding means 160, the delaying agent water 5 May be supplied to the storage and agitation mechanism 71, and the storage and agitation mechanism 71 may be cleaned by the retarder water 5.
  • the storage and agitation mechanism 71 can be cleaned while suppressing the setting of concrete remaining in the storage and agitation mechanism 71, so that the storage and agitation mechanism 71 can be cleaned cleanly.
  • the storage and stirring mechanism 71 can be cleaned also from this point.
  • the retarder water storage means 150 stores the retarder water 5.
  • the retarder water storage means 150 is, for example, a retarder water storage tank 150 (see FIG. 4).
  • the retarder water storage means is not limited to the retarder water storage tank 150 as long as it can store the retarder water.
  • retarder water storage means 150 may be provided with retarder water supply means 151 such as a submersible pump. Good.
  • the retarder water 5 is water containing a retarder.
  • the retarder used for the retarder water 5 include inorganic retarders and organic retarders.
  • Inorganic retarders for example, phosphates, silicofluorides, complexes of silicofluorides and phosphates, copper hydroxide, boric acid, zinc oxide, zinc chloride, mixtures of zinc carbonate and lead oxide And mixtures of copper carbonate and urea.
  • organic retarders include, for example, oxycarboxylic acids and salts thereof, ketocarboxylic acids, aldose acids, uronic acids, ketose acids, saccharides, sugar alcohols, cellulose derivatives, water-soluble polymers such as polyvinyl alcohol and the like Etc.
  • the retarder water pressure feeding means 160 supplies the retarder water 5 to the retarder water pressure feed hose 161.
  • the retarder water pressure feeding means 160 is, for example, a pressure feeding pump 160 (see FIG. 4).
  • the pressure pump 160 supplies retarder water stored in the retarder water storage tank 150 to the concrete conveyance means 70 separated by, for example, 50 to 100 m via the retarder water pressure feed hose 161. Thereby, even if the distance between the slurry production means 10 and the concrete conveyance means 70 is somewhat large, the storage and stirring mechanism 71 of the concrete conveyance means 70 can be cleaned cleanly.
  • the pressure pump 160 Since the retarder water stored in the retarder water storage tank 150 is pressureless or low pressure, the pressure pump 160 needs sufficient pressurizing ability to be supplied to a remote place via the pressure hose 161. .
  • a known snake pump can be used as the pressure feed pump 160.
  • the retarder water pressure feeding means is not limited to the pressure feed pump 160 as long as the delay agent water stored in the delay agent water storage tank 150 can be supplied to the pressure feed hose.
  • the retarder water pressure delivery means may be a piston pump or a squeeze pump.
  • the pumping means 60 may be used as the retarder water pressure feeding means 160.
  • a retarder water sprayer 162 may be provided at the end of the pressure-feed hose.
  • the retarder water spray machine 162 mixes the retarder water and compressed air which were supplied from the pumping hose 161 by the nozzle not shown, and injects the mixture of retarder water and compressed air.
  • the human is operating the retarder water spray machine 162, it can also operate mechanically and automatically.
  • a mixture generation system 1B according to a second modification of the mixture generation system 1 according to an embodiment of the present invention supplies the liquid storage means 31 for storing liquid and the power for driving the control means 50.
  • the means other than the concrete conveyance means 70 may be mounted on the same movable carriage 200.
  • the main means of the mixture generation system 1B can be easily transported, and the flexibility of the mixture generation system 1B can be enhanced.
  • the moving carriage 200 is a truck 200 in this example, but it may be a trailer or a simple carriage.
  • the movable carriage 200 has thereon slurry producing means 10, admixture material supplying means 20, liquid supply means 30, liquid storage means 31, measuring means 40, control means 50, retarder water storage means 150 and power supply.
  • the means 170 is mounted.
  • all of the means other than the concrete conveyance means may be mounted on the same movable carriage 200, and of the means constituting the mixture generation system other than the concrete conveyance means A part may be mounted on the same movable carriage 200.
  • the liquid storage means is not limited to the liquid storage means 31 shown in FIGS. 1 and 5 as long as it can store liquid.
  • the power supply unit 170 may be a generator or a battery as long as it can supply power for driving the control unit 50.
  • Powder 1 to 8 Powder 1 Calcium hydroxide, commercial product, less than 1% of 300 ⁇ m residue, 5% of 100 ⁇ m residue
  • Powder 2 Calcium carbonate, commercial product, Blaine specific surface area 4,000 cm 2 / g
  • Powder 3 Alumina cement No. 1 mainly composed of calcium aluminate compound and CaO ⁇ Al 2 O 3 .
  • Brain specific surface area 5,000 cm 2 / g Powder 4 An expanding material for concrete, which is produced by heat treating a mixture containing a calcium sulfoaluminate compound, CaO raw material and CaSO 4 raw material, a commercial product, Blaine specific surface area 3,600 cm 2 / g Powder 5: calcium silicate compound, 3CaO ⁇ SiO 2 synthesized from calcium carbonate and SiO 2 of the reagent first grade.
  • Brain specific surface area 3,000 cm 2 / g Powder 6 Portland cement
  • commercial product Powder 7 calcium sulfoaluminate cement
  • Blaine specific surface area 4,500 cm 2 / g Powder 8 Blast furnace slag, commercial item
  • ⁇ Mixture supply system Inner diameter of casing: 250 mm
  • the fluctuation range of measured value of powder and liquid supplied to the slurry production apparatus is 2 mass% or less, preferably 1 mass% in liquid. It became as follows, and it became 3 mass% or less with a powder, Preferably it became 2 mass%, and it turned out that quantitative efficiency is securable.
  • the slurry is manufactured and manufactured batchwise by changing the time (stirring time) from the supply of powder and liquid using the mixture generation system 1 according to one embodiment of the present invention to the completion of the 20-liter slurry
  • the slurry properties were confirmed.
  • the water powder ratio was 50% in all cases, and the stirring time was 30 seconds, 60 seconds, 90 seconds, and 120 seconds.
  • By passing the stirred slurry through a 5 mm sieve it was confirmed whether or not a powdery lump not completely dispersed in the slurry was present.
  • the results are shown in Table 2.
  • a grout mixer “OKZ-30” (model number) manufactured by Okasan Kiko Co., Ltd. was used as a slurry production means.
  • the slurry can be applied to the agitator car within 5 minutes after supplying the powder to the slurry production apparatus, regardless of which powder is used. It turned out that it can supply.
  • the mixer drum of the agitator car was rotated at high speed for 2 minutes, and then the concrete was discharged. From the concrete in the middle of discharge, immediately after the start of discharge, at the time of discharge of 1/2 of the load of concrete, and at the end of discharge, sampling was performed three times to prepare a concrete sample.
  • the compressive strength (in accordance with JIS A 1108) and the rate of change in length (in accordance with JIS A 6202) were measured for this concrete sample. Further, the surface condition of the hardened concrete was confirmed, and it was confirmed whether the expansive material of the powder 4 was uniformly dispersed in the concrete uniformly by only stirring the mixer drum of the agitator wheel.
  • the test was also performed in the case where the expansive material of the powder 4 was added to the agitator car so as to be 20 kg / m 3 as the powder as it is.
  • the concrete prior to the addition of the expansive material was adjusted to be the same water binder as in the case of the slurry addition, and the mixing method after the addition of the expansive material was the same as the case of the slurry addition.
  • the concrete composition of this test is shown in Table 4. Also, the results are shown in Table 5.
  • a grout mixer “OKZ-30” (model number) manufactured by Okasan Kiko Co., Ltd. was used as a slurry production means.
  • mixture generation system 1 of one embodiment of the present invention highly fluid concrete, grout (mortar / concrete), high strength / super high strength concrete, high durability concrete, seawater resistant concrete, acid resistant concrete, It turned out that it is possible to easily manufacture special concrete in which admixture materials such as abrasion resistant concrete, underwater non-separable concrete, mass concrete, reverse cast concrete, shot concrete and porous concrete are mixed.
  • admixture materials such as abrasion resistant concrete, underwater non-separable concrete, mass concrete, reverse cast concrete, shot concrete and porous concrete are mixed.
  • dispersion in concrete is not sufficiently performed, and it is confirmed that the dispersion is partially biased.

Abstract

This mixture formation system (1) comprises: a slurry production means (10) which produces an admixture slurry; an admixture supply means (20) which supplies an admixture; a liquid supply means (30) which supplies a liquid; a measurement means (40) which measures the supply amounts of the admixture and the liquid; a setting means (51) which sets the supply amounts of the admixture and the liquid; a control means (50) which controls the supply amounts of the admixture and the liquid; a pressure feed means (60) which supplies the admixture slurry to a pressure feed hose (61); and a concrete conveyance means (70) which has a storage/agitation mechanism (71) that stores and agitates a concrete. The fluctuation range of the supply amount of the admixture is 3% by mass or less; the fluctuation range of the supply amount of the liquid is 2% by mass or less; and the admixture slurry is supplied to the storage/agitation mechanism (71). Consequently, the present invention is able to provide a mixture formation system for efficiently mixing an admixture in the form of a powder with a ready-mixed concrete that has been conveyed to a construction site by means of an agitator vehicle.

Description

混合物生成システムMixture generation system
 本発明は、コンクリートもしくはモルタルに粉末状の混和材料を混合するための混合物生成システムに関する。 The present invention relates to a mixture generation system for mixing powdered admixtures in concrete or mortar.
 混和材料とは、セメント、水、骨材以外の材料であり、コンクリートなどに特別の性質を与えるために、打込みを行う前までに必要に応じて加える材料である。混和材料は、コンクリートの混練時に、すでにセメントに混和されている場合の他に、混練時にミキサーに投入して使用する場合がある。
 例えば、特許文献1に記載のセメントグラウト用混和剤は、セメントグラウトの打設現場おけるアジテータ車や現場設置型のアジテータ等の撹拌機又は現場に設置してあるミキサーに投入することでセメントグラウトに添加されている。
Admixtures are materials other than cement, water and aggregate, and are materials added as needed before casting in order to impart special properties to concrete and the like. Admixture materials may be used by being added to a mixer at the time of kneading, in addition to cases where they are already mixed with cement at the time of kneading of concrete.
For example, the admixture for cement grout described in Patent Document 1 can be added to a cement grout by introducing it into a stirrer such as an agitator car at a cement grout placing site or a field installation type agitator, or a mixer installed at the site. It is added.
特開2011-132041号公報JP, 2011-132041, A
 しかしながら、混和材料が粉末状である場合、アジテータ車に混和材料を直接添加すると、混和材料のコンクリートへの分散が不十分となる場合がある。その場合、コンクリート中に混和材料の塊が残り、その塊が硬化後のコンクリート物性にバラツキが生じさせたり、悪影響を及ぼしたりする可能性がある。また、粉末状の混和材料をコンクリートに添加した後、再混練を行なう方法では、混和材料をバラつきなくコンクリートに混合することは可能であるものの、施工現場にミキサーを別途用意する必要がある。また、その方法では、急硬性を有するコンクリートの場合には、混合後直ちにミキサーを施工現場で洗浄する必要があり、洗浄水の処理や作業工数が嵩むことになる。これらの問題を解決するため、アジテータ車に直接添加する方法で、かつコンクリートへの混合性を高める手法の確立が重要となる。 However, if the admixture is in powder form, adding the admixture directly to the agitator car may result in insufficient dispersion of the admixture in the concrete. In that case, a mass of the admixture remains in the concrete, and the mass may cause variations in the physical properties of the hardened concrete or adversely affect the concrete. In addition, although it is possible to mix the admixture with the concrete without dispersion by the method of performing re-kneading after adding the powdery admixture to the concrete, it is necessary to separately prepare a mixer at the construction site. Moreover, in the method, in the case of concrete having rapid hardness, it is necessary to wash the mixer at the construction site immediately after mixing, which results in increase in the treatment of washing water and the number of working steps. In order to solve these problems, it is important to establish a method of adding directly to the agitator car and increasing the mixing property to concrete.
 施工現場に到着したコンクリートに対して粉末状の混和材料を添加する際、混合性を高める方法としては、混和材料をスラリー化して添加する方法が挙げられる。
 粉末状の混和材料のスラリー化は、施工現場でミキサーを用いて攪拌混合することで実施可能である。しかし、材料の計量から混練、アジテータ車への添加を人力で行なう場合には、アジテータ車1台あたり数十kg単位のスラリーを複数回製造し、添加する必要がある。この場合、アジテータ車のミキサードラム上部まで重量物を運搬することとなり、作業的にも危険を伴う。また、粉末状の混和材料をスラリーとしてコンクリートに添加する場合には、コンクリートに対して一部水を加えることとなる。コンクリートの耐久性を考えた場合に水セメント比の管理が重要となるため、極力人的なエラーを避けるスラリー化手法が必要となる。
When adding powdery admixtures to concrete that has arrived at the construction site, a method of increasing admixtures by slurrying the admixtures may be mentioned.
Slurrying of the powdery admixture can be carried out by stirring and mixing at a construction site using a mixer. However, in the case where the material is weighed, kneaded, and added to the agitator car manually, it is necessary to manufacture and add a plurality of tens of kg of slurry per agitator car several times. In this case, the heavy load is transported to the upper portion of the mixer drum of the agitator car, which is also dangerous for operation. When powdery admixtures are added as a slurry to concrete, part of the water is added to the concrete. Since it is important to control the water-cement ratio when considering the durability of concrete, it is necessary to make a slurrying method that minimizes human error as much as possible.
 以上から、本発明は、施工現場にアジテータ車で運搬されてきた生コンクリートに対し、粉体状の混和材料を効率よく混合するための混合物生成システムを提供することを目的とする。 From the above, it is an object of the present invention to provide a mixture generation system for efficiently mixing powdery admixtures with fresh concrete transported to a construction site by an agitator vehicle.
 本発明者らは、上記の目的を達成すべく鋭意研究を進めたところ、人力に頼らずに、粉末状の混和材料の計量から混練、アジテータ車への供給を行うことができるシステムを考え出した。さらに、そのシステムは、粉末状の混和材料をスラリー化する際、混和材料と液体との間の分量比を間違えるという人的なエラーを極力抑えることができる。これにより、本発明者らは、上記の目的を達成することができた。
 本発明は、上記の知見に基づくものであり、以下を要旨とする。
The present inventors diligently researched to achieve the above-mentioned purpose, and have come up with a system capable of performing kneading, supply to an agitator car from measurement of powdery admixtures without relying on human power. . In addition, the system can minimize human error of mistaking the volume ratio between the admixture and the liquid when slurrying the powdered admixture. Thereby, the present inventors were able to achieve the above-mentioned object.
The present invention is based on the above findings, and the gist of the present invention is as follows.
(1)粉末状の混和材料と液体とから混和材料スラリーを製造するスラリー製造手段と、スラリー製造手段に混和材料を供給する混和材料供給手段と、スラリー製造手段に液体を供給する液体供給手段と、スラリー製造手段に供給された混和材料の供給量及び液体の供給量を測定する計量手段と、スラリー製造手段に供給される混和材料の供給量及び液体の供給量を設定する設定手段と、スラリー製造手段への混和材料の供給量及び液体の供給量が、設定手段により設定された設定供給量になるように、混和材料供給手段によって供給される混和材料の供給量及び液体供給手段によって供給される液体の供給量を制御する制御手段と、スラリー製造手段により製造された混和材料スラリーを圧送ホースに供給する圧送手段と、コンクリートを貯蔵・攪拌する貯蔵・攪拌機構を有するコンクリート搬送手段を有し、制御手段によって設定供給量になるように制御された混和材料の供給量の変動幅は3質量%以下であり、制御手段によって設定供給量になるように制御された液体の供給量の変動幅は2質量%以下であり、混和材料スラリーは、圧送ホースを通じて貯蔵・攪拌機構に供給されることを特徴とする、コンクリートと混和材料スラリーとの混合物を得る混合物生成システム。
(2)混和材料と液体とを供給してから混和材料スラリーを完成させるまでの時間が120秒以内である上記(1)に記載の混合物生成システム。
(3)スラリー製造手段に混和材料を供給してから、貯蔵・攪拌機構に混和材料スラリーを供給するまでの時間が7分以内である上記(1)または(2)に記載の混合物生成システム。
(4)遅延剤水を貯蔵する遅延剤水貯蔵手段と、遅延剤水を遅延剤水圧送ホースに供給する遅延剤水圧送手段をさらに有し、混合物をコンクリート搬送手段から排出した後、貯蔵・攪拌機構に遅延剤水圧送手段を用いて遅延剤水圧送ホースを通じて遅延剤水を供給し、貯蔵・攪拌機構は、遅延剤水によって洗浄される上記(1)~(3)のいずれか1つに記載の混合物生成システム。
(5)液体を貯蔵する液体貯蔵手段と、制御手段が駆動するための電力を供給する電力供給手段をさらに有し、コンクリート搬送手段以外の手段は、同一の移動台車上に搭載されている上記(1)~(4)のいずれか1つに記載の混合物生成システム。
(6)コンクリート搬送手段が、アジテータ車である上記(1)~(5)のいずれか1つに記載の混合物生成システム。
(7)混和材料供給手段は、軸心を中心に回転駆動され混和材料を軸方向に供給する粉体供給スクリュー軸と、粉体供給スクリュー軸を変速可能に回転駆動する可変速駆動モータとを有し、その回転速度により混和材料の供給量を調整する上記(1)~(6)のいずれか1つに記載の混合物生成システム。
(8)スラリー製造手段は、攪拌槽と、攪拌槽の底部に設けられ攪拌槽内において上下に伸びる回転軸と、回転軸に取り付けられた攪拌羽根とを備え、攪拌羽根は、回転軸に接続する中心部と、この中心部から径外方向に伸びる複数枚の攪拌翼を備え、攪拌翼は、中心部の周囲から径方向に外側に伸びており、攪拌翼の前端が後端よりも高くなるように斜めに設けられ、隣接する攪拌翼同士の間に間隔を開けて攪拌翼を設けることにより材料通し部が形成され、攪拌翼の径方向の先端側に補助翼部が固定され、補助翼部は、環状の形状、又は環状を分割した平板の形状をなしており、回転径の内外方向について、材料通し部の外側に設けられたものであり、かつ、攪拌翼の径方向の先端よりも径方向の外側に位置する部分を備えたものである上記(1)~(7)のいずれか1つに記載の混合物生成システム。
(9)混和材料は、フライアッシュ、高炉スラグ微粉末、シリカヒューム、膨張材、急硬材、急結材、高強度用混和材、石灰石微粉末、砕石粉、スラッジ粉及び下水汚泥微粉末からなる群から選択される少なくとも1種の混和材料である上記(1)~(8)のいずれか1つに記載の混合物生成システム。
(1) Slurry production means for producing a slurry of admixture from powdery admixture and liquid, admixture supply means for feeding admixture to the slurry production means, liquid feed means for feeding liquid to the slurry production means A metering means for measuring the supply amount of the mixing material supplied to the slurry production means and the supply amount of the liquid; a setting means for setting the supply amount of the mixing material to be supplied to the slurry production means and the supply amount of the liquid; The supply amount of the mixing material supplied by the mixing material supply means and the liquid supply means are supplied so that the supply amount of the mixing material to the manufacturing means and the supply amount of the liquid become the set supply amount set by the setting means. Control means for controlling the supply amount of the liquid, pumping means for feeding the admixture slurry produced by the slurry producing means to The fluctuation range of the supply amount of the mixing material controlled to the set supply amount by the control means is 3 mass% or less, and is set by the control means. The fluctuation range of the supply amount of liquid controlled to be the supply amount is 2 mass% or less, and the admixture slurry is supplied to the storage and agitation mechanism through a pressure hose, concrete and admixture Mixture generation system to obtain a mixture with the slurry.
(2) The mixture production system according to the above (1), wherein the time from supplying the admixture and the liquid to completing the admixture slurry is within 120 seconds.
(3) The mixture production system according to the above (1) or (2), wherein the time for supplying the admixture slurry to the storage and stirring mechanism after supplying the admixture material to the slurry production means is within 7 minutes.
(4) A retarder water storage means for storing retarder water and a retarder water pressure feeding means for feeding retarder water to the retarder water pressure feeding hose are further provided, and the mixture is discharged from the concrete transport means and then stored. The retarder water is supplied to the stirring mechanism through the retarder water pressure feeding hose using the retarder water pressure feeding means, and the storage and stirring mechanism is cleaned with the retarder water according to any one of the above (1) to (3) The mixture generation system as described in.
(5) A liquid storage means for storing liquid and a power supply means for supplying power for driving the control means are further provided, and the means other than the concrete transport means are mounted on the same movable carriage. The mixture generation system according to any one of (1) to (4).
(6) The mixture production system according to any one of the above (1) to (5), wherein the concrete transport means is an agitator.
(7) The admixture feed means includes a powder feed screw shaft which is rotationally driven about its axis and feeds the admixture in the axial direction, and a variable speed drive motor which rotationally drives the powder feed screw shaft so as to change its speed. The mixture production system according to any one of the above (1) to (6), wherein the supply amount of the admixture is adjusted by the rotation speed thereof.
(8) The slurry production means comprises a stirring tank, a rotary shaft provided at the bottom of the stirring tank and extending vertically in the stirring tank, and a stirring blade attached to the rotary shaft, and the stirring blade is connected to the rotary shaft And the plurality of stirring blades extending radially outward from the central portion, the stirring blades extend radially outward from the periphery of the central portion, and the front end of the stirring blades is higher than the rear end The material passing portion is formed by providing the stirring blades at an interval between adjacent stirring blades so as to form a material passing portion, and the auxiliary wing portion is fixed to the tip end side in the radial direction of the stirring blades. The wing portion has an annular shape or a flat plate shape obtained by dividing an annular shape, and is provided on the outer side of the material passage portion in the inside and outside directions of the rotation diameter, and the tip of the stirring blade in the radial direction With a portion located more radially outward than Mixture generation system according to any one of the serial (1) to (7).
(9) Admixture materials are fly ash, blast furnace slag fine powder, silica fume, expansive material, quick hardwood, quick-setting material, admixture for high strength, limestone fine powder, crushed stone powder, sludge powder and sewage sludge fine powder The mixture generation system according to any one of the above (1) to (8), which is at least one admixture selected from the group consisting of
 本発明によれば、施工現場にアジテータ車で運搬されてきた生コンクリートに対し、粉体状の混和材料を効率よく混合するための混合物生成システムを提供することができる。 According to the present invention, it is possible to provide a mixture generation system for efficiently mixing powdery admixtures with fresh concrete transported to a construction site by an agitator vehicle.
図1は、本発明の一実施形態における混合物生成システム1を説明するための図である。FIG. 1 is a diagram for explaining a mixture generation system 1 in an embodiment of the present invention. 図2(a)は、本発明の一実施形態における混合物生成システム1におけるスラリー製造装置を説明するための図であり、図2(b)は上記スラリー製造装置に設けられている攪拌羽根を説明するための図である。Fig.2 (a) is a figure for demonstrating the slurry manufacturing apparatus in the mixture production system 1 in one Embodiment of this invention, FIG.2 (b) demonstrates the stirring blade provided in the said slurry manufacturing apparatus. FIG. 図3は、本発明の一実施形態における混合物生成システム1における混和材料供給装置を説明するための図である。FIG. 3 is a figure for demonstrating the admixture supply apparatus in the mixture production system 1 in one Embodiment of this invention. 図4は、本発明の一実施形態における混合物生成システム1の変形例におけるアジテータ車の洗浄を説明するための図である。FIG. 4 is a view for explaining cleaning of the agitator wheel in the modification of the mixture generation system 1 according to the embodiment of the present invention. 図5は、本発明の一実施形態における混合物生成システム1の変形例の移動台車上の搭載を説明するための図である。FIG. 5 is a view for explaining the mounting on a movable carriage of a modified example of the mixture generation system 1 according to an embodiment of the present invention. 図6は、モルタル連続練り装置を説明するための図である。FIG. 6 is a figure for demonstrating a mortar continuous kneading apparatus.
 以下、図1を参照して本発明の一実施形態における混合物生成システム1を説明する。本発明の一実施形態における混合物生成システム1は、コンクリートと混和材料スラリー4との混合物を得る。本発明の一実施形態の混合物生成システム1は、粉末状の混和材料2と液体3とから混和材料スラリー4を製造するスラリー製造手段10と、スラリー製造手段10に混和材料2を供給する混和材料供給手段20と、スラリー製造手段10に液体3を供給する液体供給手段30と、スラリー製造手段10に供給された混和材料2の供給量及び液体3の供給量を測定する計量手段40と、スラリー製造手段10に供給される混和材料2の供給量及び液体3の供給量を設定する設定手段51と、スラリー製造手段10への混和材料2の供給量及び液体3の供給量が、設定手段51により設定された設定供給量になるように、混和材料供給手段20によって供給される混和材料2の供給量及び液体供給手段30によって供給される液体3の供給量を制御する制御手段50と、スラリー製造手段10により製造された混和材料スラリー4を圧送ホース61に供給する圧送手段60と、コンクリートを貯蔵・攪拌する貯蔵・攪拌機構71を有するコンクリート搬送手段70を有する。そして、混和材料スラリーは、圧送ホース61を通じて貯蔵・攪拌機構71に供給される。本発明の一実施形態における混合物生成システム1は、上述のような構成を有することにより、施工現場にアジテータ車で運搬されてきた生コンクリートに対し、粉体状の混和材料を効率よく混合することができる。 Hereinafter, a mixture generation system 1 according to an embodiment of the present invention will be described with reference to FIG. The mixture production system 1 in one embodiment of the present invention obtains a mixture of concrete and the admixture slurry 4. A mixture generation system 1 according to an embodiment of the present invention includes a slurry producing means 10 for producing an admixture slurry 4 from a powdery admixture 2 and a liquid 3, and an admixture for supplying the admixture 2 to the slurry producing means 10. A supply means 20, a liquid supply means 30 for supplying the liquid 3 to the slurry production means 10, a metering means 40 for measuring the feed amount of the admixture 2 supplied to the slurry production means 10 and the feed amount of the liquid 3; The setting means 51 for setting the supply amount of the admixture 2 and the supply amount of the liquid 3 supplied to the production means 10, and the supply amount of the admixture 2 and the supply amount of the liquid 3 to the slurry production means 10 Supply amount of the miscible material 2 supplied by the miscible material supply unit 20 and the supply amount of the liquid 3 supplied by the liquid supply unit 30 so that the set supply amount set by It has a control means 50 for controlling, a pumping means 60 for supplying the admixture material slurry 4 produced by the slurry producing means 10 to the pumping hose 61, and a concrete conveying means 70 having a storage and stirring mechanism 71 for storing and stirring concrete. . Then, the admixture slurry is supplied to the storage and agitation mechanism 71 through the pressure feed hose 61. The mixture generation system 1 according to an embodiment of the present invention efficiently mixes powdery admixture material with fresh concrete transported by an agitator vehicle to a construction site by having the above-described configuration. Can.
(スラリー製造手段)
 スラリー製造手段10は、粉末状の混和材料2と液体3とから混和材料スラリー4を製造する。スラリー製造手段10は、例えば、図1に示すスラリー製造装置10である。図2を参照してスラリー製造装置10をさらに詳細に説明する。
(Slurry production means)
The slurry production means 10 produces the admixture slurry 4 from the powdered admixture 2 and the liquid 3. The slurry production means 10 is, for example, a slurry production apparatus 10 shown in FIG. The slurry production apparatus 10 will be described in more detail with reference to FIG.
 図2(a)は、本発明の一実施形態における混合物生成システム1におけるスラリー製造装置10を説明するための図であり、図2(b)はスラリー製造装置10に設けられた攪拌羽根を説明するための図である。スラリー製造装置10は、粉末状の混和材料と液体とを攪拌及び混合して混和材料スラリーを製造する装置である。スラリー製造装置10は、攪拌槽11と、攪拌槽11の底部に設けられ、攪拌槽11内において上下に伸びる回転軸12と、回転軸12を回転駆動する駆動装置13と、回転軸12に取り付けられた攪拌羽根14とを備える。 Fig.2 (a) is a figure for demonstrating the slurry production apparatus 10 in the mixture production system 1 in one Embodiment of this invention, FIG.2 (b) demonstrates the stirring blade provided in the slurry production apparatus 10 FIG. The slurry production apparatus 10 is an apparatus for producing a admixture slurry by stirring and mixing a powdered admixture and a liquid. The slurry manufacturing apparatus 10 is provided at the stirring tank 11 and at the bottom of the stirring tank 11, and attached to the rotating shaft 12 extending vertically in the stirring tank 11, the drive device 13 for rotationally driving the rotating shaft 12, and the rotating shaft 12 And the stirring blade 14.
 攪拌槽11は、混和材料供給手段20から供給された混和材料2及び液体供給手段30から供給された液体3を収容するとともに、混和材料2及び液体3から製造された混和材料スラリー4を収容する。攪拌槽11の形状は特に限定されないが、攪拌槽11は上方が開放された平面視矩形状の筐体であることが好ましい。 The stirring tank 11 contains the admixture 2 supplied from the admixture supply means 20 and the liquid 3 supplied from the liquid supply means 30, and also accommodates the admixture material slurry 4 produced from the admixture 2 and the liquid 3 . The shape of the stirring tank 11 is not particularly limited, but it is preferable that the stirring tank 11 be a rectangular housing in plan view with the upper part opened.
 回転軸12は駆動装置13により発生した駆動力を攪拌羽根14に伝達し、攪拌羽根14を回転させる。攪拌槽11の底には内外に関する貫通孔が設けられており、貫通孔に回転軸が通されている。貫通孔の内周と回転軸12との間には、攪拌槽11に収容された材料が漏れないようにするために、不図示の周知のシール手段にてシールされている。回転軸12の下方には、攪拌羽根側プーリー121が設けられており、ベルト15を介して、駆動装置13による駆動力が回転軸12に伝達される。なお、ギアを介して駆動装置13による駆動力が回転軸12に伝達されてもよい。また、回転軸12の下方に駆動装置を配置して、駆動装置が回転軸を直接回転させるようにしてもよい。回転軸12の回転数は、例えば、750~1000rpmである。 The rotating shaft 12 transmits the driving force generated by the driving device 13 to the stirring blade 14 to rotate the stirring blade 14. The bottom of the stirring tank 11 is provided with the through-hole regarding the inside and outside, and the rotating shaft is passed through the through-hole. Between the inner periphery of the through hole and the rotary shaft 12, in order to prevent the material contained in the stirring tank 11 from leaking, it is sealed by a known sealing means (not shown). Below the rotation shaft 12, a stirring blade side pulley 121 is provided, and the driving force by the drive device 13 is transmitted to the rotation shaft 12 via the belt 15. In addition, the driving force by the drive device 13 may be transmitted to the rotating shaft 12 via the gear. Alternatively, a drive may be disposed below the rotation shaft 12 so that the drive rotates the rotation shaft directly. The rotational speed of the rotating shaft 12 is, for example, 750 to 1000 rpm.
 駆動装置13は、攪拌羽根14を回転させるための駆動力を発生する内燃機関又は電動機である。駆動装置13の下方には、駆動装置側プーリー131が設けられており、駆動装置側プーリー131を介して駆動力がベルト15に伝達される。そして、上述したように、ベルト15に伝達した駆動力は攪拌羽根側プーリー121を介して回転軸12に伝わり、それにより攪拌羽根14が回転する。このような構成を有することにより、駆動装置13の負荷を一定にすることでき、駆動装置に供給する電流値のふらつきを少なくし、スラリー製造装置10の振動を軽減できる。 The driving device 13 is an internal combustion engine or a motor that generates a driving force for rotating the stirring blade 14. A drive device-side pulley 131 is provided below the drive device 13, and the driving force is transmitted to the belt 15 via the drive device-side pulley 131. Then, as described above, the driving force transmitted to the belt 15 is transmitted to the rotary shaft 12 via the stirring blade side pulley 121, whereby the stirring blade 14 is rotated. By having such a configuration, the load of the drive device 13 can be made constant, the fluctuation of the current value supplied to the drive device can be reduced, and the vibration of the slurry production apparatus 10 can be reduced.
 攪拌羽根14は、混和材料供給手段20から供給された混和材料2及び液体供給手段30から供給された液体3を攪拌及び混合する。これにより、混和剤スラリーが製造される。攪拌羽根14は、回転軸に接続する中心部141と、この中心部141から径外方向に伸びる複数枚の攪拌翼142を備える。攪拌翼142は、中心部141の周囲から径方向に外側に伸びており、攪拌翼142の前端が後端よりも高くなるように斜めに設けられている。攪拌羽根14は、好ましくは2~10枚の、より好ましくは3~6枚の、さらに好ましくは3~4枚の攪拌翼を有する。 The stirring blade 14 stirs and mixes the admixture 2 supplied from the admixture supply means 20 and the liquid 3 supplied from the liquid supply means 30. This produces an admixture slurry. The stirring blade 14 includes a central portion 141 connected to the rotation shaft, and a plurality of stirring blades 142 extending radially outward from the central portion 141. The stirring blade 142 extends radially outward from the periphery of the central portion 141, and is obliquely provided such that the front end of the stirring blade 142 is higher than the rear end. The stirring blade 14 preferably has 2 to 10, more preferably 3 to 6, and more preferably 3 to 4 stirring blades.
 隣接する攪拌翼142同士の間に間隔を開けて攪拌翼142を設けることにより材料通し部143が形成される。回転軸12の回転によって攪拌羽根14が回転することにより、攪拌槽11内の混和材料スラリーを攪拌翼142によって材料通し部143から下方に移動させることができる。これにより、攪拌槽11内に発生する混和材料スラリーの渦を大きくすることができ、攪拌槽11内全体にわたってムラなく混和材料及び液体を混合することができ、均一な混和材料スラリーを短時間に製造することができる。 A material passing portion 143 is formed by providing the stirring blades 142 at intervals between adjacent stirring blades 142. By rotating the stirring blade 14 by the rotation of the rotating shaft 12, the admixture slurry in the stirring tank 11 can be moved downward from the material passing portion 143 by the stirring blade 142. Thereby, the vortex of the admixture slurry generated in the stirring tank 11 can be enlarged, and the admixture and the liquid can be mixed uniformly throughout the entire stirring tank 11, and the uniform admixture slurry can be made in a short time. It can be manufactured.
 攪拌翼142の径方向の先端側に補助翼部144が固定されている。補助翼部144は環状の形状をなしており、回転径の内外方向について、材料通し部143の外側に設けられたものであり、かつ、攪拌翼142の径方向の先端よりも径方向の外側に位置する部分を備えている。補助翼部144は、攪拌翼142によって材料通し部143から下方に押しやられて攪拌槽11の底にて跳ね返った材料が上方へ行くのを抑制することができる。なお、補助翼部144は、環状を分割した平板の形状をなしていてもよい。 An auxiliary wing portion 144 is fixed to the radial tip end of the stirring blade 142. The auxiliary wing portion 144 has an annular shape, and is provided on the outer side of the material passing portion 143 in the inward and outward directions of the rotation diameter, and is radially outer than the radial tip of the agitating blade 142 It has a part located on the. The auxiliary wing portion 144 can suppress the material which is pushed downward from the material passing portion 143 by the stirring blade 142 and bounces back at the bottom of the stirring tank 11 going upward. The auxiliary wing portion 144 may have the shape of a flat plate obtained by dividing an annular shape.
 スラリー製造装置10は、製造した混和材料スラリーを排出するための吐出口16、吐出口16の開閉を制御するための吐出口蓋17及び排出された混和材料スラリーを、圧送手段60に供給するための吐出シュート18をさらに備える。
 吐出口蓋17により吐出口16を閉じた状態で、混和材料スラリーを製造することで、バッチ式で混和材料スラリーを製造することができる。そして、混和材料スラリーを製造した後、吐出口蓋17を図2(a)の矢印方向に動かして吐出口16を開放することにより、吐出シュート18を通じて製造した混和材料スラリーを圧送手段60に速やかに供給することができる。
The slurry manufacturing apparatus 10 supplies a discharge port 16 for discharging the manufactured admixture material slurry, a discharge port lid 17 for controlling the opening and closing of the discharge port 16, and the pumped mixture means 60 for supplying the discharged admixture material slurry. The discharge chute 18 is further provided.
By producing the admixture slurry while the outlet 16 is closed by the outlet lid 17, the admixture slurry can be produced batchwise. Then, after the admixture slurry is manufactured, by moving the discharge port lid 17 in the direction of the arrow in FIG. Can be supplied.
 スラリー製造手段10は、上述の構成を有することにより、混和材料及び液体から均一な混和材料スラリーを短時間に製造することができる。 The slurry production means 10 can produce a uniform admixture slurry from admixture and liquid in a short time by having the above-described configuration.
 混和材料と液体とをスラリー製造装置10に供給してから、スラリー製造装置10が混和材料スラリーを完成させるまでの時間は、好ましくは120秒以内であり、より好ましくは90秒以内であり、さらに好ましくは60秒以内である。これにより、アジテータ車が施工現場に到着してからスラリーの製造を開始しても、アジテータ車の現場に到着してからの待ち時間を短くすることができる。なお、完成した混和材料スラリーとは、混和材料のダマが残っていない状態のスラリーである。 The time from the supply of the admixture and the liquid to the slurry production apparatus 10 to the completion of the admixture slurry by the slurry production apparatus 10 is preferably within 120 seconds, more preferably within 90 seconds, and further, Preferably, it is within 60 seconds. This makes it possible to shorten the waiting time after arriving at the agitator vehicle site even if the slurry vehicle is started after the agitator vehicle arrives at the construction site. The completed admixture slurry is a slurry in which no lumps of admixture remain.
 スラリーを製造するために用いる混和材料は、粉末状の混和材料であれば、特に限定されない。混和材料は、例えば、フライアッシュ、高炉スラグ微粉末、シリカヒューム、膨張材、急硬材、急結剤、高強度用混和材、石灰石微粉末、砕石粉、スラッジ粉及び下水汚泥微粉末からなる群から選択される少なくとも1種の混和材料である。
 本発明の一実施形態における混合物生成システム1に用いられる混和材料は、好ましくは施工現場でコンクリートに添加される混和材料である。そのような混和材料には、例えば、急硬材、急結剤及び膨張材が挙げられる。
The admixture used for producing the slurry is not particularly limited as long as it is a powdered admixture. Admixture materials include, for example, fly ash, blast furnace slag fine powder, silica fume, expansive agent, quick hardwood, quick-setting agent, high strength admixture, limestone fine powder, crushed stone powder, sludge powder and sewage sludge fine powder At least one admixture selected from the group.
The admixture used in the mixture generation system 1 in one embodiment of the present invention is preferably an admixture added to concrete at a construction site. Such admixtures include, for example, quick hardwoods, quickeners and expansives.
 本発明の一実施形態における混合物生成システム1に用いられる急硬材には、例えば、カルシウムフロロアルミネート(11CaO・7AlCaF)系急硬材、非晶質カルシウムアルミネート(12CaO・7Al)系急硬材、アウイン系急硬材、アルミナセメント系急硬材、水ガラス系急硬材等が挙げられる。 For example, calcium fluoroaluminate (11CaO · 7Al 2 O 3 CaF 2 ) -based rapid hardening material, amorphous calcium aluminate (12CaO ·· 7Al 2 O 3 ) -based rapid-harding materials, auin-based rapid-harding materials, alumina cement-based rapid-harding materials, water-glass-based rapid-harding materials and the like.
 本発明の一実施形態における混合物生成システム1に用いられる急結剤には、例えば、無機塩系急結剤及びセメント鉱物系急結剤が挙げられる。無機塩系急結剤には、例えば、ナトリウムを含む炭酸塩、アルミン酸塩、ケイ酸塩、硫酸アルミニウム、ミョウバン等が挙げられる。セメント鉱物系急結剤には、例えば、カルシウムアルミネート、カルシウムサルフォアルミネート等が挙げられる。 The quick-setting agent used for the mixture production system 1 in one embodiment of the present invention includes, for example, inorganic salt-based fasting agents and cement mineral-based fasting agents. Examples of inorganic salt-based quick-setting agents include sodium-containing carbonates, aluminates, silicates, aluminum sulfate, alum and the like. Examples of cement mineral-based accelerators include calcium aluminate and calcium sulfoaluminate.
 本発明の一実施形態における混合物生成システム1に用いられる膨張材には、例えば、カルシウムサルフォアルミネート(CSA)系膨張材、石灰系膨張材、石灰-CSA系膨張材等が挙げられる。通常、アジテータ車では膨張材を均一に分散できないので、膨張材のアジテータ車への投入及びそれによる混練は禁止されている。しかし、本発明の一実施形態における混合物生成システムでは、アジテータ車へ膨張材を供給してもコンクリートに膨張材を均一に分散できる。これにより、コンクリートに膨張材を均一に分散させるためにミキサーを別途用意する必要がない。 Examples of the expansive material used in the mixture generation system 1 according to an embodiment of the present invention include calcium sulfoaluminate (CSA) -based expansive material, lime-based expansive material, lime-CSA-based expansive material, and the like. In general, since the expansion material can not be uniformly dispersed by the agitator car, the introduction of the expansion material into the agitator car and the kneading thereof are prohibited. However, in the mixture generation system according to one embodiment of the present invention, even if the expansion material is supplied to the agitator wheel, the expansion material can be uniformly dispersed in the concrete. Thus, it is not necessary to separately prepare a mixer in order to uniformly disperse the expansive material in concrete.
 スラリーを製造するために用いる液体は、コンクリートに添加できる液体であれば特に限定されない。液体は、例えば、水もしくは水を含む液体である。水を含む液体は、水以外に、例えば液体の混和材料を含んでいてもよい。液体の混和材料には、例えば、AE剤、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、収縮低減剤、耐久性改善剤、急結剤、粉じん低減剤、急硬材、凝結・硬化時間調整剤、増粘剤、分離低減剤、防水剤、防せい剤、耐寒促進剤、発泡剤、気泡剤等が挙げられる。 The liquid used to produce the slurry is not particularly limited as long as it can be added to concrete. The liquid is, for example, water or a liquid containing water. The liquid containing water may contain, for example, a liquid admixture as well as water. Liquid admixtures include, for example, AE agents, water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, fluidizers, shrinkage reducing agents, durability improving agents, accelerators, dust reducing agents For example, quick-hardening materials, setting / hardening time control agents, thickeners, separation reducing agents, waterproofing agents, anti-corrosion agents, cold resistance accelerators, foaming agents, foaming agents and the like.
 なお、本発明の一実施形態における混合物生成システムで用いられるスラリー製造手段は、粉末状の混和材料と液体とから混和材料スラリーを製造することができるものであれば、図1もしくは図2に示すスラリー製造装置10に限定されない。例えば、図6に示すモルタル連続練り装置をスラリー製造手段として使用することができる。以下、図6を参照してモルタル連続練り装置を説明する。 The slurry production means used in the mixture production system according to an embodiment of the present invention is shown in FIG. 1 or 2 as long as it can produce a slurry of admixtures from a powdered admixture and a liquid. It is not limited to the slurry manufacturing apparatus 10. For example, the mortar continuous kneading apparatus shown in FIG. 6 can be used as a slurry production means. Hereinafter, the mortar continuous kneading apparatus will be described with reference to FIG.
 図6は、モルタル連続練り装置10Cを説明するための図である。モルタル連続練り装置10Cは、モルタルを連続的に製造する装置であるが、粉末状の混和材料と液体とから混和材料スラリーを製造することもできる。モルタル連続練り装置10Cは、粉体供給部11Cとスラリー混練部12Cを備える。 FIG. 6 is a view for explaining the mortar continuous kneading device 10C. The mortar continuous kneading apparatus 10C is an apparatus for continuously producing mortar, but it is also possible to produce an admixture slurry from powdered admixture and liquid. The mortar continuous kneading device 10C includes a powder supply unit 11C and a slurry kneading unit 12C.
 粉体供給部11Cは、粉体供給スクリュー軸114Cと可変速駆動モータ116Cを有し、粉体供給スクリュー軸114Cの回転速度により混和材料の供給量を調整可能に構成されている。 The powder supply unit 11C includes a powder supply screw shaft 114C and a variable speed drive motor 116C, and is configured to be able to adjust the supply amount of the admixture by the rotation speed of the powder supply screw shaft 114C.
 粉体供給スクリュー軸114Cは、中空円筒形のケーシング113Cの内側において、軸心を中心に可変速駆動モータ116Cで回転駆動され、混和材料を軸方向に供給(移動)する。粉体供給スクリュー軸114Cは、水平軸であるのが好ましいが、傾斜していてもよい。 The powder feed screw shaft 114C is rotationally driven by the variable-speed drive motor 116C around an axial center inside the hollow cylindrical casing 113C to feed (move) the admixture material in the axial direction. The powder feed screw shaft 114C is preferably a horizontal shaft, but may be inclined.
 粉体供給スクリュー軸114Cは、排出口近傍(図で左側)に設けられた螺旋羽根114Caと、螺旋羽根114Caより上流側(図で右側)に位置し混和材料をほぐしながら螺旋羽根114Caに供給する複数の攪拌板114Cbとを有する。
 螺旋羽根114Caは、3ピッチ以上の連続螺旋羽根であり、これを囲む中空円筒管115Cとの間に、混和材料を閉じ込めて軸方向左向きに供給するようになっている。中空円筒管115Cはケーシング113C内に回転しないように固定されている。
The powder feed screw shaft 114C is located on the upstream side (right side in the figure) of the helical blade 114Ca provided in the vicinity of the discharge port (left side in the figure) and the helical blade 114Ca and feeds the helical blade 114Ca while loosening the admixture. It has a plurality of stirring plates 114Cb.
The spiral blade 114Ca is a continuous spiral blade having three or more pitches, and is configured to trap the admixture material and supply it in the axial left direction with the hollow cylindrical tube 115C surrounding it. The hollow cylindrical tube 115C is fixed in the casing 113C so as not to rotate.
 また、攪拌板114Cbは、半径方向に延びる平板又は傾斜板であり、ケーシング113Cの内側において、固まりを形成した混和材料をほぐしながら軸方向左向きに移動させて螺旋羽根114Caに均一に分散した混和材料を供給するようになっている。
 なお、攪拌板114Cbは、この構成に限定されず、螺旋羽根114Caよりピッチが大きく、所定のピッチで分割された螺旋羽根であってもよい。
Stirring plate 114Cb is a radially extending flat plate or inclined plate, and is an admixture material uniformly dispersed in spiral blade 114Ca by moving leftward in the axial direction while loosening the admixture material having formed a mass inside casing 113C. To supply.
Agitation plate 114Cb is not limited to this configuration, and may be a spiral blade having a larger pitch than that of spiral blade 114Ca and divided at a predetermined pitch.
 可変速駆動モータ116Cは、減速機付きの電動機であり、好ましくはインバータ制御され、粉体供給スクリュー軸114Cを変速可能に回転駆動する。 The variable-speed drive motor 116C is an electric motor with a reduction gear, and is preferably inverter-controlled to rotationally drive the powder supply screw shaft 114C so as to change its speed.
 上述した構成により、混和材料が固まりになって供給された場合でも、攪拌板114Cbで混和材料をほぐして均一に分散し、均一に分散した混和材料を螺旋羽根114Caに安定供給し、螺旋羽根114Caで中空円筒管115Cとの間に混和材料を閉じ込めて、回転速度にほぼ比例する供給量を供給することができる。 According to the above-described configuration, even when the mixed material is supplied as a solid, the mixed material is loosened and uniformly dispersed by the stirring plate 114Cb, and the uniformly dispersed mixed material is stably supplied to the spiral blade 114Ca, and the spiral blade 114Ca The mixing material can be confined between the hollow cylindrical tube 115C and the hollow cylindrical tube 115C to supply a supply amount substantially proportional to the rotational speed.
 粉体供給部11Cは、さらに粉体ホッパー118Cを有する。粉体ホッパー118Cは、粉体供給スクリュー軸114Cの上方に位置し、混和材料を上方から受け入れ保有する。粉体ホッパー118Cは、下端に粉体供給スクリュー軸114Cに沿って開口する矩形開口を有し、上方が幅方向に拡がっている漏斗形状であるのが好ましい。 The powder supply unit 11C further includes a powder hopper 118C. The powder hopper 118C is located above the powder feed screw shaft 114C and receives and holds the admixture from above. Preferably, the powder hopper 118C has a rectangular opening at its lower end along the powder feed screw shaft 114C, and is in the shape of a funnel having an upper portion extending in the width direction.
 スラリー混練部12Cは、スラリー混練軸124Cと可変速駆動モータ126Cを有し、スラリー混練軸124Cの回転速度により混和材料スラリーの性状を調整可能に構成されている。 The slurry kneading unit 12C has a slurry kneading shaft 124C and a variable speed drive motor 126C, and is configured to be able to adjust the property of the admixture slurry by the rotational speed of the slurry kneading shaft 124C.
 スラリー混練軸124Cは、中空円筒形のケーシング123Cの内側において、軸心を中心に可変速駆動モータ126Cで回転駆動され混和材料と液体とを混合しながら混練して混和材料スラリーを連続的に製造する。
 この図において、スラリー混練軸124Cは、混和材料と液体とを混合しながら混和材料スラリーを軸方向に移動する複数の傾斜板124Caと、隣接する2枚の傾斜板124Caの外周部を連結し軸方向に延びる複数の混練板124Cbとを有する。
 傾斜板124Caは、半径方向に延びる矩形の傾斜板であり、その傾斜面で混和材料と液体とを混合しながら混和材料スラリーを軸方向(図で左向き)に移動するようになっている。また、混練板124Cbは、軸方向に延びる平板であり、混和材料スラリーの混練を促進し、必要な混和材料スラリーの性状を得るようになっている。
The slurry kneading shaft 124C is rotationally driven by the variable-speed drive motor 126C around the axial center inside the hollow cylindrical casing 123C, and kneading is performed while mixing the admixture and the liquid to continuously produce the admixture slurry. Do.
In this figure, a slurry kneading shaft 124C connects a plurality of inclined plates 124Ca which move the admixture material slurry in the axial direction while mixing admixtures and liquid, and an outer peripheral portion of adjacent two inclined plates 124Ca. And a plurality of kneading plates 124Cb extending in the direction.
The inclined plate 124Ca is a radially extending rectangular inclined plate, and is adapted to move the admixture slurry in the axial direction (leftward in the drawing) while mixing the admixture and the liquid on its inclined surface. In addition, the kneading plate 124Cb is a flat plate extending in the axial direction, and promotes kneading of the admixture slurry to obtain the necessary admixture slurry properties.
 また、中空円筒形のケーシング123Cは、粉体供給部11Cのケーシング113Cの出口側下端に揺動軸122Cを介して連結されている。また、ケーシング123Cを傾斜した状態で固定する固定金具(図示せず)を有する。
 この構成により、スラリー混練軸124Cは、軸心が水平に対し約±30度の範囲で可変調整可能である。
 スラリー混練軸124Cを、混和材料の供給側(図で右側)が低く、混和材料スラリーの出口側(図で左側)が高くなるように、スラリー混練軸124Cの軸心を水平から約30度の範囲で調整することにより、スラリー混練軸124Cの回転速度が同一の場合でも、その傾斜角により、混和材料スラリーの移動速度及び排出速度を調整することができる。
 また、逆に混和材料スラリーの出口側(図で左側)を低くすることにより、モルタルの移動速度及び排出速度を速めたり、内部を洗浄する際に排水を円滑にしたりすることができる。
Further, the hollow cylindrical casing 123C is connected to the lower end on the outlet side of the casing 113C of the powder supply section 11C via a swing shaft 122C. Moreover, it has a fixing bracket (not shown) which fixes casing 123C in the inclined state.
With this configuration, the axis of the slurry kneading shaft 124C can be variably adjusted within a range of about ± 30 degrees with respect to the horizontal.
The axis of the slurry kneading shaft 124C is about 30 degrees from horizontal so that the slurry kneading shaft 124C is low on the supply side of the admixture (right in the figure) and high on the outlet side of the admixture slurry (left in the figure). By adjusting in the range, even when the rotational speed of the slurry kneading shaft 124C is the same, the moving speed and the discharging speed of the admixture slurry can be adjusted by the inclination angle.
Conversely, by lowering the outlet side (left side in the figure) of the admixture slurry, it is possible to increase the moving speed and discharging speed of the mortar, and to facilitate drainage when the inside is cleaned.
 可変速駆動モータ126Cは、減速機付きの電動機であり、好ましくはインバータ制御され、スラリー混練軸124Cを変速可能に回転駆動する。 The variable-speed drive motor 126C is a motor with a reduction gear, and is preferably inverter-controlled to rotationally drive the slurry kneading shaft 124C so as to change its speed.
 上述した構成により、粉体供給部11Cから供給される混和材料の供給量を適用する工事規模に応じて、変化させた場合でも、スラリー混練部12Cの回転速度の調整、及びスラリー混練軸124Cの傾斜角の調整により、混和材料の供給量に対応して混和材料スラリーの性状を調整することができる。 Even when the supply amount of the admixture supplied from the powder supply unit 11C is changed according to the construction scale to be applied, the adjustment of the rotation speed of the slurry kneading unit 12C, and the slurry kneading shaft 124C By adjusting the inclination angle, it is possible to adjust the properties of the admixture slurry in accordance with the feed of the admixture.
 モルタル連続練り装置10Cは、上述の構成を有することにより、混和材料及び液体から均一な混和材料スラリーを短時間に製造することができる。 The mortar continuous kneading apparatus 10C can produce a uniform admixture slurry from admixtures and liquids in a short time by having the above-described configuration.
 スラリー製造手段として上述のスラリー製造装置及び上述のモルタル連続練り装置が好ましく、上述のスラリー製造装置がより好ましい。しかし、混和材料及び液体から均一な混和材料スラリーを短時間に製造することができる限り、スラリー製造手段は上述のスラリー製造装置及び上述のモルタル連続練り装置に限定されない。例えば、ドラム形重力式ミキサー、傾胴形重力式ミキサー、パン形強制練りミキサー及びパグミル形強制練りミキサー等をスラリー製造手段として用いることができる。 The above-mentioned slurry production apparatus and the above-mentioned mortar continuous kneading apparatus are preferable as a slurry production means, and the above-mentioned slurry production apparatus is more preferable. However, the slurry production means is not limited to the above-mentioned slurry production apparatus and the above-mentioned mortar continuous kneading apparatus, as long as a homogeneous admixture material slurry can be produced in a short time from the admixture material and liquid. For example, a drum gravity mixer, a tilting cylinder gravity mixer, a pan type forced mixer and a pug mill type forced mixer can be used as the slurry producing means.
 本発明の一実施形態における混合物生成システムで用いられるスラリー製造手段として、市販のミキサーを用いることができる。例えば、岡三機工株式会社製のグラウトミキサー「OKZ-30」(型番)、グラウトミキサー「OKZ-50N」(型番)、グラウトミキサー「OKZ-100N」(型番)及びグラウトミキサー「OKZ-150N」(型番)等をスラリー製造手段として用いることができる。 A commercially available mixer can be used as a slurry production means used by the mixture production system in one embodiment of the present invention. For example, a grout mixer "OKZ-30" (model number), a grout mixer "OKZ-50N" (model number), a grout mixer "OKZ-100N" (model number), and a grout mixer "OKZ-150N" (manufactured by Okasan Kiko Co., Ltd.) Model number etc. can be used as a slurry production means.
 本発明の一実施形態における混合物生成システムによる効果を阻害しない範囲で、本発明の一実施形態における混合物生成システムで製造されるスラリーは、混和材料及び液体以外の材料を含んでいてもよい。
 なお、本発明の一実施形態における混合物生成システムで製造されるスラリーは、好ましくは、コンクリート、モルタル及びセメントペーストを除くものである。
To the extent that the effect of the mixture generation system in one embodiment of the present invention is not impaired, the slurry produced by the mixture generation system in one embodiment of the present invention may contain materials other than the admixture material and the liquid.
In addition, the slurry manufactured by the mixture production system in one embodiment of the present invention preferably excludes concrete, mortar and cement paste.
(混和材料供給手段)
 混和材料供給手段20はスラリー製造手段10に混和材料2を供給する。混和材料供給手段20は、例えば、図1に示す混和材料供給装置20である。図3を参照して混和材料供給装置20をさらに詳細に説明する。混和材料供給装置20は、例えば、軸心を中心に回転駆動され混和材料を軸方向に供給する粉体供給スクリュー軸24と、粉体供給スクリュー軸24を変速可能に回転駆動する可変速駆動モータ26とを有し、その回転速度により混和材料の供給量を調整する。
(Mixture supply means)
The admixture material supply means 20 supplies the admixture material 2 to the slurry production means 10. The admixture material supply means 20 is, for example, the admixture material supply device 20 shown in FIG. The admixture supply device 20 will be described in more detail with reference to FIG. For example, the admixture feed device 20 includes a powder feed screw shaft 24 rotationally driven about an axial center and feeding the admixture in the axial direction, and a variable speed drive motor rotatably driving the powder feed screw shaft 24 in a variable manner. And adjust the feed rate of the admixture by the rotation speed.
 粉体供給スクリュー軸24は、中空円筒形のケーシング23の内側において、軸心を中心に可変速駆動モータ26で回転駆動され、混和材料を軸方向に供給(移動)する。
 粉体供給スクリュー軸24は、螺旋羽根24aを有する。螺旋羽根24aは、3ピッチ以上の連続螺旋羽根であり、軸方向左向きに供給するようになっている。
  可変速駆動モータ26は、減速機付きの電動機であり、好ましくはインバータ制御され、粉体供給スクリュー軸24を変速可能に回転駆動する。
The powder feed screw shaft 24 is rotationally driven by the variable-speed drive motor 26 about an axial center inside the hollow cylindrical casing 23 to feed (move) the admixture material in the axial direction.
The powder feed screw shaft 24 has a spiral blade 24a. The spiral blade 24a is a continuous spiral blade with three or more pitches, and is supplied to the left in the axial direction.
The variable speed drive motor 26 is an electric motor with a reduction gear, and is preferably inverter-controlled to rotationally drive the powder supply screw shaft 24 so as to change its speed.
 混和材料供給装置20は、さらに粉体ホッパー28を有する。粉体ホッパー28は、粉体供給スクリュー軸24の上方に位置し、混和材料を上方から受け入れ保有する。粉体ホッパー28は、下端に粉体供給スクリュー軸24に沿って開口する矩形開口を有し、上方が幅方向に拡がっている漏斗形状であるのが好ましい。
 ホッパー28は、例えば100kg以上の内容積を有し、大型のフレキシブルコンテナ4(例えばトンパック)を吊り上げた状態で、その下端部を開口させ、大量の混和材料を上部からバッチで補給できるようになっている。なお、ホッパー28の容量は、用途に合わせて選択可能である。
The admixture feed system 20 further comprises a powder hopper 28. A powder hopper 28 is located above the powder feed screw shaft 24 and receives and holds the admixture from above. Preferably, the powder hopper 28 has a rectangular opening at its lower end along the powder feed screw shaft 24 and is in the shape of a funnel which is spread in the width direction at the top.
The hopper 28 has an internal volume of, for example, 100 kg or more, and in a state where the large flexible container 4 (for example, ton pack) is lifted, the lower end is opened so that a large amount of admixture material can be replenished in a batch from the top. It has become. The capacity of the hopper 28 can be selected according to the application.
 混和材料供給装置20は、スラリー製造手段10の最大処理量よりも混和材供給速度が大きく、スラリー製造手段10内の原料粉体1の残量を図示しないセンサで検出してON/OFFし、混和材料を間欠的に供給するようになっている。
 混和材料は、混和材料供給装置20の排出口29から排出され、スラリー製造装置10に供給される。
The admixture supply device 20 has a admixture supply rate higher than the maximum processing amount of the slurry production means 10, detects the remaining amount of the raw material powder 1 in the slurry production means 10 with a sensor not shown, and turns it on / off. The admixture is intermittently supplied.
The mixed material is discharged from the outlet 29 of the mixed material supply device 20 and supplied to the slurry manufacturing device 10.
 なお、本発明の一実施形態における混合物生成システムで用いられる混和材料供給手段は、スラリー製造手段に粉末状の混和材料を供給することができるものであれば、図1もしくは図3に示す混和材料供給装置20に限定されない。例えば、粉末状の混和材料を搬送できるベルトフィーダや粉末状の混和材料を流通できるパイプを混和材料供給手段として使用することができる。 The admixture material supply means used in the mixture generation system in one embodiment of the present invention may be the admixture material shown in FIG. 1 or 3 as long as it can supply powdered admixture material to the slurry production means. It is not limited to the supply device 20. For example, a belt feeder capable of conveying powdered admixture, or a pipe capable of circulating powdered admixture can be used as a means for feeding admixture.
(液体供給手段)
 液体供給手段30はスラリー製造手段10に液体3を供給する。液体供給手段30は、例えば、液体貯蔵手段31に貯蔵されている液体を汲み上げ、汲み上げた液体をスラリー製造手段10に送る水中ポンプ30である(図1参照)。
 なお、液体供給手段30は、スラリー製造手段10に液体3を供給することができれば、水中ポンプに限定されない。例えば、液体供給手段30は、スラリー製造手段10の上側に設けられた液体貯蔵槽であってもよい。この場合、重力を利用して、液体貯蔵槽からスラリー製造手段10に液体が供給され、液体貯蔵槽に設けられたバルブを用いてスラリー製造手段10に供給される液体の量を調整する。
 また、スラリー製造手段10に供給する液体の量を制御するために、液体供給手段30とスラリー製造手段10との間に流量計を設けてもよい。
(Liquid supply means)
The liquid supply means 30 supplies the liquid 3 to the slurry production means 10. The liquid supply means 30 is, for example, a submersible pump 30 that pumps up the liquid stored in the liquid storage means 31 and sends the pumped liquid to the slurry manufacturing means 10 (see FIG. 1).
The liquid supply means 30 is not limited to the submersible pump as long as the liquid 3 can be supplied to the slurry production means 10. For example, the liquid supply means 30 may be a liquid storage tank provided on the upper side of the slurry production means 10. In this case, gravity is used to supply the liquid from the liquid storage tank to the slurry production means 10, and the amount of liquid supplied to the slurry production means 10 is adjusted using a valve provided in the liquid storage tank.
Further, in order to control the amount of liquid supplied to the slurry production means 10, a flow meter may be provided between the liquid supply means 30 and the slurry production means 10.
(計量手段)
 計量手段40はスラリー製造手段10に供給された混和材料2の供給量及び液体3の供給量を測定する。計量手段40は、例えば、スラリー製造手段10に供給された混和材料及び液体の質量を測定するロードセル40でもよい(図1参照)。
 例えば、混和材料及び液体を供給する前のスラリー製造装置10の質量(W1)をロードセル40で測定し、その後、混和材料を供給した後のスラリー製造装置10の質量(W2)をロードセル40で測定する。これにより、スラリー製造装置10に供給した混和材料の質量(W2-W1)を算出できる。さらに、液体を供給した後のスラリー製造装置10の質量(W3)をロードセル40で測定する。これにより、スラリー製造装置10に供給した液体の質量(W3-W2)を算出することができる。なお、先に液体を供給してスラリー製造装置10の質量を測定し、その後、混和材料を供給してスラリー製造装置10の質量を測定してもよい。
 また、計量手段は、混和材料及び液体の質量を測定してもよいし、容積を測定してもよい。
 なお、計量手段40は、スラリー製造手段10に供給された混和材料の供給量及び液体の供給量を測定することができれば、ロードセル40に限定されない。例えば、計量手段は、スラリー製造手段及び混和材料供給手段の間に設けられ混和材料の供給量を測定する計量槽及びスラリー製造手段及び液体供給手段の間に設けられ液体の供給量を測定する計量槽であってもよい。
(Measure means)
The measuring means 40 measures the supply amount of the admixture 2 and the supply amount of the liquid 3 supplied to the slurry production means 10. The measuring means 40 may be, for example, a load cell 40 for measuring the mass of the admixture and liquid supplied to the slurry producing means 10 (see FIG. 1).
For example, the mass (W1) of the slurry production apparatus 10 before supplying the admixture and the liquid is measured by the load cell 40, and then the mass (W2) of the slurry production apparatus 10 after supplying the admixture is measured by the load cell 40 Do. Thereby, the mass (W2-W1) of the admixture material supplied to the slurry production apparatus 10 can be calculated. Furthermore, the mass (W3) of the slurry production apparatus 10 after supplying the liquid is measured by the load cell 40. Thereby, the mass (W3-W2) of the liquid supplied to the slurry production apparatus 10 can be calculated. Alternatively, the liquid may be supplied first to measure the mass of the slurry production apparatus 10, and then the admixture may be supplied to measure the mass of the slurry production apparatus 10.
Also, the measuring means may measure the mass of the admixture and the liquid, or may measure the volume.
The measuring unit 40 is not limited to the load cell 40 as long as it can measure the supply amount of the admixture and the supply amount of the liquid supplied to the slurry production unit 10. For example, the measuring means is provided between the slurry producing means and the miscible material feeding means, and the measuring tank for measuring the feeding amount of the miscible material and the slurry producing means and the liquid feeding means is provided. It may be a tank.
(設定手段)
 設定手段51は、スラリー製造手段10に供給される混和材料の供給量及び液体の供給量を設定する。設定手段51は、例えば、制御装置50の制御盤51である(図1参照)。
 なお、設定手段は、スラリー製造手段10に供給される混和材料の供給量及び液体の供給量を設定することができれば、制御装置50の制御盤51に限定されない。例えば、設定手段は、制御装置50とは別に設けられた、混和材料の供給量及び液体の供給量を入力し、設定するための設定入力装置であってもよい。
(Setting means)
The setting unit 51 sets the supply amount of the admixture and the supply amount of the liquid supplied to the slurry production unit 10. The setting means 51 is, for example, a control panel 51 of the control device 50 (see FIG. 1).
The setting unit is not limited to the control panel 51 of the control device 50 as long as the supply amount of the admixture to be supplied to the slurry production unit 10 and the supply amount of the liquid can be set. For example, the setting means may be a setting input device provided separately from the control device 50 for inputting and setting the supply amount of the admixture and the supply amount of the liquid.
(制御手段)
 制御手段50は、スラリー製造手段10への混和材料2の供給量及び液体3の供給量が、設定手段50により設定された設定供給量になるように、混和材料供給手段20によって供給される混和材料2の供給量及び液体供給手段30によって供給される液体3の供給量を制御する。制御手段50は、例えば、図1に示す制御装置50である。制御装置50は、例えば、マイクロプロセッサおよびその周辺回路を有し、RAMを作業エリアとしてROMに格納された制御プログラムを実行して各種の制御を行う。制御装置50は、例えば、以下のようにして混和材料の供給量及び液体の供給量を制御する。
(Control means)
The control means 50 mixes the mixed material supplied by the mixed material supply means 20 so that the supply amount of the mixed material 2 to the slurry production means 10 and the supplied amount of the liquid 3 become the set supply amount set by the setting means 50. The supply amount of the material 2 and the supply amount of the liquid 3 supplied by the liquid supply means 30 are controlled. The control means 50 is, for example, the control device 50 shown in FIG. The control device 50 has, for example, a microprocessor and its peripheral circuits, executes a control program stored in the ROM using the RAM as a work area, and performs various controls. The controller 50 controls, for example, the supply amount of the admixture and the supply amount of the liquid as follows.
 まず、液体のみをスラリー製造装置10に供給する。不図示の流量計によってスラリー製造装置10への液体の流量を測定するとともに、ロードセル40を用いてスラリー製造装置10に供給された液体の質量を測定する。この操作をスラリー製造装置10への液体の流量を変えて行う。そして、流量計によって測定された液体の流量の測定結果及びロードセル40によって測定されたスラリー製造装置10への液体の供給量の測定結果を用いて、流量計によって測定される液体の流量と、スラリー製造装置10に供給される実際の液体の供給量との関係を調べる。すなわち、液体のキャリブレーションを行う。 First, only the liquid is supplied to the slurry production apparatus 10. The flow rate of the liquid to the slurry production apparatus 10 is measured by a flow meter (not shown), and the mass of the liquid supplied to the slurry production apparatus 10 is measured using the load cell 40. This operation is performed by changing the flow rate of the liquid to the slurry production apparatus 10. Then, using the measurement result of the flow rate of the liquid measured by the flow meter and the measurement result of the supply amount of the liquid to the slurry manufacturing apparatus 10 measured by the load cell 40, the flow rate of the liquid measured by the flow meter The relationship with the actual supply amount of liquid supplied to the manufacturing apparatus 10 is examined. That is, calibration of the liquid is performed.
 次に、混和材料のみをスラリー製造装置10に供給する。そして、ロードセル40を用いてスラリー製造装置10に供給される混和材料の供給量を測定し、可変速駆動モータ26のインバータ周波数とスラリー製造装置10に供給される混和材料の供給量との関係を調べる。すなわち、混和材料のキャリブレーションを行う。 Next, only the admixture material is supplied to the slurry production apparatus 10. Then, the supply amount of the admixture supplied to the slurry manufacturing apparatus 10 is measured using the load cell 40, and the relationship between the inverter frequency of the variable speed drive motor 26 and the supply of the admixture supplied to the slurry manufacturing apparatus 10 Examine. That is, calibration of the admixture is performed.
 そして、制御装置50は、流量計によって測定される液体の流量が設定手段50により設定された設定供給量に対応する流量になるように、水中ポンプ30の液体を汲み上げる量を制御する。さらに、制御装置50は、混和材料供給装置30の可変速駆動モータ26のインバータ周波数が設定手段50により設定された設定供給量に対応するインバータ周波数になるように、可変速駆動モータ26のインバータ周波数を制御する。これにより、制御装置50は、スラリー製造装置10への混和材料の供給量及び液体の供給量が、設定手段50により設定された設定供給量になるように、混和材料供給装置20によって供給される混和材料の供給量及び水中ポンプ30によって供給される液体の供給量を制御することができる。 Then, the control device 50 controls the amount by which the liquid in the submersible pump 30 is pumped up so that the flow rate of the liquid measured by the flow meter becomes the flow rate corresponding to the set supply amount set by the setting means 50. Furthermore, the controller 50 controls the inverter frequency of the variable-speed drive motor 26 so that the inverter frequency of the variable-speed drive motor 26 of the admixture supply device 30 becomes the inverter frequency corresponding to the set supply amount set by the setting unit 50. Control. Thereby, the control device 50 is supplied by the admixture material supply device 20 so that the supply amount of the admixture material to the slurry manufacturing device 10 and the supply amount of the liquid become the set supply amount set by the setting means 50. The feed rate of the admixture and the feed rate of the liquid fed by the submersible pump 30 can be controlled.
 以上のように、混和材料の供給量及び液体の供給量を制御することにより、制御手段50によって設定供給量になるように制御された混和材料の供給量の変動幅を3質量%以下にすることができ、好ましくは2質量%以下にすることができる。さらに、制御手段50によって設定供給量になるように制御された液体の供給量の変動幅を2質量%以下にすることができ、好ましくは1質量%以下にすることができる。 As described above, by controlling the supply amount of the mixing material and the supply amount of the liquid, the fluctuation range of the supply amount of the mixing material controlled to be the set supply amount by the control means 50 is 3% by mass or less And preferably less than 2% by weight. Furthermore, the fluctuation range of the liquid supply amount controlled to be the set supply amount by the control means 50 can be 2 mass% or less, preferably 1 mass% or less.
 なお、制御手段50によって設定供給量になるように制御された混和材料の供給量の変動幅を3質量%以下にすることができ、制御手段50によって設定供給量になるように制御された液体の供給量の変動幅を2質量%以下にすることができる制御方法であれば、制御手段の制御方法は上述のキャリブレーションによる制御方法に限定されない。例えば、実際に混和材料の供給量及び液体の供給量を測定しながら、混和材料の供給量及び液体の供給量が、設定された設定供給量になるように、混和材料の供給量及び液体の供給量を制御するようにしてもよい。この場合、まずは液体のみを、計量手段40を用いて液体の供給量を測定しながらスラリー製造手段10に供給し、液体の供給量が設定供給量に達したとき、液体の供給を止める。次に、混和材料のみを、液体を供給し、計量手段40を用いて混和材料の供給量を測定しながらスラリー製造手段10に供給し、混和材料の供給量が設定供給量に達したとき、混和材料の供給を止める。そして、混和材料及び液体の混合を開始する。なお、この場合、最初に混和材料を供給し、その後、液体を供給するようにしてもよい。 The fluctuation range of the supply amount of the miscible material controlled to be the set supply amount by the control means 50 can be 3% by mass or less, and the liquid controlled to be the set supply amount by the control means 50 The control method of the control means is not limited to the control method by the calibration described above as long as the fluctuation range of the supply amount can be made 2 mass% or less. For example, while actually measuring the supply amount of the mixing material and the supply amount of the liquid, the supply amount of the mixing material and the liquid of the mixing material so that the supply amount of the mixing material and the supply amount of the liquid become the set supply amount. The supply amount may be controlled. In this case, first, only the liquid is supplied to the slurry producing means 10 while measuring the supply amount of the liquid using the measuring means 40, and the supply of the liquid is stopped when the supply amount of the liquid reaches the set supply amount. Next, only the admixture is supplied to the slurry production means 10 while supplying the liquid and measuring the feed of the admixture using the measuring means 40, and when the feed of the admixture reaches the set feed, Stop the supply of admixtures. Then, mixing of the admixture and the liquid is started. In this case, the admixture may be supplied first, and then the liquid may be supplied.
(圧送手段)
 圧送手段60は、スラリー製造手段10により製造された混和材料スラリー4を圧送ホース61に供給する。圧送手段60は、例えば、圧送ポンプ60である(図1参照)。圧送ポンプ60は、スラリー製造装置10で製造したスラリーを、圧送ホース61を介して例えば50~100m離れたコンクリート搬送手段70まで供給することができる。これにより、スラリー製造手段10とコンクリート搬送手段70との間の距離が大きくても、スラリー製造手段10によって製造した混和材料スラリーをコンクリート搬送手段70の貯蔵・攪拌機構71に供給することができる。
(Pumping means)
The pumping means 60 supplies the admixture material slurry 4 produced by the slurry production means 10 to the pumping hose 61. The pumping means 60 is, for example, a pumping pump 60 (see FIG. 1). The pressure feed pump 60 can supply the slurry produced by the slurry production apparatus 10 to the concrete conveyance means 70 separated by, for example, 50 to 100 m via the pressure feed hose 61. Thereby, even if the distance between the slurry production means 10 and the concrete conveyance means 70 is large, the admixture material slurry produced by the slurry production means 10 can be supplied to the storage and stirring mechanism 71 of the concrete conveyance means 70.
 スラリー製造装置10で製造したスラリーは、無圧又は低圧であるので、圧送ポンプ60は、圧送ホース61を介して遠隔地まで供給するに十分な加圧能力を必要とする。なお、かかる圧送ポンプ60として、例えば、周知のスネークポンプを用いることができる。
 圧送手段は、スラリー製造手段により製造された混和材料スラリーを圧送ホースに供給することができれば、圧送ポンプ60に限定されない。例えば、圧送手段は、ピストン式ポンプ又はスクイズ式ポンプであってもよい。
Since the slurry produced by the slurry production apparatus 10 is pressureless or low pressure, the pressure pump 60 needs a pressure capacity sufficient to be supplied to a remote place via the pressure feed hose 61. For example, a known snake pump can be used as the pressure feed pump 60.
The pumping means is not limited to the pumping pump 60 as long as the admixture slurry produced by the slurry production means can be supplied to the pumping hose. For example, the pumping means may be a piston pump or a squeeze pump.
(コンクリート搬送手段)
 コンクリート搬送手段70はコンクリートを貯蔵・攪拌する貯蔵・攪拌機構71を有する。コンクリート搬送手段70は、例えばアジテータ車70である(図1参照)。アジテータ車70は、コンクリートを貯蔵・攪拌するミキサードラム71を有する。ミキサードラム71は内部に螺旋状のブレードを備え、ミキサードラム71が回転すると、ミキサードラム71に貯蔵されているコンクリートが攪拌される。
 なお、コンクリート搬送手段は、コンクリートを貯蔵・攪拌する貯蔵・攪拌機構71を有するものであれば、アジテータ車70に限定されない。例えば、コンクリート搬送手段は、トラックミキサーであってもよい。
(Concrete transport means)
The concrete transport means 70 has a storage and stirring mechanism 71 for storing and stirring concrete. The concrete transport means 70 is, for example, an agitator car 70 (see FIG. 1). The agitator wheel 70 has a mixer drum 71 for storing and stirring concrete. The mixer drum 71 is internally provided with a spiral blade, and when the mixer drum 71 rotates, the concrete stored in the mixer drum 71 is agitated.
The concrete conveyance means is not limited to the agitator vehicle 70 as long as it has a storage and stirring mechanism 71 for storing and stirring concrete. For example, the concrete transport means may be a track mixer.
 上述したように、混和材料スラリーは、圧送ホース61を通じて貯蔵・攪拌機構71に供給される。これにより、貯蔵・攪拌機構71の攪拌機能を実行することにより、混和材料スラリーを、貯蔵・攪拌機構71に貯蔵されているコンクリートと均一に混合させることができる。 As described above, the admixture slurry is supplied to the storage and agitation mechanism 71 through the pressure feed hose 61. Thus, by executing the stirring function of the storage and stirring mechanism 71, the admixture material slurry can be uniformly mixed with the concrete stored in the storage and stirring mechanism 71.
 本発明の一実施形態における混合物生成システム1によれば、スラリー製造手段10に液体もしくは混和材料を供給してから、貯蔵・攪拌機構71に混和材料スラリーを供給するまでの時間を、好ましくは7分以内に、より好ましくは5分以内にすることができる。これにより、コンクリート搬送手段が施工現場に到着してから、コンクリートの荷卸しまでの時間を短くすることができ、コンクリートの運搬を効率的に行うことができる。 According to the mixture generation system 1 in one embodiment of the present invention, it is preferable that the time from supply of the liquid or admixture to the slurry production means 10 to supply of the admixture slurry to the storage and agitation mechanism 71 is preferably 7 Within minutes, more preferably within 5 minutes. Thereby, after concrete conveyance means arrives at a construction site, time to unloading of concrete can be shortened, and conveyance of concrete can be performed efficiently.
 本発明の一実施形態における混合物生成システム1を以下のように変形することができる。 The mixture production system 1 in an embodiment of the present invention can be modified as follows.
(変形例1)
 図4に示すように、本発明の一実施形態における混合物生成システム1の変形例1における混合物生成システム1Aは、遅延剤水5を貯蔵する遅延剤水貯蔵手段150と、遅延剤水5を遅延剤水圧送ホース161に供給する遅延剤水圧送手段160をさらに有し、混合物をコンクリート搬送手段70から排出した後、遅延剤水圧送手段160を用いて遅延剤水圧送ホース161を通じて遅延剤水5を貯蔵・攪拌機構71に供給し、貯蔵・攪拌機構71は、遅延剤水5によって洗浄されるようにしてもよい。これにより、貯蔵・攪拌機構71に残留しているコンクリートの凝結を抑制しながら、貯蔵・攪拌機構71を洗浄することができるので、貯蔵・攪拌機構71をきれいに洗浄することができる。また、貯蔵・攪拌機構71からコンクリートを排出した後、速やかに貯蔵・攪拌機構71の洗浄を開始できるので、この点からも貯蔵・攪拌機構71をきれいに洗浄することができる。
(Modification 1)
As shown in FIG. 4, the mixture generation system 1A in the first modification of the mixture generation system 1 according to the embodiment of the present invention includes a retarder water storage unit 150 for storing the retarder water 5 and the retarder water 5. After further discharging the mixture from the concrete conveying means 70, the apparatus further comprises a retarder water pressure feeding means 160 for feeding the agent water pressure feeding hose 161, and then using the delaying agent water pressure feeding means 160, the delaying agent water 5 May be supplied to the storage and agitation mechanism 71, and the storage and agitation mechanism 71 may be cleaned by the retarder water 5. Thus, the storage and agitation mechanism 71 can be cleaned while suppressing the setting of concrete remaining in the storage and agitation mechanism 71, so that the storage and agitation mechanism 71 can be cleaned cleanly. In addition, since cleaning of the storage and stirring mechanism 71 can be started promptly after discharging the concrete from the storage and stirring mechanism 71, the storage and stirring mechanism 71 can be cleanly cleaned also from this point.
<遅延剤水貯蔵手段>
 遅延剤水貯蔵手段150は遅延剤水5を貯蔵する。遅延剤水貯蔵手段150は、例えば、遅延剤水貯蔵タンク150である(図4参照)。
 なお、遅延剤水貯蔵手段は遅延剤水を貯蔵することができれば、遅延剤水貯蔵タンク150に限定されない。
 また、遅延剤水貯蔵手段150から後述の遅延剤水圧送手段160に遅延剤水を供給するために、遅延剤水貯蔵手段150は、水中ポンプ等の遅延剤水供給手段151を備えていてもよい。
<Retardant Water Storage Means>
The retarder water storage means 150 stores the retarder water 5. The retarder water storage means 150 is, for example, a retarder water storage tank 150 (see FIG. 4).
The retarder water storage means is not limited to the retarder water storage tank 150 as long as it can store the retarder water.
Moreover, in order to supply retarder water from retarder water storage means 150 to retarder water pressure feeding means 160 described later, retarder water storage means 150 may be provided with retarder water supply means 151 such as a submersible pump. Good.
<遅延剤水>
 遅延剤水5は遅延剤を含む水である。遅延剤水5に用いられる遅延剤には、例えば、無機系遅延剤及び有機系遅延剤が挙げられる。無機系遅延剤には、例えば、リン酸塩、ケイフッ化物、ケイフッ化物塩とリン酸塩との複合物、水酸化銅、ホウ酸、酸化亜鉛、塩化亜鉛、炭酸化亜鉛と酸化鉛との混合物、炭酸銅と尿素の混合物等が挙げられる。また、有機系遅延剤には、例えば、オキシカルボン酸類及びその塩、ケトカルボン酸類、アルドース酸、ウロン酸類、ケトース酸類、糖類、糖アルコール類、セルロール誘導体並びに、ポリビニールアルコール等の水溶性高分子類等が挙げられる。
<Retardant water>
The retarder water 5 is water containing a retarder. Examples of the retarder used for the retarder water 5 include inorganic retarders and organic retarders. Inorganic retarders, for example, phosphates, silicofluorides, complexes of silicofluorides and phosphates, copper hydroxide, boric acid, zinc oxide, zinc chloride, mixtures of zinc carbonate and lead oxide And mixtures of copper carbonate and urea. Further, organic retarders include, for example, oxycarboxylic acids and salts thereof, ketocarboxylic acids, aldose acids, uronic acids, ketose acids, saccharides, sugar alcohols, cellulose derivatives, water-soluble polymers such as polyvinyl alcohol and the like Etc.
<遅延剤水圧送手段>
 遅延剤水圧送手段160は、遅延剤水5を遅延剤水圧送ホース161に供給する。遅延剤水圧送手段160は、例えば、圧送ポンプ160である(図4参照)。圧送ポンプ160は、遅延剤水貯蔵タンク150に貯蔵されている遅延剤水を、遅延剤水圧送ホース161を介して例えば50~100m離れたコンクリート搬送手段70まで供給する。これにより、スラリー製造手段10とコンクリート搬送手段70との間の距離が多少大きくても、コンクリート搬送手段70の貯蔵・攪拌機構71をきれいに洗浄することができる。
  遅延剤水貯蔵タンク150に貯蔵されている遅延剤水は、無圧又は低圧であるので、圧送ポンプ160は、圧送ホース161を介して遠隔地まで供給するに十分な加圧能力を必要とする。なお、かかる圧送ポンプ160として、例えば、周知のスネークポンプを用いることができる。
 なお、遅延剤水圧送手段は、遅延剤水貯蔵タンク150に貯蔵されている遅延剤水を圧送ホースに供給することができれば、圧送ポンプ160に限定されない。例えば、遅延剤水圧送手段は、ピストン式ポンプ又はスクイズ式ポンプであってもよい。
 また、圧送手段60を遅延剤水圧送手段160として用いてもよい。
<Retardant pressure feed means>
The retarder water pressure feeding means 160 supplies the retarder water 5 to the retarder water pressure feed hose 161. The retarder water pressure feeding means 160 is, for example, a pressure feeding pump 160 (see FIG. 4). The pressure pump 160 supplies retarder water stored in the retarder water storage tank 150 to the concrete conveyance means 70 separated by, for example, 50 to 100 m via the retarder water pressure feed hose 161. Thereby, even if the distance between the slurry production means 10 and the concrete conveyance means 70 is somewhat large, the storage and stirring mechanism 71 of the concrete conveyance means 70 can be cleaned cleanly.
Since the retarder water stored in the retarder water storage tank 150 is pressureless or low pressure, the pressure pump 160 needs sufficient pressurizing ability to be supplied to a remote place via the pressure hose 161. . Note that, for example, a known snake pump can be used as the pressure feed pump 160.
The retarder water pressure feeding means is not limited to the pressure feed pump 160 as long as the delay agent water stored in the delay agent water storage tank 150 can be supplied to the pressure feed hose. For example, the retarder water pressure delivery means may be a piston pump or a squeeze pump.
Also, the pumping means 60 may be used as the retarder water pressure feeding means 160.
 図4に示すように圧送ホースの先端に遅延剤水吹付機162を設けてもよい。これにより、貯蔵・攪拌機構71の内部に遅延剤水を勢いよく吹き付けることができるので、貯蔵・攪拌機構71をよりきれいに洗浄することができる。なお、遅延剤水吹付機162は、不図示のノズルにより、圧送ホース161から供給された遅延剤水と圧縮空気とを混合し、遅延剤水と圧縮空気との混合物を噴射する。
 また、図4では、遅延剤水吹付機162を人間が操作しているが、自動的、機械的に操作することもできる。
As shown in FIG. 4, a retarder water sprayer 162 may be provided at the end of the pressure-feed hose. As a result, since the retarder water can be vigorously sprayed to the inside of the storage and stirring mechanism 71, the storage and stirring mechanism 71 can be cleaned more cleanly. In addition, the retarder water spray machine 162 mixes the retarder water and compressed air which were supplied from the pumping hose 161 by the nozzle not shown, and injects the mixture of retarder water and compressed air.
Moreover, in FIG. 4, although the human is operating the retarder water spray machine 162, it can also operate mechanically and automatically.
(変形例2)
 図5に示すように、本発明の一実施形態における混合物生成システム1の変形例2における混合物生成システム1Bは、液体を貯蔵する液体貯蔵手段31と、制御手段50が駆動するための電力を供給する電力供給手段170とをさらに有し、コンクリート搬送手段70以外の手段は、同一の移動台車200上に搭載されているようにしてもよい。これにより、混合物生成システム1Bの主要手段を容易に搬送でき、混合物生成システム1Bのフレキシビリティを高めることができる。
(Modification 2)
As shown in FIG. 5, a mixture generation system 1B according to a second modification of the mixture generation system 1 according to an embodiment of the present invention supplies the liquid storage means 31 for storing liquid and the power for driving the control means 50. In addition, the means other than the concrete conveyance means 70 may be mounted on the same movable carriage 200. Thus, the main means of the mixture generation system 1B can be easily transported, and the flexibility of the mixture generation system 1B can be enhanced.
 移動台車200はこの例では、トラック200であるがトレーラでも単なる台車でもよい。
  この図において、移動台車200は、その上にスラリー製造手段10、混和材料供給手段20、液体供給手段30、液体貯蔵手段31、計量手段40、制御手段50、遅延剤水貯蔵手段150及び電力供給手段170を搭載する。
 なお、混合物生成システムを構成する手段のうち、コンクリート搬送手段以外のものの全てを同一の移動台車200上に搭載してもよいし、混合物生成システムを構成する手段のうち、コンクリート搬送手段以外のものの一部を同一の移動台車200上に搭載してもよい。
The moving carriage 200 is a truck 200 in this example, but it may be a trailer or a simple carriage.
In this figure, the movable carriage 200 has thereon slurry producing means 10, admixture material supplying means 20, liquid supply means 30, liquid storage means 31, measuring means 40, control means 50, retarder water storage means 150 and power supply. The means 170 is mounted.
Of the means constituting the mixture generation system, all of the means other than the concrete conveyance means may be mounted on the same movable carriage 200, and of the means constituting the mixture generation system other than the concrete conveyance means A part may be mounted on the same movable carriage 200.
  液体貯蔵手段は、液体を貯蔵することができれば、図1及び図5に示す液体貯蔵手段31に限定されない。
 電力供給手段170は、制御手段50が駆動するための電力を供給することができれば、発電機であってもよいし、電池であってもよい。
The liquid storage means is not limited to the liquid storage means 31 shown in FIGS. 1 and 5 as long as it can store liquid.
The power supply unit 170 may be a generator or a battery as long as it can supply power for driving the control unit 50.
  以上の説明はあくまで一例であり、本発明は、上記の実施形態に何ら限定されるものではない。 The above description is merely an example, and the present invention is not limited to the above embodiment.
 以下、実施例、比較例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be more specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.
(評価1)
 図1に示す本発明の一実施形態の混合物生成システム1を用いて粉体および水を自動的にスラリー製造装置へ輸送する際の定量性を確認するため、実際に輸送された粉体および水の質量を測定した。なお、スラリー製造装置に供給された粉体の質量をロードセルにより検出することにより、粉体の供給を制御した。また、スラリー製造装置に供給された水の質量をロードセルにより検出することにより、水の供給を制御した。粉体には以下に記す粉体1~8を、水には通常の水道水を用いた。それぞれ3回の測定を行い、標準偏差を求め、それを3回の測定値の平均で除することで変動範囲を百分率で求めた。結果を表1に記す。なお、スラリー製造手段として、岡三機工株式会社製のグラウトミキサー「OKZ-30」(型番)を用いた。
(Evaluation 1)
The powder and water actually transported in order to confirm the quantitativity at the time of automatically transporting the powder and water to the slurry production apparatus using the mixture generation system 1 according to the embodiment of the present invention shown in FIG. 1 The mass of was measured. In addition, the supply of powder was controlled by detecting the mass of the powder supplied to the slurry manufacturing apparatus using a load cell. Moreover, the supply of water was controlled by detecting the mass of the water supplied to the slurry production apparatus using a load cell. The powders 1 to 8 described below were used as the powder, and normal tap water was used as the water. Each measurement was performed 3 times, the standard deviation was determined, and it was divided by the average of 3 measurements to determine the variation range as a percentage. The results are shown in Table 1. A grout mixer “OKZ-30” (model number) manufactured by Okasan Kiko Co., Ltd. was used as a slurry production means.
<使用材料>
(1)粉体1~8
粉体1:水酸化カルシウム、市販品、300μm残分1%未満、100μm残分が5%
粉体2:炭酸カルシウム、市販品、ブレーン比表面積4,000cm/g
粉体3:カルシウムアルミネート系化合物、CaO・Alを主体とするアルミナセメント1号。ブレーン比表面積5,000cm/g
粉体4:カルシウムサルフォアルミネート化合物、CaO原料とCaSO原料を含む配合物を熱処理して生成するコンクリート用膨張材、市販品、ブレーン比表面積3,600cm/g
粉体5:カルシウムシリケート化合物、試薬1級の炭酸カルシウムとSiOから合成した3CaO・SiO。ブレーン比表面積3,000cm/g
粉体6:ポルトランドセメント、市販品
粉体7:カルシウムサルフォアルミネートセメント、市販品、ブレーン比表面積4,500cm/g
粉体8:高炉スラグ、市販品
<Material used>
(1) Powder 1 to 8
Powder 1: Calcium hydroxide, commercial product, less than 1% of 300 μm residue, 5% of 100 μm residue
Powder 2: Calcium carbonate, commercial product, Blaine specific surface area 4,000 cm 2 / g
Powder 3: Alumina cement No. 1 mainly composed of calcium aluminate compound and CaO · Al 2 O 3 . Brain specific surface area 5,000 cm 2 / g
Powder 4: An expanding material for concrete, which is produced by heat treating a mixture containing a calcium sulfoaluminate compound, CaO raw material and CaSO 4 raw material, a commercial product, Blaine specific surface area 3,600 cm 2 / g
Powder 5: calcium silicate compound, 3CaO · SiO 2 synthesized from calcium carbonate and SiO 2 of the reagent first grade. Brain specific surface area 3,000 cm 2 / g
Powder 6: Portland cement, commercial product Powder 7: calcium sulfoaluminate cement, commercial product, Blaine specific surface area 4,500 cm 2 / g
Powder 8: Blast furnace slag, commercial item
<混和材料供給装置>
ケーシングの内径:250mm
ケーシングの長さ:2000mm
粉体供給スクリュー軸における螺旋羽根のピッチ数:10
可変速駆動モータのインバータ周波数:60Hz
<Mixture supply system>
Inner diameter of casing: 250 mm
Casing length: 2000 mm
Number of helical blade pitches in powder feed screw shaft: 10
Inverter frequency of variable speed drive motor: 60Hz
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の一実施形態の混合物生成システム1を用いた場合、スラリー製造装置に供給される粉体及び液体の計量値変動範囲が、液体で2質量%以下、好ましくは1質量%以下となり、粉体で3質量%以下、好ましくは2質量%となり、定量性が確保できることがわかった。 From Table 1, when the mixture production system 1 according to one embodiment of the present invention is used, the fluctuation range of measured value of powder and liquid supplied to the slurry production apparatus is 2 mass% or less, preferably 1 mass% in liquid. It became as follows, and it became 3 mass% or less with a powder, Preferably it became 2 mass%, and it turned out that quantitative efficiency is securable.
(評価2)
 本発明の一実施形態の混合物生成システム1を用いて粉体と液体とを供給してから20リットルのスラリーを完成させるまでの時間(攪拌時間)を変えてバッチ式でスラリーを製造し、製造したスラリー性状を確認した。水粉体比はいずれも50%とし、攪拌時間を30秒、60秒、90秒、120秒とした。攪拌後のスラリーを5mm篩に通すことにより、スラリー中に分散しきれていない粉体のダマが存在するかを確認した。結果を表2に記す。なお、スラリー製造手段として、岡三機工株式会社製のグラウトミキサー「OKZ-30」(型番)を用いた。
(Evaluation 2)
The slurry is manufactured and manufactured batchwise by changing the time (stirring time) from the supply of powder and liquid using the mixture generation system 1 according to one embodiment of the present invention to the completion of the 20-liter slurry The slurry properties were confirmed. The water powder ratio was 50% in all cases, and the stirring time was 30 seconds, 60 seconds, 90 seconds, and 120 seconds. By passing the stirred slurry through a 5 mm sieve, it was confirmed whether or not a powdery lump not completely dispersed in the slurry was present. The results are shown in Table 2. A grout mixer “OKZ-30” (model number) manufactured by Okasan Kiko Co., Ltd. was used as a slurry production means.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明のスラリー添加システムを用いることで、いずれの材料を用いた場合でもダマのないスラリーを120秒以内に製造できることがわかった。 From Table 2, it was found that by using the slurry addition system of the present invention, a slurry without lumps can be produced within 120 seconds regardless of which material is used.
(評価3)
 本発明の一実施形態の混合物生成システム1を用いてバッチ式でスラリーを製造し、スラリー製造装置に粉体を供給してから、アジテータ車にスラリーを供給するまでに掛かる時間を計測した。粉体には粉体1及び粉体3を用い、液体は水道水とし、スラリーの水粉体比はいずれも50%、攪拌時間を120秒としてスラリーを製造した。圧送距離は10mであった。結果を表3に記す。なお、スラリー製造手段として、岡三機工株式会社製のグラウトミキサー「OKZ-30」(型番)を用いた。
(Evaluation 3)
Slurry was manufactured by a batch system using the mixture production system 1 of one embodiment of the present invention, and after supplying powder to the slurry manufacturing apparatus, the time taken to supply the slurry to the agitator wheel was measured. Powders 1 and 3 were used as the powder, the liquid was tap water, the slurry was 50% in all, and the slurry was manufactured with a stirring time of 120 seconds. The pumping distance was 10 m. The results are shown in Table 3. A grout mixer “OKZ-30” (model number) manufactured by Okasan Kiko Co., Ltd. was used as a slurry production means.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明の一実施形態の混合物生成システム1を用いることで、いずれの粉体を用いた場合でも、スラリー製造装置に粉体を供給してから5分以内にスラリーをアジテータ車に供給できることがわかった。 From Table 3, by using the mixture generation system 1 according to the embodiment of the present invention, the slurry can be applied to the agitator car within 5 minutes after supplying the powder to the slurry production apparatus, regardless of which powder is used. It turned out that it can supply.
(評価4)
 セメント288kg/m、水/結合材比55.0%、空気量4.5±1.5容量%の普通コンクリートを生コンクリート工場にて調製し、容量5mのアジテータ車に2mまたは4m積載し、30分間運搬した。その後、本発明の一実施形態の混合物生成システム1を用いて粉体4の膨張材を水粉体比55%となるように水と90秒間混合してスラリー化し、膨張材添加量が20kg/mとなるようにアジテータ車にスラリーを供給した。スラリー供給後、アジテータ車のミキサードラムを2分間高速回転させ、その後、コンクリートを排出した。排出途中のコンクリートから、排出開始直後、コンクリート積載量の1/2排出時、排出終了時の3回サンプリングを行い、コンクリート供試体を作成した。このコンクリート供試体について、圧縮強度(JIS A 1108準拠)及び長さ変化率(JIS A 6202準拠)の測定を行った。さらに硬化後のコンクリートの表面状態確認を行ない、アジテータ車のミキサードラム攪拌のみで均一に粉体4の膨張材がコンクリート中に均一に分散しているかを確認した。また、本試験においては、比較のため、粉体4の膨張材を粉体のまま20kg/mとなるようにアジテータ車に添加した場合についても試験を行なった。なお、膨張材添加前のコンクリートは、スラリー添加の場合と同一水結合材となるよう配合調整し、膨張材添加後の混合方法はスラリー添加の場合と同様とした。本試験のコンクリート配合を表4に示す。また、結果を表5に示す。なお、スラリー製造手段として、岡三機工株式会社製のグラウトミキサー「OKZ-30」(型番)を用いた。
(Evaluation 4)
Plain concrete of 288 kg / m 3 cement, water / binder ratio 55.0%, air content 4.5 ± 1.5% by volume is prepared in a fresh concrete plant, and 2 m 3 or 4 m for a 5 m 3 agitator vehicle 3 Loaded and transported for 30 minutes. Thereafter, using the mixture generation system 1 according to one embodiment of the present invention, the expansive material of the powder 4 is mixed with water for 90 seconds to have a water-powder ratio of 55% to form a slurry, and the expansive material addition amount is 20 kg / The slurry was supplied to the agitator car to be m 3 . After supplying the slurry, the mixer drum of the agitator car was rotated at high speed for 2 minutes, and then the concrete was discharged. From the concrete in the middle of discharge, immediately after the start of discharge, at the time of discharge of 1/2 of the load of concrete, and at the end of discharge, sampling was performed three times to prepare a concrete sample. The compressive strength (in accordance with JIS A 1108) and the rate of change in length (in accordance with JIS A 6202) were measured for this concrete sample. Further, the surface condition of the hardened concrete was confirmed, and it was confirmed whether the expansive material of the powder 4 was uniformly dispersed in the concrete uniformly by only stirring the mixer drum of the agitator wheel. In addition, in the present test, for comparison, the test was also performed in the case where the expansive material of the powder 4 was added to the agitator car so as to be 20 kg / m 3 as the powder as it is. The concrete prior to the addition of the expansive material was adjusted to be the same water binder as in the case of the slurry addition, and the mixing method after the addition of the expansive material was the same as the case of the slurry addition. The concrete composition of this test is shown in Table 4. Also, the results are shown in Table 5. A grout mixer “OKZ-30” (model number) manufactured by Okasan Kiko Co., Ltd. was used as a slurry production means.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5より、本発明の一実施形態の混合物生成システム1によれば、アジテータ車のドラムの回転のみで、粉末状であった混和材料をコンクリートに均一に混合できることがわかった。これにより、本発明の一実施形態の混合物生成システム1によれば、施工現場にアジテータ車で運搬されてきた生コンクリートに対し、粉体状の混和材料を効率よく混合することができることがわかった。さらに、本発明の一実施形態の混合物生成システム1によれば、高流動コンクリート、グラウト(モルタル・コンクリート)、高強度・超高強度コンクリート、高耐久性コンクリート、耐海水性コンクリート、耐酸性コンクリート、耐摩耗コンクリート、水中不分離性コンクリート、マスコンクリート、逆打ちコンクリート、吹付けコンクリート、ポーラスコンクリート等の混和材料を複合した特殊コンクリートを容易に製造できることがわかった。
 一方、本発明の一実施形態の混合物生成システム1を用いないで、粉体をそのままアジテータ車に供給した場合には、コンクリート中での分散が充分に行なわれず、一部に偏ることが確認された。これにより、粉末状の混和材料をアジテータ車に直接供給した場合、アジテータ車のドラムの回転のみでは、粉末状の混和材料をコンクリートに均一に混合できないことがわかった。このようなコンクリートを用いると、部分的・局所的な不具合が起こると考えられる。
From Table 5, according to the mixture generation system 1 of one embodiment of the present invention, it was found that the powdery admixture can be uniformly mixed with the concrete only by rotating the drum of the agitator wheel. Thereby, according to the mixture generation system 1 of one embodiment of the present invention, it turned out that powdery admixture materials can be efficiently mixed with fresh concrete transported by the agitator car to the construction site. . Furthermore, according to the mixture generation system 1 of one embodiment of the present invention, highly fluid concrete, grout (mortar / concrete), high strength / super high strength concrete, high durability concrete, seawater resistant concrete, acid resistant concrete, It turned out that it is possible to easily manufacture special concrete in which admixture materials such as abrasion resistant concrete, underwater non-separable concrete, mass concrete, reverse cast concrete, shot concrete and porous concrete are mixed.
On the other hand, when the powder is supplied to the agitator as it is without using the mixture generation system 1 according to the embodiment of the present invention, dispersion in concrete is not sufficiently performed, and it is confirmed that the dispersion is partially biased. The As a result, it was found that when the powdery admixture was supplied directly to the agitator wheel, the powdery admixture could not be uniformly mixed with the concrete only by rotating the drum of the agitator wheel. When such concrete is used, it is considered that partial and local failures occur.
1 混合物生成システム
2 粉末状の混和材料
3 液体
4 混和材料スラリー
5 遅延剤水
10 スラリー製造手段(スラリー製造装置)
10C モルタル連続練り装置
11 攪拌槽
11C 粉体供給部
12 回転軸
12C スラリー混練部
13 駆動装置
14 攪拌羽根
15 ベルト
16 吐出口
17 吐出口蓋
18 吐出シュート
20 混和材料供給手段(混和材料供給装置)
23 ケーシング
24 粉体供給スクリュー軸
24a 螺旋羽根
26 可変速駆動モータ
28 ホッパー
30 液体供給手段(水中ポンプ)
31 液体貯蔵手段
40 計量手段(ロードセル)
50 設定手段、制御手段(制御装置)
51 設定手段(制御盤)
60 圧送手段(圧送ポンプ)
61 圧送ホース
70 コンクリート搬送手段(アジテータ車)
71 貯蔵・攪拌機構(ミキサードラム)
113C ケーシング
114C 粉体供給スクリュー軸
114Ca 螺旋羽根
114Cb 攪拌板
115C 中空円筒管
116C 可変速駆動モータ
118C 粉体ホッパー
121 攪拌羽根側プーリー
122C 揺動軸
123C ケーシング
124C スラリー混練軸
124Ca 傾斜板
124Cb 混練板
126C 可変速駆動モータ
131 駆動装置側プーリー
141 中心部
142 攪拌翼
143 材料通し部
144 補助翼部
150 遅延剤水貯蔵手段(遅延剤水貯蔵タンク)
160 遅延剤水圧送手段
161 遅延剤水圧送ホース
162 遅延剤水吹付機
170 電力供給手段
200 移動台車
1 mixture formation system 2 powdery admixture 3 liquid 4 admixture slurry 5 retarder water 10 slurry production means (slurry production apparatus)
DESCRIPTION OF SYMBOLS 10C Mortar continuous kneading apparatus 11 stirring tank 11C powder supply part 12 rotating shaft 12C slurry kneading part 13 drive device 14 stirring blade 15 belt 16 discharge port 17 discharge port lid 18 discharge chute 20 admixture material supply means (mixture material supply device)
23 casing 24 powder supply screw shaft 24a spiral blade 26 variable speed drive motor 28 hopper 30 liquid supply means (submersible pump)
31 Liquid storage means 40 Measuring means (load cell)
50 Setting means, control means (control device)
51 Setting means (control board)
60 pumping means (pressure pump)
61 Pumping hose 70 Concrete transportation means (agitator car)
71 Storage and stirring mechanism (mixer drum)
113C casing 114C powder feed screw shaft 114Ca spiral blade 114Cb stirring plate 115C hollow cylindrical tube 116C variable speed drive motor 118C powder hopper 121 stirring blade side pulley 122C swinging shaft 123C casing 124C slurry kneading shaft 124Ca inclined plate 124Cb kneading plate 126C possible Variable speed drive motor 131 Drive device side pulley 141 Center portion 142 Stirring blade 143 Material passing portion 144 Auxiliary wing portion 150 Retardant water storage means (Retardant water storage tank)
160 Retardant Water Pressure Delivery Means 161 Retardant Water Pressure Delivery Hose 162 Retardant Water Sprayer 170 Power Supply Means 200 Moving Truck

Claims (9)

  1.  粉末状の混和材料と液体とから混和材料スラリーを製造するスラリー製造手段と、
     前記スラリー製造手段に前記混和材料を供給する混和材料供給手段と、
     前記スラリー製造手段に前記液体を供給する液体供給手段と、
     前記スラリー製造手段に供給された前記混和材料の供給量及び前記液体の供給量を測定する計量手段と、
     前記スラリー製造手段に供給される前記混和材料の供給量及び前記液体の供給量を設定する設定手段と、
     前記スラリー製造手段への前記混和材料の供給量及び前記液体の供給量が、前記設定手段により設定された設定供給量になるように、前記混和材料供給手段によって供給される前記混和材料の供給量及び前記液体供給手段によって供給される前記液体の供給量を制御する制御手段と、
     前記スラリー製造手段により製造された混和材料スラリーを圧送ホースに供給する圧送手段と、
     コンクリートを貯蔵・攪拌する貯蔵・攪拌機構を有するコンクリート搬送手段を有し、
     前記制御手段によって設定供給量になるように制御された前記混和材料の供給量の変動幅は3質量%以下であり、前記制御手段によって設定供給量になるように制御された前記液体の供給量の変動幅は2質量%以下であり、前記混和材料スラリーは、前記圧送ホースを通じて前記貯蔵・攪拌機構に供給されることを特徴とする、前記コンクリートと前記混和材料スラリーとの混合物を得る混合物生成システム。
    Slurry production means for producing a slurry of admixture from powdered admixture and liquid;
    Admixture material supply means for supplying the admixture material to the slurry production means;
    Liquid supply means for supplying the liquid to the slurry production means;
    Measuring means for measuring the supply amount of the admixture and the supply amount of the liquid supplied to the slurry production means;
    Setting means for setting the supply amount of the admixture and the supply amount of the liquid supplied to the slurry production means;
    The feed rate of the admixture material supplied by the admixture feed means such that the feed rate of the admixture material to the slurry production means and the feed rate of the liquid become the set feed rates set by the setting means. And control means for controlling the supply amount of the liquid supplied by the liquid supply means;
    A feeding means for feeding the mixing material slurry produced by the slurry production means to a pressure delivery hose;
    It has concrete transport means with storage and stirring mechanism to store and stir concrete,
    The fluctuation range of the supply amount of the admixture which is controlled to the set supply amount by the control means is 3 mass% or less, and the supply amount of the liquid controlled to the set supply amount by the control means The fluctuation range of 2% by mass or less, and the admixture slurry is supplied to the storage / stirring mechanism through the pumping hose, to form a mixture of the concrete and the admixture slurry. system.
  2.  前記混和材料と前記液体とを供給してから前記混和材料スラリーを完成させるまでの時間が120秒以内である請求項1に記載の混合物生成システム。 The system for producing a mixture according to claim 1, wherein the time for supplying the admixture and the liquid to completing the admixture slurry is within 120 seconds.
  3.  前記スラリー製造手段に前記混和材料を供給してから、前記貯蔵・攪拌機構に前記混和材料スラリーを供給するまでの時間が7分以内である請求項1または2に記載の混合物生成システム。 3. The mixture generation system according to claim 1, wherein a time from supplying the admixture with the slurry production means to feeding the admixture slurry into the storage and stirring mechanism is within 7 minutes.
  4.  遅延剤水を貯蔵する遅延剤水貯蔵手段と、
     遅延剤水を遅延剤水圧送ホースに供給する遅延剤水圧送手段をさらに有し、
     前記混合物を前記コンクリート搬送手段から排出した後、前記貯蔵・攪拌機構に前記遅延剤水圧送手段を用いて前記遅延剤水圧送ホースを通じて前記遅延剤水を供給し、
     前記貯蔵・攪拌機構は、前記遅延剤水によって洗浄される請求項1~3のいずれか1項に記載の混合物生成システム。
    Retarder water storage means for storing retarder water;
    The retarder water pressure feeding hose further includes a retarder water pressure feeding means for feeding the retarder water to the pressure-retarding agent hydraulic hose
    After the mixture is discharged from the concrete transport means, the retarder water is supplied to the storage and agitation mechanism through the retarder hydraulic feed hose using the retarder hydraulic feed means,
    The mixture producing system according to any one of claims 1 to 3, wherein the storage and stirring mechanism is washed with the retarder water.
  5.  前記液体を貯蔵する液体貯蔵手段と、
     前記制御手段が駆動するための電力を供給する電力供給手段をさらに有し、
     前記コンクリート搬送手段以外の手段は、同一の移動台車上に搭載されている請求項1~4のいずれか1項に記載の混合物生成システム。
    Liquid storage means for storing the liquid;
    It further comprises power supply means for supplying power for driving the control means,
    The mixture generation system according to any one of claims 1 to 4, wherein the means other than the concrete transfer means is mounted on the same movable carriage.
  6.  前記コンクリート搬送手段が、アジテータ車である請求項1~5のいずれか1項に記載の混合物生成システム。 The mixture generation system according to any one of claims 1 to 5, wherein the concrete conveyance means is an agitator.
  7.  前記混和材料供給手段は、軸心を中心に回転駆動され前記混和材料を軸方向に供給する粉体供給スクリュー軸と、前記粉体供給スクリュー軸を変速可能に回転駆動する可変速駆動モータとを有し、その回転速度により前記混和材料の供給量を調整する請求項1~6のいずれか1項に記載の混合物生成システム。 The mixing material supply means includes a powder supply screw shaft that is rotationally driven about an axial center and supplies the mixing material in the axial direction, and a variable speed drive motor that rotatably drives the powder supply screw shaft. The mixture generation system according to any one of claims 1 to 6, wherein the supply amount of the admixture is adjusted by the rotation speed thereof.
  8.  前記スラリー製造手段は、攪拌槽と、前記攪拌槽の底部に設けられ前記攪拌槽内において上下に伸びる回転軸と、前記回転軸に取り付けられた攪拌羽根とを備え、
     前記攪拌羽根は、回転軸に接続する中心部と、この中心部から径外方向に伸びる複数枚の攪拌翼を備え、
     前記攪拌翼は、前記中心部の周囲から径方向に外側に伸びており、
     前記攪拌翼の前端が後端よりも高くなるように斜めに設けられ、
     隣接する前記攪拌翼同士の間に間隔を開けて前記攪拌翼を設けることにより材料通し部が形成され、
     前記攪拌翼の径方向の先端側に前記補助翼部が固定され、
     前記補助翼部は、環状の形状、又は環状を分割した平板の形状をなしており、回転径の内外方向について、前記材料通し部の外側に設けられたものであり、かつ、前記攪拌翼の径方向の先端よりも径方向の外側に位置する部分を備えたものである請求項1~7のいずれか1項に記載の混合物生成システム。
    The slurry production means includes a stirring tank, a rotary shaft provided at the bottom of the stirring tank and extending vertically in the stirring tank, and a stirring blade attached to the rotary shaft.
    The stirring blade includes a central portion connected to the rotation shaft, and a plurality of stirring blades extending radially outward from the central portion,
    The stirring blade extends radially outward from the periphery of the central portion,
    The front end of the agitating blade is provided obliquely so that it is higher than the rear end,
    A material passage portion is formed by providing the stirring blades with an interval between the adjacent stirring blades.
    The auxiliary wing portion is fixed to the radial tip end of the stirring blade,
    The auxiliary wing portion has an annular shape or a flat plate shape obtained by dividing an annular shape, and is provided on the outer side of the material passing portion with respect to the inner and outer directions of the rotation diameter, and The mixture generation system according to any one of claims 1 to 7, comprising a portion located radially outward of the radial tip.
  9.  前記混和材料は、フライアッシュ、高炉スラグ微粉末、シリカヒューム、膨張材、急硬材、急結材、高強度用混和材、石灰石微粉末、砕石粉、スラッジ粉及び下水汚泥微粉末からなる群から選択される少なくとも1種の混和材料である請求項1~8のいずれか1項に記載の混合物生成システム。
     
     
    The admixture is a group consisting of fly ash, ground granulated blast-furnace slag, silica fume, expansive agent, quick-hardened wood, quick-set wood, admixture for high strength, limestone fine powder, crushed stone powder, sludge powder and sewage sludge fine powder. The mixture generation system according to any one of claims 1 to 8, which is at least one admixture selected from the group consisting of

PCT/JP2018/041333 2017-11-22 2018-11-07 Mixture formation system WO2019102850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019555246A JP7145171B2 (en) 2017-11-22 2018-11-07 Mixture generation system
CN201880074481.7A CN111356564A (en) 2017-11-22 2018-11-07 Mixture generating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017224137 2017-11-22
JP2017-224137 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019102850A1 true WO2019102850A1 (en) 2019-05-31

Family

ID=66631716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041333 WO2019102850A1 (en) 2017-11-22 2018-11-07 Mixture formation system

Country Status (3)

Country Link
JP (1) JP7145171B2 (en)
CN (1) CN111356564A (en)
WO (1) WO2019102850A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017360A (en) * 2019-07-23 2021-02-15 デンカ株式会社 Dust-reducing continuous mixing system
CN113789787A (en) * 2021-09-08 2021-12-14 张国青 Grouting device for hydraulic engineering construction
CN114535285A (en) * 2022-03-11 2022-05-27 湖北理工学院 Pilot plant for field in-situ stabilization and restoration of polluted farmland
JP7368680B2 (en) 2020-03-31 2023-10-25 太平洋マテリアル株式会社 Slurry supply device for powdered mixed materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112171904B (en) * 2020-10-19 2021-07-27 中启胶建集团有限公司 Concrete mixing anti-solidification device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230909A (en) * 1985-04-08 1986-10-15 石川島播磨重工業株式会社 Method of controlling concrete plant
JPH10296714A (en) * 1997-04-24 1998-11-10 Denka Grace Kk Reusing method of ready-mixed concrete sludge and device
JPH10315220A (en) * 1997-05-20 1998-12-02 Kajima Corp Apparatus for adding slurry into batcher plant
JP2002028920A (en) * 2000-07-17 2002-01-29 Sumitomo Osaka Cement Co Ltd Method and apparatus for manufacturing concrete
JP2007331265A (en) * 2006-06-15 2007-12-27 Mcm:Kk Continuous kneading apparatus for mortar and continuous kneading system using the same
JP2010058430A (en) * 2008-09-05 2010-03-18 Okasan Kiko Kk Mixer for civil engineering building material and its stirring blade

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462310B (en) * 2008-12-03 2010-06-23 徐州天地重型机械制造有限公司 Dry-mixed mortar station
CN103072206A (en) * 2011-12-31 2013-05-01 河北建设集团有限公司 Controllable wetting and stirring device and method used for asphalt concrete mixing station dust
CN102848466A (en) * 2012-03-22 2013-01-02 江苏尼高科技有限公司 Movable pre-stirred dry-mixed mortar production device
CN203092781U (en) * 2013-02-27 2013-07-31 中联重科股份有限公司 Mobile type mortar mixing plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230909A (en) * 1985-04-08 1986-10-15 石川島播磨重工業株式会社 Method of controlling concrete plant
JPH10296714A (en) * 1997-04-24 1998-11-10 Denka Grace Kk Reusing method of ready-mixed concrete sludge and device
JPH10315220A (en) * 1997-05-20 1998-12-02 Kajima Corp Apparatus for adding slurry into batcher plant
JP2002028920A (en) * 2000-07-17 2002-01-29 Sumitomo Osaka Cement Co Ltd Method and apparatus for manufacturing concrete
JP2007331265A (en) * 2006-06-15 2007-12-27 Mcm:Kk Continuous kneading apparatus for mortar and continuous kneading system using the same
JP2010058430A (en) * 2008-09-05 2010-03-18 Okasan Kiko Kk Mixer for civil engineering building material and its stirring blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017360A (en) * 2019-07-23 2021-02-15 デンカ株式会社 Dust-reducing continuous mixing system
JP7368680B2 (en) 2020-03-31 2023-10-25 太平洋マテリアル株式会社 Slurry supply device for powdered mixed materials
CN113789787A (en) * 2021-09-08 2021-12-14 张国青 Grouting device for hydraulic engineering construction
CN114535285A (en) * 2022-03-11 2022-05-27 湖北理工学院 Pilot plant for field in-situ stabilization and restoration of polluted farmland
CN114535285B (en) * 2022-03-11 2023-09-22 湖北理工学院 Contaminated farmland field in-situ stabilization repair pilot plant

Also Published As

Publication number Publication date
JPWO2019102850A1 (en) 2020-12-03
JP7145171B2 (en) 2022-09-30
CN111356564A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2019102850A1 (en) Mixture formation system
US11130714B2 (en) Post-batching CMA dosing into concrete
US3967815A (en) Dustless mixing apparatus and method for combining materials
CN107457907B (en) Improved building concrete stirring system
JP2006298662A (en) Grout composition and working method of grout slurry
CN105922449B (en) A kind of more stirring pot type concrete producing devices
JP5895625B2 (en) Mortar construction method
CN108748685A (en) A kind of ready-mixed concrete production system
CN209665846U (en) A kind of ready-mixed concrete production system
JP2009096040A (en) Continuous construction method using hydraulic mortar, and its structure
GB2098264A (en) Method and apparatus for applying mortar or concrete
JP2003191224A (en) Method and apparatus for producing ready-mixed concrete
CN116648302A (en) Device and method for producing concrete, in particular concrete with high early strength
JPH0796219B2 (en) Equipment for manufacturing raw concrete
JP5283849B2 (en) Refractory continuous kneading method, refractory continuous construction method, refractory continuous kneading device, and refractory continuous construction device
RU2701003C1 (en) Modular plant for production of mortar concrete mixtures
CN218857331U (en) Cement homogenizing and stirring device
JP3780499B2 (en) Continuous kneading method and apparatus
JP7281028B1 (en) Kneading device and kneading method
CN219882898U (en) Batching system for preparing concrete from industrial waste residues
JP3736990B2 (en) Continuous kneading equipment for powdery hydraulic materials
JPH1086133A (en) Manufacture of concrete and the like
CN108274619A (en) A kind of high-effective concrete agitating device for building
CN219726736U (en) Cement premixing device
CN207643400U (en) A kind of construction concrete mixer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881771

Country of ref document: EP

Kind code of ref document: A1