WO2014002466A1 - 電磁界測定表示装置、電磁界測定表示方法、プログラム、及び記録媒体 - Google Patents
電磁界測定表示装置、電磁界測定表示方法、プログラム、及び記録媒体 Download PDFInfo
- Publication number
- WO2014002466A1 WO2014002466A1 PCT/JP2013/003934 JP2013003934W WO2014002466A1 WO 2014002466 A1 WO2014002466 A1 WO 2014002466A1 JP 2013003934 W JP2013003934 W JP 2013003934W WO 2014002466 A1 WO2014002466 A1 WO 2014002466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- display
- magnetic field
- electromagnetic field
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
Definitions
- the present invention relates to a technique for measuring the intensity and direction of an electromagnetic field and displaying a measurement result.
- a typical portable electromagnetic field strength measuring device is a battery-powered lightweight device that displays the measured electromagnetic field strength as a digital value.
- Patent Document 1 discloses an electromagnetic field using a position of the electromagnetic field sensor identified from an image obtained by photographing a space including a portable electromagnetic field sensor with a video camera and a measurement result of the electromagnetic field sensor.
- An electromagnetic field spatial distribution visualizing device that displays the spatial distribution of the electromagnetic field is disclosed.
- the electromagnetic field strength is only displayed as a numerical value.
- the electromagnetic field spatial distribution visualization device of Patent Document 1 the electromagnetic field sensor and the display are separated from each other. Therefore, there is a problem that it is difficult for the measurer to grasp the measurement result at a glance.
- the present invention provides an electromagnetic field measurement display device suitable for a measurer to grasp measurement results at a glance.
- one aspect of the disclosed electromagnetic field measurement display device is a portable electromagnetic field measurement display device including a measurement unit and a display unit coupled together,
- the measurement unit includes a sensor that generates a plurality of AC voltages according to the strength of AC magnetic fields in different directions, and a measurement that converts the generated plurality of AC voltages into digital data representing the strength of the AC magnetic field in each direction.
- a controller that shoots the real environment, and a display that synthesizes a graphic indicating the intensity and direction of the alternating magnetic field represented by the digital data with the photographed real environment image.
- This general or specific aspect may be realized by a system, method, integrated circuit, computer program, or recording medium, and is realized by any combination of the system, method, integrated circuit, computer program, and recording medium. May be.
- the measurer since the graphic showing the intensity and direction of the measured AC magnetic field is synthesized and displayed on the image of the real environment, the measurer can The situation of the real environment and the measurement result of the alternating magnetic field can be grasped at a glance.
- FIG. 1 is a block diagram showing an example of the configuration of an electromagnetic field measurement display device according to an embodiment of the present invention.
- FIG. 2A is a perspective view showing an example of the appearance of the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 2B is a perspective view showing an example of the appearance of the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 3 is a flowchart showing an example of the operation of the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 4 is a diagram showing an example of display by the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 5A is a diagram showing an example of display by the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 5A is a diagram showing an example of display by the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 5B is a diagram showing an example of display by the electromagnetic field measurement display device according to the embodiment of the present invention.
- FIG. 6 is a diagram showing a measurement environment according to the embodiment of the present invention.
- FIG. 7A is a diagram showing an example of a measurement result according to the embodiment of the present invention.
- FIG. 7B is a diagram showing theoretical values to be measured according to the embodiment of the present invention.
- FIG. 7C is a diagram showing an example of a measurement error according to the embodiment of the present invention.
- FIG. 8 is a diagram illustrating an example of a measurement environment according to a modification of the present invention.
- FIG. 9 is a diagram showing an example of display by the electromagnetic field measurement display device according to the modification of the present invention.
- One aspect of the disclosed electromagnetic field measurement and display device is a portable electromagnetic field measurement and display device, which includes a measurement unit and a display unit that are integrally coupled, and the measurement unit has alternating current in different directions.
- a sensor that generates a plurality of alternating voltages according to the strength of the magnetic field, and a measurement controller that converts the plurality of generated alternating voltages into digital data representing the strength of the alternating magnetic field in each direction, and the display
- a camera that captures the real environment, a display controller that synthesizes a graphic indicating the intensity and direction of the alternating magnetic field represented by the digital data with the captured real environment image, and the synthesized image.
- a display for displaying includes a measurement unit and a display unit that are integrally coupled, and the measurement unit has alternating current in different directions.
- a sensor that generates a plurality of alternating voltages according to the strength of the magnetic field, and a measurement controller that converts the plurality of generated alternating voltages into digital data representing the strength of the alternating magnetic
- the measurer can determine the status of the real environment and the AC magnetic field from the display content of the display. The measurement results can be grasped at a glance.
- the distance between the sensor and the camera may be shorter than the distance between the measurement controller and the camera.
- the measurer can grasp the status of the real environment and the measurement result of the magnetic field from the display content of the display at a glance without any contradiction.
- the measurement controller converts the plurality of AC voltages into digital data representing a frequency spectrum of the intensity of the AC magnetic field in each direction, and the display controller converts the AC magnetic field represented by the digital data by a user.
- a graphic showing the intensity and direction of the component at the selected frequency may be combined with the captured image of the real environment.
- the measurer can obtain a detailed measurement result regarding the frequency component of interest of the magnetic field.
- the measurement unit is configured to be detachable from the display unit, and the measurement unit and the display unit can be arbitrarily selected from a combined state and a separated state.
- the unit further includes a transmitter that wirelessly transmits the converted digital data, and the measurement unit is visible from the outside in a state separated from the display unit, and a relative position with the sensor is fixed.
- An asymmetrical marker the display unit further includes a receiver for wirelessly receiving the transmitted digital data, and the camera has the measurement unit separated from the display unit.
- the marker is photographed together with the actual environment, and the display controller identifies the position and orientation of the marker in the photographed video by image recognition, and the identified marker of the photographed video.
- the position on the basis of the direction of the specified markers, the figure indicating the intensity and direction of the alternating magnetic field represented by the received digital data may be synthesized.
- the measurer in a state where the measurement unit and the display unit are integrally coupled, can grasp the measurement result of the magnetic field from the viewpoint of the image of the real environment, and the measurement unit In a state separated from the display unit, the measurer can grasp the measurement result of the magnetic field in the vicinity of the subject of the image in the real environment. In particular, if a plurality of measurement results are displayed along the locus of movement of the measurement unit, the measurer can grasp at a glance the distribution of the magnetic field strength and direction at a plurality of measurement points in the real environment.
- the AC magnetic field used in this specification means a magnetic field that varies with time, and is accompanied by a corresponding change in electric field.
- an alternating magnetic field and an electromagnetic field are used synonymously.
- the alternating magnetic field may be simply referred to as a magnetic field.
- FIG. 1 is a block diagram showing an example of a functional configuration of an electromagnetic field measurement display device according to an embodiment of the present invention.
- FIGS. 2A and 2B are perspective views showing an example of the appearance of the electromagnetic field measurement display device according to the embodiment of the present invention.
- the electromagnetic field measurement display device 1 is configured to be portable and includes a measurement unit 10 and a display unit 20 that are integrally coupled.
- the measuring unit 10 generates a plurality of AC voltages according to the intensity of AC magnetic fields in different directions, and converts the generated AC voltages into digital data representing the intensity of the AC magnetic field in each direction.
- the display unit 20 includes a camera 21 that captures the real environment, and a graphic showing the intensity and direction of the alternating magnetic field represented by the digital data. And a display 22 for displaying the synthesized video.
- the controllers 12 and 22 are examples of a measurement controller and a display controller, respectively.
- the actual environment refers to the surrounding space surrounding the measurement point of the alternating magnetic field.
- the transfer of the converted digital data from the measurement unit 10 to the display unit 20 may be performed wirelessly.
- the measurement unit 10 has a communication module 13 as a transmitter that wirelessly transmits the converted digital data
- the display unit 20 functions as a receiver that wirelessly receives the transmitted digital data.
- a communication module 24 may be included.
- the distance between the sensor 11 and the camera 21 is shorter than the distance between any of the controller 12 and the communication module 13 and the camera 21. That is, the sensor 11 and the camera 21 (more precisely, the lens of the sensor 11 and the camera 21) are arranged as close as possible.
- the inventors actually made a prototype of the electromagnetic field measurement display device 1 using the following members.
- the sensor 11 a three-axis magnetic sensor HMC2003 manufactured by Honeywell was used.
- the controller 12 a one-chip microcomputer dsPIC (registered trademark) 33FJ64MC802 manufactured by Microchip Technology was used.
- the communication module 13 a serial-BlueTooth (registered trademark) conversion module was used.
- the display unit 20 a portable terminal xperia (trademark) manufactured by Sony Ericsson, which operates on the Android (registered trademark) OS, was used.
- the camera 21, the controller 22, the display 23, and the communication module 24 all use members built in the portable terminal. Programs and applications suitable for the controllers 12 and 22 were respectively described, and the measurement unit 10 and the display unit 20 were operated using the programs and applications.
- a portable electromagnetic field measurement display device 1 having a size of 50 mm in length, 100 mm in width, 30 mm in height, and a mass of 84 g could be configured.
- the illustration of these members shows one possible configuration example of the electromagnetic field measurement display device 1. This illustration does not limit the configuration of the electromagnetic field measurement display device 1 or the functional sharing between hardware and software.
- FIG. 3 is a flowchart showing an example of the operation of the electromagnetic field measurement display device 1.
- the sensor 11 generates a plurality of AC voltages according to the intensity of AC magnetic fields in different directions at the current position of the sensor 11 (S11).
- the controller 12 receives the plurality of AC voltages, and AD (analog-digital) converts the received AC voltages in each direction into, for example, 10-bit / sample time-series voltage data (S12).
- the controller 12 calculates voltage spectrum data for each direction from the time-series voltage data in each direction by, for example, 1024-point FFT (Fast Fourier Transform) (S13), and further adds a predetermined voltage spectrum data to the calculated voltage spectrum data.
- the magnetic field spectrum data for each direction is calculated by multiplying by the coefficient (S14).
- the communication module 13 is controlled by the controller 12 and wirelessly transmits the converted magnetic field spectrum data in each direction (S15).
- the communication module 24 is controlled by the controller 22 and wirelessly receives the transmitted magnetic field spectrum data in each direction (S21).
- the camera 21 is controlled by the controller 22 and images the real environment (S22).
- the controller 22 synthesizes a figure representing the magnetic field information (magnetic field strength and direction) represented by the received magnetic field spectrum data in each direction into an image of the real environment captured by the camera 21 (S23).
- the display 23 is controlled by the controller 22 and displays an image of a real environment in which graphics representing magnetic field information are synthesized (S24).
- FIG. 4 is a diagram illustrating an example of display contents of the display 23 by the electromagnetic field measurement display device 1.
- the display content 30 includes an actual environment image 31, an intensity bar 32, an intensity pointer 33, a direction icon 34, and a numerical value box 35.
- the real environment image 31 is a real environment image taken by the camera 21.
- the intensity bar 32 is a gradation of a color (hue, lightness, etc.) or a pattern (hatching density, etc.) corresponding to the magnetic field intensity.
- the strength pointer 33 is a pointer that indicates the position of the strength bar 32 corresponding to the strength of the measured frequency component of the magnetic field.
- the direction icon 34 is a graphic representing the direction of the measured frequency component of the magnetic field (that is, the direction of a vector having the magnetic field strength in each direction of the frequency component as a component).
- the numerical value box 35 is a box for displaying the current value of the intensity of each frequency component of the measured magnetic field and the frequency of the frequency component as numerical values.
- the frequency component to be displayed may be a frequency component that is automatically selected (for example, a frequency component at a frequency at which the frequency spectrum of the measured magnetic field indicates the peak intensity), which will be described later.
- it may be a frequency component selected by the measurer.
- the cumulative intensity and direction of all frequency components may be displayed.
- the relative positions of the sensor 11 and the camera 21 are fixed.
- the x-axis, y-axis, and z-axis of the magnetic field measured by the sensor 11 may be associated with the width, height, and depth directions of the image captured by the camera 21. Based on such association, the direction icon 34 displays the actual direction of the measured magnetic field in the video of the real environment captured by the camera 21.
- the electromagnetic field measurement display device 1 since the sensor 11 and the camera 21 are arranged as close as possible, information on the magnetic field measured at substantially the same position as the viewpoint of the image 31 in the real environment is obtained. It is synthesized and displayed on the environment video 31. Therefore, the measurer can grasp the situation of the real environment and the measurement result of the magnetic field at a glance from the display content 30 of the display 23 without any contradiction.
- the color or pattern at the position indicated by the intensity pointer 33 of the intensity bar 32 is synthesized and displayed on the image 31 of the actual environment. May be.
- Such a display helps the measurer intuitively understand that, for example, the magnetic field strength is large if the real-world image 31 is reddish and the magnetic field strength is small if the image 31 is bluish.
- This auxiliary function displays the time waveform and frequency spectrum of the measured magnetic field strength, and enables the measurer to select the frequency component for displaying the strength and direction in the display content 30.
- FIG. 5A and FIG. 5B are diagrams showing examples of display contents on the display 23 by the auxiliary function of the electromagnetic field measurement display device 1.
- the display content 36 in FIG. 5A represents a time waveform of the measured magnetic field strength in each direction
- the display content 37 in FIG. 5B represents the measured frequency spectrum of the magnetic field in each direction.
- the measurer can select the frequency component for displaying the intensity and direction in the display content 30 by operating the spin button shown at the lower right of the display content 37.
- the switching of the display contents 30, 36, and 37 on the display 23 may be performed, for example, by the measurer operating a switching pop-up (not shown) displayed on the display 23.
- the inventors conducted an experiment to actually measure an alternating magnetic field whose strength is known in advance in order to confirm the measurement accuracy of the prototype electromagnetic field measurement display device 1.
- FIG. 6 is a diagram showing the measurement environment used in the experiment.
- an alternating current having a frequency of 58 Hz and an effective value of 300 mA is passed through a square loop coil 41 having a side of 0.45 m and a number of turns of 30 to form a known alternating magnetic field.
- the theoretical value to be measured was compared.
- the direction of the side of the loop coil 41 is defined as the x axis and the y axis, and the direction orthogonal to the x axis and the y axis is defined as the z axis.
- a plurality of measurement points 42 were set with a 0.1 m mesh on an xy plane 0.05 m away from the loop coil 41 in the z-axis direction.
- FIG. 7A is a diagram showing an example of the measurement result, and the intensity of the magnetic field measured at each measurement point 42 and the direction in the xy plane are indicated by the brightness of the circle and an arrow.
- the brightness of the circle represents the strength of the magnetic field at the corresponding brightness of the intensity bar shown on the right.
- the black thick line represents the position of the loop coil 41.
- a magnetic field having an intensity in the range of 10 to 35 dB ⁇ T was measured in the direction of the arrow shown.
- FIG. 7B is a diagram showing the theoretical value of the magnetic field to be measured.
- the magnetic field intensity to be measured at each measurement point 42 and the theoretical value of the direction in the xy plane are expressed by the same notation as in FIG. 7A. It is shown.
- FIG. 7C is a diagram showing an example of the measurement error, and the difference between the actual measured value and the theoretical value at each measurement point 42 is indicated by the brightness of the circle.
- the brightness of the circle represents the error in the corresponding brightness of the error bar shown on the right.
- the measurement error at each measurement point 42 was 0 to 6 dB.
- the configuration in which the measurement unit 10 and the display unit 20 are integrally coupled has been described.
- the measurement unit 10 and the display unit 20 are configured to be detachable.
- An electromagnetic field measurement apparatus that can arbitrarily select a state in which the display unit 20 is integrally coupled and a state in which the display unit 20 is separated can be considered.
- the electromagnetic field measurement apparatus functions in the same manner as described in the embodiment in a state where the measurement unit 10 and the display unit 20 are integrally coupled, and the measurement unit 10 and the display unit 20 are separated. In this state, the measurement unit 10 is photographed together with the actual environment by the camera 21 of the display unit 20.
- the controller 22 identifies the position and orientation of the measurement unit 10 in the captured image by image recognition, and based on the identified orientation of the measurement unit 10 at the position of the identified measurement unit 10 in the captured image. Then, a graphic showing the intensity and direction of the measured magnetic field is synthesized.
- the measurement unit 10 can be visually recognized from the outside in a state where the measurement unit 10 is separated from the display unit 20, and an asymmetrical shape with a fixed relative position to the sensor 11. You may have a marker.
- FIG. 8 is a diagram illustrating an example of a measurement environment according to the modification.
- the display unit 20 images the measurement unit 10 together with the electric stove 50 that is an electromagnetic field generation source.
- the measurement unit 10 is provided with a marker 14 having a shape in which a black regular triangle is surrounded by a square.
- the measurer may move the front surface of the electric stove 50 while holding the measurement unit 10 by hand.
- the S-shaped arrow in FIG. 8 shows an example of the movement trajectory of the measurement unit 10.
- the controller 22 of the display unit 20 detects the position and rotation of the measurement unit 10 in the video by recognizing the marker 14 in the video. Thereby, the position and orientation of the measurement unit 10 in the video are specified. Further, the controller 22 detects the inclination of the measuring unit 10 with respect to the directly facing surface of the camera 21 based on the degree of distortion of the shape of the marker 14 (deviation from the regular triangle and square), and the measuring unit based on the apparent size of the marker 14. Ten positions in the depth direction may be detected.
- the controller 22 synthesizes a graphic indicating the strength and direction of the measured magnetic field based on the posture of the specified measurement unit 10 at the position of the specified measurement unit 10 in the image of the real environment, and displays the display 23. Displays an image of the real environment in which the measurement results are combined.
- FIG. 9 is a diagram illustrating an example of display contents of the display 23 according to the modification.
- the display content 38 includes a real environment image 31, an intensity bar 32, and a magnetic field icon 39.
- the intensity bar 32 is a gradation of a color (hue, lightness, etc.) or a pattern (hatch density, etc.) corresponding to the magnetic field intensity.
- the magnetic field icon 39 is a figure in which an arrow is arranged in a square. The square is marked with a color or pattern of intensity bar 32 corresponding to the measured magnetic field strength, and the arrows indicate the direction of the measured magnetic field. Magnetic field icons 39 representing newer measurement results up to a predetermined number may be displayed along the movement trajectory of the measurement unit 10.
- the measurer can grasp the intensity and direction distribution of the magnetic field at a plurality of measurement points in the real environment at a glance from the display content 38 of the display 23.
- the present invention can be widely used for electromagnetic field measurement display devices.
- Electromagnetic field measurement display apparatus 10 Measurement part 11 Sensor 12, 22 Controller 13, 24 Communication module 14 Marker 20 Display part 21 Camera 23 Display 30, 36, 37, 38 Display content 31 Real-world image 32 Intensity bar 33 Intensity pointer 34 Direction icon 35 Numerical box 39 Magnetic field icon 41 Loop coil 42 Measuring point 50 Electric heater
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
可搬型の電磁界測定表示装置(1)は、一体に結合された測定部(10)と表示部(20)とを備え、測定部(10)は、互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成するセンサ(11)と、生成された複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換するコントローラ(12)と、を有し、表示部(20)は、実環境を撮影するカメラ(21)と、前記デジタルデータによって表される交流磁界の強度及び方向を示す図形を、前記撮影された実環境の映像に合成するコントローラ(22)と、前記合成された映像を表示するディスプレイ(23)と、を有する。
Description
本発明は、電磁界の強度及び方向を測定し測定結果を表示するための技術に関する。
従来、電磁界を測定し測定結果を表示する装置及びシステムが広く用いられている。そのような装置及びシステムは、一例として、電子機器への悪影響が懸念される非所望の電磁界の存在や大きさを調べるために利用される。
例えば、可搬型に構成された、ガウスメータ、電磁波測定器などと称される電磁界強度測定器が多数市販され、実用に供されている。典型的な可搬型の電磁界強度測定器は、バッテリ駆動される軽量の装置であり、測定結果である電磁界強度をデジタル数値で表示する。
また、例えば、特許文献1には、可搬の電磁界センサを含む空間をビデオカメラにて撮影した映像から特定した前記電磁界センサの位置と前記電磁界センサの測定結果とを用いて電磁界の空間分布を表示する、電磁界空間分布可視化装置が開示されている。
しかしながら、従来の可搬型の電磁界強度測定器では、電磁界強度が数値で表示されるのみであり、また、特許文献1の電磁界空間分布可視化装置では、電磁界センサと表示器とが離れて設けられることから、何れも測定者が測定結果を一目で把握しづらいという問題がある。
そこで、本発明は、測定者が測定結果を一目で把握するために適した電磁界測定表示装置を提供する。
上述の課題を解決するために、開示される電磁界測定表示装置の1つの態様は、可搬型の電磁界測定表示装置であって、一体に結合された測定部と表示部とを備え、前記測定部は、互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成するセンサと、前記生成された複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換する測定コントローラと、を有し、前記表示部は、実環境を撮影するカメラと、前記デジタルデータによって表される交流磁界の強度及び方向を示す図形を、前記撮影された実環境の映像に合成する表示コントローラと、前記合成された映像を表示するディスプレイと、を有する。
なお、この全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本開示に係る電磁界測定表示装置の態様によれば、測定された交流磁界の強度及び方向を示す図形が実環境の映像に合成して表示されるため、測定者は、ディスプレイの表示内容から、実環境の状況と交流磁界の測定結果とを、一目で把握することができる。
開示される電磁界測定表示装置の1つの態様は、可搬型の電磁界測定表示装置であって、一体に結合された測定部と表示部とを備え、前記測定部は、互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成するセンサと、前記生成された複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換する測定コントローラと、を有し、前記表示部は、実環境を撮影するカメラと、前記デジタルデータによって表される交流磁界の強度及び方向を示す図形を、前記撮影された実環境の映像に合成する表示コントローラと、前記合成された映像を表示するディスプレイと、を有する。
本態様によれば、測定された交流磁界の強度及び方向を示す図形が実環境の映像に合成して表示されるため、測定者は、前記ディスプレイの表示内容から、実環境の状況と交流磁界の測定結果とを、一目で把握することができる。
また、前記センサと前記カメラとの間の距離は、前記測定コントローラと前記カメラとの間の距離よりも短くてもよい。
本態様によれば、前記センサと前記カメラとが、できるだけ近づけて配置されることから、実環境の映像の視点とほぼ同一の位置で測定された磁界の情報が、実環境の映像に合成して表示される。そのため、測定者は、前記ディスプレイの表示内容から、実環境の状況と磁界の測定結果とを、一目で矛盾なく把握することができる。
また、前記測定コントローラは、前記複数の交流電圧を、各方向の交流磁界の強度の周波数スペクトルを表すデジタルデータに変換し、前記表示コントローラは、前記デジタルデータによって表される交流磁界の、ユーザによって選択される周波数における成分の強度及び方向を示す図形を、前記撮影された実環境の映像に合成してもよい。
本態様によれば、測定者は、磁界の着目する周波数成分に関する詳細な測定結果を得ることができる。
また、前記測定部は前記表示部に対して着脱自在に構成され、前記測定部と前記表示部とが一体に結合された状態と分離された状態とを任意に選択することができ、前記測定部は、さらに、前記変換されたデジタルデータを無線で送信する送信器と、前記測定部が前記表示部から分離された状態で外部から視認可能で、かつ前記センサとの相対位置が固定された非点対称形状のマーカと、を有し、前記表示部は、さらに、前記送信されたデジタルデータを無線で受信する受信器を有し、前記カメラは、前記測定部が前記表示部から分離された状態で、実環境とともに前記マーカを撮影し、前記表示コントローラは、前記撮影された映像中の前記マーカの位置及び姿勢を画像認識によって特定し、前記撮影された映像の前記特定されたマーカの位置に、前記特定されたマーカの方向に基づいて、前記受信されたデジタルデータによって表される交流磁界の強度及び方向を示す図形を合成してもよい。
本態様によれば、前記測定部と前記表示部とが一体に結合された状態で、測定者は、実環境の映像の視点における磁界の測定結果を把握できることに加えて、前記測定部が前記表示部から分離された状態で、測定者は、実環境の映像の被写体近傍における磁界の測定結果を把握することができる。特に、前記測定部の移動の軌跡に沿って複数の測定結果を表示すれば、測定者は、実環境の複数の測定点における磁界の強度及び方向の分布を、一目で把握することができる。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
以下、本発明の実施の形態に係る電磁界測定表示装置について、図面を参照しながら詳細に説明する。
なお、以下で説明する実施の形態は、本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、本明細書で使用する交流磁界とは時間とともに変動する磁界を意味し、対応する電界の変動を伴っている。本明細書では、交流磁界と電磁界とを同義で用いる。また、交流磁界を単に磁界と称することがある。
(実施の形態)
図1は、本発明の実施の形態に係る電磁界測定表示装置の機能的な構成の一例を示すブロック図である。
図1は、本発明の実施の形態に係る電磁界測定表示装置の機能的な構成の一例を示すブロック図である。
図2A、図2Bは、本発明の実施の形態に係る電磁界測定表示装置の外観の一例を示す斜視図である。
電磁界測定表示装置1は、可搬型に構成され、一体に結合された測定部10と表示部20とを備える。
測定部10は、互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成するセンサ11と、前記生成された複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換するコントローラ12と、を有し、前記表示部20は、実環境を撮影するカメラ21と、前記デジタルデータによって表される交流磁界の強度及び方向を示す図形を、前記撮影された実環境の映像に合成するコントローラ22と、前記合成された映像を表示するディスプレイ23と、を有する。ここで、コントローラ12、22は、それぞれ、測定コントローラ、表示コントローラの一例である。また、実環境とは、交流磁界の測定点を取り巻く周辺の空間を言う。
前記変換されたデジタルデータの測定部10から表示部20への転送は、無線によって行われてもよい。そのために、測定部10は、前記変換されたデジタルデータを無線で送信する送信器としての通信モジュール13を有し、表示部20は、前記送信されたデジタルデータを無線で受信する受信器としての通信モジュール24を有してもよい。
センサ11とカメラ21との間の距離は、コントローラ12及び通信モジュール13の何れとカメラ21との間の距離よりも短い。すなわち、センサ11とカメラ21(より正確には、センサ11とカメラ21のレンズ)とは、できるだけ近づけて配置される。
発明者らは、次のような部材を用いて、電磁界測定表示装置1を実際に試作した。センサ11には、Honeywell社製の3軸磁気センサHMC2003を用いた。コントローラ12には、Microchip Technology社製のワンチップマイコンdsPIC(登録商標)33FJ64MC802を用いた。通信モジュール13には、シリアル-BlueTooth(登録商標)変換モジュールを用いた。表示部20には、Android(登録商標)OSで動作するSonyEricsson社製の携帯端末xperia(商標)を用いた。カメラ21、コントローラ22、ディスプレイ23、通信モジュール24は、何れも携帯端末に内蔵されている部材を用いた。コントローラ12、22にそれぞれ適したプログラム及びアプリを記述し、当該プログラム及びアプリを用いて測定部10及び表示部20を動作させた。
これらの部材を用いることで、大きさが縦50mm、横100mm、高さ30mmであり、質量が84gである可搬型の電磁界測定表示装置1を構成することができた。
なお、これらの部材の例示は、電磁界測定表示装置1の実施可能な1つの構成例を示すものである。この例示は、電磁界測定表示装置1の構成やハードウェアとソフトウェアとの機能分担を限定しない。
上記のように構成された電磁界測定表示装置1の動作について説明する。
図3は、電磁界測定表示装置1の動作の一例を示すフローチャートである。
センサ11は、センサ11の現在位置における、互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成する(S11)。
コントローラ12は、当該複数の交流電圧を受け取り、受け取った各方向の交流電圧を、例えば10ビット/サンプルの時系列の電圧データにAD(アナログ-デジタル)変換する(S12)。コントローラ12は、各方向の時系列の電圧データから、例えば、1024点FFT(高速フーリエ変換)により、方向ごとの電圧スペクトルデータを算出し(S13)、さらに、算出された電圧スペクトルデータに所定の係数を乗じることにより、方向ごとの磁界スペクトルデータを算出する(S14)。
通信モジュール13は、コントローラ12から制御され、変換された各方向の磁界スペクトルデータを無線で送信する(S15)。
通信モジュール24は、コントローラ22から制御され、送信された各方向の磁界スペクトルデータを無線で受信する(S21)。
カメラ21は、コントローラ22から制御され、実環境を撮影する(S22)。
コントローラ22は、受信された各方向の磁界スペクトルデータによって表される磁界情報(磁界の強度及び方向)を表す図形を、カメラ21が撮影した実環境の映像に合成する(S23)。
ディスプレイ23は、コントローラ22から制御され、磁界情報を表す図形が合成された実環境の映像を表示する(S24)。
図4は、電磁界測定表示装置1によるディスプレイ23の表示内容の一例を示す図である。表示内容30は、実環境の映像31、強度バー32、強度ポインタ33、方向アイコン34、数値ボックス35から構成される。
実環境の映像31は、カメラ21が撮影した実環境の映像である。強度バー32は、磁界強度に対応する色(色相、明度など)又は模様(ハッチング濃度など)のグラデーションである。強度ポインタ33は、測定された磁界の周波数成分の強度に対応する強度バー32の位置を指すポインタである。方向アイコン34は、測定された磁界の周波数成分の方向(つまり、当該周波数成分の各方向の磁界強度を成分とするベクトルの方向)を表す図形である。数値ボックス35は、測定された磁界の周波数成分の各方向の強度の現在値、及び当該周波数成分の周波数を、それぞれ数値で表示するためのボックスである。
ここで、表示の対象となる周波数成分は、自動的に選択される周波数成分(一例として、測定された磁界の周波数スペクトルがピーク強度を示す周波数における周波数成分)であってもよく、また後述するように、測定者によって選択される周波数成分であってもよい。また、全周波数域における磁界の測定結果に着目する場合は、全ての周波数成分の累積的な強度及び方向を表示してもよい。
電磁界測定表示装置1では、測定部10と表示部20とが一体に結合されていることから、センサ11、カメラ21相互の相対位置は固定されている。一例として、センサ11が測定する磁界のx軸、y軸、z軸を、カメラ21が撮影する映像の幅、高さ、奥行きの各方向に対応付けてもよい。このような対応付けに基づいて、方向アイコン34は、カメラ21で撮影された実環境の映像中に、測定された磁界の実際の方向を表示する。
また、電磁界測定表示装置1では、センサ11とカメラ21とが、できるだけ近づけて配置されていることから、実環境の映像31の視点とほぼ同一の位置で測定された磁界の情報が、実環境の映像31に合成して表示される。そのため、測定者は、ディスプレイ23の表示内容30から、実環境の状況と磁界の測定結果とを、一目で矛盾なく把握することができる。
測定された磁界の強度をより明確に表示するために、図4に示されるように、実環境の映像31に、強度バー32の強度ポインタ33が示す位置の色又は模様を合成して表示してもよい。このような表示は、例えば、実環境の映像31が赤みがかっていれば磁界強度が大きく、青みがかっていれば磁界強度が小さいといったように、測定者の直感的な理解の助けとなる。
次に、測定者が測定結果をより細かく把握できるようにするための、電磁界測定表示装置1の補助機能について説明する。この補助機能は、測定された磁界の強度の時間波形及び周波数スペクトルを表示し、また、表示内容30において強度、方向を表示するための周波数成分を、測定者が選択可能にするものである。
図5A、図5Bは、電磁界測定表示装置1の補助機能による、ディスプレイ23の表示内容の一例を示す図である。図5Aの表示内容36は、測定された各方向の磁界の強度の時間波形を表し、図5Bの表示内容37は、測定された各方向の磁界の周波数スペクトルを表している。測定者は、表示内容37の右下に示されているスピンボタンを操作することで、表示内容30において強度、方向を表示するための周波数成分を選択するとこができる。
ディスプレイ23における表示内容30、36、37の切り替えは、例えば、ディスプレイ23に表示される切り替え用のポップアップ(図示せず)を測定者が操作することによって行われてもよい。
発明者らは、試作した電磁界測定表示装置1の測定精度を確かめるため、あらかじめ強度が分かっている交流磁界を実際に測定する実験を行った。
図6は、実験に用いた測定環境を示す図である。
この実験では、一辺が0.45m、巻き数30の正方形のループコイル41に周波数58Hz実効値300mAの交流電流を流して既知の交流磁界を形成し、複数の測定点42における実際の測定結果と測定されるべき理論値とを比較した。便宜上、ループコイル41の辺の方向をx軸、y軸と定義し、x軸、y軸と直交する方向をz軸と定義する。複数の測定点42を、ループコイル41からz軸方向に0.05m離れたxy平面上に、0.1mメッシュで設定した。
図7Aは、測定結果の一例を示す図であり、各測定点42において測定された磁界の強度及びxy平面内での方向が、円の明度及び矢印で示されている。円の明度は右側に示される強度バーの対応する明度における磁界の強度を表す。黒い太線はループコイル41の位置を表す。各測定点42では、図示された矢印の方向で、10~35dBμTの範囲の強度の磁界が測定された。
図7Bは、測定されるべき磁界の理論値を示す図であり、各測定点42において測定されるべき磁界の強度及びxy平面内での方向の理論値が、図7Aと同様の表記法によって示されている。
図7Cは、測定誤差の一例を示す図であり、各測定点42における実際の測定値と理論値との差が、円の明度で示されている。円の明度は右側に示される誤差バーの対応する明度における誤差を表す。各測定点42における測定誤差は0~6dBであった。
以上、本発明の態様に係る電磁界測定表示装置及び電磁界測定表示方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
例えば、実施の形態では、測定部10と表示部20とが一体に結合された構成について説明したが、変形例として、測定部10と表示部20とが着脱自在に構成され、測定部10と表示部20とが一体に結合された状態と分離された状態とを任意に選択することができる電磁界測定装置を考えることができる。
変形例に係る電磁界測定装置は、測定部10と表示部20とが一体に結合された状態で、実施の形態の説明と同様に機能し、測定部10と表示部20とが分離された状態で、表示部20のカメラ21にて実環境とともに測定部10を撮影する。
コントローラ22は、撮影された映像中の測定部10の位置及び姿勢を画像認識によって特定し、撮影された映像の特定された測定部10の位置に、特定された測定部10の姿勢に基づいて、測定された磁界の強度及び方向を示す図形を合成する。
コントローラ22による画像認識を容易にするため、測定部10は、測定部10が表示部20から分離された状態で外部から視認可能で、かつセンサ11との相対位置が固定された非点対称形状のマーカを有していてもよい。
図8は、変形例に係る測定環境の一例を示す図である。測定部10と表示部20とが分離された状態で、表示部20は、電磁界の発生源である電気ストーブ50とともに測定部10を撮影する。測定部10には、一例として、黒い正三角形を正方形で囲んだ形状のマーカ14が付されている。測定者は、測定部10を手で持って電気ストーブ50の前面を移動させてもよい。図8中のS字状の矢印は、測定部10の移動の軌跡の一例を示している。
表示部20のコントローラ22は、映像中のマーカ14を画像認識することによって、測定部10の映像中の位置、及び回転を検出する。これにより、映像中の測定部10の位置及び姿勢が特定される。コントローラ22は、さらに、マーカ14の形状の歪(正三角形及び正方形からのずれ)の度合いによって、カメラ21の正対面に対する測定部10の傾きを検出し、マーカ14の見かけの大きさによって測定部10の奥行き方向の位置を検出してもよい。
コントローラ22は、実環境の映像中の、特定された測定部10の位置に、特定された測定部10の姿勢に基づいて、測定された磁界の強度及び方向を示す図形を合成し、ディスプレイ23は、測定結果が合成された実環境の映像を表示する。
図9は、変形例に係るディスプレイ23の表示内容の一例を示す図である。表示内容38は、実環境の映像31、強度バー32、磁界アイコン39から構成される。
強度バー32は、磁界強度に対応する色(色相、明度など)又は模様(ハッチング濃度など)のグラデーションである。磁界アイコン39は、一例として、正方形の中に矢印を配した図形である。正方形には測定された磁界の強度に対応する強度バー32の色又は模様が付され、矢印は測定された磁界の方向を表す。所定個数までのより新しい測定結果を表す磁界アイコン39が、測定部10の移動の軌跡に沿って表示されてもよい。
図9の例における実環境の映像31には、電気ストーブ50及び測定部10が写っており、かつ、測定部10の移動の軌跡上の各点で測定された複数の磁界アイコン39が合成されている。
測定者は、ディスプレイ23の表示内容38から、実環境の複数の測定点における磁界の強度及び方向の分布を、一目で把握することができる。
本発明は、電磁界測定表示装置に広く利用できる。
1 電磁界測定表示装置
10 測定部
11 センサ
12、22 コントローラ
13、24 通信モジュール
14 マーカ
20 表示部
21 カメラ
23 ディスプレイ
30、36、37、38 表示内容
31 実環境の映像
32 強度バー
33 強度ポインタ
34 方向アイコン
35 数値ボックス
39 磁界アイコン
41 ループコイル
42 測定点
50 電気ストーブ
10 測定部
11 センサ
12、22 コントローラ
13、24 通信モジュール
14 マーカ
20 表示部
21 カメラ
23 ディスプレイ
30、36、37、38 表示内容
31 実環境の映像
32 強度バー
33 強度ポインタ
34 方向アイコン
35 数値ボックス
39 磁界アイコン
41 ループコイル
42 測定点
50 電気ストーブ
Claims (7)
- 可搬型の電磁界測定表示装置であって、
一体に結合された測定部と表示部とを備え、
前記測定部は、
互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成するセンサと、
前記生成された複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換する測定コントローラと、を有し、
前記表示部は、
実環境を撮影するカメラと、
前記デジタルデータによって表される交流磁界の強度及び方向を示す図形を、前記撮影された実環境の映像に合成する表示コントローラと、
前記合成された映像を表示するディスプレイと、を有する、
電磁界測定表示装置。 - 前記センサと前記カメラとの間の距離は、前記測定コントローラと前記カメラとの間の距離よりも短い、
請求項1に記載の電磁界測定表示装置。 - 前記測定コントローラは、前記複数の交流電圧を、各方向の交流磁界の強度の周波数スペクトルを表すデジタルデータに変換し、
前記表示コントローラは、前記デジタルデータによって表される交流磁界の、ユーザによって選択される周波数における成分の強度及び方向を示す図形を、前記撮影された実環境の映像に合成する、
請求項1に記載の電磁界測定表示装置。 - 前記測定部は前記表示部に対して着脱自在に構成され、前記測定部と前記表示部とが一体に結合された状態と分離された状態とを任意に選択することができ、
前記測定部は、さらに、
前記変換されたデジタルデータを無線で送信する送信器と、
前記測定部が前記表示部から分離された状態で外部から視認可能で、かつ前記センサとの相対位置が固定された非点対称形状のマーカと、を有し、
前記表示部は、さらに、
前記送信されたデジタルデータを無線で受信する受信器を有し、
前記カメラは、前記測定部が前記表示部から分離された状態で、実環境とともに前記マーカを撮影し、
前記表示コントローラは、前記撮影された映像中の前記マーカの位置及び姿勢を画像認識によって特定し、前記撮影された映像の前記特定されたマーカの位置に、前記特定されたマーカの方向に基づいて、前記受信されたデジタルデータによって表される交流磁界の強度及び方向を示す図形を合成する、
請求項1に記載の電磁界測定表示装置。 - 一体に結合された測定部と表示部とを備える可搬型の電磁界測定表示装置によって行われる電磁界測定表示方法であって、
前記測定部は、センサと、測定コントローラとを有し、
前記表示部は、カメラと、表示コントローラと、ディスプレイとを有し、
前記測定部において、
前記センサで、互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を生成し、
前記測定コントローラで、前記生成された複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換し、
前記表示部において、
前記カメラで、実環境を撮影し、
前記表示コントローラで、前記変換されたデジタルデータによって表される交流磁界の強度及び方向を示す図形を、前記撮影された実環境の映像に合成し、
前記ディスプレイで、前記合成された映像を表示する、
電磁界測定表示方法。 - 一体に結合された測定部と表示部とを備える可搬型の電磁界測定表示装置を動作させるためのコンピュータ実行可能なプログラムであって、
前記測定部と前記表示部の各々はコンピュータを有し、
前記プログラムは、
互いに異なる方向の交流磁界の強度に応じた複数の交流電圧を、各方向の交流磁界の強度を表すデジタルデータに変換するステップを前記測定部のコンピュータに実行させ、
前記変換されたデジタルデータによって表される交流磁界の強度及び方向を示す図形を、カメラで実環境を撮影して得られた映像に合成するステップと、
前記合成された映像をディスプレイに表示させるステップと、を前記表示部のコンピュータに実行させる、
プログラム。 - 請求項6に記載のプログラムを記憶している、コンピュータ読み取り可能な記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014522426A JPWO2014002466A1 (ja) | 2012-06-25 | 2013-06-24 | 電磁界測定表示装置、電磁界測定表示方法、プログラム、及び記録媒体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012142398 | 2012-06-25 | ||
JP2012-142398 | 2012-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014002466A1 true WO2014002466A1 (ja) | 2014-01-03 |
Family
ID=49782659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003934 WO2014002466A1 (ja) | 2012-06-25 | 2013-06-24 | 電磁界測定表示装置、電磁界測定表示方法、プログラム、及び記録媒体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014002466A1 (ja) |
WO (1) | WO2014002466A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129732A (ja) * | 2014-01-09 | 2015-07-16 | アンリツ株式会社 | 信号処理装置、信号処理方法および信号処理システム |
CN105044471A (zh) * | 2015-07-09 | 2015-11-11 | 西安电子科技大学 | 计算机数字视频信息电磁泄漏检测方法 |
WO2016009872A1 (ja) * | 2014-07-15 | 2016-01-21 | 株式会社白寿生科学研究所 | 可視化装置および可視化方法 |
CN112052986A (zh) * | 2020-08-13 | 2020-12-08 | 五邑大学 | 基于自监督学习的磁暴预测方法、装置及存储介质 |
WO2021020110A1 (ja) * | 2019-08-01 | 2021-02-04 | パナソニックIpマネジメント株式会社 | 電磁波可視化装置 |
WO2021024713A1 (ja) * | 2019-08-02 | 2021-02-11 | パナソニックIpマネジメント株式会社 | 電磁波可視化装置 |
WO2021039487A1 (ja) * | 2019-08-30 | 2021-03-04 | パナソニックIpマネジメント株式会社 | 漏洩電界測定装置 |
WO2021039486A1 (ja) * | 2019-08-30 | 2021-03-04 | パナソニックIpマネジメント株式会社 | 漏洩電界測定装置 |
CN113767391A (zh) * | 2019-12-23 | 2021-12-07 | 第一资本服务有限责任公司 | 用于在移动设备上映射nfc场强和位置的方法 |
EP4001933A1 (en) * | 2020-11-18 | 2022-05-25 | TDK Corporation | Electromagnetic environment analysis system, electromagnetic environment analysis method, and program |
EP4001931A1 (en) * | 2020-11-18 | 2022-05-25 | TDK Corporation | Electromagnetic environment analysis system, electromagnetic environment analysis method, and program |
WO2022202030A1 (ja) * | 2021-03-22 | 2022-09-29 | パナソニックIpマネジメント株式会社 | 通電状態検出装置および通電状態検出方法 |
JP2023067506A (ja) * | 2021-11-01 | 2023-05-16 | 星和電機株式会社 | 電磁界プローブ用マーカー |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028186A1 (ja) * | 2007-08-29 | 2009-03-05 | Kanazawa University | 電磁界空間分布可視化装置、電磁界空間分布可視化方法およびそのプログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4502361B2 (ja) * | 2003-09-30 | 2010-07-14 | キヤノン株式会社 | 指標姿勢検出方法および装置 |
JP4801783B2 (ja) * | 2009-07-21 | 2011-10-26 | 株式会社Ttes | 画像処理システム及び画像処理方法 |
-
2013
- 2013-06-24 JP JP2014522426A patent/JPWO2014002466A1/ja active Pending
- 2013-06-24 WO PCT/JP2013/003934 patent/WO2014002466A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028186A1 (ja) * | 2007-08-29 | 2009-03-05 | Kanazawa University | 電磁界空間分布可視化装置、電磁界空間分布可視化方法およびそのプログラム |
Non-Patent Citations (2)
Title |
---|
MITSUNORI OZAKI ET AL.: "Development of a Portable Electromagnetic Measurement System Installed Optical Camera and Display", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J95-A, no. 3, 1 March 2012 (2012-03-01), pages 330 - 333 * |
YUKIHIRO UEMURA ET AL.: "Radio Source Visualizing System", TOSHIBA REVIEW, vol. 61, no. 12, 2006, pages 43 - 46 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129732A (ja) * | 2014-01-09 | 2015-07-16 | アンリツ株式会社 | 信号処理装置、信号処理方法および信号処理システム |
WO2016009872A1 (ja) * | 2014-07-15 | 2016-01-21 | 株式会社白寿生科学研究所 | 可視化装置および可視化方法 |
JP2016019700A (ja) * | 2014-07-15 | 2016-02-04 | 株式会社白寿生科学研究所 | 可視化装置および可視化方法 |
CN105044471A (zh) * | 2015-07-09 | 2015-11-11 | 西安电子科技大学 | 计算机数字视频信息电磁泄漏检测方法 |
CN105044471B (zh) * | 2015-07-09 | 2018-04-13 | 西安电子科技大学 | 计算机数字视频信息电磁泄漏检测方法 |
WO2021020110A1 (ja) * | 2019-08-01 | 2021-02-04 | パナソニックIpマネジメント株式会社 | 電磁波可視化装置 |
JPWO2021020110A1 (ja) * | 2019-08-01 | 2021-02-04 | ||
JP7386406B2 (ja) | 2019-08-01 | 2023-11-27 | パナソニックIpマネジメント株式会社 | 電磁波可視化装置 |
US11953536B2 (en) | 2019-08-02 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Electromagnetic wave visualization device |
WO2021024713A1 (ja) * | 2019-08-02 | 2021-02-11 | パナソニックIpマネジメント株式会社 | 電磁波可視化装置 |
WO2021039487A1 (ja) * | 2019-08-30 | 2021-03-04 | パナソニックIpマネジメント株式会社 | 漏洩電界測定装置 |
WO2021039486A1 (ja) * | 2019-08-30 | 2021-03-04 | パナソニックIpマネジメント株式会社 | 漏洩電界測定装置 |
JP2023503387A (ja) * | 2019-12-23 | 2023-01-30 | キャピタル・ワン・サービシーズ・リミテッド・ライアビリティ・カンパニー | モバイルデバイス上のnfc磁界強度およびロケーションをマッピングするための方法 |
CN113767391A (zh) * | 2019-12-23 | 2021-12-07 | 第一资本服务有限责任公司 | 用于在移动设备上映射nfc场强和位置的方法 |
US11855714B2 (en) | 2019-12-23 | 2023-12-26 | Capital One Services, LLC. | Method for mapping NFC field strength and location on mobile devices |
JP7516379B2 (ja) | 2019-12-23 | 2024-07-16 | キャピタル・ワン・サービシーズ・リミテッド・ライアビリティ・カンパニー | モバイルデバイス上のnfc磁界強度およびロケーションをマッピングするための方法 |
CN112052986A (zh) * | 2020-08-13 | 2020-12-08 | 五邑大学 | 基于自监督学习的磁暴预测方法、装置及存储介质 |
EP4001931A1 (en) * | 2020-11-18 | 2022-05-25 | TDK Corporation | Electromagnetic environment analysis system, electromagnetic environment analysis method, and program |
EP4001933A1 (en) * | 2020-11-18 | 2022-05-25 | TDK Corporation | Electromagnetic environment analysis system, electromagnetic environment analysis method, and program |
WO2022202030A1 (ja) * | 2021-03-22 | 2022-09-29 | パナソニックIpマネジメント株式会社 | 通電状態検出装置および通電状態検出方法 |
JP2023067506A (ja) * | 2021-11-01 | 2023-05-16 | 星和電機株式会社 | 電磁界プローブ用マーカー |
JP7293311B2 (ja) | 2021-11-01 | 2023-06-19 | 星和電機株式会社 | 電磁界プローブ用マーカー |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014002466A1 (ja) | 2016-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014002466A1 (ja) | 電磁界測定表示装置、電磁界測定表示方法、プログラム、及び記録媒体 | |
JP5589226B2 (ja) | 電磁界空間分布可視化装置、電磁界空間分布可視化方法およびそのプログラム | |
CN204649311U (zh) | 测量装置 | |
US8412309B2 (en) | Medical device guiding system, medical device guiding method, and method for creating look-up table to be used in medical device guiding system | |
CN107534734B (zh) | 具有热成像能力的湿度测量装置及相关方法 | |
CN111465886A (zh) | 头戴式显示器的选择性跟踪 | |
KR20200126315A (ko) | 폴더블 디바이스의 두 몸체부의 사이각 측정 방법 및 이를 위한 장치 | |
JP4324858B2 (ja) | 動き検出システム及び距離判定装置 | |
JP2014068714A (ja) | 関節角度測定システム | |
CN114469057A (zh) | 无线胶囊定位装置、磁场传感器定位方法和装置 | |
JPWO2018084278A1 (ja) | 計測装置 | |
JP2012194145A (ja) | 情報表示装置、情報表示方法、及びプログラム | |
JP7178790B2 (ja) | 距離測定装置 | |
JP6320020B2 (ja) | 電子機器、その制御方法及びプログラム | |
JP7386406B2 (ja) | 電磁波可視化装置 | |
JP2011007578A (ja) | 位置計測システム、位置計測用演算装置およびプログラム | |
EP4001933B1 (en) | Electromagnetic environment analysis system, electromagnetic environment analysis method, and program | |
WO2019093449A1 (ja) | 計測値読取りシステム、計測値読取り装置及び計測値読取方法 | |
JP5353316B2 (ja) | 音場可視化装置 | |
JP6346466B2 (ja) | 磁気データ補正装置 | |
JP5594769B2 (ja) | 電磁界ベクトル表示装置 | |
CN114046768A (zh) | 激光测距方法、装置、激光测距设备及存储介质 | |
JP6669790B2 (ja) | 遠隔操作装置 | |
JP5391285B2 (ja) | 距離検出装置 | |
JP2022080683A (ja) | 電磁環境分析システム、電磁環境分析方法、及び、プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13810007 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014522426 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13810007 Country of ref document: EP Kind code of ref document: A1 |