WO2014002399A1 - 映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム - Google Patents

映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム Download PDF

Info

Publication number
WO2014002399A1
WO2014002399A1 PCT/JP2013/003573 JP2013003573W WO2014002399A1 WO 2014002399 A1 WO2014002399 A1 WO 2014002399A1 JP 2013003573 W JP2013003573 W JP 2013003573W WO 2014002399 A1 WO2014002399 A1 WO 2014002399A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization parameter
bin
binary arithmetic
video
encoding
Prior art date
Application number
PCT/JP2013/003573
Other languages
English (en)
French (fr)
Inventor
慶一 蝶野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014522398A priority Critical patent/JP6036822B2/ja
Priority to RU2014153577/08A priority patent/RU2602782C2/ru
Priority to US14/410,215 priority patent/US20150326859A1/en
Priority to CN201380026071.2A priority patent/CN104380733B/zh
Publication of WO2014002399A1 publication Critical patent/WO2014002399A1/ja
Priority to IL235057A priority patent/IL235057A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/154Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/1887Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a variable length codeword
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Definitions

  • the present invention relates to a technique for encoding a video quantization parameter for video coding using context-based adaptive binary arithmetic coding, and for example, a video quantization parameter that can be suitably applied to a video coding device, a video decoding device, or the like.
  • the present invention relates to an encoding method, a video quantization parameter decoding method, a video quantization parameter encoding device, a video quantization parameter decoding device, a video quantization parameter encoding program, and a video quantization parameter decoding program.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a video coding technique using context-based adaptive binary arithmetic coding (CABAC: “Context-based” Adaptive Binary “Arithmetic” Coding).
  • CABAC context-based adaptive binary arithmetic coding
  • FIG. 9 is a block diagram showing the configuration of a video quantization parameter encoding device in the video encoding technology using CABAC®.
  • the video quantization parameter encoder shown in FIG. 9 (hereinafter referred to as a general video quantization parameter encoder) includes a predictor 101, a buffer 102, a binarizer 1030, and an adaptive binary arithmetic encoder 104. , And a switch (SW) 111.
  • the prediction quantization parameter (PQP: “Predicted” QP) supplied from the predictor 101 is subtracted from the quantization parameter (QP: “Quantization” Parameter) input to a general video quantization parameter encoder.
  • QP with PQP reduced is called a differential quantization parameter (DQP: Delta QP).
  • Non-Patent Document 1 PQP is a reconstructed quantization parameter (LastRQP: Last Reconstructed QP) of the last reconstructed image block.
  • PQP is a reconstructed quantization parameter (LeftRQP: Left Reconstructed QP) of an image block adjacent to the left or a reconstructed quantization parameter (LastRQP) of an image block reconstructed last.
  • the DQP is added to the PQP ⁇ ⁇ ⁇ for subsequent quantization parameter encoding and stored in the buffer 102 as a reconstructed quantization parameter (RQP: Reconstructed QP).
  • the binarizer 1030 binarizes the DQP to obtain a bin string.
  • bin string bin that performs binary arithmetic encoding first is bin 1 (1 st bin), and bin that performs binary arithmetic encoding second is bin 2 (2 nd bin ),
  • bin that is nth binary arithmetic encoded is called the nth bin (n th bin). Note that bin and bin string are defined in 3.9 and 3.12.
  • FIG. 10 is an explanatory diagram showing a correspondence table between DQP (first column from the right) and bin string (center column) in Non-Patent Document 1 and Non-Patent Document 2.
  • the bin string index in the first column from the left shown in Fig. 10 indicates the index of the bin string corresponding to a certain DQP.
  • the bin string index is 1 when DQP is 0, 2 x DQP -1 when DQP is greater than 0, and -2 x DQP + 1 when DQP is less than 0. That is, the value of bin string index is the same as UDQP.
  • the context 10 index on the first line from the bottom shown in Fig. 10 indicates a context index used for binary arithmetic encoding of bin ⁇ of the corresponding column.
  • the value of the first bin is 1
  • the value of the second bin is 1
  • the value of the third bin is 0.
  • the context index used for the binary arithmetic encoding of the first bin is 0,
  • the context index of the second bin is 2 and the third context index is 3.
  • the context is a set of bin dominant symbols (MPS: Most Probable Symbol) and their occurrence probabilities.
  • the adaptive binary arithmetic encoder 104 performs binary arithmetic encoding on bin of bin string supplied via the switch 111 using the context associated with the corresponding context index from the top. Further, the adaptive binary arithmetic encoder 104 updates the context associated with contextconindex according to the binary encoded bin value for the subsequent binary arithmetic encoding.
  • the detailed operation of adaptive binary arithmetic coding is described in 9.3.4 IV of Non-Patent Document 1.
  • a general quantization parameter encoder encodes an input video quantization parameter based on the above-described operation.
  • a general quantization parameter encoder uses Unary binarization of a value obtained by converting DQP to an unsigned variable UDQP as bin string, and all bin ⁇ ⁇ is an adaptive binary arithmetic code. Turn into. Therefore, there is a problem that significant DQP cannot be encoded favorably due to the following two factors.
  • the first factor is that the number of bins included in the bin string handled by the quantization parameter encoder is about twice the absolute value of DQP.
  • the number of bins is large, the number of binary arithmetic encodings increases, and the speed of the DQP ⁇ encoding process and decoding process also decreases.
  • the second factor is that bins cannot be binary arithmetic coded using an appropriate context because the second bin and subsequent bins contain information on three or more states that cannot be expressed in 1 bit.
  • Information that can be expressed by one bin is information indicating which state is in one of two states.
  • the second bin and subsequent bins include information on three or more states that cannot be expressed by one bin.
  • the second bin includes DQP positive / negative information and information indicating whether the absolute value of the significant DQP is 1 or more.
  • the subsequent bins after the third (3rd and subsequent columns) include DQP positive / negative information and information indicating the magnitude of the significant DQP absolute value. Therefore, the second bin including information on three or more states that cannot be expressed by one bin and the subsequent bins cannot be binary arithmetic encoded by an appropriate context.
  • an object of the present invention is to make it possible to suitably encode a video quantization parameter of video encoding using context-based adaptive binary arithmetic encoding by eliminating the above-described factors.
  • a video quantization parameter encoding method is a video quantization parameter encoding method for encoding a quantization parameter for video encoding processing based on context-based adaptive binary arithmetic encoding, Generate the predicted quantization parameter from the reconstructed quantization parameter, generate the difference quantization parameter from the quantization parameter and the prediction quantization parameter, and convert the difference quantization parameter to the unsigned representation of the exponent Golomb bin string Generate and adaptive binary arithmetic encode the first bin of the exponent Golomb bin string indicating whether the value of the unsigned representation of the differential quantization parameter is significant, indicating that the first bin is significant In this case, the remaining bin of the exponent Golomb bin string is subjected to fixed binary arithmetic coding.
  • a video quantization parameter decoding method is a video quantization parameter decoding method for decoding a quantization parameter for video decoding processing based on context-based adaptive binary arithmetic coding, wherein A predictive quantization parameter is generated from the quantization parameter, the first bin of the exponent Golomb bin string indicating whether the value of the unsigned representation of the differential quantization parameter is significant, is adaptive binary arithmetic decoded, and the first When bin indicates that it is significant, the remaining bin of the exponent Golomb bin string is subjected to fixed binary arithmetic decoding, and the unsigned representation of the decoded differential quantization parameter is converted to the original differential quantization parameter value.
  • a video quantization parameter encoding apparatus includes a prediction unit that generates a predicted quantization parameter from past reconstructed quantization parameters, a calculation unit that generates a differential quantization parameter from the quantization parameter and the predicted quantization parameter, and , Generating an exponent Golomb bin string of a value obtained by converting the differential quantization parameter into an unsigned representation, and indicating whether or not the value of the unsigned representation of the differential quantization parameter is significant, the first bin of the exponent Golomb bin string And a quantization parameter coding unit for performing a fixed binary arithmetic coding on the remaining bins of the exponent Golomb bin string when the first bin is significant. And
  • the video quantization parameter decoding apparatus includes a prediction unit that generates a predicted quantization parameter from past reconstructed quantization parameters, and an index indicating whether or not the value of the unsigned representation of the differential quantization parameter is significant.
  • a quantization parameter decoding unit that converts the unsigned representation of the parameter into the original differential quantization parameter value.
  • the video quantization parameter encoding program is a computer that performs prediction processing for generating a predicted quantization parameter from a past reconstructed quantization parameter, and an operation for generating a differential quantization parameter from the quantization parameter and the predicted quantization parameter. Processing and generating an exponent Golomb bin string of the value obtained by converting the differential quantization parameter into an unsigned representation, and indicating whether the value of the unsigned representation of the differential quantization parameter is significant or not. Execute a quantization parameter encoding process that adaptively arithmetically encodes bin 1 of 1 and performs fixed binary arithmetic encoding of the remaining bin ⁇ of the exponent Golomb bin string when the first bin ⁇ ⁇ indicates that it is significant It is characterized by.
  • the video quantization parameter decoding program enables a computer to generate a prediction quantization parameter from a past reconstructed quantization parameter and whether the value of the unsigned representation of the difference quantization parameter is significant.
  • the first bin ⁇ of the exponent Golomb bin ⁇ string indicating whether or not the first bin ⁇ ⁇ is significant, and the remaining bin ⁇ of the exponent Golomb bin string is fixed binary arithmetic decoded and decoded
  • a quantization parameter decoding process for converting the unsigned representation of the differential quantization parameter thus converted into the original differential quantization parameter value is performed.
  • FIG. 1 is a block diagram showing a configuration of a video quantization parameter encoder according to the first embodiment of the present invention.
  • the video quantization parameter encoder shown in FIG. 1 includes a predictor 101, a buffer 102, a binarizer 1031, an adaptive binary arithmetic encoder 104, a fixed binary arithmetic encoder 105, a switch (SW) 111, and A switch (SW) 112 is included.
  • the video quantization parameter encoder of the present embodiment uses the 0th-order exponential Golomb (0th-order Exp-Golomb) binarization of the value obtained by converting DQP to the unsigned variable UDQP as bin string, and represents the unsigned representation of the differential quantization parameter.
  • the first bin ⁇ of Exp-Golom bin string indicating whether or not the value of the value is significant is adaptive binary arithmetic coded, and the remaining bins of Exp-Golom bin string indicating the value of the unsigned representation of the differential quantization parameter Are fixed binary arithmetic encoded.
  • the order of the exponent Golomb may be other than 0.
  • the prefix part of the exponent Golomb binarization consists of zero or more consecutive "1" bin bins and one "0" bin bin indicating the end.
  • the suffix part is composed of N bins having the number of consecutive “1” s in the prefix part.
  • Exponential Golomb binarization can express UDQP by bin
  • Fixed binary arithmetic encoding uses binary probability to bin bin binary encoding. Therefore, the fixed binary arithmetic encoding can perform binary arithmetic encoding at a fixed compression rate on bin that is difficult to perform binary arithmetic encoding using an appropriate context.
  • the quantization parameter QP input to the video quantization parameter encoder is subtracted from the prediction quantization parameter PQP supplied from the predictor 101.
  • the first bin of the 0th-order exponent Golomb bin string indicates whether UDQP, ie DQP, is significant.
  • the remaining bins of the 0th-order exponent Golomb bin string indicate the magnitude of the UDQP value, that is, the pair of the absolute value and sign of the DQP.
  • AbsDQP (UDQP + 1) / 2).
  • the sign DQP of DQP is + when UDQP is odd and-when UDQP is even.
  • the adaptive binary arithmetic encoder 104 performs binary arithmetic encoding on the first bin of the bin string supplied via the switch 111 using the context associated with the context index ⁇ , and the encoded data via the switch 112. Is output. Further, the adaptive binary arithmetic encoder 104 updates the context associated with the context index according to the binary arithmetic encoded bin value for the subsequent binary arithmetic encoding.
  • the fixed binary arithmetic encoder 105 performs binary arithmetic coding on bin after the first bin of the bin string supplied via the switch 111 with equal probability, and outputs the encoded data via the switch 112. .
  • a binarizer 1031 an adaptive binary arithmetic encoder 104, and a fixed binary arithmetic encoder, which are features of the video quantization parameter encoder of the present embodiment.
  • the operation 105 will be described.
  • the adaptive binary arithmetic encoder 104 starts processing with the initial value parameter n being 1.
  • step S101 the binarizer 1031 converts the input DQP to an unsigned variable UDQP and outputs a bin string of the 0th-order exponent Golomb of that value.
  • step S102 the adaptive binary arithmetic encoder 104 performs adaptive binary arithmetic encoding of bin (n). Increment n.
  • step S103 the fixed binary arithmetic encoder 105 determines whether or not DQP is significant. If DQP is significant, the process proceeds to step S104. Otherwise, the process is terminated.
  • step S104 the fixed binary arithmetic encoder 105 performs fixed binary arithmetic encoding on bin (n).
  • step S105 the fixed binary arithmetic encoder 105 determines whether or not all bins in the bin string have been encoded. If all bins have been encoded, the process ends. Otherwise, the fixed binary arithmetic encoder 105 increments n and proceeds to step S104 in order to perform fixed adaptive binary arithmetic encoding on the subsequent bin (n).
  • FIG. 3 is an explanatory diagram showing an example of a correspondence table of DQP (first column from the right) and bin string (center column) in the present invention. Note that bin string index matches the value of UDQP.
  • na in the context index ⁇ line indicates that no context is used, that is, the equal probability is used for binary arithmetic.
  • the video quantization parameter encoding process of the present invention eliminates the above two problems.
  • the first factor is solved by expressing the UDQP as a short bin string by using an exponential Golomb code.
  • the number of bins of bin ⁇ string for the largest value of UDQP is 12. That is, the bin number 53 in the general case shown in FIG.
  • UDQP as a short bin string, the number of binary arithmetic encodings can be reduced, and the speed of DQP encoding and decoding can be increased.
  • the second factor is solved by performing binary arithmetic coding with equal probability on bin after the first bin containing information on three or more states that cannot be expressed by one bin.
  • binarizing and arithmetically encoding bin after the first bin with equal probability bin that is difficult to perform binary arithmetic encoding using an appropriate context can be lightly binary arithmetic encoded with a fixed compression rate. became.
  • FIG. 4 is a block diagram showing a configuration of a video quantization parameter decoder corresponding to the video quantization parameter encoder of the first embodiment.
  • the video quantization parameter decoder shown in FIG. 4 includes a predictor 201, a buffer 202, a binarization decoder 2031, an adaptive binary arithmetic decoder 204, a fixed binary arithmetic decoder 205, a switch (SW) 211, and a switch ( SW) 212.
  • the adaptive binary arithmetic decoder 204 performs binary arithmetic decoding of bin (1) from the encoded data supplied via the switch 212 and supplies the bin (1) to the binarization canceler 2031 via the switch 211. Further, the adaptive binary arithmetic decoder 204 updates the context associated with the context index ⁇ ⁇ corresponding to the first bin ⁇ according to the value of bin ⁇ ⁇ subjected to the binary arithmetic decoding for the subsequent binary arithmetic decoding.
  • the fixed binary arithmetic decoder 205 reads bin (n) ⁇ (n> 1) from the encoded data supplied through the switch 212. ) Is subjected to binary arithmetic decoding, and supplied to the binarization canceler 2031 via the switch 211.
  • the length of the prefix part is the length obtained by adding 2 of bin (1) and the end of “0” ⁇ to the number M of consecutive “1” ⁇ ⁇ s that have been fixed binary arithmetic decoded in the past.
  • the length of the suffix part is M + 1.
  • the debinarization unit 2031 determines bin string index corresponding to bin string constituted by the outputs of the adaptive binary arithmetic decoder 204 and the fixed binary arithmetic decoder 205, that is, UDQP.
  • the RQP is obtained by adding the PQP supplied from the predictor 201 to the DQP supplied from the binarization canceler 2031.
  • the RQP is stored in the buffer 202 for subsequent quantization parameter decoding.
  • the binarization decoder 2031, the adaptive binary arithmetic decoder 204, and the fixed binary arithmetic decoder 205 which are features of the video quantization parameter decoder of this embodiment. The operation of will be described.
  • the adaptive binary arithmetic decoder 204 starts processing with the initial value parameter n being 1.
  • step S201 the adaptive binary arithmetic decoder 204 performs adaptive binary arithmetic decoding of bin (n). Increment n.
  • step S202 the fixed binary arithmetic decoder 205 determines whether or not bin (n-1), that is, the value of bin (1) is 1.
  • bin (1) 1 indicates that UDQP, that is, DQP is significant. If the value of bin (1) is 1, the process proceeds to step S203. Otherwise, the process proceeds to step S205.
  • step S203 the fixed binary arithmetic decoder 205 performs fixed binary arithmetic decoding of bin (n).
  • step S204 the fixed binary arithmetic decoder 205 determines whether or not all bins have been decoded, that is, whether or not the last bin in the fix part has been decoded. If all bins have been decoded, the process proceeds to step S205. Otherwise, n is incremented to proceed to step S203 in order to perform fixed binary arithmetic decoding on the subsequent bin (n).
  • step S205 the binarization canceler 2031 cancels binarization of the decoded bin string and determines a DQP.
  • each of the above embodiments can be configured by hardware, it can also be realized by a computer program.
  • the information processing system shown in FIG. 6 includes a processor 1001, a program memory 1002, a storage medium 1003 for storing video data, and a storage medium 1004 for storing a bitstream.
  • the storage medium 1003 and the storage medium 1004 may be separate storage media, or may be storage areas composed of the same storage medium.
  • a magnetic storage medium such as a hard disk can be used as the storage medium.
  • the program memory 1002 stores a program for realizing the function of each block (excluding the buffer block) shown in each of FIGS. The Then, the processor 1001 executes processing according to the program stored in the program memory 1002, and thereby functions of the video quantization parameter encoder or the video quantization parameter decoder shown in FIG. 1 and FIG. 4, respectively. Is realized.
  • FIG. 7 is a block diagram showing characteristic components in the video quantization parameter encoding apparatus according to the present invention.
  • a video quantization parameter encoding apparatus includes a prediction unit 11 that generates a predicted quantization parameter from past reconstructed quantization parameters, and a difference quantum based on the quantization parameter and the predicted quantization parameter.
  • An arithmetic unit 12 for generating a quantization parameter (equivalent to a subtracter that subtracts the predicted quantization parameter PQP from the quantization parameter QP in FIG.
  • an exponent Golomb bin of a value obtained by converting the differential quantization parameter into an unsigned expression a string is generated, the first bin ⁇ of the exponent Golomb bin string indicating whether the value of the unsigned representation of the differential quantization parameter is significant is adaptive binary arithmetic coded, and the first bin is significant
  • a quantization parameter encoding unit 13 that performs fixed binary arithmetic encoding on the remaining bins of the exponent Golomb bin.
  • FIG. 8 is a block diagram showing characteristic components in the video quantization parameter decoding apparatus according to the present invention.
  • the video quantization parameter decoding apparatus according to the present invention has a prediction unit 21 that generates a prediction quantization parameter from past reconstructed quantization parameters, and a value of an unsigned expression of the difference quantization parameter is significant.
  • the first bin of the exponent Golomb bin string indicating whether or not is an adaptive binary arithmetic decoding, and the remaining bin of the exponent Golomb bin string is fixed binary arithmetic if the first bin indicates that it is significant
  • a quantization parameter decoding unit 22 that performs decoding and converts the unsigned representation of the decoded differential quantization parameter into the original differential quantization parameter value.

Abstract

 映像量子化パラメータ符号化装置は、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部(11)と、量子化パラメータ及び予測量子化パラメータから差分量子化パラメータを生成する演算部(12)と、差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbinstring を生成し、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin string の第1のbin を適応2値算術符号化し、第1のbin が有意であることを示す場合に指数ゴロムbin string の残りのbin を固定2値算術符号化する量子化パラメータ符号化部(13)とを備える。

Description

映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム
 本発明は、コンテキストベース適応2値算術符号化を用いる映像符号化の映像量子化パラメータを符号化する技術に関し、例えば、映像符号化装置や映像復号装置などに好適に適用可能な映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、映像量子化パラメータ符号化装置、映像量子化パラメータ復号装置、映像量子化パラメータ符号化プログラム、及び映像量子化パラメータ復号プログラムに関する。
 非特許文献1及び非特許文献2は、コンテキストベース適応2値算術符号化(CABAC: Context-based Adaptive Binary Arithmetic Coding)を用いる映像符号化技術を開示している。
 図9は、CABAC を用いる映像符号化技術における、映像量子化パラメータ符号化装置の構成を示すブロック図である。図9に示す映像量子化パラメータ符号化器(以後、一般的な映像量子化パラメータ符号化器という。)は、予測器101、バッファ102、2値化器1030、適応2値算術符号化器104、及びスイッチ(SW)111によって構成される。
 一般的な映像量子化パラメータ符号化器に入力される量子化パラメータ(QP: Quantization Parameter)は、予測器101から供給される予測量子化パラメータ(PQP: Predicted QP )が減じられる。PQP が減じられたQPを差分量子化パラメータ(DQP: Delta QP )と呼ぶ。
 非特許文献1において、PQP は、最後に再構築された画像ブロックの再構築量子化パラメータ(LastRQP: Last Reconstructed QP)である。非特許文献2において、PQP は、左に隣接する画像ブロックの再構築量子化パラメータ(LeftRQP: Left Reconstructed QP)又は最後に再構築された画像ブロックの再構築量子化パラメータ(LastRQP )である。
 DQP は、以後の量子化パラメータ符号化のために、PQP が加えられて再構築量子化パラメータ(RQP : Reconstructed QP)としてバッファ102に格納される。
 2値化器1030は、DQP をバイナライズして、bin stringを得る。bin stringのひとつのビットをbin と呼び、bin stringにおいて、最初に2値算術符号化するbin を第1bin (1st bin )、2番目に2値算術符号化するbin を第2bin (2nd bin )、n番目に2値算術符号化するbinを第nbin (nth bin )と呼ぶ。なお、bin 及びbin stringは、非特許文献1の3.9 及び3.12で定義されている。
 図10は、非特許文献1及び非特許文献2における、DQP (右から1列目)とbin string(中央列)との対応表を示す説明図である。DQP のbin stringは、DQP を符号なし変数UDQP(UDQP = 2 x | DQP | - (DQP > 0? 1 : 0) )に変換した値のUnary binarizationである。すなわち、DQP のbin stringは、UDQP個の連続する(0個以上の)"1" のbin と(終端を示す)1個の"0" のbin によって構成される。
 図10に示す左から1列目のbin string indexは、ある値のDQP に対応するbin stringのインデックスを示す。bin string indexは、DQP が0 の場合に1 、DQP が0 より大きい場合に2 x DQP -1、DQP が0 未満の場合に-2 x DQP+1である。つまり、bin string indexの値は、UDQPと同一である。
 図10に示す下から1行目のcontext index は、対応する列のbin の2値算術符号化に用いるコンテキストのインデックスを示す。例えば、DQP=-1に対応するbin stringは110 であり、第1bin の値は1 、第2bin の値は1 、第3bin の値は0 となる。第1bin の2値算術符号化に用いるcontext index は0 、第2bin の当該context index は2 、第3の当該context index は3 である。なお、コンテキストは、bin の優勢シンボル(MPS: Most Probable Symbol )とその発生確率の組である。
 適応2値算術符号化器104は、スイッチ111を介して供給されるbin stringのbin を先頭から対応するcontext index に関連付けられたコンテキストを用いて2値算術符号化する。また、適応2値算術符号化器104は、以後の2値算術符号化のために、2値算術符号化したbin の値に応じてcontext index に関連付けられたコンテキストを更新する。なお、適応2値算術符号化の詳細な動作は、非特許文献1の9.3.4 に記載されている。
 一般的な量子化パラメータ符号化器は、上述した動作に基づいて、入力される映像量子化パラメータを符号化する。
ISO/IEC 14496-10 Advanced Video Coding, April 26, 2012 "WD3: Working Draft 3 of High-Efficiency Video Coding", Document: JCTVC-E603, Joint Collaborative Team on Video Coding   (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 5th Meeting: Geneva, CH, 16-23 March, 2011
 一般的な量子化パラメータ符号化器は、図10とその説明から理解されるように、DQP を符号なし変数UDQPに変換した値のUnary binarizationをbin stringとし、すべてのbin を適応2値算術符号化する。ゆえに、以下の2つの要因によって、有意なDQP を好適に符号化できない課題がある。
 第1の要因は、量子化パラメータ符号化器が扱うbin stringに含まれるbin の個数がDQP の絶対値の約2倍になることである。bin の個数が多いと、2値算術符号化の回数が増え、DQP の符号化処理及び復号処理のスピードも低下する。
 第2の要因は、第2bin とそれ以降のbin が1bitで表現できない3つ以上の状態に関する情報を含むため、適切なコンテキストを用いて、bin を2値算術符号化できないことである。1つのbin で表現可能な情報は、ある2つの状態のうちいずれの状態にあるかの情報である。しかし、第2bin とそれ以降のbin は、1つのbin では表現できない3つ以上の状態に関する情報を含んでいる。具体的には、図10を参照すると、第2bin は、DQP  の正負の情報、及び、有意なDQP の絶対値が1 以上であるか否かを示す情報を含んでいる。また、後続する第3以降のbin (3rd 以降の列)は、DQP の正負の情報と有意なDQP  の絶対値の大きさを示す情報とを含んでいる。ゆえに、1つのbin では表現できない3つ以上の状態に関する情報を含む第2bin とそれ以降のbin は、適切なコンテキストによって2値算術符号化できない。
 そこで、本発明は、上記の各要因を解消することによって、コンテキストベース適応2値算術符号化を用いる映像符号化の映像量子化パラメータを好適に符号化可能とすることを目的とする。
 本発明による映像量子化パラメータ符号化方法は、コンテキストベース適応2値算術符号化に基づいた映像符号化処理のために、量子化パラメータを符号化する映像量子化パラメータ符号化方法であって、過去の再構築量子化パラメータから予測量子化パラメータを生成し、量子化パラメータ及び予測量子化パラメータから差分量子化パラメータを生成し、差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術符号化し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術符号化することを特徴とする。
 本発明による映像量子化パラメータ復号方法は、コンテキストベース適応2値算術符号化に基づいた映像復号処理のために、量子化パラメータを復号する映像量子化パラメータ復号方法であって、過去の再構築量子化パラメータから予測量子化パラメータを生成し、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術復号し、復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換することを特徴とする。
 本発明による映像量子化パラメータ符号化装置は、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部と、量子化パラメータ及び予測量子化パラメータから差分量子化パラメータを生成する演算部と、差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術符号化し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術符号化する量子化パラメータ符号化部とを備えたことを特徴とする。
 本発明による映像量子化パラメータ復号装置は、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部と、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術復号し、復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換する量子化パラメータ復号部とを備えたことを特徴とする。
 本発明による映像量子化パラメータ符号化プログラムは、コンピュータに、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測処理、量子化パラメータ及び予測量子化パラメータから差分量子化パラメータを生成する演算処理、および、差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術符号化し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術符号化する量子化パラメータ符号化処理を実行させることを特徴とする。
 本発明による映像量子化パラメータ復号プログラムは、コンピュータに、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測処理、および、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術復号し、復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換する量子化パラメータ復号処理を実行させることを特徴とする。
 本発明によれば、コンテキストベース適応2値算術符号化を用いる映像符号化の映像量子化パラメータを好適に符号化することができる。
第1の実施形態の映像量子化パラメータ符号化器の構成を示すブロック図である。 第1の実施形態の映像量子化パラメータ符号化器の動作を示すフローチャートである。 DQP とbin stringの対応表の一例を示す説明図である。 第2の実施形態の映像量子化パラメータ符号化器の構成を示すブロック図である。 第2の実施形態の映像量子化パラメータ符号化器の動作を示すフローチャートである。 本発明による映像量子化パラメータ符号化器及び映像量子化パラメータ復号器の機能を実現可能な情報処理システムの構成例を示すブロック図である。 本発明による映像量子化パラメータ符号化装置における特徴的な構成要素を示すブロック図である。 本発明による映像量子化パラメータ復号装置における特徴的な構成要素を示すブロック図である。 一般的な映像量子化パラメータ符号化器の構成を示すブロック図である。 DQP とbin stringの対応表の一般的な例を示す説明図である。
 以下、本発明の実施形態を図面を参照して説明する。
実施形態1.
 図1は、本発明の第1の実施形態の映像量子化パラメータ符号化器の構成を示すブロック図である。図1に示す映像量子化パラメータ符号化器は、予測器101、バッファ102、2値化器1031、適応2値算術符号化器104、固定2値算術符号化器105、スイッチ(SW)111及びスイッチ(SW)112を含む。
 本実施形態の映像量子化パラメータ符号化器は、DQP を符号なし変数UDQPに変換した値の0次指数ゴロム(0th-order Exp-Golomb)binarizationをbin stringとし、差分量子化パラメータの符号なし表現の値が有意であるか否かを示すExp-Golom bin stringの第1のbin を適応2値算術符号化し、差分量子化パラメータの符号なし表現の値を示すExp-Golom bin stringの残りのbin を固定2値算術符号化する。なお、指数ゴロムの次数は0以外でもよい。
 指数ゴロムbinarizationのプリフィックス部は、連続する0個以上の"1" のbin と、終端を示す1個の"0" のbin によって構成される。サフィックス部は、プリフィックス部の連続する"1" の個数N のbin によって構成される。指数ゴロムbinarizationは、その指数表現により、Unary binarizationよりも短いbin stringによって、UDQPを表現できる。なお、K 次の指数ゴロム符号の詳細は、非特許文献1の9.3.2.4 に記載されている。
 固定2値算術符号化は、等確率を用いて、bin を2値算術符号化する。ゆえに、固定2値算術符号化は、適切なコンテキストを用いた2値算術符号化が困難なbin を、固定の圧縮率で2値算術符号化できる。
 続いて、本実施形態の各ブロックの内容を説明する。
 映像量子化パラメータ符号化器に入力される量子化パラメータQPは、予測器101から供給される予測量子化パラメータPQP が減じられる。
 差分量子化パラメータDQP (DQP=QP-PQP)は、以後の量子化パラメータ符号化のために、PQP が加えられて再構築量子化パラメータRQP (RQP=DQP+PQP )としてバッファ102に格納される。
 本発明の特徴である2値化器1031は、入力されるDQP を符号なし変数UDQP(UDQP = 2x|DQP| - (DQP > 0? 1 : 0) )に変換し、その値の0次指数ゴロムのbin stringを出力する。0次指数ゴロムのbin stringの第1のbin は、UDQP、すなわちDQP が有意であるか否かを示す。0次指数ゴロムのbin stringの残りのbin は、UDQPの値の大きさ、すなわちDQPの絶対値と符号の組を示す。0 よりも大きな値のUDQPに対して、DQP の絶対値AbsDQPの値は、UDQPに1 を加えた値を2 で割った値となる
(AbsDQP = (UDQP+1)/2 )。0 よりも大きな値のUDQPに対して、DQP の符号SignDQP は、UDQPが奇数の場合に+ 、偶数の場合に- となる。
 適応2値算術符号化器104は、スイッチ111を介して供給されるbin stringの第1bin をそのcontext index に関連付けられたコンテキストを用いて2値算術符号化し、スイッチ112を介してその符号化データを出力する。また、適応2値算術符号化器104は、以後の2値算術符号化のために、2値算術符号化したbin の値に応じて、context index に関連付けられたコンテキストを更新する。
 固定2値算術符号化器105は、等確率にて、スイッチ111を介して供給されるbin stringの第1bin 以降のbin を2値算術符号化し、スイッチ112を介してその符号化データを出力する。
 以上で、本実施形態の映像量子化パラメータ符号化器の構成説明を終了する。
 次に、図2のフローチャートを用いて、本実施形態の映像量子化パラメータ符号化器の特徴である、2値化器1031、適応2値算術符号化器104、及び固定2値算術符号化器105の動作を説明する。
 適応2値算術符号化器104は、初期値パラメータn を1 として処理を開始する。
 ステップS101では、2値化器1031は、入力されるDQP を符号なし変数UDQPに変換し、その値の0次指数ゴロムのbin stringを出力する。
 ステップS102では、適応2値算術符号化器104は、bin(n)を適応2値算術符号化する。n をインクリメントする。
 ステップS103では、固定2値算術符号化器105は、DQP が有意であるか否かを判断する。DQP が有意であればステップS104に進む。そうでなければ処理を終了する。
 ステップS104では、固定2値算術符号化器105は、bin(n)を固定2値算術符号化する。
 ステップS105では、固定2値算術符号化器105は、bin stringのすべてのbin を符号化したか否かを判断する。すべてのbin を符号化した場合処理を終了する。そうでない場合、固定2値算術符号化器105は、後続するbin(n)を固定適応2値算術符号化するために、n をインクリメントしてステップS104に進む。
 以上で、本実施形態の映像量子化パラメータ符号化器の特徴である、2値化器1031、適応2値算術符号化器104、及び、固定2値算術符号化器105の動作説明を終了する。
 図3は、本発明における、DQP (右から1列目)とbin string(中央列)の対応表の一例を示す説明図である。なお、bin string index は、UDQPの値と一致する。
 図3において、context index の行におけるnaは、コンテキストを用いないこと、すなわち、等確率を2値算術化に用いることを示す。
 本発明の映像量子化パラメータ符号化処理によって、上述した課題の2つの要因は以下のように解消される。
 第1の要因は、指数ゴロム符号を用いることによって、UDQPを短いbin stringで表現することによって解消される。図3を参照すると、最も大きな値のUDQPに対するbin stringのbin 数は12となる。つまり、図10に示す一般的な場合のbin 数53の1/4 以下となる。UDQPを短いbin stringで表現することによって、2値算術符号化の回数を減らし、DQP の符号化処理及び復号処理のスピードを増加させることができるようになった。
 第2の要因は、1つのbin では表現できない3つ以上の状態に関する情報を含む、第1bin 以降のbin を等確率で2値算術符号化することによって解消される。第1bin 以降のbin を等確率で2値算術符号化することによって、適切なコンテキストを用いた2値算術符号化が困難なbin を、固定の圧縮率で軽量に2値算術符号化できるようになった。
実施形態2.
 図4は、第1の実施形態の映像量子化パラメータ符号化器に対応する、映像量子化パラメータ復号器の構成を示すブロック図である。図4に示す映像量子化パラメータ復号器は、予測器201、バッファ202、2値化解除器2031、適応2値算術復号器204、固定2値算術復号器205、スイッチ(SW)211及びスイッチ(SW)212を含む。
 適応2値算術復号器204は、スイッチ212を介して供給される符号化データから、bin(1)を2値算術復号し、スイッチ211を介して2値化解除器2031に供給する。また、適応2値算術復号器204は、以後の2値算術復号のために、2値算術復号したbin の値に応じて、第1bin に対応するcontext index に関連付けられたコンテキストを更新する。
 bin(1)が1 である場合(UDQPが有意である場合)、固定2値算術復号器205は、スイッチ212を介して供給される符号化データから、以降のbin(n) (n>1)を2値算術復号し、スイッチ211を介して2値化解除器2031に供給する。なお、プリフィックス部の長さは、過去に固定2値算術復号した連続する"1" の個数M に、bin(1)と終端の"0" の2 を加えた長さとなる。また、サフィックス部の長さはM+1 となる。
 2値化解除器2031は、適応2値算術復号器204と固定2値算術復号器205の出力によって構成されるbin stringに対応するbin string index、すなわちUDQPを決定する。
 続いて、2値化解除器2031は、UDQPが0 の場合、DQP=0 を出力する。そうでない場合、DQP の絶対値AbsDQPと符号SignDQP を決定し、それらに基づいてUDQPを元のDQP に変換して出力する。なお、AbsDQPは、UDQPに1 を加えた値を2 で割った値である。SignDQP は、UDQPが奇数の場合に+ 、偶数の場合に- である。DQP は、SignDQP にAbsDQPを乗じた値である。
 2値化解除器2031から供給されるDQP に、予測器201から供給されるPQP が加えられて、RQP が得られる。
 さらに、RQP は、以後の量子化パラメータ復号のために、バッファ202に格納される。
 以上で、本実施形態の映像量子化パラメータ復号器の構成説明を終了する。
 次に、図5のフローチャートを用いて、本実施形態の映像量子化パラメータ復号器の特徴である、2値化解除器2031、適応2値算術復号器204、及び、固定2値算術復号器205の動作を説明する。
 適応2値算術復号器204は、初期値パラメータn を1 として処理を開始する。
 ステップS201では、適応2値算術復号器204は、bin(n)を適応2値算術復号する。n をインクリメントする。
 ステップS202では、固定2値算術復号器205は、bin(n-1)、つまりbin(1)の値が1 であるか否かを判断する。この例では、bin(1)=1は、UDQP、すなわちDQP が有意であることを示す。bin(1)の値が1 であればステップS203に進む。そうでなければ、ステップS205に進む。
 ステップS203では、固定2値算術復号器205は、bin(n)を固定2値算術復号する。
 ステップS204では、固定2値算術復号器205は、すべてのbin を復号したか否か、すなわち、フィックス部の最後のbin を復号したか否かを判断する。すべてのbin を復号した場合、ステップS205に進む。そうでない場合、後続するbin(n)を固定2値算術復号するために、n をインクリメントしてステップS203に進む。
 ステップS205では、2値化解除器2031は、復号したbin stringを2値化解除して、DQP を決定する。
 以上で、本実施形態の映像量子化パラメータ復号器の特徴である、2値化解除器2031、適応2値算術復号器204、及び固定2値算術復号器205の動作説明を終了する。
 また、上記の各実施形態を、ハードウェアで構成することも可能であるが、コンピュータプログラムにより実現することも可能である。
 図6に示す情報処理システムは、プロセッサ1001、プログラムメモリ1002、映像データを格納するための記憶媒体1003及びビットストリームを格納するための記憶媒体1004を備える。記憶媒体1003と記憶媒体1004とは、別個の記憶媒体であってもよいし、同一の記憶媒体からなる記憶領域であってもよい。記憶媒体として、ハードディスク等の磁気記憶媒体を用いることができる。
 図6に示された情報処理システムにおいて、プログラムメモリ1002には、図1、図4のそれぞれに示された各ブロック(ただし、バッファのブロックを除く)の機能を実現するためのプログラムが格納される。そして、プロセッサ1001は、プログラムメモリ1002に格納されているプログラムに従って処理を実行することによって、図1、図4のそれぞれに示された映像量子化パラメータ符号化器又は映像量子化パラメータ復号器の機能を実現する。
 図7は、本発明による映像量子化パラメータ符号化装置における特徴的な構成要素を示すブロック図である。図7に示すように、本発明による映像量子化パラメータ符号化装置は、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部11と、量子化パラメータ及び予測量子化パラメータから差分量子化パラメータを生成する演算部12(一例として、図1における量子化パラメータQPから予測量子化パラメータPQP を減ずる減算器に相当)と、差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術符号化し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術符号化する量子化パラメータ符号化部13とを備える。
 図8は、本発明による映像量子化パラメータ復号装置における特徴的な構成要素を示すブロック図である。図8に示すように、本発明による映像量子化パラメータ復号装置は、過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部21と、差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、第1のbin が有意であることを示す場合に指数ゴロムbin stringの残りのbin を固定2値算術復号し、復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換する量子化パラメータ復号部22とを備える。
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2012年6月28日に出願された日本特許出願2012-145434を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11 予測部
 12 演算部
 13 量子化パラメータ符号化部
 21 予測部
 22 量子化パラメータ復号部
 101 予測器
 102 バッファ
 1031 2値化器
 104 適応2値算術符号化器
 105 固定2値算術符号化器
 106 値域決定部
 111 スイッチ
 112 スイッチ
 201 予測器
 202 バッファ
 2031 2値化解除器
 204 適応2値算術復号器
 205 固定2値算術復号器
 211 スイッチ
 212 スイッチ

Claims (6)

  1.  コンテキストベース適応2値算術符号化に基づいた映像符号化処理のために、量子化パラメータを符号化する映像量子化パラメータ符号化方法であって、
     過去の再構築量子化パラメータから予測量子化パラメータを生成し、
     量子化パラメータ及び前記予測量子化パラメータから差分量子化パラメータを生成し、
     差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、
     前記差分量子化パラメータの符号なし表現の値が有意であるか否かを示す前記指数ゴロムbin stringの第1のbin を適応2値算術符号化し、
     前記第1のbin が有意であることを示す場合に前記指数ゴロムbin stringの残りのbin を固定2値算術符号化する
     ことを特徴とする映像量子化パラメータ符号化方法。
  2.  コンテキストベース適応2値算術符号化に基づいた映像復号処理のために、量子化パラメータを復号する映像量子化パラメータ復号方法であって、
     過去の再構築量子化パラメータから予測量子化パラメータを生成し、
     差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、
     前記第1のbin が有意であることを示す場合に前記指数ゴロムbin stringの残りのbin を固定2値算術復号し、
     復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換する
     ことを特徴とする映像量子化パラメータ復号方法。
  3.  過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部と、
     量子化パラメータ及び前記予測量子化パラメータから差分量子化パラメータを生成する演算部と、
     差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、前記差分量子化パラメータの符号なし表現の値が有意であるか否かを示す前記指数ゴロムbin stringの第1のbin を適応2値算術符号化し、前記第1のbin が有意であることを示す場合に前記指数ゴロムbin stringの残りのbin を固定2値算術符号化する量子化パラメータ符号化部とを備えた
     ことを特徴とする映像量子化パラメータ符号化装置。
  4.  過去の再構築量子化パラメータから予測量子化パラメータを生成する予測部と、
     差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、前記第1のbin が有意であることを示す場合に前記指数ゴロムbin stringの残りのbin を固定2値算術復号し、復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換する量子化パラメータ復号部とを備えた
     ことを特徴とする映像量子化パラメータ復号装置。
  5.  コンピュータに、
     過去の再構築量子化パラメータから予測量子化パラメータを生成する予測処理、
     量子化パラメータ及び前記予測量子化パラメータから差分量子化パラメータを生成する演算処理、および、
     差分量子化パラメータを符号なし表現に変換した値の指数ゴロムbin stringを生成し、前記差分量子化パラメータの符号なし表現の値が有意であるか否かを示す前記指数ゴロムbin stringの第1のbin を適応2値算術符号化し、前記第1のbin が有意であることを示す場合に前記指数ゴロムbin stringの残りのbin を固定2値算術符号化する量子化パラメータ符号化処理
     を実行させるための映像量子化パラメータ符号化プログラム。
  6.  コンピュータに、
     過去の再構築量子化パラメータから予測量子化パラメータを生成する予測処理、および、
     差分量子化パラメータの符号なし表現の値が有意であるか否かを示す指数ゴロムbin stringの第1のbin を適応2値算術復号し、前記第1のbin が有意であることを示す場合に前記指数ゴロムbin stringの残りのbin を固定2値算術復号し、復号した差分量子化パラメータの符号なし表現を元の差分量子化パラメータの値に変換する量子化パラメータ復号処理
     を実行させるための映像量子化パラメータ復号プログラム。
PCT/JP2013/003573 2012-06-28 2013-06-06 映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム WO2014002399A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014522398A JP6036822B2 (ja) 2012-06-28 2013-06-06 映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム
RU2014153577/08A RU2602782C2 (ru) 2012-06-28 2013-06-06 Способ кодирования параметров квантования видео, способ декодирования параметров квантования видео и соответствующие устройства и программы
US14/410,215 US20150326859A1 (en) 2012-06-28 2013-06-06 Video quantization-parameter encoding method, video quantization-parameter decoding method, device, and program
CN201380026071.2A CN104380733B (zh) 2012-06-28 2013-06-06 视频量化参数编码方法、视频量化参数解码方法、设备
IL235057A IL235057A (en) 2012-06-28 2014-10-07 Video parameter coding method, video parameter quantization decoding method, device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012145434 2012-06-28
JP2012-145434 2012-06-28

Publications (1)

Publication Number Publication Date
WO2014002399A1 true WO2014002399A1 (ja) 2014-01-03

Family

ID=49782601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003573 WO2014002399A1 (ja) 2012-06-28 2013-06-06 映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム

Country Status (6)

Country Link
US (1) US20150326859A1 (ja)
JP (1) JP6036822B2 (ja)
CN (1) CN104380733B (ja)
IL (1) IL235057A (ja)
RU (1) RU2602782C2 (ja)
WO (1) WO2014002399A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070818B2 (en) * 2017-07-05 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Decoding a block of video samples

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106155984B (zh) * 2015-03-31 2020-04-07 日本电气株式会社 一种通讯数据处理设备、方法和系统
CN106664405B (zh) * 2015-06-09 2020-06-09 微软技术许可有限责任公司 用调色板模式对经逸出编码的像素的稳健编码/解码
EP3200455B1 (en) * 2016-01-28 2018-09-05 intoPIX Method and device for compression and decompression of binary data
US10706492B2 (en) * 2017-09-05 2020-07-07 Texas Instruments Incorporated Image compression/decompression in a computer vision system
CN117579846A (zh) * 2023-11-09 2024-02-20 四川新视创伟超高清科技有限公司 一种lcevc的熵编码方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020141A (ja) * 2005-06-08 2007-01-25 Matsushita Electric Ind Co Ltd 画像符号化装置
JP2011024066A (ja) * 2009-07-17 2011-02-03 Sony Corp 画像処理装置および方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900748B2 (en) * 2003-07-17 2005-05-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for binarization and arithmetic coding of a data value
US7599435B2 (en) * 2004-01-30 2009-10-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Video frame encoding and decoding
CN101218825B (zh) * 2005-07-08 2014-07-09 Lg电子株式会社 用于建模视频信号的编码信息以压缩/解压编码信息的方法
US8848789B2 (en) * 2006-03-27 2014-09-30 Qualcomm Incorporated Method and system for coding and decoding information associated with video compression
US8213499B2 (en) * 2007-04-04 2012-07-03 General Instrument Corporation Method and apparatus for context address generation for motion vectors and coefficients
CN101115200B (zh) * 2007-04-20 2010-05-19 西安交通大学 一种有效的运动矢量可伸缩编码方法
US9106913B2 (en) * 2011-03-08 2015-08-11 Qualcomm Incorporated Coding of transform coefficients for video coding
US9357185B2 (en) * 2011-11-08 2016-05-31 Qualcomm Incorporated Context optimization for last significant coefficient position coding
WO2013175736A1 (ja) * 2012-05-25 2013-11-28 パナソニック株式会社 動画像符号化方法、動画像符号化装置、動画像復号方法、動画像復号装置、および、動画像符号化復号装置
RU2623800C2 (ru) * 2012-05-25 2017-06-29 Сан Пэтент Траст Способ кодирования видеоизображений, способ декодирования видеоизображений, устройство кодирования видеоизображений, устройство декодирования видеоизображений и устройство кодирования-декодирования видеоизображений

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020141A (ja) * 2005-06-08 2007-01-25 Matsushita Electric Ind Co Ltd 画像符号化装置
JP2011024066A (ja) * 2009-07-17 2011-02-03 Sony Corp 画像処理装置および方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEIICHI CHONO ET AL.: "Efficient binary representation of cu_qp_delta syntax for CABAC", JOINT COLLABORATIVE TEAM ON VIDEO CODING(JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 6TH MEETING, 14 July 2011 (2011-07-14), TORINO *
KEIICHI CHONO: "AHG5: Simplified cu_qp_delta coding with EGO", JOINT COLLABORATIVE TEAM ON VIDEO CODING(JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 9TH MEETING, 2 July 2012 (2012-07-02), GENEVA, CH *
VIVIENNE SZE ET AL.: "Reduction in context coded bins for ref_idx and cu_qp_delta", JOINT COLLABORATIVE TEAM ON VIDEO CODING(JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/ WG11 9TH MEETING, 2 May 2012 (2012-05-02), GENEVA, CH *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070818B2 (en) * 2017-07-05 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Decoding a block of video samples

Also Published As

Publication number Publication date
IL235057A (en) 2017-09-28
JPWO2014002399A1 (ja) 2016-05-30
RU2014153577A (ru) 2016-08-20
CN104380733A (zh) 2015-02-25
RU2602782C2 (ru) 2016-11-20
US20150326859A1 (en) 2015-11-12
CN104380733B (zh) 2017-09-05
JP6036822B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6036822B2 (ja) 映像量子化パラメータ符号化方法、映像量子化パラメータ復号方法、装置およびプログラム
RU2664403C1 (ru) Способ для кодирования параметра квантования видео и способ для декодирования параметра квантования видео
JP6149971B2 (ja) 映像量子化パラメータ符号化方法及び映像量子化パラメータ復号方法
AU2015252148B2 (en) Image quantization parameter encoding method and image quantization parameter decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522398

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14410215

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014153577

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13808597

Country of ref document: EP

Kind code of ref document: A1