WO2014002360A1 - Electrolyzed water generating device - Google Patents

Electrolyzed water generating device Download PDF

Info

Publication number
WO2014002360A1
WO2014002360A1 PCT/JP2013/002944 JP2013002944W WO2014002360A1 WO 2014002360 A1 WO2014002360 A1 WO 2014002360A1 JP 2013002944 W JP2013002944 W JP 2013002944W WO 2014002360 A1 WO2014002360 A1 WO 2014002360A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode
electrolysis
electrolyzed
alkaline ionized
Prior art date
Application number
PCT/JP2013/002944
Other languages
French (fr)
Japanese (ja)
Inventor
久徳 白水
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014002360A1 publication Critical patent/WO2014002360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte

Definitions

  • the present invention relates to an electrolyzed water generating device that generates electrolyzed water.
  • an electrolyzed water generating device that generates alkaline ionized water and acidic ionized water by electrolyzing raw water such as tap water in an electrolytic cell.
  • This electrolyzed water generating apparatus discharges one of alkaline ionized water and acidic ionized water so as to be usable from the water discharge channel, and discharges the other from the drainage channel.
  • Alkaline water which is particularly good for health, is used for drinking.
  • the amount of dissolved hydrogen depends on the strength of electrolysis in the electrolytic cell. For this reason, even if it is going to produce
  • an electrolyzed water generating device in which a pH adjuster is added to the alkaline ionized water generated at the cathode to adjust the pH value of the alkaline ionized water to less than 10. Has been.
  • the electrolyzed water generator described in Patent Document 1 uses acidic substances such as citric acid, trisodium citrate, and lemon as a pH adjuster. For this reason, when there is too much addition amount of a pH adjuster with respect to the pH intensity
  • this invention is proposed in view of the above-mentioned situation, and it aims at providing the electrolyzed water production
  • the electrolyzed water generating apparatus is divided into a cathode chamber and an anode chamber by a diaphragm, and an electrode for electrolysis for performing electrolysis is inserted into each of the cathode chamber and the anode chamber,
  • An electrolytic cell that electrolyzes the raw water that has been passed through to generate alkaline ionized water and acidic ionized water, an introduction path that introduces the raw water into the electrolytic cell, and alkaline ionized water generated in the cathode chamber in the electrolytic cell PH of the raw water or alkaline ionized water provided in the water supply path for discharging the acidic ion water generated in the anode chamber in the electrolytic cell, and the supplied raw water or alkaline ionized water provided in the water supply path.
  • a pH buffer supply unit for supplying a buffer, and a control unit for controlling the strength of electrolysis applied to the electrode for electrolysis of the electrolytic cell are provided.
  • the electrolyzed water generating apparatus is the electrolyzed water generating apparatus according to the first aspect, wherein the pH buffering agent by the pH buffering agent supply unit is based on the pH value of the alkaline ionized water. And an on-off valve capable of adjusting the amount of addition.
  • FIG. 1 is a block diagram showing a configuration of an electrolyzed water generating device shown as the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing another configuration of the electrolyzed water generating device shown as the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the electrolyzed water generating device shown as the second embodiment of the present invention.
  • FIG. 4 is a block diagram showing another configuration of the electrolyzed water generating device shown as the second embodiment of the present invention.
  • the electrolyzed water generating apparatus shown as the first embodiment of the present invention is configured, for example, as shown in FIG.
  • the electrolyzed water generator has a main body 3 to which raw water is supplied through a raw water pipe 1 and a faucet 2.
  • a water discharge path 18 for discharging alkaline ion water as electrolyzed water is provided on the upper portion of the main body 3.
  • a drainage channel 19 b for discharging acidic ion water of electrolyzed water is provided at the lower part of the main body 3.
  • the main body 3 is connected to a commercial power supply by a power plug 24 and is driven to generate electrolyzed water.
  • the raw water supplied from the raw water pipe 1 through the faucet 2 is introduced into the water purification unit 4.
  • the water purification unit 4 includes an activated carbon that adsorbs residual chlorine, trihalomethane, mold odor, and the like in raw water, a hollow fiber membrane that accurately removes general bacteria and impurities, and the like.
  • the raw water filtered by the water purification unit 4 is introduced into the introduction paths 5a, 5b, and 5c.
  • the flow rate of the filtered raw water is detected by the flow rate detection unit 6.
  • the flow rate detection unit 6 outputs the detected flow rate value of the raw water to the control unit 26.
  • the flow rate detection unit 6 also has a function of detecting water flow to the main body unit 3.
  • the filtered raw water branches into the introduction path 5c and the introduction path 5b.
  • a portion of the raw water is supplied to the calcium supply unit 8 through the calcium supply unit restriction 7 provided in the introduction path 5c.
  • the calcium supply unit 8 applies calcium ions such as calcium glycerophosphate and calcium lactate to the raw water. Thereby, the calcium supply part 8 raises the electrical conductivity of raw
  • the opening 7 of the calcium supply portion restriction 7 is restricted, and restricts the flow rate through the introduction path 5c.
  • the raw water that has passed through the calcium supply unit 8 merges with the raw water in the introduction path 5b and is guided to the introduction path 5d.
  • the raw water of the introduction path 5d branches into the introduction path 5e and the introduction path 5f.
  • a part of the raw water is supplied to the pH buffer agent supply unit 10 via the pH buffer agent supply unit throttle 9 provided in the introduction path 5f.
  • the pH buffer supply unit 10 supplies the pH buffer to the raw water.
  • pH buffering agent is pH buffering performance such as bicarbonate such as sodium bicarbonate and potassium bicarbonate, phosphate such as sodium dihydrogen phosphate and potassium dihydrogen phosphate, and acetate such as sodium acetate and potassium acetate. It is an agent having Thereby, the pH buffer supply part 10 exhibits the pH buffering effect on the introduced raw water.
  • the opening of the pH buffer agent supply section throttle 9 is restricted, and restricts the flow rate of the raw water introduced into the pH buffer agent supply section 10.
  • the raw water that has passed through the pH buffering agent supply unit 10 merges with the raw water in the introduction path 5e and is guided to the introduction path 5g.
  • the raw water guided to the introduction path 5g is branched from the introduction path 5g and introduced into the first electrode chamber introduction path 11 and the second electrode chamber introduction path 12.
  • a second electrode chamber diaphragm 13 is provided in the second electrode chamber introduction path 12.
  • the second electrode chamber restriction 13 adjusts the flow rate flowing through the second electrode chamber introduction passage 12.
  • the raw water that has passed through the first electrode chamber introduction path 11 and the second electrode chamber introduction path 12 is supplied to the electrolytic cell 14.
  • the electrolytic cell 14 electrolyzes the raw water that has been passed through. Thereby, the electrolytic cell 14 produces
  • the electrolytic cell 14 includes diaphragms 15a and 15b, a first electrode chamber 14a, a second electrode chamber 14b, first electrode chamber electrode plates 16a and 16b, and a second electrode chamber electrode plate 17.
  • the first electrode chamber electrode plates 16a and 16b and the second electrode chamber electrode plate 17 function as electrode chamber electrodes.
  • the diaphragms 15a and 15b divide the electrolytic cell 14 to form a first electrode chamber 14a and a second electrode chamber 14b.
  • the electrode plates 16a and 16b for the first electrode chamber are arranged in the first electrode chamber 14a.
  • a voltage is applied to the first electrode chamber electrode plates 16 a and 16 b under the control of the control unit 26.
  • the electrode plates 16a and 16b for the first electrode chamber electrolyze raw water when voltage is applied to generate electrolyzed water.
  • the electrolyzed water in the first electrode chamber 14 a is introduced from the first electrode chamber 14 a into the water discharge path 18 and the water discharge bypass path 21.
  • the water discharge channel 18 discharges alkaline ionized water.
  • the water discharge bypass 21 branches from the water discharge 18.
  • the water discharge bypass 21 is provided with a discharge bypass throttle 22 and a pH sensor unit 23.
  • the discharge bypass passage restriction 22 restricts the flow rate through the water discharge bypass passage 21.
  • the pH sensor unit 23 measures the pH value of the water in the first electrode chamber 14a. The measured pH value is output to the control unit 26.
  • the electrode plate 17 for the second electrode chamber is disposed in the second electrode chamber 14b.
  • a voltage is applied to the second electrode chamber electrode plate 17 under the control of the control unit 26.
  • the electrode plate 17 for 2nd electrode chambers electrolyzes raw
  • the electrolyzed water in the second electrode chamber 14b is supplied to the drainage channel 19a.
  • the drainage channel 19a discharges acidic ion water.
  • the drainage channel 19a is provided with a drainage channel throttle 20.
  • the drainage channel restrictor 20 restricts the flow rate through the drainage channel 19a.
  • the acidic ionized water that has passed through the drainage restrictor 20 is discharged through the drainage channel 19b.
  • the main unit 3 is provided with a power supply unit 25.
  • the power supply unit 25 is connected to the power plug 24.
  • the power supply unit 25 converts AC power supplied from the power plug 24 into DC power and supplies the DC power to the control unit 26.
  • the control unit 26 applies the power supplied from the power supply unit 25 to the first electrode chamber electrode plates 16 a and 16 b and the second electrode chamber electrode plate 17.
  • the control part 26 supplies the electrolytic cell 14 with the electrolysis energy for performing electrolysis.
  • the control unit 26 controls the strength of electrolysis applied to the first electrode chamber electrode plates 16 a and 16 b and the second electrode chamber electrode plate 17 of the electrolytic cell 14.
  • the main body unit 3 is provided with an operation display unit 27.
  • the operation display unit 27 includes operation buttons, a liquid crystal display, and the like.
  • the operation display unit 27 receives an operation by a user and displays settings and a state of the electrolyzed water generating device.
  • the operation display unit 27 can be set so that the electrolyzed water generating device generates alkaline ionized water or acidic ionized water.
  • the operation display unit 27 can set the quality of the purified water by the water purification unit 4.
  • the operation display unit 27 can set the pH intensity of alkaline ionized water.
  • the operation display unit 27 can select and set various functions.
  • the electrolyzed water generating apparatus described above operates as follows to generate alkaline ionized water having an appropriate pH value and a large amount of dissolved hydrogen.
  • the user of the electrolyzed water generating device selects a desired water quality mode and pH intensity such as an alkaline ionized water generating mode, an acidic ionized water generating mode, or a purified water mode by operating a button on the operation display unit 27.
  • a desired water quality mode and pH intensity such as an alkaline ionized water generating mode, an acidic ionized water generating mode, or a purified water mode by operating a button on the operation display unit 27.
  • the raw water introduced from the faucet 2 to the main body 3 is freed of impurities such as residual chlorine, trihalomethane, mold odor and general bacteria in the raw water by the water purification unit 4.
  • the filtered raw water passes through the flow rate detection unit 6 through the introduction channel 5a, and then a part of the raw water is branched to the introduction channel 5c side, and the flow rate is restricted to an appropriate amount by the calcium supply unit throttle 7.
  • This raw water is processed into water that is easily electrolyzed by dissolving calcium glycerophosphate, calcium lactate, and the like in the calcium supply section 8, and merges with the raw water in the introduction path 5b.
  • the calcium supply unit 8 may have a structure in which calcium glycerophosphate, calcium lactate, or the like is directly added and turbidly dissolved in running water. A structure to be dissolved may be used.
  • the shape of these calcium glycerophosphate and calcium lactate may be any of powder, granule, and tablet, but it is desirable to make it granular from the viewpoint of stable dissolution of the agent.
  • the pH buffer supply unit 10 may have a structure in which a pH buffer agent is added and turbidly dissolved in running water, or after being put into a housing having a mesh, it is inserted into the supply unit and dissolved by water flow at the interface with the mesh.
  • the structure to be allowed may be used.
  • These pH buffering agents may be in the form of powder, granules or tablets, but are preferably granulated from the viewpoint of stable dissolution of the agent.
  • the raw water is introduced into the first electrode chamber 14a and the second electrode chamber 14b through the first electrode chamber introduction passage 11 and the second electrode chamber introduction passage 12, respectively.
  • the second electrode chamber restriction 13 adjusts the internal pressure balance of the first electrode chamber 14a and the second electrode chamber 14b.
  • the second electrode chamber restriction 13 has the first electrode chamber introduction path 11 and the second electrode with respect to the flow rate ratio passing through the outlet side of the first electrode chamber 14a and the outlet side of the second electrode chamber 14b. The flow rate ratio passing through the room introduction path 12 is changed.
  • the AC 100 V is supplied from the power plug 24 to the power supply unit 25.
  • the transformer in the power supply unit 25 and the control DC power supply generate energy necessary for electrolysis.
  • the necessary energy is supplied to the first electrode chamber electrode plates 16 a and 16 b and the second electrode chamber electrode plate 17 of the electrolytic cell 14 through the control unit 26.
  • the electrode to which a relatively positive voltage is applied is an anode
  • the electrode to which a negative voltage is applied is a cathode
  • an anode chamber and a cathode chamber partitioned by diaphragms 15a and 15b are formed in the electrolytic cell 14.
  • the first electrode chamber electrode plates 16a and 16b serve as cathodes
  • the second electrode chamber electrode plate 17 serves as an anode.
  • control unit 26 reads an output signal from the flow rate detection unit 6. When the flow rate level flowing per unit time exceeds a certain amount, the control unit 26 determines that water is flowing. The control unit 26 supplies predetermined electrolytic energy to the electrolytic cell 14 based on the electrolysis conditions corresponding to the water quality mode and pH intensity selected in advance.
  • the first electrode chamber electrode plates 16 a and 16 b serve as cathodes, and alkaline ion water is generated and discharged from the water discharge path 18.
  • the electrode plate 17 for the second electrode chamber serves as an anode, and acid ion water is generated.
  • the flow rate is restricted to an appropriate amount by the drainage channel throttle 20, and is discharged from the drainage channel 19b.
  • the alkaline ionized water thus generated is discharged from the water discharge channel 18 and used for drinking.
  • a part of the alkaline ionized water is branched into the water discharge bypass passage 21, the flow amount is restricted to an appropriate amount by the water discharge bypass passage restrictor 22, and introduced into the pH sensor unit 23 to measure the pH value.
  • the control unit 26 reads the output signal from the pH sensor unit 23 and performs control to sequentially adjust the electrolysis energy so that the pH intensity set by the operation display unit 27 is obtained.
  • the alkaline ionized water that has passed through the pH sensor unit 23 is discharged as drainage after joining the drainage channel 19b.
  • the pH buffer is dissolved in the raw water to be electrolyzed by the pH buffer supply unit 10. For this reason, in order to raise the pH value of alkaline ionized water to desired pH intensity
  • control unit 26 may adjust the energy of electrolysis so that the pH value is as high as possible within a range where the pH value does not become 10 or more. desirable.
  • the control unit 26 determines that the state is water stop and ends the supply of electrolysis energy to the electrolytic cell 14.
  • the controller 26 applies a positive voltage relatively to the first electrode chamber electrode plates 16 a and 16 b and applies a negative voltage to the second electrode chamber electrode plate 17 for a certain time after the water stoppage.
  • scales such as calcium adhering to the electrode plates 16a and 16b for the first electrode chamber, are washed and removed.
  • the pH buffering agent supply unit 10 is provided in the introduction path 5 f that is the front stage of the electrolytic cell 14.
  • the electrolyzed water generating device can generate alkali ion water with high electrolysis energy in order to obtain alkali ion water having an appropriate pH value.
  • generation apparatus can produce
  • generation apparatus has injected
  • the electrolyzed water generating apparatus shown as the first embodiment includes the pH buffer agent supply section throttle 9 and the pH buffer agent supply section 10 in a water discharge path 18 a branched from the water discharge path 18. Also good.
  • the electrolyzed water generator adds a pH buffer to the water discharged from the water discharge path 18 a and mixes the water discharged with the water discharged from the water discharge path 18. Thereby, the electrolyzed water generating device suppresses the pH value of the alkaline ionized water discharged from the water discharge path 18.
  • Such an electrolyzed water generating apparatus can generate alkali ion water with a large amount of dissolved hydrogen without excessively neutralizing the generated alkali ion water and without excessively increasing the pH value. .
  • the electrolyzed water generating apparatus shown as the second embodiment includes an on-off valve 28 that can adjust the amount of pH buffering agent added by the pH buffering agent supply unit 10 based on the pH value of the discharged water. Different from water generator.
  • the opening / closing valve 28 is operated by the actuator 28a according to the control of the control unit 26, and its opening degree is adjusted.
  • the control unit 26 supplies a control signal for adjusting the addition amount of the pH buffering agent by the pH buffering agent supply unit to the on-off valve 28 based on the pH value of the alkaline ionized water detected by the pH sensor unit 23.
  • the control unit 26 desirably adjusts the opening degree of the on-off valve 28 within a range where the pH value does not become 10 or more based on the electrolysis energy.
  • the control unit 26 appropriately controls the opening degree of the on-off valve 28 while detecting the pH value of the alkaline ionized water. Thereby, even if the melt
  • the control unit 26 is detecting the pH value detected by the pH sensor unit 23 while supplying the maximum electrolysis energy.
  • the opening degree of the on-off valve 28 is adjusted until the desired pH intensity is reached.
  • the control unit 26 decreases the opening degree of the on-off valve 28.
  • the control unit 26 increases the opening degree of the on-off valve 28.
  • the electrolyzed water generating apparatus shown as the second embodiment is provided with the pH buffering agent supply unit 10 in the introduction path 5f, which is the front stage of the electrolytic cell 14, as in the first embodiment.
  • generation apparatus can adjust the addition amount of a pH buffer agent, and can discharge the alkaline ionized water of desired pH intensity
  • the electrolyzed water generating apparatus shown as the second embodiment may include the on-off valve 28 and the pH buffering agent supply unit 10 in the water discharge path 18a branched from the water discharge path 18 as shown in FIG.
  • the electrolyzed water generator adds a pH buffer to the water discharged from the water discharge path 18 a and mixes the water discharged with the water discharged from the water discharge path 18.
  • the control unit 26 opens and closes the open / close valve 28 so as to obtain a desired pH value based on the pH value of the alkaline ionized water detected by the pH sensor unit 23.
  • the electrolyzed water generating device suppresses the pH value of the alkaline ionized water discharged from the water discharge path 18.
  • Such an electrolyzed water generating apparatus can generate alkali ion water with a large amount of dissolved hydrogen without excessively neutralizing the generated alkali ion water and without excessively increasing the pH value. .
  • the pH buffer is supplied to the raw water or the alkaline ionized water, the alkaline ionized water having an appropriate pH value and a large amount of dissolved hydrogen can be generated.

Abstract

The present invention is provided with an electrolytic tank (14) that generates alkali ion water and acidic ion water by electrolyzing raw water that has been passed into the electrolytic tank (14). The electrolytic tank (14) is divided into a negative electrode compartment (14a) and a positive electrode compartment (14b) by barrier membranes (15a, 15b). In order for electrolysis to be carried out in the negative electrode compartment (14a) and the positive electrode compartment (14b) respectively, electrode plates for the negative electrode compartment (16a, 16b) and an electrode plate for the positive electrode compartment (17) are inserted into the electrolytic tank (14). The present invention is also provided with: an introduction passage for the negative electrode compartment (11) and an introduction passage for the positive electrode compartment (12) that introduce the raw water into the electrolytic tank (14); a discharge passage (18) that discharges the alkali ion water generated in the negative electrode compartment (14a) of the electrolytic tank (14); a drainage passage (19b) that drains the acidic ion water generated in the positive electrode compartment (14b) of the electrolytic tank (14); a pH buffer agent supply part (10) that supplies a pH buffer agent to the raw water that is supplied, or to the alkali ion water, and that is provided to an introduction passage (5), or the discharge passage (18); and a control part (26) that controls the intensity of the electrolysis that is applied to the electrodes in the electrolytic tank (14).

Description

電解水生成装置Electrolyzed water generator
 本発明は、電解水を生成する電解水生成装置に関する。 The present invention relates to an electrolyzed water generating device that generates electrolyzed water.
 近年の安全な水や健康に対する関心の高まりに伴って、水道水等の原水を電解槽内で電気分解することでアルカリイオン水と酸性イオン水を生成する電解水生成装置が知られている。この電解水生成装置は、アルカリイオン水と酸性イオン水の一方を吐水路から利用可能に吐出し、他方を排水路から排出する。特に健康に良いとされるアルカリ性水については飲用に供される。 With the recent increase in interest in safe water and health, an electrolyzed water generating device that generates alkaline ionized water and acidic ionized water by electrolyzing raw water such as tap water in an electrolytic cell is known. This electrolyzed water generating apparatus discharges one of alkaline ionized water and acidic ionized water so as to be usable from the water discharge channel, and discharges the other from the drainage channel. Alkaline water, which is particularly good for health, is used for drinking.
 また、最近において溶存水素量の多い飲用水は、例えばパーキンソン病やメタボリックシンドローム、生活習慣病等の予防や改善に効果があるという研究報告がある。このことから、溶存水素量が多いアルカリイオン水を生成可能な電解水生成装置が望まれている。 In recent years, there have been research reports that drinking water with a large amount of dissolved hydrogen is effective in preventing and improving Parkinson's disease, metabolic syndrome, lifestyle-related diseases, and the like. For this reason, an electrolyzed water generator capable of generating alkaline ionized water with a large amount of dissolved hydrogen is desired.
 しかしながら、溶存水素量は電解槽における電解の強度に依存する。このため、溶存水素量の多いアルカリイオン水を生成しようとしても、pH値が高くなる。pH値が高いアルカリイオン水を、飲用に適したpH値が10未満の水にするためには、電解の強度をある程抑える必要があった。これにより、アルカリイオン水の溶存水素量を多くすることが困難となっていた。 However, the amount of dissolved hydrogen depends on the strength of electrolysis in the electrolytic cell. For this reason, even if it is going to produce | generate alkali ion water with much dissolved hydrogen amount, pH value becomes high. In order to change alkaline ionized water having a high pH value to water having a pH value suitable for drinking of less than 10, it is necessary to suppress the strength of electrolysis to some extent. This makes it difficult to increase the amount of dissolved hydrogen in alkaline ionized water.
 そこで、例えば下記の特許文献1に記載された技術では、陰極で生成されたアルカリイオン水に、pH調整剤を添加し、アルカリイオン水のpH値を10未満に調整する電解水生成装置が提案されている。 Therefore, for example, in the technology described in Patent Document 1 below, an electrolyzed water generating device is proposed in which a pH adjuster is added to the alkaline ionized water generated at the cathode to adjust the pH value of the alkaline ionized water to less than 10. Has been.
 特許文献1に記載された電解水生成装置は、pH調整剤として、クエン酸、クエン酸三ナトリウム、レモンなどの酸性物質を使用している。このため、生成されたアルカリイオン水のpH強度に対してpH調整剤の添加量が多すぎる場合には、生成されたアルカリイオン水が中和されて中性となってしまう。更にpH調整剤の添加量が多い場合には、酸性の水になってしまう可能性も生じる。 The electrolyzed water generator described in Patent Document 1 uses acidic substances such as citric acid, trisodium citrate, and lemon as a pH adjuster. For this reason, when there is too much addition amount of a pH adjuster with respect to the pH intensity | strength of the produced | generated alkaline ionized water, the produced | generated alkaline ionized water will be neutralized and will become neutral. Furthermore, when there is much addition amount of a pH adjuster, possibility that it may become acidic water also arises.
 そこで、本発明は、上述した実情に鑑みて提案されたものであり、適切なpH値であって溶存水素量の多いアルカリイオン水を生成することができる電解水生成装置を提供することを目的とする。 Then, this invention is proposed in view of the above-mentioned situation, and it aims at providing the electrolyzed water production | generation apparatus which can produce | generate the alkali ion water with an appropriate pH value and many dissolved hydrogen amounts. And
特開2009-160503号公報JP 2009-160503 A
 本発明の第1の態様に係る電解水生成装置は、隔膜により陰極室と陽極室とに分割され、前記陰極室及び前記陽極室の各々に電気分解を行うための電解用電極が挿入され、通水された原水を電気分解してアルカリイオン水及び酸性イオン水を生成する電解槽と、前記電解槽に原水を導入する導入路と、前記電解槽内の陰極室で生成されたアルカリイオン水を吐出する吐水路と、前記電解槽内の陽極室で生成された酸性イオン水を排出する排水路と、前記導入路又は前記吐水路に設けられて、供給された原水又はアルカリイオン水にpH緩衝剤を供給するpH緩衝剤供給部と、前記電解槽の電解用電極に印加する電解の強度を制御する制御部と、を備えることを特徴とする。 The electrolyzed water generating apparatus according to the first aspect of the present invention is divided into a cathode chamber and an anode chamber by a diaphragm, and an electrode for electrolysis for performing electrolysis is inserted into each of the cathode chamber and the anode chamber, An electrolytic cell that electrolyzes the raw water that has been passed through to generate alkaline ionized water and acidic ionized water, an introduction path that introduces the raw water into the electrolytic cell, and alkaline ionized water generated in the cathode chamber in the electrolytic cell PH of the raw water or alkaline ionized water provided in the water supply path for discharging the acidic ion water generated in the anode chamber in the electrolytic cell, and the supplied raw water or alkaline ionized water provided in the water supply path. A pH buffer supply unit for supplying a buffer, and a control unit for controlling the strength of electrolysis applied to the electrode for electrolysis of the electrolytic cell are provided.
 本発明の第2の態様に係る電解水生成装置は、上記第1の態様の電解水生成装置であって、前記アルカリイオン水のpH値に基づいて、前記pH緩衝剤供給部によるpH緩衝剤の添加量を調整可能な開閉弁を備えることを特徴とする。 The electrolyzed water generating apparatus according to the second aspect of the present invention is the electrolyzed water generating apparatus according to the first aspect, wherein the pH buffering agent by the pH buffering agent supply unit is based on the pH value of the alkaline ionized water. And an on-off valve capable of adjusting the amount of addition.
図1は、本発明の第1実施形態として示す電解水生成装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an electrolyzed water generating device shown as the first embodiment of the present invention. 図2は、本発明の第1実施形態として示す電解水生成装置における他の構成を示すブロック図である。FIG. 2 is a block diagram showing another configuration of the electrolyzed water generating device shown as the first embodiment of the present invention. 図3は、本発明の第2実施形態として示す電解水生成装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the electrolyzed water generating device shown as the second embodiment of the present invention. 図4は、本発明の第2実施形態として示す電解水生成装置における他の構成を示すブロック図である。FIG. 4 is a block diagram showing another configuration of the electrolyzed water generating device shown as the second embodiment of the present invention.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
 本発明の第1実施形態として示す電解水生成装置は、例えば図1に示すように構成される。
[First Embodiment]
The electrolyzed water generating apparatus shown as the first embodiment of the present invention is configured, for example, as shown in FIG.
 電解水生成装置は、原水管1及び水栓2を介して原水が供給される本体部3を有する。本体部3の上部には、電解水としてのアルカリイオン水を吐出する吐水路18が設けられている。本体部3の下部には、電解水の酸性イオン水を排出する排水路19bが設けられている。本体部3は、電源プラグ24によって商用電源と接続して、電解水を生成するよう駆動する。 The electrolyzed water generator has a main body 3 to which raw water is supplied through a raw water pipe 1 and a faucet 2. A water discharge path 18 for discharging alkaline ion water as electrolyzed water is provided on the upper portion of the main body 3. A drainage channel 19 b for discharging acidic ion water of electrolyzed water is provided at the lower part of the main body 3. The main body 3 is connected to a commercial power supply by a power plug 24 and is driven to generate electrolyzed water.
 本体部3において、水栓2を介して原水管1から供給された原水は、浄水部4に導入される。浄水部4は、内部に原水中の残留塩素、トリハロメタン、カビ臭等を吸着する活性炭、一般細菌や不純物を精度よく取り除く中空糸膜等を備えている。浄水部4によって濾過された原水は、導入路5a、5b、5cに導入される。 In the main body 3, the raw water supplied from the raw water pipe 1 through the faucet 2 is introduced into the water purification unit 4. The water purification unit 4 includes an activated carbon that adsorbs residual chlorine, trihalomethane, mold odor, and the like in raw water, a hollow fiber membrane that accurately removes general bacteria and impurities, and the like. The raw water filtered by the water purification unit 4 is introduced into the introduction paths 5a, 5b, and 5c.
 この濾過された原水は、流量検知部6によって、その流量が検知される。流量検知部6は、検知した原水の流量値を、制御部26に出力する。なお、流量検知部6は、本体部3への通水を検知する機能を併せ持つことになる。 The flow rate of the filtered raw water is detected by the flow rate detection unit 6. The flow rate detection unit 6 outputs the detected flow rate value of the raw water to the control unit 26. The flow rate detection unit 6 also has a function of detecting water flow to the main body unit 3.
 濾過された原水は、導入路5cと導入路5bとに分岐する。原水の一部は、導入路5cに設けられたカルシウム供給部用絞り7を介してカルシウム供給部8に供給される。カルシウム供給部8は、グリセロリン酸カルシウムや乳酸カルシウム等のカルシウムイオンを原水中に付与する。これにより、カルシウム供給部8は、原水の電気伝導度を高める。カルシウム供給部用絞り7は、その開口が制限されており、導入路5cを流れる流量を制限する。カルシウム供給部8を通過した原水は、導入路5bの原水と合流して、導入路5dに導かれる。 The filtered raw water branches into the introduction path 5c and the introduction path 5b. A portion of the raw water is supplied to the calcium supply unit 8 through the calcium supply unit restriction 7 provided in the introduction path 5c. The calcium supply unit 8 applies calcium ions such as calcium glycerophosphate and calcium lactate to the raw water. Thereby, the calcium supply part 8 raises the electrical conductivity of raw | natural water. The opening 7 of the calcium supply portion restriction 7 is restricted, and restricts the flow rate through the introduction path 5c. The raw water that has passed through the calcium supply unit 8 merges with the raw water in the introduction path 5b and is guided to the introduction path 5d.
 導入路5dの原水は、導入路5eと導入路5fとに分岐する。原水の一部は、導入路5fに設けられたpH緩衝剤供給部用絞り9を介してpH緩衝剤供給部10に供給される。pH緩衝剤供給部10は、pH緩衝剤を原水に供給する。pH緩衝剤は、炭酸水素ナトリウムや炭酸水素カリウム等の炭酸水素塩や、リン酸二水素ナトリウムやリン酸二水素カリウム等のリン酸塩や酢酸ナトリウムや酢酸カリウム等の酢酸塩等のpH緩衝性能を有する剤である。これにより、pH緩衝剤供給部10は、導入された原水にpH緩衝作用を発揮させる。pH緩衝剤供給部用絞り9は、その開口が制限されており、pH緩衝剤供給部10に導入される原水の流量を制限する。pH緩衝剤供給部10を通過した原水は、導入路5eの原水と合流して、導入路5gに導かれる。 The raw water of the introduction path 5d branches into the introduction path 5e and the introduction path 5f. A part of the raw water is supplied to the pH buffer agent supply unit 10 via the pH buffer agent supply unit throttle 9 provided in the introduction path 5f. The pH buffer supply unit 10 supplies the pH buffer to the raw water. pH buffering agent is pH buffering performance such as bicarbonate such as sodium bicarbonate and potassium bicarbonate, phosphate such as sodium dihydrogen phosphate and potassium dihydrogen phosphate, and acetate such as sodium acetate and potassium acetate. It is an agent having Thereby, the pH buffer supply part 10 exhibits the pH buffering effect on the introduced raw water. The opening of the pH buffer agent supply section throttle 9 is restricted, and restricts the flow rate of the raw water introduced into the pH buffer agent supply section 10. The raw water that has passed through the pH buffering agent supply unit 10 merges with the raw water in the introduction path 5e and is guided to the introduction path 5g.
 導入路5gに導かれた原水は、当該導入路5gから分岐して、第1電極室用導入路11及び第2電極室用導入路12に導入される。第2電極室用導入路12には、第2電極室用絞り13が設けられている。第2電極室用絞り13は、第2電極室用導入路12を流れる流量を調整する。 The raw water guided to the introduction path 5g is branched from the introduction path 5g and introduced into the first electrode chamber introduction path 11 and the second electrode chamber introduction path 12. A second electrode chamber diaphragm 13 is provided in the second electrode chamber introduction path 12. The second electrode chamber restriction 13 adjusts the flow rate flowing through the second electrode chamber introduction passage 12.
 第1電極室用導入路11及び第2電極室用導入路12を通過した原水は、電解槽14に供給される。電解槽14は、通水された原水を電気分解する。これにより電解槽14は、電解水としてのアルカリイオン水及び酸性イオン水を生成する。電解槽14は、隔膜15a、15bと、第1電極室14aと、第2電極室14bと、第1電極室用電極板16a、16bと、第2電極室用電極板17とを有する。第1電極室用電極板16a、16b及び第2電極室用電極板17は電極室用電極として機能する。隔膜15a、15bは、電解槽14を分割することにより、第1電極室14aと第2電極室14bとを形成する。 The raw water that has passed through the first electrode chamber introduction path 11 and the second electrode chamber introduction path 12 is supplied to the electrolytic cell 14. The electrolytic cell 14 electrolyzes the raw water that has been passed through. Thereby, the electrolytic cell 14 produces | generates the alkali ion water and acidic ion water as electrolyzed water. The electrolytic cell 14 includes diaphragms 15a and 15b, a first electrode chamber 14a, a second electrode chamber 14b, first electrode chamber electrode plates 16a and 16b, and a second electrode chamber electrode plate 17. The first electrode chamber electrode plates 16a and 16b and the second electrode chamber electrode plate 17 function as electrode chamber electrodes. The diaphragms 15a and 15b divide the electrolytic cell 14 to form a first electrode chamber 14a and a second electrode chamber 14b.
 第1電極室用電極板16a、16bは、第1電極室14aに配置されている。第1電極室用電極板16a、16bは、制御部26の制御に従って電圧が印加される。第1電極室用電極板16a、16bは、電圧が印加されることにより原水を電気分解し、電解水を生成する。第1電極室14aの電解水は、第1電極室14aから吐水路18及び吐水バイパス路21に導入される。第1電極室用電極板16a、16bが陰極である場合、吐水路18は、アルカリイオン水を吐出する。 The electrode plates 16a and 16b for the first electrode chamber are arranged in the first electrode chamber 14a. A voltage is applied to the first electrode chamber electrode plates 16 a and 16 b under the control of the control unit 26. The electrode plates 16a and 16b for the first electrode chamber electrolyze raw water when voltage is applied to generate electrolyzed water. The electrolyzed water in the first electrode chamber 14 a is introduced from the first electrode chamber 14 a into the water discharge path 18 and the water discharge bypass path 21. When the first electrode chamber electrode plates 16a and 16b are cathodes, the water discharge channel 18 discharges alkaline ionized water.
 吐水バイパス路21は吐水路18から分岐している。吐水バイパス路21には、吐出バイパス路用絞り22及びpHセンサー部23が設けられている。吐出バイパス路用絞り22は、吐水バイパス路21を流れる流量を制限する。pHセンサー部23は、第1電極室14a内の水のpH値を測定する。測定されたpH値は、制御部26に出力される。 The water discharge bypass 21 branches from the water discharge 18. The water discharge bypass 21 is provided with a discharge bypass throttle 22 and a pH sensor unit 23. The discharge bypass passage restriction 22 restricts the flow rate through the water discharge bypass passage 21. The pH sensor unit 23 measures the pH value of the water in the first electrode chamber 14a. The measured pH value is output to the control unit 26.
 第2電極室用電極板17は、第2電極室14bに配置されている。第2電極室用電極板17は、制御部26の制御に従って電圧が印加される。第2電極室用電極板17は、電圧が印加されることにより原水を電気分解し、電解水を生成する。第2電極室14bの電解水は、排水路19aに供給される。第2電極室用電極板17が陽極である場合、排水路19aは、酸性イオン水を排出する。 The electrode plate 17 for the second electrode chamber is disposed in the second electrode chamber 14b. A voltage is applied to the second electrode chamber electrode plate 17 under the control of the control unit 26. The electrode plate 17 for 2nd electrode chambers electrolyzes raw | natural water when a voltage is applied, and produces | generates electrolyzed water. The electrolyzed water in the second electrode chamber 14b is supplied to the drainage channel 19a. When the electrode plate 17 for 2nd electrode chambers is an anode, the drainage channel 19a discharges acidic ion water.
 排水路19aには、排水路用絞り20が設けられている。排水路用絞り20は、排水路19aを流れる流量を制限する。排水路用絞り20を通過した酸性イオン水は、排水路19bを介して排出される。 The drainage channel 19a is provided with a drainage channel throttle 20. The drainage channel restrictor 20 restricts the flow rate through the drainage channel 19a. The acidic ionized water that has passed through the drainage restrictor 20 is discharged through the drainage channel 19b.
 更に本体部3には、電源部25が備えられる。電源部25は、電源プラグ24に接続されている。電源部25は、電源プラグ24から供給された交流電力を直流電力に変換して、制御部26に供給する。制御部26は、電源部25から供給された電力を第1電極室用電極板16a、16b及び第2電極室用電極板17に印加する。これにより、制御部26は、電気分解を行うための電解エネルギーを電解槽14に供給する。更に、制御部26は、電解槽14の第1電極室用電極板16a、16b及び第2電極室用電極板17に印加する電解の強度を制御する。 Furthermore, the main unit 3 is provided with a power supply unit 25. The power supply unit 25 is connected to the power plug 24. The power supply unit 25 converts AC power supplied from the power plug 24 into DC power and supplies the DC power to the control unit 26. The control unit 26 applies the power supplied from the power supply unit 25 to the first electrode chamber electrode plates 16 a and 16 b and the second electrode chamber electrode plate 17. Thereby, the control part 26 supplies the electrolytic cell 14 with the electrolysis energy for performing electrolysis. Further, the control unit 26 controls the strength of electrolysis applied to the first electrode chamber electrode plates 16 a and 16 b and the second electrode chamber electrode plate 17 of the electrolytic cell 14.
 更に本体部3は、操作表示部27が備えられる。操作表示部27は、操作ボタンや液晶ディスプレイ等からなる。操作表示部27は、利用者による操作を受け付け、電解水生成装置の設定や状態を表示する。操作表示部27は、電解水生成装置がアルカリイオン水や酸性イオン水を生成することが設定可能である。更に操作表示部27は、浄水部4による浄水の水質が設定可能である。更に操作表示部27は、アルカリイオン水のpH強度が設定可能である。その他、操作表示部27は、各種機能の選択設定を行うことが可能である。 Furthermore, the main body unit 3 is provided with an operation display unit 27. The operation display unit 27 includes operation buttons, a liquid crystal display, and the like. The operation display unit 27 receives an operation by a user and displays settings and a state of the electrolyzed water generating device. The operation display unit 27 can be set so that the electrolyzed water generating device generates alkaline ionized water or acidic ionized water. Further, the operation display unit 27 can set the quality of the purified water by the water purification unit 4. Further, the operation display unit 27 can set the pH intensity of alkaline ionized water. In addition, the operation display unit 27 can select and set various functions.
 上述した電解水生成装置は、以下のように動作して、適切なpH値であって溶存水素量の多いアルカリイオン水を生成する。 The electrolyzed water generating apparatus described above operates as follows to generate alkaline ionized water having an appropriate pH value and a large amount of dissolved hydrogen.
 電解水生成装置の利用者は、操作表示部27に対するボタン操作によって、アルカリイオン水生成モード、酸性イオン水生成モード又は浄水モード等、所望の水質モード及びpH強度を選択する。次に利用者によって水栓2が開かれると、原水管1から本体部3へ原水が通水される。 The user of the electrolyzed water generating device selects a desired water quality mode and pH intensity such as an alkaline ionized water generating mode, an acidic ionized water generating mode, or a purified water mode by operating a button on the operation display unit 27. Next, when the faucet 2 is opened by the user, raw water is passed from the raw water pipe 1 to the main body 3.
 水栓2から本体部3に導入された原水は、浄水部4で原水中の残留塩素やトリハロメタン、カビ臭、一般細菌等の不純物が取り除かれる。 The raw water introduced from the faucet 2 to the main body 3 is freed of impurities such as residual chlorine, trihalomethane, mold odor and general bacteria in the raw water by the water purification unit 4.
 濾過された原水は、導入路5aを通って流量検知部6を通過した後、その一部が導入路5c側に分岐されてカルシウム供給部用絞り7にて適量に流量制限される。この原水は、カルシウム供給部8にてグリセロリン酸カルシウムや乳酸カルシウム等が溶解されて電気分解容易な水に処理され、導入路5bの原水と合流する。なお、カルシウム供給部8は、直接グリセロリン酸カルシウムや乳酸カルシウム等を投入し流水中で混濁溶解させる構造でも良いし、メッシュを有するハウジングに投入した後に供給部に挿入し、メッシュとの界面で水流により溶解させる構造でも良い。また、これらグリセロリン酸カルシウムや乳酸カルシウム等の形状は粉末状、顆粒状、錠剤状のいずれでも良いが、剤の安定溶解の見地から顆粒状にするのが望ましい。 The filtered raw water passes through the flow rate detection unit 6 through the introduction channel 5a, and then a part of the raw water is branched to the introduction channel 5c side, and the flow rate is restricted to an appropriate amount by the calcium supply unit throttle 7. This raw water is processed into water that is easily electrolyzed by dissolving calcium glycerophosphate, calcium lactate, and the like in the calcium supply section 8, and merges with the raw water in the introduction path 5b. The calcium supply unit 8 may have a structure in which calcium glycerophosphate, calcium lactate, or the like is directly added and turbidly dissolved in running water. A structure to be dissolved may be used. Further, the shape of these calcium glycerophosphate and calcium lactate may be any of powder, granule, and tablet, but it is desirable to make it granular from the viewpoint of stable dissolution of the agent.
 合流された原水は、再びその一部が導入路5f側に分岐されてpH緩衝剤供給部用絞り9にて適量に流量制限される。この原水は、pH緩衝剤供給部10にてpH緩衝剤が溶解された後、導入路5eの原水と合流する。なお、pH緩衝剤供給部10は、pH緩衝剤を投入し、流水中で混濁溶解させる構造でも良いし、メッシュを有するハウジングに投入した後に供給部に挿入し、メッシュとの界面で水流により溶解させる構造でも良い。なお、これらpH緩衝剤の形状は粉末状、顆粒状、錠剤状のいずれでも良いが剤の安定溶解の見地から顆粒状にするのが望ましい。 Part of the combined raw water is again branched to the introduction path 5f side, and the flow rate is restricted to an appropriate amount by the pH buffer supply restrictor 9. This raw water is merged with the raw water in the introduction path 5e after the pH buffer is dissolved in the pH buffer supply 10. The pH buffer supply unit 10 may have a structure in which a pH buffer agent is added and turbidly dissolved in running water, or after being put into a housing having a mesh, it is inserted into the supply unit and dissolved by water flow at the interface with the mesh. The structure to be allowed may be used. These pH buffering agents may be in the form of powder, granules or tablets, but are preferably granulated from the viewpoint of stable dissolution of the agent.
 その後、原水は、第1電極室用導入路11及び第2電極室用導入路12を経て、それぞれの第1電極室14a、第2電極室14bに導入される。ここで、第2電極室用絞り13は第1電極室14a及び第2電極室14bの内圧バランスを調整する。このために、第2電極室用絞り13は、第1電極室14aの出口側と第2電極室14bの出口側を通過する流量比に対して第1電極室用導入路11と第2電極室用導入路12を通過する流量比を変える。本実施形態では、(第1電極室14aの出口側流量)/(第2電極室14bの出口側流量)≒ (第1電極室用導入路11の流量)/(第2電極室用導入路12の流量)となるように調整する。これにより、第1電極室14a内の水と第2電極室14b内の水が混じり合わない状態となっている。 Thereafter, the raw water is introduced into the first electrode chamber 14a and the second electrode chamber 14b through the first electrode chamber introduction passage 11 and the second electrode chamber introduction passage 12, respectively. Here, the second electrode chamber restriction 13 adjusts the internal pressure balance of the first electrode chamber 14a and the second electrode chamber 14b. For this purpose, the second electrode chamber restriction 13 has the first electrode chamber introduction path 11 and the second electrode with respect to the flow rate ratio passing through the outlet side of the first electrode chamber 14a and the outlet side of the second electrode chamber 14b. The flow rate ratio passing through the room introduction path 12 is changed. In the present embodiment, (the outlet side flow rate of the first electrode chamber 14a) / (the outlet side flow rate of the second electrode chamber 14b) ≈ (the flow rate of the first electrode chamber introduction path 11) / (the second electrode chamber introduction path). 12 flow rate). As a result, the water in the first electrode chamber 14a and the water in the second electrode chamber 14b are not mixed.
 電源プラグ24から電源部25には、AC100Vが供給されている。電源部25内のトランス及び制御用直流電源は、電気分解に必要なエネルギーを発生させる。この必要なエネルギーは、制御部26を介して電解槽14の第1電極室用電極板16a、16b及び第2電極室用電極板17に供給される。この時、相対的にプラスの電圧を印加する電極を陽極、マイナスの電圧を印加する電極を陰極とすると、電解槽14内に隔膜15a、15bで仕切られた陽極室と陰極室とが形成される。なお、アルカリイオン水生成モード時においては、第1電極室用電極板16a、16bが陰極となり、第2電極室用電極板17が陽極となる。 AC 100 V is supplied from the power plug 24 to the power supply unit 25. The transformer in the power supply unit 25 and the control DC power supply generate energy necessary for electrolysis. The necessary energy is supplied to the first electrode chamber electrode plates 16 a and 16 b and the second electrode chamber electrode plate 17 of the electrolytic cell 14 through the control unit 26. At this time, assuming that the electrode to which a relatively positive voltage is applied is an anode and the electrode to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by diaphragms 15a and 15b are formed in the electrolytic cell 14. The In the alkaline ion water generation mode, the first electrode chamber electrode plates 16a and 16b serve as cathodes, and the second electrode chamber electrode plate 17 serves as an anode.
 上述したように本体部3に通水が開始されると、制御部26は、流量検知部6からの出力信号を読み取る。単位時間当たりに流れる流量レベルが一定量を越えると、制御部26は、通水中と判断する。制御部26は、予め選択されている水質モード及びpH強度に応じた電気分解条件に基づいて、電解槽14に対して所定の電解エネルギーを供給する。 As described above, when water flow into the main body 3 is started, the control unit 26 reads an output signal from the flow rate detection unit 6. When the flow rate level flowing per unit time exceeds a certain amount, the control unit 26 determines that water is flowing. The control unit 26 supplies predetermined electrolytic energy to the electrolytic cell 14 based on the electrolysis conditions corresponding to the water quality mode and pH intensity selected in advance.
 これにより、アルカリイオン水生成モード時においては、第1電極室用電極板16a、16bが陰極となり、アルカリイオン水が生成され、吐水路18より吐出される。一方、第2電極室用電極板17は陽極となり、酸性イオン水が生成され、排水路19aを通過後、排水路用絞り20で適量に流量制限され、排水路19bより排出される。 Thus, in the alkaline ion water generation mode, the first electrode chamber electrode plates 16 a and 16 b serve as cathodes, and alkaline ion water is generated and discharged from the water discharge path 18. On the other hand, the electrode plate 17 for the second electrode chamber serves as an anode, and acid ion water is generated. After passing through the drainage channel 19a, the flow rate is restricted to an appropriate amount by the drainage channel throttle 20, and is discharged from the drainage channel 19b.
 このように生成されたアルカリイオン水は吐水路18から吐出されて飲用に供される。アルカリイオン水の一部は、吐水バイパス路21に分岐されて吐水バイパス路用絞り22で適量に流量制限され、pHセンサー部23に導入されてpH値の測定が行われる。制御部26は、pHセンサー部23からの出力信号を読み取り、操作表示部27により設定されているpH強度となるように逐次電解エネルギーを調整する制御を行う。 The alkaline ionized water thus generated is discharged from the water discharge channel 18 and used for drinking. A part of the alkaline ionized water is branched into the water discharge bypass passage 21, the flow amount is restricted to an appropriate amount by the water discharge bypass passage restrictor 22, and introduced into the pH sensor unit 23 to measure the pH value. The control unit 26 reads the output signal from the pH sensor unit 23 and performs control to sequentially adjust the electrolysis energy so that the pH intensity set by the operation display unit 27 is obtained.
 pHセンサー部23を通過したアルカリイオン水は、排水路19bと合流した後、排水として排出される。電気分解される原水には、pH緩衝剤供給部10にてpH緩衝剤が溶解されている。このため、アルカリイオン水のpH値を所望のpH強度まで上げるためには、pH緩衝剤が溶解されていない原水に対してより多くの電解のエネルギーを印加することができる。電気分解反応で生成されたOHマイナスイオン含まれるアルカリイオン水にpH緩衝剤が溶けた時に、pH緩衝剤から乖離した水素イオンがOHマイナスイオンに中和されるためである。具体的には、(1)のように解離した炭酸水素ナトリウムや(2)のように解離した炭酸水素塩から出現した水素イオンにより、(3)のようにOHマイナスイオンが中和され、アルカリイオン水のpH値が中性に戻されるためである。 The alkaline ionized water that has passed through the pH sensor unit 23 is discharged as drainage after joining the drainage channel 19b. The pH buffer is dissolved in the raw water to be electrolyzed by the pH buffer supply unit 10. For this reason, in order to raise the pH value of alkaline ionized water to desired pH intensity | strength, more electrolysis energy can be applied with respect to the raw | natural water in which the pH buffer agent is not melt | dissolved. This is because when the pH buffering agent is dissolved in alkaline ionized water containing OH negative ions generated by the electrolysis reaction, hydrogen ions deviating from the pH buffering agent are neutralized to OH negative ions. Specifically, OH negative ions are neutralized as shown in (3) by the hydrogen ions emerging from dissociated sodium hydrogen carbonate as shown in (1) and dissociated hydrogen carbonate as shown in (2). This is because the pH value of the ionized water is returned to neutral.
 NaHCO→Na+HCO      (1)
 HCO →H+CO 2-    (2)
 OH+H→HO   (3)
 なお、電気分解で発生した水素ガスはイオンの状態ではないので、電気分解反応には影響されない。これにより、同じ設定のpH強度であってもより多くの水素ガスが発生して、アルカリイオン水の溶存水素量を多くすることができる。
NaHCO 3 → Na + + HCO 3 (1)
HCO 3 → H + + CO 3 2− (2)
OH + H + → H 2 O (3)
In addition, since the hydrogen gas generated by electrolysis is not in an ionic state, it is not affected by the electrolysis reaction. Thereby, even if it is pH intensity of the same setting, more hydrogen gas is generated and the amount of dissolved hydrogen in alkaline ionized water can be increased.
 また、飲用可能且つアルカリイオン水中の溶存水素量をできるだけ多くするために、制御部26は、pH値が10以上とならない範囲で、できるだけ高いpH値となるように電解のエネルギーを調整することが望ましい。 In order to increase the amount of dissolved hydrogen in the alkaline ionized water as much as possible, the control unit 26 may adjust the energy of electrolysis so that the pH value is as high as possible within a range where the pH value does not become 10 or more. desirable.
 単位時間当たりに流れる原水の流量レベルが一定量を下回ると、制御部26は、当該状態を止水と判断し、電解槽14への電解のエネルギーの供給を終了する。制御部26は、止水後の一定時間に亘り、第1電極室用電極板16a、16bに相対的にプラス電圧を印加し、第2電極室用電極板17にマイナス電圧を印加する。これにより、第1電極室用電極板16a、16bに付着したカルシウム等のスケールを洗浄・除去する。 When the flow rate level of the raw water flowing per unit time falls below a certain amount, the control unit 26 determines that the state is water stop and ends the supply of electrolysis energy to the electrolytic cell 14. The controller 26 applies a positive voltage relatively to the first electrode chamber electrode plates 16 a and 16 b and applies a negative voltage to the second electrode chamber electrode plate 17 for a certain time after the water stoppage. Thereby, scales, such as calcium adhering to the electrode plates 16a and 16b for the first electrode chamber, are washed and removed.
 以上のように第1実施形態として示した電解水生成装置によれば、電解槽14の前段である導入路5fにpH緩衝剤供給部10を設けている。電解水生成装置は、適切なpH値のアルカリイオン水とするために、高い電解エネルギーによってアルカリイオン水を生成できる。これにより、電解水生成装置は、溶存水素量の多いアルカリイオン水を生成することができる。また、電解水生成装置は、原水にpH緩衝剤を投入しているので、生成されたアルカリイオン水を中和しすぎることもない。 As described above, according to the electrolyzed water generating device shown as the first embodiment, the pH buffering agent supply unit 10 is provided in the introduction path 5 f that is the front stage of the electrolytic cell 14. The electrolyzed water generating device can generate alkali ion water with high electrolysis energy in order to obtain alkali ion water having an appropriate pH value. Thereby, the electrolyzed water production | generation apparatus can produce | generate alkali ion water with much dissolved hydrogen amount. Moreover, since the electrolysis water production | generation apparatus has injected | thrown-in the pH buffer agent to raw | natural water, it does not neutralize the produced | generated alkali ion water too much.
 また、第1実施形態として示す電解水生成装置は、図2に示すように、pH緩衝剤供給部用絞り9及びpH緩衝剤供給部10を、吐水路18から分岐した吐水路18aに設けてもよい。電解水生成装置は、吐水路18aの吐水にpH緩衝剤を投入し、当該吐水と吐水路18の吐水とを混合する。これにより、電解水生成装置は、吐水路18から吐出されるアルカリイオン水のpH値を抑制する。このような電解水生成装置は、生成されたアルカリイオン水を中和しすぎることもなく、且つ、pH値を過度に上昇させることなく、溶存水素量の多いアルカリイオン水を生成することができる。 In addition, as shown in FIG. 2, the electrolyzed water generating apparatus shown as the first embodiment includes the pH buffer agent supply section throttle 9 and the pH buffer agent supply section 10 in a water discharge path 18 a branched from the water discharge path 18. Also good. The electrolyzed water generator adds a pH buffer to the water discharged from the water discharge path 18 a and mixes the water discharged with the water discharged from the water discharge path 18. Thereby, the electrolyzed water generating device suppresses the pH value of the alkaline ionized water discharged from the water discharge path 18. Such an electrolyzed water generating apparatus can generate alkali ion water with a large amount of dissolved hydrogen without excessively neutralizing the generated alkali ion water and without excessively increasing the pH value. .
[第2実施形態]
 つぎに、本発明の第2実施形態として示す電解水生成装置について、図3を参照して説明する。なお、上述した第1実施形態と同一の部分については同一符号を付することによりその詳細な説明を省略する。
[Second Embodiment]
Next, an electrolyzed water generating apparatus shown as a second embodiment of the present invention will be described with reference to FIG. The same parts as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
 第2実施形態として示す電解水生成装置は、pH緩衝剤供給部10によるpH緩衝剤の添加量を吐水のpH値を基に調整可能な開閉弁28を備える点で、第1実施形態の電解水生成装置とは異なる。開閉弁28は、制御部26の制御に従ってアクチュエータ28aが動作し、その開度が調整される。制御部26は、pHセンサー部23により検出されたアルカリイオン水のpH値に基づいて、pH緩衝剤供給部によるpH緩衝剤の添加量を調整する制御信号を開閉弁28に供給する。 The electrolyzed water generating apparatus shown as the second embodiment includes an on-off valve 28 that can adjust the amount of pH buffering agent added by the pH buffering agent supply unit 10 based on the pH value of the discharged water. Different from water generator. The opening / closing valve 28 is operated by the actuator 28a according to the control of the control unit 26, and its opening degree is adjusted. The control unit 26 supplies a control signal for adjusting the addition amount of the pH buffering agent by the pH buffering agent supply unit to the on-off valve 28 based on the pH value of the alkaline ionized water detected by the pH sensor unit 23.
 この電解水生成装置において、飲用可能且つアルカリイオン水中の溶存水素量をできるだけ多くするためには、電解水生成装置の持っている電解の最大エネルギーを供給することが望ましい。電解エネルギーを最大とするとpH値が高くなるため、制御部26は、電解エネルギーに基づいて、pH値を10以上とならない範囲で、開閉弁28の開度を調整することが望ましい。 In this electrolyzed water generating device, it is desirable to supply the maximum electrolysis energy of the electrolyzed water generating device in order to increase the amount of hydrogen that can be drunk and dissolved in alkaline ionized water as much as possible. Since the pH value increases when the electrolysis energy is maximized, the control unit 26 desirably adjusts the opening degree of the on-off valve 28 within a range where the pH value does not become 10 or more based on the electrolysis energy.
 制御部26は、アルカリイオン水のpH値を検知しながら適宜、開閉弁28の開度を制御する。これにより、アルカリイオン水のpH緩衝剤の溶解性能が変化しても、吐水のpH値を安定させることができる。 The control unit 26 appropriately controls the opening degree of the on-off valve 28 while detecting the pH value of the alkaline ionized water. Thereby, even if the melt | dissolution performance of the pH buffer of alkaline ionized water changes, the pH value of discharged water can be stabilized.
 また、制御部26は、操作表示部27によって所望のpH強度が設定されている場合であっても、最大の電解エネルギーを供給している状態で、pHセンサー部23により検知されているpH値を、所望のpH強度となるまで開閉弁28の開度を調整する。pH値を高くするよう設定されている場合、制御部26は、開閉弁28の開度を小さくする。一方、pH値を低くするよう設定されている場合、制御部26は、開閉弁28の開度を大きくする。 In addition, even when the desired pH intensity is set by the operation display unit 27, the control unit 26 is detecting the pH value detected by the pH sensor unit 23 while supplying the maximum electrolysis energy. The opening degree of the on-off valve 28 is adjusted until the desired pH intensity is reached. When it is set to increase the pH value, the control unit 26 decreases the opening degree of the on-off valve 28. On the other hand, when the pH value is set to be low, the control unit 26 increases the opening degree of the on-off valve 28.
 以上のように、第2実施形態として示した電解水生成装置は、第1実施形態と同様に、電解槽14の前段である導入路5fにpH緩衝剤供給部10を設けている。これにより、電解水生成装置は、電解エネルギーを最大にしてもpH緩衝剤の添加量を調整して所望のpH強度のアルカリイオン水を吐出させることができる。更に、アルカリイオン水を中和しすぎることを更に抑制でき、溶存水素量の多いアルカリイオン水を生成することができる。 As described above, the electrolyzed water generating apparatus shown as the second embodiment is provided with the pH buffering agent supply unit 10 in the introduction path 5f, which is the front stage of the electrolytic cell 14, as in the first embodiment. Thereby, even if electrolysis energy is maximized, the electrolyzed water production | generation apparatus can adjust the addition amount of a pH buffer agent, and can discharge the alkaline ionized water of desired pH intensity | strength. Furthermore, it can further suppress that the alkali ion water is neutralized too much, and the alkali ion water with a large amount of dissolved hydrogen can be generated.
 また、第2実施形態として示す電解水生成装置は、図4に示すように、開閉弁28及びpH緩衝剤供給部10を、吐水路18から分岐した吐水路18aに設けてもよい。電解水生成装置は、吐水路18aの吐水にpH緩衝剤を投入し、当該吐水と吐水路18の吐水とを混合する。このとき、制御部26は、pHセンサー部23により検知したアルカリイオン水のpH値に基づいて、所望のpH値とするように開閉弁28を開閉する。これにより、電解水生成装置は、吐水路18から吐出されるアルカリイオン水のpH値を抑制する。このような電解水生成装置は、生成されたアルカリイオン水を中和しすぎることもなく、且つ、pH値を過度に上昇させることなく、溶存水素量の多いアルカリイオン水を生成することができる。 Moreover, the electrolyzed water generating apparatus shown as the second embodiment may include the on-off valve 28 and the pH buffering agent supply unit 10 in the water discharge path 18a branched from the water discharge path 18 as shown in FIG. The electrolyzed water generator adds a pH buffer to the water discharged from the water discharge path 18 a and mixes the water discharged with the water discharged from the water discharge path 18. At this time, the control unit 26 opens and closes the open / close valve 28 so as to obtain a desired pH value based on the pH value of the alkaline ionized water detected by the pH sensor unit 23. Thereby, the electrolyzed water generating device suppresses the pH value of the alkaline ionized water discharged from the water discharge path 18. Such an electrolyzed water generating apparatus can generate alkali ion water with a large amount of dissolved hydrogen without excessively neutralizing the generated alkali ion water and without excessively increasing the pH value. .
 なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 The above embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and various modifications can be made depending on the design and the like as long as the technical idea according to the present invention is not deviated from this embodiment. Of course, it is possible to change.
 本発明によれば、原水又はアルカリイオン水にpH緩衝剤を供給するので、適切なpH値であって溶存水素量の多いアルカリイオン水を生成することができる。 According to the present invention, since the pH buffer is supplied to the raw water or the alkaline ionized water, the alkaline ionized water having an appropriate pH value and a large amount of dissolved hydrogen can be generated.
 10 pH緩衝剤供給部
 11 第1電極室用導入路
 14 電解槽
 14a 第1電極室
 14b 第2電極室
 15a、15b 隔膜
 16a、16b 第1電極室用電極板(電解用電極)
 17 第2電極室用電極板(電解用電極)
 18 吐水路
 19 排水路
 26 制御部
 28 開閉弁
DESCRIPTION OF SYMBOLS 10 pH buffer supply part 11 1st electrode chamber introduction path 14 Electrolytic tank 14a 1st electrode chamber 14b 2nd electrode chamber 15a, 15b Diaphragm 16a, 16b Electrode plate for 1st electrode chambers (electrode for electrolysis)
17 Electrode plate for second electrode chamber (electrode for electrolysis)
Reference numeral 18

Claims (2)

  1.  隔膜により陰極室と陽極室とに分割され、前記陰極室及び前記陽極室の各々に電気分解を行うための電解用電極が挿入され、通水された原水を電気分解してアルカリイオン水及び酸性イオン水を生成する電解槽と、
     前記電解槽に原水を導入する導入路と、
     前記電解槽内の陰極室で生成されたアルカリイオン水を吐出する吐水路と、
     前記電解槽内の陽極室で生成された酸性イオン水を排出する排水路と、
     前記導入路又は前記吐水路に設けられて、供給された原水又はアルカリイオン水にpH緩衝剤を供給するpH緩衝剤供給部と、
     前記電解槽の電解用電極に印加する電解の強度を制御する制御部と、
     を備えることを特徴とする電解水生成装置。
    It is divided into a cathode chamber and an anode chamber by a diaphragm, and an electrode for electrolysis is inserted into each of the cathode chamber and the anode chamber, and the raw water passed through is electrolyzed to produce alkaline ionized water and acidic water. An electrolytic cell for producing ionic water;
    An introduction path for introducing raw water into the electrolytic cell;
    A water discharge channel for discharging alkaline ionized water generated in the cathode chamber in the electrolytic cell;
    A drainage channel for discharging acidic ion water generated in the anode chamber in the electrolytic cell;
    A pH buffer agent supply unit that is provided in the introduction channel or the water discharge channel and supplies a pH buffer agent to the supplied raw water or alkaline ionized water;
    A control unit for controlling the strength of electrolysis applied to the electrolysis electrode of the electrolytic cell;
    An electrolyzed water generating apparatus comprising:
  2.  前記アルカリイオン水のpH値に基づいて、前記pH緩衝剤供給部によるpH緩衝剤の添加量を調整可能な開閉弁を備えることを特徴とする請求項1に記載の電解水生成装置。 The electrolyzed water generating apparatus according to claim 1, further comprising an on-off valve capable of adjusting an addition amount of the pH buffering agent by the pH buffering agent supply unit based on a pH value of the alkaline ionized water.
PCT/JP2013/002944 2012-06-28 2013-05-08 Electrolyzed water generating device WO2014002360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-145340 2012-06-28
JP2012145340A JP2014008433A (en) 2012-06-28 2012-06-28 Electrolytic water generator

Publications (1)

Publication Number Publication Date
WO2014002360A1 true WO2014002360A1 (en) 2014-01-03

Family

ID=49782562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002944 WO2014002360A1 (en) 2012-06-28 2013-05-08 Electrolyzed water generating device

Country Status (2)

Country Link
JP (1) JP2014008433A (en)
WO (1) WO2014002360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926541B2 (en) 2015-05-15 2024-03-12 G Water Llc Process of making alkaline and acidic water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328078A (en) * 1993-05-21 1994-11-29 Asahi Glass Eng Kk Alkaline water producing process
JPH10309582A (en) * 1997-05-12 1998-11-24 Kinousui Kenkyusho:Kk Production method of acidic electrolytic water and acidic electrolytic water
JPH11319837A (en) * 1998-05-20 1999-11-24 Toto Ltd Water for sterilization generated by electrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328078A (en) * 1993-05-21 1994-11-29 Asahi Glass Eng Kk Alkaline water producing process
JPH10309582A (en) * 1997-05-12 1998-11-24 Kinousui Kenkyusho:Kk Production method of acidic electrolytic water and acidic electrolytic water
JPH11319837A (en) * 1998-05-20 1999-11-24 Toto Ltd Water for sterilization generated by electrolysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926541B2 (en) 2015-05-15 2024-03-12 G Water Llc Process of making alkaline and acidic water

Also Published As

Publication number Publication date
JP2014008433A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP4914338B2 (en) Water conditioner
GB2453050A (en) Method of producing electrolyzed water
JP3820248B2 (en) Electrolytic water conditioner
WO2014002360A1 (en) Electrolyzed water generating device
JP4590668B2 (en) Water reformer
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP4106788B2 (en) Alkaline ion water conditioner
JP4462157B2 (en) Electrolyzed water generating device and sink equipped with the same
WO2018168109A1 (en) Apparatus for generating electrolyzed hydrogen water
JP2017056390A (en) Electrolyzed water generation apparatus
JP4200118B2 (en) Alkaline ion water conditioner
WO2012132600A1 (en) Electrolyzed water generation device
JP4548294B2 (en) Electrolyzed water generating device and sink equipped with the same
JP4936423B2 (en) Electrolyzed water generating device and sink equipped with the same
JP2008086886A (en) Electrolytic water generator
JP2006247554A (en) Electrolytic water generator and sink equipped with it
JP2003071450A (en) Functional water making apparatus
JP2001029954A (en) Apparatus for producing electrolytic water
JP4556711B2 (en) Electrolyzed water generating device and sink equipped with the same
JP3648867B2 (en) Alkaline ion water conditioner
JP4378803B2 (en) Alkaline ion water conditioner
JPH09122652A (en) Electrolytic water making apparatus
JP3915166B2 (en) Alkaline ion water conditioner
KR20210027988A (en) Water purifier for manufacturing hydrogen containing water and ozone containing water
JP2005131444A (en) Ionic water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808820

Country of ref document: EP

Kind code of ref document: A1