JP4106788B2 - Alkaline ion water conditioner - Google Patents
Alkaline ion water conditioner Download PDFInfo
- Publication number
- JP4106788B2 JP4106788B2 JP00877899A JP877899A JP4106788B2 JP 4106788 B2 JP4106788 B2 JP 4106788B2 JP 00877899 A JP00877899 A JP 00877899A JP 877899 A JP877899 A JP 877899A JP 4106788 B2 JP4106788 B2 JP 4106788B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrolytic cell
- voltage
- level
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水道水等の原水を電気分解して、飲用、医療用として利用するアルカリイオン水、化粧水、殺菌洗浄水等の酸性イオン水を製造するアルカリイオン整水器に関する。
【0002】
【従来の技術】
近年、連続電解方式のイオン生成器として、アルカリイオン整水器が普及している。このアルカリイオン整水器は、電解槽内で水道水等を電気分解して陽極側に酸性イオン水を生成し、陰極側にアルカリイオン水を生成するものである。
【0003】
以下、従来の連続電解方式のアルカリイオン整水器について説明する。
【0004】
図2は、従来のアルカリイオン整水器の概略構造図である。このアルカリイオン整水器は、図示のように構成要素として水道水等の原水管1と、水栓2と、水栓2を介して原水管1と接続されたアルカリイオン整水器本体3と、内部に原水中の残留塩素やトリハロメタン、カビ臭等を吸着する活性炭および一般細菌や不純物を精度よく取り除く中空糸膜等を備えた浄水部4と、通水を確認し、制御手段に制御指示する流量センサ5と、グリセロリン酸カルシウムや乳酸カルシウム等のカルシウムイオンを原水中に付与し原水導伝率を高めるカルシウム供給部6と、流量センサ5を経由してきた水を電気分解してアルカリイオン水、酸性イオン水を生成する電解槽7と、電解槽7内を2分し、2つの電極室を形成する隔膜8と、隔膜8で2分されて形成された各電極室に配置された電極板9および10と、電極板10側の水(電極板10が陽極の場合は酸性イオン水)を排出する排水管11と、電解槽7と排水管11の接続部付近に配設されアルカリイオン水を効率よく生成するために設けられた吐水流量調節用の流量調節部12と、電極板9側の水(電極板9が陰極の場合はアルカリイオン水)を吐出する吐水管13と、電解槽7内の滞留水や電極板洗浄時のカルシウム、マグネシウム等からなるスケールが溶出した洗浄水を排出するための電磁弁14と、排水管11を介して電極板10側の水(電極板10が陽極の場合は酸性イオン水)や電解槽7の滞留水や洗浄水を排水する放出管15と、浄水部4の有無を検知する浄水部検知センサ16と、電源投入用プラグ17と、電源投入用プラグ17からの交流電源を直流電源に変換する電源部18と、アルカリイオン整水器本体3の動作を制御する制御手段19と、アルカリイオン整水器本体3の操作状態を表示する操作表示部20と、浄水モード時において弁を閉じることにより排水をカットし、アルカリイオン水および酸性イオン水生成時には弁を開き排水する電磁弁21と、アルカリイオン水および酸性イオン水生成時に、電極板9と10の間に流れる電流量を検出する電解電流検出部22を備えている。
【0005】
次ぎに、以上の各構成要素で構成された従来のアルカリイオン整水器について、以下そのアルカリイオン水を生成する際の動作を説明する。
【0006】
利用者は操作表示部20のモード選択ボタンを押圧してアルカリイオン水生成モード、酸性イオン水生成モード、または浄水モードを選択設定するとともに、アルカリイオン水生成モードまたは酸性イオン水生成モードにおいては操作表示部20のpH強度ボタンにて所望のpH強度を選択し、水栓2を開く。
【0007】
水栓2から通水された原水は、浄水部4で原水中の残留塩素、トリハロメタン、カビ臭、一般細菌等の不純物が取り除かれ、流量センサ5を経てカルシウム供給部6にてグリセロリン酸カルシウムや乳酸カルシウム等が溶解されて電気分解容易な水に処理された後、電解槽7に通水される。
【0008】
一方、電源投入用プラグ17からはAC100Vが供給され、電源部18内のトランスおよび制御用直流電源で電気分解に必要な直流電圧電流を発生させ、制御手段19を介して電解槽7の電極板9および10に電気分解に必要な電力が給電される。このとき相対的にプラス電圧を印加する電極板を陽極、マイナス電圧を印加する電極板を陰極とすると、電解槽7内に隔膜8で仕切られた陽極室と陰極室とが形成される。なお、アルカリイオン水生成モード時においては電極板10が陽極となり、電極板9が陰極となる。また、酸性イオン水生成モード時においては電極板9が陽極となり、電極板10が陰極となる。
【0009】
さて、通水後制御手段19は流量センサ5の信号を読み取り、流量レベルが一定量を越えると、この状態を通水中と判断する。このとき、操作表示部20の生成モード選択ボタンの押圧によりすでに電気分解条件が設定されているので、制御手段19は、電解槽7にて電気分解をおこなうため電極板9および10に所定の電圧が印加されるように動作命令の出力をおこなう。これにより、アルカリイオン水生成モード時においては電極板9が陰極、電極板10が陽極となり、吐水管13よりアルカリイオン水が吐出され、酸性イオン水生成モード時においては電極板9が陽極、電極板10が陰極となり、吐水管13より酸性イオン水が吐出される。
【0010】
水栓2により原水が止水されると、流量センサ5で制御手段19は止水と判断し、その電圧印加制御部より電解槽7の電極板9および10への電圧印加を停止する。また、浄水モード時においては電極板9および10には電圧が印加されず、かつ、電磁弁21を閉じることにより排水をカットし、吐水管13より浄水が吐出される。
【0011】
つぎに、浄水部4は、原水中の残留塩素やトリハロメタン、カビ臭、一般細菌等の不純物を取り除くため、徐々に目詰まりを起こし電解性能を低下させる。制御手段19は流量センサ5の信号を読み取って通水量をカウントし、一定量に達すると浄水部4の交換時期であることを操作表示部20により表示する。また、原水の水質により一定量に達する前に目詰まりが進行することがあるが、これは流量センサ5の信号の変動を制御手段19で監視することにより、浄水部4の交換時期であることを操作表示部20により表示する。
【0012】
浄水部4を着脱すると浄水部検知センサ16により制御手段19は浄水部4の有無を検知し、新しい浄水部4が装着されたものとし、通水量のカウントおよび通水状態を初期状態にする。または、操作表示部20の操作によっても通水量のカウントおよび通水状態を使用者が任意に初期状態にすることができる。
【0013】
ここで、アルカリイオン水生成モード時および酸性イオン水生成モード時に制御手段19は、電源部18内で発生する直流電圧を電解槽7の電極板9および10に供給する。一定の直流電圧を電極板9および10に供給した場合、水道水の水質および通水路を通る水道水の流量によって、電極板9と電極板10との間に流れる電流は変化し、生成されるpH値も変化する。
【0014】
利用者にて操作表示部20のpH強度ボタンで所望のpH強度が選択されると、そのpH強度に応じて制御手段19は、電源部18内で発生する直流電圧を一定周期内で電極板9および10に供給する時間を可変することにより、アルカリイオン水または酸性イオン水を生成する。導電率の高い水道水であると、大電流が流れるため、制御手段19は、電解電流検知部22により電極板9と電極板10との間に流れる電流を監視することにより、一定電流以上流れないよう供給時間を制御する。
【0015】
生成されるpH値については、吐水管13より吐水される生成水をpH試薬等で測定し、pH強度ボタンで調整を行うことができる。
【0016】
【発明が解決しようとする課題】
このように従来のアルカリイオン整水器は、電解槽7の電極板9と10に供給する単一の直流電圧を、一定周期内で供給時間を制御する、いわゆるデューティを可変することにより電解制御している。このため、たとえば非常に導電率の高い水道水や更に生成を強力に促進するために塩水を添加した場合、供給時間を短くし平均的に電解電流を小さくするよう制御されるが、供給時のピーク電流が増大し制御素子にストレスを加えることになる。
【0017】
そこで本発明は、水道水の水質および塩水の添加においても制御素子にストレスを加えることなく、安全で信頼性の高いアルカリイオン整水器を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記の目的を達成するために本発明は、電源装置は電圧レベルの差を有する複数の出力手段を有し、電解槽に流れる電気分解用の電流のレベルによって電圧レベルの切換を行い、さらにデューティ制御を行うとともに、直流電流供給時のピーク電流が増大した場合には出力レベルを低い出力レベルに切換え、電流が流れにくくなった場合には出力レベルを高いレベルに切換えることにより最適な電解制御機能をもつアルカリイオン整水器とする。
【0019】
この発明によれば、ある直流電圧を電解槽に供給した場合、電極板間に流れる電流が高い場合は電源装置の電圧レベルを下げることによりピーク電流を抑えることができ、電流が流れにくくなった場合には出力レベルを高いレベルに切換えて所望されたpH強度に制御できるようになる。さらにデューティ可変によって細かい制御ができるようになり、安全で信頼性の高いアルカリイオン整水器を実現できる。
【0020】
【発明の実施の形態】
本発明の請求項1に記載の発明は、水を電解槽で電気分解してアルカリイオン水および酸性イオン水を生成するアルカリイオン整水器であって、電圧レベルの差を有する複数の出力手段を備えて電解槽に電圧を供給する電源装置と、電源装置の出力電圧を電解槽に供給する際にパルスにより供給を制御する制御手段とを具備し、且つ前記制御手段は、電源装置の電圧レベル切替えの判断、およびパルスのデューティの制御量の判断を、電解槽に流れる電気分解用の電流によって制御するとともに、直流電流供給時のピーク電流が増大した場合には出力レベルを低い出力レベルに切換え、電流が流れにくくなった場合には出力レベルを高いレベルに切換えることで、原水の水質により電解槽への供給電圧を制御するようにしたものであり、最適な電解制御を行うという作用を有する。
【0024】
以下、本発明の実施の形態について、図面を参照して説明する。
【0025】
(実施の形態1)
図1は、本発明の実施の形態1のアルカリイオン整水器の概略構成図である。なお、図1において従来の技術の説明で用いた符号と同一符号のものは、本実施の形態1においても基本的に同一であるため、これらの詳細な説明は従来の技術のところに譲って省略する。
【0026】
図1において、1は水道水等の原水管、2は水栓、3はアルカリイオン整水器本体、4は浄水部、5は流量センサ、6はカルシウム供給部、7は電解槽、8は隔膜、9および10は電極板、11は排水管、12は流量調整部、13は吐水管、14は電磁弁、15は放水管、16は浄水部検知センサ、17は電源投入用プラグ、18は電源部、19は制御手段、20は操作表示部、21は電磁弁、22は電解電流検知部であり、これらは前記図2に示す従来の技術と同様に構成されている。
【0027】
本実施の形態1のアルカリイオン整水器は、次の構成要素を備えたことに特徴を持っている。すなわち、電源部18内に設けられ、電源投入用プラグ17からの交流電源を直流電源に変換し、電圧レベルの差を有する複数の出力レベルのひとつである電圧レベル(1)23と、電圧レベル(1)23と電圧レベルの差を有する電圧レベル(2)24と、電圧レベル(1)23と電圧レベル(2)24と電圧レベルの差を有する電圧レベル(3)25と、電極板9と10の間に流れる電流のレベルによって電圧レベル(1)23と電圧レベル(2)24と電圧レベル(3)25を切替える電圧レベル切換部26を備えている。
【0028】
これらの各構成要素を備えてなる本実施の形態1のアルカリイオン整水器において、アルカリイオン水および酸性イオン水を生成する場合、水栓2を開き、水栓2から通水された原水は浄水部4を通過する。浄水部4で不純物が取り除かれた原水は流量センサ5を通過し、制御手段19は流量センサ5の信号を読み取り、流量レベルが一定量を超えるとこの状態を通水中と判断する。このとき操作表示部20によりアルカリイオン水生成モードまたは酸性イオン水生成モードが選択設定されていると、制御手段19は電極板9および10へ電源部18より直流電源を供給し、アルカリイオン水の生成または酸性イオン水の生成を開始する。
【0029】
この電解制御において、制御手段19は、電圧レベル切換部26を介して電極板9および10に供給する直流電源の出力レベルを電圧レベル(2)24に切換え、電解電流検知部22により電極板9および10の間に流れる電流を監視する。
【0030】
また、操作表示部20のpH強度ボタンにて所望されたpH強度に制御するため、電源部18内で発生する電圧レベル(2)24の直流電圧を一定周期内で電極板9および10に供給する時間を可変することにより、細かく制御を行う。
【0031】
ここで原水の導電率が高い場合、電極板9および10の間に流れる電流は大きくなり、これを電解電流検知部22により監視し、一定電流以上流れないよう一定周期内での供給時間を短くする。
【0032】
しかし、非常に導電率が高い原水や更に生成を強力に促進するために塩水を添加した場合、直流電源供給時のピーク電流が増大するため、制御手段19は電圧レベル切換部26を介し、出力レベルが電圧レベル(2)24よりも低い出力レベル(1)23に切換え、ピーク電流を抑えるように制御を行う。
【0033】
また、前記とは逆に非常に導電率の低い原水の場合、電極板9および10の間に電流が流れにくくなるため、制御手段19は電圧レベル切換部26を介し、出力レベルが電圧レベル(2)24よりも高い出力レベル(3)25に切換え、所望されたpH強度に制御できるようになる。
【0034】
ここで水の電気分解の原理について簡単に説明を行う。水中に一対の電極をいれ、電極と電極の間に水中のイオン性物質は自由に通過するが、液体の水自身の自由な往来を阻害する程度の微細な孔を有する隔膜を設ける。この一方の電極をプラス極に他方をマイナス極に接続すると、電解槽の陽極には塩化物イオンなどの陰イオンが引き寄せられ、逆に陰極にはマグネシウムイオンやカルシウムイオンなどの陽イオンが引き付けられる。このとき、両極間に十分な電圧がかけられると水の電気分解が起きる。陽極からは酸素ガスや塩素ガスなどが発生すると同時にHイオンを水中に放出し、陰極からは水素ガスなどが発生すると同時にOHイオンを水中に放出する。その結果として、陽極側の水は酸性サイドに片寄った塩化物イオンなどの陰イオンが相対的に増加した水となり、陰極側の水はアルカリサイドに片寄ったナトリウムイオンやカルシウムイオンなどの陽イオンが相対的に増加した水となる。これらの水を個別に取り出し利用するのが電気分解イオン水の基本的な原理である。このとき、各電極の表面で起こる反応は下記のとおりである。
【0035】
以上のように、電源装置が電圧レベルの差を有する複数の出力手段を備えることにより、原水の水質による電解槽への電圧の供給量を制御し、最適な電解制御を行うことができるのである。
【0036】
なお、電源装置内の電圧レベルの差を有する複数の出力手段は、できるだけ出力レベルの差を小さくし、できるだけ多くの出力手段を備えればより最適な電解制御を行うことができる。
【0037】
このように本実施の形態1のアルカリイオン整水器によれば、水道水の導電率が高い地域でも、生成を強力に促進するために塩水を添加する場合でも、電流が過剰に流れたときは電圧レベルを下げることで電流を抑えることができ、また、デューティ制御により細かく生成できるため、制御素子にストレスなく、効率よく制御することができる。
【0038】
【発明の効果】
以上の説明より明らかなように、本発明によれば、電源装置が電圧レベルの差を有する複数の出力手段を備え、電解槽に流れる電気分解用の電流のレベルによって電圧レベルの切換を行い、さらにデューティ制御を行うとともに、直流電流供給時のピーク電流が増大した場合には出力レベルを低い出力レベルに切換え、電流が流れにくくなった場合には出力レベルを高いレベルに切換えることで、原水の水質により電解槽への供給電圧を制御するようにしているので、最適な制御ができ、安全で信頼性の高いアルカリイオン整水器を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1のアルカリイオン整水器の概略構成図
【図2】従来のアルカリイオン整水器の概略構成図
【符号の説明】
1 原水管
2 水栓
3 アルカリイオン整水器本体
4 浄水部
5 流量センサ
6 カルシウム供給部
7 電解槽
8 隔膜
9 電極板
10 電極板
11 排水管
12 流量調整部
13 吐水管
14 電磁弁
15 放水管
16 浄水部検知センサ
17 電源投入用プラグ
18 電源部
19 制御手段
20 操作表示部
21 電磁弁
22 電解電流検知部
23 電圧レベル(1)
24 電圧レベル(2)
25 電圧レベル(3)
26 電圧レベル切換部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline ion adjuster for electrolyzing raw water such as tap water to produce acidic ion water such as alkaline ion water, skin lotion, and sterilizing washing water used for drinking and medical purposes.
[0002]
[Prior art]
In recent years, alkali ion water conditioners have become widespread as continuous electrolysis type ion generators. This alkaline ionized water device electrolyzes tap water or the like in an electrolytic cell to generate acidic ion water on the anode side and alkaline ion water on the cathode side.
[0003]
A conventional continuous electrolysis type alkaline ion water conditioner will be described below.
[0004]
FIG. 2 is a schematic structural diagram of a conventional alkaline ionized water device. As shown in the figure, this alkaline ion water purifier includes a raw water pipe 1 such as tap water, a
[0005]
Next, the operation | movement at the time of producing | generating the alkaline ionized water is demonstrated about the conventional alkaline ionized water apparatus comprised by the above each component below.
[0006]
The user presses the mode selection button of the
[0007]
The raw water passed through the
[0008]
On the other hand, 100 VAC is supplied from the power-on
[0009]
Now, the control means 19 after passing water reads the signal of the
[0010]
When the raw water is stopped by the
[0011]
Next, in order to remove impurities such as residual chlorine, trihalomethane, mold odor, and general bacteria in the raw water, the
[0012]
When the
[0013]
Here, in the alkaline ionic water production mode and the acidic ionic water production mode, the control means 19 supplies a DC voltage generated in the
[0014]
When a user selects a desired pH intensity with the pH intensity button of the
[0015]
About the produced | generated pH value, the produced | generated water discharged from the
[0016]
[Problems to be solved by the invention]
As described above, the conventional alkaline ionized water device controls the electrolysis by changing the so-called duty of a single DC voltage supplied to the
[0017]
Therefore, an object of the present invention is to provide a safe and highly reliable alkaline ionized water device without adding stress to the control element even in the addition of tap water quality and salt water.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the power supply device has a plurality of output means having a difference in voltage level, and switches the voltage level according to the level of the current for electrolysis flowing in the electrolytic cell, and further the duty is changed. Optimal electrolysis control function by switching the output level to a lower output level when the peak current increases when DC current is supplied, and switching the output level to a higher level when current becomes difficult to flow Alkaline ion water conditioner with
[0019]
According to the present invention, when a certain DC voltage is supplied to the electrolytic cell, if the current flowing between the electrode plates is high, the peak current can be suppressed by lowering the voltage level of the power supply device, making it difficult for the current to flow. case ing to be able to control the desired the pH intensity switches the output level to a higher level. Furthermore, fine control can be performed by varying the duty, and a safe and highly reliable alkaline ionized water device can be realized.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is an alkali ion water conditioner that electrolyzes water in an electrolytic cell to produce alkali ion water and acidic ion water, and has a plurality of output means having a difference in voltage level. comprising a power supply for supplying a voltage to the electrolytic cell equipped with, and control means for controlling the supply by a pulse when supplying the output voltage of the power supply to the electrolytic cell, and the control means, the voltage of the power supply device The judgment of level switching and the judgment of the control amount of the pulse duty are controlled by the electrolysis current flowing in the electrolytic cell, and the output level is lowered to a lower output level when the peak current increases when DC current is supplied. switching, by switching the output level to a high level when the current becomes difficult to flow, which has to control the supply voltage to the electrolytic cell by the water quality of raw water, the optimal It has the effect of performing electrolysis control.
[0024]
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an alkaline ionized water device according to Embodiment 1 of the present invention. In FIG. 1, the same reference numerals as those used in the description of the conventional technique are basically the same in the first embodiment, and the detailed description thereof is left to the conventional technique. Omitted.
[0026]
In FIG. 1, 1 is a raw water pipe such as tap water, 2 is a faucet, 3 is an alkali ion water adjuster body, 4 is a water purification unit, 5 is a flow sensor, 6 is a calcium supply unit, 7 is an electrolytic cell, and 8 is Diaphragm, 9 and 10 are electrode plates, 11 is a drain pipe, 12 is a flow rate adjusting unit, 13 is a water discharge pipe, 14 is a solenoid valve, 15 is a water discharge pipe, 16 is a water purifier detection sensor, 17 is a power-on plug, 18 Is a power supply unit, 19 is a control means, 20 is an operation display unit, 21 is a solenoid valve, and 22 is an electrolysis current detection unit, which are configured in the same manner as the prior art shown in FIG.
[0027]
The alkaline ionized water device of the first embodiment is characterized by having the following components. That is, the voltage level (1) 23 which is provided in the
[0028]
In the alkaline ionized water device of Embodiment 1 comprising these components, when producing alkaline ionized water and acidic ionized water, the
[0029]
In this electrolysis control, the control means 19 switches the output level of the DC power supplied to the
[0030]
In addition, in order to control to a desired pH intensity with the pH intensity button of the
[0031]
Here, when the conductivity of the raw water is high, the current flowing between the
[0032]
However, when raw water with very high conductivity or salt water is added to strongly promote the generation, the peak current at the time of DC power supply increases, so that the control means 19 outputs via the voltage
[0033]
On the contrary, in the case of raw water having a very low electrical conductivity, it becomes difficult for current to flow between the
[0034]
Here, the principle of water electrolysis will be briefly described. A pair of electrodes are placed in water, and a diaphragm having fine pores is provided between the electrodes so that ionic substances in the water can freely pass therethrough but inhibit the free passage of liquid water itself. When one electrode is connected to the positive electrode and the other is connected to the negative electrode, anions such as chloride ions are attracted to the anode of the electrolytic cell, and conversely, cations such as magnesium ions and calcium ions are attracted to the cathode. . At this time, electrolysis of water occurs when a sufficient voltage is applied between the two electrodes. Oxygen gas or chlorine gas is generated from the anode and H ions are released into water at the same time. Hydrogen gas and the like are generated from the cathode and OH ions are released into water at the same time. As a result, the water on the anode side is a water in which anions such as chloride ions that are offset toward the acidic side are relatively increased, and the water on the cathode side is cations such as sodium ions and calcium ions that are offset toward the alkali side. Relatively increased water. The basic principle of electrolyzed ionic water is to take out and use these waters individually. At this time, the reaction occurring on the surface of each electrode is as follows.
[0035]
As described above, the power supply device includes a plurality of output means having a difference in voltage level, so that the amount of voltage supplied to the electrolytic cell by the quality of raw water can be controlled and optimal electrolysis control can be performed. .
[0036]
A plurality of output means having a difference in voltage level in the power supply device can reduce the difference in output level as much as possible, and perform more optimal electrolysis control by providing as many output means as possible.
[0037]
As described above, according to the alkaline ionized water device of the first embodiment, even in a region where the conductivity of tap water is high, even when salt water is added in order to strongly promote the generation, the current flows excessively. Since the current can be suppressed by lowering the voltage level and can be finely generated by duty control, the control element can be controlled efficiently without stress.
[0038]
【The invention's effect】
As apparent from the above description, according to the present invention, includes a plurality of output means having a difference in power supply voltage level, to switch the selected voltage level by the level of current for electrolysis flows through the electrolytic cell, In addition to duty control, the output level is switched to a low output level when the peak current increases when DC current is supplied, and the output level is switched to a high level when the current becomes difficult to flow. Since the supply voltage to the electrolytic cell is controlled by the water quality , optimum control can be performed, and a safe and highly reliable alkaline ionized water device can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an alkaline ionized water apparatus according to Embodiment 1 of the present invention. FIG. 2 is a schematic structural diagram of a conventional alkaline ionized water device.
DESCRIPTION OF SYMBOLS 1
24 Voltage level (2)
25 Voltage level (3)
26 Voltage level switching part
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00877899A JP4106788B2 (en) | 1999-01-18 | 1999-01-18 | Alkaline ion water conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00877899A JP4106788B2 (en) | 1999-01-18 | 1999-01-18 | Alkaline ion water conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000202449A JP2000202449A (en) | 2000-07-25 |
JP4106788B2 true JP4106788B2 (en) | 2008-06-25 |
Family
ID=11702350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00877899A Expired - Fee Related JP4106788B2 (en) | 1999-01-18 | 1999-01-18 | Alkaline ion water conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4106788B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7344629B2 (en) * | 2003-08-08 | 2008-03-18 | Pionetics Corporation | Selectable ion concentrations with electrolytic ion exchange |
US7959780B2 (en) | 2004-07-26 | 2011-06-14 | Emporia Capital Funding Llc | Textured ion exchange membranes |
US7780833B2 (en) | 2005-07-26 | 2010-08-24 | John Hawkins | Electrochemical ion exchange with textured membranes and cartridge |
WO2007044609A1 (en) | 2005-10-06 | 2007-04-19 | Pionetics Corporation | Electrochemical ion exchange treatment of fluids |
JP2013208569A (en) * | 2012-03-30 | 2013-10-10 | Toto Ltd | Sterilized water generator |
JP6056008B2 (en) * | 2013-01-29 | 2017-01-11 | パナソニックIpマネジメント株式会社 | Air purifier |
US9757695B2 (en) | 2015-01-03 | 2017-09-12 | Pionetics Corporation | Anti-scale electrochemical apparatus with water-splitting ion exchange membrane |
-
1999
- 1999-01-18 JP JP00877899A patent/JP4106788B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000202449A (en) | 2000-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06343959A (en) | Alkaline ion water adjusting device | |
JP4106788B2 (en) | Alkaline ion water conditioner | |
JP2000317451A (en) | Alkaline ionized water producer | |
JP4462157B2 (en) | Electrolyzed water generating device and sink equipped with the same | |
JP4548294B2 (en) | Electrolyzed water generating device and sink equipped with the same | |
JP4936423B2 (en) | Electrolyzed water generating device and sink equipped with the same | |
WO2012132600A1 (en) | Electrolyzed water generation device | |
JP3911727B2 (en) | Alkaline ion water conditioner | |
JP2006247554A (en) | Electrolytic water generator and sink equipped with it | |
JP3915166B2 (en) | Alkaline ion water conditioner | |
JP2001029954A (en) | Apparatus for producing electrolytic water | |
JP4378803B2 (en) | Alkaline ion water conditioner | |
JP3648867B2 (en) | Alkaline ion water conditioner | |
JP3461030B2 (en) | Alkaline ion water purifier | |
JP2006075700A (en) | Alkali ion water generator | |
JP3666102B2 (en) | Alkaline ion water conditioner | |
JP3572661B2 (en) | Electrolyzed water generator | |
JP4379132B2 (en) | Alkaline ion water conditioner | |
JP2005131445A (en) | Ionic water generator | |
JP3906518B2 (en) | Built-in alkaline water conditioner | |
JPH10309580A (en) | Alkali ion water generator | |
WO2014002360A1 (en) | Electrolyzed water generating device | |
JP4591001B2 (en) | Alkaline ion water conditioner | |
JPH1157713A (en) | Alkaline ionized water regulator | |
JPH06335679A (en) | Alkaline ion water regulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051006 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051114 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070319 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070322 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080324 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |