WO2012132600A1 - Electrolyzed water generation device - Google Patents

Electrolyzed water generation device Download PDF

Info

Publication number
WO2012132600A1
WO2012132600A1 PCT/JP2012/053594 JP2012053594W WO2012132600A1 WO 2012132600 A1 WO2012132600 A1 WO 2012132600A1 JP 2012053594 W JP2012053594 W JP 2012053594W WO 2012132600 A1 WO2012132600 A1 WO 2012132600A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode chamber
chamber
flow rate
electrolytic cell
Prior art date
Application number
PCT/JP2012/053594
Other languages
French (fr)
Japanese (ja)
Inventor
久徳 白水
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012132600A1 publication Critical patent/WO2012132600A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/026Treating water for medical or cosmetic purposes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • C02F2303/185The treatment agent being halogen or a halogenated compound

Definitions

  • the present invention relates to an electrolyzed water generating apparatus that electrolyzes raw water to generate alkaline ionized water and acidic ionized water, and in particular, the amount of dissolved hydrogen can be reduced without excessively increasing the pH value of alkaline ionized water used for drinking.
  • the present invention relates to an electrolyzed water generating device that can be enhanced.
  • electrolyzed water generators that generate alkaline ionized water and acidic ionized water by electrolyzing raw water such as tap water in an electrolytic cell are widely used in general households. It has become widespread.
  • This electrolyzed water generator is configured to discharge one of alkaline ionized water and acidic ionized water so that they can be used from the water discharge channel, and to discharge the other from the water discharge channel. Will be served.
  • a water conditioner that includes an electrolytic cell in which an anode and a cathode are arranged to face each other, and can electrolyze raw water that has flowed into the electrolytic cell to take in acidic water and alkaline water (for example, Patent Document 1).
  • the water conditioner disclosed in Patent Document 1 is a flow that distributes raw water to a raw water bypass channel and an electrolytic cell at a predetermined ratio in order to optimize drinking of strongly alkaline water having a pH of 10 or more generated by the electrolytic cell.
  • a path switching valve is provided.
  • a flow path switching valve is provided outside the electrolytic cell, and the raw water is distributed to the raw water bypass flow channel and the electrolytic cell through the flow path switching valve at a predetermined ratio. .
  • a separate flow path switching valve is required, there is a problem that the initial installation cost is high and the electrolyzed water generation system is enlarged.
  • pipe connection between the electrolytic cell and the flow path switching valve is required, and there is also a situation in which the risk of water leakage from the O-ring and the packing part at the pipe connection part increases.
  • the present invention solves such a conventional problem, and can generate alkaline ionized water with a large amount of dissolved hydrogen without excessively increasing the pH value of discharged water with a simple structure and an inexpensive configuration. It aims at providing an electrolyzed water generating device.
  • the present invention generates alkaline ionized water and acidic ionized water by electrolyzing raw water composed of a cathode chamber having a cathode and an anode chamber having an anode.
  • a merging section is provided for merging a part of the ionic water with the alkaline ion water generated at the cathode.
  • the merging portion is provided on the downstream side (that is, the drainage channel side) in the electrolytic cell.
  • the merging portion is provided with an on-off valve capable of adjusting the flow rate.
  • the confluence part has a removing means for removing residual chlorine in the acidic ion water.
  • At least the drainage channel is provided with the on-off valve capable of adjusting the flow rate.
  • Example 1 is a schematic structural diagram of Example 1 of the electrolyzed water generating apparatus.
  • a raw water pipe 1 such as tap water is connected to a water purification section 4 of a main body section 3 through a faucet 2.
  • the water purification unit 4 includes an activated carbon that adsorbs residual chlorine, trihalomethane, mold odor, and the like in raw water, and a hollow fiber membrane that accurately removes general bacteria and impurities.
  • the water filtered by the water purification unit 4 flows from the introduction path 5a to the flow rate detection unit 6.
  • the flow rate detection unit 6 confirms the water flow and gives a control instruction to the control unit 25.
  • the water filtered by the water purification unit 4 is diverted to the introduction paths 5b and 5c through the flow rate detection unit 6.
  • the introduction path 5 c is provided with a calcium supply section throttle 7 and a calcium supply section 8.
  • the calcium supply throttle 7 adjusts the flow rate of the flow through the introduction path 5c.
  • the calcium supply unit 8 imparts calcium ions such as calcium glycerophosphate and calcium lactate to the raw water to increase the electrical conductivity of the raw water.
  • the introduction path 5c merges with the introduction path 5b.
  • the downstream of the introduction path 5b communicates with the first electrode chamber introduction path 9 via the introduction path 5d, and further communicates with the first electrode chamber 12a of the electrolytic cell 12.
  • a second electrode chamber introduction path 10 is branched to the introduction path 5d.
  • the second electrode chamber introduction path 10 enters the second electrode chamber 12b of the electrolytic cell 12 through a second electrode chamber restriction 11 that adjusts the flow rate of the second electrode chamber introduction path 10. Communicate.
  • the electrolytic cell 12 electrolyzes the filtered water to generate alkaline ionized water and acidic ionized water, and the first electrode chamber 12a and the second electrode chamber 12a separated by the diaphragms 13a and 13b are contained therein. Electrode chamber 12b. In the first electrode chamber 12a, the first electrode chamber electrode plates 14a, 14b are arranged to face each other. A second electrode chamber electrode plate 15 is disposed in the second electrode chamber 12b.
  • a junction 16 having an acidic ion water introduction function is provided on the downstream side in the second electrode chamber 12b.
  • the junction 16 is arranged facing the downstream side in the first electrode chamber 12a.
  • the junction 16 introduces a part of the ionic water generated in the second electrode chamber 12b (acidic ionic water when the second electrode chamber electrode plate 15 is an anode) into the first electrode chamber 12a.
  • the downstream of the junction 16 is connected to drains 18a and 18b for discharging water from the second electrode chamber 12b (or acidic ion water when the second electrode chamber electrode plate 15 is an anode).
  • a drainage channel restrictor 19 for limiting the flow rate flowing through the drainage channel 18a is interposed.
  • drainage channels 18a and 18b will be referred to as the drainage channel 18 when collectively described.
  • a water discharge path 17 is connected downstream of the first electrode chamber 12a.
  • the water discharge channel 17 discharges water in the first electrode chamber 12a (alkaline ion water when the first electrode chamber electrode plates 14a and 14b are cathodes) as drinking water.
  • a water discharge bypass 20 is branched and connected upstream of the water discharge 17.
  • the water discharge bypass path 20 is connected to the pH sensor unit 22 via a water discharge bypass path throttle 21 that restricts the flow rate.
  • the pH sensor unit 22 measures the pH value of alkaline ionized water that flows out from the first electrode chamber 12a into the water discharge bypass 20.
  • the downstream side of the water discharge bypass channel 20 joins the drainage channel 18b.
  • the control unit 25 is configured by a microcomputer that supplies the electrolytic cell 12 with electrolysis energy for performing operation control and electrolysis of the main body unit 3.
  • numeral 23 is a power plug
  • numeral 24 is a power supply unit for converting AC power from the power plug 23 into DC power.
  • An operation display unit 26 is used by the user to select and set the quality of alkaline ionized water, acidic ionized water, purified water, pH strength, and various functions.
  • FIG. 3 is a detailed view of the first embodiment of the junction 16 and the second electrode chamber 12b.
  • a confluence portion restriction 28 is provided in the confluence portion 16.
  • the constricting portion restriction 28 is used when the ion water generated in the second electrode chamber 12b (acidic ion water when the second electrode chamber electrode plate 15 is an anode) is introduced into the first electrode chamber 12a. Used for flow rate adjustment.
  • the user selects a desired water quality mode and pH intensity such as alkaline ion water generation mode, acid ion water generation mode or water purification mode by operating predetermined buttons on the operation display unit 26, and opens the faucet 2 to pass through.
  • a desired water quality mode and pH intensity such as alkaline ion water generation mode, acid ion water generation mode or water purification mode by operating predetermined buttons on the operation display unit 26, and opens the faucet 2 to pass through.
  • the raw water introduced from the faucet 2 is subjected to removal of residual chlorine, trihalomethane, musty odor, general bacteria, and other impurities in the raw water in the water purification unit 4, and passes through the flow rate detection unit 6 through the introduction path 5a. Thereafter, a part of the raw water is branched to the introduction path 5 c and the flow rate is limited to an appropriate amount by the calcium supply throttle 7.
  • the second electrode chamber restriction 11 is provided to adjust the internal pressure balance between the first electrode chamber 12a and the second electrode chamber 12b. That is, it passes through the first electrode chamber introduction path 9 and the second electrode chamber introduction path 10 with respect to the flow rate ratio passing through the outlet side of the first electrode chamber 12a and the outlet side of the second electrode chamber 12b.
  • the control unit 25 reads the output signal from the flow rate detection unit 6, and when the flow rate level flowing per unit time exceeds a certain amount, the control unit 25 determines that this state is underwater. At this time, the control unit 25 supplies predetermined electrolysis energy to the electrolytic cell 12 under the electrolysis conditions corresponding to the water quality mode and pH intensity that have already been selected.
  • the control unit 25 supplies predetermined electrolysis energy to the electrolytic cell 12 under the electrolysis conditions corresponding to the water quality mode and pH intensity that have already been selected.
  • the first electrode chamber electrode plates 14a and 14b serve as cathodes
  • the second electrode chamber electrode plate 15 serves as an anode. At this time, alkaline ionized water is discharged from the water discharge channel 17 and acidic ionized water is discharged from the drainage channel 18a.
  • the internal pressure of the second electrode chamber 12b is adjusted by the second electrode chamber aperture 11 so as to be higher than the internal pressure of the first electrode chamber 12a.
  • Part of the acidic ionic water generated in the second electrode chamber 12 b merges with the alkaline ionic water generated in the first electrode chamber 12 a through the merging portion restriction 28 provided in the merging portion 16. The pH value will be lowered.
  • the junction 16 may be provided on the upstream side of the water flow in the electrolytic cell 12 or on the downstream side. In addition, in order to further lower the pH value of the alkaline ionized water generated in the first electrode chamber 12a, it is more downstream in the electrolytic cell 12 where the acidity in the second electrode chamber 12b is the highest. It is effective. Further, the position of the confluence portion restriction 28 may be an upper portion of the confluence portion 16 or a side portion.
  • the alkaline ionized water whose pH value has been pushed down by the converging section throttle 28 is discharged from the water discharge channel 17 and used for drinking.
  • a part of the alkaline ionized water is branched into the water discharge bypass passage 20, and the flow rate is limited to an appropriate amount by the water discharge bypass passage restrictor 21, and introduced into the pH sensor unit 22 to measure the pH value.
  • the control unit 25 reads the output signal from the pH sensor unit 22 and performs control to sequentially adjust the energy of electrolysis so that the pH intensity already set in the operation display unit 26 is obtained. Thereafter, the alkaline ionized water that has passed through the pH sensor unit 22 joins the drainage channel 18b and is then discharged as drainage.
  • the electrolysis energy in order to increase the amount of dissolved hydrogen in the alkaline ionized water as much as possible, it is preferable to adjust the electrolysis energy so that the pH value is as high as possible within a range not exceeding pH 10.
  • the acidic ion water having higher acidity can be merged with the alkaline ion water generated in the first electrode chamber 12a when the merge portion 16 is on the upstream side of the electrolytic cell 12.
  • the pH value of the alkali ion water after joining the same it becomes possible to supply more energy of electrolysis.
  • the amount of hydrogen generated in the first electrode chamber 12a increases, and it becomes possible to generate alkaline ionized water with a large amount of dissolved hydrogen.
  • this state is determined to be water stop, and the supply of electrolysis energy to the electrolytic cell 12 is terminated.
  • a relatively positive voltage is applied to the first electrode chamber electrode plates 14a and 14b and a negative voltage is applied to the second electrode chamber electrode plate 15 for a certain time after the water stoppage.
  • the scales such as calcium adhering to the first electrode chamber electrode plates 14a and 14b are washed away.
  • the merging portion 16 is accommodated in the electrolytic cell 12, and a part of the acidic ion water generated at the anode through the merging portion 16 is replaced with the alkali generated at the cathode. It was made to merge with ion water. Therefore, it is not necessary to connect a flow path switching valve to the outside of the electrolytic cell as in the prior art, and the cost can be kept low. Furthermore, it is possible to suppress risks such as water leakage from the O-ring and the packing part at the pipe connection part. As a result, it is easy to make the electrolyzed water generation system compact with a simple structure and an inexpensive configuration.
  • junction part 16 since the junction part 16 is arrange
  • a through hole is formed in a part of the diaphragms 13 a and 13 b separating the second electrode chamber 12 b, and the size of the through hole is adjusted by the merging portion restrictor 28. May be.
  • Example 2 the same reference numerals as those in the first embodiment are assigned to components having the same configuration and effects as those in the first embodiment, and the description of the first embodiment is used for the detailed description thereof.
  • the second embodiment is different from the first embodiment in that the junction 16 in the electrolytic cell 12 is provided with an on-off valve capable of adjusting the flow rate and a residual chlorine removing means, and at least openable / closable on the acidic ion water drainage channel. It is a place with a valve. Based on the above differences, the operation of the electrolyzed water generating apparatus according to the second embodiment will be described with reference to FIGS. 2 and 4.
  • FIG. 2 is a schematic structural diagram of the electrolyzed water generating apparatus of Example 2.
  • an opening / closing valve 27 is provided in the middle of the drainage channel 18a to arbitrarily adjust the flow rate flowing through the drainage channel 18a according to a command from the control unit 25.
  • Reference numeral 33 denotes a signal line for inputting a control signal from the control unit 25 to the on-off valve 27.
  • FIG. 4 is a detailed view of the second embodiment of the junction 16 and the second electrode chamber 12b.
  • the merging portion 16 includes an on-off valve 30 including an inner cylinder 30a and an outer cylinder 30b.
  • the inner cylinder 30a is disposed immediately after the second electrode chamber 12b.
  • Residual chlorine removing means 29 is accommodated in the inner cylinder 30a.
  • This residual chlorine removing means 29 removes residual chlorine, trihalomethane, and the like of water introduced from the second electrode chamber 12b (FIG. 2) to the first electrode chamber 12a (FIG. 2) via the junction 16.
  • the inner cylinder 30a is accommodated in the outer cylinder 30b.
  • the inner cylinder 30a is provided with a flow rate adjusting hole 31a
  • the outer cylinder 30b is provided with a flow rate adjusting hole 31b.
  • a stepping motor 32 that can be rotated and stopped to an arbitrary position according to a command from the control unit 25 is connected to the inner cylinder 30a. 2 is a signal line for inputting a control signal from the control unit 25 to the stepping motor 32.
  • the user selects a desired water quality mode and pH intensity such as an alkaline ionized water generation mode, an acidic ionized water generation mode or a purified water mode by operating predetermined buttons on the operation display unit 26, and selects the faucet 2.
  • a desired water quality mode and pH intensity such as an alkaline ionized water generation mode, an acidic ionized water generation mode or a purified water mode by operating predetermined buttons on the operation display unit 26, and selects the faucet 2.
  • the raw water introduced from the faucet 2 is subjected to removal of residual chlorine, trihalomethane, musty odor, general bacteria, and other impurities in the raw water in the water purification unit 4, and passes through the flow rate detection unit 6 through the introduction path 5a.
  • the flow rate is restricted to an appropriate amount by the calcium supply unit restrictor 7, and the calcium supply unit 8 dissolves calcium glycerophosphate, calcium lactate, etc. To be processed. Thereafter, it merges with the introduction path 5b again.
  • the combined raw water passes through the first electrode chamber introduction path 9 and the second electrode chamber introduction path 10 provided exclusively for the first electrode chamber 12a and the second electrode chamber 12b in the electrolytic cell 12, respectively. Then, it is introduced into each electrode chamber.
  • the second electrode chamber restriction 11 is provided to adjust the internal pressure balance between the first electrode chamber 12a and the second electrode chamber 12b.
  • the first electrode chamber introduction passage 9 and the second electrode chamber introduction passage 10 are passed with respect to the flow rate ratio passing through the outlet side of the first electrode chamber 12a and the outlet side of the second electrode chamber 12b. It can be adjusted by changing the flow rate ratio.
  • the flow rate of the room introduction path 10) is adjusted in advance.
  • the internal pressure of the second electrode chamber 12b is higher than the internal pressure of the first electrode chamber 12a, and the water in the second electrode chamber 12b tends to flow into the first electrode chamber 12a. ing.
  • the control unit 25 reads the output signal from the flow rate detection unit 6, and when the flow rate level flowing per unit time exceeds a certain amount, the control unit 25 determines that this state is underwater. At this time, the control unit 25 supplies predetermined electrolysis energy to the electrolytic cell 12 under the electrolysis conditions corresponding to the water quality mode and pH intensity that have already been selected.
  • the control unit 25 supplies predetermined electrolysis energy to the electrolytic cell 12 under the electrolysis conditions corresponding to the water quality mode and pH intensity that have already been selected.
  • the first electrode chamber electrode plates 14a and 14b serve as cathodes
  • the second electrode chamber electrode plate 15 serves as an anode. Alkaline ion water is discharged from the water discharge channel 17 and acidic ion water is discharged from the drain channel 18a.
  • the internal pressure of the second electrode chamber 12b is adjusted by the second electrode chamber restriction 11 so as to be higher than the internal pressure of the first electrode chamber 12a.
  • Part of the acidic ionic water generated in the second electrode chamber 12 b passes through the residual chlorine removing means 29.
  • residual chlorine, trihalomethane, etc. contained in the raw water before being electrolyzed, residual chlorine, etc. resulting from chlorine gas generated at the anode are removed. Thereafter, it merges with the alkaline ionized water generated in the first electrode chamber 12a through the opening formed at the rotational position of the flow rate adjusting holes 31a and 31b provided in the inner cylinder 30a and the outer cylinder 30b of the merging section 16. .
  • the pH value of the alkaline ionized water is lowered.
  • the junction 16 may be provided on the upstream side of the water flow in the electrolytic cell 12 or on the downstream side. In addition, in order to further lower the pH value of the alkaline ionized water generated in the first electrode chamber 12a, it is more downstream in the electrolytic cell 12 where the acidity in the second electrode chamber 12b is the highest. It is effective.
  • flow rate adjusting holes 31a and 31b are provided in the cylindrical inner cylinder 30a and the outer cylinder 30b, respectively.
  • the inner cylinder 30a is connected to a stepping motor 32 to rotate and stop, and the portion where the respective flow rate adjusting holes 31a and 31b overlap is used as an effective hole, and can function as the on-off valve 30 depending on the stop position of the inner cylinder 30a.
  • the alkaline ionized water whose pH value has been pushed down in this way is discharged from the water discharge channel 17 and used for drinking.
  • a part of the alkaline ionized water is branched into the water discharge bypass passage 20, and the flow rate is limited to an appropriate amount by the water discharge bypass passage restrictor 21, and introduced into the pH sensor unit 22 to measure the pH value.
  • the control unit 25 reads the output signal from the pH sensor unit 22 and performs control to sequentially adjust the energy of electrolysis so that the pH intensity already set in the operation display unit 26 is obtained. Thereafter, the alkaline ionized water that has passed through the pH sensor unit 22 joins the drainage channel 18b and is then discharged as drainage.
  • the electrolysis energy in order to increase the amount of dissolved hydrogen in the alkaline ionized water as much as possible, it is preferable to adjust the electrolysis energy so that the pH value is as high as possible within a range not exceeding pH 10.
  • the pH value is measured by the pH sensor unit 22 with the electrolysis energy maximized.
  • the pH is 10 or more, the overlapping portion of the flow rate adjusting holes 31a and 31b of the merging portion 16 is gradually increased until the drinking pH value is reached.
  • the amount of acidic ion water flowing from the second electrode chamber 12b to the first electrode chamber 12a can be increased.
  • the on-off valve 27 is controlled within the set pH value to minimize the amount of drainage from the drainage channel 18b, the water-saving effect can be enhanced. Note that, as another method for minimizing the amount of drainage from the drainage channel 18b by controlling the on-off valve 27, it is possible to control the water passage diameter of the water discharge channel 17 to increase it.
  • this state is determined to be water stop, and the supply of electrolysis energy to the electrolytic cell 12 is terminated.
  • a relatively positive voltage is applied to the first electrode chamber electrode plates 14a and 14b and a negative voltage is applied to the second electrode chamber electrode plate 15 for a certain time after the water stoppage.
  • scales such as calcium adhering to the first electrode chamber electrode plates 14a and 14b are washed away.
  • the merging portion 16 in the electrolytic cell 12 is configured by the on-off valve 30 (inner cylinder 30a, outer cylinder 30b) capable of adjusting the flow rate.
  • the on-off valve 30 inner cylinder 30a, outer cylinder 30b
  • an appropriate amount of acidic ionic water according to the pH value of the discharged water can be merged with the alkaline ionized water, and the alkaline ionized water having the largest amount of dissolved hydrogen in the pH value range suitable for drinking can be generated. It becomes possible.
  • the joining portion 16 is provided with a residual chlorine removing means 29, residual chlorine, trihalomethane, etc. contained in the raw water before electrolysis are removed and residual chlorine caused by chlorine gas generated at the anode is removed. It becomes easy to do.
  • the produced alkaline ionized water can be made delicious and safe. Furthermore, since the acidic ion water drainage channel 18a is provided with the on-off valve 27 capable of adjusting the flow rate, the amount of drainage from the drainage channel 18a can be minimized according to the pH value of the discharged water. As a result, the water saving effect can be increased.
  • the electrolyzed water generator shown in FIGS. 1 and 2 includes the electrolyzer 12 and the controller 25.
  • the electrolytic cell 12 has a cathode chamber and an anode chamber.
  • the cathode chamber has a cathode.
  • the anode chamber has an anode.
  • the electrolytic cell 12 electrolyzes the passed raw water to generate alkali ion water and acidic ion water. More specifically, the electrolytic cell 12 electrolyzes the raw water that has been passed. Thereby, alkaline ionized water is generated in the cathode chamber, and acidic ionized water is generated in the anode chamber.
  • the control unit 25 controls the electrolytic strength of the electrolytic cell 12.
  • the electrolyzed water generating device includes a water discharge channel 17 and a drain channel 18.
  • the water discharge path 17 is connected to the cathode chamber, whereby alkali ion water generated in the cathode chamber is discharged from the water discharge path 17.
  • the drainage channel 18 is connected to the anode chamber, whereby the acidic ion water generated in the anode chamber is discharged via the drainage channel 18.
  • the electrolytic cell 12 has a merging portion 16 therein.
  • the junction 16 is provided to join part of the acidic ionic water generated at the anode and the alkaline ionic water generated at the cathode.
  • junction 16 is provided on the downstream side in the electrolytic cell 12.
  • the junction 16 is located downstream of the cathode in the electrolytic cell 12. Further, the junction 16 is located downstream of the anode in the electrolytic cell 12.
  • the anode chamber is separated from the cathode chamber by the diaphragms 13a and 13b.
  • junction 16 is located between the water discharge channel 17 and the anode. Moreover, the junction 16 is located between the water discharge channel 17 and the cathode.
  • the drainage channel 18 has a first end and a second end. The first end of the drainage channel 18 is directly connected to the anode chamber.
  • the electrolyzed water generating device further has a water discharge bypass 20.
  • the water discharge bypass channel 20 is arranged so that the liquid flowing into the water discharge channel 17 flows.
  • the water discharge bypass 20 has a first end and a second end.
  • the first end of the water discharge bypass path 20 is connected to the water discharge path 17 so that the first end of the water discharge bypass path 20 is located downstream of the junction 16. Thereby, the liquid flowing into the water discharge path 17 flows into the water discharge bypass path 20.
  • the second end of the water discharge bypass 20 is connected to the drain 18.
  • the water discharge bypass 20 has a pH sensor unit 22.
  • the pH sensor unit 22 is configured to measure the hydrogen ion index of the liquid flowing through the water discharge bypass 20.
  • the senor in the embodiment is not limited to the pH sensor unit 22. That is, the sensor is not limited to the sensor that measures the hydrogen ion index of the liquid flowing through the water discharge bypass 20. In other words, the sensor only needs to measure information indicating the hydrogen ion index of the liquid flowing through the water discharge bypass 20. In other words, the sensor may be configured to measure information corresponding to the hydrogen ion index of the liquid flowing through the water discharge bypass 20.
  • the drainage channel 18 further includes a drainage channel throttle 19.
  • the second end of the drainage channel 18 is defined by a drainage port.
  • the second end of the water discharge bypass 20 is connected to the drain 18 so as to be positioned between the drain 19 and the drain.
  • the water discharge bypass 20 has a water discharge bypass throttle 21.
  • the electrolyzed water generating device further includes a flow rate detection unit 6.
  • the flow rate detection unit 6 is configured to detect the flow rate of the liquid flowing into the electrolytic cell 12.
  • the anode chamber is configured to receive water through the introduction path.
  • the introduction path has an anode chamber throttle.
  • the anode chamber is configured to receive the liquid via the anode chamber introduction path.
  • the cathode chamber is configured to receive liquid via the cathode chamber introduction path.
  • the anode chamber introduction path is arranged independently of the cathode chamber introduction path.
  • the anode chamber introduction passage has an anode chamber throttle.
  • the electrolyzed water generating device has an introduction path.
  • the introduction path has an introduction path for the anode chamber and an introduction path for the cathode chamber.
  • the anode chamber is set so that the internal pressure is higher than that of the cathode chamber.
  • the anode chamber, the cathode chamber, the anode chamber introduction path, and the cathode chamber introduction path are set to satisfy the following relational expression.
  • the merging section 16 includes an on-off valve 30 that can adjust the flow rate.
  • the drainage channel 18 is provided with an on-off valve 27 capable of adjusting the flow rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention is provided with a merging part for causing a portion of acidic ionized water generated by an anode to merge inside an electrolytic bath, with alkaline ionized water generated by a cathode. This electrolyzed water generation device is capable of increasing the amount of dissolved hydrogen without causing the pH value of the alkaline ionized water used for drinking to excessively increase.

Description

電解水生成装置Electrolyzed water generator
 本発明は、原水を電気分解してアルカリイオン水および酸性イオン水を生成する電解水生成装置に関し、特に、飲用に用いられるアルカリイオン水のpH値を過度に上昇させることなく、溶存水素量を高め得る電解水生成装置に関するものである。 The present invention relates to an electrolyzed water generating apparatus that electrolyzes raw water to generate alkaline ionized water and acidic ionized water, and in particular, the amount of dissolved hydrogen can be reduced without excessively increasing the pH value of alkaline ionized water used for drinking. The present invention relates to an electrolyzed water generating device that can be enhanced.
 近年の安全な水や健康に対する関心の高まりに伴って、水道水等の原水を電解槽内で電気分解することでアルカリイオン水と酸性イオン水を生成する電解水生成装置が一般家庭にも広く普及するに至っている。この電解水生成装置は、アルカリイオン水と酸性イオン水の一方を吐水路から利用可能に吐出し、他方を排水路から排出する構成であり、特に健康に良いとされるアルカリイオン水については飲用に供されることになる。 With the recent increase in interest in safe water and health, electrolyzed water generators that generate alkaline ionized water and acidic ionized water by electrolyzing raw water such as tap water in an electrolytic cell are widely used in general households. It has become widespread. This electrolyzed water generator is configured to discharge one of alkaline ionized water and acidic ionized water so that they can be used from the water discharge channel, and to discharge the other from the water discharge channel. Will be served.
 また、最近では溶存水素量の多い飲用水では、例えばパーキンソン病やメタボリックシンドローム、生活習慣病等の予防や改善に効果があるという研究報告がある。そこで、溶存水素量を多くすることのできるアルカリイオン水を生成可能な電解水生成装置が望まれている。しかしながら、溶存水素量は電解槽での電解の強度に依存する。このため、溶存水素量の多いアルカリイオン水を生成しようとしても、pH値が高くなることより、飲用に適したpH10未満を満足させるためには、電解の強度をある程抑える必要があった。これにより、溶存水素量を多くすることが困難となっていた。 Also, recently, there are research reports that drinking water with a high amount of dissolved hydrogen is effective in preventing and improving Parkinson's disease, metabolic syndrome, lifestyle-related diseases, and the like. Therefore, an electrolyzed water generating apparatus capable of generating alkaline ionized water that can increase the amount of dissolved hydrogen is desired. However, the amount of dissolved hydrogen depends on the strength of electrolysis in the electrolytic cell. For this reason, even if it is going to produce | generate alkali ion water with much dissolved hydrogen amount, in order to satisfy less than pH10 suitable for drinking from pH value becoming high, it was necessary to suppress the intensity | strength of electrolysis to some extent. This makes it difficult to increase the amount of dissolved hydrogen.
 そこで、陽極と陰極とを対向配置した電解槽を備え、この電解槽に流入させた原水を電気分解して酸性水とアルカリ性水とを取水可能とした整水器が知られている(例えば、特許文献1参照)。 Therefore, there is known a water conditioner that includes an electrolytic cell in which an anode and a cathode are arranged to face each other, and can electrolyze raw water that has flowed into the electrolytic cell to take in acidic water and alkaline water (for example, Patent Document 1).
 この特許文献1に示された整水器は、電解槽により生成したpH10以上の強アルカリ性水を飲用最適化するために、原水を原水バイパス流路と電解槽とに所定の比率で分配する流路切換弁を備えたものである。 The water conditioner disclosed in Patent Document 1 is a flow that distributes raw water to a raw water bypass channel and an electrolytic cell at a predetermined ratio in order to optimize drinking of strongly alkaline water having a pH of 10 or more generated by the electrolytic cell. A path switching valve is provided.
特開2009-160503号公報JP 2009-160503 A
 しかしながら上記背景技術の構成では、電解槽の外部に流路切換弁を設け、この流路切換弁を介して、原水を原水バイパス流路と電解槽とに所定の比率で分配するようにしている。このため、流路切換弁を別途必要とするため、初期設置コストが高くつくうえに、電解水生成システムが大型化するという問題がある。しかも、電解槽と流路切換弁との配管接続が必要となり、配管の接続部における、Oリングやパッキン部からの水漏れのリスクも増加するという事情もあった。 However, in the configuration of the above background art, a flow path switching valve is provided outside the electrolytic cell, and the raw water is distributed to the raw water bypass flow channel and the electrolytic cell through the flow path switching valve at a predetermined ratio. . For this reason, since a separate flow path switching valve is required, there is a problem that the initial installation cost is high and the electrolyzed water generation system is enlarged. In addition, pipe connection between the electrolytic cell and the flow path switching valve is required, and there is also a situation in which the risk of water leakage from the O-ring and the packing part at the pipe connection part increases.
 本発明は、このような従来の課題を解決するものであり、単純な構造且つ安価な構成にて、吐水のpH値を過度に上昇させることなく溶存水素量の多いアルカリイオン水が生成可能な電解水生成装置を提供することを目的としている。 The present invention solves such a conventional problem, and can generate alkaline ionized water with a large amount of dissolved hydrogen without excessively increasing the pH value of discharged water with a simple structure and an inexpensive configuration. It aims at providing an electrolyzed water generating device.
 前記の課題を解決するために、本発明は、陰極を備えた陰極室と陽極を備えた陽極室とから構成され通水された原水を電気分解してアルカリイオン水および酸性イオン水を生成する電解槽と、前記電解槽の電解強度を制御する制御部と、を有し、前記陰極室に接続され前記陰極室で生成された前記アルカリイオン水が吐水される吐水路と、前記陽極室に接続され前記陽極室で生成された前記酸性イオン水が排水される排水路と、を備えた電解水生成装置であって、前記電解槽内には、前記陽極で生成された前記酸性イオン水の一部を前記陰極で生成された前記アルカリイオン水に合流させる合流部を備えたことを特徴としている。 In order to solve the above-mentioned problems, the present invention generates alkaline ionized water and acidic ionized water by electrolyzing raw water composed of a cathode chamber having a cathode and an anode chamber having an anode. An electrolyzer, and a controller that controls the electrolysis strength of the electrolyzer, and is connected to the cathode chamber and discharges the alkaline ionized water generated in the cathode chamber; and the anode chamber And a drainage channel for draining the acidic ionic water generated in the anode chamber, wherein the acidic ionic water generated in the anode is disposed in the electrolytic cell. A merging section is provided for merging a part of the ionic water with the alkaline ion water generated at the cathode.
 また、前記合流部は、前記電解槽内の下流側(即ち前記排水路側)に設けた構成とするのが好ましい。 In addition, it is preferable that the merging portion is provided on the downstream side (that is, the drainage channel side) in the electrolytic cell.
 また、前記合流部は、流量調整可能な開閉弁を備えた構成とするのが好ましい。 Further, it is preferable that the merging portion is provided with an on-off valve capable of adjusting the flow rate.
 また、前記合流部は、前記酸性イオン水中の残留塩素を除去する除去手段を備えた構成とするのが好ましい。 Moreover, it is preferable that the confluence part has a removing means for removing residual chlorine in the acidic ion water.
 また、少なくとも前記排水路に、流量調整可能な前記開閉弁を備えた構成とするのが好ましい。 It is preferable that at least the drainage channel is provided with the on-off valve capable of adjusting the flow rate.
 本発明においては、陽極で生成された酸性イオン水の一部を陰極で生成されたアルカリイオン水に合流させる合流部を電解槽内部に設けたことにより、単純な構造且つ安価な構成にて、吐水のpH値を過度に上昇させることなく溶存水素量の多いアルカリイオン水を生成することが可能となる。 In the present invention, by providing a confluence portion for joining a part of the acidic ionic water generated at the anode to the alkaline ionic water generated at the cathode inside the electrolytic cell, with a simple structure and inexpensive configuration, Alkali ion water with a large amount of dissolved hydrogen can be generated without excessively increasing the pH value of the discharged water.
本発明の一実施形態における電解水生成装置の概略構造図である。It is a schematic structure figure of the electrolyzed water generating device in one embodiment of the present invention. 本発明の他の実施形態における電解水生成装置の概略構造図である。It is a schematic structure figure of the electrolyzed water generating device in other embodiments of the present invention. 同上の電解槽内の陽極室の外観斜視図である。It is an external appearance perspective view of the anode chamber in an electrolytic cell same as the above. 同上の電解槽内の陽極室の他例の外観斜視図である。It is an external appearance perspective view of the other example of the anode chamber in an electrolytic cell same as the above.
 以下、本電解水生成装置の実施形態について、(実施例1)、(実施例2)の順に図面を参照して詳細に説明する。
(実施例1)
 図1は本電解水生成装置の実施例1の概略構造図である。
Hereinafter, embodiments of the electrolyzed water generating device will be described in detail in the order of (Example 1) and (Example 2) with reference to the drawings.
Example 1
FIG. 1 is a schematic structural diagram of Example 1 of the electrolyzed water generating apparatus.
 図1に示すように、水道水等の原水管1は、水栓2を介して、本体部3の浄水部4に接続されている。浄水部4は、内部に原水中の残留塩素、トリハロメタン、カビ臭等を吸着する活性炭および一般細菌や不純物を精度よく取り除く中空糸膜等を備えている。浄水部4で濾過された水は、導入路5aから流量検知部6に流れる。流量検知部6は通水を確認して制御部25に制御指示する。浄水部4で濾過された水は、流量検知部6を通って導入路5b,5cに分流される。導入路5cには、カルシウム供給部用絞り7とカルシウム供給部8とが設けられている。カルシウム供給部用絞り7は、導入路5cを流れる流量を調整する。カルシウム供給部8は、グリセロリン酸カルシウムや乳酸カルシウム等のカルシウムイオンを原水中に付与して原水の電気伝導度を高める。導入路5cは導入路5bに合流する。導入路5bの下流は、導入路5dを介して、第1の電極室用導入路9に連通しており、更に電解槽12の第1の電極室12a内に連通している。また、導入路5dには第2の電極室用導入路10が分岐されている。第2の電極室用導入路10は、第2の電極室用導入路10を流れる流量を調整する第2の電極室用絞り11を介して、電解槽12の第2の電極室12b内に連通している。 As shown in FIG. 1, a raw water pipe 1 such as tap water is connected to a water purification section 4 of a main body section 3 through a faucet 2. The water purification unit 4 includes an activated carbon that adsorbs residual chlorine, trihalomethane, mold odor, and the like in raw water, and a hollow fiber membrane that accurately removes general bacteria and impurities. The water filtered by the water purification unit 4 flows from the introduction path 5a to the flow rate detection unit 6. The flow rate detection unit 6 confirms the water flow and gives a control instruction to the control unit 25. The water filtered by the water purification unit 4 is diverted to the introduction paths 5b and 5c through the flow rate detection unit 6. The introduction path 5 c is provided with a calcium supply section throttle 7 and a calcium supply section 8. The calcium supply throttle 7 adjusts the flow rate of the flow through the introduction path 5c. The calcium supply unit 8 imparts calcium ions such as calcium glycerophosphate and calcium lactate to the raw water to increase the electrical conductivity of the raw water. The introduction path 5c merges with the introduction path 5b. The downstream of the introduction path 5b communicates with the first electrode chamber introduction path 9 via the introduction path 5d, and further communicates with the first electrode chamber 12a of the electrolytic cell 12. A second electrode chamber introduction path 10 is branched to the introduction path 5d. The second electrode chamber introduction path 10 enters the second electrode chamber 12b of the electrolytic cell 12 through a second electrode chamber restriction 11 that adjusts the flow rate of the second electrode chamber introduction path 10. Communicate.
 電解槽12は、濾過された水を電気分解してアルカリイオン水および酸性イオン水を生成するものであり、その内部には、隔膜13a,13bによって分離された第1の電極室12aと第2の電極室12bとが形成されている。第1の電極室12a内には、第1の電極室用電極板14a,14bが対向配置されている。第2の電極室12b内には、第2の電極室用電極板15が配置されている。 The electrolytic cell 12 electrolyzes the filtered water to generate alkaline ionized water and acidic ionized water, and the first electrode chamber 12a and the second electrode chamber 12a separated by the diaphragms 13a and 13b are contained therein. Electrode chamber 12b. In the first electrode chamber 12a, the first electrode chamber electrode plates 14a, 14b are arranged to face each other. A second electrode chamber electrode plate 15 is disposed in the second electrode chamber 12b.
 第2の電極室12b内の下流側には、酸性イオン水導入機能を有する合流部16が設けられている。合流部16は第1の電極室12a内の下流側に臨んで配置されている。合流部16は第2の電極室12b内で生成されたイオン水(第2の電極室用電極板15が陽極の場合は酸性イオン水)の一部を第1の電極室12a内に導入する働きをする。合流部16の下流は、第2の電極室12bの水(第2の電極室用電極板15が陽極の場合は酸性イオン水)を排出する排水路18a,18bに接続されている。排水路18a,18bの途中には、排水路18aを流れる流量を制限する排水路用絞り19が介在されている。 A junction 16 having an acidic ion water introduction function is provided on the downstream side in the second electrode chamber 12b. The junction 16 is arranged facing the downstream side in the first electrode chamber 12a. The junction 16 introduces a part of the ionic water generated in the second electrode chamber 12b (acidic ionic water when the second electrode chamber electrode plate 15 is an anode) into the first electrode chamber 12a. Work. The downstream of the junction 16 is connected to drains 18a and 18b for discharging water from the second electrode chamber 12b (or acidic ion water when the second electrode chamber electrode plate 15 is an anode). In the middle of the drainage channels 18a and 18b, a drainage channel restrictor 19 for limiting the flow rate flowing through the drainage channel 18a is interposed.
 なお、排水路18a,18bを一括して説明する場合には、排水路18と称される。 It should be noted that the drainage channels 18a and 18b will be referred to as the drainage channel 18 when collectively described.
 第1の電極室12aの下流には、吐水路17が接続されている。吐水路17は、第1の電極室12aの水(第1の電極室用電極板14aおよび14bが陰極の場合はアルカリイオン水)を飲用水として吐出する。吐水路17の上流には吐水バイパス路20が分岐接続されている。吐水バイパス路20は、流量を制限する吐水バイパス路用絞り21を介して、pHセンサー部22に接続されている。pHセンサー部22は、第1の電極室12aから吐水バイパス路20内に流出されるアルカリイオン水のpH値を測定する。吐水バイパス路20の下流は、前記排水路18bに合流している。 A water discharge path 17 is connected downstream of the first electrode chamber 12a. The water discharge channel 17 discharges water in the first electrode chamber 12a (alkaline ion water when the first electrode chamber electrode plates 14a and 14b are cathodes) as drinking water. A water discharge bypass 20 is branched and connected upstream of the water discharge 17. The water discharge bypass path 20 is connected to the pH sensor unit 22 via a water discharge bypass path throttle 21 that restricts the flow rate. The pH sensor unit 22 measures the pH value of alkaline ionized water that flows out from the first electrode chamber 12a into the water discharge bypass 20. The downstream side of the water discharge bypass channel 20 joins the drainage channel 18b.
 制御部25は、本体部3の動作制御や電気分解を行うための電解のエネルギーを電解槽12に供給するマイクロコンピュータで構成される。図中の23は電源プラグ、24は電源プラグ23からの交流電源を直流電源に変換する電源部である。26は利用者がアルカリイオン水や酸性イオン水、浄水の水質やpH強度、各種機能の選択設定を行なう操作表示部である。 The control unit 25 is configured by a microcomputer that supplies the electrolytic cell 12 with electrolysis energy for performing operation control and electrolysis of the main body unit 3. In the figure, numeral 23 is a power plug, and numeral 24 is a power supply unit for converting AC power from the power plug 23 into DC power. An operation display unit 26 is used by the user to select and set the quality of alkaline ionized water, acidic ionized water, purified water, pH strength, and various functions.
 図3は、合流部16および第2の電極室12b部分の実施例1の詳細図である。 FIG. 3 is a detailed view of the first embodiment of the junction 16 and the second electrode chamber 12b.
 同図において、合流部16には合流部用絞り28が設けられている。合流部用絞り28は、第2の電極室12bで生成されたイオン水(第2の電極室用電極板15が陽極の場合は酸性イオン水)を第1の電極室12aに導入する際の流量調整用として用いられる。 In the same figure, a confluence portion restriction 28 is provided in the confluence portion 16. The constricting portion restriction 28 is used when the ion water generated in the second electrode chamber 12b (acidic ion water when the second electrode chamber electrode plate 15 is an anode) is introduced into the first electrode chamber 12a. Used for flow rate adjustment.
 以上の構成において本実施例1における電解水生成装置について、アルカリイオン水を生成する際の動作を説明する。 With respect to the electrolyzed water generating apparatus of the first embodiment having the above-described configuration, the operation when generating alkaline ionized water will be described.
 利用者はアルカリイオン水生成モード、酸性イオン水生成モードまたは浄水モード等、所望の水質モードおよびpH強度を操作表示部26の所定のボタンを操作することにより選択し、水栓2を開いて通水を行なう。水栓2から導入された原水は、浄水部4で原水中の残留塩素やトリハロメタン、カビ臭、一般細菌等の不純物が取り除かれ、導入路5aを通って流量検知部6を通過する。その後、原水の一部が導入路5c側に分岐されてカルシウム供給部用絞り7にて適量に流量制限される。そして、カルシウム供給部8にてグリセロリン酸カルシウムや乳酸カルシウム等が溶解されて電気分解容易な水に処理され、その後、再び導入路5bと合流する。合流された原水は電解槽12内の第1の電極室12aおよび第2の電極室12bのそれぞれ専用に設けられた第1の電極室用導入路9および第2の電極室用導入路10を経てそれぞれの電極室に導入される。ここで第2の電極室用絞り11は第1の電極室12aおよび第2の電極室12bの内圧バランスを調整するために設けられている。つまり、第1の電極室12aの出口側と第2の電極室12bの出口側を通過する流量比に対して第1の電極室用導入路9と第2の電極室用導入路10を通過する流量比を変えることにより調整できる。本実施例1では、[(第1の電極室12aの出口側流量)/(第2の電極室12bの出口側流量)>(第1の電極室用導入路9の流量)/(第2の電極室用導入路10の流量)]となるようにあらかじめ調整されている。ここでは第1の電極室12aの内圧よりも第2の電極室12bの内圧の方が高くなり、第2の電極室12bの水は第1の電極室12aに流れ込もうとする状態となっている。 The user selects a desired water quality mode and pH intensity such as alkaline ion water generation mode, acid ion water generation mode or water purification mode by operating predetermined buttons on the operation display unit 26, and opens the faucet 2 to pass through. Do water. The raw water introduced from the faucet 2 is subjected to removal of residual chlorine, trihalomethane, musty odor, general bacteria, and other impurities in the raw water in the water purification unit 4, and passes through the flow rate detection unit 6 through the introduction path 5a. Thereafter, a part of the raw water is branched to the introduction path 5 c and the flow rate is limited to an appropriate amount by the calcium supply throttle 7. Then, calcium glycerophosphate, calcium lactate and the like are dissolved in the calcium supply unit 8 and treated with water that is easily electrolyzed, and then merges with the introduction path 5b again. The combined raw water passes through the first electrode chamber introduction path 9 and the second electrode chamber introduction path 10 provided exclusively for the first electrode chamber 12a and the second electrode chamber 12b in the electrolytic cell 12, respectively. Then, it is introduced into each electrode chamber. Here, the second electrode chamber restriction 11 is provided to adjust the internal pressure balance between the first electrode chamber 12a and the second electrode chamber 12b. That is, it passes through the first electrode chamber introduction path 9 and the second electrode chamber introduction path 10 with respect to the flow rate ratio passing through the outlet side of the first electrode chamber 12a and the outlet side of the second electrode chamber 12b. It can be adjusted by changing the flow rate ratio. In the first embodiment, [(the outlet side flow rate of the first electrode chamber 12a) / (the outlet side flow rate of the second electrode chamber 12b)> (the flow rate of the first electrode chamber introduction passage 9) / (second The flow rate of the electrode chamber introduction path 10) is adjusted in advance. Here, the internal pressure of the second electrode chamber 12b is higher than the internal pressure of the first electrode chamber 12a, and the water in the second electrode chamber 12b tends to flow into the first electrode chamber 12a. ing.
 一方、電源プラグ23からはAC100Vが供給され、電源部24内のトランスおよび制御用直流電源で電気分解に必要なエネルギーを発生させる。そして制御部25を介して電解槽12の第1の電極室用電極板14a、14bおよび第2の電極室用電極板15に電気分解に必要なエネルギーが供給される。この時、相対的にプラス電圧を印加する電極を陽極、マイナス電圧を印加する電極を陰極とすると、電解槽12内に隔膜13aおよび13bで仕切られた陽極室と陰極室とが形成される。尚、アルカリイオン水生成モード時においては第1の電極室用電極板14aおよび14bが陰極となり、第2の電極室用電極板15が陽極となる。 On the other hand, AC 100 V is supplied from the power plug 23, and energy required for electrolysis is generated by the transformer in the power supply unit 24 and the control DC power supply. Then, energy required for electrolysis is supplied to the first electrode chamber electrode plates 14 a and 14 b and the second electrode chamber electrode plate 15 of the electrolytic cell 12 through the control unit 25. At this time, assuming that the electrode to which a positive voltage is applied is an anode and the electrode to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by diaphragms 13a and 13b are formed in the electrolytic cell 12. In the alkaline ion water generation mode, the first electrode chamber electrode plates 14a and 14b serve as cathodes, and the second electrode chamber electrode plate 15 serves as an anode.
 さて、通水が開始されると制御部25は流量検知部6からの出力信号を読み取り、単位時間当たりに流れる流量レベルが一定量を越えると、この状態を通水中と判断する。この時、すでに選択されている水質モードおよびpH強度に応じた電気分解条件のもと制御部25は電解槽12に対して所定の電解のエネルギーを供給する。アルカリイオン水生成モード時においては第1の電極室用電極板14aおよび14bが陰極となり、第2の電極室用電極板15が陽極となる。この時、吐水路17よりアルカリイオン水が吐出されると共に排水路18aより酸性イオン水を排出する。またこの時、第2の電極室12bの内圧は第1の電極室12aの内圧よりも高くなるように第2の電極室用絞り11で調整されている。第2の電極室12bで生成された酸性イオン水の一部は合流部16に設けられた合流部用絞り28を通して第1の電極室12aで生成されたアルカリイオン水と合流してアルカリイオン水のpH値を押し下げることとなる。 Now, when the water flow is started, the control unit 25 reads the output signal from the flow rate detection unit 6, and when the flow rate level flowing per unit time exceeds a certain amount, the control unit 25 determines that this state is underwater. At this time, the control unit 25 supplies predetermined electrolysis energy to the electrolytic cell 12 under the electrolysis conditions corresponding to the water quality mode and pH intensity that have already been selected. In the alkaline ionized water generation mode, the first electrode chamber electrode plates 14a and 14b serve as cathodes, and the second electrode chamber electrode plate 15 serves as an anode. At this time, alkaline ionized water is discharged from the water discharge channel 17 and acidic ionized water is discharged from the drainage channel 18a. At this time, the internal pressure of the second electrode chamber 12b is adjusted by the second electrode chamber aperture 11 so as to be higher than the internal pressure of the first electrode chamber 12a. Part of the acidic ionic water generated in the second electrode chamber 12 b merges with the alkaline ionic water generated in the first electrode chamber 12 a through the merging portion restriction 28 provided in the merging portion 16. The pH value will be lowered.
 尚、[(第1の電極室12aの出口側流量)/(第2の電極室12bの出口側流量)>(第1の電極室用導入路9の流量)/(第2の電極室用導入路10の流量)]の関係式を満足する構造であれば、第2の電極室用絞り11の位置や数は変更自在である。例えば、第1の電極室用導入路9や吐水路17、排水路18aまたは18bの途中に設けても良いし、複数箇所に設けても良い。 In addition, [(outlet side flow rate of the first electrode chamber 12a) / (outlet side flow rate of the second electrode chamber 12b)> (flow rate of the first electrode chamber introduction path 9) / (for the second electrode chamber) If the structure satisfies the relational expression of the flow rate of the introduction path 10)], the position and number of the second electrode chamber restrictors 11 can be changed. For example, it may be provided in the middle of the first electrode chamber introduction path 9, the water discharge path 17, the drainage path 18a or 18b, or may be provided at a plurality of locations.
 また、合流部16は電解槽12内の水の流れの上流側に設けても良いし下流側に設けても良い。なお、第1の電極室12aで生成されたアルカリイオン水のpH値をより押し下げるためには、第2の電極室12b内の酸性度が最も高くなる電解槽12内の下流側にある方が効果的である。また、合流部用絞り28の位置は、合流部16の上部でも良いし、側面部でも良い。 The junction 16 may be provided on the upstream side of the water flow in the electrolytic cell 12 or on the downstream side. In addition, in order to further lower the pH value of the alkaline ionized water generated in the first electrode chamber 12a, it is more downstream in the electrolytic cell 12 where the acidity in the second electrode chamber 12b is the highest. It is effective. Further, the position of the confluence portion restriction 28 may be an upper portion of the confluence portion 16 or a side portion.
 このように、合流部用絞り28によってpH値が押し下げられたアルカリイオン水は吐水路17から吐出されて飲用に供される。アルカリイオン水の一部分は吐水バイパス路20に分岐されて吐水バイパス路用絞り21で適量に流量制限され、pHセンサー部22に導入されてpH値の測定が行われる。ここで制御部25はpHセンサー部22からの出力信号を読み取り、操作表示部26ですでに設定されているpH強度となるように逐次電解のエネルギーを調整する制御を行う。その後、pHセンサー部22を通過したアルカリイオン水は排水路18bと合流した後、排水として排出される。 Thus, the alkaline ionized water whose pH value has been pushed down by the converging section throttle 28 is discharged from the water discharge channel 17 and used for drinking. A part of the alkaline ionized water is branched into the water discharge bypass passage 20, and the flow rate is limited to an appropriate amount by the water discharge bypass passage restrictor 21, and introduced into the pH sensor unit 22 to measure the pH value. Here, the control unit 25 reads the output signal from the pH sensor unit 22 and performs control to sequentially adjust the energy of electrolysis so that the pH intensity already set in the operation display unit 26 is obtained. Thereafter, the alkaline ionized water that has passed through the pH sensor unit 22 joins the drainage channel 18b and is then discharged as drainage.
 この時、飲用可能且つアルカリイオン水中の溶存水素量をできるだけ多くするためには、pH10以上とならない範囲で、できるだけ高いpH値となる様に電解のエネルギーを調整すると良い。この場合、合流部16が電解槽12の上流側にある方がより酸性度の高い酸性イオン水を第1の電極室12aで生成されたアルカリイオン水に合流させることができる。そして合流後のアルカリイオン水のpH値を同じにするためには、より多くの電解のエネルギーを供給することが可能となる。結果として第1の電極室12aでの水素の発生量が増加して溶存水素量の多いアルカリイオン水を生成することが可能となる。 At this time, in order to increase the amount of dissolved hydrogen in the alkaline ionized water as much as possible, it is preferable to adjust the electrolysis energy so that the pH value is as high as possible within a range not exceeding pH 10. In this case, the acidic ion water having higher acidity can be merged with the alkaline ion water generated in the first electrode chamber 12a when the merge portion 16 is on the upstream side of the electrolytic cell 12. And in order to make the pH value of the alkali ion water after joining the same, it becomes possible to supply more energy of electrolysis. As a result, the amount of hydrogen generated in the first electrode chamber 12a increases, and it becomes possible to generate alkaline ionized water with a large amount of dissolved hydrogen.
 その後、単位時間当たりに流れる流量レベルが一定量を下回ると、この状態を止水と判断し、電解槽12への電解のエネルギーの供給を終了する。この時、止水後一定時間、第1の電極室用電極板14aおよび14bに相対的にプラス電圧を印加し、第2の電極室用電極板15にマイナス電圧を印加する。これにより、第1の電極室用電極板14aおよび14bに付着したカルシウム等のスケールが洗浄除去される。 Thereafter, when the flow rate level flowing per unit time falls below a certain amount, this state is determined to be water stop, and the supply of electrolysis energy to the electrolytic cell 12 is terminated. At this time, a relatively positive voltage is applied to the first electrode chamber electrode plates 14a and 14b and a negative voltage is applied to the second electrode chamber electrode plate 15 for a certain time after the water stoppage. Thereby, the scales such as calcium adhering to the first electrode chamber electrode plates 14a and 14b are washed away.
 以上のように本実施例1によれば、電解槽12内に合流部16を収納して、合流部16を介して陽極で生成された酸性イオン水の一部を、陰極で生成されたアルカリイオン水に合流させるようにした。そのため従来のように電解槽の外部に流路切換弁を配管接続する必要がなくなり、コストを低く抑えることができる。さらに配管の接続部分におけるOリングやパッキン部からの水漏れ等のリスクも抑えることができる。この結果、単純な構造且つ安価な構成にて、電解水生成システムのコンパクト化を図ることが容易となる。 As described above, according to the first embodiment, the merging portion 16 is accommodated in the electrolytic cell 12, and a part of the acidic ion water generated at the anode through the merging portion 16 is replaced with the alkali generated at the cathode. It was made to merge with ion water. Therefore, it is not necessary to connect a flow path switching valve to the outside of the electrolytic cell as in the prior art, and the cost can be kept low. Furthermore, it is possible to suppress risks such as water leakage from the O-ring and the packing part at the pipe connection part. As a result, it is easy to make the electrolyzed water generation system compact with a simple structure and an inexpensive configuration.
 また、合流部16は、電解槽12内の下流側(即ち排水路18a側)に配置されているため、より酸性度の高い酸性イオン水を、陰極で生成されたアルカリイオン水に合流させることができる。しかも操作表示部26で表示されたpH強度を確認しながらpHセンサー部22によって飲用されるアルカリイオン水のpH値調整ができる。この結果、吐水のpH値を過度に上昇させることなく溶存水素量の多いアルカリイオン水を効率よく生成することが可能となる。 Moreover, since the junction part 16 is arrange | positioned in the downstream (namely, the drainage channel 18a side) in the electrolytic cell 12, it joins the acidic ion water with higher acidity to the alkaline ion water produced | generated by the cathode. Can do. Moreover, it is possible to adjust the pH value of the alkaline ionized water that is consumed by the pH sensor unit 22 while confirming the pH intensity displayed on the operation display unit 26. As a result, it is possible to efficiently generate alkaline ionized water with a large amount of dissolved hydrogen without excessively increasing the pH value of the discharged water.
 なお、合流部16の一例として、第2の電極室12bを分離する隔膜13a,13bの一部に透孔をあけておき、合流部用絞り28によって透孔の大きさを調整する構成であってもよい。
(実施例2)
 本実施例2において、実施例1と同じ構成および作用効果を有するものについては実施例1と同一の符号を付し、その詳細な説明については実施例1の説明を援用する。
As an example of the merging portion 16, a through hole is formed in a part of the diaphragms 13 a and 13 b separating the second electrode chamber 12 b, and the size of the through hole is adjusted by the merging portion restrictor 28. May be.
(Example 2)
In the second embodiment, the same reference numerals as those in the first embodiment are assigned to components having the same configuration and effects as those in the first embodiment, and the description of the first embodiment is used for the detailed description thereof.
 本実施例2が実施例1と異なる部分は、電解槽12内の合流部16に流量調整可能な開閉弁と残留塩素除去手段とを備えると共に、少なくとも酸性イオン水排水路に流量調整可能な開閉弁を備えたところである。上記差異を踏まえて、本実施例2における電解水生成装置の動作を、図2および図4を用いて説明する。 The second embodiment is different from the first embodiment in that the junction 16 in the electrolytic cell 12 is provided with an on-off valve capable of adjusting the flow rate and a residual chlorine removing means, and at least openable / closable on the acidic ion water drainage channel. It is a place with a valve. Based on the above differences, the operation of the electrolyzed water generating apparatus according to the second embodiment will be described with reference to FIGS. 2 and 4.
 図2は実施例2の電解水生成装置の概略構造図である。 FIG. 2 is a schematic structural diagram of the electrolyzed water generating apparatus of Example 2.
 同図において、排水路18aの途中には、制御部25からの命令により、排水路18aを流れる流量を任意に調整する開閉弁27を備えている。33は、制御部25からの制御信号を開閉弁27に入力する信号線である。 In the figure, an opening / closing valve 27 is provided in the middle of the drainage channel 18a to arbitrarily adjust the flow rate flowing through the drainage channel 18a according to a command from the control unit 25. Reference numeral 33 denotes a signal line for inputting a control signal from the control unit 25 to the on-off valve 27.
 図4は合流部16および第2の電極室12b部分の実施例2の詳細図である。 FIG. 4 is a detailed view of the second embodiment of the junction 16 and the second electrode chamber 12b.
 同図において、合流部16は、内筒30aと外筒30bとからなる開閉弁30で構成される。内筒30aは第2の電極室12bの直後に配置されている。内筒30aの内部には、残留塩素除去手段29が収納されている。この残留塩素除去手段29は、第2の電極室12b(図2)から合流部16を経由して第1の電極室12a(図2)に導入される水の残留塩素やトリハロメタン等を除去するものである。内筒30aは外筒30b内に収納されている。内筒30aには流量調整用孔31aが設けられ、外筒30bには流量調整用孔31bが設けられている。内筒30aには、制御部25からの命令により、任意の位置まで回転・停止できるステッピングモーター32が連結されている。図2中の34は、制御部25からの制御信号をステッピングモーター32に入力する信号線である。 In the figure, the merging portion 16 includes an on-off valve 30 including an inner cylinder 30a and an outer cylinder 30b. The inner cylinder 30a is disposed immediately after the second electrode chamber 12b. Residual chlorine removing means 29 is accommodated in the inner cylinder 30a. This residual chlorine removing means 29 removes residual chlorine, trihalomethane, and the like of water introduced from the second electrode chamber 12b (FIG. 2) to the first electrode chamber 12a (FIG. 2) via the junction 16. Is. The inner cylinder 30a is accommodated in the outer cylinder 30b. The inner cylinder 30a is provided with a flow rate adjusting hole 31a, and the outer cylinder 30b is provided with a flow rate adjusting hole 31b. A stepping motor 32 that can be rotated and stopped to an arbitrary position according to a command from the control unit 25 is connected to the inner cylinder 30a. 2 is a signal line for inputting a control signal from the control unit 25 to the stepping motor 32.
 図2において、利用者はアルカリイオン水生成モード、酸性イオン水生成モードまたは浄水モード等所望の水質モードおよびpH強度を操作表示部26の所定のボタンを操作することにより選択し、水栓2を開いて通水を行なう。水栓2から導入された原水は、浄水部4で原水中の残留塩素やトリハロメタン、カビ臭、一般細菌等の不純物が取り除かれ、導入路5aを通って流量検知部6を通過する。その後、原水の一部が導入路5c側に分岐されてカルシウム供給部用絞り7にて適量に流量制限され、カルシウム供給部8にてグリセロリン酸カルシウムや乳酸カルシウム等が溶解されて電気分解容易な水に処理される。その後、再び導入路5bと合流する。合流された原水は電解槽12内の第1の電極室12aおよび第2の電極室12bのそれぞれ専用に設けられた第1の電極室用導入路9および第2の電極室用導入路10を経てそれぞれの電極室に導入される。ここで第2の電極室用絞り11は第1の電極室12aおよび第2の電極室12bの内圧バランスを調整するために設けられている。そして、第1の電極室12aの出口側と第2の電極室12bの出口側を通過する流量比に対して第1の電極室用導入路9と第2の電極室用導入路10を通過する流量比を変えることにより調整できる。本実施例では[(第1の電極室12aの出口側流量)/(第2の電極室12bの出口側流量)>(第1の電極室用導入路9の流量)/(第2の電極室用導入路10の流量)]となるようにあらかじめ調整されている。ここでは第1の電極室12aの内圧よりも第2の電極室12bの内圧の方が高くなり、第2の電極室12bの水は第1の電極室12aに流れ込もうとする状態となっている。一方、電源プラグ23からはAC100Vが供給され、電源部24内のトランスおよび制御用直流電源で電気分解に必要なエネルギーを発生させる。そして、制御部25を介して電解槽12の第1の電極室用電極板14a、14bおよび第2の電極室用電極板15に電気分解に必要なエネルギーが供給される。この時、相対的にプラス電圧を印加する電極を陽極、マイナス電圧を印加する電極を陰極とすると、電解槽12内に隔膜13aおよび13bで仕切られた陽極室と陰極室とが形成される。尚、アルカリイオン水生成モード時においては第1の電極室用電極板14aおよび14bが陰極となり、第2の電極室用電極板15が陽極となる。 In FIG. 2, the user selects a desired water quality mode and pH intensity such as an alkaline ionized water generation mode, an acidic ionized water generation mode or a purified water mode by operating predetermined buttons on the operation display unit 26, and selects the faucet 2. Open and pass water. The raw water introduced from the faucet 2 is subjected to removal of residual chlorine, trihalomethane, musty odor, general bacteria, and other impurities in the raw water in the water purification unit 4, and passes through the flow rate detection unit 6 through the introduction path 5a. After that, a part of the raw water is branched to the introduction path 5c side, the flow rate is restricted to an appropriate amount by the calcium supply unit restrictor 7, and the calcium supply unit 8 dissolves calcium glycerophosphate, calcium lactate, etc. To be processed. Thereafter, it merges with the introduction path 5b again. The combined raw water passes through the first electrode chamber introduction path 9 and the second electrode chamber introduction path 10 provided exclusively for the first electrode chamber 12a and the second electrode chamber 12b in the electrolytic cell 12, respectively. Then, it is introduced into each electrode chamber. Here, the second electrode chamber restriction 11 is provided to adjust the internal pressure balance between the first electrode chamber 12a and the second electrode chamber 12b. Then, the first electrode chamber introduction passage 9 and the second electrode chamber introduction passage 10 are passed with respect to the flow rate ratio passing through the outlet side of the first electrode chamber 12a and the outlet side of the second electrode chamber 12b. It can be adjusted by changing the flow rate ratio. In this embodiment, [(outlet side flow rate of the first electrode chamber 12a) / (outlet side flow rate of the second electrode chamber 12b)> (flow rate of the first electrode chamber introduction passage 9) / (second electrode). The flow rate of the room introduction path 10) is adjusted in advance. Here, the internal pressure of the second electrode chamber 12b is higher than the internal pressure of the first electrode chamber 12a, and the water in the second electrode chamber 12b tends to flow into the first electrode chamber 12a. ing. On the other hand, 100 VAC is supplied from the power plug 23, and energy necessary for electrolysis is generated by the transformer in the power supply unit 24 and the control DC power supply. Then, energy necessary for electrolysis is supplied to the first electrode chamber electrode plates 14 a and 14 b and the second electrode chamber electrode plate 15 of the electrolytic cell 12 through the control unit 25. At this time, assuming that the electrode to which a positive voltage is applied is an anode and the electrode to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by diaphragms 13a and 13b are formed in the electrolytic cell 12. In the alkaline ion water generation mode, the first electrode chamber electrode plates 14a and 14b serve as cathodes, and the second electrode chamber electrode plate 15 serves as an anode.
 さて、通水が開始されると制御部25は流量検知部6からの出力信号を読み取り、単位時間当たりに流れる流量レベルが一定量を越えると、この状態を通水中と判断する。この時、すでに選択されている水質モードおよびpH強度に応じた電気分解条件のもと制御部25は電解槽12に対して所定の電解のエネルギーを供給する。アルカリイオン水生成モード時においては第1の電極室用電極板14aおよび14bが陰極となり、第2の電極室用電極板15が陽極となる。吐水路17よりアルカリイオン水が吐出されると共に排水路18aより酸性イオン水を排出する。この時、第2の電極室12bの内圧は第1の電極室12aの内圧よりも高くなるように第2の電極室用絞り11で調整されている。第2の電極室12bで生成された酸性イオン水の一部が残留塩素除去手段29を通過する。このとき電気分解される前の原水中に含まれていた残留塩素、トリハロメタン等や陽極で発生した塩素ガスに起因する残留塩素等が除去される。その後、合流部16の内筒30aおよび外筒30bに設けられた流量調整用孔31aおよび31bの回転位置で形成された開口部を通して第1の電極室12aで生成されたアルカリイオン水と合流する。これによりアルカリイオン水のpH値を押し下げることとなる。 Now, when the water flow is started, the control unit 25 reads the output signal from the flow rate detection unit 6, and when the flow rate level flowing per unit time exceeds a certain amount, the control unit 25 determines that this state is underwater. At this time, the control unit 25 supplies predetermined electrolysis energy to the electrolytic cell 12 under the electrolysis conditions corresponding to the water quality mode and pH intensity that have already been selected. In the alkaline ionized water generation mode, the first electrode chamber electrode plates 14a and 14b serve as cathodes, and the second electrode chamber electrode plate 15 serves as an anode. Alkaline ion water is discharged from the water discharge channel 17 and acidic ion water is discharged from the drain channel 18a. At this time, the internal pressure of the second electrode chamber 12b is adjusted by the second electrode chamber restriction 11 so as to be higher than the internal pressure of the first electrode chamber 12a. Part of the acidic ionic water generated in the second electrode chamber 12 b passes through the residual chlorine removing means 29. At this time, residual chlorine, trihalomethane, etc. contained in the raw water before being electrolyzed, residual chlorine, etc. resulting from chlorine gas generated at the anode are removed. Thereafter, it merges with the alkaline ionized water generated in the first electrode chamber 12a through the opening formed at the rotational position of the flow rate adjusting holes 31a and 31b provided in the inner cylinder 30a and the outer cylinder 30b of the merging section 16. . As a result, the pH value of the alkaline ionized water is lowered.
 尚、[(第1の電極室12aの出口側流量)/(第2の電極室12bの出口側流量)>(第1の電極室用導入路9の流量)/(第2の電極室用導入路10の流量)]の関係式を満足する構造であれば、第2の電極室用絞り11の位置や数は変更自在である。つまり、第1の電極室用導入路9や吐水路17、排水路18aまたは18bの途中に設けても良いし、複数箇所に設けても良い。 [(Outlet side flow rate of first electrode chamber 12a) / (Outlet side flow rate of second electrode chamber 12b)> (Flow rate of first electrode chamber introduction passage 9) / (For second electrode chamber) If the structure satisfies the relational expression of the flow rate of the introduction passage 10)], the position and number of the second electrode chamber restrictors 11 can be changed. That is, you may provide in the middle of the 1st electrode chamber introduction path 9, the water discharge path 17, and the drainage path 18a or 18b, and you may provide in several places.
 また、合流部16は電解槽12内の水の流れの上流側に設けても良いし下流側に設けても良い。なお、第1の電極室12aで生成されたアルカリイオン水のpH値をより押し下げるためには、第2の電極室12b内の酸性度が最も高くなる電解槽12内の下流側にある方が効果的である。 The junction 16 may be provided on the upstream side of the water flow in the electrolytic cell 12 or on the downstream side. In addition, in order to further lower the pH value of the alkaline ionized water generated in the first electrode chamber 12a, it is more downstream in the electrolytic cell 12 where the acidity in the second electrode chamber 12b is the highest. It is effective.
 また、残留塩素除去手段29の具体的構成としては活性炭やイオン交換樹脂、オゾン発生装置などが適用できる。また、合流部16の構造としては、円筒状の内筒30aおよび外筒30bそれぞれに流量調整用孔31aおよび31bが設けてある。この内筒30aをステッピングモーター32に連結させて回転・停止させ、それぞれの流量調整用孔31a,31bが重なる部分を有効孔とし、内筒30aの停止位置により開閉弁30として機能させることができる。尚、ステッピングモーター32を使用しない構造とする場合は、内筒30aに利用者が回転させることができるツマミを連結させても良い。 Further, as the specific configuration of the residual chlorine removing means 29, activated carbon, ion exchange resin, ozone generator, etc. can be applied. Further, as the structure of the merging portion 16, flow rate adjusting holes 31a and 31b are provided in the cylindrical inner cylinder 30a and the outer cylinder 30b, respectively. The inner cylinder 30a is connected to a stepping motor 32 to rotate and stop, and the portion where the respective flow rate adjusting holes 31a and 31b overlap is used as an effective hole, and can function as the on-off valve 30 depending on the stop position of the inner cylinder 30a. . In addition, when it is set as the structure which does not use the stepping motor 32, you may connect the knob which a user can rotate to the inner cylinder 30a.
 このようにpH値が押し下げられたアルカリイオン水は吐水路17から吐出されて飲用に供される。アルカリイオン水の一部分は吐水バイパス路20に分岐されて吐水バイパス路用絞り21で適量に流量制限され、pHセンサー部22に導入されてpH値の測定が行われる。ここで制御部25はpHセンサー部22からの出力信号を読み取り、操作表示部26ですでに設定されているpH強度となるように逐次電解のエネルギーを調整する制御を行う。その後、pHセンサー部22を通過したアルカリイオン水は排水路18bと合流した後、排水として排出される。 The alkaline ionized water whose pH value has been pushed down in this way is discharged from the water discharge channel 17 and used for drinking. A part of the alkaline ionized water is branched into the water discharge bypass passage 20, and the flow rate is limited to an appropriate amount by the water discharge bypass passage restrictor 21, and introduced into the pH sensor unit 22 to measure the pH value. Here, the control unit 25 reads the output signal from the pH sensor unit 22 and performs control to sequentially adjust the energy of electrolysis so that the pH intensity already set in the operation display unit 26 is obtained. Thereafter, the alkaline ionized water that has passed through the pH sensor unit 22 joins the drainage channel 18b and is then discharged as drainage.
 この時、飲用可能且つアルカリイオン水中の溶存水素量をできるだけ多くするためには、pH10以上とならない範囲で、できるだけ高いpH値となる様に電解のエネルギーを調整すると良い。または、電解のエネルギーを最大にした状態にてpHセンサー部22でpH値の測定を行う。このときpH10以上となっていれば、飲用pH値の範囲となるまで合流部16の流量調整用孔31aおよび31bの重なる部分を徐々に大きくする。これにより第2の電極室12bから第1の電極室12aへ流れ込む酸性イオン水の量を多くしていくことができる。 At this time, in order to increase the amount of dissolved hydrogen in the alkaline ionized water as much as possible, it is preferable to adjust the electrolysis energy so that the pH value is as high as possible within a range not exceeding pH 10. Alternatively, the pH value is measured by the pH sensor unit 22 with the electrolysis energy maximized. At this time, if the pH is 10 or more, the overlapping portion of the flow rate adjusting holes 31a and 31b of the merging portion 16 is gradually increased until the drinking pH value is reached. As a result, the amount of acidic ion water flowing from the second electrode chamber 12b to the first electrode chamber 12a can be increased.
 さらに設定pH値の範囲内において開閉弁27を制御して排水路18bからの排水量を最少化すれば、節水効果が高いものとすることができる。尚、開閉弁27を制御して排水路18bからの排水量を最少化する別の方法として、吐水路17の水通路径を制御して、大きくすることでも可能である。 Further, if the on-off valve 27 is controlled within the set pH value to minimize the amount of drainage from the drainage channel 18b, the water-saving effect can be enhanced. Note that, as another method for minimizing the amount of drainage from the drainage channel 18b by controlling the on-off valve 27, it is possible to control the water passage diameter of the water discharge channel 17 to increase it.
 その後、単位時間当たりに流れる流量レベルが一定量を下回ると、この状態を止水と判断し、電解槽12への電解のエネルギーの供給を終了する。この時、止水後一定時間、第1の電極室用電極板14aおよび14bに相対的にプラス電圧を印加し、第2の電極室用電極板15にマイナス電圧を印加する。これにより第1の電極室用電極板14aおよび14bに付着したカルシウム等のスケールを洗浄除去する。 Thereafter, when the flow rate level flowing per unit time falls below a certain amount, this state is determined to be water stop, and the supply of electrolysis energy to the electrolytic cell 12 is terminated. At this time, a relatively positive voltage is applied to the first electrode chamber electrode plates 14a and 14b and a negative voltage is applied to the second electrode chamber electrode plate 15 for a certain time after the water stoppage. As a result, scales such as calcium adhering to the first electrode chamber electrode plates 14a and 14b are washed away.
 以上のように本実施例2によれば、電解槽12内の合流部16が流量調整可能な開閉弁30(内筒30a、外筒30b)で構成されている。これにより、吐水のpH値に応じた適量の酸性イオン水をアルカリイオン水に合流させることができ、飲用に適した吐水のpH値範囲における最も溶存水素量の多いアルカリイオン水を生成することが可能となる。さらに、合流部16に残留塩素除去手段29を備えているので、電気分解される前の原水中に含まれていた残留塩素、トリハロメタン等や陽極で発生した塩素ガスに起因する残留塩素等を除去しやすくなる。これにより生成されたアルカリイオン水を美味しく安全なものとすることができる。さらに、酸性イオン水の排水路18aに流量調整可能な開閉弁27を備えているので、排水路18aからの排水量を吐水のpH値に応じて最少化できる。この結果、節水効果が高いものとすることができる。 As described above, according to the second embodiment, the merging portion 16 in the electrolytic cell 12 is configured by the on-off valve 30 (inner cylinder 30a, outer cylinder 30b) capable of adjusting the flow rate. Thereby, an appropriate amount of acidic ionic water according to the pH value of the discharged water can be merged with the alkaline ionized water, and the alkaline ionized water having the largest amount of dissolved hydrogen in the pH value range suitable for drinking can be generated. It becomes possible. Further, since the joining portion 16 is provided with a residual chlorine removing means 29, residual chlorine, trihalomethane, etc. contained in the raw water before electrolysis are removed and residual chlorine caused by chlorine gas generated at the anode is removed. It becomes easy to do. Thereby, the produced alkaline ionized water can be made delicious and safe. Furthermore, since the acidic ion water drainage channel 18a is provided with the on-off valve 27 capable of adjusting the flow rate, the amount of drainage from the drainage channel 18a can be minimized according to the pH value of the discharged water. As a result, the water saving effect can be increased.
 以上説明したように、図1、図2に示す電解水生成装置は、電解槽12と、制御部25とを有する。電解槽12は、陰極室と陽極室とを有する。陰極室は、陰極を有する。陽極室は、陽極を有する。電解槽12は、通水された原水を電気分解してアルカリイオン水及び酸性イオン水を生成する。より詳しくは、電解槽12は、通水された原水を電気分解する。これにより、陰極室において、アルカリイオン水を生成し、陽極室において、酸性イオン水を生成する。制御部25は、電解槽12の電解強度を制御する。電解水生成装置は、吐水路17と、排水路18とを備える。吐水路17は、陰極室に接続されており、これにより、吐水路17から、陰極室で生成されたアルカリイオン水が吐出される。排水路18は、陽極室に接続されており、これにより、排水路18を介して、陽極室で生成された酸性イオン水が排出される。電解槽12は、その内部に、合流部16を有する。合流部16は、陽極で生成された酸性イオン水の一部と、陰極で生成されたアルカリイオン水とを合流させるために設けられている。 As described above, the electrolyzed water generator shown in FIGS. 1 and 2 includes the electrolyzer 12 and the controller 25. The electrolytic cell 12 has a cathode chamber and an anode chamber. The cathode chamber has a cathode. The anode chamber has an anode. The electrolytic cell 12 electrolyzes the passed raw water to generate alkali ion water and acidic ion water. More specifically, the electrolytic cell 12 electrolyzes the raw water that has been passed. Thereby, alkaline ionized water is generated in the cathode chamber, and acidic ionized water is generated in the anode chamber. The control unit 25 controls the electrolytic strength of the electrolytic cell 12. The electrolyzed water generating device includes a water discharge channel 17 and a drain channel 18. The water discharge path 17 is connected to the cathode chamber, whereby alkali ion water generated in the cathode chamber is discharged from the water discharge path 17. The drainage channel 18 is connected to the anode chamber, whereby the acidic ion water generated in the anode chamber is discharged via the drainage channel 18. The electrolytic cell 12 has a merging portion 16 therein. The junction 16 is provided to join part of the acidic ionic water generated at the anode and the alkaline ionic water generated at the cathode.
 また、合流部16は、電解槽12内の下流側に設けられている。また、合流部16は、電解槽12内において、陰極よりも下流に位置する。また、合流部16は、電解槽12内において、陽極よりも下流に位置する。 Further, the junction 16 is provided on the downstream side in the electrolytic cell 12. The junction 16 is located downstream of the cathode in the electrolytic cell 12. Further, the junction 16 is located downstream of the anode in the electrolytic cell 12.
 また、陽極室は、陰極室と、隔膜13a,13bによって分離されている。 The anode chamber is separated from the cathode chamber by the diaphragms 13a and 13b.
 また、合流部16は、吐水路17と陽極との間に位置する。また、合流部16は、吐水路17と陰極との間に位置する。 Further, the junction 16 is located between the water discharge channel 17 and the anode. Moreover, the junction 16 is located between the water discharge channel 17 and the cathode.
 また、排水路18は、第1端と第2端とを有している。排水路18の第1端は、陽極室と直接的に接続されている。 Moreover, the drainage channel 18 has a first end and a second end. The first end of the drainage channel 18 is directly connected to the anode chamber.
 また、電解水生成装置は、さらに、吐水バイパス路20を有している。吐水バイパス路20は、吐水路17に流れ込む液体が流れ込むように配置されている。 Moreover, the electrolyzed water generating device further has a water discharge bypass 20. The water discharge bypass channel 20 is arranged so that the liquid flowing into the water discharge channel 17 flows.
 また、吐水バイパス路20は、第1端と第2端とを有している。吐水バイパス路20の第1端が合流部16よりも下流に位置するように、吐水バイパス路20の第1端が吐水路17に接続されている。これにより、吐水路17に流れ込む液体が吐水バイパス路20に流れ込む。 In addition, the water discharge bypass 20 has a first end and a second end. The first end of the water discharge bypass path 20 is connected to the water discharge path 17 so that the first end of the water discharge bypass path 20 is located downstream of the junction 16. Thereby, the liquid flowing into the water discharge path 17 flows into the water discharge bypass path 20.
 また、吐水バイパス路20の第2端は、排水路18に接続されている。 The second end of the water discharge bypass 20 is connected to the drain 18.
 また、吐水バイパス路20は、pHセンサー部22を有している。 Further, the water discharge bypass 20 has a pH sensor unit 22.
 また、pHセンサー部22は、吐水バイパス路20を流れる液体の水素イオン指数を測定するように構成されている。 Further, the pH sensor unit 22 is configured to measure the hydrogen ion index of the liquid flowing through the water discharge bypass 20.
 なお、実施例におけるセンサーは、pHセンサー部22に限られない。すなわち、センサーは、吐水バイパス路20を流れる液体の水素イオン指数を測定するものに限られない。すなわち、センサーは、吐水バイパス路20を流れる液体の水素イオン指数を示す情報を測定するものであればよい。言い換えると、センサーは、吐水バイパス路20を流れる液体の水素イオン指数に相当する情報を測定するように構成されていればよい。 It should be noted that the sensor in the embodiment is not limited to the pH sensor unit 22. That is, the sensor is not limited to the sensor that measures the hydrogen ion index of the liquid flowing through the water discharge bypass 20. In other words, the sensor only needs to measure information indicating the hydrogen ion index of the liquid flowing through the water discharge bypass 20. In other words, the sensor may be configured to measure information corresponding to the hydrogen ion index of the liquid flowing through the water discharge bypass 20.
 また、排水路18は、さらに、排水路用絞り19を備えている。 Further, the drainage channel 18 further includes a drainage channel throttle 19.
 なお、排水路18の第2端は、排水口で定義されている。 Note that the second end of the drainage channel 18 is defined by a drainage port.
 また、吐水バイパス路20の第2端は、排水路用絞り19と排水口との間に位置するように、排水路18に接続されている。 Further, the second end of the water discharge bypass 20 is connected to the drain 18 so as to be positioned between the drain 19 and the drain.
 また、吐水バイパス路20は、吐水バイパス路用絞り21を有している。 In addition, the water discharge bypass 20 has a water discharge bypass throttle 21.
 また、電解水生成装置は、さらに、流量検知部6を有している。流量検知部6は、電解槽12に流れ込む液体の流量を検知するように構成されている。 Moreover, the electrolyzed water generating device further includes a flow rate detection unit 6. The flow rate detection unit 6 is configured to detect the flow rate of the liquid flowing into the electrolytic cell 12.
 また、陽極室は、導入路を介して水を受けるように構成されている。導入路は、陽極室用絞りを有する。 Also, the anode chamber is configured to receive water through the introduction path. The introduction path has an anode chamber throttle.
 より詳しくは、陽極室は、陽極室用導入路を介して液体を受けるように構成されている。陰極室は、陰極室用導入路を介して液体を受けるように構成されている。陽極室用導入路は、陰極室用導入路から独立して配置されている。陽極室用導入路は、陽極室用絞りを有する。 More specifically, the anode chamber is configured to receive the liquid via the anode chamber introduction path. The cathode chamber is configured to receive liquid via the cathode chamber introduction path. The anode chamber introduction path is arranged independently of the cathode chamber introduction path. The anode chamber introduction passage has an anode chamber throttle.
 また、電解水生成装置は、導入路を有する。導入路は、陽極室用導入路と陰極室用導入路とを有している。 In addition, the electrolyzed water generating device has an introduction path. The introduction path has an introduction path for the anode chamber and an introduction path for the cathode chamber.
 また、陽極室は、陰極室よりも内圧が高くなるように設定されている。 The anode chamber is set so that the internal pressure is higher than that of the cathode chamber.
 また、陽極室と前記陰極室と前記陽極室用導入路と前記陰極室用導入路とは、次の関係式を満たすように設定されている。
(第1の電極室12aの出口側流量)/(第2の電極室12bの出口側流量)>(第1の電極室用導入路9の流量)/(第2の電極室用導入路10の流量)
 また、図2および図4に示すように、合流部16は、流量調整可能な開閉弁30を備えている。
The anode chamber, the cathode chamber, the anode chamber introduction path, and the cathode chamber introduction path are set to satisfy the following relational expression.
(Outlet side flow rate of the first electrode chamber 12a) / (Outlet side flow rate of the second electrode chamber 12b)> (Flow rate of the first electrode chamber introduction path 9) / (Second electrode chamber introduction path 10) Flow rate)
As shown in FIGS. 2 and 4, the merging section 16 includes an on-off valve 30 that can adjust the flow rate.
 また、排水路18は、流量調整可能な開閉弁27を備えている。 Further, the drainage channel 18 is provided with an on-off valve 27 capable of adjusting the flow rate.
 このような構成を採用することにより、単純な構造にて、アルカリイオン水が生成可能な電解水生成装置を提供することができる。 By adopting such a configuration, it is possible to provide an electrolyzed water generator capable of generating alkaline ionized water with a simple structure.
 1 原水管
 2 水栓
 3 本体部
 4 浄水部
 5a、5b、5c、5d 導入路
 6 流量検知部
 7 カルシウム供給部用絞り
 8 カルシウム供給部
 9 第1の電極室用導入路
 10 第2の電極室用導入路
 11 第2の電極室用絞り
 12 電解槽
 12a 第1の電極室
 12b 第2の電極室
 13a、13b 隔膜
 14a、14b 第1の電極室用電極板
 15 第2の電極室用電極板
 16 合流部
 17 吐水路
 18a、18b 排水路
 19 排水路用絞り
 20 吐水バイパス路
 21 吐水バイパス路用絞り
 22 pHセンサー部
 23 電源プラグ
 24 電源部
 25 制御部
 26 操作表示部
 27 開閉弁
 28 合流部用絞り
 29 残留塩素除去手段
 30a 内筒
 30b 外筒
 31a、31b 流量調整用孔
 32 ステッピングモーター
 33、34 信号線
DESCRIPTION OF SYMBOLS 1 Raw water pipe 2 Water faucet 3 Main body part 4 Water purifying part 5a, 5b, 5c, 5d Introduction path 6 Flow rate detection part 7 Calcium supply part throttling 8 Calcium supply part 9 First electrode room introduction path 10 Second electrode chamber Introductory path 11 Second electrode chamber restriction 12 Electrolyzer 12a First electrode chamber 12b Second electrode chamber 13a, 13b Diaphragm 14a, 14b First electrode chamber electrode plate 15 Second electrode chamber electrode plate DESCRIPTION OF SYMBOLS 16 Junction part 17 Drainage channel 18a, 18b Drainage channel 19 Drainage channel throttling 20 Drainage bypass channel 21 Drainage bypass channel throttling 22 pH sensor unit 23 Power plug 24 Power supply unit 25 Control unit 26 Operation display unit 27 Open / close valve 28 For merge unit Restriction 29 Residual chlorine removing means 30a Inner cylinder 30b Outer cylinder 31a, 31b Flow rate adjusting hole 32 Stepping motor 33, 34 Signal line

Claims (5)

  1.  陰極を備えた陰極室と陽極を備えた陽極室とから構成され通水された原水を電気分解してアルカリイオン水および酸性イオン水を生成する電解槽と、前記電解槽の電解強度を制御する制御部と、を有し、前記陰極室に接続され前記陰極室で生成された前記アルカリイオン水が吐水される吐水路と、前記陽極室に接続され前記陽極室で生成された前記酸性イオン水が排水される排水路と、を備えた電解水生成装置であって、前記電解槽内には、前記陽極で生成された前記酸性イオン水の一部を前記陰極で生成された前記アルカリイオン水に合流させる合流部を備えたことを特徴とする電解水生成装置。
    An electrolytic cell that is composed of a cathode chamber having a cathode and an anode chamber having an anode and electrolyzes raw water that has been passed through to generate alkaline ionized water and acidic ionized water, and controls the electrolytic strength of the electrolytic cell And a water discharge channel for discharging the alkali ion water generated in the cathode chamber connected to the cathode chamber, and the acidic ion water generated in the anode chamber connected to the anode chamber. And a drainage channel for draining water, wherein the alkaline ionized water generated at the cathode is part of the acidic ionized water generated at the anode in the electrolytic cell. An electrolyzed water generating apparatus comprising a merging portion for merging with the water.
  2.  前記合流部は、前記電解槽内の下流側に設けたことを特徴とする請求項1記載の電解水生成装置。
    The electrolyzed water generating apparatus according to claim 1, wherein the merging portion is provided on the downstream side in the electrolytic cell.
  3.  前記合流部は、流量調整可能な開閉弁を備えたことを特徴とする請求項1または2記載の電解水生成装置。
    The electrolyzed water generating device according to claim 1, wherein the merging portion includes an on-off valve capable of adjusting a flow rate.
  4.  前記合流部は、前記酸性イオン水中の残留塩素を除去する除去手段を備えたことを特徴とする請求項1から3のいずれか1項に記載の電解水生成装置。
    The electrolyzed water generating apparatus according to any one of claims 1 to 3, wherein the merging portion includes a removing unit that removes residual chlorine in the acidic ion water.
  5.  少なくとも前記排水路に、流量調整可能な前記開閉弁を備えたことを特徴とする請求項1から4のいずれか1項に記載の電解水生成装置。 The electrolyzed water generating apparatus according to any one of claims 1 to 4, wherein the on-off valve capable of adjusting a flow rate is provided at least in the drainage channel.
PCT/JP2012/053594 2011-03-25 2012-02-16 Electrolyzed water generation device WO2012132600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-068379 2011-03-25
JP2011068379A JP2012200683A (en) 2011-03-25 2011-03-25 Electrolyzed water generation device

Publications (1)

Publication Number Publication Date
WO2012132600A1 true WO2012132600A1 (en) 2012-10-04

Family

ID=46930363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053594 WO2012132600A1 (en) 2011-03-25 2012-02-16 Electrolyzed water generation device

Country Status (3)

Country Link
JP (1) JP2012200683A (en)
TW (1) TW201238911A (en)
WO (1) WO2012132600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787465A (en) * 2014-01-22 2014-05-14 深圳雅诗科技发展有限公司 Portable water ionizer and water electrolysis method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809208B2 (en) * 2013-07-31 2015-11-10 株式会社日本トリム Electrolyzed water generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102890A (en) * 1985-10-28 1987-05-13 Toyo Kagaku Kenkyusho:Kk Device for producing sterile water
JP2007289838A (en) * 2006-04-24 2007-11-08 Tokyo Yogyo Co Ltd Electrolytic water generator
JP2008200610A (en) * 2007-02-20 2008-09-04 Hoshizaki Electric Co Ltd Preparation method of sterilizing and disinfecting cleaning liquid
JP2009072778A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102890A (en) * 1985-10-28 1987-05-13 Toyo Kagaku Kenkyusho:Kk Device for producing sterile water
JP2007289838A (en) * 2006-04-24 2007-11-08 Tokyo Yogyo Co Ltd Electrolytic water generator
JP2008200610A (en) * 2007-02-20 2008-09-04 Hoshizaki Electric Co Ltd Preparation method of sterilizing and disinfecting cleaning liquid
JP2009072778A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787465A (en) * 2014-01-22 2014-05-14 深圳雅诗科技发展有限公司 Portable water ionizer and water electrolysis method thereof

Also Published As

Publication number Publication date
TW201238911A (en) 2012-10-01
JP2012200683A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP4914338B2 (en) Water conditioner
JP2006305568A (en) Electrolytic cell, ionic water purifier adopting the same and method for cleaning the same
WO2012132600A1 (en) Electrolyzed water generation device
JP2008168180A (en) Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water
JP4106788B2 (en) Alkaline ion water conditioner
JP4462157B2 (en) Electrolyzed water generating device and sink equipped with the same
WO2018168109A1 (en) Apparatus for generating electrolyzed hydrogen water
KR20120067142A (en) Softener having sterilized water chamber and method for working the same
KR101286273B1 (en) Method for controlling flowpath system in water electrolysis apparatus
JP4548294B2 (en) Electrolyzed water generating device and sink equipped with the same
JP4936423B2 (en) Electrolyzed water generating device and sink equipped with the same
JP4591001B2 (en) Alkaline ion water conditioner
JP3648867B2 (en) Alkaline ion water conditioner
JP4378803B2 (en) Alkaline ion water conditioner
WO2012144304A1 (en) Electrolyzed water generation device
JP2006075700A (en) Alkali ion water generator
KR100476646B1 (en) Pipe Laying Structure of Water Dispenser for Ionized Water
JP2006247553A (en) Apparatus for generating electrolytic water and sink equipped therewith
JP2014008433A (en) Electrolytic water generator
KR20060115079A (en) Electrolytic cell, ion water purifier employing the same, and filtering water supplying method
JPH10309580A (en) Alkali ion water generator
JPH1043760A (en) Alkali ion water conditioning device
JPH0751670A (en) Electroltzed water generator
JP3915169B2 (en) Alkaline ion water conditioner
JPH10192858A (en) Built-in alkali water maker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764740

Country of ref document: EP

Kind code of ref document: A1