WO2018168109A1 - Apparatus for generating electrolyzed hydrogen water - Google Patents

Apparatus for generating electrolyzed hydrogen water Download PDF

Info

Publication number
WO2018168109A1
WO2018168109A1 PCT/JP2017/043702 JP2017043702W WO2018168109A1 WO 2018168109 A1 WO2018168109 A1 WO 2018168109A1 JP 2017043702 W JP2017043702 W JP 2017043702W WO 2018168109 A1 WO2018168109 A1 WO 2018168109A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
chamber
electrolytic hydrogen
hydrogen water
electrolytic
Prior art date
Application number
PCT/JP2017/043702
Other languages
French (fr)
Japanese (ja)
Inventor
島崎勝輔
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2018168109A1 publication Critical patent/WO2018168109A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolytic hydrogen water generator.
  • Such hydrogen water is generated by dissolving hydrogen in water.
  • Examples of the generation method include a method of bubbling hydrogen gas in drinking water, a method using a chemical reaction, Examples include a method of generating by decomposition.
  • the water electrolysis method can produce electrolyzed hydrogen water containing hydrogen in alkaline electrolyzed water, which is also considered to be useful for health promotion, and can be expected to have a synergistic effect of both.
  • the water electrolysis method can produce electrolyzed hydrogen water containing hydrogen in alkaline electrolyzed water, which is also considered to be useful for health promotion, and can be expected to have a synergistic effect of both.
  • the amount of dissolved hydrogen contained in hydrogen water is one of the most important concerns for those who drink hydrogen water.
  • an electrolyzed hydrogen water generator comprising an electrolytic cell in which a cathode chamber in which a negative electrode having a relatively low potential is disposed and an anode chamber in which a positive electrode having a high potential is partitioned by a diaphragm
  • a means for increasing the dissolved amount of hydrogen there is a method of increasing the internal pressure of the cathode chamber by generating a back pressure by limiting the flow rate of the electrolytic hydrogen water discharged from the cathode chamber.
  • the actual amount of hydrogen dissolved in the electrolytic hydrogen water thus obtained is lower than the amount of hydrogen in the electrolytic hydrogen water that should be obtained theoretically. It was found.
  • the inventors have conducted extensive research on this phenomenon, and have completed the present invention to provide an electrolytic hydrogen water generator that can further improve the amount of hydrogen contained in the electrolytic hydrogen water.
  • the electrolytic hydrogen water generator has (1) an anode chamber and a cathode chamber partitioned by a diaphragm, and the electrodes are disposed between the electrodes disposed in each electrode chamber while supplying water.
  • An electrolytic hydrogen water generator comprising an electrolytic cell that electrolyzes the water by energization through a diaphragm and discharges alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water from the anode chamber.
  • an electrode chamber pressurizing unit that pressurizes the corresponding electrode chambers while allowing the acid water or the electrolyte hydrogen water to flow in both the acid water discharge channel and the electrolytic hydrogen water discharge channel. I decided to prepare.
  • the electrolytic hydrogen water generator according to the present invention is also characterized by the following points.
  • Either one or both of the anode chamber pressurizing unit and the cathode chamber pressurizing unit includes a pressure variable mechanism for changing the degree of pressurization of the corresponding polar chamber.
  • the anode chamber pressurizing means includes a pressure variable mechanism and is connected to a control unit that controls the pressure variable mechanism, and the control unit pressurizes the anode chamber when generating the electrolytic hydrogen water. Controlling the means to increase the internal pressure in the anode chamber and increase the amount of electricity for the electrolysis.
  • Each of the anode chamber pressurizing means and the cathode chamber pressurizing means includes a pressure variable mechanism and is connected to a control unit that controls the pressure variable mechanism. During the generation, both chamber pressure means are controlled almost simultaneously to increase the internal pressure in the corresponding chamber.
  • a raw water bypass flow path is provided that branches the raw water flowing into the electrolytic cell from the middle of the supply path and allows water to flow downstream from the cathode chamber pressurizing means of the electrolytic hydrogen water discharge flow path.
  • a reflux bypass passage is provided that joins part of the acidic water discharged from the electrolytic cell to the raw water supplied to the anode chamber.
  • the electrolytic hydrogen water generator has an anode chamber and a cathode chamber partitioned by a diaphragm, and energizes the electrodes disposed in each electrode chamber while supplying water through the diaphragm.
  • An electrolytic hydrogen water generator comprising an electrolytic cell for electrolyzing water and discharging alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water from the anode chamber, wherein the acidic water discharge channel And the discharge flow path of the electrolytic hydrogen water are provided with polar chamber pressurizing means for pressurizing the corresponding polar chamber while allowing the flow of acidic water or electrolytic hydrogen water, respectively.
  • the amount of hydrogen contained in the electrolytic hydrogen water can be further improved as compared with the electrolytic hydrogen water generation apparatus including only the means.
  • either one or both of the anode chamber pressurizing means and the cathode chamber pressurizing means includes a pressure variable mechanism that changes the degree of pressurization of the corresponding polar chamber, the electrolytic hydrogen water is supplied at a desired timing. Concentration can be increased.
  • the anode chamber pressurizing means includes a pressure variable mechanism, and is connected to a control unit that controls the pressure variable mechanism. By controlling the pressure to increase the internal pressure in the anode chamber and increase the amount of electrolysis, the electrolytic hydrogen water containing a high concentration of hydrogen can be generated with a relatively low pH.
  • the anode chamber pressurizing unit and the cathode chamber pressurizing unit both have a pressure variable mechanism and are connected to a control unit that controls the pressure variable mechanism, and the control unit generates the electrolytic hydrogen water.
  • the control unit generates the electrolytic hydrogen water.
  • a raw water bypass flow path is provided for allowing water to flow downstream from the cathode chamber pressurizing means of the electrolytic hydrogen water discharge flow path.
  • a large amount of electrolytic hydrogen water having a relatively low pH and a high hydrogen content can be supplied.
  • the present invention has an anode chamber and a cathode chamber partitioned by a diaphragm, and electrolyzes the water by energizing the electrodes between the electrodes disposed in each electrode chamber while supplying water,
  • An electrolytic hydrogen water generator comprising an electrolytic cell for discharging alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water from the anode chamber, wherein the amount of hydrogen contained in the electrolytic hydrogen water is further improved
  • An electrolytic hydrogen water generator is provided.
  • the electrolytic hydrogen water is alkaline electrolyzed water generated on the cathode side by electrolysis of water, and is water in which hydrogen gas generated on the cathode side is dissolved.
  • the electrolytic hydrogen water generator in the present specification also conceptually includes a so-called alkaline ion water conditioner.
  • the diaphragm which divides an anode chamber and a cathode chamber will not be specifically limited if it is used as a diaphragm with a general alkali ion water conditioner, For example, a neutral membrane, an ion exchange membrane, etc. are employ
  • acidic water or electrolytic hydrogen water is provided in both the acidic water discharge channel and the electrolytic hydrogen water discharge channel generated in the electrolytic cell. It is possible to provide a polar chamber pressurizing unit that pressurizes the corresponding polar chambers while allowing distribution.
  • the present inventors Prior to the completion of the present invention, the present inventors generate a back pressure by limiting the flow rate of the electrolytic hydrogen water discharged from the cathode chamber, thereby increasing the internal pressure of the cathode chamber. It has been found that the actual amount of hydrogen dissolved in the electrolytic hydrogen water obtained by the method is lower than the amount of hydrogen in the electrolytic hydrogen water that should theoretically be obtained.
  • cathode chamber content water the raw water or electrolyzed hydrogen water in the cathode chamber leaks to the anode chamber due to the internal pressure applied to the anode chamber, preventing the pressure increase and suppressing the increase in hydrogen concentration. It was.
  • an electrolytic hydrogen water generator configured so that raw water supplied into the electrolytic cell is bifurcated from one raw water supply pipe and supplied to the cathode chamber side and the anode chamber side
  • the indoor pressure is increased, a large amount of raw water flows into the anode chamber and the increase in the internal pressure in the cathode chamber may be blunted.
  • the electrolytic hydrogen water generator according to the present embodiment has the above-described configuration. Since it is provided, raw water can be efficiently supplied also to the cathode chamber side, the increase in the pressure in the cathode chamber can be promoted, and the dissolved hydrogen concentration can be further increased.
  • the raw water supplied to the cathode chamber and the anode chamber is not particularly limited as long as it is drinkable water having a pH of about 6 to 8 that is not subjected to extreme pH adjustment, such as general tap water and well water. Can be used.
  • the tap water and well water are filtered with a filter, adsorption treatment with a porous material such as activated carbon, deionization treatment with an ion exchange resin, etc., and water electrolysis efficiency.
  • a filter adsorption treatment with a porous material such as activated carbon
  • deionization treatment with an ion exchange resin, etc. and water electrolysis efficiency.
  • the polar chamber pressurizing means is not particularly limited as long as it is a member capable of generating back pressure in the corresponding polar chamber or discharge pipe while allowing the flow of acidic water or electrolytic hydrogen water.
  • examples thereof include a member that causes resistance to flow, such as a member having a constricted structure such as a restriction orifice, a valve, or a venturi.
  • the polar chamber pressurizing means will be described with reference to FIG. 1.
  • the diameter change rate (stenosis change rate) that gradually narrows in the flow diameter gradually decreasing portion 82a
  • the diameter change rate (expansion change rate) gradually expanding in the diameter gradually increasing portion 82b is substantially the same as an absolute value with the stenosis portion 82c having the minimum diameter as a boundary.
  • the polar chamber pressurizing unit 81b shown in FIG. 1B has substantially the same configuration as the polar chamber pressurizing unit 81a, but the stenosis change ratio in the flow diameter gradually decreasing portion 82a is increased in the flow diameter gradually increasing portion 82b. It is formed to be larger than the open change rate, and is configured to generate a larger back pressure than the polar chamber pressurizing unit 81a.
  • the polar chamber pressurizing unit 81c shown in FIG. 1C has substantially the same configuration as that of the polar chamber pressurizing unit 81b, but the stenosis instead of the flow diameter gradually increasing portion 82b is provided downstream of the stenotic portion 82c.
  • the structure is different in that it includes a constricted flow channel 82d having the same flow diameter as the portion 82c.
  • the polar chamber pressurizing unit 81d shown in FIG. 1 (d) has an initial inflow of the flow diameter gradually decreasing portion 82a instead of the constricted flow path 82d on the downstream side of the constricted portion 82c, as compared with the polar chamber pressurizing unit 81c.
  • the structure is different in that a wide channel 82f having a diameter substantially the same as the diameter is provided.
  • the polar chamber pressurizing unit 81e shown in FIG. 1 (e) is such that the narrowed portion 82c is formed in a narrowed channel shape, and both the upstream side and the downstream side of the narrowed portion 82c are wide channel 82f.
  • the structure is different.
  • the polar chamber pressurizing unit 81f shown in FIG. (F) has substantially the same configuration as the polar chamber pressurizing unit 81d, but the flow path is located at a position corresponding to the flow diameter gradually decreasing portion 82a on the upstream side of the constricted portion 82c.
  • the structure is different in that the resistor 82h is arranged.
  • examples of the polar chamber pressurizing means include variations such as the polar chamber pressurizing units 81a to 81f described above, and the corresponding polar chambers permitting the flow of acidic water or electrolytic hydrogen water.
  • back pressure can be generated in the discharge pipe.
  • the back pressure that generates an internal pressure in the polar chamber does not include a simple straight pipe flow resistance, but refers to a resistance member or a resistance structure positively added to the discharge flow path.
  • Examples of the resistance member include the above-described electrode chamber pressurizing unit, and examples of the resistance structure include meandering piping for the purpose of increasing the back pressure.
  • the polar chamber pressurizing means may be a tube (hereinafter also referred to as a “miniaturized bubble generating tube”) having a venturi structure (stenosis / expansion structure) capable of generating microbubbles and nanobubbles.
  • a tube hereinafter also referred to as a “miniaturized bubble generating tube” having a venturi structure (stenosis / expansion structure) capable of generating microbubbles and nanobubbles.
  • the flow diameter gradually narrows on the upstream side of the constriction portion 82c and the constriction of the constriction portion 82c on the downstream side of the constriction portion 82c, as in the polar chamber pressurizing units 81a, 81b, 81d, 81f.
  • the polar chamber pressurizing unit having a structure having a flow diameter larger than the diameter can be expected to function as a refined bubble generating tube that refines the bubbles of the inflowed bubble-containing electrolytic water.
  • the micronized bubble generating tube can function as a polar chamber pressurizing means, and if used as a cathode chamber pressurizing means, for example, it can subdivide undissolved hydrogen bubbles dispersed in electrolytic hydrogen water. Thus, dissolution can be promoted, and the amount of hydrogen contained in the electrolytic hydrogen water can be further improved. Moreover, if it uses as an anode chamber pressurization means, the acidic water in which the amount of dissolved oxygen was further raised can be produced
  • anode chamber pressurizing means provided in the acidic water discharge flow path and the cathode chamber pressurizing means provided in the electrolytic hydrogen water discharge flow path may be the same or different.
  • either one or both of these polar chamber pressurizing means may be provided with a pressure variable mechanism that changes the degree of pressurization of each polar chamber. Since the polar chamber pressurizing means is a member that generates back pressure, when the amount of electrolytic hydrogen water or acidic water discharged from the electrolysis chamber is constant, the discharge flow rate is naturally limited. If the variable mechanism is provided, it can be freely changed to a desired discharge flow rate, and the hydrogen content can be changed in the case of electrolytic hydrogen water, and the oxygen content can be changed in the case of acidic water.
  • This pressure variable mechanism may be capable of changing the back pressure to be generated stepwise or may be steplessly changed.
  • the former include a gate valve that can change the position of the closing plate stepwise, and a valve that can be switched between a fully open state and a half open state. Further, as an example of the latter, there is a valve or the like whose opening degree can be adjusted steplessly by a screwing member or the like like a piece in a faucet.
  • a screw-like shape that can be stepped into and out of the tube in a stepless manner while having a straight tubular wide flow channel 82i having substantially the same diameter from inflow to outflow.
  • a variable pressure mechanism is configured by screwing the flow path narrowing body 82j so that the position of the narrowed portion 82c, that is, the degree of resistance to the bubble-containing electrolytic water and the degree of generation of back pressure can be changed.
  • This pressure variable mechanism may be adjusted manually by the user of the electrolytic hydrogen water generator, or may be adjusted by control of a control unit or the like built in the electrolytic hydrogen water generator.
  • the polar chamber pressurizing means must be capable of pressurizing the corresponding polar chamber while allowing the flow of acidic water or electrolytic hydrogen water, but must have a function of completely closing the flow path. It does not prevent.
  • the anode chamber pressurizing means is provided with a variable pressure mechanism
  • the anode chamber pressurizing means is connected to a control unit that controls the variable pressure mechanism, and the control unit further includes electrolytic hydrogen water.
  • the pressure variable mechanism of the anode chamber pressurizing means may be controlled to increase the internal pressure in the anode chamber and increase the amount of electrolysis.
  • the pH of the electrolytic hydrogen water suitable for drinking is set to 10 or less, and in order to obtain the electrolytic hydrogen water suitable for drinking while increasing the amount of energization and increasing the dissolved hydrogen concentration, the pH is reduced by some means. It is desirable to reduce
  • the pressure variable mechanism of the anode chamber pressurizing means is controlled to increase the internal pressure in the anode chamber, and based on the new knowledge described above, the acidic water and acidic water in the anode chamber are passed through the diaphragm.
  • the raw water mixed with hereinafter also referred to as anode chamber content water
  • the cathode chamber content water leaks to the cathode chamber side, and the cathode chamber content water is neutralized by the leaked anode chamber content water while suppressing an increase in pH and electrolysis.
  • the amount of hydrogen generated is increased to increase the amount of hydrogen generated.
  • electrolytic hydrogen water suitable for drinking with suppressed pH rise while hydrogen is dissolved at a high concentration.
  • the degree of suppression of the pH increase in the cathode chamber content water can be adjusted by the pressure variable mechanism of the anode chamber pressurizing means.
  • the anode chamber pressurization means and the cathode chamber pressurization means both have a pressure variable mechanism and are connected to a control unit that controls the pressure variable mechanism, and the control unit pressurizes the bipolar chamber when generating electrolytic hydrogen water.
  • the means may be controlled substantially simultaneously to increase the internal pressure in the corresponding polar chamber.
  • the raw water flowing into the electrolyzer is branched from the middle of the supply path, and water is passed downstream from the cathode chamber pressurizing means of the electrolyzed hydrogen water discharge flow path.
  • a raw water bypass channel may be provided.
  • the amount of water taken in the electrolytic hydrogen water per unit time is reduced by opening the bypass passage when the cathode chamber pressurizing unit is functioning. You can make it right without doing it.
  • the electrolytic hydrogen water generator according to the present embodiment may include a reflux bypass passage that joins part of the acidic water discharged from the electrolytic cell to the raw water supplied to the anode chamber.
  • the pH of the water in the cathode chamber can be lowered as compared with the case where no reflux bypass passage is provided, and the pH of the water in the cathode chamber can be suppressed via the diaphragm. It can be made more effective.
  • FIG. 2 is a perspective view showing the appearance of the electrolytic hydrogen water generator A1 according to the first embodiment
  • FIG. 3 is a block diagram showing the overall configuration of the electrolytic hydrogen water generator A1.
  • the electrolyzed hydrogen water generator A ⁇ b> 1 is configured by housing a device unit 9 (see FIG. 3), which will be described later, in a substantially rectangular casing 10, and requires water received from water or the like. Accordingly, the water desired by the user can be taken from the discharge port 17 b through the water intake pipe 17. Further, the electrolytic hydrogen water generator A1 includes a power plug 8 (see FIG. 3), and electrolysis is performed by receiving power from a commercial power outlet or the like.
  • an operation panel P is arranged on the front portion of the casing 10, and various buttons and lamps are provided.
  • a display unit D composed of a liquid crystal display device is provided at the upper center, a power button B1 is provided at the upper right, and an ORP display is provided below the display unit D.
  • the button B2 and the water flow amount display button B3 are arranged side by side.
  • the power button B1 is a button for starting the electrolytic hydrogen water generator A1, and is an effective button in any state. For example, when the treatment is not completed during the wastewater treatment or the like, it is preferable that the power is turned off after the completion of the treatment even when the power button B1 is pressed.
  • the ORP display button B2 is a button for displaying the current water ORP on the display unit D.
  • the water flow rate display button B3 is a button for displaying the current water flow rate on the display unit D.
  • an alkali button group AL a purified water supply button W, and an acid button group Ac are arranged in a vertical line.
  • the alkaline button group AL includes a strong alkaline water supply button AL0 and a first level alkaline water supply button AL1 to a third level alkaline water supply button AL3.
  • the strong alkaline water supply button AL0 is a button for instructing the electrolytic hydrogen water generator A1 to generate strong alkaline water.
  • Strong alkaline water for example, has a pH of 10.5, and can be used for boiled food, acupuncture, boiled vegetables, and the like.
  • the first level alkaline water supply button AL1 is a button for instructing the electrolytic hydrogen water generator A1 to generate the first level alkaline water.
  • the first level alkaline water has a pH of 9.5, for example, and can be used for cooking, tea and the like.
  • the second level alkaline water supply button AL2 is a button for instructing the electrolytic hydrogen water generator A1 to generate the second level alkaline water.
  • the second level alkaline water has a pH of 9.0, for example, and can be used for cooking rice or the like.
  • the third level alkaline water supply button AL3 is a button for instructing the electrolytic hydrogen water generator A1 to generate the third level alkaline water.
  • the third level alkaline water has a pH of 8.5, for example, and can be used as water for starting drinking.
  • the electrolytic hydrogen water generator A1 shifts to a strong alkaline water generation mode or an alkaline water generation mode at each level, and generates corresponding alkaline water.
  • the alkaline water generated by pressing the alkali button group AL is water corresponding to electrolytic hydrogen water.
  • the purified water supply button W is a button for instructing to purify and pass water from tap water without performing electrolysis in the electrolytic hydrogen water generator A1.
  • the electrolytic hydrogen water generator A1 shifts to the purified water generation mode and generates purified water.
  • the acidic button group Ac includes an acidic water supply button Ac1 and a strong acidic water supply button Ac2.
  • the acidic water supply button Ac1 is a button for instructing the electrolytic hydrogen water generator A1 to generate acidic water.
  • Acidic water has a pH of 5.5, for example, and can be used for face washing, boiled noodles, tea astringents, and the like.
  • the strongly acidic water supply button Ac2 is a button for instructing the electrolytic hydrogen water generator A1 to generate strongly acidic water (sanitary water).
  • the strongly acidic water has a pH of 2.5, for example, and can be used for washing around the water.
  • the electrolytic hydrogen water generator A1 shifts to an acidic water generation mode for supplying acidic water and a strong acidic water generation mode for supplying strong acidic water, respectively.
  • the corresponding acidic water is generated.
  • the strong alkaline water generation mode, the alkaline water generation mode, the purified water generation mode, the acidic water generation mode, and the strong acidic water generation mode are collectively referred to as a water generation mode.
  • buttons and lamps are arranged near the lower part of the operation panel P.
  • the strong acid water supply lamp L1 indicates that the electrolytic hydrogen water generator A1 is in the strong acid water generation mode.
  • L3 is a cleaning lamp
  • L4 is a rinsing lamp
  • L5 and L6 are cartridge life setting buttons and lamps of a water purification unit 2 (described later) provided inside the electrolytic hydrogen water generator A1
  • L7 and L8 are water purification units 2.
  • a cartridge replacement lamp, L9 is a temperature rise warning lamp
  • B5 is a cartridge replacement reset button.
  • the operation panel P of the electrolyzed hydrogen water generator A1 is provided with a dissolved amount increase button F at a substantially central portion of the operation panel P as one of characteristic features.
  • the dissolved amount increase button F is a button for promoting bubble dissolution of the bubble-containing electrolytic water.
  • the electrolytic hydrogen water generator A1 enters the dissolved amount increase mode. If there is hydrogen bubbles, acid water promotes dissolution of oxygen bubbles to generate electrolytic hydrogen water having a high hydrogen dissolved amount or acidic water having a high oxygen dissolved amount.
  • This dissolved amount increase button F can be pressed in the strong alkaline water generation mode, in the alkaline water generation mode, in the acidic water generation mode, or in the strong acidic water generation mode. When these modes are selected, the dissolved amount is increased.
  • a lamp L10 arranged in a ring shape around the increase button F is lit to notify the user that it can be used. In the following description, this function of promoting bubble dissolution of bubble-containing electrolytic water is referred to as a bubble dissolution promotion function.
  • the electrolytic hydrogen water generator A1 increases the discharge amount by bypassing a part of the raw water to the downstream side of the cathode chamber pressurizing means described later.
  • the reflux function is exhibited, and a part of the acidic water discharged from the anode chamber is joined to the raw water supplied to the anode chamber, and the amount of electrolysis current is made to return to the anode chamber.
  • FIG. 3 is a block diagram showing the configuration of the device unit 9
  • FIG. 4 is an explanatory diagram showing an example of construction of each flow path structure disposed in the electrolyzer 1 and in the vicinity thereof.
  • the configuration of the apparatus unit 9 is large and is purified by an electrolysis unit 4 having an electrolyzer 1 that electrolyzes raw water, and a water purifier 5 that purifies raw water supplied to the electrolyzer 1 in advance. It is divided into the addition part 6 which adds a predetermined additive to raw water (purified water), and the control part 7 which controls each part of the electrolytic hydrogen water generator A1 as a whole.
  • the electrolyzing unit 4 includes an electrolytic cell 1 formed in a rectangular box shape as viewed from the outside, and a flow path that is spaced from the surface of the electrolytic cell 1 and arranged in an aerial piping state around the electrolytic cell 1. It is comprised by the piping part 42 (generally, the part enclosed with the dashed-dotted line in the figure).
  • the electrolytic cell 1 is a part that generates alkaline electrolytic hydrogen water or acidic water by electrolyzing supplied water.
  • the electrolyzed hydrogen water generator A1 is an apparatus that can take in not only alkaline electrolyzed hydrogen water but also acidic water as described above.
  • the electrolytic cell 1 provided in the electrolytic hydrogen water generator A1 includes an electrode plate (hereinafter referred to as a water intake electrode plate) that can be switched to a predetermined polarity for generating water for the user to take water.
  • the electrode chamber for water intake and the electrode chamber for by-product water provided with an electrode plate (hereinafter referred to as a by-product water electrode plate) that is switched to a polarity opposite to the polarity of the intake electrode plate are separated from each other by a diaphragm.
  • the by-product water electrode plate is used as an anode and the by-product water electrode chamber is used as an anode chamber, while the intake electrode plate is used as a cathode and the intake electrode chamber is used as a cathode chamber.
  • the alkaline electrolyzed hydrogen water can be generated at the same time, and water can be taken.
  • the by-product water electrode plate is used as a cathode and the by-product water electrode chamber is used as a cathode chamber, while the water intake electrode plate is used as an anode.
  • the electrode chamber for the anode into the anode chamber, acid water is generated in the water intake electrolysis chamber to enable water intake.
  • the electrode chamber for taking water is the cathode chamber
  • the electrode plate for taking water is the cathode
  • the electrode chamber for by-product water is used.
  • each component is given a name while assuming that the anode chamber is an anode chamber and the by-product water electrode plate is an anode.
  • a cathode A cathode chamber water supply port 43b for supplying water (raw water) is formed in the chamber (intake electrode chamber).
  • an electrolytic hydrogen water discharge port 17a is provided so as to project upward at a substantially central portion of the upper end surface of the electrolytic cell 1, and as shown in FIG. 3, a cathode chamber (water intake electrode chamber) of the electrolytic cell 1 is provided.
  • the generated electrolytic hydrogen water can be discharged from the discharge port 17b through the discharge pipe 17d and the intake pipe 17.
  • a cathode chamber pressurizing portion 17c (water intake electrode chamber pressurizing unit) functioning as a cathode chamber pressurizing means (water intake electrode chamber pressurizing means) is interposed in the middle of the discharge pipe 17d.
  • the cathode chamber pressurizing portion 17c is constituted by an electromagnetic valve, and is opened in the energized state (ON state), does not restrict the flow rate of the discharge pipe 17d, and is semi-closed in the energized state (OFF state).
  • a pressure variable mechanism that is in a state (pressurized state) is provided, and has a function of generating back pressure while limiting the flow rate of water passing through the cathode chamber pressurizing portion 17c.
  • the cathode chamber pressurization part 17c is electrically connected with the control part 7, and switching to an open state and a half-open state by control of the control part 7 is performed.
  • drain which discharges the acidic water produced
  • the flow channel upstream portion 18a is formed integrally with the casing (casing) portion, and the lower end thereof is connected to the flow channel piping portion 42 to supply acidic water flowing through the drain flow channel upstream portion 18a to the flow channel piping portion.
  • An electrolytic cell side connection portion 18b that discharges toward 42 is formed.
  • the flow path pipe section 42 is divided into a main raw water supply path 24 for supplying raw water and a branch from the main raw water supply path 24 to be connected to the cathode chamber water supply port 43 b to enter the cathode chamber.
  • a secondary raw water supply path 24a for supplying raw water and a branch from the main raw water supply path 24 are connected to the anode chamber water supply port 43a to supply the raw water into the anode chamber or when the dissolved amount increase button F is pressed,
  • Road main pipe part 44a and return pipe main pipe part 4a is branched from the middle, and is connected to the branch portion of the secondary raw water supply passage 24b in the main raw water supply passage 24 so as to be connected to the return passage branch pipe portion 44b.
  • a drainage flow channel midstream portion 18d that circulates the remaining acidic water to be discharged out of the acidic water that is provided in a bent shape in an L-shape and is diverted at the flow passage pipe side connection portion 18c, a reflux channel main pipe portion 44a, and a drainage flow
  • a drainage flow path downstream portion 18e connected to the lower end of the midstream portion 18d and communicating with the discharge port 63 is provided.
  • the connecting and joining portion between the reflux path branch pipe portion 44b and the main raw water supply path 24 is an acidic water reflux mixing portion 44c for mixing the acidic water with the raw water when the reflux function is exhibited.
  • the drainage channel upstream portion 18a, the electrolytic cell side connection portion 18b, the channel piping side connection portion 18c, the drainage channel midstream portion 18d, and the drainage channel downstream portion 18e are collectively referred to as the drainage channel 18.
  • the reflux path main pipe portion 44a, the reflux path branch pipe portion 44b, and the acidic water reflux mixing portion 44c are collectively referred to as a reflux bypass passage 70.
  • the electrolytic cell side connection portion 18b and the flow channel piping side connection portion 18c are portions that function as bent flow channels interposed in the middle of the drainage flow channel 18, and flow channel piping.
  • the part 42 is separated from the front side surface of the electrolytic cell 1, and has a role as an isolated flow path in the shape of an aerial pipe.
  • an anode chamber pressurizing means (electrode chamber pressurizing means for by-product water) is provided in the middle of the drainage flow channel middle portion 18d.
  • An anode chamber pressurizing unit 71 (electrode chamber pressurizing unit for by-product water) that functions as
  • This anode chamber pressurizing unit 71 is constituted by a solenoid valve, and is in an open state in an energized state (ON state), and is not energized without limiting the flow rate of acidic water flowing through the drain flow channel midstream portion 18d. In the (OFF state), it has a pressure variable mechanism that is in a semi-closed state, and has a function of generating back pressure while limiting the flow rate of acidic water passing through the anode chamber pressurizing unit 71 to about 1 ⁇ 2. .
  • the anode chamber pressurizing unit 71 is added to the raw water via the branching ratio of the acidic water to be branched at the flow pipe side connection part 18c, in other words, through the return path main pipe part 44a and the return path branch pipe part 44b. It also serves to change the amount of acidic water.
  • the anode chamber pressurization unit 71 is electrically connected with the control part 7, and switching to an open state and a half-open state by control of the control part 7 is performed.
  • an electromagnetic valve 52 is interposed between the drainage channel downstream portion 18e and the discharge port 63 to open or close the discharge port 63 as necessary. You may comprise so that it can do.
  • a check valve 41 for preventing the flow from the reflux path main pipe portion 44a toward the drainage flow path downstream portion 18e is provided at a position downstream of the branch portion of the return path branch pipe portion 44b in the reflux path main pipe portion 44a. Has been.
  • the electrolytic cell 1 includes a first electrode plate 21 located at the center, a second electrode plate 22 located so as to sandwich the first electrode plate 21, and a third electrode plate 21. And an electrode plate 23. And the diaphragm 12 is arrange
  • the first electrolysis chamber 25 that functions as a water intake electrode chamber
  • the second electrolysis chamber 26 that functions as a byproduct water electrode chamber
  • the second electrolysis water electrode chamber that functions as a byproduct water electrode chamber.
  • 3 electrolytic chambers 27 and a fourth electrolytic chamber 28 functioning as a water intake electrode chamber are partitioned.
  • the second electrode plate 22 and the third electrode plate 23 are supplied with power from a power supply circuit (not shown) provided in the control unit 7 disposed in the casing 10, and serve as a water intake electrode plate as a cathode or an anode.
  • the first electrode plate 21 has a polarity opposite to that of the second electrode plate 22 and the third electrode plate 23 as a by-product water electrode plate.
  • the second electrode plate 22 and the third electrode plate 23 are cathodes
  • the first electrode plate 21 is an anode
  • the first electrolysis chamber 25 and the fourth electrolysis chamber 28 are the cathode chambers.
  • the second electrolysis chamber 26 and the third electrolysis chamber 27 correspond to the anode chamber.
  • the first electrode plate 21 is a cathode
  • the first electrolysis chamber 25 and the fourth electrolysis chamber. 28 corresponds to the anode chamber
  • the second electrolysis chamber 26 and the third electrolysis chamber 27 correspond to the cathode chamber.
  • Each of the electrolysis chambers 25, 26, 27, and 28 is provided with an inflow port and an outflow port of water, and the flow paths communicating with the outflow ports of the first electrolysis chamber 25 and the fourth electrolysis chamber 28 are electrolytic hydrogen.
  • Alkaline water having a desired pH can be taken through the water intake pipe 17 by joining with each other at the water discharge port 17a.
  • the flow paths communicating with the outlets of the second electrolysis chamber 26 and the third electrolysis chamber 27 merge with each other to form the drainage channel upstream portion 18a, and through the drainage channel 18 through the discharge port 63.
  • Acidic water can be drained (via the solenoid valve 52 when the solenoid valve 52 is provided in the vicinity of the discharge port 63).
  • the electromagnetic valve 52 is provided as necessary, and is not provided when it is not necessary to prevent the drainage of the water flowing into the second electrolysis chamber 26 and the third electrolysis chamber 27 in the purified water generation mode. good.
  • the water required for electrolysis is supplied to the electrolytic cell 1 through the two secondary raw water supply paths 24 a and 24 b branched from the main raw water supply path 24.
  • downstream ends of the secondary raw water supply path 24a bifurcated are connected to the inlets of the first electrolysis chamber 25 and the fourth electrolysis chamber 28, respectively.
  • the inlets of the chamber 26 and the third electrolysis chamber 27 are respectively connected to the downstream end of the secondary raw water supply path 24b that is bifurcated, so that the raw water flowing through the main raw water supply path 24 is supplied to each electrolysis chamber 25. 26, 27, 28 can be supplied.
  • the flow rate flowing from the main raw water supply path 24 to the first electrolysis chamber 25 and the fourth electrolysis chamber 28 via the sub raw water supply path 24a, and the auxiliary raw water supply is set to be 19.5: 0.5 to 18: 2, for example, 19: 1.
  • the middle of the flow path of the main raw water supply path 24 downstream of the branch part of the secondary raw water supply path 24a and upstream of the branch part of the secondary raw water supply path 24b (for example, in FIGS. 2 and 3).
  • the pressure suppressing means such as the orifice structure reduces the pressure in the acidic water reflux mixing unit 44c and relatively increases the pressure on the acidic water side that joins from the reflux bypass flow path 70 to thereby increase the acid water. It has a role to assist circulation.
  • the main raw water supply channel 24 and the drain channel 18 are connected via a check valve 41. That is, in FIG. 4, the main raw water supply channel 24 is connected to the drainage channel downstream portion 18e via the check valve 41 through the reflux channel branch pipe portion 44b.
  • the check valve 41 closes the flow path when there is water pressure during water flow, and stops the flow of water from the main raw water supply path 24 toward the drain flow path 18. When the water pressure at that time is small, it is in an open state and has a role of flowing water accumulated in each electrolytic chamber 25, 26, 27, 28 and each flow path to the drain flow path 18.
  • the electrolytic cell 1 is supplied with water from a water pipe 30 through a water tap 31, and a branch plug 32 is provided in the water tap 31.
  • a branch plug 32 is provided in the water tap 31.
  • One side of the water supply hose 33 is connected, and the other side of the water supply hose 33 is connected to the inlet of the water purification unit 5.
  • the water purification unit 5 is filled with a porous material such as activated carbon and functions as an adsorbing means for adsorbing impurities contained in the water supplied from the water pipe 30.
  • the water purification unit 5 incorporates a filtering means capable of removing microbes such as a hollow fiber membrane in addition to a relatively coarse filter such as a metal mesh, cloth material, and filter paper.
  • a filtering means capable of removing microbes such as a hollow fiber membrane in addition to a relatively coarse filter such as a metal mesh, cloth material, and filter paper.
  • the outlet of the water purification unit 5 is connected to the inlet of the flow sensor 53.
  • the flow sensor 53 is configured to be able to measure the amount of flowing water.
  • a propeller is provided at the center of the flow sensor 53 and the amount of flowing water is measured based on the number of rotations of the propeller.
  • the outlet of the flow sensor 53 is connected to the inlet of the addition unit 6.
  • the addition part 6 contains a calcium agent for adding calcium to the purified water.
  • Calcium agents contain calcium lactate, calcium glycerophosphate, and the like, and are intended to promote the effect of facilitating electrolysis of water with little electrolyte by elution by bringing purified water into contact with the calcium agent.
  • the water that has passed through the addition unit 6 is supplied as raw water to the electrolytic cell 1 through the main raw water supply path 24.
  • the intake pipe 17 is located upstream of the auxiliary raw water supply path 24a and the auxiliary raw water supply path 24b of the main raw water supply path 24.
  • a raw water bypass flow path 83 that bypasses the raw water is connected to a position downstream of the cathode chamber pressurizing portion 17c, and the raw water bypass flow path 83 is closed and opened to the raw water bypass flow path 83.
  • the raw water bypass passage valve 83a is interposed.
  • the raw water bypass passage valve 83a is electrically connected to the control unit 7, and is switched to the open state by the control of the control unit 7 when the raw water bypass function is exhibited.
  • the raw water bypass flow path valve 83a is in the open state, the raw water is bypassed to the intake pipe 17 downstream of the cathode chamber pressurizing portion 17c, so that a decrease in the flow rate due to the cathode chamber pressurizing portion 17c can be compensated.
  • FIG. 5 is a block diagram showing an electrical configuration of the electrolytic hydrogen water generator A1.
  • control unit 7 includes a CPU 101, a ROM 102, a RAM 103, an RTC 104, and the like as its configuration, and can execute a program necessary for the operation of the electrolytic hydrogen water generator A1.
  • the ROM 102 stores a program and the like necessary for the processing of the CPU 101, and the RAM 103 functions as a temporary storage area when the program or the like is executed.
  • a supply power value table referred to when supplying power to the first electrode plate 21 to the third electrode plate 23 is stored.
  • the basic power value and the added power value are set for each water generation mode in this supply power value table.
  • the basic power value is a power value when electrolysis is performed in a state where the dissolved amount increase button F is not pressed.
  • the added power value is a power value that is added to the basic power value when the dissolved amount increase button F is pressed.
  • a supply power value table is referred to, a supply power value corresponding to the mode is obtained, and the first electrode plate 21 to the third electrode are obtained via a supply power adjustment circuit described later. Electric power is supplied to the plate 23.
  • the basic power value of the first level alkaline water generation mode is the supply power value.
  • the added power of the third level alkaline water generation mode is added to the basic power value of the third level alkaline water generation mode. The value is added to generate a supply power value.
  • the predetermined area of the RAM 103 is generated by referring to the mode selection value indicating the currently selected water generation mode, the dissolved amount increase flag indicating the dissolved amount increasing mode, or the above-described supply power value table. A supply power value and the like are stored.
  • the mode selection value is 0 in the purified water production mode, 1 in the strong alkaline water production mode, 2 in the first level alkaline water production mode, 3 in the second level alkaline water production mode, and in the third level alkaline water production mode. 4. It takes a value of 5 in the acidic water production mode and 6 in the strong acid water production mode.
  • the dissolved amount increase flag takes an ON value in the dissolved amount increase mode.
  • the RTC (Real Time Clock) denoted by reference numeral 104 is used to generate a clock pulse that serves as a reference for executing an interrupt process described later. Even when the CPU 101 is executing a process, the CPU 101 interrupts the process in accordance with a clock pulse generated every predetermined cycle (for example, 2 milliseconds) from the RTC 104 and executes an interrupt process.
  • a power button B1 On the input side of the control unit 7, a power button B1, various buttons B2 to B5, an alkali button group AL, a purified water supply button W, an acid button group Ac, a dissolved amount increase button F, and a flow sensor 53 are connected. It is configured to receive input from the user and to be referred to according to the program execution status in the control unit 7.
  • the power plug 8 can receive power from a commercial power source or the like.
  • the display unit D On the output side of the control unit 7, the display unit D, the cathode chamber pressurizing unit 17c, the anode chamber pressurizing unit 71, the raw water bypass passage valve 83a, the lamps L1 to L10, the first electrode plate 21, the first electrode plate 21, and the like.
  • a two-electrode plate 22 and a third electrode plate 23 are connected, and are configured to be controlled and driven according to the program execution status in the control unit 7.
  • control unit 7 includes a polarity switching circuit 105.
  • the polarity switching circuit 105 performs positive / negative polarity switching between the first electrode plate 21 and the second and third electrode plates 22 and 23 according to a command from the CPU 101.
  • control unit 7 is provided with a supply power adjustment circuit 106.
  • the supply power adjustment circuit 106 refers to the supply power value stored in the RAM 103 according to a command from the CPU 101 and applies power to the first electrode plate 21 and the second and third electrode plates 22 and 23.
  • FIG. 6 is a flow showing main processing executed by the CPU 101 of the control unit 7, and FIG. 7 is a flow showing processing in a subroutine.
  • the electrolyzed hydrogen water generator A1 for example, when the user presses the ORP display button B2, the ORP value is displayed on the display unit D, or when the time for replacement of the water purification cartridge comes, a predetermined lamp is emitted.
  • Various functions such as lighting are mounted, but here, the description will focus on the electrolyzed water generation process, and the description of the incidental function process will be omitted.
  • the CPU 101 first determines whether or not the power button B1 has been pressed (step S11). If it is determined that the power button B1 has not been pressed (step S11: No), the CPU 101 returns the process to step S11 again. On the other hand, when determining that the power button B1 is pressed (step S11: Yes), the CPU 101 shifts the processing to step S12.
  • step S12 the CPU 101 performs an initial setting process.
  • the power is turned on to start up in the purified water generation mode
  • the mode selection value is 0,
  • the raw water bypass passage valve 83a is closed
  • the cathode chamber pressurizing unit 17c Is in the non-pressurized state (open state)
  • the anode chamber pressurizing unit 71 is in the non-pressurized state
  • the dissolved amount increase flag is turned off
  • the lamp L10 is turned off
  • the power supply value is set to 0, and the purified water generation mode is displayed on the display unit D Is displayed.
  • step S13 determines whether or not the purified water supply button W has been pressed. If it is determined that the purified water supply button W has been pressed (step S13: Yes), the CPU 101 moves the process to step S12 again, and sets the electrolytic hydrogen water generator A1 to the purified water generation mode. On the other hand, if it is determined that the purified water supply button W has not been pressed (step S13: No), the CPU 101 moves the process to step S14.
  • step S14 the CPU 101 determines whether or not the alkali button group AL has been pressed. If it is determined that the alkali button group AL has not been pressed (step S14: No), the CPU 101 moves the process to step S16. On the other hand, if it is determined that the alkali button group AL has been pressed (step S14: Yes), the CPU 101 moves the process to step S15.
  • step S15 the CPU 101 instructs the polarity switching circuit 105 so that the first electrode plate 21 is a cathode and the second and third electrode plates 22 and 23 are anodes, and the pressed button supplies strong alkaline water.
  • step S15 the CPU 101 turns on the lamp L10, displays a mode corresponding to the button pressed on the display unit D, notifies the user that the mode is shifted to the alkaline water generation mode, and performs the processing step. Move to S16.
  • step S16 the CPU 101 determines whether or not the acidic button group Ac has been pressed. If it is determined that the acidic button group Ac is not pressed (step S16: No), the CPU 101 moves the process to step S18. On the other hand, when determining that the acidic button group Ac has been pressed (step S16: Yes), the CPU 101 shifts the processing to step S17.
  • step S17 the CPU 101 instructs the polarity switching circuit 105 so that the first electrode plate 21 is an anode and the second and third electrode plates 22 and 23 are cathodes, and the pressed button is an acidic water supply button.
  • the mode selection value is set to 5 for Ac1 and to 6 for strong acidic water supply button Ac2.
  • step S ⁇ b> 17 the CPU 101 turns on the lamp L ⁇ b> 10, displays a mode corresponding to the button pressed on the display unit D, notifies the user that the mode is shifted to the acidic water generation mode, and performs processing. Move to S18.
  • step S18 the CPU 101 determines whether or not the dissolved amount increase button F has been pressed. If it is determined that the dissolved amount increase button F is not pressed (step S18: No), the CPU 101 moves the process to step S13. On the other hand, if it is determined that the dissolved amount increase button F has been pressed (step S18: Yes), the CPU 101 moves the process to step S19.
  • step S19 the CPU 101 refers to a predetermined address in the RAM 103, and determines whether or not the value of the mode selection value is 0, that is, whether or not it is the purified water generation mode. If it is determined that the mode selection value is 0 (step S19: Yes), the CPU 101 moves the process to step S13. On the other hand, when determining that the value of the mode selection value is not 0 (step S19: No), the CPU 101 shifts the processing to step S20.
  • step S20 the CPU 101 switches the cathode chamber pressurizing unit 17c to the pressurized state, and at the same time, switches the anode chamber pressurizing unit 71 to the pressurized state so that the cathode chamber and the anode chamber are pressurized. To be.
  • step S20 the CPU 101 switches the raw water bypass flow path valve 83a to the open state, sets the dissolved amount increase flag to ON, displays the fact that the display unit D is in the dissolved amount increase mode, and performs processing. Move to step S13.
  • the CPU 101 turns off the dissolved amount increase flag and turns off the cathode chamber pressurizing unit 17c and the anode chamber pressurizing unit 71.
  • the raw water bypass flow path valve 83a is switched to the closed state in the pressurized state, and the display unit D displays that the normal generation mode according to the mode selection value is released from the dissolved amount increase mode.
  • the dissolved amount increase mode separation process is referred to.
  • the CPU 101 may interrupt the process and execute an interrupt process.
  • the following interrupt processing is executed in accordance with a clock pulse generated every predetermined period (for example, 2 milliseconds) from the RTC 104.
  • the CPU 101 determines whether or not the power button B1 has been pressed long (for example, 2 seconds) by the user (step S31). If it is determined that a long press of the power button B1 has been detected (step S31: Yes), the CPU 101 issues a command for stopping the supply of power to the supply power adjustment circuit 106, which is necessary for the end operation. Processing is performed (step S32), and the processing is terminated. After completion, for example, the process may return to the loop of step S11 and wait until the power is turned on again.
  • step S31 determines whether the long press of the power button B1 has not been detected (step S31: No). If it is determined in step S31 that the long press of the power button B1 has not been detected (step S31: No), the CPU 101 moves the process to step S33.
  • step S33 the CPU 101 checks whether or not there is an input signal from the flow sensor 53, and determines whether or not a water flow is detected. If it is determined that no water flow is detected (step S33: No), the CPU 101 moves the process to step S34.
  • step S34 the CPU 101 instructs the supply power adjustment circuit 106 to stop power supply, and returns the process to the address before branching.
  • step S33 determines whether a water flow has been detected (step S33: Yes). If it is determined in step S33 that a water flow has been detected (step S33: Yes), the CPU 101 moves the process to step S35.
  • step S35 the CPU 101 refers to a predetermined address in the RAM 103, and determines whether or not the mode selection value is 0, that is, whether or not it is the purified water generation mode. If it is determined that the mode selection value is 0 (step S35: Yes), the CPU 101 moves the process to step S34. On the other hand, when determining that the mode selection value is not 0 (step S35: No), the CPU 101 shifts the processing to step S36.
  • step S ⁇ b> 36 the CPU 101 reads a basic power value corresponding to the mode selection value from the supply power value table stored in the predetermined address of the ROM 102, and sets it as a supply power value in the predetermined address of the RAM 103.
  • the CPU 101 refers to a predetermined address in the RAM 103 and determines whether or not the dissolved amount increase flag is ON. If it is determined that the dissolved amount increase flag is not ON (step S37: No), the CPU 101 moves the process to step S41. On the other hand, when it is determined that the dissolved amount increase flag is ON (step S37: Yes), the CPU 101 moves the process to step S38.
  • step S38 the CPU 101 refers to the supply power value table in the ROM 102, adds the added power value corresponding to the mode selection value to the supply power value, and moves the process to step S41.
  • step S41 the CPU 101 obtains a supply power value with reference to a predetermined address in the RAM 103, instructs the supply power adjustment circuit 106 to supply power with the obtained supply power value, and sets the address before branching. Return processing.
  • the electrolytic hydrogen water generator A1 With the power plug 8 connected to a commercial power source or the like, when the user presses the power button B1, the electrolytic hydrogen water generator A1 starts up in the state of the purified water generation mode, and water or button input It will be in the standby state.
  • the raw water is not electrolyzed in the electrolysis unit 4, and passes through the electrolytic hydrogen water discharge port 17 a, through the non-pressurized cathode chamber pressurization unit 17 c and the intake pipe 17. More discharged as purified water.
  • the electrolytic hydrogen water generator A1 enters the first level alkaline water generation mode, and the intake pipe 17 starts the first level. Of alkaline water is discharged.
  • the control unit 7 switches the cathode chamber pressurizing unit 17c as the cathode chamber pressurizing means having the pressure variable mechanism to the pressurizing state and the raw water bypass passage valve 83a.
  • the anode chamber pressurizing unit 71 as the anode chamber pressurizing means having the pressure variable mechanism is switched to the pressurizing state substantially simultaneously with the decrease in the flow rate by the cathode chamber pressurizing portion 17c. .
  • the first level alkaline water including the hydrogen bubbles that have passed through the electrolytic hydrogen water discharge port 17a flows into the pressurized cathode chamber pressurizing portion 17c, and hydrogen bubbles are converted into microbubbles by the function of the miniaturized bubble generating tube.
  • the first-level alkaline water in which hydrogen is dissolved in abundantly is discharged from the intake pipe 17 as electrolytic hydrogen water, although the flow rate is reduced by the cathode chamber pressurizing portion 17c. Is bypassed, approximately the same amount of water intake can be obtained as when the dissolved amount increase button F is not pressed.
  • the pH of the alkaline water is lowered by the raw water, but since the electrolytic control is performed to improve the dissolved hydrogen, the excessive pH increase can be suppressed. There is an effect that the increased amount of water can be obtained without changing the water state or pH.
  • the solubility of hydrogen bubbles contained in alkaline water as electrolytic hydrogen water is improved, the function of promoting bubble dissolution is exhibited, and the amount of dissolved hydrogen is further increased.
  • the anode chamber content water can be leaked to the cathode chamber side through the diaphragm 12, and the cathode chamber content water can be neutralized by the leaked anode chamber content water, which has a relatively low pH.
  • Electrolytic hydrogen water can be generated.
  • the supplied power value becomes a value obtained by adding the added power value to the basic power value of the first level alkaline water, so that the electrolysis power is improved.
  • the control unit 7 opens the raw water bypass flow path valve 83 a, and pressurizes the cathode chamber through the raw water bypass flow path 83 through a part of the raw water flowing through the main raw water supply path 24. Water is passed downstream from the cathode chamber pressurizing portion 17c as a means, and the raw water bypass function is exhibited.
  • the amount of electrolytic hydrogen water discharged from the intake pipe 17 increases while being diluted.
  • the raw water is bypassed in a state where the pH is relatively low and the anode chamber pressurizing means and the cathode chamber pressurizing means are not provided. Compared to the above, it is possible to supply a large amount of electrolytic hydrogen water having a high hydrogen content.
  • anode chamber pressurizing unit 71 when the anode chamber pressurizing unit 71 is switched to the pressurized state by pressing the dissolved amount increase button F, a part of the acidic water flowing through the drainage flow path 18 is mixed with the raw water via the reflux bypass flow path 70. It is refluxed to the anode chamber and the reflux function is exhibited.
  • the power supply value is a value obtained by adding the additional power value to the basic power value of the first level alkaline water, the electrolysis power is improved.
  • the reflux bypass flow path 70 can make the pH of the water in the cathode chamber lower, the pH of the water in the cathode chamber can be suppressed through the diaphragm 12 even though the electrolysis power is improved. It can be made more effective.
  • This electrolytic hydrogen water generator A2 has substantially the same configuration as the above-described electrolytic hydrogen water generator A1, but does not have a reflux function, and has a simpler configuration than the electrolytic hydrogen water generator A1. Characteristic in terms. In addition, in the following description, about the structure similar to the electrolytic hydrogen water generator A1, the same code
  • the electrolytic hydrogen water generator A2 shown in FIG. 8 does not include the reflux bypass passage 70 as compared with the electrolytic hydrogen water generator A1, and also serves as an anode chamber pressurizing means in the middle of the drainage passage 18.
  • a functioning anode chamber pressurizing unit 91 is provided.
  • the anode chamber pressurizing unit 91 includes a variable pressure mechanism and is electrically connected to the control unit 7, but may be a normal pressurizing mechanism without a variable pressure mechanism.
  • step S20 in the main process shown in FIG. 6, step S21 shown in FIG. 9 is executed.
  • the operation of the electrolytic hydrogen water generator A2 having such a configuration will be described.
  • the second level alkaline water supply button AL2 of the electrolytic hydrogen water generator A2 is pressed to make the first electrode plate 21 the anode.
  • the presence of the anode chamber pressurizing unit 91 increases the anode chamber pressure, The water in the chamber leaks into the cathode chamber through the diaphragm, thereby suppressing an increase in pH in the cathode chamber.
  • the control unit 7 switches the cathode chamber pressurizing unit 17c as the cathode chamber pressurizing means having the pressure variable mechanism to the pressurizing state.
  • the anode chamber pressurizing unit 91 may be in a constantly pressurized state.
  • the supply power value becomes a value obtained by adding the additional power value to the basic power value of the second level alkaline water, so that the electrolysis power is improved, and the second and third electrodes More hydrogen gas is generated from the plates 22 and 23, and the hydrogen content is further improved.
  • the control unit 7 opens the raw water bypass flow path valve 83a so that the raw water bypass function is exhibited, and the amount of electrolytic hydrogen water discharged from the intake pipe 17 increases. Become.
  • the present invention can also be realized by a configuration such as the electrolytic hydrogen water generator A2.
  • the electrolytic hydrogen water generator A3 has substantially the same configuration as the above-described electrolytic hydrogen water generator A1, but does not have a reflux function and a raw water bypass function, and the electrolytic hydrogen water generator A1 and the electrolytic hydrogen water. Compared to the generator A2, the configuration is further simplified.
  • the electrolytic hydrogen water generator A3 shown in FIG. 10 does not include the raw water bypass flow path 83 and the reflux bypass flow path 70, and the cathode chamber is not provided in the middle of the discharge pipe 17d.
  • a cathode chamber pressurizing unit 90 functioning as a pressure means is provided, and an anode chamber pressurizing unit 91 functioning as an anode chamber pressurizing means is provided in the middle of the drainage flow path 18.
  • the cathode chamber pressurizing unit 90 does not include a pressure variable mechanism, and is a unit having the structure shown in FIG. 1C that has almost no function as a miniaturized bubble generating tube. And are not electrically connected.
  • anode chamber pressurizing unit 91 is not provided with a pressure variable mechanism, but is a general limiting orifice, and is not electrically connected to the control unit 7, but the reflux bypass shown in the first embodiment.
  • a pressurizing mechanism such as the flow path 70 may be provided.
  • the operation panel P of the electrolyzed hydrogen water generator A3 is not provided with the dissolved amount increase button F, and steps S18 to S20 in the main process shown in FIG. In addition, step S37 and step S38 in the interrupt process shown in FIG. 7 are not executed.
  • the operation of the electrolytic hydrogen water generator A3 having such a configuration will be described.
  • the main raw water supply path 24 while energizing the first electrode plate 21 as an anode and the second electrode plate 22 and the third electrode plate 23 as cathodes.
  • the internal pressure of the first electrolysis chamber 25 and the fourth electrolysis chamber 28 as the cathode chamber is increased by the cathode chamber pressurizing unit 90, and the second electrode plate 22 is enhanced by the bubble dissolution promoting function.
  • generated in the 3rd electrode plate 23 is encouraged, and the alkaline water as the electrolysis hydrogen water by which the hydrogen dissolved amount was raised from the intake pipe 17 will be discharged.
  • the cathode chamber content liquid to the anode chamber side through the diaphragm 12 is increased. Leakage and insufficient inflow of raw water into the cathode chamber can be avoided, and the effect of improving dissolved hydrogen efficiency by improving the pressure in the cathode chamber can be steadily enjoyed.
  • the liquid in the anode chamber is allowed to enter the cathode chamber via the diaphragm 12. It is also possible to effectively suppress the pH increase of the cathode chamber content liquid.
  • the present invention can be realized even with a simple configuration such as the electrolytic hydrogen water generator A3.
  • each of the electrolyzed hydrogen water generators A1 to A3 has a configuration.
  • an electrolytic hydrogen water generator lacking a part an electrolytic hydrogen water generator in which a part of the configuration of the electrolytic hydrogen water generators A1 to A3 is added to the other electrolytic hydrogen water generators A1 to A3, etc.
  • Any combination of configurations disclosed is, of course, included in the concept of the invention. Moreover, it does not prevent the applicant from correcting the claims and the like in such an embodiment of the electrolytic hydrogen water generator.
  • the electrolyzed hydrogen water generator (for example, electrolyzed hydrogen water generators A1 to A3) according to the present embodiment has an anode chamber and a cathode chamber partitioned by a diaphragm, and supplies water.
  • the water is electrolyzed by energizing the electrodes disposed between the electrode chambers through the diaphragm, and the alkaline electrolytic hydrogen water is discharged from the cathode chamber while discharging acidic water from the anode chamber.
  • An electrolyzed hydrogen water generator including an electrolytic cell, wherein the acid water or the electrolyzed hydrogen water is allowed to flow in both the acid water discharge channel and the electrolyzed hydrogen water discharge channel, respectively. Since the polar chamber pressurizing means for pressurizing the polar chamber is provided, the amount of hydrogen contained in the electrolytic hydrogen water can be further improved as compared with the electrolytic hydrogen water generating apparatus having only the cathode chamber pressurizing means. .
  • Electrolyzer 7 Control part 12 Diaphragm 17 Intake pipe 17c Cathode chamber pressurization part 17e Two-way switching valve 17h Cathode chamber pressurization unit 18 Drain flow path 70 Reflux bypass flow path 71 Anode chamber pressurization unit 83 Raw water bypass flow path 90 Cathode Chamber pressurization unit 91 Anode chamber pressurization unit A1 Electrolytic hydrogen water generator A2 Electrolytic hydrogen water generator A3 Electrolytic hydrogen water generator

Abstract

Provided is an apparatus for generating electrolyzed hydrogen water, the apparatus being capable of increasing the amount of hydrogen contained in electrolyzed hydrogen water. The apparatus is provided with an electrolytic bath having a positive electrode chamber and a negative electrode chamber partitioned by a diaphragm, wherein, while supplying water, an electric current is applied, through the diaphragm, between electrodes installed in the respective electrode chambers to electrolyze the water such that acidic water is discharged from the positive electrode chamber and alkaline electrolyzed hydrogen water is discharged from the negative electrode chamber. A flow path for discharging the acidic water and a flow path for discharging the electrolyzed hydrogen water are both provided with pressurizing means for pressurizing respective corresponding electrode chambers while allowing the flow of acid water or electrolyzed hydrogen water.

Description

電解水素水生成器Electrolytic hydrogen water generator
 本発明は、電解水素水生成器に関する。 The present invention relates to an electrolytic hydrogen water generator.
 我々が日常的に摂取する水は、健康の基礎作りとして極めて重要な役割を果たしており、人々の間で健康志向が高まる中、飲用水への注目が更に高まっている。 The water we consume on a daily basis plays an extremely important role as the foundation of health, and as people are becoming more health-conscious, attention to drinking water is further increasing.
 従来より、このようなニーズに合致するような飲用水は種々提案されており、例えば、飲用水中に酸素を多量に溶存させた酸素水や、水素を溶存させた水素水が知られている。 Conventionally, various drinking waters that meet such needs have been proposed. For example, oxygen water in which a large amount of oxygen is dissolved in drinking water and hydrogen water in which hydrogen is dissolved are known. .
 特に、分子状水素を含有させた水素水は、生体内酸化ストレスの低下や、血中LDLの増加抑制など、健康に寄与する報告が種々なされている。 In particular, various reports have been made that hydrogen water containing molecular hydrogen contributes to health, such as reduction of in vivo oxidative stress and suppression of increase in blood LDL.
 このような水素水は、水中に水素を溶存させることで生成されるのであるが、その生成方法としては、例えば、飲用水中に水素ガスをバブリングする方法や、化学反応による方法、水を電気分解して生成する方法などが挙げられる。 Such hydrogen water is generated by dissolving hydrogen in water. Examples of the generation method include a method of bubbling hydrogen gas in drinking water, a method using a chemical reaction, Examples include a method of generating by decomposition.
 中でも、水の電気分解による方法は、同じく健康づくりに役立つとされるアルカリ電解水に水素を含ませた電解水素水を生成することができ、これら双方の相乗的な効果を期待することができる(例えば、特許文献1参照。)。 Above all, the water electrolysis method can produce electrolyzed hydrogen water containing hydrogen in alkaline electrolyzed water, which is also considered to be useful for health promotion, and can be expected to have a synergistic effect of both. (For example, refer to Patent Document 1).
特開2009-160503号公報JP 2009-160503 A
 ところで、水素水中に含まれた溶存水素の量は、水素水を飲用する者にとって最も重要な関心事の一つである。特に、溶存水素量が多い水素水は、より健康増進に役立つと考える飲用者が多く、溶存水素濃度の高い水素水が求められる傾向にある。 By the way, the amount of dissolved hydrogen contained in hydrogen water is one of the most important concerns for those who drink hydrogen water. In particular, there are many drinkers who think that hydrogen water with a large amount of dissolved hydrogen is useful for health promotion, and hydrogen water with a high dissolved hydrogen concentration tends to be required.
 例えば、相対的に低電位の陰電極を配置した陰極室と高電位の陽電極を配置した陽極室とを隔膜で区画してなる電解槽を具備した電解水素水の生成器にあっては、水素の溶存量を高めるための手段として、陰極室より吐出された電解水素水の流量を制限するなどして背圧を生じさせ、陰極室の内圧を高める方法が挙げられる。 For example, in an electrolyzed hydrogen water generator comprising an electrolytic cell in which a cathode chamber in which a negative electrode having a relatively low potential is disposed and an anode chamber in which a positive electrode having a high potential is partitioned by a diaphragm, As a means for increasing the dissolved amount of hydrogen, there is a method of increasing the internal pressure of the cathode chamber by generating a back pressure by limiting the flow rate of the electrolytic hydrogen water discharged from the cathode chamber.
 しかしながら、本発明者らの詳細な分析によれば、このようにして得られた電解水素水中に溶存する実際の水素量は、理論上得られるはずの電解水素水中の水素量に比して低いことが見出された。 However, according to the detailed analysis by the present inventors, the actual amount of hydrogen dissolved in the electrolytic hydrogen water thus obtained is lower than the amount of hydrogen in the electrolytic hydrogen water that should be obtained theoretically. It was found.
 そこで、発明者らはこの現象について鋭意研究を重ね、電解水素水中に含まれる水素量をより向上させることのできる電解水素水生成器を提供すべく本発明を完成させた。 Therefore, the inventors have conducted extensive research on this phenomenon, and have completed the present invention to provide an electrolytic hydrogen water generator that can further improve the amount of hydrogen contained in the electrolytic hydrogen water.
 斯かる事情に鑑み、本発明に係る電解水素水生成器では、(1)隔膜により区画した陽極室と陰極室とを有し、水を供給しながら各極室に配設した電極間に前記隔膜を介して通電することにより前記水を電気分解して、前記陽極室より酸性水を吐出しつつ前記陰極室よりアルカリ性の電解水素水を吐出する電解槽を備えた電解水素水生成器であって、前記酸性水の吐出流路と前記電解水素水の吐出流路との両方に、酸性水又は電解水素水の流通は許容しつつもそれぞれ対応する極室内を加圧する極室加圧手段を備えることとした。 In view of such circumstances, the electrolytic hydrogen water generator according to the present invention has (1) an anode chamber and a cathode chamber partitioned by a diaphragm, and the electrodes are disposed between the electrodes disposed in each electrode chamber while supplying water. An electrolytic hydrogen water generator comprising an electrolytic cell that electrolyzes the water by energization through a diaphragm and discharges alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water from the anode chamber. In addition, an electrode chamber pressurizing unit that pressurizes the corresponding electrode chambers while allowing the acid water or the electrolyte hydrogen water to flow in both the acid water discharge channel and the electrolytic hydrogen water discharge channel. I decided to prepare.
 また、本発明に係る電解水素水生成器では、以下の点にも特徴を有する。
(2)陽極室加圧手段と陰極室加圧手段とのいずれか一方又は両方は、対応する極室の加圧度合いを変化させる圧力可変機構を備えること。
(3)前記陽極室加圧手段は圧力可変機構を備えるものであって同圧力可変機構を制御する制御部と接続されており、同制御部は前記電解水素水の生成に際して前記陽極室加圧手段を制御して陽極室内の内圧を高めると共に前記電気分解の通電量を増加させること。
(4)前記陽極室加圧手段と前記陰極室加圧手段とはいずれも圧力可変機構を備えると共に同圧力可変機構を制御する制御部と接続されており、同制御部は前記電解水素水の生成に際して両極室加圧手段を略同時に制御してそれぞれ対応する極室内の内圧を高めること。
(5)前記電解槽に流入させる原水を供給路の中途から分岐して、前記電解水素水の吐出流路の陰極室加圧手段よりも下流側へ通水させる原水バイパス流路を備えること。
(6)前記陽極室へ供給する原水に前記電解槽より吐出された酸性水の一部を合流させる還流バイパス流路を備えること。
The electrolytic hydrogen water generator according to the present invention is also characterized by the following points.
(2) Either one or both of the anode chamber pressurizing unit and the cathode chamber pressurizing unit includes a pressure variable mechanism for changing the degree of pressurization of the corresponding polar chamber.
(3) The anode chamber pressurizing means includes a pressure variable mechanism and is connected to a control unit that controls the pressure variable mechanism, and the control unit pressurizes the anode chamber when generating the electrolytic hydrogen water. Controlling the means to increase the internal pressure in the anode chamber and increase the amount of electricity for the electrolysis.
(4) Each of the anode chamber pressurizing means and the cathode chamber pressurizing means includes a pressure variable mechanism and is connected to a control unit that controls the pressure variable mechanism. During the generation, both chamber pressure means are controlled almost simultaneously to increase the internal pressure in the corresponding chamber.
(5) A raw water bypass flow path is provided that branches the raw water flowing into the electrolytic cell from the middle of the supply path and allows water to flow downstream from the cathode chamber pressurizing means of the electrolytic hydrogen water discharge flow path.
(6) A reflux bypass passage is provided that joins part of the acidic water discharged from the electrolytic cell to the raw water supplied to the anode chamber.
 本発明に係る電解水素水生成器では、隔膜により区画した陽極室と陰極室とを有し、水を供給しながら各極室に配設した電極間に前記隔膜を介して通電することにより前記水を電気分解して、前記陽極室より酸性水を吐出しつつ前記陰極室よりアルカリ性の電解水素水を吐出する電解槽を備えた電解水素水生成器であって、前記酸性水の吐出流路と前記電解水素水の吐出流路との両方に、酸性水又は電解水素水の流通は許容しつつもそれぞれ対応する極室内を加圧する極室加圧手段を備えることとしたため、陰極室加圧手段のみを備える電解水素水生成装置に比して、電解水素水中に含まれる水素量をより向上させることができる。 The electrolytic hydrogen water generator according to the present invention has an anode chamber and a cathode chamber partitioned by a diaphragm, and energizes the electrodes disposed in each electrode chamber while supplying water through the diaphragm. An electrolytic hydrogen water generator comprising an electrolytic cell for electrolyzing water and discharging alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water from the anode chamber, wherein the acidic water discharge channel And the discharge flow path of the electrolytic hydrogen water are provided with polar chamber pressurizing means for pressurizing the corresponding polar chamber while allowing the flow of acidic water or electrolytic hydrogen water, respectively. The amount of hydrogen contained in the electrolytic hydrogen water can be further improved as compared with the electrolytic hydrogen water generation apparatus including only the means.
 また、陽極室加圧手段と陰極室加圧手段とのいずれか一方又は両方は、対応する極室の加圧度合いを変化させる圧力可変機構を備えることとすれば、所望のタイミングで電解水素水の高濃度化を図ることができる。 If either one or both of the anode chamber pressurizing means and the cathode chamber pressurizing means includes a pressure variable mechanism that changes the degree of pressurization of the corresponding polar chamber, the electrolytic hydrogen water is supplied at a desired timing. Concentration can be increased.
 また、前記陽極室加圧手段は圧力可変機構を備えるものであって同圧力可変機構を制御する制御部と接続されており、同制御部は前記電解水素水の生成に際して前記陽極室加圧手段を制御して陽極室内の内圧を高めると共に前記電気分解の通電量を増加させることとすれば、比較的低pHでありながら、高濃度の水素を含んだ電解水素水を生成することができる。 The anode chamber pressurizing means includes a pressure variable mechanism, and is connected to a control unit that controls the pressure variable mechanism. By controlling the pressure to increase the internal pressure in the anode chamber and increase the amount of electrolysis, the electrolytic hydrogen water containing a high concentration of hydrogen can be generated with a relatively low pH.
 また、前記陽極室加圧手段と前記陰極室加圧手段とはいずれも圧力可変機構を備えると共に同圧力可変機構を制御する制御部と接続されており、同制御部は前記電解水素水の生成に際して両極室加圧手段を略同時に制御してそれぞれ対応する極室内の内圧を高めることとすれば、圧力上昇に由来する水素の溶解性を向上させつつも、比較的pHの低い電解水素水を生成することができる。 The anode chamber pressurizing unit and the cathode chamber pressurizing unit both have a pressure variable mechanism and are connected to a control unit that controls the pressure variable mechanism, and the control unit generates the electrolytic hydrogen water. At this time, if both the chamber pressure means are controlled substantially simultaneously to increase the internal pressure in the corresponding chamber, the hydrogen water having a relatively low pH can be obtained while improving the solubility of hydrogen derived from the pressure increase. Can be generated.
 また、前記電解槽に流入させる原水を供給路の中途から分岐して、前記電解水素水の吐出流路の陰極室加圧手段よりも下流側へ通水させる原水バイパス流路を備えることとしたため、比較的pHが低く水素含量の高い電解水素水を多量に供給することができる。 Further, since the raw water flowing into the electrolytic cell is branched from the middle of the supply path, a raw water bypass flow path is provided for allowing water to flow downstream from the cathode chamber pressurizing means of the electrolytic hydrogen water discharge flow path. A large amount of electrolytic hydrogen water having a relatively low pH and a high hydrogen content can be supplied.
 また、前記陽極室へ供給する原水に前記電解槽より吐出された酸性水の一部を合流させる還流バイパス流路を備えることとすれば、電解水素水のpH上昇を抑制可能な電解水素水生成器を提供することができる。 Moreover, if it is provided with a reflux bypass channel that joins part of the acidic water discharged from the electrolytic cell to the raw water supplied to the anode chamber, the generation of electrolytic hydrogen water that can suppress the pH increase of the electrolytic hydrogen water Can be provided.
極室加圧ユニットの例を示した説明図である。It is explanatory drawing which showed the example of the polar chamber pressurization unit. 電解水素水生成器の外観構成を示した斜視図である。It is the perspective view which showed the external appearance structure of the electrolytic hydrogen water generator. 電解水素水生成器の内部構成を示した説明図である。It is explanatory drawing which showed the internal structure of the electrolytic hydrogen water generator. 電解部の構成を示した説明図である。It is explanatory drawing which showed the structure of the electrolysis part. 電解水素水生成器の電気的構成を示したブロック図である。It is the block diagram which showed the electrical structure of the electrolytic hydrogen water generator. 制御部が実行する処理を示したフローである。It is the flow which showed the process which a control part performs. 制御部が実行する処理を示したフローである。It is the flow which showed the process which a control part performs. 第2の実施形態に係る電解水素水生成器の内部構成を示した説明図である。It is explanatory drawing which showed the internal structure of the electrolytic hydrogen water generator based on 2nd Embodiment. 第2の実施形態に係る電解水素水生成器の処理示した説明図である。It is explanatory drawing which showed the process of the electrolytic hydrogen water generator which concerns on 2nd Embodiment. 第3の実施形態に係る電解水素水生成器の内部構成を示した説明図である。It is explanatory drawing which showed the internal structure of the electrolyzed hydrogen water generator which concerns on 3rd Embodiment.
 本発明は、隔膜により区画した陽極室と陰極室とを有し、水を供給しながら各極室に配設した電極間に前記隔膜を介して通電することにより前記水を電気分解して、前記陽極室より酸性水を吐出しつつ前記陰極室よりアルカリ性の電解水素水を吐出する電解槽を備えた電解水素水生成器であって、電解水素水中に含まれる水素量をより向上させることのできる電解水素水生成器を提供するものである。 The present invention has an anode chamber and a cathode chamber partitioned by a diaphragm, and electrolyzes the water by energizing the electrodes between the electrodes disposed in each electrode chamber while supplying water, An electrolytic hydrogen water generator comprising an electrolytic cell for discharging alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water from the anode chamber, wherein the amount of hydrogen contained in the electrolytic hydrogen water is further improved An electrolytic hydrogen water generator is provided.
 本明細書において電解水素水は、水の電気分解により陰極側で生成されるアルカリ電解水であって、同じく陰極側で生成した水素ガスが溶存している水である。 In this specification, the electrolytic hydrogen water is alkaline electrolyzed water generated on the cathode side by electrolysis of water, and is water in which hydrogen gas generated on the cathode side is dissolved.
 したがって、本明細書における電解水素水生成器は、所謂アルカリイオン整水器についても、概念上含まれるものと解するべきである。 Therefore, it should be understood that the electrolytic hydrogen water generator in the present specification also conceptually includes a so-called alkaline ion water conditioner.
 また、陽極室と陰極室とを区画する隔膜は、一般的なアルカリイオン整水器にて隔膜として用いられるものであれば特に限定されず、例えば、中性膜やイオン交換膜等を採用することができる。 Moreover, the diaphragm which divides an anode chamber and a cathode chamber will not be specifically limited if it is used as a diaphragm with a general alkali ion water conditioner, For example, a neutral membrane, an ion exchange membrane, etc. are employ | adopted. be able to.
 そして、本実施形態に係る電解水素水生成器の特徴としては、電解槽にて生成された酸性水の吐出流路と電解水素水の吐出流路との両方に、酸性水又は電解水素水の流通は許容しつつもそれぞれ対応する極室内を加圧する極室加圧手段を備えている点が挙げられる。 As a feature of the electrolytic hydrogen water generator according to the present embodiment, acidic water or electrolytic hydrogen water is provided in both the acidic water discharge channel and the electrolytic hydrogen water discharge channel generated in the electrolytic cell. It is possible to provide a polar chamber pressurizing unit that pressurizes the corresponding polar chambers while allowing distribution.
 先に述べたように、本発明者らは本発明を完成するに先立って、陰極室より吐出された電解水素水の流量を制限するなどして背圧を生じさせ、陰極室の内圧を高める方法により得られた電解水素水中に溶存する実際の水素量は、理論上得られるはずの電解水素水中の水素量に比して低いことを見出している。 As described above, prior to the completion of the present invention, the present inventors generate a back pressure by limiting the flow rate of the electrolytic hydrogen water discharged from the cathode chamber, thereby increasing the internal pressure of the cathode chamber. It has been found that the actual amount of hydrogen dissolved in the electrolytic hydrogen water obtained by the method is lower than the amount of hydrogen in the electrolytic hydrogen water that should theoretically be obtained.
 これは、本発明者らの鋭意研究によれば、陰極室の加圧環境下において陽極室と陰極室とを隔てる隔膜に所定量の液体流通性が生起することに由来しており、陰極室に付与された内圧によって陰極室内の原水又は電解水素水(以下、陰極室内容水と称する。)が陽極室へリークして圧力上昇が妨げられ、水素濃度の上昇が抑制されることが突き止められた。 This is due to the fact that a predetermined amount of liquid flowability occurs in the diaphragm separating the anode chamber and the cathode chamber under the pressurized environment of the cathode chamber, according to the earnest study by the present inventors. It has been found that the raw water or electrolyzed hydrogen water (hereinafter referred to as cathode chamber content water) in the cathode chamber leaks to the anode chamber due to the internal pressure applied to the anode chamber, preventing the pressure increase and suppressing the increase in hydrogen concentration. It was.
 そして、これまで知られていないこの新たな知見に基づき、陰極室と略同等又はそれ以上の内圧を陽極室側にも付与することで、陰極室内容水のリークを抑制し、陰極室内圧、より詳細には陰極室加圧手段よりも下流側となる陰極室内及び吐出流路における内圧により、存在する水素気泡の溶存効率を高めて高濃度水素を含む電解水素水の生成を実現している。 And based on this new knowledge that has not been known so far, by applying an internal pressure substantially equal to or higher than that of the cathode chamber to the anode chamber side, the leakage of the cathode chamber content water is suppressed, the cathode chamber pressure, More specifically, the internal pressure in the cathode chamber and the discharge flow channel downstream from the cathode chamber pressurizing means enhances the dissolution efficiency of the existing hydrogen bubbles and realizes the generation of electrolytic hydrogen water containing high-concentration hydrogen. .
 また、電解槽内に供給する原水が、一つの原水供給配管から二叉状に分岐して陰極室側と陽極室側とに供給するよう構成された電解水素水生成器にあっては、陰極室内圧が高められると原水の多くが陽極室側へ流れこむこととなって陰極室における内圧上昇が鈍ることも考えられるが、本実施形態に係る電解水素水生成器によれば上述の構成を備えることとしたため、陰極室側にも効率的に原水を供給することが可能となり、陰極室内圧の上昇を助長することができて更に溶存水素濃度を高めることができる。 In addition, in an electrolytic hydrogen water generator configured so that raw water supplied into the electrolytic cell is bifurcated from one raw water supply pipe and supplied to the cathode chamber side and the anode chamber side, When the indoor pressure is increased, a large amount of raw water flows into the anode chamber and the increase in the internal pressure in the cathode chamber may be blunted. However, the electrolytic hydrogen water generator according to the present embodiment has the above-described configuration. Since it is provided, raw water can be efficiently supplied also to the cathode chamber side, the increase in the pressure in the cathode chamber can be promoted, and the dissolved hydrogen concentration can be further increased.
 なお、陰極室や陽極室へ供給する原水は、極端なpH調整がなされていない大凡pH6~8程度の飲用可能な水であれば特に限定されるものではなく、一般的な水道水や井戸水などを使用することができる。 The raw water supplied to the cathode chamber and the anode chamber is not particularly limited as long as it is drinkable water having a pH of about 6 to 8 that is not subjected to extreme pH adjustment, such as general tap water and well water. Can be used.
 また、原水として特に好ましくは、上記水道水や井戸水に対して、フィルタ等による濾過処理や、活性炭などの多孔質体による吸着処理、イオン交換樹脂等を用いた脱イオン処理、水の電解効率を向上させるべく乳酸カルシウムやグリセロリン酸カルシウム等のカルシウム剤に接触させるカルシウム処理などから選ばれるいずれか1つ又は2つ以上を組み合わせて行うようにしても良い。 Particularly preferably as raw water, the tap water and well water are filtered with a filter, adsorption treatment with a porous material such as activated carbon, deionization treatment with an ion exchange resin, etc., and water electrolysis efficiency. In order to improve, you may make it carry out combining any 1 or 2 or more chosen from calcium processing etc. which contact calcium agents, such as calcium lactate and calcium glycerophosphate.
 また、極室加圧手段は、酸性水又は電解水素水の流通は許容しつつ対応する極室や吐出配管内に背圧を生じさせることが可能な部材であれば特に限定されるものではなく、例えば制限オリフィスや、バルブ、ベンチュリの如く狭窄構造を有する部材など、流れに対して抵抗を生じさせる部材を挙げることができる。 Further, the polar chamber pressurizing means is not particularly limited as long as it is a member capable of generating back pressure in the corresponding polar chamber or discharge pipe while allowing the flow of acidic water or electrolytic hydrogen water. Examples thereof include a member that causes resistance to flow, such as a member having a constricted structure such as a restriction orifice, a valve, or a venturi.
 ここで、図1を参照しつつ極室加圧手段の構造例について説明すると、例えば図1(a)に示す極室加圧ユニット81aの構造にあっては、水素気泡を含む電解水素水や酸素気泡を含む酸性水(以下、総称して気泡含有電解水ともいう。)が矢印方向から流入するとした場合、流径漸減部82aにおいて漸次狭窄する径の変化割合(狭窄変化割合)と、流径漸増部82bにおいて漸次拡開する径の変化割合(拡開変化割合)とが、最小径となる狭窄部82cを境に絶対値として略同じとなるような狭窄・拡開構造を備えており、酸性水又は電解水素水の流通は許容しつつ対応する極室や吐出配管内に背圧を生じさせることが可能となっている。 Here, a structural example of the polar chamber pressurizing means will be described with reference to FIG. 1. For example, in the polar chamber pressurizing unit 81a shown in FIG. When acidic water containing oxygen bubbles (hereinafter collectively referred to as bubble-containing electrolyzed water) flows in from the direction of the arrow, the diameter change rate (stenosis change rate) that gradually narrows in the flow diameter gradually decreasing portion 82a, It has a stenosis / expansion structure in which the diameter change rate (expansion change rate) gradually expanding in the diameter gradually increasing portion 82b is substantially the same as an absolute value with the stenosis portion 82c having the minimum diameter as a boundary. In addition, it is possible to generate a back pressure in the corresponding polar chamber or discharge pipe while allowing the acidic water or the electrolytic hydrogen water to flow.
 また、図1(b)に示す極室加圧ユニット81bは、極室加圧ユニット81aと略同様の構成としているが、流径漸減部82aにおける狭窄変化割合を流径漸増部82bのおける拡開変化割合よりも大きく形成しており、極室加圧ユニット81aに比してより大きな背圧が生起されるよう構成している。 The polar chamber pressurizing unit 81b shown in FIG. 1B has substantially the same configuration as the polar chamber pressurizing unit 81a, but the stenosis change ratio in the flow diameter gradually decreasing portion 82a is increased in the flow diameter gradually increasing portion 82b. It is formed to be larger than the open change rate, and is configured to generate a larger back pressure than the polar chamber pressurizing unit 81a.
 また、図1(c)に示す極室加圧ユニット81cは、極室加圧ユニット81bと略同様の構成を備えているが、狭窄部82cの下流側において流径漸増部82bに代えて狭窄部82cと同じ流径の狭窄流路82dを備える点で構造を異にしている。 Further, the polar chamber pressurizing unit 81c shown in FIG. 1C has substantially the same configuration as that of the polar chamber pressurizing unit 81b, but the stenosis instead of the flow diameter gradually increasing portion 82b is provided downstream of the stenotic portion 82c. The structure is different in that it includes a constricted flow channel 82d having the same flow diameter as the portion 82c.
 また、図1(d)に示す極室加圧ユニット81dは、極室加圧ユニット81cと比較して、狭窄部82cの下流側において狭窄流路82dに代えて流径漸減部82aの初期流入径と略同じ径を有する広幅流路82fを備える点で構造を異にしている。 Further, the polar chamber pressurizing unit 81d shown in FIG. 1 (d) has an initial inflow of the flow diameter gradually decreasing portion 82a instead of the constricted flow path 82d on the downstream side of the constricted portion 82c, as compared with the polar chamber pressurizing unit 81c. The structure is different in that a wide channel 82f having a diameter substantially the same as the diameter is provided.
 また、図1(e)に示す極室加圧ユニット81eは、狭窄部82cを狭窄流路状に形成すると共に、狭窄部82cの上流側及び下流側の両方を広幅流路82fとしている点で構造を異にしている。 Further, the polar chamber pressurizing unit 81e shown in FIG. 1 (e) is such that the narrowed portion 82c is formed in a narrowed channel shape, and both the upstream side and the downstream side of the narrowed portion 82c are wide channel 82f. The structure is different.
 また、図(f)に示す極室加圧ユニット81fは、極室加圧ユニット81dと略同様の構成としているが、狭窄部82cの上流側の流径漸減部82aに相当する位置に流路抵抗体82hを配置している点で構造を異にしている。 The polar chamber pressurizing unit 81f shown in FIG. (F) has substantially the same configuration as the polar chamber pressurizing unit 81d, but the flow path is located at a position corresponding to the flow diameter gradually decreasing portion 82a on the upstream side of the constricted portion 82c. The structure is different in that the resistor 82h is arranged.
 このように、極室加圧手段の例としては、上記した極室加圧ユニット81a~81fのようなバリエーションを挙げることができ、酸性水又は電解水素水の流通は許容しつつ対応する極室や吐出配管内に背圧を生じさせることができる。なお、本明細書において極室内等の内圧を生じさせる背圧は、単なる直管の流動抵抗によるものは含まれず、吐出流路上に積極的に付加された抵抗部材や抵抗構造をいう。抵抗部材としては上述した極室加圧ユニットが挙げられるほか、抵抗構造としては背圧上昇を目的とした蛇行配管などが挙げられる。 Thus, examples of the polar chamber pressurizing means include variations such as the polar chamber pressurizing units 81a to 81f described above, and the corresponding polar chambers permitting the flow of acidic water or electrolytic hydrogen water. And back pressure can be generated in the discharge pipe. In the present specification, the back pressure that generates an internal pressure in the polar chamber does not include a simple straight pipe flow resistance, but refers to a resistance member or a resistance structure positively added to the discharge flow path. Examples of the resistance member include the above-described electrode chamber pressurizing unit, and examples of the resistance structure include meandering piping for the purpose of increasing the back pressure.
 また特に、極室加圧手段はマイクロバブルやナノバブルを発生可能なベンチュリ構造(狭窄・拡開構造)を備えた管(以下、微細化気泡生成管ともいう。)とすることができる。 In particular, the polar chamber pressurizing means may be a tube (hereinafter also referred to as a “miniaturized bubble generating tube”) having a venturi structure (stenosis / expansion structure) capable of generating microbubbles and nanobubbles.
 例えば上記例に当てはめるならば極室加圧ユニット81a,81b,81d,81fなどのように、狭窄部82cの上流側で流径が漸次狭窄し、狭窄部82cの下流側で狭窄部82cの狭窄径よりも大きな流径を有する構造を備えた極室加圧ユニットは、流入させた気泡含有電解水の気泡を微細化する微細化気泡生成管としての機能を期待することができる。 For example, if applied to the above example, the flow diameter gradually narrows on the upstream side of the constriction portion 82c and the constriction of the constriction portion 82c on the downstream side of the constriction portion 82c, as in the polar chamber pressurizing units 81a, 81b, 81d, 81f. The polar chamber pressurizing unit having a structure having a flow diameter larger than the diameter can be expected to function as a refined bubble generating tube that refines the bubbles of the inflowed bubble-containing electrolytic water.
 微細化気泡生成管を採用すれば、極室加圧手段として機能させることができる他、例えば陰極室加圧手段として使用すれば、電解水素水に分散浮遊する水素の未溶解気泡を細分化させて溶解を助長し、電解水素水に含まれる水素量を更に向上させることができる。また、陽極室加圧手段として使用すれば、溶存酸素量が更に高められた酸性水を生成することができる。 If the micronized bubble generating tube is adopted, it can function as a polar chamber pressurizing means, and if used as a cathode chamber pressurizing means, for example, it can subdivide undissolved hydrogen bubbles dispersed in electrolytic hydrogen water. Thus, dissolution can be promoted, and the amount of hydrogen contained in the electrolytic hydrogen water can be further improved. Moreover, if it uses as an anode chamber pressurization means, the acidic water in which the amount of dissolved oxygen was further raised can be produced | generated.
 また、酸性水吐出流路に設けられる陽極室加圧手段と、電解水素水吐出流路に設けられる陰極室加圧手段は、同じものであっても良く、異なるものであっても良い。 Also, the anode chamber pressurizing means provided in the acidic water discharge flow path and the cathode chamber pressurizing means provided in the electrolytic hydrogen water discharge flow path may be the same or different.
 また、これらの極室加圧手段のいずれか一方、又は両方は、各極室の加圧度合いを変化させる圧力可変機構を備えるものであっても良い。極室加圧手段は背圧を生じさせる部材であるため、電解室から吐出される電解水素水や酸性水の水量が一定である場合、自ずとその吐出流量が制限されることとなるが、圧力可変機構を備えたならば、所望する吐出流量に自在に変更できると共に、電解水素水であれば水素含量を、酸性水であれば酸素含量を変化させることができる。 Further, either one or both of these polar chamber pressurizing means may be provided with a pressure variable mechanism that changes the degree of pressurization of each polar chamber. Since the polar chamber pressurizing means is a member that generates back pressure, when the amount of electrolytic hydrogen water or acidic water discharged from the electrolysis chamber is constant, the discharge flow rate is naturally limited. If the variable mechanism is provided, it can be freely changed to a desired discharge flow rate, and the hydrogen content can be changed in the case of electrolytic hydrogen water, and the oxygen content can be changed in the case of acidic water.
 この圧力可変機構は、生じさせる背圧を段階的に変化できるものであっても良く、また無段階に変化できるものであっても良い。前者の例としては、例えば閉塞板の位置を段階的に変化させることのできるゲートバルブや、全開状態と半開状態とに切り替え可能なバルブが挙げられる。また、後者の例としては、蛇口内のコマの如く、螺合部材等によって無段階に開度調整可能がバルブなどが挙げられる。 This pressure variable mechanism may be capable of changing the back pressure to be generated stepwise or may be steplessly changed. Examples of the former include a gate valve that can change the position of the closing plate stepwise, and a valve that can be switched between a fully open state and a half open state. Further, as an example of the latter, there is a valve or the like whose opening degree can be adjusted steplessly by a screwing member or the like like a piece in a faucet.
 例えば、図1(g)に示す極室加圧ユニット81gにあっては、流入から流出まで略同径で直管状の広幅流路82iとしつつも、管内へ無段階に出没可能なネジ状の流路狭窄体82jを螺合することで圧力可変機構を構成しており、狭窄部82cの位置、すなわち、気泡含有電解水に対する抵抗度合や背圧の発生度合を変化できるようにしている。この圧力可変機構は、電解水素水生成器の使用者等が手で調整しても良いし、電解水素水生成器に内蔵される制御部等の制御によって調整されるものであっても良い。なお、極室加圧手段は、酸性水又は電解水素水の流通は許容しつつもそれぞれ対応する極室内を加圧可能である必要があるが、流路を完全に閉塞する機能が備えられることを妨げるものではない。 For example, in the polar chamber pressurizing unit 81g shown in FIG. 1 (g), a screw-like shape that can be stepped into and out of the tube in a stepless manner while having a straight tubular wide flow channel 82i having substantially the same diameter from inflow to outflow. A variable pressure mechanism is configured by screwing the flow path narrowing body 82j so that the position of the narrowed portion 82c, that is, the degree of resistance to the bubble-containing electrolytic water and the degree of generation of back pressure can be changed. This pressure variable mechanism may be adjusted manually by the user of the electrolytic hydrogen water generator, or may be adjusted by control of a control unit or the like built in the electrolytic hydrogen water generator. The polar chamber pressurizing means must be capable of pressurizing the corresponding polar chamber while allowing the flow of acidic water or electrolytic hydrogen water, but must have a function of completely closing the flow path. It does not prevent.
 また、陽極室加圧手段を圧力可変機構が備えられたものとした場合、この陽極室加圧手段を圧力可変機構の制御を行う制御部と接続して構成し、更に制御部は電解水素水の生成に際して陽極室加圧手段の圧力可変機構を制御して陽極室内の内圧を高めると共に、電気分解の通電量を増加させるよう構成しても良い。 Further, when the anode chamber pressurizing means is provided with a variable pressure mechanism, the anode chamber pressurizing means is connected to a control unit that controls the variable pressure mechanism, and the control unit further includes electrolytic hydrogen water. At the time of generation, the pressure variable mechanism of the anode chamber pressurizing means may be controlled to increase the internal pressure in the anode chamber and increase the amount of electrolysis.
 通常、電解水素水を生成する際に陰極室では、水素発生量をできるだけ多くするために、通電量を高めて電気分解を行うことが望まれる。 Usually, it is desirable to perform electrolysis by increasing the amount of energization in order to maximize the amount of hydrogen generated in the cathode chamber when generating electrolytic hydrogen water.
 しかし、通電量を高めると、陰極室内でより多くの水酸化物イオンが生成されるため、電解水素水のpHも上昇する。 However, when the amount of current is increased, more hydroxide ions are generated in the cathode chamber, so that the pH of the electrolytic hydrogen water also increases.
 ところが、飲用に適合する電解水素水のpHは10以下とされており、通電量を増大させてより溶存水素濃度を高めながらも飲用に適した電解水素水を得るためには、何らかの手段によりpHを低下させるのが望ましい。 However, the pH of the electrolytic hydrogen water suitable for drinking is set to 10 or less, and in order to obtain the electrolytic hydrogen water suitable for drinking while increasing the amount of energization and increasing the dissolved hydrogen concentration, the pH is reduced by some means. It is desirable to reduce
 そこで、電解水素水の生成に際して陽極室加圧手段の圧力可変機構を制御して陽極室内の内圧を高め、先に述べた新たな知見に基づいて隔膜を介して陽極室内の酸性水や酸性水と混合された原水(以下、陽極室内容水ともいう。)を陰極室側へリークさせ、陰極室内容水をリークさせた陽極室内容水によって中和しつつpHの上昇を抑制し、電気分解の通電量を増加させて水素発生量の増加を図ることとしている。 Therefore, when the electrolytic hydrogen water is generated, the pressure variable mechanism of the anode chamber pressurizing means is controlled to increase the internal pressure in the anode chamber, and based on the new knowledge described above, the acidic water and acidic water in the anode chamber are passed through the diaphragm. The raw water mixed with (hereinafter also referred to as anode chamber content water) leaks to the cathode chamber side, and the cathode chamber content water is neutralized by the leaked anode chamber content water while suppressing an increase in pH and electrolysis. The amount of hydrogen generated is increased to increase the amount of hydrogen generated.
 従って、高濃度に水素が溶存しながらも、pH上昇が抑制され飲用に適した電解水素水を生成することができる。なお、陰極室内容水のpH上昇抑制の度合いは、陽極室加圧手段の圧力可変機構により調整することができる。 Therefore, it is possible to produce electrolytic hydrogen water suitable for drinking with suppressed pH rise while hydrogen is dissolved at a high concentration. The degree of suppression of the pH increase in the cathode chamber content water can be adjusted by the pressure variable mechanism of the anode chamber pressurizing means.
 また、陽極室加圧手段と陰極室加圧手段とはいずれも圧力可変機構を備えると共に同圧力可変機構を制御する制御部と接続し、同制御部は電解水素水の生成に際して両極室加圧手段を略同時に制御してそれぞれ対応する極室内の内圧を高めるよう構成しても良い。 The anode chamber pressurization means and the cathode chamber pressurization means both have a pressure variable mechanism and are connected to a control unit that controls the pressure variable mechanism, and the control unit pressurizes the bipolar chamber when generating electrolytic hydrogen water. The means may be controlled substantially simultaneously to increase the internal pressure in the corresponding polar chamber.
 このような構成とすることにより、電解水素水の取水時には、陰極室において陰極室内容水のリークを抑制しながら陰極室内圧上昇に伴う水素溶存性の向上を図ることができるのは勿論のこと、水素などの気体溶存量の向上を要しないときには、圧力可変機構にて背圧の生起を解除して単位時間あたりの取水量を増やすことができる。 By adopting such a configuration, it is possible to improve the hydrogen solubility accompanying the increase in the pressure in the cathode chamber while suppressing the leakage of the cathode chamber contents water in the cathode chamber when taking in the electrolytic hydrogen water. When there is no need to improve the dissolved amount of gas such as hydrogen, the back pressure can be canceled by the variable pressure mechanism to increase the water intake per unit time.
 また、本実施形態に係る電解水素水生成器では、電解槽に流入させる原水を供給路の中途から分岐して、電解水素水の吐出流路の陰極室加圧手段よりも下流側へ通水させる原水バイパス流路を備えるようにしても良い。 In the electrolyzed hydrogen water generator according to the present embodiment, the raw water flowing into the electrolyzer is branched from the middle of the supply path, and water is passed downstream from the cathode chamber pressurizing means of the electrolyzed hydrogen water discharge flow path. A raw water bypass channel may be provided.
 このような構成を備えることで、例えば電解水素水の生成時には、陰極室加圧手段が機能している時にこのバイパス流路を開放することにより、単位時間あたりの電解水素水の取水量が減少することなく適正にすることができる。 By providing such a configuration, for example, when the electrolytic hydrogen water is generated, the amount of water taken in the electrolytic hydrogen water per unit time is reduced by opening the bypass passage when the cathode chamber pressurizing unit is functioning. You can make it right without doing it.
 また、本実施形態に係る電解水素水生成器では、陽極室へ供給する原水に電解槽より吐出された酸性水の一部を合流させる還流バイパス流路を備えることとしても良い。 In addition, the electrolytic hydrogen water generator according to the present embodiment may include a reflux bypass passage that joins part of the acidic water discharged from the electrolytic cell to the raw water supplied to the anode chamber.
 このような構成とすることにより、還流バイパス流路を備えない場合と比較して、陰極室内の水のpHをより低い状態とすることができ、隔膜を介した陰極室内容水のpH抑制を更に効果的なものとすることができる。 By adopting such a configuration, the pH of the water in the cathode chamber can be lowered as compared with the case where no reflux bypass passage is provided, and the pH of the water in the cathode chamber can be suppressed via the diaphragm. It can be made more effective.
 以下、本実施形態に係る電解水素水生成器に関し、図面を参照しながら具体的に説明する。図2は第1の実施形態に係る電解水素水生成器A1の外観を示した斜視図であり、図3は電解水素水生成器A1の全体構成を示したブロック図である。 Hereinafter, the electrolytic hydrogen water generator according to the present embodiment will be specifically described with reference to the drawings. FIG. 2 is a perspective view showing the appearance of the electrolytic hydrogen water generator A1 according to the first embodiment, and FIG. 3 is a block diagram showing the overall configuration of the electrolytic hydrogen water generator A1.
 図2に示すように電解水素水生成器A1は、略矩形状のケーシング10内に後述する装置部9(図3参照)を収容して構成しており、水道などから受水した水を必要に応じて電解し、取水管17を介して吐出口17bから使用者が所望する水を取水可能としている。
また、電解水素水生成器A1は電源プラグ8(図3参照)を備えており、商用電源コンセント等から受電して電解が行われる。
As shown in FIG. 2, the electrolyzed hydrogen water generator A <b> 1 is configured by housing a device unit 9 (see FIG. 3), which will be described later, in a substantially rectangular casing 10, and requires water received from water or the like. Accordingly, the water desired by the user can be taken from the discharge port 17 b through the water intake pipe 17.
Further, the electrolytic hydrogen water generator A1 includes a power plug 8 (see FIG. 3), and electrolysis is performed by receiving power from a commercial power outlet or the like.
 また、図2に示すように、ケーシング10の正面部には操作パネルPが配されており、各種ボタンやランプ等が備えられている。 Further, as shown in FIG. 2, an operation panel P is arranged on the front portion of the casing 10, and various buttons and lamps are provided.
 具体的には、操作パネルP上には、その上部中央に液晶表示装置からなる表示部Dを設け、その右上に電源ボタンB1を配設するとともに、前記表示部Dの下方位置にはORP表示ボタンB2と通水量表示ボタンB3とを横並びに配設している。 Specifically, on the operation panel P, a display unit D composed of a liquid crystal display device is provided at the upper center, a power button B1 is provided at the upper right, and an ORP display is provided below the display unit D. The button B2 and the water flow amount display button B3 are arranged side by side.
 電源ボタンB1は、電解水素水生成器A1を起動させるためのボタンであり、どのような状態であっても有効なボタンである。例えば排水処理などの途中であって処理が終了していない場合は、電源ボタンB1が押下されても、それらの処理が終了してから電源が落ちるようにすることが好ましい。ORP表示ボタンB2は、表示部Dに現在の水のORPを表示させるためのボタンである。通水量表示ボタンB3は、表示部Dに現在の水の通水量を表示させるためのボタンである。 The power button B1 is a button for starting the electrolytic hydrogen water generator A1, and is an effective button in any state. For example, when the treatment is not completed during the wastewater treatment or the like, it is preferable that the power is turned off after the completion of the treatment even when the power button B1 is pressed. The ORP display button B2 is a button for displaying the current water ORP on the display unit D. The water flow rate display button B3 is a button for displaying the current water flow rate on the display unit D.
 また、この通水量表示ボタンB3の下方には、縦一列にアルカリボタン群AL、浄水供給ボタンW、酸性ボタン群Acを配設している。 Further, below this water flow amount display button B3, an alkali button group AL, a purified water supply button W, and an acid button group Ac are arranged in a vertical line.
 アルカリボタン群ALは、強アルカリ性水供給ボタンAL0や第1レベルのアルカリ性水供給ボタンAL1~第3レベルのアルカリ性水供給ボタンAL3で構成している。強アルカリ性水供給ボタンAL0は、電解水素水生成器A1に強アルカリ性水の生成を指示するためのボタンである。強アルカリ性水は、例えば、pH10.5であり、煮物、アク抜き、野菜ゆで等に使用することができる。 The alkaline button group AL includes a strong alkaline water supply button AL0 and a first level alkaline water supply button AL1 to a third level alkaline water supply button AL3. The strong alkaline water supply button AL0 is a button for instructing the electrolytic hydrogen water generator A1 to generate strong alkaline water. Strong alkaline water, for example, has a pH of 10.5, and can be used for boiled food, acupuncture, boiled vegetables, and the like.
 第1レベルのアルカリ性水供給ボタンAL1は、電解水素水生成器A1に第1レベルのアルカリ性水の生成を指示するためのボタンである。第1レベルのアルカリ性水は、例えば、pH9.5であり、料理、お茶等に使用することができる。第2レベルのアルカリ性水供給ボタンAL2は、電解水素水生成器A1に第2レベルのアルカリ性水の生成を指示するためのボタンである。第2レベルのアルカリ性水は、例えば、pH9.0であり、炊飯等に使用することができる。第3レベルのアルカリ性水供給ボタンAL3は、電解水素水生成器A1に第3レベルのアルカリ性水の生成を指示するためのボタンである。第3レベルのアルカリ性水は、例えば、pH8.5であり、飲み始めの水等として使用することができる。電解水素水生成器A1は、これらのアルカリボタン群ALが使用者により押下されることで、それぞれ強アルカリ性水生成モードや各レベルのアルカリ性水生成モードに移行して、対応するアルカリ性水の生成を行う。特に、これらアルカリボタン群ALの押下によって生成されるアルカリ性水は、電解水素水に相当する水である。 The first level alkaline water supply button AL1 is a button for instructing the electrolytic hydrogen water generator A1 to generate the first level alkaline water. The first level alkaline water has a pH of 9.5, for example, and can be used for cooking, tea and the like. The second level alkaline water supply button AL2 is a button for instructing the electrolytic hydrogen water generator A1 to generate the second level alkaline water. The second level alkaline water has a pH of 9.0, for example, and can be used for cooking rice or the like. The third level alkaline water supply button AL3 is a button for instructing the electrolytic hydrogen water generator A1 to generate the third level alkaline water. The third level alkaline water has a pH of 8.5, for example, and can be used as water for starting drinking. When the alkaline button group AL is pressed by the user, the electrolytic hydrogen water generator A1 shifts to a strong alkaline water generation mode or an alkaline water generation mode at each level, and generates corresponding alkaline water. Do. In particular, the alkaline water generated by pressing the alkali button group AL is water corresponding to electrolytic hydrogen water.
 浄水供給ボタンWは、電解水素水生成器A1にて電解を行うことなく水道水からの水を浄化して通水させることを指示するためのボタンである。電解水素水生成器A1は、浄水供給ボタンWが使用者により押下されることで、浄水生成モードに移行して浄水の生成を行う。 The purified water supply button W is a button for instructing to purify and pass water from tap water without performing electrolysis in the electrolytic hydrogen water generator A1. When the purified water supply button W is pressed by the user, the electrolytic hydrogen water generator A1 shifts to the purified water generation mode and generates purified water.
 酸性ボタン群Acは、酸性水供給ボタンAc1や強酸性水供給ボタンAc2で構成している。酸性水供給ボタンAc1は、電解水素水生成器A1に酸性水の生成を指示するためのボタンである。酸性水は、例えば、pH5.5であり、洗顔、麺ゆで、茶渋とり等に使用することができる。また、強酸性水供給ボタンAc2は、電解水素水生成器A1に強酸性水(衛生水)の生成を指示するためのボタンである。強酸性水は、例えば、pH2.5であり、水回りの洗浄等に使用することができる。電解水素水生成器A1は、これらの酸性ボタン群Acが使用者により押下されることで、それぞれ酸性水を供給する酸性水生成モードや強酸性水を供給する強酸性水生成モードに移行して、対応する酸性水の生成を行う。なお、以下の説明において強アルカリ性水生成モードやアルカリ性水生成モード、浄水生成モード、酸性水生成モード、強酸性水生成モードを総称して水生成モードという。 The acidic button group Ac includes an acidic water supply button Ac1 and a strong acidic water supply button Ac2. The acidic water supply button Ac1 is a button for instructing the electrolytic hydrogen water generator A1 to generate acidic water. Acidic water has a pH of 5.5, for example, and can be used for face washing, boiled noodles, tea astringents, and the like. The strongly acidic water supply button Ac2 is a button for instructing the electrolytic hydrogen water generator A1 to generate strongly acidic water (sanitary water). The strongly acidic water has a pH of 2.5, for example, and can be used for washing around the water. When the acidic button group Ac is pressed by the user, the electrolytic hydrogen water generator A1 shifts to an acidic water generation mode for supplying acidic water and a strong acidic water generation mode for supplying strong acidic water, respectively. The corresponding acidic water is generated. In the following description, the strong alkaline water generation mode, the alkaline water generation mode, the purified water generation mode, the acidic water generation mode, and the strong acidic water generation mode are collectively referred to as a water generation mode.
 また、操作パネルPの下部近傍には、更に幾つかのボタンやランプが配置されている。
例えば強酸性水供給ランプL1は、電解水素水生成器A1が強酸性水生成モードであることを示すものである。また、L3は洗浄中ランプ、L4はすすぎランプ、L5,L6は電解水素水生成器A1の内部に備えられた後述の浄水部2のカートリッジ寿命設定ボタン及びランプ、L7,L8は浄水部2のカートリッジ交換ランプ、L9は温度上昇警告ランプ、B5はカートリッジ交換リセットボタンである。
Further, some buttons and lamps are arranged near the lower part of the operation panel P.
For example, the strong acid water supply lamp L1 indicates that the electrolytic hydrogen water generator A1 is in the strong acid water generation mode. L3 is a cleaning lamp, L4 is a rinsing lamp, L5 and L6 are cartridge life setting buttons and lamps of a water purification unit 2 (described later) provided inside the electrolytic hydrogen water generator A1, and L7 and L8 are water purification units 2. A cartridge replacement lamp, L9 is a temperature rise warning lamp, and B5 is a cartridge replacement reset button.
 また、本実施形態に係る電解水素水生成器A1の操作パネルPには、特徴的な構成の一つとして、操作パネルPの略中央部に溶存量増加ボタンFが設けられている。 Also, the operation panel P of the electrolyzed hydrogen water generator A1 according to this embodiment is provided with a dissolved amount increase button F at a substantially central portion of the operation panel P as one of characteristic features.
 溶存量増加ボタンFは、気泡含有電解水の気泡溶解を促進させるためのボタンであり、溶存量増加ボタンFが押下されると電解水素水生成器A1は溶存量増加モードとなり、電解水素水であれば水素気泡、酸性水であれば酸素気泡の溶解を促進させて、水素溶存量の高い電解水素水や、酸素溶存量の高い酸性水の生成が行われる。この溶存量増加ボタンFは強アルカリ性水生成モード時や、アルカリ性水生成モード時、酸性水生成モード時、強酸性水生成モード時に押下可能であり、これらのモードが選択されている時は溶存量増加ボタンFの周囲にリング状に配されたランプL10が点灯して使用者に利用可能である旨が報知される。なお、以下の説明において、気泡含有電解水の気泡溶解を促進させるこの機能を気泡溶解促進機能と称する。 The dissolved amount increase button F is a button for promoting bubble dissolution of the bubble-containing electrolytic water. When the dissolved amount increase button F is pressed, the electrolytic hydrogen water generator A1 enters the dissolved amount increase mode. If there is hydrogen bubbles, acid water promotes dissolution of oxygen bubbles to generate electrolytic hydrogen water having a high hydrogen dissolved amount or acidic water having a high oxygen dissolved amount. This dissolved amount increase button F can be pressed in the strong alkaline water generation mode, in the alkaline water generation mode, in the acidic water generation mode, or in the strong acidic water generation mode. When these modes are selected, the dissolved amount is increased. A lamp L10 arranged in a ring shape around the increase button F is lit to notify the user that it can be used. In the following description, this function of promoting bubble dissolution of bubble-containing electrolytic water is referred to as a bubble dissolution promotion function.
 また、溶存量増加ボタンFが押下されると原水バイパス機能が発揮され、取水管17の吐出口17bから吐出される電解水素水や酸性水の吐出量の増量がなされる。具体的には、電解水素水生成器A1は原水の一部を後述する陰極室加圧手段の下流側にバイパスして吐出量を増量する。 Further, when the dissolved amount increase button F is pressed, the raw water bypass function is exhibited, and the discharge amount of the electrolytic hydrogen water and the acidic water discharged from the discharge port 17b of the intake pipe 17 is increased. Specifically, the electrolytic hydrogen water generator A1 increases the discharge amount by bypassing a part of the raw water to the downstream side of the cathode chamber pressurizing means described later.
 また、溶存量増加ボタンFが押下されると還流機能が発揮され、陽極室より吐出された酸性水の一部を陽極室へ供給する原水に合流させて陽極室へ還流させつつ電解電流量を増やすことにより、陰極室内容水のpH上昇抑制を図りつつも多量の水素が生成される。 In addition, when the dissolved amount increase button F is pressed, the reflux function is exhibited, and a part of the acidic water discharged from the anode chamber is joined to the raw water supplied to the anode chamber, and the amount of electrolysis current is made to return to the anode chamber. By increasing the amount, a large amount of hydrogen is generated while suppressing an increase in pH of the cathode chamber contents water.
 次に、電解水素水生成器A1の内部構成、すなわち装置部9の構成について図3及び図4を参照しながら説明する。図3は装置部9の構成を示したブロック図であり、図4は電解槽1及びその近傍に配置された各流路構造の構築例を示した説明図である。 Next, the internal configuration of the electrolytic hydrogen water generator A1, that is, the configuration of the apparatus unit 9 will be described with reference to FIGS. FIG. 3 is a block diagram showing the configuration of the device unit 9, and FIG. 4 is an explanatory diagram showing an example of construction of each flow path structure disposed in the electrolyzer 1 and in the vicinity thereof.
 図3に示すように、装置部9の構成は、大きく、原水を電気分解する電解槽1を具備した電解部4と、電解槽1に供給する原水を予め浄化する浄水部5と、浄化された原水(浄水)に所定の添加物を添加する添加部6と、電解水素水生成器A1の各部を全体的に統括して制御する制御部7とに分けられる。 As shown in FIG. 3, the configuration of the apparatus unit 9 is large and is purified by an electrolysis unit 4 having an electrolyzer 1 that electrolyzes raw water, and a water purifier 5 that purifies raw water supplied to the electrolyzer 1 in advance. It is divided into the addition part 6 which adds a predetermined additive to raw water (purified water), and the control part 7 which controls each part of the electrolytic hydrogen water generator A1 as a whole.
 電解部4は、図4に示すように外観視矩形箱型に形成した電解槽1と、同電解槽1の周囲に電解槽1の表面から離隔して架空配管状態に配設された流路配管部42(大凡、図中にて一点鎖線で囲った部分)とで構成している。 As shown in FIG. 4, the electrolyzing unit 4 includes an electrolytic cell 1 formed in a rectangular box shape as viewed from the outside, and a flow path that is spaced from the surface of the electrolytic cell 1 and arranged in an aerial piping state around the electrolytic cell 1. It is comprised by the piping part 42 (generally, the part enclosed with the dashed-dotted line in the figure).
 電解槽1は、供給される水を電解してアルカリ性の電解水素水や酸性水を生成する部位である。なお、本実施形態に係る電解水素水生成器A1は前述のようにアルカリ性の電解水素水のみならず酸性水についても取水可能な装置である。具体的には、電解水素水生成器A1に備えられた電解槽1において、使用者が取水するための水を生成する所定極性に切替可能な電極板(以下、取水電極板という。)を備えた取水用電極室と、取水電極板の極性とは逆の極性に切替制御される電極板(以下、副生水電極板という。)を備えた副生水用電極室とが隔膜を隔てて形成されており、副生水電極板を陽極にして副生水用電極室を陽極室とする一方、取水電極板を陰極にして取水用電極室を陰極室とすることで、取水用電極室にてアルカリ性の電解水素水を生成して取水可能としたり、その逆に、副生水電極板を陰極にして副生水用電極室を陰極室とする一方、取水電極板を陽極にして取水用電極室を陽極室とすることで、取水用電解室にて酸性水を生成して取水可能としている。以下では、本発明の理解を容易にすべく、アルカリ性の電解水素水が取水可能なアルカリ性水生成モードを基準に、取水用電極室は陰極室、取水電極板は陰極、副生水用電極室は陽極室、副生水電極板は陽極であるものとしつつ各部構成に名称を付して説明する。 The electrolytic cell 1 is a part that generates alkaline electrolytic hydrogen water or acidic water by electrolyzing supplied water. The electrolyzed hydrogen water generator A1 according to this embodiment is an apparatus that can take in not only alkaline electrolyzed hydrogen water but also acidic water as described above. Specifically, the electrolytic cell 1 provided in the electrolytic hydrogen water generator A1 includes an electrode plate (hereinafter referred to as a water intake electrode plate) that can be switched to a predetermined polarity for generating water for the user to take water. The electrode chamber for water intake and the electrode chamber for by-product water provided with an electrode plate (hereinafter referred to as a by-product water electrode plate) that is switched to a polarity opposite to the polarity of the intake electrode plate are separated from each other by a diaphragm. The by-product water electrode plate is used as an anode and the by-product water electrode chamber is used as an anode chamber, while the intake electrode plate is used as a cathode and the intake electrode chamber is used as a cathode chamber. The alkaline electrolyzed hydrogen water can be generated at the same time, and water can be taken. Conversely, the by-product water electrode plate is used as a cathode and the by-product water electrode chamber is used as a cathode chamber, while the water intake electrode plate is used as an anode. By making the electrode chamber for the anode into the anode chamber, acid water is generated in the water intake electrolysis chamber to enable water intake. In the following, in order to facilitate understanding of the present invention, on the basis of the alkaline water generation mode in which alkaline electrolytic hydrogen water can be taken, the electrode chamber for taking water is the cathode chamber, the electrode plate for taking water is the cathode, and the electrode chamber for by-product water is used. In the following description, each component is given a name while assuming that the anode chamber is an anode chamber and the by-product water electrode plate is an anode.
 図4の説明に戻り、同電解槽1の下面側には、電解槽1内に形成された陽極室(副生水用電極室)内に水を供給する陽極室水供給口43aと、陰極室(取水用電極室)内に水(原水)を供給する陰極室水供給口43bが形成されている。 Returning to the description of FIG. 4, on the lower surface side of the electrolytic cell 1, an anode chamber water supply port 43 a for supplying water into an anode chamber (electrode chamber for by-product water) formed in the electrolytic cell 1, a cathode A cathode chamber water supply port 43b for supplying water (raw water) is formed in the chamber (intake electrode chamber).
 また、電解槽1の上端面略中央部には電解水素水吐出口17aが上方へ向けて突設されており、図3に示すように、電解槽1の陰極室(取水用電極室)にて生成した電解水素水を吐出配管17dを通じ、取水管17を介して吐出口17bから吐出可能としている。 Further, an electrolytic hydrogen water discharge port 17a is provided so as to project upward at a substantially central portion of the upper end surface of the electrolytic cell 1, and as shown in FIG. 3, a cathode chamber (water intake electrode chamber) of the electrolytic cell 1 is provided. The generated electrolytic hydrogen water can be discharged from the discharge port 17b through the discharge pipe 17d and the intake pipe 17.
 また、吐出配管17dにはその中途部に陰極室加圧手段(取水用電極室加圧手段)として機能する陰極室加圧部17c(取水用電極室加圧ユニット)が介設されている。 Further, a cathode chamber pressurizing portion 17c (water intake electrode chamber pressurizing unit) functioning as a cathode chamber pressurizing means (water intake electrode chamber pressurizing means) is interposed in the middle of the discharge pipe 17d.
 陰極室加圧部17cは電磁弁にて構成しており、通電状態(ON状態)において開状態となり吐出配管17dの流量制限を行わず、通電が遮断された状態(OFF状態)においては半閉状態(加圧状態)となる圧力可変機構を備え、陰極室加圧部17cを通過する水の流量を制限しつつ背圧を生起する機能を有している。なお、図示は省略するが、陰極室加圧部17cは制御部7と電気的に接続されており、制御部7の制御によって開状態と半開状態とに切り替えが行われる。 The cathode chamber pressurizing portion 17c is constituted by an electromagnetic valve, and is opened in the energized state (ON state), does not restrict the flow rate of the discharge pipe 17d, and is semi-closed in the energized state (OFF state). A pressure variable mechanism that is in a state (pressurized state) is provided, and has a function of generating back pressure while limiting the flow rate of water passing through the cathode chamber pressurizing portion 17c. In addition, although illustration is abbreviate | omitted, the cathode chamber pressurization part 17c is electrically connected with the control part 7, and switching to an open state and a half-open state by control of the control part 7 is performed.
 特に、陰極室加圧部17cが加圧状態に切り替えられると、陰極室や吐出配管17d内に背圧を生じさせると共に、微細化気泡生成管としての機能を発揮して流入させた気泡含有電解水の気泡、例えば電解水素水に含まれる水素気泡の微細化を行って溶存水素濃度を高める働きをする。 In particular, when the cathode chamber pressurizing unit 17c is switched to a pressurized state, a back pressure is generated in the cathode chamber and the discharge pipe 17d, and the bubble-containing electrolysis that has flowed in by functioning as a miniaturized bubble generating tube is introduced. Water bubbles, for example, hydrogen bubbles contained in electrolytic hydrogen water are refined to increase the dissolved hydrogen concentration.
 また、図4に示すように、電解槽1の上端面から正面に沿ってL字状に、電解槽1の陽極室(副生水用電極室)にて生成された酸性水を吐出する排水流路上流部18aが筐体(ケーシング)部分と一体的に形成されており、その下端部には流路配管部42と接続して排水流路上流部18aを流れる酸性水を流路配管部42へ向けて吐出する電解槽側接続部18bが形成されている。 Moreover, as shown in FIG. 4, the waste_water | drain which discharges the acidic water produced | generated in the anode chamber (electrode chamber for by-product water) of the electrolytic cell 1 in the L shape along the front from the upper end surface of the electrolytic cell 1 The flow channel upstream portion 18a is formed integrally with the casing (casing) portion, and the lower end thereof is connected to the flow channel piping portion 42 to supply acidic water flowing through the drain flow channel upstream portion 18a to the flow channel piping portion. An electrolytic cell side connection portion 18b that discharges toward 42 is formed.
 図3及び図4に示すように、流路配管部42は、原水を供給する主原水供給路24と、同主原水供給路24より分岐して陰極室水供給口43bに接続し陰極室内に原水を供給する副原水供給路24aと、主原水供給路24より分岐して陽極室水供給口43aに接続し陽極室内に原水を供給したり溶存量増加ボタンFが押下された際に原水及び酸性水からなる混合水を供給する副原水供給路24bと、前述の電解槽側接続部18bに接続して排水流路上流部18aを流れる酸性水を受け入れつつ同酸性水を分流する流路配管側接続部18cと、流路配管側接続部18cから下方に伸延させて設けられ流路配管側接続部18cにて分流された酸性水のうちの一部、すなわち還流させる酸性水を流通させる還流路主管部44aと、同還流路主管部44aの中途より分岐し主原水供給路24における副原水供給路24bの分岐部に臨ませて接続させた還流路枝管部44bと、流路配管側接続部18cから側方へ延出し下方へL字状に屈曲状態で設けられ流路配管側接続部18cにて分流された酸性水のうち排出する残部の酸性水を流通させる排水流路中流部18dと、還流路主管部44a及び排水流路中流部18dの下端に接続され排出口63に連通する排水流路下流部18eとを備えている。また、還流路枝管部44bと主原水供給路24との接続合流部分は、還流機能発揮時に原水に酸性水を混合させるための酸性水還流混合部44cとしている。なお以下の説明において、排水流路上流部18a、電解槽側接続部18b、流路配管側接続部18c、排水流路中流部18d、排水流路下流部18eを総称して排水流路18といい、還流路主管部44a、還流路枝管部44b、酸性水還流混合部44cを総称して還流バイパス流路70という。 As shown in FIGS. 3 and 4, the flow path pipe section 42 is divided into a main raw water supply path 24 for supplying raw water and a branch from the main raw water supply path 24 to be connected to the cathode chamber water supply port 43 b to enter the cathode chamber. A secondary raw water supply path 24a for supplying raw water and a branch from the main raw water supply path 24 are connected to the anode chamber water supply port 43a to supply the raw water into the anode chamber or when the dissolved amount increase button F is pressed, A secondary raw water supply path 24b for supplying mixed water made of acidic water, and a flow path pipe for connecting the acidic water flowing through the drain flow path upstream section 18a while being connected to the above-described electrolytic cell side connection section 18b and branching the acidic water. The side connection portion 18c and a part of the acid water that is provided extending downward from the flow channel pipe side connection portion 18c and is divided by the flow channel pipe side connection portion 18c, that is, reflux for circulating the acidic water to be circulated. Road main pipe part 44a and return pipe main pipe part 4a is branched from the middle, and is connected to the branch portion of the secondary raw water supply passage 24b in the main raw water supply passage 24 so as to be connected to the return passage branch pipe portion 44b. A drainage flow channel midstream portion 18d that circulates the remaining acidic water to be discharged out of the acidic water that is provided in a bent shape in an L-shape and is diverted at the flow passage pipe side connection portion 18c, a reflux channel main pipe portion 44a, and a drainage flow A drainage flow path downstream portion 18e connected to the lower end of the midstream portion 18d and communicating with the discharge port 63 is provided. Further, the connecting and joining portion between the reflux path branch pipe portion 44b and the main raw water supply path 24 is an acidic water reflux mixing portion 44c for mixing the acidic water with the raw water when the reflux function is exhibited. In the following description, the drainage channel upstream portion 18a, the electrolytic cell side connection portion 18b, the channel piping side connection portion 18c, the drainage channel midstream portion 18d, and the drainage channel downstream portion 18e are collectively referred to as the drainage channel 18. The reflux path main pipe portion 44a, the reflux path branch pipe portion 44b, and the acidic water reflux mixing portion 44c are collectively referred to as a reflux bypass passage 70.
 電解槽側接続部18b及び流路配管側接続部18cは、図4(a)に示すように、排水流路18の中途に介設された屈曲流路として機能する部位であり、流路配管部42を電解槽1の正面側表面から離隔させて架空配管状とした離隔流路とする役割を有している。 As shown in FIG. 4A, the electrolytic cell side connection portion 18b and the flow channel piping side connection portion 18c are portions that function as bent flow channels interposed in the middle of the drainage flow channel 18, and flow channel piping. The part 42 is separated from the front side surface of the electrolytic cell 1, and has a role as an isolated flow path in the shape of an aerial pipe.
 また、図3及び図4に示す(図4においては二点鎖線で示す)ように、排水流路中流部18dの中途には、陽極室加圧手段(副生水用電極室加圧手段)として機能する陽極室加圧ユニット71(副生水用電極室加圧ユニット)が介設されている。 Further, as shown in FIGS. 3 and 4 (indicated by a two-dot chain line in FIG. 4), an anode chamber pressurizing means (electrode chamber pressurizing means for by-product water) is provided in the middle of the drainage flow channel middle portion 18d. An anode chamber pressurizing unit 71 (electrode chamber pressurizing unit for by-product water) that functions as
 この陽極室加圧ユニット71は電磁弁にて構成しており、通電状態(ON状態)において開状態となり排水流路中流部18dを流れる酸性水の流量制限を行わず、通電が遮断された状態(OFF状態)においては半閉状態となる圧力可変機構を備え、陽極室加圧ユニット71を通過する酸性水の流量を約1/2に制限しつつ背圧を生起する機能を有している。また、陽極室加圧ユニット71は、流路配管側接続部18cにて分流される酸性水の分流割合、換言すれば還流路主管部44a及び還流路枝管部44bを介して原水に添加される酸性水の量を変更可能する役割も兼ねている。なお、図示は省略するが、陽極室加圧ユニット71は制御部7と電気的に接続されており、制御部7の制御によって開状態と半開状態とに切り替えが行われる。 This anode chamber pressurizing unit 71 is constituted by a solenoid valve, and is in an open state in an energized state (ON state), and is not energized without limiting the flow rate of acidic water flowing through the drain flow channel midstream portion 18d. In the (OFF state), it has a pressure variable mechanism that is in a semi-closed state, and has a function of generating back pressure while limiting the flow rate of acidic water passing through the anode chamber pressurizing unit 71 to about ½. . Further, the anode chamber pressurizing unit 71 is added to the raw water via the branching ratio of the acidic water to be branched at the flow pipe side connection part 18c, in other words, through the return path main pipe part 44a and the return path branch pipe part 44b. It also serves to change the amount of acidic water. In addition, although illustration is abbreviate | omitted, the anode chamber pressurization unit 71 is electrically connected with the control part 7, and switching to an open state and a half-open state by control of the control part 7 is performed.
 また、排水流路下流部18eと排出口63との間には、図3及び図4において破線で示すように、必要に応じて電磁弁52を介設し、排出口63を開放したり閉塞できるよう構成しても良い。 Further, as shown by a broken line in FIGS. 3 and 4, an electromagnetic valve 52 is interposed between the drainage channel downstream portion 18e and the discharge port 63 to open or close the discharge port 63 as necessary. You may comprise so that it can do.
 更に、還流路主管部44aにおける還流路枝管部44bの分岐部よりも下流位置には、還流路主管部44aから排水流路下流部18e方向への流れを阻止する逆止弁41が介設されている。 Further, a check valve 41 for preventing the flow from the reflux path main pipe portion 44a toward the drainage flow path downstream portion 18e is provided at a position downstream of the branch portion of the return path branch pipe portion 44b in the reflux path main pipe portion 44a. Has been.
 電解槽1は、図3において模式的に示すように、中央に位置する第1の電極板21と、この第1の電極板21を挟み込むように位置する第2の電極板22と第3の電極板23とを備えている。そして、第1の電極板21と第2の電極板22との間、及び第1の電極板21と第3の電極板23との間に、それぞれ隔膜12を配設して、これら電極板21,22,23、隔膜12により、取水用電極室として機能する第1の電解室25、副生水用電極室として機能する第2の電解室26、副生水用電極室として機能する第3の電解室27、取水用電極室として機能する第4の電解室28とを区画形成している。 As schematically shown in FIG. 3, the electrolytic cell 1 includes a first electrode plate 21 located at the center, a second electrode plate 22 located so as to sandwich the first electrode plate 21, and a third electrode plate 21. And an electrode plate 23. And the diaphragm 12 is arrange | positioned between the 1st electrode plate 21 and the 2nd electrode plate 22, and between the 1st electrode plate 21 and the 3rd electrode plate 23, respectively, These electrode plates 21, 22, 23 and the diaphragm 12, the first electrolysis chamber 25 that functions as a water intake electrode chamber, the second electrolysis chamber 26 that functions as a byproduct water electrode chamber, and the second electrolysis water electrode chamber that functions as a byproduct water electrode chamber. 3 electrolytic chambers 27 and a fourth electrolytic chamber 28 functioning as a water intake electrode chamber are partitioned.
 第2の電極板22と第3の電極板23は、ケーシング10内に配設した制御部7に設けた電源回路(図示せず)からの電力の供給を受け、取水電極板として陰極又は陽極の同一極の電極板となる一方、第1の電極板21は、副生水電極板として第2の電極板22と第3の電極板23の極性とは逆の極性となる。ここでは、第2の電極板22と第3の電極板23とを陰極とし、第1の電極板21を陽極としており、第1の電解室25と第4の電解室28とが陰極室に対応し、第2の電解室26と第3の電解室27とが陽極室に対応することになる。逆に、第2の電極板22と第3の電極板23が陽極となっている場合には、第1の電極板21は陰極となって、第1の電解室25と第4の電解室28とが陽極室に対応し、第2の電解室26と第3の電解室27とが陰極室に対応することになる。 The second electrode plate 22 and the third electrode plate 23 are supplied with power from a power supply circuit (not shown) provided in the control unit 7 disposed in the casing 10, and serve as a water intake electrode plate as a cathode or an anode. On the other hand, the first electrode plate 21 has a polarity opposite to that of the second electrode plate 22 and the third electrode plate 23 as a by-product water electrode plate. Here, the second electrode plate 22 and the third electrode plate 23 are cathodes, the first electrode plate 21 is an anode, and the first electrolysis chamber 25 and the fourth electrolysis chamber 28 are the cathode chambers. Correspondingly, the second electrolysis chamber 26 and the third electrolysis chamber 27 correspond to the anode chamber. Conversely, when the second electrode plate 22 and the third electrode plate 23 are anodes, the first electrode plate 21 is a cathode, and the first electrolysis chamber 25 and the fourth electrolysis chamber. 28 corresponds to the anode chamber, and the second electrolysis chamber 26 and the third electrolysis chamber 27 correspond to the cathode chamber.
 各電解室25,26,27,28には水の流入口と流出口が設けられており、第1の電解室25と第4の電解室28の各流出口に連通した流路は電解水素水吐出口17aで互いに合流し、取水管17を介して所望するpHのアルカリ性水を取水することができる。 Each of the electrolysis chambers 25, 26, 27, and 28 is provided with an inflow port and an outflow port of water, and the flow paths communicating with the outflow ports of the first electrolysis chamber 25 and the fourth electrolysis chamber 28 are electrolytic hydrogen. Alkaline water having a desired pH can be taken through the water intake pipe 17 by joining with each other at the water discharge port 17a.
 一方、第2の電解室26と第3の電解室27の各流出口に連通した流路は互いに合流して排水流路上流部18aを形成し、排水流路18を通じ排出口63を介して(排出口63近傍に電磁弁52を設けた場合は同電磁弁52を更に介して)酸性水を排水可能としている。なお、前述したように、各電極板21,22,23の極性が逆になれば、当然ながら、取水管17とした流路からは酸性水が取水され、排水流路18からはアルカリ性水が排水されることになる。また、電磁弁52は必要に応じて設けられるものであり、浄水生成モードにおいて第2の電解室26や第3の電解室27に流入した水の排水を妨げる必要がない場合には設けなくとも良い。 On the other hand, the flow paths communicating with the outlets of the second electrolysis chamber 26 and the third electrolysis chamber 27 merge with each other to form the drainage channel upstream portion 18a, and through the drainage channel 18 through the discharge port 63. Acidic water can be drained (via the solenoid valve 52 when the solenoid valve 52 is provided in the vicinity of the discharge port 63). As described above, if the polarities of the electrode plates 21, 22, and 23 are reversed, naturally, acidic water is taken from the flow path as the water intake pipe 17, and alkaline water is taken from the drain flow path 18. It will be drained. Further, the electromagnetic valve 52 is provided as necessary, and is not provided when it is not necessary to prevent the drainage of the water flowing into the second electrolysis chamber 26 and the third electrolysis chamber 27 in the purified water generation mode. good.
 電解槽1には、主原水供給路24から分岐した2つの副原水供給路24a,24bにより電解に必要な水が供給される。 The water required for electrolysis is supplied to the electrolytic cell 1 through the two secondary raw water supply paths 24 a and 24 b branched from the main raw water supply path 24.
 図3に示すように、第1の電解室25及び第4の電解室28の流入口には、二叉に分岐させた副原水供給路24aの下流側先端をそれぞれ接続し、第2の電解室26及び第3の電解室27の流入口には、二叉に分岐させた副原水供給路24bの下流側先端をそれぞれ接続することで、主原水供給路24を流れる原水を各電解室25,26,27,28に供給可能としている。 As shown in FIG. 3, the downstream ends of the secondary raw water supply path 24a bifurcated are connected to the inlets of the first electrolysis chamber 25 and the fourth electrolysis chamber 28, respectively. The inlets of the chamber 26 and the third electrolysis chamber 27 are respectively connected to the downstream end of the secondary raw water supply path 24b that is bifurcated, so that the raw water flowing through the main raw water supply path 24 is supplied to each electrolysis chamber 25. 26, 27, 28 can be supplied.
 また本実施形態では、還流機能が発揮された際に、主原水供給路24から副原水供給路24aを経て第1の電解室25及び第4の電解室28に流入する流量と、副原水供給路24b及び還流バイパス流路70を経て第2の電解室26及び第3の電解室27に流入する流量とは19.5:0.5~18:2、例えば19:1となるように設定されている。具体的には、副原水供給路24aの分岐部よりも下流側で副原水供給路24bの分岐部よりも上流側の主原水供給路24の流路の中途(例えば、図2及び図3において符号Kで示す位置)に、副原水供給路24aに比して副原水供給路24bの圧力や流量を低下させるオリフィス構造を介設することで実現している。すなわち、このようなオリフィス構造の如き圧力抑制手段は、酸性水還流混合部44cにおける圧力を低下させ、還流バイパス流路70より合流する酸性水側の圧力を相対的に高くすることにより酸性水の循環を補助する役割を有している。 Further, in this embodiment, when the reflux function is exhibited, the flow rate flowing from the main raw water supply path 24 to the first electrolysis chamber 25 and the fourth electrolysis chamber 28 via the sub raw water supply path 24a, and the auxiliary raw water supply The flow rate flowing into the second electrolysis chamber 26 and the third electrolysis chamber 27 through the passage 24b and the reflux bypass flow passage 70 is set to be 19.5: 0.5 to 18: 2, for example, 19: 1. Specifically, in the middle of the flow path of the main raw water supply path 24 downstream of the branch part of the secondary raw water supply path 24a and upstream of the branch part of the secondary raw water supply path 24b (for example, in FIGS. 2 and 3). This is realized by interposing an orifice structure that reduces the pressure and flow rate of the secondary raw water supply path 24b as compared with the secondary raw water supply path 24a at the position indicated by the symbol K). That is, the pressure suppressing means such as the orifice structure reduces the pressure in the acidic water reflux mixing unit 44c and relatively increases the pressure on the acidic water side that joins from the reflux bypass flow path 70 to thereby increase the acid water. It has a role to assist circulation.
 また、主原水供給路24と排水流路18とは、逆止弁41を介して接続されている。すなわち、図4において、主原水供給路24は還流路枝管部44bを通じ排水流路下流部18eに対し逆止弁41を介して接続されている。この逆止弁41は、通水時の水圧がある場合には流路を閉塞して主原水供給路24から排水流路18の方向への水の流れを止めるものであり、また、通水時の水圧が小さい場合には開放状態となり各電解室25,26,27,28や各流路に溜まった水を排水流路18へ流す役割を有している。 The main raw water supply channel 24 and the drain channel 18 are connected via a check valve 41. That is, in FIG. 4, the main raw water supply channel 24 is connected to the drainage channel downstream portion 18e via the check valve 41 through the reflux channel branch pipe portion 44b. The check valve 41 closes the flow path when there is water pressure during water flow, and stops the flow of water from the main raw water supply path 24 toward the drain flow path 18. When the water pressure at that time is small, it is in an open state and has a role of flowing water accumulated in each electrolytic chamber 25, 26, 27, 28 and each flow path to the drain flow path 18.
 かかる電解槽1は、図3に示すように、水道管30から水道蛇口31を介して水の供給を受けているが、水道蛇口31には分岐栓32が配設され、かかる分岐栓32に給水ホース33の一方が接続し、同給水ホース33の他方が浄水部5の流入口と接続されている。 As shown in FIG. 3, the electrolytic cell 1 is supplied with water from a water pipe 30 through a water tap 31, and a branch plug 32 is provided in the water tap 31. One side of the water supply hose 33 is connected, and the other side of the water supply hose 33 is connected to the inlet of the water purification unit 5.
 浄水部5は、活性炭などの多孔質素材が封入されており、水道管30より供給される水に含まれる夾雑物を吸着する吸着手段として機能する。また、浄水部5には金属メッシュや布材、ろ紙などの比較的粗いフィルター以外に中空糸膜のような雑菌等まで除去可能な濾過手段も内蔵されている。こうして、水道管30から供給される水は、浄水部5を通過して浄水化されることになる。 The water purification unit 5 is filled with a porous material such as activated carbon and functions as an adsorbing means for adsorbing impurities contained in the water supplied from the water pipe 30. In addition, the water purification unit 5 incorporates a filtering means capable of removing microbes such as a hollow fiber membrane in addition to a relatively coarse filter such as a metal mesh, cloth material, and filter paper. Thus, the water supplied from the water pipe 30 passes through the water purification unit 5 and is purified.
 また、浄水部5の流出口は流量センサー53の流入口と接続している。流量センサー53は、流水量を測定可能に構成され、例えば、流量センサー53の中央部にプロペラを設け、かかるプロペラの回転数により流水量を測定するものである。流量センサー53の流出口は添加部6の流入口と接続している。 In addition, the outlet of the water purification unit 5 is connected to the inlet of the flow sensor 53. The flow sensor 53 is configured to be able to measure the amount of flowing water. For example, a propeller is provided at the center of the flow sensor 53 and the amount of flowing water is measured based on the number of rotations of the propeller. The outlet of the flow sensor 53 is connected to the inlet of the addition unit 6.
 添加部6には、浄水にカルシウムを添加するためのカルシウム剤が収容されている。カルシウム剤には、乳酸カルシウムやグリセロリン酸カルシウム等が含まれており、カルシウム剤に浄水を接触させて溶出させることで電解物質の少ない水を電気分解しやすくするための促進効果を目的としている。本実施形態では、添加部6を通過した水を原水とし主原水供給路24を通じて電解槽1に供給する。 The addition part 6 contains a calcium agent for adding calcium to the purified water. Calcium agents contain calcium lactate, calcium glycerophosphate, and the like, and are intended to promote the effect of facilitating electrolysis of water with little electrolyte by elution by bringing purified water into contact with the calcium agent. In the present embodiment, the water that has passed through the addition unit 6 is supplied as raw water to the electrolytic cell 1 through the main raw water supply path 24.
 また、本実施形態に係る電解水素水生成器A1に特徴的な構成の一つとして、主原水供給路24の副原水供給路24aや副原水供給路24bよりも上流位置には、取水管17の陰極室加圧部17cよりも下流位置に至るまで原水をバイパスする原水バイパス流路83が接続されており、同原水バイパス流路83には、この原水バイパス流路83を閉鎖・開放するための原水バイパス流路弁83aが介設されている。 In addition, as one of the characteristic configurations of the electrolytic hydrogen water generator A1 according to the present embodiment, the intake pipe 17 is located upstream of the auxiliary raw water supply path 24a and the auxiliary raw water supply path 24b of the main raw water supply path 24. A raw water bypass flow path 83 that bypasses the raw water is connected to a position downstream of the cathode chamber pressurizing portion 17c, and the raw water bypass flow path 83 is closed and opened to the raw water bypass flow path 83. The raw water bypass passage valve 83a is interposed.
 原水バイパス流路弁83aは、制御部7に電気的に接続されており、原水バイパス機能の発揮時には制御部7の制御により開状態に切り替えが行われる。原水バイパス流路弁83aが開状態となると、原水が陰極室加圧部17cよりも下流の取水管17へバイパスされることにより、陰極室加圧部17cによる流量の減少を補うことができる。 The raw water bypass passage valve 83a is electrically connected to the control unit 7, and is switched to the open state by the control of the control unit 7 when the raw water bypass function is exhibited. When the raw water bypass flow path valve 83a is in the open state, the raw water is bypassed to the intake pipe 17 downstream of the cathode chamber pressurizing portion 17c, so that a decrease in the flow rate due to the cathode chamber pressurizing portion 17c can be compensated.
 次に、電解水素水生成器A1の電気的構成について図5を参照しながら説明する。図5は電解水素水生成器A1の電気的構成を示したブロック図である。 Next, the electrical configuration of the electrolytic hydrogen water generator A1 will be described with reference to FIG. FIG. 5 is a block diagram showing an electrical configuration of the electrolytic hydrogen water generator A1.
 図5に示すように制御部7は、その構成としてCPU101、ROM102、RAM103、RTC104等を備えており、電解水素水生成器A1の稼動に必要なプログラムを実行可能としている。 As shown in FIG. 5, the control unit 7 includes a CPU 101, a ROM 102, a RAM 103, an RTC 104, and the like as its configuration, and can execute a program necessary for the operation of the electrolytic hydrogen water generator A1.
 具体的には、ROM102はCPU101の処理において必要なプログラム等が格納されており、RAM103はそのプログラム等の実行に際し一時的な記憶領域として機能する。 Specifically, the ROM 102 stores a program and the like necessary for the processing of the CPU 101, and the RAM 103 functions as a temporary storage area when the program or the like is executed.
 例えばROM102の所定領域には、処理を実現するためのプログラムの他、例えば第1電極板21~第3電極板23に電力を供給するにあたり参照される供給電力値テーブルが格納されている。 For example, in a predetermined area of the ROM 102, in addition to a program for realizing processing, for example, a supply power value table referred to when supplying power to the first electrode plate 21 to the third electrode plate 23 is stored.
 この供給電力値テーブルには、各水生成モードそれぞれについて、基本電力値や加算電力値が設定されている。 The basic power value and the added power value are set for each water generation mode in this supply power value table.
 基本電力値は、溶存量増加ボタンFが押下されていない状態で電解する際の電力値である。また、加算電力値は、溶存量増加ボタンFが押下された際に基本電力値に加算される電力値である。 The basic power value is a power value when electrolysis is performed in a state where the dissolved amount increase button F is not pressed. The added power value is a power value that is added to the basic power value when the dissolved amount increase button F is pressed.
 そして、所定のモードで電解を行うにあたっては、供給電力値テーブルを参照し、そのモードに該当する供給電力値を取得して後述の供給電力調整回路を介して第1電極板21~第3電極板23への電力供給が行われる。例えば、第1レベルのアルカリ性水生成モードで且つ溶存量増加ボタンFが押下されていない場合には、第1レベルのアルカリ性水生成モードの基本電力値が供給電力値となる。また、第3レベルのアルカリ性水生成モードで且つ溶存量増加ボタンFが押下された場合には、第3レベルのアルカリ性水生成モードの基本電力値に、第3レベルのアルカリ性水生成モードの加算電力値を加算して供給電力値が生成される。 When performing electrolysis in a predetermined mode, a supply power value table is referred to, a supply power value corresponding to the mode is obtained, and the first electrode plate 21 to the third electrode are obtained via a supply power adjustment circuit described later. Electric power is supplied to the plate 23. For example, when the dissolved water increase button F is not pressed in the first level alkaline water generation mode, the basic power value of the first level alkaline water generation mode is the supply power value. Further, when the dissolved amount increase button F is pressed in the third level alkaline water generation mode, the added power of the third level alkaline water generation mode is added to the basic power value of the third level alkaline water generation mode. The value is added to generate a supply power value.
 また例えばRAM103の所定領域には、現在選択されている水生成モードを示すモード選択値や、溶存量増加モードであることを示す溶存量増加フラグ、前述の供給電力値テーブルの参照により生成された供給電力値などが記憶される。 Further, for example, the predetermined area of the RAM 103 is generated by referring to the mode selection value indicating the currently selected water generation mode, the dissolved amount increase flag indicating the dissolved amount increasing mode, or the above-described supply power value table. A supply power value and the like are stored.
 モード選択値は、浄水生成モード時に0、強アルカリ水生成モード時に1、第1レベルのアルカリ水生成モード時に2、第2レベルのアルカリ水生成モード時に3、第3レベルのアルカリ水生成モード時に4、酸性水生成モード時に5、強酸性水生成モード時に6の値をとる。また、溶存量増加フラグは溶存量増加モード時にONの値をとる。 The mode selection value is 0 in the purified water production mode, 1 in the strong alkaline water production mode, 2 in the first level alkaline water production mode, 3 in the second level alkaline water production mode, and in the third level alkaline water production mode. 4. It takes a value of 5 in the acidic water production mode and 6 in the strong acid water production mode. The dissolved amount increase flag takes an ON value in the dissolved amount increase mode.
 符号104で示されるRTC(Real Time Clock)は、後述の割込処理を実行するための基準となるクロックパルスを発生させるためのものである。CPU101は、処理を実行している状態であっても、このRTC104から所定の周期(例えば2ミリ秒)毎に発生されるクロックパルスに応じて処理を中断させ割込処理を実行する。 The RTC (Real Time Clock) denoted by reference numeral 104 is used to generate a clock pulse that serves as a reference for executing an interrupt process described later. Even when the CPU 101 is executing a process, the CPU 101 interrupts the process in accordance with a clock pulse generated every predetermined cycle (for example, 2 milliseconds) from the RTC 104 and executes an interrupt process.
 また制御部7の入力側には、電源ボタンB1や各種ボタンB2~B5、アルカリボタン群AL、浄水供給ボタンW、酸性ボタン群Ac、溶存量増加ボタンF、流量センサー53が接続されており、使用者からの入力を受け付けたり、制御部7におけるプログラムの実行状況に応じて参照されるよう構成している。また、電源プラグ8からは商用電源等から受電可能としている。 On the input side of the control unit 7, a power button B1, various buttons B2 to B5, an alkali button group AL, a purified water supply button W, an acid button group Ac, a dissolved amount increase button F, and a flow sensor 53 are connected. It is configured to receive input from the user and to be referred to according to the program execution status in the control unit 7. The power plug 8 can receive power from a commercial power source or the like.
 また、制御部7の出力側には、表示部Dや陰極室加圧部17c、陽極室加圧ユニット71、原水バイパス流路弁83a、各ランプ類L1~L10、第1電極板21、第2電極板22、第3電極板23が接続されており、制御部7におけるプログラムの実行状況に応じて制御駆動するよう構成している。 Further, on the output side of the control unit 7, the display unit D, the cathode chamber pressurizing unit 17c, the anode chamber pressurizing unit 71, the raw water bypass passage valve 83a, the lamps L1 to L10, the first electrode plate 21, the first electrode plate 21, and the like. A two-electrode plate 22 and a third electrode plate 23 are connected, and are configured to be controlled and driven according to the program execution status in the control unit 7.
 また、制御部7には、極性切替回路105が備えられている。この極性切替回路105は、CPU101の命令により第1電極板21と、第2及び第3電極板22,23との正負の極性切替を行う。 In addition, the control unit 7 includes a polarity switching circuit 105. The polarity switching circuit 105 performs positive / negative polarity switching between the first electrode plate 21 and the second and third electrode plates 22 and 23 according to a command from the CPU 101.
 また、制御部7には、供給電力調整回路106が備えられている。この供給電力調整回路106は、CPU101の命令によりRAM103に記憶されている供給電力値を参照し、第1電極板21と、第2及び第3電極板22,23とに電力を付与する。 Further, the control unit 7 is provided with a supply power adjustment circuit 106. The supply power adjustment circuit 106 refers to the supply power value stored in the RAM 103 according to a command from the CPU 101 and applies power to the first electrode plate 21 and the second and third electrode plates 22 and 23.
 次に、制御部7において実行される処理について、図6及び図7を参照しつつ説明する。図6は制御部7のCPU101にて実行されるメイン処理を示したフローであり、図7はサブルーチンでの処理を示したフローである。なお、本実施形態に係る電解水素水生成器A1では、例えば使用者がORP表示ボタンB2を押下すれば表示部DにORP値が表示されたり、浄水カートリッジの交換時期がくれば所定のランプが点灯するなど様々な機能が実装されているが、ここでは電解水の生成処理を中心に説明し、付帯機能の処理については説明を省略する。 Next, processing executed in the control unit 7 will be described with reference to FIGS. FIG. 6 is a flow showing main processing executed by the CPU 101 of the control unit 7, and FIG. 7 is a flow showing processing in a subroutine. In the electrolyzed hydrogen water generator A1 according to the present embodiment, for example, when the user presses the ORP display button B2, the ORP value is displayed on the display unit D, or when the time for replacement of the water purification cartridge comes, a predetermined lamp is emitted. Various functions such as lighting are mounted, but here, the description will focus on the electrolyzed water generation process, and the description of the incidental function process will be omitted.
 図6に示すように、メイン処理においてCPU101はまず、電源ボタンB1が押下されたか否かについて判断を行う(ステップS11)。ここで電源ボタンB1が押下されていないと判断した場合(ステップS11:No)には、CPU101は処理を再びステップS11へ戻す。一方、電源ボタンB1が押下されたと判断した場合(ステップS11:Yes)には、CPU101は処理をステップS12へ移す。 As shown in FIG. 6, in the main process, the CPU 101 first determines whether or not the power button B1 has been pressed (step S11). If it is determined that the power button B1 has not been pressed (step S11: No), the CPU 101 returns the process to step S11 again. On the other hand, when determining that the power button B1 is pressed (step S11: Yes), the CPU 101 shifts the processing to step S12.
 ステップS12においてCPU101は、初期設定処理を行う。本実施形態に係る電解水素水生成器A1では、一例として電源投入後は浄水生成モードで立ち上がることとしており、モード選択値を0、原水バイパス流路弁83aを閉状態、陰極室加圧部17cを非加圧状態(開状態)、陽極室加圧ユニット71を非加圧状態、溶存量増加フラグをOFF、ランプL10を消灯、供給電力値を0に設定し、表示部Dに浄水生成モードである旨の表示を行う。 In step S12, the CPU 101 performs an initial setting process. In the electrolyzed hydrogen water generator A1 according to the present embodiment, as an example, the power is turned on to start up in the purified water generation mode, the mode selection value is 0, the raw water bypass passage valve 83a is closed, and the cathode chamber pressurizing unit 17c. Is in the non-pressurized state (open state), the anode chamber pressurizing unit 71 is in the non-pressurized state, the dissolved amount increase flag is turned off, the lamp L10 is turned off, the power supply value is set to 0, and the purified water generation mode is displayed on the display unit D Is displayed.
 次にCPU101は、浄水供給ボタンWが押下されたか否かについて判断を行う(ステップS13)。ここで浄水供給ボタンWが押下されたと判断した場合(ステップS13:Yes)には、CPU101は処理を再びステップS12へ移し、電解水素水生成器A1を浄水生成モードの状態とする。一方、浄水供給ボタンWが押下されていないと判断した場合(ステップS13:No)には、CPU101は処理をステップS14へ移す。 Next, the CPU 101 determines whether or not the purified water supply button W has been pressed (step S13). If it is determined that the purified water supply button W has been pressed (step S13: Yes), the CPU 101 moves the process to step S12 again, and sets the electrolytic hydrogen water generator A1 to the purified water generation mode. On the other hand, if it is determined that the purified water supply button W has not been pressed (step S13: No), the CPU 101 moves the process to step S14.
 ステップS14においてCPU101は、アルカリボタン群ALが押下されたか否かについて判断を行う。ここでアルカリボタン群ALが押下されていないと判断した場合(ステップS14:No)には、CPU101はステップS16へ処理を移す。一方、アルカリボタン群ALが押下されたと判断した場合(ステップS14:Yes)には、CPU101は、ステップS15へ処理を移す。 In step S14, the CPU 101 determines whether or not the alkali button group AL has been pressed. If it is determined that the alkali button group AL has not been pressed (step S14: No), the CPU 101 moves the process to step S16. On the other hand, if it is determined that the alkali button group AL has been pressed (step S14: Yes), the CPU 101 moves the process to step S15.
 ステップS15においてCPU101は、第1電極板21が陰極、第2及び第3電極板22,23が陽極となるよう極性切替回路105に対して指示を行うと共に、押下されたボタンが強アルカリ性水供給ボタンAL0であれば1に、第1レベルのアルカリ性水供給ボタンAL1であれば2に、第2レベルのアルカリ性水供給ボタンAL2であれば3に、第3レベルのアルカリ性水供給ボタンAL3であれば4にモード選択値の設定を行う。 In step S15, the CPU 101 instructs the polarity switching circuit 105 so that the first electrode plate 21 is a cathode and the second and third electrode plates 22 and 23 are anodes, and the pressed button supplies strong alkaline water. 1 for the button AL0, 2 for the first level alkaline water supply button AL1, 3 for the second level alkaline water supply button AL2, and 3 for the third level alkaline water supply button AL3. 4 sets the mode selection value.
 また、ステップS15においてCPU101は、ランプL10を点灯させ、表示部Dに押下されたボタンに応じたモードの表示を行いアルカリ性水生成モードに移行している旨を使用者に報知し、処理をステップS16へ移す。 In step S15, the CPU 101 turns on the lamp L10, displays a mode corresponding to the button pressed on the display unit D, notifies the user that the mode is shifted to the alkaline water generation mode, and performs the processing step. Move to S16.
 ステップS16においてCPU101は、酸性ボタン群Acが押下されたか否かについて判断を行う。ここで酸性ボタン群Acが押下されていないと判断した場合(ステップS16:No)には、CPU101は処理をステップS18へ移す。一方、酸性ボタン群Acが押下されたと判断した場合(ステップS16:Yes)には、CPU101は処理をステップS17へ移す。 In step S16, the CPU 101 determines whether or not the acidic button group Ac has been pressed. If it is determined that the acidic button group Ac is not pressed (step S16: No), the CPU 101 moves the process to step S18. On the other hand, when determining that the acidic button group Ac has been pressed (step S16: Yes), the CPU 101 shifts the processing to step S17.
 ステップS17においてCPU101は、第1電極板21が陽極、第2及び第3電極板22,23が陰極となるよう極性切替回路105に対して指示を行うと共に、押下されたボタンが酸性水供給ボタンAc1であれば5に、強酸性水供給ボタンAc2であれば6にモード選択値の設定を行う。 In step S17, the CPU 101 instructs the polarity switching circuit 105 so that the first electrode plate 21 is an anode and the second and third electrode plates 22 and 23 are cathodes, and the pressed button is an acidic water supply button. The mode selection value is set to 5 for Ac1 and to 6 for strong acidic water supply button Ac2.
 また、ステップS17においてCPU101は、ランプL10を点灯し、表示部Dに押下されたボタンに応じたモードの表示を行い酸性水生成モードに移行している旨を使用者に報知し、処理をステップS18へ移す。 In step S <b> 17, the CPU 101 turns on the lamp L <b> 10, displays a mode corresponding to the button pressed on the display unit D, notifies the user that the mode is shifted to the acidic water generation mode, and performs processing. Move to S18.
 ステップS18においてCPU101は、溶存量増加ボタンFが押下されたか否かについて判断を行う。ここで溶存量増加ボタンFが押下されていないと判断した場合(ステップS18:No)には、CPU101はステップS13に処理を移す。一方、溶存量増加ボタンFが押下されたと判断した場合(ステップS18:Yes)には、CPU101は処理をステップS19へ移す。 In step S18, the CPU 101 determines whether or not the dissolved amount increase button F has been pressed. If it is determined that the dissolved amount increase button F is not pressed (step S18: No), the CPU 101 moves the process to step S13. On the other hand, if it is determined that the dissolved amount increase button F has been pressed (step S18: Yes), the CPU 101 moves the process to step S19.
 ステップS19においてCPU101は、RAM103の所定アドレスを参照し、モード選択値の値が0であるか否か、すなわち、浄水生成モードであるか否かについて判断を行う。ここでモード選択値の値が0であると判断した場合(ステップS19:Yes)には、CPU101はステップS13へ処理を移す。一方、モード選択値の値が0ではないと判断した場合(ステップS19:No)には、CPU101は処理をステップS20へ移す。 In step S19, the CPU 101 refers to a predetermined address in the RAM 103, and determines whether or not the value of the mode selection value is 0, that is, whether or not it is the purified water generation mode. If it is determined that the mode selection value is 0 (step S19: Yes), the CPU 101 moves the process to step S13. On the other hand, when determining that the value of the mode selection value is not 0 (step S19: No), the CPU 101 shifts the processing to step S20.
 ステップS20においてCPU101は、陰極室加圧部17cを加圧状態に切替を行い、これと略同時に陽極室加圧ユニット71についても加圧状態に切替をおこなって、陰極室や陽極室が加圧されるようにする。 In step S20, the CPU 101 switches the cathode chamber pressurizing unit 17c to the pressurized state, and at the same time, switches the anode chamber pressurizing unit 71 to the pressurized state so that the cathode chamber and the anode chamber are pressurized. To be.
 また、ステップS20においてCPU101は、原水バイパス流路弁83aを開状態に切り替え、溶存量増加フラグをONとした上で表示部Dに溶存量増加モードに移行している旨を表示し、処理をステップS13へ移す。なお、ステップS20を実行する際に、既に溶存量増加フラグがONである場合には、CPU101は溶存量増加フラグをOFFとした上で陰極室加圧部17cや陽極室加圧ユニット71を非加圧状態に、原水バイパス流路弁83aを閉状態に切り替え、溶存量増加モードから離脱して、モード選択値に応じた通常の生成モードである旨を表示部Dに表示する。以下、溶存量増加モード離脱処理という。 In step S20, the CPU 101 switches the raw water bypass flow path valve 83a to the open state, sets the dissolved amount increase flag to ON, displays the fact that the display unit D is in the dissolved amount increase mode, and performs processing. Move to step S13. When executing the step S20, if the dissolved amount increase flag is already ON, the CPU 101 turns off the dissolved amount increase flag and turns off the cathode chamber pressurizing unit 17c and the anode chamber pressurizing unit 71. The raw water bypass flow path valve 83a is switched to the closed state in the pressurized state, and the display unit D displays that the normal generation mode according to the mode selection value is released from the dissolved amount increase mode. Hereinafter, the dissolved amount increase mode separation process is referred to.
 次に、図7を参照しつつ割込処理について説明する。CPU101は、処理を実行している状態であっても処理を中断させ割込処理を実行する場合がある。RTC104から所定の周期(例えば2ミリ秒)毎に発生されるクロックパルスに応じて、以下の割込処理を実行する。 Next, the interrupt process will be described with reference to FIG. Even when the CPU 101 is executing a process, the CPU 101 may interrupt the process and execute an interrupt process. The following interrupt processing is executed in accordance with a clock pulse generated every predetermined period (for example, 2 milliseconds) from the RTC 104.
 割込処理においてCPU101は、使用者により電源ボタンB1が長押し(例えば2秒)されたか否かについて判断を行う(ステップS31)。ここで電源ボタンB1の長押しが検出されたと判断した場合(ステップS31:Yes)には、CPU101は供給電力調整回路106に対して電力の供給を停止する命令をするなど、終了動作に必要な処理を行い(ステップS32)、処理を終了する。終了後は例えば、ステップS11のループへ戻し、電源の再投入まで待機するようにしても良い。 In the interruption process, the CPU 101 determines whether or not the power button B1 has been pressed long (for example, 2 seconds) by the user (step S31). If it is determined that a long press of the power button B1 has been detected (step S31: Yes), the CPU 101 issues a command for stopping the supply of power to the supply power adjustment circuit 106, which is necessary for the end operation. Processing is performed (step S32), and the processing is terminated. After completion, for example, the process may return to the loop of step S11 and wait until the power is turned on again.
 一方、ステップS31において電源ボタンB1の長押しが検出されていないと判断した場合(ステップS31:No)には、CPU101は処理をステップS33へ移す。 On the other hand, if it is determined in step S31 that the long press of the power button B1 has not been detected (step S31: No), the CPU 101 moves the process to step S33.
 ステップS33においてCPU101は、流量センサー53からの入力信号の有無を確認し、水流が検出されたか否かについて判断を行う。ここで水流が検出されていないと判断した場合(ステップS33:No)には、CPU101は処理をステップS34へ移す。 In step S33, the CPU 101 checks whether or not there is an input signal from the flow sensor 53, and determines whether or not a water flow is detected. If it is determined that no water flow is detected (step S33: No), the CPU 101 moves the process to step S34.
 ステップS34においてCPU101は、供給電力調整回路106に対し、電力供給の停止を命令し、分岐前のアドレスに処理を戻す。 In step S34, the CPU 101 instructs the supply power adjustment circuit 106 to stop power supply, and returns the process to the address before branching.
 一方、ステップS33において水流が検出されたと判断した場合(ステップS33:Yes)には、CPU101は処理をステップS35へ移す。 On the other hand, if it is determined in step S33 that a water flow has been detected (step S33: Yes), the CPU 101 moves the process to step S35.
 ステップS35においてCPU101は、RAM103の所定アドレスを参照し、モード選択値が0であるか否か、すなわち、浄水生成モードであるか否かについて判断を行う。ここでモード選択値が0であると判断した場合(ステップS35:Yes)には、CPU101は処理をステップS34へ移す。一方、モード選択値が0ではないと判断した場合(ステップS35:No)には、CPU101は処理をステップS36へ移す。 In step S35, the CPU 101 refers to a predetermined address in the RAM 103, and determines whether or not the mode selection value is 0, that is, whether or not it is the purified water generation mode. If it is determined that the mode selection value is 0 (step S35: Yes), the CPU 101 moves the process to step S34. On the other hand, when determining that the mode selection value is not 0 (step S35: No), the CPU 101 shifts the processing to step S36.
 ステップS36においてCPU101は、ROM102の所定アドレスに記憶されている供給電力値テーブルからモード選択値に応じた基本電力値を読み出し、RAM103の所定アドレスに供給電力値として設定する。 In step S <b> 36, the CPU 101 reads a basic power value corresponding to the mode selection value from the supply power value table stored in the predetermined address of the ROM 102, and sets it as a supply power value in the predetermined address of the RAM 103.
 次にCPU101は、RAM103の所定アドレスを参照し、溶存量増加フラグがONであるか否かについて判断を行う。ここで溶存量増加フラグがONではないと判断した場合(ステップS37:No)には、CPU101は処理をステップS41へ移す。一方、溶存量増加フラグがONであると判断した場合(ステップS37:Yes)には、CPU101は処理をステップS38へ移す。 Next, the CPU 101 refers to a predetermined address in the RAM 103 and determines whether or not the dissolved amount increase flag is ON. If it is determined that the dissolved amount increase flag is not ON (step S37: No), the CPU 101 moves the process to step S41. On the other hand, when it is determined that the dissolved amount increase flag is ON (step S37: Yes), the CPU 101 moves the process to step S38.
 ステップS38においてCPU101は、ROM102の供給電力値テーブルを参照してモード選択値に応じた加算電力値を供給電力値に加算し、処理をステップS41へ移す。 In step S38, the CPU 101 refers to the supply power value table in the ROM 102, adds the added power value corresponding to the mode selection value to the supply power value, and moves the process to step S41.
 ステップS41においてCPU101は、RAM103の所定アドレスを参照して供給電力値を取得し、取得した供給電力値にて電力供給を行うよう供給電力調整回路106に対して指示を行い、分岐前のアドレスに処理を戻す。 In step S41, the CPU 101 obtains a supply power value with reference to a predetermined address in the RAM 103, instructs the supply power adjustment circuit 106 to supply power with the obtained supply power value, and sets the address before branching. Return processing.
 次に、上述してきた構成を備える電解水素水生成器A1における一連の動作について説明する。 Next, a series of operations in the electrolytic hydrogen water generator A1 having the above-described configuration will be described.
 商用電源等に電源プラグ8を接続した状態の電解水素水生成器A1において、使用者が電源ボタンB1を押下すると、電解水素水生成器A1は浄水生成モードの状態で立ち上がり、通水又はボタン入力の待ち受け状態となる。 In the electrolytic hydrogen water generator A1 with the power plug 8 connected to a commercial power source or the like, when the user presses the power button B1, the electrolytic hydrogen water generator A1 starts up in the state of the purified water generation mode, and water or button input It will be in the standby state.
 使用者が水道蛇口31を開けて通水させると、原水は電解部4において電解されることなく電解水素水吐出口17aを通じ、非加圧状態の陰極室加圧部17cを介して取水管17より浄水として吐出される。 When the user opens the water faucet 31 and allows water to pass, the raw water is not electrolyzed in the electrolysis unit 4, and passes through the electrolytic hydrogen water discharge port 17 a, through the non-pressurized cathode chamber pressurization unit 17 c and the intake pipe 17. More discharged as purified water.
 この状態において使用者がアルカリボタン群AL、例えば第1レベルのアルカリ性水供給ボタンAL1を押下すると、電解水素水生成器A1は第1レベルのアルカリ性水生成モードとなり、取水管17からは第1レベルのアルカリ性水が吐出される。 In this state, when the user depresses the alkali button group AL, for example, the first level alkaline water supply button AL1, the electrolytic hydrogen water generator A1 enters the first level alkaline water generation mode, and the intake pipe 17 starts the first level. Of alkaline water is discharged.
 ここで、使用者が溶存量増加ボタンFを押下すると、制御部7は圧力可変機構を有する陰極室加圧手段としての陰極室加圧部17cを加圧状態に切り替えるとともに原水バイパス流路弁83aを開状態とし、陰極室加圧部17cによる流量の減少を補い、これと略同時に圧力可変機構を有する陽極室加圧手段としての陽極室加圧ユニット71についても加圧状態に切替が行われる。 Here, when the user depresses the dissolved amount increase button F, the control unit 7 switches the cathode chamber pressurizing unit 17c as the cathode chamber pressurizing means having the pressure variable mechanism to the pressurizing state and the raw water bypass passage valve 83a. The anode chamber pressurizing unit 71 as the anode chamber pressurizing means having the pressure variable mechanism is switched to the pressurizing state substantially simultaneously with the decrease in the flow rate by the cathode chamber pressurizing portion 17c. .
 従って、電解水素水吐出口17aを通過した水素気泡を含む第1レベルのアルカリ性水は加圧状態の陰極室加圧部17cに流入し、微細化気泡生成管の機能により水素気泡のマイクロバブル化やナノバブル化が行われ、水素が豊富に溶存した第1レベルのアルカリ性水が電解水素水として取水管17より吐出されるが、陰極室加圧部17cにより流量が絞られたにもかかわらず原水がバイパスされることで、溶存量増加ボタンFを押さない場合と略同量の取水を得られる。 Accordingly, the first level alkaline water including the hydrogen bubbles that have passed through the electrolytic hydrogen water discharge port 17a flows into the pressurized cathode chamber pressurizing portion 17c, and hydrogen bubbles are converted into microbubbles by the function of the miniaturized bubble generating tube. The first-level alkaline water in which hydrogen is dissolved in abundantly is discharged from the intake pipe 17 as electrolytic hydrogen water, although the flow rate is reduced by the cathode chamber pressurizing portion 17c. Is bypassed, approximately the same amount of water intake can be obtained as when the dissolved amount increase button F is not pressed.
 なお、この場合、原水によりアルカリ水の場合pHが低下することになるが、溶存水素向上のための電解制御を行っているため、むしろ過度なpH向上を抑制でき、結局、使用者にとっては溶存量が増加した水を取水状態やpHに変化なく得られるという効果がある。 In this case, the pH of the alkaline water is lowered by the raw water, but since the electrolytic control is performed to improve the dissolved hydrogen, the excessive pH increase can be suppressed. There is an effect that the increased amount of water can be obtained without changing the water state or pH.
 また、陰極室内の圧力上昇に由来して、電解水素水としてのアルカリ性水に含まれる水素気泡の溶解性が向上し、気泡溶解促進機能が発揮されて更に溶存水素量が高められることとなる。 Also, due to the pressure increase in the cathode chamber, the solubility of hydrogen bubbles contained in alkaline water as electrolytic hydrogen water is improved, the function of promoting bubble dissolution is exhibited, and the amount of dissolved hydrogen is further increased.
 また、陽極室内の内圧向上により隔膜12を介して陽極室内容水を陰極室側へリークさせ、陰極室内容水をリークさせた陽極室内容水によって中和することができ、比較的pHの低い電解水素水を生成できる。 Further, by improving the internal pressure in the anode chamber, the anode chamber content water can be leaked to the cathode chamber side through the diaphragm 12, and the cathode chamber content water can be neutralized by the leaked anode chamber content water, which has a relatively low pH. Electrolytic hydrogen water can be generated.
 また、溶存量増加ボタンFの押下により、供給電力値が第1レベルのアルカリ性水の基本電力値に加算電力値を加えた値となるため、電解電力が向上する。 Further, when the dissolved amount increase button F is pressed, the supplied power value becomes a value obtained by adding the added power value to the basic power value of the first level alkaline water, so that the electrolysis power is improved.
 従って、第2及び第3電極板22,23からはより多くの水素ガスが生成されることとなり、更なる水素含量の向上が図られることとなる。 Therefore, more hydrogen gas is generated from the second and third electrode plates 22 and 23, and the hydrogen content is further improved.
 また、溶存量増加ボタンFの押下により、制御部7は原水バイパス流路弁83aを開状態とし、主原水供給路24を流れる原水の一部を原水バイパス流路83を介して陰極室加圧手段としての陰極室加圧部17cよりも下流側へ通水させ、原水バイパス機能が発揮される。 In addition, when the dissolved amount increase button F is pressed, the control unit 7 opens the raw water bypass flow path valve 83 a, and pressurizes the cathode chamber through the raw water bypass flow path 83 through a part of the raw water flowing through the main raw water supply path 24. Water is passed downstream from the cathode chamber pressurizing portion 17c as a means, and the raw water bypass function is exhibited.
 従って、取水管17から吐出される電解水素水は希釈されつつも増量することとなり、比較的pHが低く、陽極室加圧手段や陰極室加圧手段を備えない状態で原水をバイパスさせた場合に比して水素含量の高い電解水素水を多量に供給することができる。 Accordingly, the amount of electrolytic hydrogen water discharged from the intake pipe 17 increases while being diluted. When the raw water is bypassed in a state where the pH is relatively low and the anode chamber pressurizing means and the cathode chamber pressurizing means are not provided. Compared to the above, it is possible to supply a large amount of electrolytic hydrogen water having a high hydrogen content.
 また、溶存量増加ボタンFの押下により陽極室加圧ユニット71が加圧状態に切り替えられると、排水流路18を流れる酸性水の一部が還流バイパス流路70を介して原水と混合されて陽極室に還流され、還流機能が発揮されることとなる。 Further, when the anode chamber pressurizing unit 71 is switched to the pressurized state by pressing the dissolved amount increase button F, a part of the acidic water flowing through the drainage flow path 18 is mixed with the raw water via the reflux bypass flow path 70. It is refluxed to the anode chamber and the reflux function is exhibited.
 また、供給電力値が第1レベルのアルカリ性水の基本電力値に加算電力値を加えた値となっているため、電解電力が向上している。 Also, since the power supply value is a value obtained by adding the additional power value to the basic power value of the first level alkaline water, the electrolysis power is improved.
 そして、還流バイパス流路70は、陰極室内の水のpHをより低い状態とすることができるので、電解電力が向上しているにもかかわらず隔膜12を介した陰極室内容水のpH抑制を更に効果的なものとすることができる。 And since the reflux bypass flow path 70 can make the pH of the water in the cathode chamber lower, the pH of the water in the cathode chamber can be suppressed through the diaphragm 12 even though the electrolysis power is improved. It can be made more effective.
 したがって、陰極室内の圧力上昇に由来して、電解水素水としてのアルカリ性水に含まれる水素気泡の溶解性が向上するだけでなく、電解電力の向上により第2及び第3電極板22,23からはより多くの水素ガスが生成され更に溶存水素量が高められることとなる。 Therefore, due to the pressure increase in the cathode chamber, not only the solubility of hydrogen bubbles contained in the alkaline water as the electrolytic hydrogen water is improved, but also from the second and third electrode plates 22 and 23 by the improvement of the electrolysis power. More hydrogen gas is produced and the amount of dissolved hydrogen is further increased.
 なお、これらの動作は第1レベルのアルカリ性水生成モードに限定されるものではなく、他の第2や第3レベルのアルカリ性水生成モードや強アルカリ性水生成モードは勿論のこと、前述のフロー等が許容する範囲内で酸性水生成モードや強酸性水生成モードにおいても同様に、酸素を豊富に含んだ酸性水を吐出させることも可能である。 Note that these operations are not limited to the first level alkaline water generation mode, and the above-described flow, as well as other second and third level alkaline water generation modes and strong alkaline water generation modes. In the acid water generation mode and the strong acid water generation mode, the acid water containing abundant oxygen can be discharged in the same manner within the allowable range.
 次に、第2実施形態に係る電解水素水生成器A2について図8を参照しながら説明する。この電解水素水生成器A2は、前述の電解水素水生成器A1と略同様の構成を備えているが、還流機能を備えておらず電解水素水生成器A1に比して構成をシンプルにした点で特徴的である。なお、以下の説明において電解水素水生成器A1と同様の構成については、同じ符号を付して説明を省略する。 Next, an electrolytic hydrogen water generator A2 according to the second embodiment will be described with reference to FIG. This electrolytic hydrogen water generator A2 has substantially the same configuration as the above-described electrolytic hydrogen water generator A1, but does not have a reflux function, and has a simpler configuration than the electrolytic hydrogen water generator A1. Characteristic in terms. In addition, in the following description, about the structure similar to the electrolytic hydrogen water generator A1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図8に示す電解水素水生成器A2は、電解水素水生成器A1と比較して、還流バイパス流路70を備えておらず、また、排水流路18の中途には陽極室加圧手段として機能する陽極室加圧ユニット91が備えられている。 The electrolytic hydrogen water generator A2 shown in FIG. 8 does not include the reflux bypass passage 70 as compared with the electrolytic hydrogen water generator A1, and also serves as an anode chamber pressurizing means in the middle of the drainage passage 18. A functioning anode chamber pressurizing unit 91 is provided.
 陽極室加圧ユニット91は圧力可変機構を備えており、制御部7と電気的に接続されているが、圧力可変機構のない通常の加圧機構であってもよい。 The anode chamber pressurizing unit 91 includes a variable pressure mechanism and is electrically connected to the control unit 7, but may be a normal pressurizing mechanism without a variable pressure mechanism.
 また、図6に示したメイン処理におけるステップS20に代えて、図9に示すステップS21を実行するよう構成している。 Further, instead of step S20 in the main process shown in FIG. 6, step S21 shown in FIG. 9 is executed.
 そして、このような構成を備える電解水素水生成器A2の動作について説明すると、例えば電解水素水生成器A2の第2レベルのアルカリ性水供給ボタンAL2を押下して第1電極板21を陽極、第2電極板22及び第3電極板23を陰極として通電しつつ主原水供給路24を介して電解部4に原水を供給すると、陽極室加圧ユニット91の存在により陽極室内圧が高められ、陽極室内容水が隔膜を介して陰極室内にリークすることで陰極室内のpHの上昇が抑制される。 Then, the operation of the electrolytic hydrogen water generator A2 having such a configuration will be described. For example, the second level alkaline water supply button AL2 of the electrolytic hydrogen water generator A2 is pressed to make the first electrode plate 21 the anode, When raw water is supplied to the electrolysis unit 4 through the main raw water supply path 24 while energizing with the two-electrode plate 22 and the third electrode plate 23 as cathodes, the presence of the anode chamber pressurizing unit 91 increases the anode chamber pressure, The water in the chamber leaks into the cathode chamber through the diaphragm, thereby suppressing an increase in pH in the cathode chamber.
 ここで使用者により溶存量増加ボタンFが更に押下されると、制御部7は圧力可変機構を有する陰極室加圧手段としての陰極室加圧部17cを加圧状態に切り替える。このタイミングで陽極室加圧ユニット91が加圧状態となるような制御を行うことが望ましいが、陽極室加圧ユニット91が常時加圧状態であっても良い。 Here, when the dissolved amount increase button F is further pressed by the user, the control unit 7 switches the cathode chamber pressurizing unit 17c as the cathode chamber pressurizing means having the pressure variable mechanism to the pressurizing state. Although it is desirable to perform control so that the anode chamber pressurizing unit 91 is in a pressurized state at this timing, the anode chamber pressurizing unit 91 may be in a constantly pressurized state.
 これに伴い、気泡溶解促進機能が発揮され、第2電極板22及び第3電極板23にて生成された水素ガスの溶解が助長されて、取水管17から水素溶存量が高められた電解水素水としてのアルカリ性水が吐出されることとなる。 Along with this, the function of promoting the dissolution of bubbles is exhibited, the dissolution of hydrogen gas generated by the second electrode plate 22 and the third electrode plate 23 is promoted, and the amount of hydrogen dissolved from the intake pipe 17 is increased. Alkaline water as water is discharged.
 また、溶存量増加ボタンFの押下により、供給電力値が第2レベルのアルカリ性水の基本電力値に加算電力値を加えた値となるため電解電力が向上しており、第2及び第3電極板22,23からはより多くの水素ガスが生成されることとなって、更なる水素含量の向上が図られることとなる。 Further, when the dissolved amount increase button F is pressed, the supply power value becomes a value obtained by adding the additional power value to the basic power value of the second level alkaline water, so that the electrolysis power is improved, and the second and third electrodes More hydrogen gas is generated from the plates 22 and 23, and the hydrogen content is further improved.
 また、溶存量増加ボタンFの押下により、制御部7は原水バイパス流路弁83aを開状態とすることで原水バイパス機能が発揮され、取水管17から吐出される電解水素水は増量することとなる。 Further, when the dissolved amount increase button F is pressed, the control unit 7 opens the raw water bypass flow path valve 83a so that the raw water bypass function is exhibited, and the amount of electrolytic hydrogen water discharged from the intake pipe 17 increases. Become.
 このように、電解水素水生成器A2の様な構成によっても、本発明を実現することが可能である。 Thus, the present invention can also be realized by a configuration such as the electrolytic hydrogen water generator A2.
 次に、第3実施形態に係る電解水素水生成器A3について図10を参照しながら説明する。この電解水素水生成器A3は、前述の電解水素水生成器A1と略同様の構成を備えているが、還流機能と原水バイパス機能とを備えておらず電解水素水生成器A1や電解水素水生成器A2に比して、構成を更にシンプルにした点で特徴的である。 Next, an electrolytic hydrogen water generator A3 according to the third embodiment will be described with reference to FIG. The electrolytic hydrogen water generator A3 has substantially the same configuration as the above-described electrolytic hydrogen water generator A1, but does not have a reflux function and a raw water bypass function, and the electrolytic hydrogen water generator A1 and the electrolytic hydrogen water. Compared to the generator A2, the configuration is further simplified.
 図10に示す電解水素水生成器A3は、電解水素水生成器A1と比較して、原水バイパス流路83や還流バイパス流路70を備えておらず、吐出配管17dの中途には陰極室加圧手段として機能する陰極室加圧ユニット90が備えられ、また、排水流路18の中途には陽極室加圧手段として機能する陽極室加圧ユニット91が備えられている。 Compared with the electrolytic hydrogen water generator A1, the electrolytic hydrogen water generator A3 shown in FIG. 10 does not include the raw water bypass flow path 83 and the reflux bypass flow path 70, and the cathode chamber is not provided in the middle of the discharge pipe 17d. A cathode chamber pressurizing unit 90 functioning as a pressure means is provided, and an anode chamber pressurizing unit 91 functioning as an anode chamber pressurizing means is provided in the middle of the drainage flow path 18.
 陰極室加圧ユニット90は圧力可変機構を備えるものではなく、また微細化気泡生成管としての機能も殆ど有していない図1(c)に示した構造を備えるユニットであって、制御部7とは電気的に接続されていない。 The cathode chamber pressurizing unit 90 does not include a pressure variable mechanism, and is a unit having the structure shown in FIG. 1C that has almost no function as a miniaturized bubble generating tube. And are not electrically connected.
 また、陽極室加圧ユニット91についても圧力可変機構を備えるものではなく、一般的な制限オリフィスであり、制御部7とは電気的に接続されていないが、上記第1実施形態に示す還流バイパス流路70のような加圧機構を備えても良い。 Further, the anode chamber pressurizing unit 91 is not provided with a pressure variable mechanism, but is a general limiting orifice, and is not electrically connected to the control unit 7, but the reflux bypass shown in the first embodiment. A pressurizing mechanism such as the flow path 70 may be provided.
 また、電解水素水生成器A3の操作パネルPには溶存量増加ボタンFが設けられておらず、図6に示したメイン処理におけるステップS18~S20は実行されることなくステップS13へループし、また、図7に示した割込処理におけるステップS37及びステップS38も実行されないよう構成している。 The operation panel P of the electrolyzed hydrogen water generator A3 is not provided with the dissolved amount increase button F, and steps S18 to S20 in the main process shown in FIG. In addition, step S37 and step S38 in the interrupt process shown in FIG. 7 are not executed.
 そして、このような構成を備える電解水素水生成器A3の動作について説明すると、第1電極板21を陽極、第2電極板22及び第3電極板23を陰極として通電しつつ主原水供給路24を介して電解部4に原水を供給すると、陰極室加圧ユニット90により陰極室としての第1電解室25及び第4電解室28の内圧が高められ、気泡溶解促進機能により第2電極板22及び第3電極板23にて生成された水素ガスの溶解が助長されて、取水管17から水素溶存量が高められた電解水素水としてのアルカリ性水が吐出されることとなる。 The operation of the electrolytic hydrogen water generator A3 having such a configuration will be described. The main raw water supply path 24 while energizing the first electrode plate 21 as an anode and the second electrode plate 22 and the third electrode plate 23 as cathodes. When the raw water is supplied to the electrolysis unit 4 via the cathode chamber, the internal pressure of the first electrolysis chamber 25 and the fourth electrolysis chamber 28 as the cathode chamber is increased by the cathode chamber pressurizing unit 90, and the second electrode plate 22 is enhanced by the bubble dissolution promoting function. And the dissolution of the hydrogen gas produced | generated in the 3rd electrode plate 23 is encouraged, and the alkaline water as the electrolysis hydrogen water by which the hydrogen dissolved amount was raised from the intake pipe 17 will be discharged.
 またこのとき、陽極室加圧ユニット91により第2電解室26や第3電解室27、排水流路18の内圧も高められているため、隔膜12を介した陽極室側への陰極室内容液のリークや、陰極室への原水流入不足が回避され、陰極室内圧向上による溶存水素効率の向上効果を堅実に享受することができる。 At this time, since the internal pressures of the second electrolysis chamber 26, the third electrolysis chamber 27, and the drainage channel 18 are also increased by the anode chamber pressurizing unit 91, the cathode chamber content liquid to the anode chamber side through the diaphragm 12 is increased. Leakage and insufficient inflow of raw water into the cathode chamber can be avoided, and the effect of improving dissolved hydrogen efficiency by improving the pressure in the cathode chamber can be steadily enjoyed.
 また、陰極室加圧ユニット90が生起する背圧よりも陽極室加圧ユニット91が生起する背圧が高くなるようにすれば、隔膜12を介して陽極室内容液を陰極室内に浸入させることができ、陰極室内容液のpH上昇を効果的に抑制することも可能である。 Further, if the back pressure generated by the anode chamber pressurizing unit 91 is higher than the back pressure generated by the cathode chamber pressurizing unit 90, the liquid in the anode chamber is allowed to enter the cathode chamber via the diaphragm 12. It is also possible to effectively suppress the pH increase of the cathode chamber content liquid.
 このように、電解水素水生成器A3の様なシンプルな構成によっても、本発明を実現することが可能である。 Thus, the present invention can be realized even with a simple configuration such as the electrolytic hydrogen water generator A3.
 また、上述した電解水素水生成器A3や先に述べた電解水素水生成器A1及び電解水素水生成器A2は実施態様の一例であり、各電解水素水生成器A1~A3が有する構成の一部を欠いた電解水素水生成器や、電解水素水生成器A1~A3が有する構成の一部を他の電解水素水生成器A1~A3に加えた電解水素水生成器など、本実施形態において開示したあらゆる構成の組み合わせは、勿論、本発明の概念に含まれる。また、出願人がこのような電解水素水生成器の態様に請求の範囲等を補正することも妨げない。 The above-described electrolyzed hydrogen water generator A3 and the electrolyzed hydrogen water generator A1 and the electrolyzed hydrogen water generator A2 described above are examples of the embodiments, and each of the electrolyzed hydrogen water generators A1 to A3 has a configuration. In this embodiment, an electrolytic hydrogen water generator lacking a part, an electrolytic hydrogen water generator in which a part of the configuration of the electrolytic hydrogen water generators A1 to A3 is added to the other electrolytic hydrogen water generators A1 to A3, etc. Any combination of configurations disclosed is, of course, included in the concept of the invention. Moreover, it does not prevent the applicant from correcting the claims and the like in such an embodiment of the electrolytic hydrogen water generator.
 上述してきたように、本実施形態に係る電解水素水生成器(例えば、電解水素水生成器A1~A3)によれば、隔膜により区画した陽極室と陰極室とを有し、水を供給しながら各極室に配設した電極間に前記隔膜を介して通電することにより前記水を電気分解して、前記陽極室より酸性水を吐出しつつ前記陰極室よりアルカリ性の電解水素水を吐出する電解槽を備えた電解水素水生成器であって、前記酸性水の吐出流路と前記電解水素水の吐出流路との両方に、酸性水又は電解水素水の流通は許容しつつもそれぞれ対応する極室内を加圧する極室加圧手段を備えることとしたため、陰極室加圧手段のみを備える電解水素水生成装置に比して、電解水素水中に含まれる水素量をより向上させることができる。 As described above, the electrolyzed hydrogen water generator (for example, electrolyzed hydrogen water generators A1 to A3) according to the present embodiment has an anode chamber and a cathode chamber partitioned by a diaphragm, and supplies water. However, the water is electrolyzed by energizing the electrodes disposed between the electrode chambers through the diaphragm, and the alkaline electrolytic hydrogen water is discharged from the cathode chamber while discharging acidic water from the anode chamber. An electrolyzed hydrogen water generator including an electrolytic cell, wherein the acid water or the electrolyzed hydrogen water is allowed to flow in both the acid water discharge channel and the electrolyzed hydrogen water discharge channel, respectively. Since the polar chamber pressurizing means for pressurizing the polar chamber is provided, the amount of hydrogen contained in the electrolytic hydrogen water can be further improved as compared with the electrolytic hydrogen water generating apparatus having only the cathode chamber pressurizing means. .
 最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention other than the embodiments described above.
 1 電解槽
 7 制御部
 12 隔膜
 17 取水管
 17c 陰極室加圧部
 17e 二方向切替弁
 17h 陰極室加圧ユニット
 18 排水流路
 70 還流バイパス流路
 71 陽極室加圧ユニット
 83 原水バイパス流路
 90 陰極室加圧ユニット
 91 陽極室加圧ユニット
 A1 電解水素水生成器
 A2 電解水素水生成器
 A3 電解水素水生成器
DESCRIPTION OF SYMBOLS 1 Electrolyzer 7 Control part 12 Diaphragm 17 Intake pipe 17c Cathode chamber pressurization part 17e Two-way switching valve 17h Cathode chamber pressurization unit 18 Drain flow path 70 Reflux bypass flow path 71 Anode chamber pressurization unit 83 Raw water bypass flow path 90 Cathode Chamber pressurization unit 91 Anode chamber pressurization unit A1 Electrolytic hydrogen water generator A2 Electrolytic hydrogen water generator A3 Electrolytic hydrogen water generator

Claims (6)

  1.  隔膜により区画した陽極室と陰極室とを有し、水を供給しながら各極室に配設した電極間に前記隔膜を介して通電することにより前記水を電気分解して、前記陽極室より酸性水を吐出しつつ前記陰極室よりアルカリ性の電解水素水を吐出する電解槽を備えた電解水素水生成器であって、
     前記酸性水の吐出流路と前記電解水素水の吐出流路との両方に、酸性水又は電解水素水の流通は許容しつつもそれぞれ対応する極室内を加圧する極室加圧手段を備えることを特徴とする電解水素水生成器。
    An anode chamber and a cathode chamber partitioned by a diaphragm, and electrolyzing the water by energizing the electrodes between the electrodes disposed in each electrode chamber while supplying water, from the anode chamber An electrolytic hydrogen water generator comprising an electrolytic cell for discharging alkaline electrolytic hydrogen water from the cathode chamber while discharging acidic water,
    Both the acidic water discharge channel and the electrolytic hydrogen water discharge channel are provided with polar chamber pressurizing means for pressurizing the corresponding polar chambers while permitting the flow of acidic water or electrolytic hydrogen water. An electrolytic hydrogen water generator.
  2.  陽極室加圧手段と陰極室加圧手段とのいずれか一方又は両方は、対応する極室の加圧度合いを変化させる圧力可変機構を備えることを特徴とする請求項1に記載の電解水素水生成器。 2. The electrolytic hydrogen water according to claim 1, wherein either one or both of the anode chamber pressurizing unit and the cathode chamber pressurizing unit includes a pressure variable mechanism that changes the pressurization degree of the corresponding polar chamber. Generator.
  3.  前記陽極室加圧手段は圧力可変機構を備えるものであって同圧力可変機構を制御する制御部と接続されており、同制御部は前記電解水素水の生成に際して前記陽極室加圧手段を制御して陽極室内の内圧を高めると共に前記電気分解の通電量を増加させることを特徴とする請求項2に記載の電解水素水生成器。 The anode chamber pressurizing means is provided with a pressure variable mechanism and is connected to a control unit that controls the pressure variable mechanism, and the control unit controls the anode chamber pressurizing means when generating the electrolytic hydrogen water. The electrolytic hydrogen water generator according to claim 2, wherein the internal pressure in the anode chamber is increased and the amount of electricity supplied for the electrolysis is increased.
  4.  前記陽極室加圧手段と前記陰極室加圧手段とはいずれも圧力可変機構を備えると共に同圧力可変機構を制御する制御部と接続されており、同制御部は前記電解水素水の生成に際して両極室加圧手段を略同時に制御してそれぞれ対応する極室内の内圧を高めることを特徴とする請求項2又は請求項3に記載の電解水素水生成器。 Each of the anode chamber pressurizing means and the cathode chamber pressurizing means includes a pressure variable mechanism and is connected to a control unit that controls the pressure variable mechanism. The electrolytic hydrogen water generator according to claim 2 or 3, wherein the chamber pressurizing means are controlled substantially simultaneously to increase the internal pressure in the corresponding polar chamber.
  5.  前記電解槽に流入させる原水を供給路の中途から分岐して、前記電解水素水の吐出流路の陰極室加圧手段よりも下流側へ通水させる原水バイパス流路を備えることを特徴とする請求項1~4いずれか1項に記載の電解水素水生成器。 A raw water bypass flow path is provided that branches raw water flowing into the electrolytic cell from the middle of a supply path and allows water to flow downstream from the cathode chamber pressurizing means of the discharge flow path of the electrolytic hydrogen water. The electrolytic hydrogen water generator according to any one of claims 1 to 4.
  6.  前記陽極室へ供給する原水に前記電解槽より吐出された酸性水の一部を合流させる還流バイパス流路を備えることを特徴とする請求項1~5いずれか1項に記載の電解水素水生成器。 6. The electrolytic hydrogen water generation according to claim 1, further comprising a reflux bypass passage that joins part of the acidic water discharged from the electrolytic cell to the raw water supplied to the anode chamber. vessel.
PCT/JP2017/043702 2017-03-16 2017-12-05 Apparatus for generating electrolyzed hydrogen water WO2018168109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051963A JP6909600B2 (en) 2017-03-16 2017-03-16 Electrolyzed hydrogen water generator
JP2017-051963 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168109A1 true WO2018168109A1 (en) 2018-09-20

Family

ID=63523735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043702 WO2018168109A1 (en) 2017-03-16 2017-12-05 Apparatus for generating electrolyzed hydrogen water

Country Status (2)

Country Link
JP (1) JP6909600B2 (en)
WO (1) WO2018168109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063464A (en) * 2018-10-15 2020-04-23 マクセルホールディングス株式会社 Electrolytic hydrogen water generation apparatus
WO2021213102A1 (en) * 2020-04-22 2021-10-28 阳光电源股份有限公司 Multi-channel alkaline hydrogen production system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190365A (en) * 1992-12-25 1994-07-12 Matsushita Electric Works Ltd Alkaline ionic water preparation device
JPH0724496U (en) * 1993-10-14 1995-05-09 片山 孝子 Ion water generator
JP2006159072A (en) * 2004-12-06 2006-06-22 Matsushita Electric Works Ltd Electrolytic water generator
JP2007203253A (en) * 2006-02-03 2007-08-16 Sumitomo Heavy Ind Ltd Electrolyzer, electrolyzed water production apparatus and electrolyzed water production method
JP2007275778A (en) * 2006-04-07 2007-10-25 Riverstone:Kk Electrolytic water producer and method of manufacturing electrolyzed water
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
JP2009160503A (en) * 2007-12-28 2009-07-23 Kyushu Hitachi Maxell Ltd Alkali ion water conditioner and method for producing alkaline water
JP2012067336A (en) * 2010-09-21 2012-04-05 Masaaki Arai Apparatus for manufacturing electrolytic water, and method for manufacturing the electrolytic water
JP2013000709A (en) * 2011-06-21 2013-01-07 Panasonic Corp Electrolysis water generator
JP2013220370A (en) * 2012-04-13 2013-10-28 Panasonic Corp Electrolytic water generator
WO2016178436A2 (en) * 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190365A (en) * 1992-12-25 1994-07-12 Matsushita Electric Works Ltd Alkaline ionic water preparation device
JPH0724496U (en) * 1993-10-14 1995-05-09 片山 孝子 Ion water generator
JP2006159072A (en) * 2004-12-06 2006-06-22 Matsushita Electric Works Ltd Electrolytic water generator
JP2007203253A (en) * 2006-02-03 2007-08-16 Sumitomo Heavy Ind Ltd Electrolyzer, electrolyzed water production apparatus and electrolyzed water production method
JP2007275778A (en) * 2006-04-07 2007-10-25 Riverstone:Kk Electrolytic water producer and method of manufacturing electrolyzed water
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
JP2009160503A (en) * 2007-12-28 2009-07-23 Kyushu Hitachi Maxell Ltd Alkali ion water conditioner and method for producing alkaline water
JP2012067336A (en) * 2010-09-21 2012-04-05 Masaaki Arai Apparatus for manufacturing electrolytic water, and method for manufacturing the electrolytic water
JP2013000709A (en) * 2011-06-21 2013-01-07 Panasonic Corp Electrolysis water generator
JP2013220370A (en) * 2012-04-13 2013-10-28 Panasonic Corp Electrolytic water generator
WO2016178436A2 (en) * 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063464A (en) * 2018-10-15 2020-04-23 マクセルホールディングス株式会社 Electrolytic hydrogen water generation apparatus
WO2020079924A1 (en) * 2018-10-15 2020-04-23 マクセルホールディングス株式会社 Electrolyzed hydrogen water generator
JP7226959B2 (en) 2018-10-15 2023-02-21 マクセル株式会社 Electrolytic hydrogen water generator
WO2021213102A1 (en) * 2020-04-22 2021-10-28 阳光电源股份有限公司 Multi-channel alkaline hydrogen production system

Also Published As

Publication number Publication date
JP2018153745A (en) 2018-10-04
JP6909600B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP4914338B2 (en) Water conditioner
WO2018168109A1 (en) Apparatus for generating electrolyzed hydrogen water
JP2006305568A (en) Electrolytic cell, ionic water purifier adopting the same and method for cleaning the same
JP4590668B2 (en) Water reformer
JP2017056390A (en) Electrolyzed water generation apparatus
WO2017056987A1 (en) Hydrogen-enriched electrolyzed water generator and method of lowering ph of hydrogen-enriched electrolyzed water
JP2007090183A (en) Electrolyzed water producing apparatus and sink provided with the same
JP4617165B2 (en) Ion water conditioner
JP2006223940A (en) Electrolysis device
JP6682330B2 (en) Electrolytic hydrogen water generator and method for lowering pH of electrolytic hydrogen water
JP2000202449A (en) Alkaline ionized water producer
WO2017155014A1 (en) Electrolyzed water generating device
JP2010274229A (en) Water conditioner
JP2017159275A (en) Bubble unit and electrolytic water generating device
WO2014002360A1 (en) Electrolyzed water generating device
WO2017138048A1 (en) Electrolyzed water-generating apparatus
JP2014004568A (en) Water treatment apparatus
JPH06312189A (en) Electrolytic sterilized water making apparatus
KR20130003203A (en) Water ionizer
JP3991995B2 (en) Electrolyzed water generator
JP7226959B2 (en) Electrolytic hydrogen water generator
JPH09122652A (en) Electrolytic water making apparatus
JPH06238280A (en) Electrolytic water preparation and its device
JP4591001B2 (en) Alkaline ion water conditioner
JP4718034B2 (en) Water conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900359

Country of ref document: EP

Kind code of ref document: A1