WO2014000528A1 - 二次冷轧荫罩带钢及其制造方法 - Google Patents

二次冷轧荫罩带钢及其制造方法 Download PDF

Info

Publication number
WO2014000528A1
WO2014000528A1 PCT/CN2013/075785 CN2013075785W WO2014000528A1 WO 2014000528 A1 WO2014000528 A1 WO 2014000528A1 CN 2013075785 W CN2013075785 W CN 2013075785W WO 2014000528 A1 WO2014000528 A1 WO 2014000528A1
Authority
WO
WIPO (PCT)
Prior art keywords
shadow mask
secondary cold
mask strip
strip according
manufacturing
Prior art date
Application number
PCT/CN2013/075785
Other languages
English (en)
French (fr)
Inventor
吴首民
李秀军
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to DE112013000848.3T priority Critical patent/DE112013000848T5/de
Priority to IN1597MUN2014 priority patent/IN2014MN01597A/en
Priority to US14/382,072 priority patent/US9623457B2/en
Publication of WO2014000528A1 publication Critical patent/WO2014000528A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/22Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories for rolling metal immediately subsequent to continuous casting, i.e. in-line rolling of steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the Chinese patent application with the publication number CN1717502A relates to a method of producing a shadow mask material, a shadow mask using the shadow mask material, and a color picture tube including the shadow mask.
  • the design content of each element of a steel slab involved in the method is: C: ⁇ 0.004 wt.%, Si: ⁇ 0.03 wt.%, ⁇ : 0.1-0.5 wt%, ⁇ : ⁇ 0.02 wt.%, S: ⁇ 0.02wt. % , Ah 0.01 ⁇ 0,07wt. %, ⁇ : ⁇ 0.0040wt.
  • the present invention also optimizes the manufacturing method of the secondary cold-rolled shadow mask strip, and the specific steps are as follows:
  • Converter steelmaking using ultra-low carbon aluminum killed steel, controlling the free oxygen of the converter ladle to F[O]500 ⁇ 7()0ppm, S element control in the molten iron 0,003%, P element control 0.035%, converter ladle target
  • the temperature is: 1540 ⁇ 1640 ° C
  • the target free oxygen is 600 ppm
  • the vacuum cycle degassing refining process is adopted, and the decarburization time is 20 to 25 min.
  • IF steel no gap atomic steel
  • IF steel Gapless atomic steel
  • a strong carbon-nitrogen compound forming element such as Ti) or niobium (Nb) is formed by completely fixing a gap atom such as carbon or nitrogen in the steel to a carbonitride compound, thereby having good deep drawability.
  • alloying elements due to the addition of expensive alloying elements, the production cost of steelmaking is greatly increased.
  • the annealing temperature in order to complete the annealing, the annealing temperature must be high and the production energy consumption is high.
  • the weight percentage of carbon is directly controlled to C 0.001% by the composition design.
  • Mn element Appropriate addition of a small amount of Mn in the material is beneficial to the improvement of strength. At the same time, adding a small amount of Mn can combine with S to form MnS, reduce surface hot brittleness and avoid surface quality problems; Press processing is unfavorable, so Mn should be controlled at 0.10 ⁇ 0.40%.
  • A1 element is added as a deoxidizer during steel making to avoid the increase of inclusions in the molten steel, especially the inclusion of A1 2 0 3 , and the inclusions mainly affect the etching performance of the shadow mask strip.
  • A1 should Control is at 0,02 ⁇ 0,06%.
  • Si element can increase the strength of the material, but in the hot rolling, Si easily produces a low melting point of the Si0 2 .FeO eutectic iron oxide scale, which is difficult to remove with high pressure water during hot rolling, thereby masking the shadow mask The surface quality of the strip has an adverse effect, so Si should be controlled as much as 0.025% or less.
  • P and S elements The lower the weight percentage of P and S, the better the processability; P can increase the strength of the material, but P also causes the brittleness of the material, S is a harmful element to the material, which will produce inclusions, The strip strip steel has poor etching performance, so the content of P and S should be as low as possible. Generally, the P control is below 0.015%; the S control is below 0.010%.
  • 0 0 is a harmful element, and it is easy to form a compound such as FeO, so the amount control is low.
  • an ultra-low carbon coating agent is used in the tundish to prevent carbon addition.
  • the crystallizer uses ultra-low carbon flux.
  • the bow I of the ladle uses carbon-free drainage sand and ensures complete argon blowing.
  • the main inclusions of the shadow mask strip are oxides of Al, Ca, Mm Si, S, etc., and the inclusions may affect the etching performance of the shadow mask strip due to the difference in etching speed between the portion and the substrate ferrite.
  • the shape of the bit is irregular. Since there are hundreds of thousands of small holes in each shadow mask stencil, and the distance between the small holes is very small, if the amount of inclusions is large and the size is large, the yield of the shadow mask stencil will be affected, resulting in steel.
  • the shadow mask strip usually requires a C content of 20 ppm, the steel is pure, the composition is uniform and stable, the inclusions are 0.03 / m 2 , and the size of the inclusions is 30 m.
  • the strip steel was pickled to remove the scale of the steel strip on the surface of the strip, and the cold rolling deformation was set at about 90%.
  • Annealing of the unit the heating zone temperature target is 580 600 °C, and the soaking zone target temperature is 580 600.
  • C unit speed of 500 650 m / min.
  • the surface quality of the shadow mask strip determines its key color selection (separation) function in the field of picture tube applications.
  • the surface quality of the strip mainly includes surface defect state, cleanliness and surface topography (including average surface roughness Ra, maximum peak-to-valley distance Rmax, peak-to-peak spacing Sm, and skewness Rsk).
  • the shadow mask strip requires a uniform surface texture and does not allow any surface defects.
  • the average roughness of the surface of the shadow mask strip should be moderate; when the surface roughness is too large, the strip material is etched, the shape of the edge of the slot is not smooth, and the micro-tooth shape is easy to appear; when the surface roughness is too small, the strip material is
  • the adhesion between the photoresists is not good, and it is easy to degumming, and it also affects the pumping performance between the mother board and the strip before exposure, which will affect the exposure effect.
  • the skewness Rsk essentially refers to the distribution of peaks and valleys relative to the surface contour reference over a certain length.
  • the roughness is expressed as a lot of protrusions on the surface of the strip, so that there are many gas passages between the upper and lower working plates and the strip, which is convenient for vacuuming, thereby shortening the vacuuming time; More, the adhesion of the photoresist to the strip is also better; on the contrary, when Rsk3 ⁇ 4 ⁇ 0, the roughness shows that there are many flat areas on the surface, the surface has less bumps, especially the troughs, the contact plate between the working plate and the shadow mask strip There are few gas passages, which is not conducive to vacuuming, and the adhesion of the photoresist to the strip is also poor.
  • the secondary cold rolling process of the present invention is preferably produced by a two-stand secondary cold rolling unit, the first frame rolling force is 4,000 6,000 KN, and the work rolls are ground.
  • the method is processed, and the surface roughness of the work roll is controlled to be 0 20 0.4 ( ⁇ 11 ; second
  • the rolling force of the frame is 2,000 ⁇ 4,000KN, the work rolls are treated by electric spark, and the surface roughness of the work rolls is controlled to be 1.3 ⁇ 1.5 m.
  • the work rolls of the two racks are all 410 ⁇ 460mm, the surface hardness of the work rolls is Hs 93 ⁇ 97, the surface hardness of the middle rolls is lis 81 ⁇ 85, and the unit tension of the double rack leveling machine is controlled at 13 ⁇ 16kg/mm 2 , the intermediate and outlet unit tension is controlled at 18 ⁇ 25kg/mm 2 .
  • the deformation rate is designed to be 35 to 42%.
  • the second surface of the second frame work roll is required to be a key process. After EDM, the surface roughness of the work roll is required to be 1.3 ⁇ 1.5 m.
  • the PC value (number of peaks per unit length) is controlled to 130-170. /cm.
  • the mechanical properties of the shadow mask strip material mainly include yield strength, tensile strength, hardness, elongation and yield extension before and after annealing.
  • the yield extension after annealing when the shadow mask strip is applied to the field of color picture tubes, requires accurate mesh size and stable shape. Therefore, in order to ensure uniformity of deformation of the shadow mask stencil during the stamping process, it is required that the yield elongation of the shadow mask strip after recrystallization annealing is as small as possible.
  • the processing performance is mainly measured by the yield strength.
  • the lower yield strength can obtain better processing performance and increase the stability of the shape after stamping; on the other hand, higher yielding
  • the strength and hardness can make the shadow mask strips less prone to deformation (such as edge waves and creases) in subsequent processing (degreasing cleaning, pretreatment, gluing, exposure, development, etching, etc.).
  • the shadow mask steel material needs to adopt an appropriate yield strength, generally 440 ⁇ 470MPa.
  • the deformation rate is designed to be 35 to 42% according to the maximum deformation capacity of the secondary cold rolling mill.
  • the finishing unit is produced by a tension leveler with an elongation setting range of 0.40 to 1.0%.
  • the beneficial effects of the invention are as follows: 1) using ultra-low carbon aluminum killed steel without adding alloying elements such as Nb, Ti, etc., and by designing the composition of the elements of the steel material, on the one hand, controlling the weight percentage of carbon to a low content range, It ensures the cold brittleness and timeliness of riding in the subsequent processing; on the other hand, it reduces the intermediate decarburization annealing process, reduces the annealing temperature and shortens the production cycle; 2) Rolling parameters and rolls through the secondary cold rolling process The optimization of the processing method, in the case of reducing the degreasing and the whole process, obtaining a steel material with excellent mechanical properties and high surface quality for subsequent processing to form a thin gauge low carbon shadow mask strip.
  • the invention does not need decarburization treatment, adds expensive alloying elements, and can obtain a shadow mask strip with better surface quality and use performance in the case of simplifying the production process; the process time involved is short and the production cost is low. Suitable for the purpose of industrial production of various manufacturers.
  • Figure 1 is a schematic diagram showing the surface roughness of the second rack work roll after secondary electric arc treatment.
  • Fig. 2 is a view showing the thickness precision of a shadow mask steel sheet produced by Embodiment A of the present invention. detailed description
  • the final product is qualified, tensile strength 510Mpa, yield strength 464MPa, elongation 2.5 strip surface roughness 0.416 ⁇ , Rmax 3,337 ⁇ m, Sm 66,582 ⁇ in, Rsk 0.201, HV 160, wave shape is less than 2mm.
  • Example B Composition Design C (%) Si (%) Mn (%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb (%) (wt%) 0. 0009 0. 020 0. 25 0. 010 0. 0082 0.002 0. 051 1 / hot rolling section
  • Furnace temperature (°c) finish rolling temperature (°c) coiling temperature (°c) parameter
  • the final product is qualified, tensile strength 530Mpa, yield strength 458MPa, elongation 2.2%.
  • the surface roughness of the strip is 0,404 ⁇ , Rmax is 3.432 ⁇ m, Sm is 61.392 m, — Rsk is 0.215, HV is 157, wave shape. Less than 2.5mm.
  • Furnace temperature (°c) finish rolling temperature (°c) coiling temperature (°c) parameter
  • Heating section target temperature CC soaking section target temperature (°c) rolling speed (m/min) parameter
  • the final product is qualified, tensile strength 541Mpa, yield strength 464MPa, extension
  • Example D Composition Design C (%) Si (%) Mn (%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb (%) (wt%) 0. 0008 0. 017 0. 15 0. 009 0. 0085 0.002 0. 034 1 / hot rolling section
  • Furnace temperature (°c) finish rolling temperature (°c) coiling temperature (°c) parameter
  • Example E Composition Design C (%) Si (%) Mn (%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb (%) (wt%) 0. 0006 0. 019 0. 10 0. 010 0. 0081 0.003 0. 025 1 / hot rolling section
  • Furnace temperature (°c) finish rolling temperature (°c) coiling temperature (°c) parameter
  • the final product is qualified, tensile strength 523Mpa, yield strength 463MPa, extension
  • the strip surface roughness is 0.446 ⁇ ⁇
  • Rmax is 4.193 ⁇ m
  • Sm is 73.193 ⁇ m
  • Rsk is 0,182
  • HV is 150 wave shape less than l,6mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Metal Rolling (AREA)

Abstract

一种二次冷轧荫罩带钢及其制造方法,包括以下工艺:转炉炼钢、连续铸坯、热轧、酸洗冷轧、连续退火、二次冷轧、精整除油,所获得的荫罩带钢的各主要元素质量百分比为:C≤0.001%, Mn 0.10-0.40%, Al:0.02-0.06%, Si≤0.025%, P≤0.015%, S≤0.01%, O≤0.004%, 余量为Fe和不可避免的杂质。通过对各元素的成分设计,一方面控制碳的重量百分比在低含量范围,另一方面省去了脱碳退火工艺并降低了连续退火温度,缩短了生产周期,降低了生产成本;通过二次冷轧工序参数及加工方法的优化,减少了脱脂和平整工序,同时获得了材质性能优、表面质量高的钢质材料。

Description

二次冷轧荫罩带钢及其制造方法 技术领域
本发明涉及一种二次冷轧荫罩带钢, 尤其涉及一种超薄低碳的二次冷轧 荫罩带钢; 本发明还涉及一种二次冷轧荫罩带钢的制造方法, 特别涉及一种 薄规格, 含碳量低的二次冷轧荫罩带钢的制造方法。 背景技术
目前, 通常采用二次冷轧的技术来制造薄规格超低碳的荫罩带钢产品, 该种产品经常应用于彩色显象管技术领域。 公开号为 CN1717502A的中国专 利申请涉及了一种生产荫罩材料的方法, 一种使用所述荫罩材料的荫罩以及 一种包括所述荫罩的彩色显像管。 该方法中所涉及的一种钢坯的各元素设计 含量为: C: <0.004wt. % , Si: <0.03wt. % , Μη: 0.1-0.5wt % , Ρ: <0.02wt. % , S : <0.02wt. % , Ah 0.01〜0,07wt. %, Ν: <0.0040wt. % , Β : <0.01wt. % , Nb: ≤0.1wt.. % D Ti: ()·()()()卜(). I wt. %, 余者为 Fe和不可避免的杂质。 该专 利通过对所述钢坯进行热轧、 酸洗和冷轧, 进一步进行连续退火或箱式退火 等工序后,将残余 C含量降低至 0.003wt. %或更低,并且还进行轧制比为 20〜 92 %的二次冷轧, 从而获得了一种荫罩带钢材料。
授权公告号为 CN1141412C 的中国发明专利提供了一种采用超低碳钢 (纯铁) 或者在超低碳钢中添加少量的强碳化物形成元素 Ti或者 Ti和 Nb, 使得其中的碳主要以碳化物的形式存在, 大幅度降低钢中的固溶碳含量, 提 高了其抗时效性能, 保证了冲压成形性,特别是成形均匀性。通过合理设计化 学成分及调整优化工艺参数, 使得荫罩带钢的材质性能及磁性能满足使用要 求。 但是由于添加了昂贵的合金元素, 炼钢生产成本大幅度提高, 同时由于 添加了合金元素, 为了退火完全, 退火时必须采用退火温度高, 生产能耗高。 同时, 该专利并不能生产厚度小于等于 0.15毫米的荫罩带钢。 发明内容
本发明的目的在于提供一种薄规格二次冷轧荫罩带钢及其制造方法, 使 得该荫罩带钢具有良好的表面外观和材质性能。 为了实现上述目的, 本发明将带钢材料的化学成分重量百分比设计为:
C元素 0.001%, Mn元素 0. 10 -0.40%, A1元素 0.02〜 0.06%, Si元素 0.025%, P元素 0.015%, S元素 ¾S0.01%, 0元素 0.004%, 余量为 Fe和 不可避免的杂质; 优选方案: Mn元素 0.10〜0.30%。
进一步, 本发明还对于二次冷轧荫罩带钢的制造方法进行了优化, 具体 工序如下:
1 ) 转炉炼钢, 采用超低碳铝镇静钢, 控制转炉钢包的自由氧为 F[O]500〜 7()0ppm, 铁水中的 S元素控制 0,003%, P元素控制 0.035%, 转炉钢包目 标温度为: 1540〜1640°C, 目标自由氧为 600ppm, 采用真空循环脱气精炼工 艺, 脱碳时间为 20〜25min。
2 ) 连续铸坯。
3 ) 热轧。
4) 酸洗冷轧。
5 ) 连退机组退火。
6) 二次冷轧。
7) 精整涂油。
8) 荫罩带钢。
在一般的二次冷轧荫罩带钢的制造方法中, 技术人员常采用 IF钢(无间 隙原子钢), 因为 IF钢 (无间隙原子钢) 是在冶炼过程中通过添加一定量的 钛 (Ti)、 铌 (Nb) 等强碳氮化合物形成元素, 将钢中的碳、 氮等间隙原子 完全固定为碳氮化合物而形成的, 从而具有良好的深冲性能。 但是由于添加 了昂贵的合金元素, 炼钢生产成本大幅度提高, 同时由于添加了合金元素, 为了退火完全, 退火时必须采用退火温度高, 生产能耗高。 研究人员考虑到 荫罩带钢在加工过程中,并不需要进行深冲,因此采用了无需添加 Nb、 Ti等 合金元素的超低碳铝镇静钢。 在炼钢过程中, 通过成分设计直接将碳的重量 百分比控制在 C 0.001%, 在减少了"中间脱碳退火工艺", 缩短了生产周期 的情况下, 一方面保证了荫罩腐孔所需要较小的冷脆性和时效性, 另一方面 经过低温退火及二次冷轧过程后同样确保荫罩带钢所需达到的强度。
l ) Mn元素: 在材料中适当加入少量的 Mn有利于强度的提高, 同时加入少量 Mn可以和 S结合生成 MnS,减少表面热脆,避免表面质量问题;但加入过多对冲 压加工不利,所以 Mn应控制在 0.10〜0.40%。
2) A1元素: 在炼钢时 A1作为脱氧剂进行添加, 避免钢水中夹杂物增多, 特别 是 A1203的夹杂物的增加, 夹杂物主要会影响荫罩带钢的蚀刻性能, A1应控制 在 0,02〜0,06%。
3 ) Si元素: Si可提高材料的强度, 但在热轧时 Si容易产生低融点的 Si02 .FeO 共晶系的氧化铁皮, 在热轧时, 难以用高压水予以清除, 从而对荫罩带钢的 表面质量产生不良影响, 所以 Si尽量控制在 0.025%以下。
4) P、 S元素: P、 S重量百分比越低, 加工性越好; P可以提高材料的强度, 但 P也会导致材料的脆性, S对材料是有害元素, 会产生夹杂物, 对荫罩带钢 蚀刻性能不利, 所以 P、 S的含量要尽量的低。 一般 P控制在 0.015%以下; S 控制在 0.010%以下。
5 ) 0: 0是有害元素, 易形成 FeO等化合物, 因此量控制较低。
首先, 在炼钢过程中, 按上述成分配比材料进行控制, 控制铁水 [S] 0.003%, [P] 5≤0.035%, 转炉钢包控制自由氧 F[0]为 500〜700ppm, 目标自由 氧 F[0]为 600ppm。 转炉钢包目标温度 1540〜1640°C。采用真空循环脱气精炼 工艺, 脱碳目标时间为 20〜25min。
然后, 在连续铸坯过程中, 在中间包中采用超低碳覆盖剂, 防止增碳。 结晶器釆用超低碳保护渣。 钢包的弓 I流砂采用无碳引流砂并确保完全吹氩。 荫罩带钢的主要夹杂物是 Al、 Ca、 Mm Si、 S 等的氧化物, 夹杂物由于所在 部位与基板铁素体的蚀刻速度不同而会影响荫罩带钢的蚀刻性能而致使蚀刻 孔位形状的不规整。 由于每一张荫罩网板上有几十万个小孔, 而且小孔之间 的距离非常小, 如果夹杂物量多而且尺寸大, 那么荫罩网板的合格率就会受 到影响, 导致钢质材料的纯净度不符合要求。 此外, 夹杂物还会恶化荫罩网 板的软磁性能。 因此, 荫罩带钢通常要求 C 含量 20ppm, 钢质纯净、 成分 均匀稳定, 夹杂物 0.03 个 /m2, 夹杂物的大小 30 m。
接着, 在热轧过程中, 加热炉温度及时间: 1190〜1250°C, 4〜6小时, 确保板坯表里温度均匀; 一方面温度不宜过高, 否则 A1N固溶过多会导致氧 化铁皮增多; 另一方面温度也宜过低, 否则终轧温度将无法稳定控制。 故将 终轧温度设定为: 900〜940°C, 既确保了温度在 Ar3以上, 又为头中尾、 宽向 温度均匀性提供了保证, 避免了混晶、 粗晶组织的出现。 卷取温度设定为: 660 700°C, 头尾温度要稳定控制。 板形为: 凸度 10 40 m, 目标 20 m; 要求断面板形光滑, 不能有大的楔形及局部高点出现, 亦不能有平凸度。
随后, 在酸洗冷轧过程中, 为了满足最终产品厚度要求以及热轧生产的 可制造性, 带钢经过酸洗去除带钢表面氧化铁皮, 冷轧变形量设定在 90%左 右。连退机组退火:加热段温度目标为 580 600°C,均热段目标温度为 580 600。C, 机组目标速度 500 650米 /分。
其次, 进行二次冷轧工序 (DCR), 该工序主要作用如下:
1) 提高高温回复退火后荫罩带钢的强度和硬度;
2) 改善板形, 获得良好的带钢平直度;
3) 赋予带钢表面合适的表面形貌, 包括 Ra R Sm和 Rsk等;
荫罩带钢的表面质量决定了其在显像管应用领域中关键的选色 (分色) 功能。 带钢表面质量主要包括表面缺陷状态、 洁净度和表面形貌 (包括平均 表面粗糙度 Ra、最大峰谷距 Rmax、波峰间距 Sm和偏斜度 Rsk等技术参数)。
荫罩带钢要求表面形貌均匀细腻, 不允许任何表面缺陷。 荫罩带钢的表 面平均粗糙度要适中; 表面粗糙度过大时, 带钢材料经蚀刻后, 槽孔边缘形 状不光滑, 容易出现微小的锯齿状; 表面粗糙度过小时, 带钢材料与感光胶 之间的附着力不好, 易脱胶, 而且还会影响曝光前母板与带钢之间的抽气性 能进而将影响曝光效果。 偏斜度 Rsk 实质上是指在一定长度内, 相对于表面 轮廓基准的峰谷分布情况。若 Rsk^O时,粗糙度表现为带钢表面有很多凸起, 从而在上下工作版和带钢之间有很多气体通道, 便于抽真空, 从而可缩短抽 真空时间; 并且由于带钢表面凹凸较多, 感光胶与带钢的附着力也较好; 相 反, Rsk¾≤0 时, 粗糙度表现为表面有很多平面区域, 表面凹凸较少, 特别 是波谷少, 工作板与荫罩带钢接触界面气体通道很少, 此时不利于抽真空, 同时感光胶与带钢的附着力也较差。 最大峰谷距 Rmax和波峰间距 Sm表征 表面形貌的均匀细腻程度, Rmax 值越大均匀性越差, Sm值越大表面越细 腻。 本发明在二次冷轧过程为了形成上述表面形貌值, 将具体参数控制为: Ra 0.4(卜 0.70 u m Rmax C 6.0 u m RsD0 Sm 50 130 u m c
为了使带钢表面具有较好的质量水平, 本发明的二次冷轧工序优选采用 双机架二次冷轧机组进行生产, 第一机架轧制力为 4,000 6,000KN, 工作辊 采用磨削方式进行加工, 工作辊表面粗糙度控制范围为0 20 0.4(^ 11 ; 第二 机架轧制力为 2,000〜4,000KN, 工作辊采用电火花处理, 工作辊表面粗糙度 控制范围为 1.3〜1.5 m。 两个机架的工作辊辊径均为 410〜460mm,工作辊表 面硬度均为 Hs 93〜97, 中间辊表面硬度均为 lis 81〜85,双机架平整机入口单 位张力控制在 13〜16kg/mm2, 中间和出口单位张力控制在 18〜25kg/mm2。按 照二次冷轧机组最大变形能力, 将变形率设计为 35〜42%。
二次冷轧第二个机架工作辊表面形貌要求属于关键工艺,电火花加工后, 要求工作辊表面粗糙度为 1.3〜1.5 m, PC值 (单位长度峰值数)控制范围为 130-170个 /cm。
荫罩带钢材料的机械性能主要包括退火前后的屈服强度、 抗拉强度、 硬 度、 延伸率和屈服延伸。 特别是退火后的屈服延伸, 在荫罩带钢应用于彩色 显象管领域时, 要求其网孔尺寸精确而且形状稳定。 因此, 为保证荫罩网板 在冲压过程中变形的均匀性, 要求荫罩带钢再结晶退火后的屈服延伸率越小 越好。 同时, 对荫罩网板而言, 主要以屈服强度来衡量加工性能, 一方面越 低的屈服强度能够获得较好的加工性能, 增加冲压后形状的稳定性; 另一方 面, 较高的屈服强度和硬度可以使荫罩带钢在后续加工过程 (脱脂清洗、 预 处理、涂胶、曝光、显影、蚀刻等工序)中不易出现变形(如边浪和折痕等)。 为了满足产品的加工性能又要避免在后续加工过程中发生容易变形的情况, 荫罩带钢材料需要采取一个适当的屈服强度, 一般为 440〜470MPa。 为了获 得适当的屈服强度, 按照二次冷轧机组最大变形能力, 将变形率设计为 35〜 42%。
最后, 精整机组采用拉矫机进行生产, 延伸率设定范围 0.40〜1.0%。 本发明的有益效果是: 1 )采用了无需添加 Nb、 Ti等合金元素的超低碳 铝镇静钢并通过对于钢质材料元素的成分设计, 一方面将碳的重量百分比控 制在低含量范围,保证了骑在后续加工过程中的冷脆性和时效性,;另一方面 减少了中间脱碳退火工艺, 降低了退火温度, 缩短了生产周期; 2)通过二次 冷轧工序轧制参数及轧辊加工方法的优化, 在减少了脱脂和平整工序的情况 下, 获得机械性能优、 表面质量高的钢质材料用以后续加工制成薄规格低碳 的荫罩带钢。 本发明无需脱碳处理、 加入昂贵合金元素, 在简化生产流程工 艺的情况下, 便可获得较好的表面质量和使用性能的荫罩带钢; 其所涉及的 工序时间短、 生产成本低, 适合各类厂家工业化生产的目的。 附图说明
图 1为二次冷轧第二个机架工作辊经电火花处理后表面粗糙度示意图。 图 2为通过本发明的实施例 A所生产荫罩带钢板厚度精度示意图。 具体实施方式
根据发明的工艺参数不同,通过 5个实施方式来进一步说明本发明的内 容及本发明制造方法的相关参数。
实施例 A
Figure imgf000009_0001
最终得到合格的产品,抗拉强度 510Mpa,屈服强度 464MPa,延伸率 2.5 带钢表面粗糙度为 0.416μηι, Rmax为 3,337 μ m, Sm为 66,582 μ in, Rsk为 0.201 , HV为 160, 浪形小于 2mm。
本技术所生产的荫罩带钢钢板厚度精度示意图如图 2所示。 实施例 B 成分设计 C (%) Si (%) Mn(%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb(%) (wt%) 0. 0009 0. 020 0. 25 0. 010 0. 0082 0.002 0. 051 1 / 热轧段
热轧温度
加热炉温度 (°c) 终轧温度 (°c) 卷取温度 (°c) 参数
1221 924 679 冷轧退火段
冷轧温度
加热段目标温度 (°c) 均热段目标温度 (°c) 轧制速度 (m/min) 参数
592 588 594 轧辊
轧辊表面
工作辊辊径 轧制力
硬度 加工 二次冷轧参数
(rnrn) (ΚΝ)
( Hs)
方式 双机架轧 单位张力 变形率 第一
机组参数 443 5683 94 磨削 ( kg/mm2 ) (%) 机架
入口 中间和出口 第二 38
431 3842 95 电火花 14 20
机架 二次冷轧双机架轧机工作辊表面粗糙度 ( μιη)
工作辊
一号机架 二号机架
参数
0.30 1.40 (PC值 150) 拉矫机延 拉矫机延伸率 (%)
伸率 0.7
最终得到合格的产品,抗拉强度 530Mpa,屈服强度 458MPa,延伸率 2.2% 带钢表面粗糖度为 0,404μπι, Rmax为 3.432 μ m, Sm为 61.392 m, — Rsk为 0.215, HV为 157, 浪形小于 2.5mm。 实施例 c 成分设计 C (%) Si (%) Mn(%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb(%)
(wt%) 0. 0007 0. 022 0. 30 0. 012 0. 0092 0.001 0. 048 1 / 热轧段
热轧温度
加热炉温度 (°c) 终轧温度 (°c) 卷取温度 (°c) 参数
1235 937 682 冷轧退火段
冷轧温度
加热段目标温度 CC) 均热段目标温度 (°c) 轧制速度 (m/min) 参数
592 588 594 轧辊
轧辊表面
工作辊辊径 轧制力
硬度 加工 二次冷轧参数
(rnrn) (ΚΝ)
( Hs)
方式 双机架轧 单位张力 变形率 第一
机组参数 440 5543 94 磨削 ( kg/mm2 ) (%) 机架
入口 中间和出口 第二 38
427 3759 95 电火花 14 20
机架 二次冷轧双机架轧机工作辊表面粗糙度 ( μιη)
工作辊
一号机架 二号机架
参数
0.26 1.30 (PC值 160) 拉矫机延 拉矫机延伸率 (%)
伸率 0.91
最终得到合格的产品, 抗拉强度 541Mpa, 屈服强度 464MPa, 延伸
2.6%, 带钢表面粗糙度为 0.442μηι, Rmax为 3.425 μ m, Sm为 61.279 μ m, Rsk为 0.221, HV为 163, 浪形小于 2.6mm。 实施例 D 成分设计 C (%) Si (%) Mn(%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb(%) (wt%) 0. 0008 0. 017 0. 15 0. 009 0. 0085 0.002 0. 034 1 / 热轧段
热轧温度
加热炉温度 (°c) 终轧温度 (°c) 卷取温度 (°c) 参数
1241 925 671 冷轧退火段
冷轧温度
加热段目标温度 rc) 均热段目标温度 (°c) 轧制速度 (m/min) 参数
596 591 565 轧辊
轧辊表面
工作辊辊径 轧制力
硬度 加工 二次冷轧参数
(mm) (ΚΝ)
( Hs)
方式 双机架轧 单位张力 变形率 第一
机组参数 438 5831 95 磨削 (kg/mm2) (%) 机架
入口 中间和出口 第二 38
441 3952 96 电火花 15 22
机架 二次冷轧双机架轧机工作辊表面粗糙度 ( μιη)
工作辊
一号机架 二号机架
参数
0.25 1.32 (PC值 158) 拉矫机延 拉矫机延伸率 (%)
伸率 0.8
最终得到合格的产品, 抗拉强度 521Mpa, 屈服强度 457MPa, 延伸率 2.5%, 带钢表面粗糙度为 0.439μιιι, Rmax为 4,276 μ m, Sm为 71.374 m, sk为 0.186, HV为 155, 浪形小于 1.6mm。 实施例 E 成分设计 C (%) Si (%) Mn(%) P (%) S (%) 0 (%) A1 (%) Ti (%) Nb(%) (wt%) 0. 0006 0. 019 0. 10 0. 010 0. 0081 0.003 0. 025 1 / 热轧段
热轧温度
加热炉温度 (°c) 终轧温度 (°c) 卷取温度 (°c) 参数
1221 918 688 冷轧退火段
冷轧温度
加热段目标温度 rc) 均热段目标温度 (°c) 轧制速度 (m/min) 参数
589 583 580 轧辊
轧辊表面
工作辊辊径 轧制力
硬度 加工 二次冷轧参数
(mm) (ΚΝ)
( Hs)
方式 双机架轧 单位张力 变形率 第一
机组参数 422 4843 94 磨削 (kg/mm2) (%) 机架
入口 中间和出口 第二 34
415 2716 96 电火花 14 21
机架 二次冷轧双机架轧机工作辊表面粗糙度 ( μιη)
工作辊
一号机架 二号机架
参数
0.35 1.48 (PC值 164) 拉矫机延 拉矫机延伸率 (%)
伸率 0.42
最终得到合格的产品, 抗拉强度 523Mpa, 屈服强度 463MPa, 延伸
2.5%,带钢表面粗糙度为 0.446μ η, Rmax为 4.193 μ m, Sm为 73.193 μ m Rsk为 0,182, HV为 150浪形小于 l,6mm。

Claims

权 利 要 求 书
1. 一种二次冷轧荫罩带钢, 其特征在于: 其各元素的重量百分比设计为: C 元素 0,001%, Mn元素 0.10〜0.40%, A1元素 0.02〜0.06%, Si元素 0.025%, P元素 0.015%, S元素 0,01%, 0元素 ¾≤0.004%, 余量为 Fe 和不可避免的杂质。
2. 如权利要求 1所述的二次冷轧荫罩带钢, 其特征在于: 所述 Mn元素的重 量百分比设计为 0.10〜0.30%。
3. 如权利要求 1所述的二次冷轧荫罩带钢, 其特征在于: 其平均表面粗糙 度 Ra: 0.40— 0.70 μ m, 最大峰谷距 Rmax 6,0 μ m, 偏斜度 RskS?0, 波 峰间距 Sin : 5(卜 1 3() μ m,
4. 制造如权利要求 1所述的二次冷轧荫罩带钢的方法, 其特征在于: 其步骤 如下:
1 )转炉炼钢, 采用超低碳铝镇静钢, 控制转炉钢包的自由氧控制为 500〜 700ppm , 铁水中的 S元素控制为 0.003%, P元素控制 0.035%, 转炉钢 包目标温度为: 1540〜1640°C , 目标自由氧为 600ppm, 采用真空循环脱 气精炼工艺脱碳, 脱碳时间为 20〜25min;
2 ) 连续铸坯;
3 ) 热轧;
4) 酸洗冷轧;
5 ) 连续退火;
6) 二次冷轧;
7 ) 精整涂油。
5. 如权利要求 4所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述热 轧的加热炉温度设定为: 1190〜1250°C, 时间为: 4〜6小时, 终轧温度设定 为: 900〜940°C, 卷取温度设定为: 660〜700°C。
6. 如权利要求 4所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述连 续铸坯的钢包采用无碳引流砂, 并采用完全吹氩处理, 中间包采用可防增碳 的超低碳覆盖剂。
7. 如权利要求 4所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述退 火的加热段目标温度设定为 580〜6001,均热段目标温度设定为 580〜6001, 机组目标速度控制在 500〜650米 /分。
8. 如权利要求 4所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述二 次冷轧采用双机架轧机组进行。
9. 如权利要求 8所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述双 机架轧机组的第一个机架的轧制力设置为 4,000〜6,000KN。
10. 如权利要求 8所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述双 机架轧机组的第二个机架的轧制力设置为 2,000〜4,000KN。
11. 如权利要求 8至 10任一项所述的二次冷轧荫罩带钢的制造方法, 其特征在 于: 所述双机架轧机组平整机入口单位张力控制在 13〜16kg/mm2, 中间和出 口单位张力控制在 18〜25kg/mm2
12. 如权利要求 8所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述双 机架轧机组的工作辊辊径为 410〜460mm。
13. 如权利要求 8所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述双 机架轧机组的工作辊表面硬度为 Hs 93〜97, 中间辊表面硬度为 Hs 81〜85。
14.如权利要求 4所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述二 次冷轧的变形率设计为 35〜42%。
15. 如权利要求 8所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 将经过 磨削方式处理过的工作辊作为所述双机架轧机组第一个机架的工作辊, 该工 作辊的表面粗糙度为 0.20〜0.40 μ m。
16. 如权利要求 8所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 将经过 电火花处理过的工作辊作为所述双机架轧机组第二个机架的工作辊, 该工作 辊的表面粗糙度为 1.3〜1.5 μ m, 单位厘米长度峰值个数为 130〜170。
17. 如权利要求 4或 14所述的二次冷轧荫罩带钢的制造方法, 其特征在于: 所述精整涂油采用拉矫机进行, 其延伸率设定为 0.40〜1.0%。
PCT/CN2013/075785 2012-06-28 2013-05-17 二次冷轧荫罩带钢及其制造方法 WO2014000528A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013000848.3T DE112013000848T5 (de) 2012-06-28 2013-05-17 Doppelt kaltgewalztes Band für Lochmasken und Verfahren zur Herstellung desselben
IN1597MUN2014 IN2014MN01597A (zh) 2012-06-28 2013-05-17
US14/382,072 US9623457B2 (en) 2012-06-28 2013-05-17 Double cold reduction strip for shadow mask and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210219534.4 2012-06-28
CN201210219534.4A CN102719731B (zh) 2012-06-28 2012-06-28 二次冷轧荫罩带钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2014000528A1 true WO2014000528A1 (zh) 2014-01-03

Family

ID=46945594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075785 WO2014000528A1 (zh) 2012-06-28 2013-05-17 二次冷轧荫罩带钢及其制造方法

Country Status (5)

Country Link
US (1) US9623457B2 (zh)
CN (1) CN102719731B (zh)
DE (1) DE112013000848T5 (zh)
IN (1) IN2014MN01597A (zh)
WO (1) WO2014000528A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719731B (zh) * 2012-06-28 2016-03-02 宝山钢铁股份有限公司 二次冷轧荫罩带钢及其制造方法
CN104630614B (zh) * 2015-01-27 2017-02-22 唐山钢铁集团有限责任公司 一种改善超低碳铝镇静钢镀锌产品成形性能的方法
JP6598007B2 (ja) * 2015-09-30 2019-10-30 日立金属株式会社 Fe−Ni系合金薄板の製造方法
CN108118256B (zh) * 2017-12-29 2020-02-21 吉林建龙钢铁有限责任公司 一种不需要lf炉外精炼的车轮用热轧钢卷的制备方法
CN110238194A (zh) * 2019-06-25 2019-09-17 山西太钢不锈钢精密带钢有限公司 超薄不锈钢精密带钢喷砂表面轧制方法
DE102019214133A1 (de) * 2019-09-17 2021-03-18 Thyssenkrupp Steel Europe Ag Stahlblech mit einer deterministischen Oberflächenstruktur
CN113943899A (zh) * 2021-10-20 2022-01-18 山东钢铁集团日照有限公司 一种冷轧深冲钢表面形貌的控制方法
CN114381589B (zh) * 2021-11-26 2024-04-16 安阳钢铁股份有限公司 一种环保经济型货架用钢的制备方法
WO2024013366A1 (en) * 2022-07-14 2024-01-18 Tata Steel Ijmuiden B.V. Method for producing cold rolled steel strip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340107A (zh) * 1999-12-20 2002-03-13 日本钢管株式会社 张力障板用钢板、它的制造方法以及张力障板
CN1343263A (zh) * 1999-03-12 2002-04-03 东洋钢钣株式会社 荫罩材料、其制造方法、荫罩及显像管
CN1483089A (zh) * 2000-11-21 2004-03-17 东洋钢钣株式会社 荫罩材料及其制备方法、包含该材料的荫罩以及使用所述荫罩的显像管
WO2005017221A1 (ja) * 2003-08-18 2005-02-24 Toyo Kohan Co., Ltd. シャドウマスク用素材、その製造方法、シャドウマスク用素材からなるシャドウマスク及びそのシャドウマスクを組み込んだ受像管
CN102719731A (zh) * 2012-06-28 2012-10-10 宝山钢铁股份有限公司 二次冷轧荫罩带钢及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262918A (ja) * 1984-06-08 1985-12-26 Kawasaki Steel Corp ストレツチヤ−ストレインの発生しない表面処理原板の製造方法
JPH071675B2 (ja) * 1990-08-22 1995-01-11 大日本スクリーン製造株式会社 シャドウマスクの製造方法及びシャドウマスク板材
JPH07226168A (ja) * 1994-02-09 1995-08-22 Toshiba Corp 陰極線管用部材
KR100328077B1 (ko) * 1997-12-20 2002-05-10 이구택 저온소둔에의한섀도마스크용냉연강판과그제조방법
CN1141412C (zh) * 2001-06-26 2004-03-10 宝山钢铁股份有限公司 荫罩带钢及其生产方法
US8105415B2 (en) * 2008-08-04 2012-01-31 Nucor Corporation Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343263A (zh) * 1999-03-12 2002-04-03 东洋钢钣株式会社 荫罩材料、其制造方法、荫罩及显像管
CN1340107A (zh) * 1999-12-20 2002-03-13 日本钢管株式会社 张力障板用钢板、它的制造方法以及张力障板
CN1483089A (zh) * 2000-11-21 2004-03-17 东洋钢钣株式会社 荫罩材料及其制备方法、包含该材料的荫罩以及使用所述荫罩的显像管
WO2005017221A1 (ja) * 2003-08-18 2005-02-24 Toyo Kohan Co., Ltd. シャドウマスク用素材、その製造方法、シャドウマスク用素材からなるシャドウマスク及びそのシャドウマスクを組み込んだ受像管
CN102719731A (zh) * 2012-06-28 2012-10-10 宝山钢铁股份有限公司 二次冷轧荫罩带钢及其制造方法

Also Published As

Publication number Publication date
US20150099141A1 (en) 2015-04-09
IN2014MN01597A (zh) 2015-05-08
DE112013000848T5 (de) 2014-11-20
US9623457B2 (en) 2017-04-18
CN102719731A (zh) 2012-10-10
CN102719731B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2014000528A1 (zh) 二次冷轧荫罩带钢及其制造方法
JP5609945B2 (ja) 高強度冷延鋼板およびその製造方法
WO2011162135A1 (ja) 形状凍結性に優れた冷延薄鋼板およびその製造方法
CN108728751B (zh) 一种改善冲压成形的if各向同性钢及其制造方法
CN109487153B (zh) 一种抗拉强度440MPa级高扩孔热轧酸洗钢板
KR100500791B1 (ko) 신장성, 가공성 및 내리징성이 우수한 페라이트계Cr함유강판 및 그 제조방법.
WO2003106725A1 (ja) Ti添加フェライト系ステンレス鋼板およびその製造方法
CN111500924A (zh) 一种高强车轮钢及其生产方法
CN107794452A (zh) 一种薄带连铸超高强塑积连续屈服汽车用钢及其制造方法
CN1978689A (zh) 低碳热轧深冲钢板及其制造方法
JP4644075B2 (ja) 穴拡げ性に優れた高強度薄鋼板およびその製造方法
CN109554607A (zh) 具有优良抗鳞爆性和深冲性的冷轧搪瓷钢板及其制造方法
EP3231882B1 (en) Stainless steel and production method therefor
US20160002745A1 (en) Hot-rolled steel sheet having excellent drawability and post-processing surface hardness
CN109694990A (zh) 具有良好强塑性的轻质相变诱导塑性钢及其生产方法
CN112553537A (zh) 屈服强度240MPa级冷轧热镀锌钢板及其制造方法
CN113774274A (zh) 一种低成本良成型电池壳钢及其生产方法
CN110629000A (zh) 屈服强度280MPa级冷轧热镀锌钢板及其制造方法
JP6699310B2 (ja) 絞り缶用冷延鋼板及びその製造方法
CN102676913B (zh) 药芯焊丝用冷轧带钢及其制造方法
CN108474084B (zh) 加工性优异的热轧镀覆钢板及其制造方法
JP2001207244A (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
CN1141412C (zh) 荫罩带钢及其生产方法
CN110055466A (zh) 强塑积大于30GPa%的热轧高强中锰钢的制备方法
WO2019203251A1 (ja) 熱延鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130008483

Country of ref document: DE

Ref document number: 112013000848

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14382072

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13809432

Country of ref document: EP

Kind code of ref document: A1