WO2014000298A1 - 自注入激光器和无源光网络 - Google Patents

自注入激光器和无源光网络 Download PDF

Info

Publication number
WO2014000298A1
WO2014000298A1 PCT/CN2012/077989 CN2012077989W WO2014000298A1 WO 2014000298 A1 WO2014000298 A1 WO 2014000298A1 CN 2012077989 W CN2012077989 W CN 2012077989W WO 2014000298 A1 WO2014000298 A1 WO 2014000298A1
Authority
WO
WIPO (PCT)
Prior art keywords
awg
optical
negative dispersion
optical fiber
gain
Prior art date
Application number
PCT/CN2012/077989
Other languages
English (en)
French (fr)
Inventor
刘德坤
白聿生
陈健
徐之光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000578.6A priority Critical patent/CN102870294B/zh
Priority to PCT/CN2012/077989 priority patent/WO2014000298A1/zh
Publication of WO2014000298A1 publication Critical patent/WO2014000298A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0656Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to communications technologies, and in particular, to a self-injecting laser and a passive optical network (PON). Background technique
  • the fiber access network is a strong competitor for the next generation of broadband access networks, especially PON is more competitive.
  • WDM-PON Wave Division Multiplexing PON
  • the existing self-injection laser includes a wide-spectrum gain Reflective Semiconductor Optical Amplifier (RSOA), an Arrayed Waveguide Grating (AWG) and a Partially Reflecting Mirror (referred to as Partially Reflecting Mirror). PRM).
  • the RSOA is connected to a branch port of the AWG through an optical fiber.
  • the PRM is connected to the common port of the AWG through the optical fiber, and the RSOA, AWG and PRM constitute a self-injection laser.
  • the RSOA uses the existing self-injection laser described above to emit a modulated optical signal with a chirp that is transmitted over a length of fiber and returned to the RSOA to form a resonance. During this round trip, modulation and dispersion are further exacerbated. The modulation of the laser injected into the laser and the broadening and jitter of the lasing spectrum of the self-injected laser cause the performance of the self-injected laser to deteriorate.
  • a first aspect of an embodiment of the present invention provides a self-injecting laser to address the deficiencies of the prior art and improve the performance of the self-injecting laser.
  • a first aspect of the invention provides a self-injection laser comprising: a gain device and a light processing device coupled to the gain device;
  • the gain device generates a wide-spectrum optical signal
  • the optical processing device filters and partially reflects the wide-spectrum optical signal, and adds a negative dispersion to the partially reflected reflected optical signal to return to the gain device, so as to
  • the gain device and the light processing device constitute a laser oscillation cavity, and an absolute value of the negative dispersion is greater than or equal to a sum of positive dispersions of the light processing device.
  • the optical processing device comprising: an optical filter, a negative dispersion device, a partial mirror PRM, and an optical fiber connecting the optical filter, the negative dispersion device and the PRM;
  • the absolute value of the negative dispersion produced by the dispersive device is greater than or equal to the sum of the positive dispersion generated by the optical filter, the PRM, and the optical fiber;
  • the gain device, the optical filter, the negative dispersion device, and the PRM are sequentially connected by the optical fiber;
  • the gain device, the negative dispersion device, the optical filter, and the PRM are sequentially connected by an optical fiber.
  • the optical processing device comprising: an optical filter, a negative dispersion device, an optical splitter, a total reflection mirror and a connected optical filter, a negative dispersion device, an optical splitter and a total reflection mirror An optical fiber; an absolute value of a negative dispersion generated by the negative dispersion device is greater than or equal to a sum of positive dispersions generated by the optical filter, the optical splitter, the total reflection mirror, and the optical fiber;
  • the gain device, the optical filter, the optical splitter, the negative dispersion device, and the total reflection mirror are sequentially connected by the optical fiber;
  • the gain device, the optical filter, the negative dispersion device, the optical splitter and the total reflection mirror are sequentially connected by the optical fiber;
  • the gain device, the negative dispersion device, the optical filter, the optical splitter, and the total reflection mirror are sequentially connected by the optical fiber.
  • the optical processing device comprising: an optical filter, an optical splitter, a reflective negative dispersion device, and the optical filter, the optical splitter, and the reflective type
  • An optical fiber of a negative dispersion device an absolute value of a negative dispersion generated by the reflective negative dispersion device is greater than or equal to a sum of positive dispersions generated by the optical filter, the optical splitter, and the optical fiber;
  • the gain device, the optical filter, the optical splitter, and the reflective negative dispersion device are sequentially connected by the optical fiber.
  • the self-injecting laser as described above, the optical processing device comprising: an optical splitter, a reflective negative dispersion device having a filtering effect, and a negative dispersion connecting the optical splitter and the reflective reflective type An optical fiber of the device; the absolute value of the negative dispersion generated by the filter-type reflective negative dispersion device is greater than or equal to a sum of positive dispersions generated by the optical splitter and the optical fiber; the gain device, the The optical splitter and the filter-type reflective negative dispersion device are sequentially connected by the optical fiber.
  • the light processing device comprising: an arrayed waveguide grating AWG, a negative dispersion device, a PRM, and an optical fiber connecting the AWG, the negative dispersion device and the PRM; and the negative dispersion device
  • the absolute value of the negative dispersion is greater than or equal to the sum of the positive dispersion generated by the AWG, the PRM, and the optical fiber;
  • the gain device is connected to a branch port of the AWG through the optical fiber, and the negative dispersion device is connected to the common port of the AWG and the PRM through the optical fiber;
  • the gain device, the negative dispersion device, and one branch port of the AWG are sequentially connected through the optical fiber, and a common port of the AWG is connected to the PRM through the optical fiber.
  • the light processing device comprising: an AWG, a negative dispersion device, an optical splitter, a total reflection mirror, and the AWG, the negative dispersion device, the optical splitter, and the An optical fiber of the total reflection mirror; an absolute value of the negative dispersion generated by the negative dispersion device is greater than or equal to a sum of positive dispersions generated by the AWG, the optical splitter, the total reflection mirror, and the optical fiber;
  • the gain device is connected to a branch port of the AWG through the optical fiber, and the common port of the AWG, the optical splitter, the negative dispersion device and the total reflection mirror are sequentially connected through the optical fiber;
  • the gain device is connected to one branch port of the AWG through the optical fiber, and the common port of the AWG, the negative dispersion device, the optical splitter and the total reflection mirror are sequentially connected through the optical fiber. ;
  • the gain device, the negative dispersion device, and one branch port of the AWG are sequentially connected by the optical fiber, and the common port of the AWG, the optical splitter, and the total reflection mirror pass through the optical fiber Connect in order.
  • the optical processing device comprising: an AWG, an optical splitter, a reflective negative dispersion device, and a negative dispersion device connecting the AWG, the optical splitter, and the reflective type An optical fiber; the absolute value of the negative dispersion generated by the reflective negative dispersion device is greater than or equal to AWG, the sum of the optical splitter and the positive dispersion produced by the optical fiber;
  • the gain device is coupled to a branch port of the AWG through the optical fiber, and the optical splitter connects the common port of the AWG and the reflective negative dispersion device through the optical fiber.
  • the light processing device comprising: an AWG having a negative dispersion effect, a PRM, and an optical fiber connecting the AWG having the negative dispersion effect and the PRM; the AWG generated by the negative dispersion effect The absolute value of the negative dispersion is greater than or equal to the sum of the positive dispersion produced by the PRM and the optical fiber;
  • the gain device is coupled to a branch port of the AWG through the optical fiber, and the common port of the AWG is connected to the PRM through the optical fiber.
  • Another aspect of the present invention provides a passive optical network PON, including:
  • At least one gain device at least one receiver, and a light processing device connecting the at least one gain device to the at least one receiver;
  • Each of the gain devices generates a broad-spectrum optical signal
  • the optical processing device performs filter-filtering on the wide-spectrum optical signal generated by each of the gain devices to obtain light of a wavelength corresponding to each of the gain devices a signal, partially reflecting the optical signal of the wavelength corresponding to each of the gain devices, adding a negative dispersion to the reflected light signal of each wavelength after the partial reflection, and returning the gain device corresponding to each wavelength respectively, to Having the gain device and the light processing device form a laser oscillation cavity, the absolute value of the negative dispersion being greater than or equal to a sum of positive dispersions of the light processing device, each wavelength of the partially reflected light of the light processing device
  • the transmitted optical signals are respectively sent to receivers corresponding to each wavelength.
  • the optical processing device comprising: a first arrayed waveguide grating AWG, a second AWG, a negative dispersion device, a partial mirror PRM, and a connection of the first AWG, the second AWG, the negative dispersion a device and an optical fiber of the PRM; an absolute value of a negative dispersion generated by the negative dispersion device is greater than or equal to a sum of positive dispersions generated by the first AWG, the second AWG, the PRM, and the optical fiber;
  • Each of the gain devices is connected to a branch port of the first AWG through the optical fiber, a common port of the first AWG, a common mode of the negative dispersion device, the PRM, and the second AWG pass through
  • the fibers are sequentially connected, and each branch port of the second AWG is connected to one of the receivers through the optical fiber.
  • the light processing device includes: a first AWG, a second AWG, a negative color a bulk device, an optical splitter, a total reflection mirror, and an optical fiber connecting the first AWG, the second AWG, the negative dispersion device, the optical splitter, and the total reflection mirror; the negative dispersion
  • the absolute value of the negative dispersion produced by the device is greater than or equal to the sum of the positive dispersion generated by the first AWG, the second AWG, the optical splitter, the total reflection mirror, and the optical fiber;
  • Each of the gain devices is connected to a branch port of the first AWG through the optical fiber, a common port of the first AWG, the optical splitter, the negative dispersion device, and the total reflection mirror
  • the fibers are connected in sequence;
  • each of the gain devices is connected to a branch port of the first AWG through the optical fiber, a common port of the first AWG, the negative dispersion device, the optical splitter, and the total reflection mirror Connected sequentially through the fibers;
  • each of the gain device, the negative dispersion device, and one branch port of the first AWG are sequentially connected by the optical fiber, a common port of the first AWG, the optical splitter, and the whole The mirrors are sequentially connected by the optical fibers.
  • the optical processing device comprising: a first AWG, a second AWG, an optical splitter, a reflective negative dispersion device, and a connection of the first AWG, the second AWG, and the optical component And a diaphragm of the reflective negative dispersion device; the absolute value of the negative dispersion generated by the reflective negative dispersion device is greater than or equal to the first AWG, the second AWG, and the optical shunt The sum of the positive dispersion produced by the device and the fiber;
  • Each of the gain devices is connected to a branch port of the first AWG through the optical fiber, a common port of the first AWG, the optical splitter, the reflective negative dispersion device, and the second
  • the common ports of the AWG are sequentially connected by the optical fibers, and each branch port of the second AWG is connected to one of the receivers through the optical fibers.
  • the light processing device comprising: a first AWG having a negative dispersion effect, a second AWG, a PRM, and a first AWG having the negative dispersion effect, the second AWG and the PRM An optical fiber; the absolute value of the negative dispersion generated by the first AWG having a negative dispersion is greater than or equal to a sum of positive dispersions generated by the second AWG, the PRM, and the optical fiber;
  • the optical fiber is connected to one branch port of the first AWG having a negative dispersion function, and the common port of the first AWG, the common port of the PRM and the second AWG are sequentially connected by the optical fiber, and the second Each branch port of the AWG is connected to one of the receivers through the optical fiber.
  • the light processing device in the self-injecting laser increases the negative dispersion in the optical signal reflected back to the gain device, and the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersion of the gain device and the light processing device. Therefore, the longer the wavelength of the optical signal is, the smaller the transmission delay is, and the shorter the wavelength is, the larger the transmission delay is, so that the width of the lasing spectrum of the self-injected laser is significantly narrowed, and the performance of the self-injected laser is improved.
  • FIG. 1 is a schematic structural view of a self-injection laser according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a self-injection laser according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of a self-injection laser according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a self-injection laser according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural view of a self-injection laser according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural view of a self-injection laser according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural view of a self-injection laser according to Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic structural view of a self-injection laser according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural view of a self-injection laser according to Embodiment 9 of the present invention.
  • FIG. 10 is a schematic structural diagram of a PON according to Embodiment 10 of the present invention.
  • FIG. 11 is a schematic structural diagram of a PON according to Embodiment 11 of the present invention.
  • FIG. 12 is a schematic structural diagram of a PON according to Embodiment 12 of the present invention.
  • FIG. 13 is a schematic structural diagram of a PON according to Embodiment 13 of the present invention.
  • FIG. 14 is a schematic structural diagram of a PON according to Embodiment 14 of the present invention.
  • Fig. 15 is a schematic view showing the lasing spectrum comparison of the self-injecting laser of the present invention and the self-injecting laser of the prior art. detailed description
  • the self-injection laser includes at least: a gain device 11 and a light processing device 12.
  • the optical processing device 12 is connected to the gain device 11.
  • the gain device 11 generates a broad spectrum optical signal and transmits it to the optical processing device 12.
  • the optical processing device 12 filters and partially reflects the wide-spectrum optical signal, and adds a negative dispersion to the partially reflected reflected optical signal to return to the gain device 11, and the gain device 11 amplifies and returns the returned optical signal again.
  • the gain device 11 and the light processing device 12 constitute a laser oscillation cavity, and the light oscillates back and forth in the oscillation cavity to form a stable optical signal output.
  • the absolute value of the negative dispersion added by the optical processing device 12 in the reflected optical signal is greater than or equal to the sum of the positive dispersions of the optical processing device 12, so that the longer the wavelength of the optical signal, the smaller the transmission delay, and vice versa, the optical signal The shorter the wavelength, the greater the transmission delay.
  • the optical processing device in the self-injection laser increases negative dispersion in the optical signal reflected back to the gain device, since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device.
  • the optical processing device of the first embodiment of the present invention can adopt various specific implementation manners, and the following is respectively accompanied by the second embodiment of the present invention to the eighth embodiment of the present invention. Detailed description.
  • the self-injection laser includes at least a gain device 21, an optical filter 22, a negative dispersion device 23, and a PRM 24, and a connection gain device 21, an optical filter 22, a negative dispersion device 23, and a PRM 24. optical fiber.
  • the optical filter 22, the negative dispersion device 23, the PRM 24, and the optical fibers collectively constitute the optical processing device according to the first embodiment of the present invention.
  • the negative dispersion device 23 can employ a Dispersion Compensation Fiber (DCF) having a negative dispersion characteristic.
  • DCF Dispersion Compensation Fiber
  • connection order of the gain device 21, the optical filter 22, the negative dispersion device 23, and the PRM 24 may be: the gain device 21, the optical filter 22, the negative dispersion device 23, and the PRM 24 pass light
  • the fibers are sequentially connected; alternatively, the gain device 21, the negative dispersion device 23, the optical filter 22, and the PRM 24 are sequentially connected through an optical fiber. That is, the negative dispersion device 23 may be connected between the optical filter 22 and the PRM 24, or may be connected between the gain device 21 and the optical filter 22.
  • the gain device 21, the optical filter 22, the negative dispersion device 23, and the PRM 24 are sequentially connected by an optical fiber will be described as an example.
  • Each of the above connected devices is connected by an optical fiber.
  • the gain device 21 generates a broad spectrum optical signal and transmits it to the optical filter 22.
  • the center wavelength of the optical filter 22 is represented by ⁇ , and the optical filter 22 filters the wide-spectrum optical signal to obtain an optical signal having a wavelength of ⁇ . This wavelength is ⁇ !
  • the light signal passes through the negative dispersion device 23 at which the wavelength is ⁇ !
  • the negative dispersion is added to the optical signal and then transmitted to the PRM 24, which is ⁇ for the wavelength of the PRM 24!
  • the light signal is partially reflected. That is, when the PRM 24 passes, part of the optical signal of the wavelength is transmitted, and the other part is reflected.
  • the reflected optical signal is further increased in negative dispersion by the negative dispersion device 23, and then returned to the gain device 21 through the optical filter 22, thereby causing the gain device 21, the optical filter 22, the negative dispersion device 23 and the PRM 24 to constitute a laser.
  • the oscillating cavity the light oscillates back and forth in the oscillating cavity
  • the negative dispersion caused by the negative dispersion device 23 is added to the optical signal of the return gain device 21, and the absolute value of the negative dispersion is greater than or equal to the optical filter 22 and the negative dispersion device.
  • the negative dispersion device 23 can use DCF, and the DCF per unit length has a negative dispersion of a preset value, thereby obtaining a negative dispersion of a desired value by adjusting the length of the DCF, for example, obtaining light by measurement or simulation.
  • the sum of the filter 22, the negative dispersion device 23 and the PRM 24, and the positive dispersion produced by the fiber determines the length of the DCF based on the sum of the positive dispersion and the negative dispersion value per unit length of the DCF used.
  • the optical processing device is composed of the optical filter, the negative dispersion device and the PRM, and the filtering operation is performed by the optical filter, and the partial reflection operation is performed by the PRM, and the optical signal of the returning device is returned by the negative dispersion device.
  • the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device, the longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the greater the transmission delay, thereby The width of the lasing spectrum of the implanted laser is significantly narrowed, improving the performance of the self-injected laser.
  • FIG. 3 is a schematic structural diagram of a self-injection laser according to Embodiment 3 of the present invention.
  • the self-injection laser includes at least: a gain device 31, an optical filter 32, a negative dispersion device 33, and light.
  • the negative dispersion device 33 can employ DCF.
  • the connection order of the gain device 31, the optical filter 32, the negative dispersion device 33, the optical splitter 34, and the total reflection mirror 35 may be: a gain device 31, an optical filter 32, an optical splitter 34, and a negative dispersion.
  • the device 33 and the total reflection mirror 35 are sequentially connected by an optical fiber; or, the gain device 31, the optical filter 32, the negative dispersion device 33, the optical splitter 34, and the total reflection mirror 35 are sequentially connected through an optical fiber; or, the gain device 31, negative
  • the dispersive device 33, the optical filter 32, the optical splitter 34, and the total reflection mirror 35 are sequentially connected by an optical fiber.
  • the negative dispersion device 33 may be connected between the optical splitter 34 and the total reflection mirror 35, or may be connected between the optical filter 32 and the optical splitter 34, and may be connected to the gain device 31 and the optical filter 32. between.
  • the gain device 31, the optical filter 32, the optical splitter 34, the negative dispersion device 33, and the total reflection mirror 35 are sequentially connected by an optical fiber will be described as an example.
  • Each of the above connected devices is connected by an optical fiber.
  • the gain device 31 generates a broad spectrum optical signal and transmits it to the optical filter 32.
  • the optical filter 32 filters the broad spectrum optical signal to obtain an optical signal having a wavelength of ⁇ .
  • the artificial optical signal is split into two paths through the optical splitter 34.
  • One of the optical signals is emitted from the injection laser, and the other optical signal is transmitted to the negative dispersion device 33.
  • the negative dispersion device 33 is at the wavelength of ⁇ !
  • the negative dispersion is added to the optical signal, and then transmitted to the total reflection mirror 35, which has a wavelength of ⁇ !
  • the optical signals are all reflected back to the negative dispersion device 33.
  • the reflected optical signal is increased in negative dispersion by the negative dispersion device 33 and then returned to the gain device 31 via the optical splitter 34 and the optical filter 32.
  • the gain device 31, the optical filter 32, the optical splitter 34, the negative dispersion device 33, and the total reflection mirror 35 constitute a laser oscillation cavity in which light oscillates back and forth.
  • the negative dispersion caused by the negative dispersion device 33 is added to the optical signal of the return gain device 31, and the absolute value of the negative dispersion is greater than or equal to the optical filter 32 and the optical branch.
  • the negative dispersion device 33 can employ DCF, and the DCF per unit length has a negative dispersion of a preset value, thereby obtaining a negative dispersion of a desired value by adjusting the length of the DCF, for example, obtaining light by measurement or simulation.
  • the sum of the negative dispersion device 33 and the total reflection mirror 35 and the positive dispersion produced by the optical fiber determines the length of the DCF based on the sum of the positive dispersion and the negative dispersion value per unit length of the DCF used.
  • the optical processing device is formed by the optical filter, the negative dispersion device, the optical splitter and the total reflection mirror, and the filtering operation is performed by the optical filter, and the optical splitter and the total reflection mirror are partially performed.
  • the reflection operation increases the negative dispersion in the optical signal of the return gain device by the negative dispersion device. Since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device, the longer the wavelength of the optical signal, the more the transmission delay Small, the shorter the wavelength, the greater the transmission delay, which makes the width of the lasing spectrum of the self-injected laser significantly narrower, improving the performance of the self-injected laser.
  • the self-injection laser includes at least: a gain device 41, an optical filter 42, an optical splitter 43, and a reflective negative dispersion device 44, and a connection gain device 41, an optical filter 42, and a light division.
  • the optical filter 42, the optical splitter 43, and the reflective negative dispersion device 44 and the optical fibers collectively constitute the optical processing device according to the first embodiment of the present invention.
  • the reflective negative dispersion device 44 can employ any optical fiber grating having a reflection effect and a negative dispersion effect, or a photonic crystal having a negative dispersion effect and a reflection effect.
  • the gain device 41, the optical filter 42, the optical splitter 43, and the reflective negative dispersion device 44 are sequentially connected by an optical fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • the gain device 41 generates a broad spectrum optical signal and transmits it to the optical filter 42.
  • the center wavelength of the optical filter 42 is represented by ⁇ , and the optical filter 42 filters the wide-spectrum optical signal to obtain an optical signal of a wavelength. This wavelength is ⁇ !
  • the optical signal is split into two paths through the optical splitter 43, one of which is emitted from the injection laser and the other of which is transmitted to the reflective negative dispersion device 44.
  • the reflective negative dispersion device 44 has a wavelength of ⁇ in this path!
  • the negative signal is added to the optical signal and is totally reflected.
  • the reflected optical signal is returned to the gain device 41 via the optical splitter 43 and the optical filter 42.
  • the gain device 41, the optical filter 42, the optical splitter 43, and the reflective negative dispersion device 44 constitute a laser oscillation cavity in which light oscillates back and forth.
  • the negative signal caused by the reflective negative dispersion device 44 is added to the optical signal of the return gain device 41, and the absolute value of the negative dispersion is greater than or equal to the optical filter 42,
  • the sum of the optical splitter 43 and the reflective negative dispersion device 44 and the positive dispersion generated by the optical fiber so that the longer the wavelength of the optical signal of the return gain device 41, the smaller the transmission delay, and conversely, the shorter the wavelength of the optical signal. , the greater the transmission delay.
  • the optical processing device is formed by the optical filter, the optical splitter and the reflective negative dispersion device, and the reflective negative dispersion device has the function of increasing negative dispersion and reflecting, and passes through the optical filter.
  • the reflective negative dispersion device has the function of increasing negative dispersion and reflecting, and passes through the optical filter.
  • FIG. 5 is a schematic structural diagram of a self-injection laser according to Embodiment 5 of the present invention.
  • the self-injection laser includes at least: a gain device 51, an optical splitter 52, and a reflective negative dispersion device 53 having a filtering effect, and a connection gain device 51, an optical splitter 52, and a filter.
  • the fiber of the reflective negative dispersion device 53 acts.
  • the optical splitter 52 and the reflective negative dispersion device 53 and the optical fiber having the filtering function together constitute the optical processing device according to the first embodiment of the present invention.
  • the reflective negative dispersion device 53 having a filtering effect can employ any optical device having a filtering action, a reflection effect, and a negative dispersion function.
  • an optical fiber having a filtering action, a negative dispersion function, and a reflection effect can be used.
  • Gratings, such as germanium fibers, can also use photonic crystals with filtering, negative dispersion, and reflection.
  • the gain device 51, the optical splitter 52, and the reflective negative dispersion device 53 having a filtering effect are sequentially connected by an optical fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • the gain device 51 generates a broad spectrum optical signal and transmits it to the optical splitter 52.
  • the optical splitter 52 splits the optical signal into two paths, one of which is emitted from the injection laser and the other of which is transmitted to the reflective negative dispersion device 53 having a filtering effect.
  • the reflective negative dispersion device 53 having a filtering effect has a narrow band reflectance to indicate the reflection center wavelength of the reflection type negative dispersion device 53 having a filtering effect, and the reflection type negative dispersion device 53 having a filtering effect has a wavelength ⁇ !
  • the light signal is reflected, and the light of other wavelengths is not reflected, and after passing through the reflective negative dispersion device 53 having a filtering effect, a negative dispersion is added to the reflected light signal.
  • the reflected optical signal is returned to the gain device 51 via the optical splitter 52.
  • the gain device 51, the optical splitter 52, and the reflective negative dispersion device 53 having a filtering effect constitute a laser oscillation cavity in which the light oscillates back and forth.
  • the negative dispersion caused by the reflection-type negative dispersion device 53 having a filtering effect is added to the optical signal of the return gain device 51, and the negative dispersion is The absolute value is greater than or equal to the sum of the optical splitter 52 and the negative dispersion device 53 having the filtering effect and the positive dispersion generated by the optical fiber, so that the longer the wavelength of the optical signal of the return gain device 51, the smaller the transmission delay. Conversely, the shorter the wavelength of the optical signal, the greater the transmission delay.
  • the optical splitter and the reflective negative dispersion device having the filtering function together constitute a light processing device
  • the reflective negative dispersion device having the filtering function has a filtering effect, an effect of increasing negative dispersion, and Reflection, filtering operation by a reflective negative dispersion device with filtering effect, partial reflection operation by optical splitter and reflective negative dispersion device with filtering effect, through reflection type negative dispersion device with filtering effect
  • Adding negative dispersion to the optical signal of the return gain device since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersion of the optical processing device, the longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the transmission The greater the retardation, the significantly narrower the width of the lasing spectrum from the implanted laser, improving the performance of the self-injected laser.
  • the self-injection laser includes at least a gain device 61, an AWG 62, a negative dispersion device 63 and a PRM 64, and an optical fiber connecting the gain device 61, the AWG 62, the negative dispersion device 63, and the PRM 64.
  • the AWG 62, the negative dispersion device 63, the PRM 64, and the optical fibers collectively constitute the optical processing device of the first embodiment of the present invention.
  • the AWG 62 can be made of a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and an optical grating.
  • the negative dispersion device 63 can employ DCF.
  • the gain device 61 is connected to one branch port of the AWG 62 through an optical fiber, and the negative dispersion device 63 is connected to the common port of the AWG 62 and the PRM 64 through an optical fiber; or, the gain device 61, the negative dispersion device 63, and one branch port of the AWG 62 pass through The fibers are connected in turn, and the common port of the AWG 62 is connected to the PRM 64 via fiber optics.
  • Fig. 6 only the gain device 61 is connected to one branch port of the AWG 62 through an optical fiber, and the case where the negative dispersion device 63 is connected to the common port of the AWG 62 and the PRM 64 through an optical fiber is taken as an example.
  • Each of the above connected devices is connected by an optical fiber.
  • Gain device 61 produces a broad spectrum optical signal and sends it to a branch port of AWG 62.
  • the AWG 62 is used for filtering, and each branch port has a different center wavelength, that is, each branch port is subjected to filter selection, and the center wavelength of the branch port of the AWG 62 connected to the gain device 61 is represented by ⁇ 1 through the AWG 62.
  • ⁇ 1 the center wavelength of the branch port of the AWG 62 connected to the gain device 61
  • the wavelength is The optical signal passes through the negative dispersion device 63, adds a negative dispersion to the optical signal of the wavelength, and is then transmitted to the PRM 64.
  • PRM 64 is ⁇ for this wavelength!
  • the light signal is partially reflected. That is, when the PRM 64 passes, part of the optical signal of the wavelength is transmitted, and the other part is reflected. Wherein, the reflected optical signal is further increased in negative dispersion by the negative dispersion device 63, and then returned to the gain device 61 via the AWG 62, thereby causing the gain device 61, the AWG 62, the negative dispersion device 63, and the PRM 64 to form a laser oscillation cavity, light. Rotating back and forth in the oscillating chamber.
  • the negative dispersion caused by the negative dispersion device 63 is added to the optical signal of the return gain device 61, and the absolute value of the negative dispersion is greater than or equal to the AWG 62, the negative dispersion device 63, and The sum of the PRM 64 and the positive dispersion generated by the optical fiber, so that the longer the wavelength of the optical signal of the return gain device 61, the smaller the transmission delay, and conversely, the shorter the wavelength of the optical signal, the greater the transmission delay.
  • the optical processing device is composed of the AWG, the negative dispersion device and the PRM, and the wave selection filtering operation is performed by the AWG, the partial reflection operation is performed by the PRM, and the optical signal of the return gain device is increased by the negative dispersion device.
  • Negative dispersion since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device, the longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the greater the transmission delay, thus making the self-injecting laser
  • the width of the lasing spectrum is significantly narrower, improving the performance of the self-injecting laser.
  • FIG. 7 is a schematic structural view of a self-injection laser according to Embodiment 7 of the present invention.
  • the self-injection laser includes at least: a gain device 71, an AWG 72, a negative dispersion device 73, an optical splitter 74, and a total reflection mirror 75, and a connection gain device 71, an AWG 72, and a negative dispersion device 73.
  • the AWG 72, the negative dispersion device 73, the optical splitter 74, the total reflection mirror 75, and the optical fibers collectively constitute the optical processing device according to the first embodiment of the present invention.
  • the AWG 72 can be made of a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and a fiber grating.
  • the negative dispersion device 73 can employ DCF.
  • the gain device 71 is connected to one branch port of the AWG 72 through an optical fiber, and the common port of the AWG 72, the optical splitter 74, the negative dispersion device 73, and the total reflection mirror 75 are sequentially connected through the optical fiber; or, the gain device 71 is connected through the optical fiber.
  • a branch port of the AWG 72, a common port of the AWG 72, a negative dispersion device 73, an optical splitter 74, and a total reflection mirror 75 are sequentially connected by an optical fiber; or, a branch port of the gain device 71, the negative dispersion device 73, and the AWG 72
  • the common ports of the AWG 72, the optical splitter 74, and the total reflection mirror 75 are sequentially connected by optical fibers by optical fibers.
  • the negative dispersion device 73 may be connected between the optical splitter 74 and the total reflection mirror 75, or may be connected between the AWG 72 and the optical splitter 74, and may be connected between the gain device 71 and the AWG 72.
  • the gain device 71 is connected to one branch port of the AWG 72 through an optical fiber, and the common port of the AWG 72, the optical splitter 74, the negative dispersion device 73, and the total reflection mirror 75 are sequentially connected through the optical fiber as an example. Description. Each of the above connected devices is connected by an optical fiber.
  • Gain device 71 produces a broad spectrum optical signal and sends it to a branch port of AWG 72.
  • the AWG 72 is used for wave selection filtering, and each branch port has a different center wavelength, that is, each branch port is subjected to filter selection, and the center wavelength of the branch port of the AWG 72 connected to the gain device 71 is represented by ⁇ 1 .
  • ⁇ 1 the center wavelength of the branch port of the AWG 72 connected to the gain device 71 is represented by ⁇ 1 .
  • the wave length is ⁇ !
  • the optical signal is split into two paths through the optical splitter 74, one of which is emitted from the injection laser and the other is transmitted to the negative dispersion device 73.
  • the negative dispersion device 73 adds a negative dispersion to the optical signal of the wavelength ⁇ , and then transmits it to the total reflection mirror 75, which totally reflects the optical signal of the wavelength ⁇ back to the negative dispersion device 73.
  • the reflected optical signal is increased by the negative dispersion device 73 to increase the negative dispersion, and then returned to the gain device 71 via the optical splitter 74 and the AWG 72.
  • the gain device 71, the AWG 72, the optical splitter 74, the negative dispersion device 73, and the total reflection mirror 75 constitute a laser oscillation cavity in which light oscillates back and forth.
  • the negative dispersion caused by the negative dispersion device 73 is added to the optical signal of the return gain device 71, and the absolute value of the negative dispersion is greater than or equal to the AWG 72 and the optical splitter 74.
  • the negative dispersion device 73 can use DCF, and the DCF per unit length has a negative dispersion of a preset value, thereby obtaining a negative dispersion of a desired value by adjusting the length of the DCF, for example, obtained by measurement or simulation.
  • the sum of the AWG 72, the optical splitter 74, the negative dispersion device 73 and the total reflection mirror 75, and the positive dispersion produced by the optical fiber determines the length of the DCF based on the sum of the positive dispersion and the negative dispersion value per unit length of the DCF used.
  • the optical processing device is formed by the AWG, the negative dispersion device, the optical splitter and the total reflection mirror, and the wave selection filtering operation is performed by the AWG, and the partial reflection operation is performed by the optical splitter and the total reflection mirror.
  • a negative dispersion device is added to the optical signal of the return gain device by the negative dispersion device, and the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the light processing device, resulting in light.
  • FIG. 8 is a schematic structural view of a self-injection laser according to Embodiment 8 of the present invention.
  • the self-injection laser includes at least: a gain device 81, an AWG 82, an optical splitter 83, and a reflective negative dispersion device 84, and a connection gain device 81, an AWG 82, an optical splitter 83, and The fiber of the reflective negative dispersion device 84.
  • the AWG 82, the optical splitter 83, the reflective negative dispersion device 84, and the optical fibers collectively constitute the optical processing device according to the first embodiment of the present invention.
  • the AWG 82 can be made of a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and a fiber grating.
  • the reflective negative dispersion device 84 can employ any optical device having a reflective effect and a negative dispersion effect, preferably a photonic crystal for both scattering and reflection.
  • the gain device 81 is connected to a branch port of the AWG 82 through an optical fiber
  • the optical splitter 83 is connected to the common port of the AWG 82 and the reflective negative dispersion device 84 through the optical fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • Gain device 81 produces a broad spectrum optical signal and sends it to a branch port of AWG 82.
  • the AWG 82 is used for filtering, and each branch port has a different center wavelength, that is, the AWG 82 is used for wave selection filtering, and the center wavelength of the branch port of the AWG 82 connected to the gain device 81 is represented by ⁇ 1 , and the AWG 82 is passed through the AWG 82.
  • ⁇ 1 the center wavelength of the branch port of the AWG 82 connected to the gain device 81
  • the AWG 82 is passed through the AWG 82.
  • One of the optical signals is emitted from the injection laser, and the other optical signal is transmitted to the reflective negative dispersion device 84.
  • the reflective negative dispersion device 84 has a wavelength of ⁇ in this path!
  • the negative signal is added to the optical signal and is totally reflected.
  • the reflected optical signal is returned to the gain device 81 via the optical splitter 83 and the AWG 82.
  • the gain device 81, the AWG 82, the optical splitter 83, and the reflective negative dispersion device 84 constitute a laser oscillation cavity in which light oscillates back and forth.
  • the negative signal caused by the reflective negative dispersion device 84 is added to the optical signal of the return gain device 81, and the absolute value of the negative dispersion is greater than or equal to AWG 82 and the optical component.
  • the optical processing device is formed by the AWG, the optical splitter and the reflective negative dispersion device, and the reflective negative dispersion device has the function of increasing negative dispersion and reflecting, and performing wave selection filtering by the AWG.
  • a partial reflection operation by an optical splitter and a reflective negative dispersion device, and a negative dispersion is added to the optical signal of the return gain device by the reflective negative dispersion device, since the absolute value of the increased negative dispersion is greater than or equal to the light
  • the sum of the positive dispersion of the processing device causes the longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the larger the transmission delay, so that the width of the lasing spectrum of the self-injected laser is significantly narrowed, and the self-injection laser is improved. Performance.
  • FIG. 9 is a schematic structural view of a self-injection laser according to Embodiment 9 of the present invention.
  • the self-injection laser includes at least a gain device 91, AWG 92 and PRM 93 having a negative dispersion effect, and an optical fiber connecting the gain device 91, the AWG 92 having a negative dispersion effect, and the PRM 93.
  • the AWG 92 and the PRM 93 having a negative dispersion function and the optical fibers collectively constitute the optical processing device according to the first embodiment of the present invention.
  • the optical signals emitted from the respective gain devices 91 are phase-adjusted through the respective branch ports, thereby adding negative dispersion to the optical signals.
  • the AWG 92 can be made of a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and a fiber grating.
  • the gain device 91 is connected to one branch port of the AWG 92 through an optical fiber, and the common port of the AWG 92 is connected to the PRM 93 through the optical fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • Gain device 91 produces a broad spectrum optical signal and sends it to a branch port of AWG 92.
  • the AWG 92 has a filtering function, and each branch port has a different center wavelength, that is, the AWG 92 is used for wave selection filtering, and the center wavelength of the branch port of the AWG 92 connecting the gain device 91 is represented by ⁇ 1 , and the AWG 92 is passed through the AWG 92.
  • the branch port After the branch port, only the optical signal with the wavelength can pass through the branch port, and the optical signals of other wavelengths in the wide spectrum optical signal cannot pass through the branch port.
  • the AWG 92 also has the effect of increasing the negative dispersion.
  • the output wavelength is increased by the negative dispersion in the human light signal, and then transmitted to the PRM 93.
  • PRM 93 is ⁇ for this wavelength!
  • the light signal is partially reflected. That is, when the PRM 93 passes, part of the optical signal of the wavelength is transmitted, and the other part is reflected. Wherein, the reflected light signal is further increased in negative dispersion by the AWG 92 and then returned to the gain device 91.
  • the gain device 91, the AWG 92 and the PRM 93 constitute a laser oscillation cavity in which light oscillates back and forth.
  • the negative chromatic dispersion caused by the AWG 92 is added to the optical signal of the return gain device 91, and the absolute value of the negative dispersion is greater than or equal to that of the AWG 92 and the PRM 93 and the positive of the optical fiber.
  • the sum of dispersion Thus, the longer the wavelength of the optical signal returning to the gain device 91, the smaller the transmission delay, and conversely, the shorter the wavelength of the optical signal, the greater the transmission delay.
  • the AWG and the PRM having the negative dispersion function together constitute a light processing device
  • the filtering operation is performed by the AWG
  • the partial reflection operation is performed by the PRM
  • the negative dispersion is added to the optical signal of the return gain device through the AWG. Since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the light processing device, the longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the greater the transmission delay, thereby causing the lasing of the self-injecting laser.
  • the width of the spectrum is significantly narrower, improving the performance of the self-injecting laser.
  • the self-injection laser of the above-described first embodiment to the ninth embodiment of the present invention can be applied to an optical transmission system or as a continuous multi-wavelength seed light source.
  • the self-injection laser can be applied to a PON when applied to an optical transmission system.
  • an AWG is used to introduce a plurality of PONs using the self-injecting laser described above.
  • FIG. 10 is a schematic structural diagram of a PON according to Embodiment 10 of the present invention.
  • the PON includes at least one gain device 101, at least one receiver 102, and an optical processing device 103, wherein the optical processing device 103 is connected to the at least one gain device 101 and the at least one receiver 102.
  • each gain device 101 produces a broad spectrum optical signal.
  • the optical processing device 103 performs filter-filtering on the wide-spectrum optical signals generated by each of the gain devices 101 to obtain optical signals of wavelengths corresponding to the respective gain devices 101, and performs optical signals for the respective wavelengths of the respective gain devices 101.
  • the reflection after adding a negative dispersion in the reflected light signal of each wavelength after the partial reflection, returns the gain device 101 corresponding to each wavelength, respectively, so that the gain device 101 and the light processing device 103 constitute a laser oscillation cavity.
  • the absolute value of the negative dispersion is greater than or equal to the sum of the positive dispersions of the light processing device 103.
  • the light processing device 103 transmits the partially reflected transmitted optical signals of each wavelength to the receivers 102 corresponding to the respective wavelengths.
  • the optical processing device in the PON adds a negative dispersion to the optical signal reflected to the gain device, since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device, resulting in The longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the larger the transmission delay, so that the width of the lasing spectrum of the self-injected laser is significantly narrowed, improving the performance of the self-injecting laser.
  • FIG. 11 is a schematic structural diagram of a PON according to Embodiment 11 of the present invention. As shown in FIG.
  • the PON includes at least: at least one gain device 111, at least one receiver 112, a first AWG 113, a second AWG 114, a negative dispersion device 115, and a PRM 116, and a connection gain device 111, a receiver. 112, an optical fiber of the first AWG 113, the second AWG 114, the negative dispersion device 115, and the PRM 116.
  • the first AWG 113, the second AWG 114, the negative dispersion device 115, the PRM 116, and the optical fibers collectively constitute the optical processing device of the tenth embodiment of the present invention.
  • the first AWG 113 and the second AWG 114 may specifically be a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and a fiber grating.
  • the PON of the ninth embodiment of the present invention uses the self-injecting laser of the sixth embodiment of the present invention as a signal transmitting end, and the plurality of gain devices are respectively connected to the respective branch ports of the AWG of the self-injecting laser of the sixth embodiment of the present invention, and An AWG transmits an optical signal from the transmitting end to multiple receivers.
  • each of the gain devices 111 is connected to one branch port of the first AWG 113 through an optical fiber, and the common ports of the first AWG 113, the negative dispersion device 115, the PRM 116, and the common port of the second AWG 114 are sequentially connected through the optical fibers, and the second Each branch port of the AWG 114 is connected to a receiver 112 via an optical fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • Each gain device 111 produces a broad spectrum optical signal and is coupled to a branch port of the first AWG 113.
  • the first AWG 113 filters the wide-spectrum optical signals generated by each of the gain devices 111, and each of the branch ports has a different center wavelength, that is, each branch port performs filter selection, for example, two in the PON.
  • the two gain devices 111 are respectively connected to the two branch ports of the first AWG 113 to indicate the center wavelength of the branch port of the first AWG 113 connected to the first gain device 111, and the connection is represented by ⁇ 2
  • the center wavelength of the branch port of the first AWG 113 of the second gain device 111 after passing through the first AWG 113, only the wavelength of the wide-spectrum optical signal emitted by the first gain device 111 can pass the first AWG 113, the optical signals of other wavelengths cannot pass; only the optical signal of the wavelength ⁇ 2 of the wide-spectrum optical signal emitted by the second gain device 111 can pass through the first AWG 113, and the optical signals of other wavelengths cannot pass.
  • An optical signal having a wavelength ⁇ 1 corresponding to the first gain device 111 and an optical signal having a wavelength ⁇ 2 corresponding to the second gain device 111 are output from the common port of the first AWG 113 to the negative dispersion device 115, and passed through the negative dispersion device. 115.
  • a negative dispersion is added to the optical signal having the wavelength of the incoming signal and the optical signal having the wavelength of ⁇ 2 and then transmitted to the PRM 116.
  • PRM 116 is ⁇ for the wavelength! Optical signal and wavelength ⁇
  • the optical signal of 2 is partially reflected. That is, when the PRM 116 passes, a part of the optical signal having the wavelength of the incoming optical signal and the optical signal of the wavelength ⁇ 2 is transmitted, and the other portion is reflected.
  • the reflected optical signal is further increased by the negative dispersion device 115 to increase the negative dispersion, and then input to the common port of the first AWG 113.
  • the branch ports of the first AWG 113 respectively return the optical signals of the wavelength corresponding to the branch port to the branch.
  • the port-connected gain device 111 for example, a branch port of the first AWG 113 returns a human optical signal to the first gain device 111, and the other branch port of the first AWG 113 returns the optical signal having the wavelength ⁇ 2
  • the two gain devices 111 are such that each of the gain devices 111, the first AWG 113, the negative dispersion device 115, and the PRM 116 constitute a laser oscillation cavity in which light oscillates back and forth.
  • the optical signal returned to the gain device 111 is increased by the negative dispersion caused by the negative dispersion device 115, and the absolute value of the negative dispersion is greater than or equal to the optical signal emitted by the gain device 111.
  • the PRM 116 will have a partially reflected wavelength of ⁇ !
  • the transmitted optical signal of the optical signal and the optical signal of wavelength ⁇ 2 is sent to a common port of the second AWG 114, and each branch port of the second AWG 114 is connected to a receiver 112, which is input into the optical signal of the common port.
  • the optical signals of each wavelength are respectively sent to the receivers 112 corresponding to the respective wavelengths.
  • one branch port of the second AWG 114 will have a wavelength of ⁇ !
  • the light signal is sent to the corresponding ⁇ !
  • a second port 114 of the other branch AWG wavelength of an optical signal [lambda] 2, [lambda] 2 corresponds to a wavelength of the second receiver 112.
  • the optical processing device of the PON is formed by the first AWG, the second AWG, the negative dispersion device, and the PRM, and the first AWG performs a wave selection filtering operation, and a partial reflection operation is performed through the PRM.
  • the negative dispersion device increases the negative dispersion in the optical signal of the return gain device.
  • the transmission delay is larger, so that the width of the lasing spectrum of the self-injecting laser for transmitting signals in the PON is significantly narrowed, and the performance of the self-injecting laser is improved.
  • FIG. 12 is a schematic structural diagram of a PON according to Embodiment 12 of the present invention.
  • the PON includes at least: at least one gain device 121, at least one receiver 122, a first AWG 123, Second AWG 124, negative dispersion device 125, optical splitter 126 and total reflection mirror 127, and connection gain device 121, receiver 122, first AWG 123, second AWG 124, negative dispersion device 125, optical splitter 126 and the fiber of the total reflection mirror 127.
  • the first AWG 123, the second AWG 124, the negative dispersion device 125, the optical splitter 126, the total reflection mirror 127, and the optical fibers collectively constitute the optical processing device of the tenth embodiment of the present invention.
  • the negative dispersion device 125 can employ DCF.
  • the first AWG 123 and the second AWG 124 may specifically be a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and a fiber grating.
  • the self-injecting laser of the seventh embodiment of the present invention is used as a signal transmitting end, and the plurality of gain devices are respectively connected to the respective branch ports of the AWG of the self-injecting laser of the seventh embodiment of the present invention, and An AWG transmits an optical signal from the transmitting end to multiple receivers.
  • each of the gain devices 121 is connected to one branch port of the first AWG 123 via an optical fiber, and the common port of the first AWG 123, the optical splitter 126, the negative dispersion device 125, and the total reflection mirror 127 are sequentially connected through the optical fiber; or
  • Each gain device 121 is connected to one branch port of the first AWG 123 via an optical fiber, and the common port of the first AWG 123, the negative dispersion device 125, the optical splitter 126, and the total reflection mirror 127 are sequentially connected through the optical fiber; or, each gain The device 121, the negative dispersion device 125, and one branch port of the first AWG 123 are sequentially connected by a fiber, and the common port of the first AWG 123, the optical splitter 126, and the total reflection mirror 127 are sequentially connected by an optical fiber.
  • the negative dispersion device 125 may be connected between the optical splitter 126 and the total reflection mirror 127, or may be connected between the first AWG 123 and the optical splitter 126, and may be connected to the gain device 121 and the first AWG 123. between.
  • FIG. 12 only one branch port of the first AWG 123 is connected by an optical fiber with each gain device 121, and the common port of the first AWG 123, the optical splitter 126, the negative dispersion device 125, and the total reflection mirror 127 are sequentially passed through the optical fiber.
  • the case of connection is explained as an example.
  • Each of the above connected devices is connected by an optical fiber.
  • Each gain device 121 produces a broad spectrum optical signal and is coupled to a branch port of the first AWG 123.
  • the first AWG 123 performs filter filtering on the wide-spectrum optical signal generated by each of the gain devices 121, and each branch port has a different center wavelength, that is, each branch port performs filter selection, for example, two in the PON.
  • the gain device 121 is exemplified.
  • the two gain devices 121 are respectively connected to the two branch ports of the first AWG 123 to indicate the center wavelength of the branch port of the first AWG 123 connected to the first gain device 121, and the connection is represented by ⁇ 2
  • the second gain device 121 The center wavelength of the branch port of the AWG 123, after passing through the branch port of the first AWG 123, only the wavelength of the broad spectrum optical signal emitted by the first gain device 121 is ⁇ !
  • the optical signal can pass through the first AWG 123, and the optical signals of other wavelengths cannot pass; only the optical signal of the wavelength ⁇ 2 of the wide-spectrum optical signal emitted by the second gain device 121 can pass through the first AWG 123, other wavelengths Light signals cannot pass.
  • the wavelength corresponding to the first gain device 121 is ⁇ !
  • the optical signal and the optical signal of the wavelength ⁇ 2 corresponding to the second gain device 121 are output from the common port of the first AWG 123 to the optical splitter 126, and are split into two paths through the optical splitter 126, wherein one wavelength is ⁇ !
  • the optical signal and the optical signal having the wavelength ⁇ 2 are emitted from the injection laser, and the other optical signal having the wavelength of the artificial light and the optical signal having the wavelength ⁇ 2 are transmitted to the negative dispersion device 125.
  • the negative dispersion device 125 is at a wavelength of ⁇ !
  • the optical signal and the optical signal of wavelength ⁇ 2 add a negative dispersion, which is then transmitted to the total reflection mirror 127, and the total reflection mirror 127 has a wavelength of ⁇ !
  • the optical signal and the optical signal having a wavelength of ⁇ 2 are all reflected back to the negative dispersion device 125.
  • the reflected optical signal is increased by the negative dispersion device 125 to increase the negative dispersion, and then input to the common port of the first AWG 123.
  • the branch ports of the first AWG 123 respectively return the optical signals of the wavelength corresponding to the branch port to the gain of the branch port connection.
  • the device 121 for example, a branch port of the first AWG 123 returns an optical signal having an incoming wavelength to the first gain device 121, and the other branch port of the first AWG 123 returns the optical signal having the wavelength ⁇ 2 to the second gain.
  • Device 121 each of the gain device 121, the first AWG 123, the optical splitter 126, the negative dispersion device 125, and the total reflection mirror 127 constitutes a laser oscillation cavity in which light oscillates back and forth.
  • the optical signal returned to the gain device 121 is increased by the negative dispersion caused by the negative dispersion device 125, and the absolute value of the negative dispersion is greater than or equal to the optical signal emitted by the gain device 121.
  • the shorter the wavelength of the optical signal the greater the transmission delay.
  • the total reflection mirror 127 and the optical splitter 126 will have a partially reflected wavelength of ⁇ !
  • the transmitted light signal of the optical signal and the optical signal of wavelength ⁇ 2 is sent to the common port of the second AWG 124, and each branch port of the second AWG 124 is connected to a receiver 122, which is input into the optical signal of the common port.
  • the optical signals of each wavelength are respectively sent to the receivers 122 corresponding to the respective wavelengths.
  • one branch port of the second AWG 124 transmits an optical signal of wavelength ⁇ i to a first receiver 122 corresponding to the wavelength of ⁇ i
  • another branch port of the second AWG 124 transmits an optical signal of wavelength ⁇ 2
  • a second receiver 122 corresponding to the ⁇ 2 wavelength is given.
  • the first AWG, the second AWG, the negative dispersion device, the optical splitter and the total reflection mirror jointly constitute the optical processing device, and the first AWG performs the wave selection filtering operation, and the optical branching is performed.
  • the total reflection mirror performs a partial reflection operation, and the negative dispersion device adds a negative dispersion to the optical signal of the return gain device, and the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the light processing device, resulting in the optical signal.
  • the longer the wavelength, the smaller the transmission delay, the shorter the wavelength, and the greater the transmission delay which makes the width of the lasing spectrum of the self-injected laser significantly narrower, improving the performance of the self-injected laser.
  • FIG. 13 is a schematic structural diagram of a PON according to Embodiment 13 of the present invention.
  • the PON includes at least: at least one gain device 131, at least one receiver 132, a first AWG 133, a second AWG 134, an optical splitter 135, and a reflective negative dispersion device 136, and a connection
  • the first AWG 133, the second AWG 134, the optical splitter 135, and the reflective negative dispersion device 136 and the optical fibers together constitute the optical processing device of the tenth embodiment of the present invention.
  • the first AWG 133 and the second AWG 134 may specifically adopt a Gaussian type AWG, or a film type AWG, or a Gaussian type AWG and an Ethernet filter, or a Gaussian type AWG and a fiber grating.
  • the reflective negative dispersion device 136 can employ a fiber grating having a negative dispersion effect and a reflection effect, or a photonic crystal having a negative dispersion effect and a reflection effect.
  • the PON of the thirteenth embodiment of the present invention uses the self-injection laser of the eighth embodiment of the present invention as a signal transmitting end, and the plurality of gain devices are respectively connected to the respective branch ports of the AWG of the self-injecting laser according to the eighth embodiment of the present invention, and An AWG transmits an optical signal from the transmitting end to multiple receivers.
  • each of the gain devices 131 is connected to one branch port of the first AWG 133 via an optical fiber, and the common port of the first AWG 133, the optical splitter 135, the reflective negative dispersion device 136, and the common port of the second AWG 134 pass The fibers are sequentially connected, and each branch port of the second AWG 134 is connected to a receiver 132 via an optical fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • Each gain device 131 produces a broad spectrum optical signal and is coupled to a branch port of the first AWG 133.
  • the first AWG 133 performs filter filtering on the wide-spectrum optical signal generated by each of the gain devices 131.
  • Each of the branch ports has a different center wavelength, that is, each branch port performs filter selection, for example, two in the PON.
  • the gain device 131 is taken as an example.
  • the two gain devices 131 are respectively connected to the two branch ports of the first AWG 133, and the first connection of the first gain device 131 is represented by ⁇ ⁇
  • the center wavelength of the branch port of the AWG 133, ⁇ 2 represents the center wavelength of the branch port of the first AWG 133 connected to the second gain device 131, and then the width of the first gain device 131 after passing through the first AWG 133
  • the optical signal with the wavelength of the incoming light can pass through the first AWG 133, and the optical signals of other wavelengths cannot pass; only the optical signal with the wavelength ⁇ 2 of the wide-spectrum optical signal emitted by the second gain device 131 can pass.
  • the first AWG 133, optical signals of other wavelengths cannot pass.
  • the wavelength corresponding to the first gain device 131 is ⁇ !
  • the optical signal and the optical signal of the wavelength ⁇ 2 corresponding to the second gain device 131 are output from the common port of the first AWG 133, and then split into two paths through the optical splitter 135, one of which contains the wavelength ⁇ ! And the optical signal of wavelength ⁇ 2 is used as an output signal, which is transmitted to the receiver 132 via the optical path, and the other path contains the wavelength ⁇ !
  • the optical signal of the wavelength ⁇ 2 is transmitted to the reflective negative dispersion device 136.
  • the reflective negative dispersion device 136 after adding a negative dispersion to the optical signal including the wavelength and the wavelength ⁇ 2 , reflects all of it back to the common port of the first AWG 133, and the branch ports of the first AWG 133 respectively branch the branch The optical signal of the wavelength corresponding to the port is returned to the gain device 131 connected to the branch port.
  • one branch port of the first AWG 133 returns the optical signal of the incoming wavelength to the first gain device 131, and the other of the first AWG 133.
  • the branch port returns the optical signal of wavelength ⁇ 2 to the second gain device 131, so that the gain device 131, the first AWG 133, the optical splitter 135 and the reflective negative dispersion device 136 form a laser oscillating cavity, and the light
  • the oscillation chamber oscillates back and forth.
  • the negative chromatic dispersion caused by the reflective negative dispersion device 136 is increased in the optical signal of the return gain device 131, and the absolute value of the negative dispersion is greater than or equal to the first AWG 133, The sum of the optical splitter 135 and the reflective negative dispersion device 136 and the positive dispersion produced by the optical fiber, so that the longer the wavelength of the optical signal of the return gain device 131, the smaller the transmission delay, and conversely, the shorter the wavelength of the optical signal. , the greater the transmission delay.
  • the optical splitter 135 takes an optical signal of one of the paths including the wavelength and the wavelength ⁇ 2 as an output signal, and the output signal is transmitted to the receiver 132 through the optical path. Specifically, the optical splitter 135 sends the way output signal to the common port of the second AWG 134, and each branch port of the second AWG 134 is connected to a receiver 132, each wavelength of the optical signal input to the common port. The optical signals are respectively sent to the receivers 132 corresponding to the respective wavelengths. For example, a branch port of the second AWG 134 will have a wavelength of ⁇ ! The light signal is sent to the corresponding ⁇ !
  • the first receiver 132 of the wavelength, the other branch port of the second AWG 134 transmits an optical signal of wavelength ⁇ 2 to the second receiver 132 of the corresponding human 2 wavelength.
  • the first AWG, the second AWG, the optical splitter and the reflective negative dispersion device together constitute the optical processing device of the PON, and the reflective negative dispersion device has the effect of increasing negative dispersion.
  • the first AWG for the wave selection filtering operation through the first AWG for the wave selection filtering operation, the partial reflection operation by the optical splitter and the reflective negative dispersion device, and the negative dispersion is added to the optical signal of the return gain device by the reflective negative dispersion device, Since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device, the longer the wavelength of the optical signal, the smaller the transmission delay, and the shorter the wavelength, the greater the transmission delay, thereby enabling the transmission in the PON.
  • the width of the lasing spectrum of the self-injecting laser of the signal is significantly narrowed, improving the performance of the self-injecting laser.
  • FIG. 14 is a schematic structural diagram of a PON according to Embodiment 14 of the present invention.
  • the PON includes at least: at least one gain device 141, at least one receiver 142, a first AWG 143 having a negative dispersion effect, a second AWG 144, and a PRM 145, and a connection gain device 141, a receiver. 142.
  • the first AWG 143, the second AWG 144, the PRM 145, and the optical fibers having the negative dispersion function together constitute the optical processing device of the tenth embodiment of the present invention.
  • the first AWG 143 and the second AWG 144 may specifically adopt a Gaussian AWG, or a film type AWG, or a Gaussian AWG and an Ethernet filter, or a Gaussian AWG and a fiber grating.
  • the PON of the fourteenth embodiment of the present invention uses the self-injecting laser of the ninth embodiment of the present invention as a signal transmitting end, and the plurality of gain devices are respectively connected to the respective branch ports of the AWG of the self-injecting laser of the ninth embodiment of the present invention, and An AWG transmits an optical signal from the transmitting end to multiple receivers.
  • each of the gain devices 141 is connected to one branch port of the first AWG 143 having a negative dispersion by an optical fiber, and the common ports of the first AWG 143, the common ports of the PRM 145 and the second AWG 144 are sequentially connected by the optical fibers, and the second Each branch port of the AWG 144 is connected to a receiver 142 via a fiber.
  • Each of the above connected devices is connected by an optical fiber.
  • Each gain device 141 produces a broad spectrum optical signal and is coupled to a branch port of the first AWG 143.
  • the first AWG 143 performs filter filtering on the wide-spectrum optical signals generated by each of the gain devices 141, and each of the branch ports has a different center wavelength, that is, each branch port performs filter selection, for example, two in the PON.
  • the two gain devices 141 are respectively connected to the two branch ports of the first AWG 143 to indicate the center wavelength of the branch port of the first AWG 143 connected to the first gain device 141, and the connection is represented by ⁇ 2
  • the second gain device 141 The center wavelength of the branch port of an AWG 143, after passing through the first AWG 143, only the optical signal of the wavelength of the wide-band optical signal emitted by the first gain device 141 can pass through the first AWG 143, the optical signal of other wavelengths. It was not pass; broad-spectrum optical signal of the second gain device 141 is only issued by the optical signal wavelength ⁇ 2 through the first AWG 143, an optical signal can not pass all other wavelengths.
  • the wavelength corresponding to the first gain device 141 is ⁇ !
  • the optical signal and the optical signal of the wavelength ⁇ 2 corresponding to the second gain device 141 are output from the common port of the first AWG 143.
  • the first AWG 143 also has the effect of increasing the negative dispersion, so that after the first AWG 143, the common port output of the first AWG 143 contains the wavelength ⁇ ! Negative dispersion is added to the optical signal of wavelength ⁇ 2 .
  • the wavelength ⁇ is included!
  • an optical signal having a wavelength of ⁇ 2 is transmitted from the common port of the first AWG 143 to the PRM 145. PRM 145 pairs of wavelengths are ⁇ !
  • the optical signal and the optical signal having a wavelength of ⁇ 2 are partially reflected. That is, when the PRM 145 passes, the wavelength is a part of the incoming optical signal and the optical signal of the wavelength ⁇ 2 is transmitted, and the other part is reflected.
  • the reflected optical signal is input to the common port of the first AWG 143, the first AWG 143 adds a negative dispersion to the reflected optical signal, and the branch ports of the first AWG 143 respectively respectively light the wavelength corresponding to the branch port.
  • the signal is returned to the gain device 141 to which the branch port is connected.
  • one branch port of the first AWG 143 returns the optical signal of the incoming wavelength to the first gain device 141, and the other branch port of the first AWG 143 has a wavelength of ⁇ .
  • the optical signal of 2 is returned to the second gain device 141 such that each of the gain device 141, the first AWG 143 and the PRM 145 constitutes a laser oscillation cavity in which light oscillates back and forth.
  • the optical signal returned to the gain device 141 is added with a negative dispersion caused by the first AWG 143, and the absolute value of the negative dispersion is greater than or It is equal to the sum of the first AWG 143 and the PRM 145 and the positive dispersion generated by the optical fiber, so that the longer the wavelength of the optical signal of the return gain device 141, the smaller the transmission delay, and the shorter the wavelength of the optical signal, the more the transmission delay is. Big.
  • the PRM 145 will have a partially reflected wavelength of ⁇ !
  • the transmitted optical signal of the optical signal and the optical signal of wavelength ⁇ 2 is sent to the common port of the second AWG 144, and each branch port of the second AWG 144 is connected to a receiver 142, which is input into the optical signal of the common port.
  • the optical signals of each wavelength are respectively sent to the receiver 142 corresponding to each wavelength.
  • a branch port of the second AWG 144 will have a wavelength of ⁇ !
  • the light signal is sent to the corresponding ⁇ !
  • the first receiver 142 of the wavelength, the other branch port of the second AWG 144 transmits an optical signal of wavelength ⁇ 2 to the second receiver 142 of the corresponding human 2 wavelength.
  • the first AWG, the second AWG, and the PRM together constitute a light processing device, wherein the first AWG has a negative dispersion function, performs a wave selection filtering operation through the first AWG, and performs a partial reflection operation through the PRM. And increasing the negative dispersion in the optical signal of the return gain device by the first AWG. Since the absolute value of the increased negative dispersion is greater than or equal to the sum of the positive dispersions of the optical processing device, the longer the wavelength of the optical signal, the smaller the transmission delay.
  • the angle is described in the actual application, for the two-way transceiver PON, can be in the two transmission side fourteen technical solutions.
  • connection manner between the devices may be specifically connected by using an optical fiber, for example, using a single mode. Fiber optics are connected to each device.
  • the gain device has a modulation function
  • the gain device includes a front end surface and a rear end surface, wherein the front end surface It has low reflection characteristics and a high reflection characteristic on the rear end surface.
  • the gain devices in the above various embodiments may specifically adopt an RSOA or a Fabry-Perot Laser Diode (FP-LD), such as an injection locking FP-LD (Injection Locking FP- LD, referred to as IL FP-LD).
  • FP-LD Fabry-Perot Laser Diode
  • IL FP-LD injection Locking FP-LD
  • a Faraday rotator the Faraday
  • the rotator has a phase of 45 degrees, that is, the phase of the optical signal passing through the Faraday rotator is offset by 45 degrees such that the polarization state of the reflected light passing through the reflective device relative to the incidence incident on the device The polarization state of the light is rotated by 90 degrees.
  • the TE mode optical signal from the gain device becomes the TM mode optical signal when injected back into the gain device, and the TM-type optical signal from the gain device is injected back into the gain device.
  • the optical signal of the TE mode is changed, thereby reducing the polarization disturbance in the fiber link, improving the polarization stability of the self-injection laser, and further improving the performance of the self-injection laser.
  • the Faraday rotator may be disposed in front of each of the light path having a reflective device. For example, in this hair In the first embodiment, a Faraday rotator is disposed between the gain device 11 and the light processing device 12.
  • a Faraday rotator is disposed between the gain device 21 and the optical filter 22, and/or a Faraday rotator is disposed between the negative dispersion device 23 and the PRM 24.
  • a Faraday rotator is disposed between the gain device 31 and the optical filter 32, and/or a Faraday rotator is disposed between the negative dispersion device 33 and the total reflection mirror 35.
  • a Faraday rotator is disposed between the gain device 41 and the optical filter 42, and/or a Faraday rotator is disposed between the optical splitter 43 and the reflective negative dispersion device 44.
  • a Faraday rotator is disposed between the gain device 51 and the optical splitter 52, and/or is disposed between the optical splitter 52 and the reflective negative dispersion device 53 having a filtering effect.
  • a Faraday rotator is provided between the gain device 61 and the AWG 62, and/or a Faraday rotator is disposed between the negative dispersion device 63 and the PRM 64.
  • a Faraday rotator is provided between the gain device 71 and the AWG 72, and/or a Faraday rotator is disposed between the optical splitter 74 and the total reflection mirror 75.
  • a Faraday rotator is disposed between the gain device 81 and the AWG 82, and/or a Faraday rotator is disposed between the optical splitter 83 and the reflective negative dispersion device 84.
  • a Faraday rotator is provided between the gain device 91 and the AWG 92 having a negative dispersion effect, and/or a Faraday rotator is disposed between the AWG 92 and the PRM 93 having a negative dispersion effect.
  • a Faraday rotator is provided between the gain device 101 and the light processing device 103.
  • a Faraday rotator is provided between each of the gain device 111 and the first AWG 113, and/or a Faraday rotator is disposed between the negative dispersion device 115 and the PRM 116.
  • a Faraday rotator is disposed between each of the gain device 121 and the first AWG 123, and/or a Faraday rotator is disposed between the optical splitter 126 and the total reflection mirror 127.
  • a Faraday rotator is disposed between each of the gain devices 131 and the first AWG 133, and/or a light splitter 135 is disposed between the optical splitter 135 and the reflective negative dispersion device 136.
  • Faraday rotator In the fourteenth embodiment of the present invention, a Faraday rotator is provided between each of the gain devices 141 and the first AWG 143, and/or a Faraday rotator is disposed between the first AWG 143 and the PRM 145.
  • Figure 15 is a schematic view showing the lasing spectrum comparison of the self-injecting laser of the present invention and the self-injecting laser of the prior art.
  • the self-injection laser of the present invention is assembled by experiment and in the prior art
  • the lasing spectrum generated by the self-injected laser, as shown in Fig. 15, uses the AWG as the intracavity filter of the self-injection laser in the prior art self-injection laser. Due to the wide bandwidth of the AWG, the mode selection effect is weak.
  • the gain device itself generates a modulation ⁇ , and the optical signal introduces a positive dispersion from the optical fiber during the round-trip oscillation process, and the above-mentioned ⁇ and positive dispersion are injected back into the gain device, which exacerbates the broadening of the modulation ⁇ and lasing spectra of the self-injected laser. Jitter, therefore, if the fiber between the gain device and the AWG is long, the lasing line of the self-injected laser is as shown by the dashed curve in Figure 15, with a wide spectrum, and the performance of the self-injected laser also follows the intermediate fiber. The length increases and it sharply deteriorates.
  • a device having a negative dispersion function is added to a resonant cavity, for example, having a DCF, when the absolute value of the negative dispersion generated is greater than the total positive dispersion value in the resonant cavity,
  • the lasing light transmitted into the laser is shown in the realization curve of Fig. 15, the spectral width is significantly narrowed, and the performance of the self-injecting laser is also significantly improved.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种自注入激光器和无源光网络。自注入激光器包括增益器件和与增益器件连接的光处理器件,增益器件产生宽谱光信号,光处理器件对宽谱光信号进行滤波和部分反射,在部分反射后的反射光信号中增加负色散后返回增益器件,以使增益器件和光处理器件组成激光振荡腔,负色散的绝对值大于或等于光处理器件的正色散的总和。所述自注入激光器和无源光网络,能够提高自注入激光器的性能。

Description

自注入激光器和无源光网络
技术领域 本发明实施例涉及通信技术, 尤其涉及一种自注入激光器和无源光网 络( Passive Optical Network, 简称 PON ) 。 背景技术
光纤接入网是下一代宽带接入网的有力竟争者, 其中尤其以 PON 更 具竟争力。 在多种 PON中, 波分复用 PON ( Wave Division Multiplexing PON, 简称 WDM-PON )由于具有巨大的带宽容量和类似点对点通信的信 息安全性等优点而备受关注。
在 WDM-PON技术领域中,最为关键是的找到一种低成本的无色激光 器。 目前, 业界为解决该问题提出了自注入激光器的解决方案。 现有的自 注入激光器中包括一个宽谱增益的反射半导体光放大器 ( Reflective Semiconductor Optical Amplifier,简称 RSOA )、一个阵列波导光栅( Arrayed Waveguide Grating , 简称 AWG ) 和一个部分反射镜 ( Partially Reflecting Mirror, 简称 PRM )。 RSOA通过光纤连接到 AWG的一个分支 端口 , PRM通过光纤与 AWG的公共端口相连, RSOA、 AWG和 PRM三 者构成一个自注入激光器。
釆用上述现有的自注入激光器, RSOA发出经过调制后的带有啁啾的 光信号, 该信号经过一段光纤传输后返回到 RSOA形成谐振, 在此往返过 程中, 调制和色散进一步加剧了自注入激光器的调制啁啾和自注入激光器 的激射光谱的展宽和抖动, 造成自注入激光器的性能恶化。 发明内容
本发明实施例的第一个方面是提供一种自注入激光器, 用以解决现有技 术中的缺陷, 提高自注入激光器的性能。
本发明实施例的另一个方面是提供一种 PON, 用以解决现有技术中的缺 陷, 提高 PON中用于发射信号的自注入激光器的性能。 本发明的第一个方面是提供一种自注入激光器, 包括: 增益器件和与所 述增益器件连接的光处理器件;
所述增益器件产生宽谱光信号, 所述光处理器件对所述宽谱光信号进行 滤波和部分反射, 在部分反射后的反射光信号中增加负色散后返回所述增益 器件, 以使所述增益器件和所述光处理器件组成激光振荡腔, 所述负色散的 绝对值大于或等于所述光处理器件的正色散的总和。
如上所述的自注入激光器, 所述光处理器件包括: 光滤波器、 负色散器 件、 部分反射镜 PRM和连接所述光滤波器、 所述负色散器件与所述 PRM的 光纤; 所述负色散器件产生的负色散的绝对值大于或等于所述光滤波器、 所 述 PRM和所述光纤产生的正色散的总和;
所述增益器件、所述光滤波器、所述负色散器件和所述 PRM通过所述光 纤依次连接;
或者, 所述增益器件、 所述负色散器件、 所述光滤波器和所述 PRM通过 光纤依次连接。
如上所述的自注入激光器, 所述光处理器件包括: 光滤波器、 负色散器 件、 光分路器、 全反射镜和连接光滤波器、 负色散器件、 光分路器与全反射 镜的光纤;所述负色散器件产生的负色散的绝对值大于或等于所述光滤波器、 所述光分路器、 所述全反射镜和所述光纤产生的正色散的总和;
所述增益器件、 所述光滤波器、 所述光分路器、 所述负色散器件和所述 全反射镜通过所述光纤依次连接;
或, 所述增益器件、 所述光滤波器、 所述负色散器件、 所述光分路器和 所述全反射镜通过所述光纤依次连接;
或, 所述增益器件、 所述负色散器件、 所述光滤波器、 所述光分路器和 所述全反射镜通过所述光纤依次连接。
如上所述的自注入激光器, 所述光处理器件包括: 光滤波器、 光分路器、 反射型的负色散器件和连接所述光滤波器、 所述光分路器与所述反射型的负 色散器件的光纤; 所述反射型的负色散器件产生的负色散的绝对值大于或等 于所述光滤波器、 所述光分路器和所述光纤产生的正色散的总和;
所述增益器件、 所述光滤波器、 所述光分路器和所述反射型的负色散器 件通过所述光纤依次连接。 如上所述的自注入激光器, 所述光处理器件包括: 光分路器、 具有滤波 作用的反射型的负色散器件和连接所述光分路器与所述具有滤波作用的反射 型的负色散器件的光纤; 所述具有滤波作用的反射型的负色散器件产生的负 色散的绝对值大于或等于所述光分路器和所述光纤产生的正色散的总和; 所述增益器件、 所述光分路器和所述具有滤波作用的反射型的负色散器 件通过所述光纤依次连接。
如上所述的自注入激光器, 所述光处理器件包括: 阵列波导光栅 AWG、 负色散器件、 PRM和连接所述 AWG、 所述负色散器件与所述 PRM的光纤; 所述负色散器件产生的负色散的绝对值大于或等于所述 AWG、 所述 PRM和 所述光纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口、 所述负色 散器件通过所述光纤连接所述 AWG的公共端口和所述 PRM;
或者, 所述增益器件、 所述负色散器件和所述 AWG的一个分支端口通 过所述光纤依次连接, 所述 AWG的公共端口通过所述光纤连接所述 PRM。
如上所述的自注入激光器, 所述光处理器件包括: AWG、 负色散器件、 光分路器、全反射镜和连接所述 AWG、 所述负色散器件、 所述光分路器与所 述全反射镜的光纤; 所述负色散器件产生的负色散的绝对值大于或等于所述 AWG、 所述光分路器、 所述全反射镜和所述光纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口,所述 AWG 的公共端口、 所述光分路器、 所述负色散器件和所述全反射镜通过所述光纤 依次连接;
或者, 所述增益器件通过所述光纤连接所述 AWG的一个分支端口, 所 述 AWG的公共端口、 所述负色散器件、 所述光分路器和所述全反射镜通过 所述光纤依次连接;
或者, 所述增益器件、 所述负色散器件、 所述 AWG的一个分支端口通 过所述光纤依次连接, 所述 AWG的公共端口、 所述光分路器和所述全反射 镜通过所述光纤依次连接。
如上所述的自注入激光器, 所述光处理器件包括: AWG、 光分路器、 反 射型的负色散器件和连接所述 AWG、所述光分路器与所述反射型的负色散器 件的光纤; 所述反射型的负色散器件产生的负色散的绝对值大于或等于所述 AWG, 所述光分路器和所述光纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口, 所述光分 路器通过所述光纤连接所述 AWG的公共端口和所述反射型的负色散器件。
如上所述的自注入激光器, 所述光处理器件包括: 具有负色散作用的 AWG、 PRM和连接所述具有负色散作用的 AWG与所述 PRM的光纤; 所述 具有负色散作用的 AWG产生的负色散的绝对值大于或等于所述 PRM和所述 光纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口,所述 AWG 的公共端口通过所述光纤连接所述 PRM。
本发明的另一个方面是提供一种无源光网络 PON, 包括:
至少一个增益器件、 至少一个接收机和连接所述至少一个增益器件与所 述至少一个接收机的光处理器件;
每个所述增益器件产生宽谱光信号, 所述光处理器件对每个所述增益器 件产生的所述宽谱光信号进行选波滤波, 获得每个所述增益器件分别对应的 波长的光信号,对每个所述增益器件分别对应的波长的光信号进行部分反射, 在部分反射后的每个波长的反射光信号中增加负色散后返回每个波长分别对 应的所述增益器件, 以使所述增益器件和所述光处理器件组成激光振荡腔, 所述负色散的绝对值大于或等于所述光处理器件的正色散的总和, 所述光处 理器件将部分反射后的每个波长的透射光信号分别发送给每个波长分别对应 的接收机。
如上所述的 PON, 所述光处理器件包括: 第一阵列波导光栅 AWG、 第 二 AWG、 负色散器件、 部分反射镜 PRM和连接所述第一 AWG、 所述第二 AWG、 所述负色散器件与所述 PRM的光纤; 所述负色散器件产生的负色散 的绝对值大于或等于所述第一 AWG、 所述第二 AWG、 所述 PRM和所述光 纤产生的正色散的总和;
每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支端口, 所述第一 AWG的公共端口、 所述负色散器件、 所述 PRM和所述第二 AWG 的公共端口通过所述光纤依次连接, 所述第二 AWG的每个分支端口通过所 述光纤连接一个所述接收机。
如上所述的 PON, 所述光处理器件包括: 第一 AWG、 第二 AWG、 负色 散器件、 光分路器、 全反射镜和连接所述第一 AWG、 所述第二 AWG、 所述 负色散器件、 所述光分路器与所述全反射镜的光纤; 所述负色散器件产生的 负色散的绝对值大于或等于所述第一 AWG、所述第二 AWG、所述光分路器、 所述全反射镜和所述光纤产生的正色散的总和;
每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支端口, 所述第一 AWG的公共端口、 所述光分路器、 所述负色散器件和所述全反射 镜通过所述光纤依次连接;
或者, 每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支 端口, 所述第一 AWG的公共端口、 所述负色散器件、 所述光分路器和所述 全反射镜通过所述光纤依次连接;
或者, 每个所述增益器件、 所述负色散器件和所述第一 AWG的一个分 支端口通过所述光纤依次连接, 所述第一 AWG的公共端口、 所述光分路器 和所述全反射镜通过所述光纤依次连接。
如上所述的 PON, 所述光处理器件包括: 第一 AWG、 第二 AWG、 光分 路器、反射型的负色散器件和连接所述第一 AWG、 所述第二 AWG、 所述光 分路器与所述反射型的负色散器件的光紆; 所述反射型的负色散器件产生的 负色散的绝对值大于或等于所述第一 AWG、 所述第二 AWG、 所述光分路器 和所述光纤产生的正色散的总和;
每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支端口, 所述第一 AWG的公共端口、 所述光分路器、 所述反射型的负色散器件和所 述第二 AWG的公共端口通过所述光纤依次连接, 所述第二 AWG的每个分 支端口通过所述光纤连接一个所述接收机。
如上所述的 PON, 所述光处理器件包括: 具有负色散作用的第一 AWG、 第二 AWG、 PRM和连接所述具有负色散作用的第一 AWG、 所述第二 AWG 与所述 PRM的光纤; 所述具有负色散作用的第一 AWG产生的负色散的绝 对值大于或等于所述第二 AWG、所述 PRM和所述光纤产生的正色散的总和; 每个所述增益器件通过所述光纤连接所述具有负色散作用的第一 AWG 的一个分支端口, 所述第一 AWG的公共端口、 所述 PRM和所述第二 AWG 的公共端口通过所述光纤依次连接, 所述第二 AWG的每个分支端口通过所 述光纤连接一个所述接收机。 由本发明的上述发明内容可见, 自注入激光器中的光处理器件在反射 回增益器件的光信号中增加了负色散, 增加的负色散的绝对值大于或等于增 益器件和光处理器件的正色散的总和, 因此能够导致光信号的波长越长, 传 输延迟越小, 波长越短, 传输延迟越大, 从而使得自注入激光器的激射光谱 的宽度显著变窄, 提高了自注入激光器的性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一的自注入激光器的结构示意图;
图 2为本发明实施例二的自注入激光器的结构示意图;
图 3为本发明实施例三的自注入激光器的结构示意图;
图 4为本发明实施例四的自注入激光器的结构示意图;
图 5为本发明实施例五的自注入激光器的结构示意图;
图 6为本发明实施例六的自注入激光器的结构示意图;
图 7为本发明实施例七的自注入激光器的结构示意图;
图 8为本发明实施例八的自注入激光器的结构示意图;
图 9为本发明实施例九的自注入激光器的结构示意图;
图 10为本发明实施例十的 PON的结构示意图;
图 11为本发明实施例十一的 PON的结构示意图;
图 12为本发明实施例十二的 PON的结构示意图;
图 13为本发明实施例十三的 PON的结构示意图;
图 14为本发明实施例十四的 PON的结构示意图;
图 15 为本发明的自注入激光器与现有技术中的自注入激光器产生的 激射光谱对比示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
图 1为本发明实施例一的自注入激光器的结构示意图。 如图 1所示, 该 自注入激光器中至少包括: 增益器件 11和光处理器件 12。
其中, 光处理器件 12与增益器件 11连接。 增益器件 11产生宽谱光信号 并发送到光处理器件 12。 光处理器件 12对宽谱光信号进行滤波和部分反射, 并且在部分反射后的反射光信号中增加负色散后返回增益器件 11 , 增益器件 11将返回的光信号放大并再一次发出, 如此经过多次谐振, 增益器件 11和 光处理器件 12组成激光振荡腔, 光在该振荡腔内往返振荡, 形成稳定的光信 号输出。 其中, 光处理器件 12在反射光信号中增加的负色散的绝对值大于或 等于光处理器件 12的正色散的总和, 从而使得光信号的波长越长, 其传输延 迟越小, 反之, 光信号的波长越短, 其传输延迟越大。
在本发明实施例一中, 该自注入激光器中的光处理器件在反射回增益器 件的光信号中增加了负色散, 由于增加的负色散的绝对值大于或等于光处理 器件的正色散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越大, 从而使得自注入激光器的激射光谱的宽度显著变窄, 提高 了自注入激光器的性能。
在本发明实施例一的技术方案的基础上, 具体地, 本发明实施例一的光 处理器件可以釆用多种具体实现方式, 以下分别通过本发明实施例二至本发 明实施例八予以伴细说明。
图 2为本发明实施例二的自注入激光器的结构示意图。 如图 2所示, 该 自注入激光器中至少包括:增益器件 21、光滤波器 22、负色散器件 23和 PRM 24, 以及连接增益器件 21、 光滤波器 22、 负色散器件 23、 PRM 24的光纤。 其中, 光滤波器 22、 负色散器件 23和 PRM 24以及光纤共同构成本发明实施 例一记载的光处理器件。 优选地, 负色散器件 23可以釆用具有负色散特性的 光乡千 ( Dispersion Compensation Fiber, 简称 DCF ) 。
具体地, 增益器件 21、 光滤波器 22、 负色散器件 23和 PRM 24的连接 顺序可以为: 增益器件 21、 光滤波器 22、 负色散器件 23和 PRM 24通过光 纤依次连接; 或者, 增益器件 21、 负色散器件 23、 光滤波器 22和 PRM 24 通过光纤依次连接。 即, 负色散器件 23可以连接在光滤波器 22与 PRM 24 之间, 也可以连接在增益器件 21与光滤波器 22之间。 在图 2中, 仅以增益 器件 21、 光滤波器 22、 负色散器件 23和 PRM 24通过光纤依次连接的情况 为例予以说明。 上述各个相连的器件均通过光纤连接。
增益器件 21产生宽谱光信号并发送到光滤波器 22。 以 λ 表示光滤波器 22的中心波长, 光滤波器 22对宽谱光信号进行滤波后, 获得波长为 λ工的光 信号。 该波长为 λ!的光信号经过负色散器件 23 , 在该波长为 λ!的光信号中 增加负色散,然后传送到 PRM 24, PRM 24对该波长为 λ!的光信号进行部分 反射。 即, 经过 PRM 24时, 该波长为 的光信号中的一部分发生透射, 另 一部分发生反射。其中,发生反射的光信号又经过负色散器件 23增加负色散, 然后经过光滤波器 22返回到增益器件 21 , 从而使得增益器件 21、 光滤波器 22、 负色散器件 23和 PRM 24组成一个激光振荡腔, 光在该振荡腔内往返振 荡。 其中, 与增益器件 21发出的光信号相比, 返回增益器件 21的光信号中 增加了由负色散器件 23导致的负色散,该负色散的绝对值大于或等于光滤波 器 22、 负色散器件 23和 PRM 24以及光纤产生的正色散的总和,从而使得返 回增益器件 21的光信号的波长越长, 其传输延迟越小, 反之, 光信号的波长 越短, 其传输延迟越大。 在实际应用中, 负色散器件 23可以釆用 DCF, 单位 长度的 DCF具有预设数值的负色散, 从而通过调整 DCF的长度来获得所需 数值的负色散, 例如, 通过测量或仿真方式获得光滤波器 22、 负色散器件 23 和 PRM 24以及光纤产生的正色散的总和,根据正色散的总和以及釆用的 DCF 的单位长度的负色散值, 确定 DCF的长度。
在本发明实施例二中, 由光滤波器、 负色散器件和 PRM共同构成光处理 器件, 通过光滤波器进行滤波操作, 通过 PRM进行部分反射操作, 通过负色 散器件在返回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值 大于或等于光处理器件的正色散的总和, 导致光信号的波长越长, 传输延迟 越小, 波长越短, 传输延迟越大, 从而使得自注入激光器的激射光谱的宽度 显著变窄, 提高了自注入激光器的性能。
图 3为本发明实施例三的自注入激光器的结构示意图。 如图 3所示, 该 自注入激光器中至少包括: 增益器件 31、 光滤波器 32、 负色散器件 33、 光 分路器 34和全反射镜 35 以及连接增益器件 31、 光滤波器 32、 负色散器件
33、光分路器 34和全反射镜 35的光纤。其中, 光滤波器 32、 负色散器件 33、 光分路器 34和全反射镜 35以及光纤共同构成本发明实施例一记载的光处理 器件。 优选地, 负色散器件 33可以釆用 DCF。
具体地, 增益器件 31、 光滤波器 32、 负色散器件 33、 光分路器 34和全 反射镜 35的连接顺序可以为: 增益器件 31、 光滤波器 32、 光分路器 34、 负 色散器件 33和全反射镜 35通过光纤依次连接; 或者, 增益器件 31、 光滤波 器 32、 负色散器件 33、光分路器 34和全反射镜 35通过光纤依次连接;或者, 增益器件 31、 负色散器件 33、 光滤波器 32、 光分路器 34和全反射镜 35通 过光纤依次连接。 即, 负色散器件 33可以连接在光分路器 34和全反射镜 35 之间, 也可以连接在光滤波器 32和光分路器 34之间, 还可以连接在增益器 件 31和光滤波器 32之间。 在图 3中, 仅以增益器件 31、 光滤波器 32、 光分 路器 34、 负色散器件 33和全反射镜 35通过光纤依次连接的情况为例予以说 明。 上述各个相连的器件均通过光纤连接。
增益器件 31产生宽谱光信号并发送到光滤波器 32。 以 λ 表示光滤波器
32的中心波长, 光滤波器 32对宽谱光信号进行滤波后, 获得波长为 λ工的光 信号。 该波长为人工的光信号经过光分路器 34分为两路, 其中一路光信号射 出自注入激光器, 另一路光信号传送到负色散器件 33。 负色散器件 33在该 路波长为 λ!的光信号中增加负色散, 然后传送到全反射镜 35 , 全反射镜 35 将该路波长为 λ!的光信号全部反射回负色散器件 33。 反射的光信号经过负 色散器件 33增加负色散,然后经过光分路器 34和光滤波器 32返回到增益器 件 31。 从而使得增益器件 31、 光滤波器 32、 光分路器 34、 负色散器件 33和 全反射镜 35组成一个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 与增益 器件 31发出的光信号相比, 返回增益器件 31的光信号中增加了由负色散器 件 33导致的负色散, 该负色散的绝对值大于或等于光滤波器 32、 光分路器
34、 负色散器件 33和全反射镜 35以及光纤产生的正色散的总和, 从而使得 返回增益器件 31的光信号的波长越长, 其传输延迟越小, 反之, 光信号的波 长越短, 其传输延迟越大。 在实际应用中, 负色散器件 33可以釆用 DCF, 单 位长度的 DCF具有预设数值的负色散, 从而通过调整 DCF的长度来获得所 需数值的负色散,例如,通过测量或仿真方式获得光滤波器 32、光分路器 34、 负色散器件 33和全反射镜 35以及光纤产生的正色散的总和, 根据正色散的 总和以及釆用的 DCF的单位长度的负色散值, 确定 DCF的长度。
在本发明实施例三中, 由光滤波器、 负色散器件、 光分路器和全反射镜 共同构成光处理器件, 通过光滤波器进行滤波操作, 通过光分路器和全反射 镜进行部分反射操作, 通过负色散器件在返回增益器件的光信号中增加负色 散, 由于增加的负色散的绝对值大于或等于光处理器件的正色散的总和, 导 致光信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越大, 从而使得 自注入激光器的激射光谱的宽度显著变窄, 提高了自注入激光器的性能。
图 4为本发明实施例四的自注入激光器的结构示意图。 如图 4所示, 该 自注入激光器中至少包括: 增益器件 41、 光滤波器 42、 光分路器 43和反射 型的负色散器件 44, 以及连接增益器件 41、 光滤波器 42、 光分路器 43和反 射型的负色散器件 44的光纤。 其中, 光滤波器 42、 光分路器 43和反射型的 负色散器件 44 以及光纤共同构成本发明实施例一记载的光处理器件。 具体 地,反射型的负色散器件 44可以釆用任何具有反射作用和负色散作用的光学 光纤光栅, 也可以釆用具有负色散作用和反射作用的光子晶体。
具体地, 增益器件 41、 光滤波器 42、 光分路器 43和反射型的负色散器 件 44通过光纤依次连接。 上述各个相连的器件均通过光纤连接。
增益器件 41产生宽谱光信号并发送到光滤波器 42。 以 λ 表示光滤波器 42的中心波长, 光滤波器 42对宽谱光信号进行滤波后, 获得波长为 的光 信号。 该波长为 λ!的光信号经过光分路器 43分为两路, 其中一路光信号射 出自注入激光器, 另一路光信号传送到反射型的负色散器件 44。 反射型的负 色散器件 44在该路波长为 λ!的光信号中增加负色散后将其全部反射。 反射 的光信号经过光分路器 43和光滤波器 42返回到增益器件 41。 从而使得增益 器件 41、 光滤波器 42、 光分路器 43和反射型的负色散器件 44组成一个激光 振荡腔,光在该振荡腔内往返振荡。其中,与增益器件 41发出的光信号相比, 返回增益器件 41的光信号中增加了由反射型的负色散器件 44导致的负色散, 该负色散的绝对值大于或等于光滤波器 42、 光分路器 43和反射型的负色散 器件 44以及光纤产生的正色散的总和, 从而使得返回增益器件 41的光信号 的波长越长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延迟越大。 在本发明实施例四中, 由光滤波器、 光分路器和反射型的负色散器件共 同构成光处理器件,反射型的负色散器件具有增加负色散的作用和反射作用, 通过光滤波器进行滤波操作, 通过光分路器和反射型的负色散器件进行部分 反射操作,通过反射型的负色散器件在返回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值大于或等于光处理器件的正色散的总和, 导致光 信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越大, 从而使得自注 入激光器的激射光谱的宽度显著变窄, 提高了自注入激光器的性能。
图 5为本发明实施例五的自注入激光器的结构示意图。 如图 5所示, 该 自注入激光器中至少包括: 增益器件 51、 光分路器 52和具有滤波作用的反 射型的负色散器件 53 , 以及连接增益器件 51、 光分路器 52和具有滤波作用 的反射型的负色散器件 53的光纤。
其中, 光分路器 52和具有滤波作用的反射型的负色散器件 53以及光纤 共同构成本发明实施例一记载的光处理器件。 具体地, 具有滤波作用的反射 型的负色散器件 53可以釆用任何具有滤波作用、反射作用和负色散作用的光 学器件, 优选地, 可以釆用具有滤波作用、 负色散作用和反射作用的光纤光 栅, 例如啁啾光纤, 也可以釆用具有滤波作用、 负色散作用和反射作用的光 子晶体。
具体地, 增益器件 51、 光分路器 52和具有滤波作用的反射型的负色散 器件 53通过光纤依次连接。 上述各个相连的器件均通过光纤连接。
增益器件 51产生宽谱光信号并发送到光分路器 52。 光分路器 52将该光 信号分为两路, 其中一路光信号射出自注入激光器, 另一路光信号传送到具 有滤波作用的反射型的负色散器件 53。 具有滤波作用的反射型的负色散器件 53具有窄带反射率, 以 表示具有滤波作用的反射型的负色散器件 53的反 射中心波长, 具有滤波作用的反射型的负色散器件 53对波长为 λ!的光信号 进行反射, 对其它波长的光不进行反射, 并且经过具有滤波作用的反射型的 负色散器件 53后,反射的光信号中增加了负色散。反射的光信号经过光分路 器 52返回到增益器件 51。 从而使得增益器件 51、 光分路器 52和具有滤波作 用的反射型的负色散器件 53 组成一个激光振荡腔, 光在该振荡腔内往返振 荡。 其中, 与增益器件 51发出的光信号相比, 返回增益器件 51的光信号中 增加了由具有滤波作用的反射型的负色散器件 53导致的负色散,该负色散的 绝对值大于或等于光分路器 52和具有滤波作用的反射型的负色散器件 53以 及光纤产生的正色散的总和, 从而使得返回增益器件 51 的光信号的波长越 长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延迟越大。
在本发明实施例五中, 由光分路器和具有滤波作用的反射型的负色散器 件共同构成光处理器件,具有滤波作用的反射型的负色散器件具有滤波作用、 增加负色散的作用和反射作用 , 通过具有滤波作用的反射型的负色散器件进 行滤波操作, 通过光分路器和具有滤波作用的反射型的负色散器件进行部分 反射操作, 通过具有滤波作用的反射型的负色散器件在返回增益器件的光信 号中增加负色散, 由于增加的负色散的绝对值大于或等于光处理器件的正色 散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越 大, 从而使得自注入激光器的激射光谱的宽度显著变窄, 提高了自注入激 光器的性能。
图 6为本发明实施例六的自注入激光器的结构示意图。 如图 6所示, 该 自注入激光器中至少包括:增益器件 61、 AWG 62、负色散器件 63和 PRM 64 以及连接增益器件 61、 AWG 62、 负色散器件 63和 PRM 64的光纤。 其中, AWG 62、 负色散器件 63和 PRM 64以及光纤共同构成本发明实施例一记载 的光处理器件。 其中, AWG 62具体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者由高斯型 AWG和以太龙滤波器组成, 或者由高斯型 AWG和光 纤光栅组成。 优选地, 负色散器件 63可以釆用 DCF。
具体地,增益器件 61通过光纤连接 AWG 62的一个分支端口, 负色散器 件 63通过光纤连接 AWG 62的公共端口和 PRM 64; 或者, 增益器件 61、 负 色散器件 63和 AWG 62的一个分支端口通过光纤依次连接, AWG 62的公共 端口通过光纤连接 PRM 64。在图 6中,仅以增益器件 61通过光纤连接 AWG 62的一个分支端口,负色散器件 63通过光纤连接 AWG 62的公共端口和 PRM 64的情况为例予以说明。 上述各个相连的器件均通过光纤连接。
增益器件 61产生宽谱光信号并发送到 AWG 62的一个分支端口。 AWG 62用于滤波, 每个分支端口分别具有不同的中心波长, 即每个分支端口进行 选波滤波, 以 λ 1表示连接上述增益器件 61的 AWG 62的分支端口的中心波 长, 经过该 AWG 62的分支端口后, 只有波长为 的光信号能够通过该分支 端口, 宽谱光信号中的其它波长的光信号均无法通过该分支端口。 该波长为 的光信号经过负色散器件 63 , 在该波长为 的光信号中增加负色散, 然 后传送到 PRM 64。 PRM 64对该波长为 λ!的光信号进行部分反射。 即, 经过 PRM 64时, 该波长为 的光信号中的一部分发生透射, 另一部分发生反射。 其中,发生反射的光信号又经过负色散器件 63增加负色散,然后经过 AWG 62 返回到增益器件 61,从而使得增益器件 61、 AWG 62、 负色散器件 63和 PRM 64组成一个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 与增益器件 61 发出的光信号相比, 返回增益器件 61的光信号中增加了由负色散器件 63导 致的负色散,该负色散的绝对值大于或等于 AWG 62、 负色散器件 63和 PRM 64 以及光纤产生的正色散的总和, 从而使得返回增益器件 61 的光信号的波 长越长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延迟越大。
在本发明实施例六中, 由 AWG、 负色散器件和 PRM共同构成光处理器 件, 通过 AWG进行选波滤波操作, 通过 PRM进行部分反射操作, 通过负色 散器件在返回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值 大于或等于光处理器件的正色散的总和, 导致光信号的波长越长, 传输延迟 越小, 波长越短, 传输延迟越大, 从而使得自注入激光器的激射光谱的宽度 显著变窄, 提高了自注入激光器的性能。
图 7为本发明实施例七的自注入激光器的结构示意图。 如图 7所示, 该 自注入激光器中至少包括: 增益器件 71、 AWG 72、 负色散器件 73、 光分路 器 74和全反射镜 75 , 以及连接增益器件 71、 AWG 72、 负色散器件 73、 光 分路器 74和全反射镜 75的光纤。 其中, AWG 72、 负色散器件 73、 光分路 器 74和全反射镜 75以及光纤共同构成本发明实施例一记载的光处理器件。 其中, AWG 72具体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者由 高斯型 AWG和以太龙滤波器组成, 或者由高斯型 AWG和光纤光栅组成。 优选地, 负色散器件 73可以釆用 DCF。
具体地, 增益器件 71通过光纤连接 AWG 72的一个分支端口, AWG 72 的公共端口、光分路器 74、 负色散器件 73和全反射镜 75通过光纤依次连接; 或者, 增益器件 71通过光纤连接 AWG 72的一个分支端口, AWG 72的公共 端口、 负色散器件 73、 光分路器 74和全反射镜 75通过光纤依次连接; 或者, 增益器件 71、 负色散器件 73、 AWG 72的一个分支端口通过光纤依次连接, AWG 72的公共端口、 光分路器 74和全反射镜 75通过光纤依次连接。 即, 负色散器件 73可以连接在光分路器 74和全反射镜 75之间, 也可以连接在 AWG 72和光分路器 74之间, 还可以连接在增益器件 71和 AWG 72之间。 在图 7中,仅以增益器件 71通过光纤连接 AWG 72的一个分支端口, AWG 72 的公共端口、 光分路器 74、 负色散器件 73和全反射镜 75通过光纤依次连接 的情况为例予以说明。 上述各个相连的器件均通过光纤连接。
增益器件 71产生宽谱光信号并发送到 AWG 72的一个分支端口。 AWG 72用于选波滤波, 每个分支端口分别具有不同的中心波长, 即每个分支端口 进行选波滤波, 以 λ 1表示连接上述增益器件 71的 AWG 72的分支端口的中 心波长, 经过该 AWG 72的分支端口后, 只有波长为 的光信号能够通过该 分支端口, 宽谱光信号中的其它波长的光信号均无法通过该分支端口。 该波 长为 λ!的光信号经过光分路器 74分为两路, 其中一路光信号射出自注入激 光器, 另一路光信号传送到负色散器件 73。 负色散器件 73在该路波长为 λ 的光信号中增加负色散, 然后传送到全反射镜 75 , 全反射镜 75将该路波长 为 λ 的光信号全部反射回负色散器件 73。 反射的光信号经过负色散器件 73 增加负色散, 然后经过光分路器 74和 AWG 72返回到增益器件 71。 从而使 得增益器件 71、 AWG 72、 光分路器 74、 负色散器件 73和全反射镜 75组成 一个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 与增益器件 71发出的光 信号相比, 返回增益器件 71的光信号中增加了由负色散器件 73导致的负色 散, 该负色散的绝对值大于或等于 AWG 72、 光分路器 74、 负色散器件 73 和全反射镜 75以及光纤产生的正色散的总和, 从而使得返回增益器件 71的 光信号的波长越长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延 迟越大。 在实际应用中, 负色散器件 73可以釆用 DCF, 单位长度的 DCF具 有预设数值的负色散, 从而通过调整 DCF的长度来获得所需数值的负色散, 例如, 通过测量或仿真方式获得的 AWG 72、 光分路器 74、 负色散器件 73 和全反射镜 75以及光纤产生的正色散的总和,根据正色散的总和以及釆用的 DCF的单位长度的负色散值, 确定 DCF的长度。
在本发明实施例七中, 由 AWG、 负色散器件、 光分路器和全反射镜共同 构成光处理器件, 通过 AWG进行选波滤波操作, 通过光分路器和全反射镜 进行部分反射操作,通过负色散器件在返回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值大于或等于光处理器件的正色散的总和, 导致光 信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越大, 从而使得自注 入激光器的激射光谱的宽度显著变窄, 提高了自注入激光器的性能。
图 8为本发明实施例八的自注入激光器的结构示意图。 如图 8所示, 该 自注入激光器中至少包括: 增益器件 81、 AWG 82, 光分路器 83和反射型的 负色散器件 84, 以及连接增益器件 81、 AWG 82、 光分路器 83和反射型的负 色散器件 84的光纤。 其中, AWG 82、 光分路器 83和反射型的负色散器件 84以及光纤共同构成本发明实施例一记载的光处理器件。 其中, AWG 82具 体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者由高斯型 AWG和以 太龙滤波器组成, 或者由高斯型 AWG和光纤光栅组成。 具体地, 反射型的 负色散器件 84 可以釆用任何具有反射作用和负色散作用的光学器件, 优选 散作用和反射作用的光子晶体。
具体地,增益器件 81通过光纤连接 AWG 82的一个分支端口, 光分路器 83通过光纤连接 AWG 82的公共端口和反射型的负色散器件 84。上述各个相 连的器件均通过光纤连接。
增益器件 81产生宽谱光信号并发送到 AWG 82的一个分支端口。 AWG 82用于滤波, 每个分支端口分别具有不同的中心波长, 即 AWG 82用于选波 滤波, 以 λ 1表示连接上述增益器件 81的 AWG 82的分支端口的中心波长, 经过该 AWG 82的分支端口后, 只有波长为 的光信号能够通过该分支端 口, 宽谱光信号中的其它波长的光信号均无法通过该分支端口。 该波长为入 的光信号通过该分支接口后, 经过光分路器 83 分为两路, 其中一路光信号 射出自注入激光器, 另一路光信号传送到反射型的负色散器件 84。 反射型的 负色散器件 84在该路波长为 λ!的光信号中增加负色散后将其全部反射。 反 射的光信号经过光分路器 83和 AWG 82返回到增益器件 81。 从而使得增益 器件 81、 AWG 82、 光分路器 83和反射型的负色散器件 84组成一个激光振 荡腔, 光在该振荡腔内往返振荡。 其中, 与增益器件 81发出的光信号相比, 返回增益器件 81的光信号中增加了由反射型的负色散器件 84导致的负色散, 该负色散的绝对值大于或等于 AWG 82、光分路器 83和反射型的负色散器件 84 以及光纤产生的正色散的总和, 从而使得返回增益器件 81 的光信号的波 长越长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延迟越大。 在本发明实施例八中, 由 AWG、光分路器和反射型的负色散器件共同构 成光处理器件, 反射型的负色散器件具有增加负色散的作用和反射作用, 通 过 AWG进行选波滤波操作, 通过光分路器和反射型的负色散器件进行部分 反射操作,通过反射型的负色散器件在返回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值大于或等于光处理器件的正色散的总和, 导致光 信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越大, 从而使得自注 入激光器的激射光谱的宽度显著变窄, 提高了自注入激光器的性能。
图 9为本发明实施例九的自注入激光器的结构示意图。 如图 9所示, 该 自注入激光器中至少包括:增益器件 91、具有负色散作用的 AWG 92和 PRM 93 , 以及连接增益器件 91、 具有负色散作用的 AWG 92和 PRM 93的光纤。 其中, 具有负色散作用的 AWG 92和 PRM 93以及光纤共同构成本发明实施 例一记载的光处理器件。 其中, 在 AWG 92中, 通过各个分支端口对各个增 益器件 91射出的光信号进行相位调整,从而在光信号中增加负色散。 AWG 92 具体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者由高斯型 AWG和 以太龙滤波器组成, 或者由高斯型 AWG和光纤光栅组成。
具体地, 增益器件 91通过光纤连接 AWG 92的一个分支端口, AWG 92 的公共端口通过光纤连接 PRM 93。 上述各个相连的器件均通过光纤连接。
增益器件 91产生宽谱光信号并发送到 AWG 92的一个分支端口。 AWG 92具有滤波作用, 每个分支端口分别具有不同的中心波长, 即 AWG 92用于 选波滤波, 以 λ 1表示连接上述增益器件 91的 AWG 92的分支端口的中心波 长, 经过该 AWG 92的分支端口后, 只有波长为 的光信号能够通过该分支 端口,宽谱光信号中的其它波长的光信号均无法通过该分支端口。并且, AWG 92还具有增加负色散的作用, 经过 AWG 92后, 输出的波长为人 的光信号 中增加了负色散,然后传送到 PRM 93。 PRM 93对该波长为 λ!的光信号进行 部分反射。 即, 经过 PRM 93时,该波长为 的光信号中的一部分发生透射, 另一部分发生反射。 其中, 发生反射的光信号又经过 AWG 92增加负色散, 然后返回到增益器件 91。 从而使得增益器件 91、 AWG 92和 PRM 93组成一 个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 与增益器件 91发出的光信 号相比,返回增益器件 91的光信号中增加了由 AWG 92导致的负色散,该负 色散的绝对值大于或等于 AWG 92和 PRM 93以及光纤产生的正色散的总和, 从而使得返回增益器件 91的光信号的波长越长, 其传输延迟越小, 反之, 光 信号的波长越短, 其传输延迟越大。
在本发明实施例九中,由具有负色散作用的 AWG和 PRM共同构成光处 理器件,通过 AWG进行滤波操作,通过 PRM进行部分反射操作,通过 AWG 在返回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值大于或 等于光处理器件的正色散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短,传输延迟越大,从而使得自注入激光器的激射光谱的宽度显著变 窄, 提高了自注入激光器的性能。
上述本发明实施例一至本发明实施例九的自注入激光器可以应用于光传 输系统, 也可以作为连续多波长种子光源。 在应用于光传输系统时, 该自注 入激光器可以应用于 PON中。 较佳地, 在 PON中, 釆用一个 AWG对多个 釆用上述自注入激光器的 PON进行介绍。
图 10为本发明实施例十的 PON的结构示意图。 如图 10所示, 该 PON 中至少包括:至少一个增益器件 101、至少一个接收机 102和光处理器件 103 , 其中, 光处理器件 103连接上述至少一个增益器件 101和上述至少一个接收 机 102。
其中, 每个增益器件 101产生一个宽谱光信号。 光处理器件 103对每个 增益器件 101产生的宽谱光信号进行选波滤波, 获得每个增益器件 101分别 对应的波长的光信号, 对每个增益器件 101分别对应的波长的光信号进行部 分反射, 在部分反射后的每个波长的反射光信号中增加负色散后返回每个波 长分别对应的增益器件 101 , 以使增益器件 101和光处理器件 103组成激光 振荡腔。 其中, 负色散的绝对值大于或等于光处理器件 103的正色散的总和。 光处理器件 103将部分反射后的每个波长的透射光信号分别发送给每个波长 分别对应的接收机 102。
在本发明实施例十中,该 PON中的光处理器件在反射给增益器件的光信 号中增加了负色散, 由于增加的负色散的绝对值大于或等于光处理器件的正 色散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短, 传输延迟 越大, 从而使得自注入激光器的激射光谱的宽度显著变窄, 提高了自注入 激光器的性能。 图 11为本发明实施例十一的 P0N的结构示意图。如图 11所示,该 PON 中至少包括: 至少一个增益器件 111、 至少一个接收机 112、 第一 AWG 113、 第二 AWG 114、 负色散器件 115和 PRM 116, 以及连接增益器件 111、 接收 机 112、 第一 AWG 113、 第二 AWG 114、 负色散器件 115和 PRM 116的光 纤。 其中, 第一 AWG 113、 第二 AWG 114、 负色散器件 115和 PRM 116以 及光纤共同构成本发明实施例十记载的光处理器件。 其中, 第一 AWG 113 和第二 AWG 114具体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者 由高斯型 AWG和以太龙滤波器组成, 或者由高斯型 AWG和光纤光栅组成。 本发明实施例十一的 PON釆用本发明实施例六的自注入激光器作为信号发 射端, 在本发明实施例六的自注入激光器的 AWG的各个分支端口分别连 接多个增益器件, 并且通过另一个 AWG将发射端发出的光信号传送给多 个接收机。
具体地,每个增益器件 111通过光纤连接第一 AWG 113的一个分支端口, 第一 AWG 113的公共端口、 负色散器件 115、 PRM 116和第二 AWG 114的 公共端口通过光纤依次连接,第二 AWG 114的每个分支端口通过光纤连接一 个接收机 112。 上述各个相连的器件均通过光纤连接。
每个增益器件 111产生一个宽谱光信号并连接第一 AWG 113的一个分支 端口。 第一 AWG 113对每个增益器件 111产生的宽谱光信号进行选波滤波, 每个分支端口分别具有不同的中心波长, 即每个分支端口进行选波滤波, 例 如, 以 PON中包括两个增益器件 111为例, 该两个增益器件 111分别连接第 一 AWG 113 的两个分支端口, 以 表示连接第一个增益器件 111 的第一 AWG 113的分支端口的中心波长, 以 λ 2表示连接第二个增益器件 111的第 一 AWG 113的分支端口的中心波长, 则在经过第一 AWG 113后, 第一个增 益器件 111发出的宽谱光信号中只有波长为人 的光信号能够通过第一 AWG 113 , 其它波长的光信号均无法通过; 第二个增益器件 111发出的宽谱光信号 中只有波长为 λ 2的光信号能够通过第一 AWG 113 , 其它波长的光信号均无 法通过。对应第一个增益器件 111的波长为 λ 1的光信号和对应第二个增益器 件 111的波长为 λ 2的光信号从第一 AWG 113的公共端口输出到负色散器件 115, 经过负色散器件 115, 在波长为入 的光信号和波长为 λ 2的光信号中增 加负色散,然后传送到 PRM 116。 PRM 116对波长为 λ!的光信号和波长为 λ 2的光信号进行部分反射。 即, 经过 PRM 116时, 该波长为入 的光信号和波 长为 λ 2的光信号中的一部分发生透射, 另一部分发生反射。 其中, 发生反射 的光信号又经过负色散器件 115增加负色散,然后输入到第一 AWG 113的公 共端口,第一 AWG 113的分支端口分别将该分支端口对应的波长的光信号返 回到该分支端口连接的增益器件 111 , 例如, 第一 AWG 113的一个分支端口 将波长为人 的光信号返回第一个增益器件 111 , 第一 AWG 113的另一个分 支端口将波长为 λ 2的光信号返回第二个增益器件 111 , 从而使得每个增益器 件 111、 第一 AWG 113、 负色散器件 115和 PRM 116组成一个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 对于每个增益器件 111 , 与该增益器件 111 发出的光信号相比,返回该增益器件 111的光信号中增加了由负色散器件 115 导致的负色散,该负色散的绝对值大于或等于第一 AWG 113、负色散器件 115 和 PRM 116以及光纤产生的正色散的总和, 从而使得返回增益器件 111的光 信号的波长越长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延迟 越大。
PRM 116将经过部分反射后的波长为 λ!的光信号和波长为 λ 2的光信号 中的透射光信号发送给第二 AWG 114的公共端口, 第二 AWG 114的每个分 支端口连接一个接收机 112, 将公共端口输入的光信号中的每个波长的光信 号分别发送给每个波长分别对应的接收机 112。 例如, 第二 AWG 114的一个 分支端口将波长为 λ!的光信号发送给对应 λ!波长的第一个接收机 112, 第 二 AWG 114的另一个分支端口将波长为 λ 2的光信号发送给对应 λ 2波长的第 二个接收机 112。
在本发明实施例十一中, 由第一 AWG、 第二 AWG、 负色散器件和 PRM 共同构成该 PON的光处理器件, 通过第一 AWG进行选波滤波操作, 通过 PRM进行部分反射操作, 通过负色散器件在返回增益器件的光信号中增加负 色散, 由于增加的负色散的绝对值大于或等于光处理器件的正色散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越大, 从而使 得该 PON 中用于发射信号的自注入激光器的激射光谱的宽度显著变窄, 提高了该自注入激光器的性能。
图 12为本发明实施例十二的 PON的结构示意图。如图 12所示,该 PON 中至少包括: 至少一个增益器件 121、 至少一个接收机 122、 第一 AWG 123、 第二 AWG 124、 负色散器件 125、 光分路器 126和全反射镜 127, 以及连接 增益器件 121、接收机 122、第一 AWG 123、第二 AWG 124、负色散器件 125、 光分路器 126和全反射镜 127的光纤。其中,第一 AWG 123、第二 AWG 124、 负色散器件 125、 光分路器 126和全反射镜 127以及光纤共同构成本发明实 施例十记载的光处理器件。 优选地, 负色散器件 125可以釆用 DCF。 其中, 第一 AWG 123和第二 AWG 124具体可以釆用高斯型 AWG, 或者釆用薄膜 型 AWG, 或者由高斯型 AWG和以太龙滤波器组成, 或者由高斯型 AWG和 光纤光栅组成。本发明实施例十一的 PON釆用本发明实施例七的自注入激光 器作为信号发射端, 在本发明实施例七的自注入激光器的 AWG的各个分 支端口分别连接多个增益器件, 并且通过另一个 AWG将发射端发出的光 信号传送给多个接收机。
具体地,每个增益器件 121通过光纤连接第一 AWG 123的一个分支端口, 第一 AWG 123的公共端口、 光分路器 126、 负色散器件 125和全反射镜 127 通过光纤依次连接; 或者, 每个增益器件 121 通过光纤连接第一 AWG 123 的一个分支端口,第一 AWG 123的公共端口、负色散器件 125、光分路器 126 和全反射镜 127通过光纤依次连接; 或者, 每个增益器件 121、 负色散器件 125和第一 AWG 123的一个分支端口通过光纤依次连接, 第一 AWG 123的 公共端口、 光分路器 126和全反射镜 127通过光纤依次连接。 即, 负色散器 件 125 可以连接在光分路器 126和全反射镜 127之间, 也可以连接在第一 AWG 123和光分路器 126之间,还可以连接在增益器件 121和第一 AWG 123 之间。 在图 12中, 仅以每个增益器件 121通过光纤连接第一 AWG 123的一 个分支端口, 第一 AWG 123的公共端口、 光分路器 126、 负色散器件 125和 全反射镜 127通过光纤依次连接的情况为例予以说明。 上述各个相连的器件 均通过光纤连接。
每个增益器件 121产生一个宽谱光信号并连接第一 AWG 123的一个分支 端口。 第一 AWG 123对每个增益器件 121产生的宽谱光信号进行选波滤波, 每个分支端口分别具有不同的中心波长, 即每个分支端口进行选波滤波, 例 如, 以 PON中包括两个增益器件 121为例, 该两个增益器件 121分别连接第 一 AWG 123 的两个分支端口, 以 表示连接第一个增益器件 121 的第一 AWG 123的分支端口的中心波长, 以 λ 2表示连接第二个增益器件 121的第 — AWG 123的分支端口的中心波长, 则在经过该第一 AWG 123的分支端口 后,第一个增益器件 121发出的宽谱光信号中只有波长为 λ!的光信号能够通 过第一 AWG 123 , 其它波长的光信号均无法通过; 第二个增益器件 121发出 的宽谱光信号中只有波长为 λ 2的光信号能够通过第一 AWG 123 , 其它波长 的光信号均无法通过。对应第一个增益器件 121的波长为 λ!的光信号和对应 第二个增益器件 121的波长为 λ 2的光信号从第一 AWG 123的公共端口输出 到光分路器 126, 经过光分路器 126分为两路, 其中一路波长为 λ!的光信号 和波长为 λ 2的光信号射出自注入激光器, 另一路波长为人工的光信号和波长 为 λ 2的光信号传送到负色散器件 125。 负色散器件 125在波长为 λ!的光信 号和波长为 λ 2的光信号中增加负色散, 然后传送到全反射镜 127, 全反射镜 127将波长为 λ!的光信号和波长为 λ 2的光信号全部反射回负色散器件 125。 反射的光信号经过负色散器件 125增加负色散, 然后输入到第一 AWG 123 的公共端口,第一 AWG 123的分支端口分别将该分支端口对应的波长的光信 号返回到该分支端口连接的增益器件 121 , 例如, 第一 AWG 123的一个分支 端口将波长为入 的光信号返回第一个增益器件 121 , 第一 AWG 123的另一 个分支端口将波长为 λ 2的光信号返回第二个增益器件 121。 从而使得每个增 益器件 121、 第一 AWG 123、 光分路器 126、 负色散器件 125和全反射镜 127 组成一个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 对于每个增益器件 121 , 与该增益器件 121发出的光信号相比, 返回该增益器件 121的光信号中 增加了由负色散器件 125导致的负色散, 该负色散的绝对值大于或等于第一 AWG 123、 光分路器 126、 负色散器件 125和全反射镜 127以及光纤产生的 正色散的总和, 从而使得返回增益器件 121的光信号的波长越长, 其传输延 迟越小, 反之, 光信号的波长越短, 其传输延迟越大。
全反射镜 127和光分路器 126将经过部分反射后的波长为 λ!的光信号和 波长为 λ 2的光信号中的透射光信号发送给第二 AWG 124的公共端口, 第二 AWG 124的每个分支端口连接一个接收机 122, 将公共端口输入的光信号中 的每个波长的光信号分别发送给每个波长分别对应的接收机 122。 例如, 第 二 AWG 124的一个分支端口将波长为 λ i的光信号发送给对应 λ i波长的第一 个接收机 122, 第二 AWG 124的另一个分支端口将波长为 λ 2的光信号发送 给对应 λ 2波长的第二个接收机 122。 在本发明实施例十二中, 由第一 AWG、 第二 AWG、 负色散器件、 光分 路器和全反射镜共同构成光处理器件, 通过第一 AWG进行选波滤波操作, 通过光分路器和全反射镜进行部分反射操作, 通过负色散器件在返回增益器 件的光信号中增加负色散, 由于增加的负色散的绝对值大于或等于光处理器 件的正色散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短, 传 输延迟越大, 从而使得自注入激光器的激射光谱的宽度显著变窄, 提高了 自注入激光器的性能。
图 13为本发明实施例十三的 PON的结构示意图。如图 13所示,该 PON 中至少包括: 至少一个增益器件 131、 至少一个接收机 132、 第一 AWG 133、 第二 AWG 134、 光分路器 135和反射型的负色散器件 136, 以及连接增益器 件 131、 接收机 132、 第一 AWG 133、 第二 AWG 134、 光分路器 135和反射 型的负色散器件 136的光纤。 其中, 第一 AWG 133、 第二 AWG 134、 光分 路器 135和反射型的负色散器件 136以及光纤共同构成本发明实施例十记载 的光处理器件。 其中, 第一 AWG 133和第二 AWG 134具体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者由高斯型 AWG和以太龙滤波器组成, 或者由高斯型 AWG和光纤光栅组成。 优选地, 反射型的负色散器件 136可 以釆用具有负色散作用和反射作用的光纤光栅, 也可以釆用具有负色散作用 和反射作用的光子晶体。本发明实施例十三的 PON釆用本发明实施例八的自 注入激光器作为信号发射端, 在本发明实施例八的自注入激光器的 AWG 的各个分支端口分别连接多个增益器件, 并且通过另一个 AWG将发射端 发出的光信号传送给多个接收机。
具体地,每个增益器件 131通过光纤连接第一 AWG 133的一个分支端口, 第一 AWG 133的公共端口、 光分路器 135、 反射型的负色散器件 136和第二 AWG 134的公共端口通过光纤依次连接, 第二 AWG 134的每个分支端口通 过光纤连接一个接收机 132。 上述各个相连的器件均通过光纤连接。
每个增益器件 131产生一个宽谱光信号并连接第一 AWG 133的一个分支 端口。 第一 AWG 133对每个增益器件 131产生的宽谱光信号进行选波滤波, 每个分支端口分别具有不同的中心波长, 即每个分支端口进行选波滤波, 例 如, 以 PON中包括两个增益器件 131为例, 该两个增益器件 131分别连接第 一 AWG 133 的两个分支端口, 以 λ ι表示连接第一个增益器件 131 的第一 AWG 133的分支端口的中心波长, 以 λ 2表示连接第二个增益器件 131的第 一 AWG 133的分支端口的中心波长, 则在经过第一 AWG 133后, 第一个增 益器件 131发出的宽谱光信号中只有波长为入 的光信号能够通过第一 AWG 133 , 其它波长的光信号均无法通过; 第二个增益器件 131发出的宽谱光信号 中只有波长为 λ 2的光信号能够通过第一 AWG 133 , 其它波长的光信号均无 法通过。对应第一个增益器件 131的波长为 λ!的光信号和对应第二个增益器 件 131的波长为 λ 2的光信号从第一 AWG 133的公共端口输出后, 经过光分 路器 135分为两路,其中一路包含波长 λ!和波长 λ 2的光信号作为输出信号, 该输出信号经过光路传送到接收机 132, 另一路包含波长 λ!和波长 λ 2的光 信号传送到反射型的负色散器件 136。 反射型的负色散器件 136在该路包含 波长 和波长 λ 2的光信号中增加负色散后, 将其全部反射回到第一 AWG 133的公共端口, 第一 AWG 133的分支端口分别将该分支端口对应的波长的 光信号返回到该分支端口连接的增益器件 131 , 例如, 第一 AWG 133的一个 分支端口将波长为入 的光信号返回第一个增益器件 131 , 第一 AWG 133的 另一个分支端口将波长为 λ 2的光信号返回第二个增益器件 131 , 从而使得增 益器件 131、 第一 AWG 133、 光分路器 135和反射型的负色散器件 136组成 一个激光振荡腔, 光在该振荡腔内往返振荡。 其中, 与增益器件 131发出的 光信号相比,返回增益器件 131的光信号中增加了由反射型的负色散器件 136 导致的负色散, 该负色散的绝对值大于或等于第一 AWG 133、 光分路器 135 和反射型的负色散器件 136以及光纤产生的正色散的总和, 从而使得返回增 益器件 131 的光信号的波长越长, 其传输延迟越小, 反之, 光信号的波长越 短, 其传输延迟越大。
光分路器 135将分路得到的其中一路包含波长 和波长 λ 2的光信号作 为输出信号, 该输出信号经过光路传送到接收机 132。 具体地, 光分路器 135 将该路输出信号发送给第二 AWG 134的公共端口, 第二 AWG 134的每个分 支端口连接一个接收机 132, 将公共端口输入的光信号中的每个波长的光信 号分别发送给每个波长分别对应的接收机 132。 例如, 第二 AWG 134的一个 分支端口将波长为 λ!的光信号发送给对应 λ!波长的第一个接收机 132, 第 二 AWG 134的另一个分支端口将波长为 λ 2的光信号发送给对应人2波长的第 二个接收机 132。 在本发明实施例十三中, 由第一 AWG、 第二 AWG、 光分路器和反射型 的负色散器件共同构成该 PON的光处理器件,反射型的负色散器件具有增加 负色散的作用和反射作用, 通过第一 AWG进行选波滤波操作, 通过光分路 器和反射型的负色散器件进行部分反射操作 , 通过反射型的负色散器件在返 回增益器件的光信号中增加负色散, 由于增加的负色散的绝对值大于或等于 光处理器件的正色散的总和, 导致光信号的波长越长, 传输延迟越小, 波长 越短, 传输延迟越大, 从而使得该 PON中用于发射信号的自注入激光器的 激射光谱的宽度显著变窄, 提高了自注入激光器的性能。
图 14为本发明实施例十四的 PON的结构示意图。如图 14所示,该 PON 中至少包括: 至少一个增益器件 141、 至少一个接收机 142、 具有负色散作用 的第一 AWG 143、 第二 AWG 144和 PRM 145, 以及连接增益器件 141、 接 收机 142、 具有负色散作用的第一 AWG 143、 第二 AWG 144和 PRM 145的 光纤。 其中, 具有负色散作用的第一 AWG 143、 第二 AWG 144和 PRM 145 以及光纤共同构成本发明实施例十记载的光处理器件。 其中, 第一 AWG 143 和第二 AWG 144具体可以釆用高斯型 AWG, 或者釆用薄膜型 AWG, 或者 由高斯型 AWG和以太龙滤波器组成, 或者由高斯型 AWG和光纤光栅组成。 本发明实施例十四的 PON釆用本发明实施例九的自注入激光器作为信号发 射端, 在本发明实施例九的自注入激光器的 AWG的各个分支端口分别连 接多个增益器件, 并且通过另一个 AWG将发射端发出的光信号传送给多 个接收机。
具体地, 每个增益器件 141 通过光纤连接具有负色散作用的第一 AWG 143的一个分支端口,第一 AWG 143的公共端口、 PRM 145和第二 AWG 144 的公共端口通过光纤依次连接,第二 AWG 144的每个分支端口通过光纤连接 一个接收机 142。 上述各个相连的器件均通过光纤连接。
每个增益器件 141产生一个宽谱光信号并连接第一 AWG 143的一个分支 端口。 第一 AWG 143对每个增益器件 141产生的宽谱光信号进行选波滤波, 每个分支端口分别具有不同的中心波长, 即每个分支端口进行选波滤波, 例 如, 以 PON中包括两个增益器件 141为例, 该两个增益器件 141分别连接第 一 AWG 143 的两个分支端口, 以 表示连接第一个增益器件 141 的第一 AWG 143的分支端口的中心波长, 以 λ 2表示连接第二个增益器件 141的第 一 AWG 143的分支端口的中心波长, 则在经过第一 AWG 143后, 第一个增 益器件 141发出的宽谱光信号中只有波长为人 的光信号能够通过第一 AWG 143 , 其它波长的光信号均无法通过; 第二个增益器件 141发出的宽谱光信号 中只有波长为 λ 2的光信号能够通过第一 AWG 143 , 其它波长的光信号均无 法通过。 因此, 对应第一个增益器件 141的波长为 λ!的光信号和对应第二个 增益器件 141的波长为 λ 2的光信号从第一 AWG 143的公共端口输出。并且, 第一 AWG 143还具有增加负色散的作用, 因此, 经过第一 AWG 143后, 第 一 AWG 143的公共端口输出的包含波长 λ!和波长为 λ 2的光信号中增加了负 色散。增加了负色散后,该包含波长 λ!和波长为 λ 2的光信号从第一 AWG 143 的公共端口传送到 PRM 145。 PRM 145对波长为 λ!的光信号和波长为 λ 2的 光信号进行部分反射。 即, 经过 PRM 145时, 该波长为入工的光信号和波长 为 λ 2的光信号中的一部分发生透射, 另一部分发生反射。 其中, 发生反射的 光信号输入到第一 AWG 143的公共端口, 第一 AWG 143在反射的光信号中 增加负色散, 并且, 第一 AWG 143的分支端口分别将该分支端口对应的波长 的光信号返回到该分支端口连接的增益器件 141 , 例如, 第一 AWG 143的一 个分支端口将波长为入 的光信号返回第一个增益器件 141 , 第一 AWG 143 的另一个分支端口将波长为 λ 2的光信号返回第二个增益器件 141 , 从而使得 每个增益器件 141、 第一 AWG 143和 PRM 145组成一个激光振荡腔, 光在 该振荡腔内往返振荡。 其中, 对于每个增益器件 141 , 与该增益器件 141发 出的光信号相比, 返回该增益器件 141 的光信号中增加了由第一 AWG 143 导致的负色散, 该负色散的绝对值大于或等于第一 AWG 143和 PRM 145 以 及光纤产生的正色散的总和, 从而使得返回增益器件 141 的光信号的波长越 长, 其传输延迟越小, 反之, 光信号的波长越短, 其传输延迟越大。
PRM 145将经过部分反射后的波长为 λ!的光信号和波长为 λ 2的光信号 中的透射光信号发送给第二 AWG 144的公共端口, 第二 AWG 144的每个分 支端口连接一个接收机 142, 将公共端口输入的光信号中的每个波长的光信 号分别发送给每个波长分别对应的接收机 142。 例如, 第二 AWG 144的一个 分支端口将波长为 λ!的光信号发送给对应 λ!波长的第一个接收机 142, 第 二 AWG 144的另一个分支端口将波长为 λ 2的光信号发送给对应人2波长的第 二个接收机 142。 在本发明实施例十四中, 由第一 AWG、 第二 AWG和 PRM共同构成光 处理器件, 其中第一 AWG具有负色散作用, 通过第一 AWG进行选波滤波 操作,通过 PRM进行部分反射操作, 通过第一 AWG在返回增益器件的光信 号中增加负色散, 由于增加的负色散的绝对值大于或等于光处理器件的正色 散的总和, 导致光信号的波长越长, 传输延迟越小, 波长越短, 传输延迟越 大,从而使得该 PON中用于发射信号的自注入激光器的激射光谱的宽度显 著变窄, 提高了自注入激光器的性能。 的角度进行描述, 在实际应用时, 对于双向收发的 PON, 可以在两个传输方 十四的技术方案。
在上述本发明实施例一至本发明实施例十四的技术方案的基础上, 进一 步地, 在上述各个实施例中, 各个器件之间的连接方式具体可以釆用光纤连 接, 例如, 釆用单模光纤连接各个器件。
在上述本发明实施例一至本发明实施例十四的技术方案的基础上, 进一 步地, 在上述各个实施例中, 增益器件具有调制功能, 并且, 增益器件包括 前端面和后端面, 其中前端面具有低反射特性, 后端面具有高反射特性。 具 体地,上述各个实施例中的增益器件均可以具体釆用 RSOA或法布里-珀罗激 光二极管 (Fabry-Perot Laser Diode, 简称 FP-LD ) , 例如注入锁定 FP-LD ( Injection Locking FP-LD, 简称 IL FP-LD ) 。
在上述本发明实施例一至本发明实施例十四的技术方案的基础上, 进一 步地, 在上述各个实施例中, 在光路中具有反射作用的器件之前, 均可以增 加一个法拉第旋转器, 该法拉第旋转器具有 45度相位, 也就是说, 通过该法 拉第旋转器的光信号的相位会偏移 45度,从而使得经过该具有反射作用的器 件的反射光的偏振状态相对于入射到该器件的入射光的偏振状态旋转 90度, 因此, 增益器件发出的 TE模式的光信号在注入回该增益器件时变成 TM模 式的光信号,增益器件发出的 TM式的光信号在注入回该增益器件时变成 TE 模式的光信号, 从而减小光纤链路中的偏振扰动, 提高该自注入激光器的偏 振稳定性, 进一步提高了该自注入激光器性能。 在上述各个实施例中, 该法 拉第旋转器可以设置在光路中各个具有反射作用的器件之前。 例如, 在本发 明实施例一中,在增益器件 11和光处理器件 12之间设置一个法拉第旋转器。 在本发明实施例二中, 在增益器件 21和光滤波器 22之间设置一个法拉第旋 转器, 和 /或, 在负色散器件 23和 PRM 24之间设置一个法拉第旋转器。 在本 发明实施例三中,在增益器件 31和光滤波器 32之间设置一个法拉第旋转器, 和 /或, 在负色散器件 33和全反射镜 35之间设置一个法拉第旋转器。 在本发 明实施例四中, 在增益器件 41和光滤波器 42之间设置一个法拉第旋转器, 和 /或,在光分路器 43和反射型的负色散器件 44之间设置一个法拉第旋转器。 在本发明实施例五中, 在增益器件 51和光分路器 52之间设置一个法拉第旋 转器, 和 /或, 在光分路器 52和具有滤波作用的反射型的负色散器件 53之间 设置一个法拉第旋转器。 在本发明实施例六中, 在增益器件 61和 AWG 62 之间设置一个法拉第旋转器,和 /或,在负色散器件 63和 PRM 64之间设置一 个法拉第旋转器。在本发明实施例七中,在增益器件 71和 AWG 72之间设置 一个法拉第旋转器, 和 /或, 在光分路器 74和全反射镜 75之间设置一个法拉 第旋转器。在本发明实施例八中,在增益器件 81和 AWG 82之间设置一个法 拉第旋转器, 和 /或, 在光分路器 83和反射型的负色散器件 84之间设置一个 法拉第旋转器。 在本发明实施例九中, 在增益器件 91 和具有负色散作用的 AWG 92之间设置一个法拉第旋转器, 和 /或, 在具有负色散作用的 AWG 92 和 PRM 93之间设置一个法拉第旋转器。 在本发明实施例十中, 在增益器件 101和光处理器件 103之间设置一个法拉第旋转器。 在本发明实施例十一中 , 在每个增益器件 111和第一 AWG 113之间设置一个法拉第旋转器, 和 /或, 在负色散器件 115和 PRM 116之间设置一个法拉第旋转器。 在本发明实施例 十二中, 在每个增益器件 121和第一 AWG 123之间设置一个法拉第旋转器, 和 /或, 在光分路器 126和全反射镜 127之间设置一个法拉第旋转器。 在本发 明实施例十三中,在每个增益器件 131和第一 AWG 133之间设置一个法拉第 旋转器, 和 /或, 在光分路器 135和反射型的负色散器件 136之间设置一个法 拉第旋转器。 在本发明实施例十四中, 在每个增益器件 141和第一 AWG 143 之间设置一个法拉第旋转器, 和 /或, 在第一 AWG 143和 PRM 145之间设置 一个法拉第旋转器。
图 15 为本发明的自注入激光器与现有技术中的自注入激光器产生的 激射光谱对比示意图。 通过实验釆集本发明的自注入激光器和现有技术中 的自注入激光器产生的激射光谱, 如图 15所示, 釆用现有技术中的自注入 激光器利用 AWG作为自注入激光器的腔内滤波器, 由于 AWG的带宽较宽, 选模效应较弱, 增益器件自身产生调制啁啾, 并且光信号在往返振荡过程中 由光纤引入正色散, 上述啁啾和正色散注入回该增益器件中, 加剧自注入激 光器的调制啁啾和激射光谱的展宽和抖动, 因此, 如果增益器件与 AWG之 间的光纤较长, 自注入激光器的激射谱线如图 15中的虚线曲线所示, 具有很 宽的光谱, 自注入激光器的性能也随着中间光纤长度的增加而急剧恶化。 釆 用本发明各个实施例提出的自注入激光器, 在谐振腔中增加具有负色散功能 的器件, 例如具有 DCF, 当其产生的负色散的绝对值大于谐振腔内的总正色 散值时, 自注入激光器的激射光傳如图 15中实现曲线所示, 光谱宽度显著变 窄 , 自注入激光器的性能也随之显著提升。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些步骤可以釆用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种自注入激光器, 其特征在于, 包括: 增益器件和与所述增益器 件连接的光处理器件;
所述增益器件产生宽谱光信号, 所述光处理器件对所述宽谱光信号进行 滤波和部分反射, 在部分反射后的反射光信号中增加负色散后返回所述增益 器件, 以使所述增益器件和所述光处理器件组成激光振荡腔, 所述负色散的 绝对值大于或等于所述光处理器件的正色散的总和。
2、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: 光滤波器、 负色散器件、 部分反射镜 PRM和连接所述光滤波器、 所述 负色散器件与所述 PRM的光纤;所述负色散器件产生的负色散的绝对值大于 或等于所述光滤波器、 所述 PRM和所述光纤产生的正色散的总和;
所述增益器件、所述光滤波器、所述负色散器件和所述 PRM通过所述光 纤依次连接;
或者, 所述增益器件、 所述负色散器件、 所述光滤波器和所述 PRM通过 光纤依次连接。
3、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: 光滤波器、 负色散器件、 光分路器、 全反射镜和连接光滤波器、 负色 散器件、 光分路器与全反射镜的光纤; 所述负色散器件产生的负色散的绝对 值大于或等于所述光滤波器、 所述光分路器、 所述全反射镜和所述光纤产生 的正色散的总和;
所述增益器件、 所述光滤波器、 所述光分路器、 所述负色散器件和所述 全反射镜通过所述光纤依次连接;
或, 所述增益器件、 所述光滤波器、 所述负色散器件、 所述光分路器和 所述全反射镜通过所述光纤依次连接;
或, 所述增益器件、 所述负色散器件、 所述光滤波器、 所述光分路器和 所述全反射镜通过所述光纤依次连接。
4、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: 光滤波器、 光分路器、 反射型的负色散器件和连接所述光滤波器、 所 述光分路器与所述反射型的负色散器件的光纤; 所述反射型的负色散器件产 生的负色散的绝对值大于或等于所述光滤波器、 所述光分路器和所述光纤产 生的正色散的总和;
所述增益器件、 所述光滤波器、 所述光分路器和所述反射型的负色散器 件通过所述光纤依次连接。
5、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: 光分路器、 具有滤波作用的反射型的负色散器件和连接所述光分路器 与所述具有滤波作用的反射型的负色散器件的光纤; 所述具有滤波作用的反 射型的负色散器件产生的负色散的绝对值大于或等于所述光分路器和所述光 纤产生的正色散的总和;
所述增益器件、 所述光分路器和所述具有滤波作用的反射型的负色散器 件通过所述光纤依次连接。
6、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: 阵列波导光栅 AWG、 负色散器件、 PRM和连接所述 AWG、 所述负 色散器件与所述 PRM的光纤;所述负色散器件产生的负色散的绝对值大于或 等于所述 AWG、 所述 PRM和所述光纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口、 所述负色 散器件通过所述光纤连接所述 AWG的公共端口和所述 PRM;
或者, 所述增益器件、 所述负色散器件和所述 AWG的一个分支端口通 过所述光纤依次连接, 所述 AWG的公共端口通过所述光纤连接所述 PRM。
7、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: AWG、 负色散器件、 光分路器、 全反射镜和连接所述 AWG、 所述负 色散器件、 所述光分路器与所述全反射镜的光纤; 所述负色散器件产生的负 色散的绝对值大于或等于所述 AWG、所述光分路器、所述全反射镜和所述光 纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口,所述 AWG 的公共端口、 所述光分路器、 所述负色散器件和所述全反射镜通过所述光纤 依次连接;
或者, 所述增益器件通过所述光纤连接所述 AWG的一个分支端口, 所 述 AWG的公共端口、 所述负色散器件、 所述光分路器和所述全反射镜通过 所述光纤依次连接;
或者, 所述增益器件、 所述负色散器件、 所述 AWG的一个分支端口通 过所述光纤依次连接, 所述 AWG的公共端口、 所述光分路器和所述全反射 镜通过所述光纤依次连接。
8、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: AWG、 光分路器、 反射型的负色散器件和连接所述 AWG、 所述光分 路器与所述反射型的负色散器件的光纤; 所述反射型的负色散器件产生的负 色散的绝对值大于或等于所述 AWG、 所述光分路器和所述光纤产生的正色 散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口, 所述光分 路器通过所述光纤连接所述 AWG的公共端口和所述反射型的负色散器件。
9、 根据权利要求 1所述的自注入激光器, 其特征在于, 所述光处理器件 包括: 具有负色散作用的 AWG、 PRM和连接所述具有负色散作用的 AWG 与所述 PRM的光纤; 所述具有负色散作用的 AWG产生的负色散的绝对值 大于或等于所述 PRM和所述光纤产生的正色散的总和;
所述增益器件通过所述光纤连接所述 AWG的一个分支端口,所述 AWG 的公共端口通过所述光纤连接所述 PRM。
10、 一种无源光网络 PON, 其特征在于, 包括:
至少一个增益器件、 至少一个接收机和连接所述至少一个增益器件与所 述至少一个接收机的光处理器件;
每个所述增益器件产生宽谱光信号, 所述光处理器件对每个所述增益器 件产生的所述宽谱光信号进行选波滤波, 获得每个所述增益器件分别对应的 波长的光信号 ,对每个所述增益器件分别对应的波长的光信号进行部分反射 , 在部分反射后的每个波长的反射光信号中增加负色散后返回每个波长分别对 应的所述增益器件, 以使所述增益器件和所述光处理器件组成激光振荡腔, 所述负色散的绝对值大于或等于所述光处理器件的正色散的总和, 所述光处 理器件将部分反射后的每个波长的透射光信号分别发送给每个波长分别对应 的接收机。
11、 根据权利要求 10所述的 PON, 其特征在于, 所述光处理器件包括: 第一阵列波导光栅 AWG、 第二 AWG、 负色散器件、 部分反射镜 PRM和连 接所述第一 AWG、 所述第二 AWG、 所述负色散器件与所述 PRM的光纤; 所述负色散器件产生的负色散的绝对值大于或等于所述第一 AWG、 所述第 二 AWG、 所述 PRM和所述光纤产生的正色散的总和;
每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支端口, 所述第一 AWG的公共端口、 所述负色散器件、 所述 PRM和所述第二 AWG 的公共端口通过所述光纤依次连接, 所述第二 AWG的每个分支端口通过所 述光纤连接一个所述接收机。
12、 根据权利要求 10所述的 PON, 其特征在于, 所述光处理器件包括: 第一 AWG、 第二 AWG、 负色散器件、 光分路器、 全反射镜和连接所述第一 AWG、 所述第二 AWG、 所述负色散器件、 所述光分路器与所述全反射镜的 光纤; 所述负色散器件产生的负色散的绝对值大于或等于所述第一 AWG、 所述第二 AWG、 所述光分路器、 所述全反射镜和所述光纤产生的正色散的 总和;
每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支端口, 所述第一 AWG的公共端口、 所述光分路器、 所述负色散器件和所述全反射 镜通过所述光纤依次连接;
或者, 每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支 端口, 所述第一 AWG的公共端口、 所述负色散器件、 所述光分路器和所述 全反射镜通过所述光纤依次连接;
或者, 每个所述增益器件、 所述负色散器件和所述第一 AWG的一个分 支端口通过所述光纤依次连接, 所述第一 AWG的公共端口、 所述光分路器 和所述全反射镜通过所述光纤依次连接。
13、 根据权利要求 10所述的 PON, 其特征在于, 所述光处理器件包括: 第一 AWG、 第二 AWG、 光分路器、 反射型的负色散器件和连接所述第一 AWG、 所述第二 AWG、 所述光分路器与所述反射型的负色散器件的光纤; 所述反射型的负色散器件产生的负色散的绝对值大于或等于所述第一 AWG、 所述第二 AWG、 所述光分路器和所述光纤产生的正色散的总和;
每个所述增益器件通过所述光纤连接所述第一 AWG的一个分支端口, 所述第一 AWG的公共端口、 所述光分路器、 所述反射型的负色散器件和所 述第二 AWG的公共端口通过所述光纤依次连接, 所述第二 AWG的每个分 支端口通过所述光纤连接一个所述接收机。
14、 根据权利要求 10所述的 PON, 其特征在于, 所述光处理器件包括: 具有负色散作用的第一 AWG、第二 AWG、 PRM和连接所述具有负色散作用 的第一 AWG、 所述第二 AWG与所述 PRM的光纤; 所述具有负色散作用的 第一 AWG产生的负色散的绝对值大于或等于所述第二 AWG、 所述 PRM和 所述光纤产生的正色散的总和;
每个所述增益器件通过所述光纤连接所述具有负色散作用的第一 AWG 的一个分支端口, 所述第一 AWG的公共端口、 所述 PRM和所述第二 AWG 的公共端口通过所述光纤依次连接, 所述第二 AWG的每个分支端口通过所 述光纤连接一个所述接收机。
PCT/CN2012/077989 2012-06-30 2012-06-30 自注入激光器和无源光网络 WO2014000298A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000578.6A CN102870294B (zh) 2012-06-30 2012-06-30 自注入激光器和无源光网络
PCT/CN2012/077989 WO2014000298A1 (zh) 2012-06-30 2012-06-30 自注入激光器和无源光网络

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077989 WO2014000298A1 (zh) 2012-06-30 2012-06-30 自注入激光器和无源光网络

Publications (1)

Publication Number Publication Date
WO2014000298A1 true WO2014000298A1 (zh) 2014-01-03

Family

ID=47447752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077989 WO2014000298A1 (zh) 2012-06-30 2012-06-30 自注入激光器和无源光网络

Country Status (2)

Country Link
CN (1) CN102870294B (zh)
WO (1) WO2014000298A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428973B (zh) * 2015-12-18 2020-11-24 华南理工大学 相干光正交频分复用系统用的宽可调谐单频光纤激光光源
EP3416308B1 (en) * 2016-03-03 2021-11-24 Huawei Technologies Co., Ltd. Multiplexer/demultiplexer and passive optical network system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490639A (zh) * 2002-10-15 2004-04-21 ���ǵ�����ʽ���� 用于波分复用系统的自接种的法布里-珀罗激光器件
US20060083515A1 (en) * 2004-10-20 2006-04-20 Kwangju Institute Of Science And Technology WDM-PON having optical source of self-injection locked fabry-perot laser diode
WO2011110126A2 (zh) * 2011-04-22 2011-09-15 华为技术有限公司 自注入光收发模块和波分复用无源光网络系统
WO2011124164A2 (zh) * 2011-05-10 2011-10-13 华为技术有限公司 自注入激光器、波分复用无源光网络系统及光线路终端
WO2012048665A1 (en) * 2010-10-15 2012-04-19 Huawei Technologies Co., Ltd. A method, apparatus, and system for a self-seeded external cavity laser for dense wavelength division multiplexing applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298658Y (zh) * 2008-11-07 2009-08-26 中国科学院西安光学精密机械研究所 基于半导体光放大器的外注入式线性腔主动锁模光纤激光器
CN102136674B (zh) * 2010-12-14 2013-01-30 华为技术有限公司 外腔激光器和波分复用无源光网络系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490639A (zh) * 2002-10-15 2004-04-21 ���ǵ�����ʽ���� 用于波分复用系统的自接种的法布里-珀罗激光器件
US20060083515A1 (en) * 2004-10-20 2006-04-20 Kwangju Institute Of Science And Technology WDM-PON having optical source of self-injection locked fabry-perot laser diode
WO2012048665A1 (en) * 2010-10-15 2012-04-19 Huawei Technologies Co., Ltd. A method, apparatus, and system for a self-seeded external cavity laser for dense wavelength division multiplexing applications
WO2011110126A2 (zh) * 2011-04-22 2011-09-15 华为技术有限公司 自注入光收发模块和波分复用无源光网络系统
WO2011124164A2 (zh) * 2011-05-10 2011-10-13 华为技术有限公司 自注入激光器、波分复用无源光网络系统及光线路终端

Also Published As

Publication number Publication date
CN102870294B (zh) 2014-06-25
CN102870294A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
TWI499148B (zh) External cavity lasers and wavelength division multiplexing passive optical network systems
US9146355B2 (en) Optical sources employing self-seeding and modulation averaging
US8417118B2 (en) Colorless dense wavelength division multiplexing transmitters
EP0828178B1 (en) Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity
US20140064733A1 (en) Self-injection laser, wave division multiplexing passive optical network system and optical line terminal
US8970945B2 (en) Modulation averaging reflectors
JP5789712B2 (ja) 無色ウルトラブロードバンドpon用の、非冷却自己調整キャビティのための偏光安定スキーム
CN105934899B (zh) 光网络单元(onu)波长自调谐
EP2731211B1 (en) Self-seeding fiber laser device and driving method thereof, passive optical network system and device
JP6044311B2 (ja) 増幅装置および通信システム
WO2018085143A1 (en) Fast tunable hybrid laser
WO2018085146A1 (en) Fast tunable hybrid laser with a silicon-photonic switch
WO2014063302A1 (zh) 外腔激光器、光发射机及无源光网络系统
WO2014000298A1 (zh) 自注入激光器和无源光网络
US20080231861A1 (en) Polarization Maintaining Optical Delay Circuit
US6559992B2 (en) Adjustable chromatic dispersion compensation
Kashima et al. Optical transmitter using side-mode injection locking for high-speed photonic LANs
JP2002525647A (ja) 光回路の円偏光ファイバ
US20240047945A1 (en) Multiwavelength laser device
Komljenovic et al. Extended cavity light source using modulation-averaging reflectors for wdm-pon
CN115832869A (zh) 一种集成外腔激光器及使用方法
Morgado Circuitos Óticos Integrados para Uso em Redes NG-PON2
US20030133192A1 (en) Wavelength periodical filter
Yoon et al. Depolarization of external optical feedback on VCSEL and variation of relative intensity noise
Pongwongtragull et al. Quantum Parallel Processing Manipulation Using Gaussian Pulses via an Optical Multiplexer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000578.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879729

Country of ref document: EP

Kind code of ref document: A1