WO2013191582A2 - Atomic absorption spectrometer on the basis of the zeeman effect - Google Patents

Atomic absorption spectrometer on the basis of the zeeman effect Download PDF

Info

Publication number
WO2013191582A2
WO2013191582A2 PCT/RU2013/000409 RU2013000409W WO2013191582A2 WO 2013191582 A2 WO2013191582 A2 WO 2013191582A2 RU 2013000409 W RU2013000409 W RU 2013000409W WO 2013191582 A2 WO2013191582 A2 WO 2013191582A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
monochromator
polarizer
atomizer
spectrometer
Prior art date
Application number
PCT/RU2013/000409
Other languages
French (fr)
Russian (ru)
Other versions
WO2013191582A3 (en
Inventor
Александр Анатольевич СТРОГАНОВ
Олег Владимирович ЕВСЕЕВ
Павел Владимирович МИХНОВЕЦ
Original Assignee
Stroganov Alexander Anatolevich
Evseev Oleg Vladimirovich
Mikhnovets Pavel Vladimirovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stroganov Alexander Anatolevich, Evseev Oleg Vladimirovich, Mikhnovets Pavel Vladimirovich filed Critical Stroganov Alexander Anatolevich
Priority to UAA201413184A priority Critical patent/UA109621C2/en
Priority to EA201401280A priority patent/EA027448B1/en
Priority to CN201380032132.6A priority patent/CN104520697B/en
Publication of WO2013191582A2 publication Critical patent/WO2013191582A2/en
Publication of WO2013191582A3 publication Critical patent/WO2013191582A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3111Atomic absorption analysis using Zeeman split

Definitions

  • the invention relates to analytical instrumentation and can be used to determine the content of chemical elements in samples of various types by atomic absorption spectrometry.
  • the analyzed sample is transferred to the state of atomic vapor through which a resonant radiation beam is passed for the element being determined, and the content of the element in the sample is determined by the amount of radiation absorption. Since the absorption of radiation occurs both by the atoms of the element being determined (the so-called “resonant” or “selective” absorption) and by other particles (the so-called “background” or “non-selective” absorption), they must be separated. For this, various methods of correcting non-selective absorption are used, for example, based on the Zeeman effect [1].
  • the device includes optically coupled elements: a radiation source with a wavelength corresponding to the resonant absorption of the element, the content of which in the sample is measured; first polarizer, optomodulator, second polarizer, phase plate; an atomizer located in a constant magnetic field; a compensator providing depolarization of the beam due to an additional compensating phase shift; monochromator, radiation receiver; as well as a system for recording and processing a signal, electrically connected to a radiation receiver and synchronized with an optomodulator.
  • the operator Before starting analysis using a prototype, the operator includes a radiation source with a wavelength corresponding to the resonant absorption of the element, the content of which in the sample is measured, and also sets the monochromator to the resonant wavelength of the element being determined.
  • a beam of radiation from the source passing through the first polarizer, optomodulator, second polarizer and phase plate in series, acquires modulation by the state of polarization (with the frequency of the optomodulator) and amplitude (with the double frequency of the optomodulator).
  • the radiation beam is directed through the atomizer, into which the operator introduces the determined sample.
  • the sample decomposes to the state of atomic vapor. Due to the fact that a constant magnetic field is created inside the atomizer, due to the Zeeman effect, the cloud of an atomized sample acquires polarization properties (it absorbs radiation of different polarization to varying degrees). Therefore, after passing through the atomizer, polarization modulation of the radiation will lead to additional intensity modulation.
  • the monochromator transmits radiation of the resonant wavelength of the element being determined for further registration with a radiation receiver. Then, using a signal recording and processing system synchronized with the optodulator, harmonics with the optododulator oscillation frequency and double frequency are extracted from the electric signal coming from the radiation receiver and their amplitudes are measured. Since the electric signal from the radiation receiver depends on the polarization of the incident radiation, for correct measurements, it is necessary to depolarize the radiation before recording it.
  • the prototype uses a compensator, introducing an additional compensating phase shift, depending on the wavelength of the element being determined. The adjustment of the compensator, which provides the phase shift necessary for compensation, is performed manually by the operator. After adjusting the compensator, the operator introduces the determined sample into the atomizer and measures the amplitudes of the harmonics from which the value of the analytical signal is proportional to the mass of the element being determined in the sample.
  • the prototype has two drawbacks.
  • the first is that the compensator requires manual adjustment during the transition from measuring one element to another element, since its adjustment, which ensures depolarization of radiation, depends on the wavelength. This action requires operator intervention, and therefore increases the analysis time, makes it difficult to automate measurements and, if the operator acts incorrectly, can lead to measurement errors.
  • Another disadvantage of the prototype is the large radiation loss at the entrance slit of the monochromator, due to the fact that the radiation beam at the entrance to the monochromator has a round profile, while the slit itself has an elongated shape.
  • the mismatch between the beam profiles and the entrance slit of the monochromator only a small part of the radiation enters the monochromator, and after recording the radiation by the receiver, it forms an analytical signal. This circumstance limits the spectrometer luminosity.
  • the objective of the invention is to increase the speed of the spectrometer, reduce analysis time by automating the measurement process, as well as eliminate the potential source of measurement errors, as a result of incorrect operator actions when manually adjusting the compensator.
  • the problem is achieved in that in an atomic absorption spectrometer based on the Zeeman effect, containing optically coupled radiation source with a wavelength corresponding to the resonant absorption of the element being determined, a polarizer, optomodulator, phase plate and atomizer located in a constant magnetic field; optically coupled monochromator and radiation receiver; a system for recording and processing a signal electrically connected to a radiation receiver and synchronized with an optomodulator; A radiation conversion device was introduced that was optically coupled to an atomizer and a monochromator, made in the form of optically conjugated a second polarizer and a fiber bundle with a variable profile, and the input end of the fiber bundle was given a shape that coincided with the profile of the radiation beam section, and the output end was given an elongated shape and it was aligned with an entrance slit of a monochromator.
  • FIG. 1 Scheme of the proposed atomic absorption spectrometer based on the Zeeman effect.
  • FIG. 2 Scheme of the radiation conversion device.
  • FIG. 3 Scheme for the formation of analytical signals in an atomic absorption spectrometer based on the Zeeman effect.
  • FIG. 1 A diagram of an atomic absorption spectrometer based on the Zeeman effect is shown in Figure 1.
  • the spectrometer contains optically coupled elements: a radiation source 1 with a wavelength corresponding to the resonant absorption of the element whose content is measured in the sample, polarizer 2, optomodulator 3, phase plate 4 and an atomizer 5 located in a magnetic field created by magnets 6; a radiation conversion device 7, a monochromator 8 and a radiation receiver 9; as well as a system for recording and processing a signal 10, electrically connected to a radiation receiver and synchronized with an opto-modulator.
  • a diagram of the radiation conversion device 7 shown in FIG. 2 contains optically coupled elements: a second polarizer 1 1 and a fiber bundle 12.
  • the fiber bundle 12 is made with a variable profile due to the fact that its input end face is placed in the input frame 13, which is shaped coinciding with the profile of the cross section of the radiation beam, and the output end face is placed in the output frame 14 of an elongated shape.
  • the output end of the fiber bundle is aligned with the input slit of the monochromator 8,
  • a resonant radiation source can be, for example, a hollow cathode spectral lamp or an electrodeless spectral lamp.
  • elements similar to those used in the prototype or similar can be used as a polarizer 2, an optical modulator 3, a phase plate 4, a monochromator 8, a radiation detector 9, and a signal recording and processing system 10.
  • the second polarizer can be implemented in various ways:
  • either the function of the polarizer can be performed by cutting a beam of optical fibers carried out at a Brewster angle with respect to the incident radiation beam.
  • Optomodulator 3 performs a periodic phase shift, as a result of which, after passing through the optomodulator, the radiation becomes modulated by polarization (there is a periodic transformation of the polarization state of the beam from linear to elliptical, in the particular case circular).
  • An optomodulator can be implemented, for example, in the form of a phase plate having a time-varying phase shift due to alternating mechanical stress.
  • the radiation is passed through a phase plate 4, the axis of which is oriented parallel to the selected a direction that converts linear polarization to circular and circular to linear.
  • the radiation beam acquires a modulation of the polarization state, characterized by a periodic change of the following states:
  • the radiation thus formed is passed through atomizer 5.
  • a sample is preliminarily introduced into the atomizer, which, under the influence of physical factors realized in the atomizer (for example, high temperature, exposure to a flame or plasma), turns into a cloud of atomic vapor.
  • magnets 6 creates a magnetic field. The magnets are oriented so that the magnetic lines of force are parallel to the selected direction.
  • the mutual arrangement of the radiation beam and magnetic field lines described above leads to the realization of the transverse Zeeman effect, which manifests itself in the fact that the absorption resonance line splits into a number of ⁇ and ⁇ components (Zeeman effect), and the ⁇ and ⁇ components absorb linearly polarized radiation whose polarization direction is parallel or perpendicular to the direction of the magnetic lines, respectively.
  • One of the ⁇ -components does not shift relative to the wavelength of the undigested line (the wavelength of this line is equal to the wavelength of the undigested absorption line), while the ⁇ -components shift relative to the wavelength of the unsplit line, and this shift increases with increasing magnetic field strength.
  • the ⁇ -components shift, and as they shift, the effect of resonance absorption of radiation is weakened for them (with a sufficiently strong field, the line shift reaches such a level that resonance absorption ceases to be realized).
  • resonant absorption will occur regardless of the magnetic field strength. Since the ⁇ and ⁇ components absorb radiation with different orientations of the plane of polarization, this will lead to the appearance of intensity modulation: at those times when the polarization of the radiation is linear and the direction of polarization is parallel to the direction of the magnetic lines of force, the resonance radiation is absorbed by the ⁇ components of the absorption line.
  • the resonance absorption is weakened (or absent), because The ⁇ components are shifted relative to the emission line, and the TC components cannot absorb radiation with a given polarization.
  • the amplitude of the oscillations will be determined by the radiation intensity and the value of atomic absorption, depending on the concentration of the element being determined.
  • the radiation After passing through the atomizer, the radiation enters the radiation conversion device 7.
  • the second polarizer 11 included in the radiation conversion device be oriented at an angle of 45 degrees with respect to the direction selected as the reporting system.
  • the optical radiation After passing through the second polarizer 11, the optical radiation will acquire additional modulation in intensity, with minima at times when the polarization is linear and maxima at times when the polarization is circular, as shown in figure 3, i.e. with a double frequency compared to the oscillation frequency of the optomodulator. Moreover, the amplitude of the oscillations will depend on the radiation intensity and the total (selective and non-selective absorption).
  • the bundle of optical fibers 12 following the second polarizer 11 depolarizes the radiation beam due to numerous reflections in the optical fibers, and the depolarization effect is independent of the wavelength and does not require any action on the part of the operator.
  • a fiber bundle is attached with a profile that provides the best coordination between the radiation beam and the entrance slit of the monochromator. This is achieved by the fact that the input end of the fiber bundle is given a round shape, coinciding with the profile of the radiation beam, and the output end is given an elongated shape and it is combined with the entrance slit of the monochromator.
  • the radiation beam after passing the radiation conversion device 7, the radiation beam will have intensity modulation with two harmonics: with the frequency of the optomodulator and twice the frequency of the optomodulator and be depolarized.
  • the second polarizer can be implemented not only as a separate device (as in the prototype), but, for example, it can be combined into one unit with the frame of the fiber optic cable bundle, and the function of the second polarizer can be performed by cutting the fiber cable bundle at an angle of Brewster to incident beam of radiation.
  • the radiation depolarized and modulated in intensity After passing through the radiation conversion device, the radiation depolarized and modulated in intensity enters the monochromator 8, which selects a spectral region near the resonance absorption line.
  • the radiation emitted by the monochromator is recorded using the radiation receiver 9.
  • the signal recording and processing system 10 synchronized with the optomodulator, harmonics with the oscillation frequency of the optomodulator and a double frequency are extracted from the electric signal coming from the radiation receiver, their amplitudes are measured and found the value of the analytical signal proportional to the mass of the determined element in the sample.

Abstract

The invention relates to analytical instrument-making and can be used for determining the content of chemical elements in various types of samples by an atomic absorption spectrometry method. The problem addressed by the proposed invention is that of increasing the transmission of a spectrometer, reducing the analysis time by automating the measurement process, and also eliminating a potential source of errors in the measurement as a result of incorrect actions by an operator during manual adjustment of a compensator. The stated problem is solved in that an atomic absorption spectrometer on the basis of the Zeeman effect and comprising the following, connected optically: a radiation source with a wavelength corresponding to the resonance absorption of the element being determined, a polarizer, an optical modulator, a phase plate and an atomizer, which is arranged in a permanent magnetic field; a monochromator and radiation receiver, which are optically connected; and a signal recording and processing system which is electrically connected to the radiation receiver and is synchronized with the optical modulator; incorporates a radiation-converting device which is optically coupled to the atomizer and to the monochromator and is in the form of a second polarizer and fibreoptic bundle with a variable profile, which are optically coupled, wherein the input end of the fibreoptic bundle obtains a shape coinciding with a sectional profile of the radiation beam, while the output end obtains an extended shape and is aligned with an input aperture of the monochromator.

Description

АТОМНО-АБСОРБЦИОННЫЙ СПЕКТРОМЕТР, ОСНОВАННЫЙ НА  ATOMIC-ABSORPTION SPECTROMETER BASED ON
ЭФФЕКТЕ ЗЕЕМАНА  The Zeeman Effect
Изобретение относится к аналитическому приборостроению и может быть использовано для определения содержания химических элементов в пробах различных типов методом атомно-абсорбционной спектрометрии.  The invention relates to analytical instrumentation and can be used to determine the content of chemical elements in samples of various types by atomic absorption spectrometry.
В атомно-абсорбционных спектрометрах анализируемая проба переводится в состояние атомного пара, сквозь который пропускается пучок излучения резонансного для определяемого элемента, и по величине поглощения излучения определяется содержание элемента в пробе. Поскольку поглощение излучения происходит как атомами определяемого элемента (так называемое «резонансное» или «селективное» поглощение), так и прочими частицами (так называемое «фоновое» или «неселективное» поглощение), их необходимо разделить. Для этого используются различные способы коррекции неселективного поглощения, например, основанные на эффекте Зеемана [1].  In atomic absorption spectrometers, the analyzed sample is transferred to the state of atomic vapor through which a resonant radiation beam is passed for the element being determined, and the content of the element in the sample is determined by the amount of radiation absorption. Since the absorption of radiation occurs both by the atoms of the element being determined (the so-called "resonant" or "selective" absorption) and by other particles (the so-called "background" or "non-selective" absorption), they must be separated. For this, various methods of correcting non-selective absorption are used, for example, based on the Zeeman effect [1].
Известен атомно-абсорбционный спектрометр, основанный на эффекте Зеемана, выбранный в качестве прототипа [2]. Устройство включает оптически связанные элементы: источник излучения с длиной волны, соответствующей резонансному поглощению элемента, содержание которого в пробе измеряется; первый поляризатор, оптомодулятор, второй поляризатор, фазовую пластину; атомизатор, расположенный в постоянном магнитном поле; компенсатор, обеспечивающий деполяризацию пучка за счет дополнительного компенсирующего фазового сдвига; монохроматор, приемник излучения; а также систему регистрации и обработки сигнала, электрически связанную с приемником излучения и синхронизованную с оптомодулятором.  Known atomic absorption spectrometer based on the Zeeman effect, selected as a prototype [2]. The device includes optically coupled elements: a radiation source with a wavelength corresponding to the resonant absorption of the element, the content of which in the sample is measured; first polarizer, optomodulator, second polarizer, phase plate; an atomizer located in a constant magnetic field; a compensator providing depolarization of the beam due to an additional compensating phase shift; monochromator, radiation receiver; as well as a system for recording and processing a signal, electrically connected to a radiation receiver and synchronized with an optomodulator.
Перед началом анализа с помощью прототипа, оператор включает источник излучения с длиной волны, соответствующей резонансному поглощению элемента, содержание которого в пробе измеряется, а также устанавливает монохроматор на резонансную длину волну определяемого элемента. Пучок излучения от источника, проходя последовательно расположенные первый поляризатор, оптомодулятор, второй поляризатор и фазовую пластину, приобретает модуляцию по состоянию поляризации (с частотой оптомодулятора) и амплитуде (с двукратной частотой оптомодулятора). Before starting analysis using a prototype, the operator includes a radiation source with a wavelength corresponding to the resonant absorption of the element, the content of which in the sample is measured, and also sets the monochromator to the resonant wavelength of the element being determined. A beam of radiation from the source, passing through the first polarizer, optomodulator, second polarizer and phase plate in series, acquires modulation by the state of polarization (with the frequency of the optomodulator) and amplitude (with the double frequency of the optomodulator).
Далее пучок излучения направляется сквозь атомизатор, в который оператор вводит определяемую пробу. В атомизаторе проба разлагается до состояния атомного пара. Из-за того, что внутри атомизатора создается постоянное магнитное поле, вследствии эффекта Зеемана, облако атомизованной пробы приобретает поляризационные свойства (в различной степени поглощает излучение разной поляризации). Поэтому после прохождения атомизатора, модуляция излучения по поляризации приведет к дополнительной модуляции по интенсивности.  Next, the radiation beam is directed through the atomizer, into which the operator introduces the determined sample. In the atomizer, the sample decomposes to the state of atomic vapor. Due to the fact that a constant magnetic field is created inside the atomizer, due to the Zeeman effect, the cloud of an atomized sample acquires polarization properties (it absorbs radiation of different polarization to varying degrees). Therefore, after passing through the atomizer, polarization modulation of the radiation will lead to additional intensity modulation.
Монохроматор пропускает излучение резонансной длины волны определяемого элемента для дальнейшей регистрации с помощью приемника излучения. Далее, с помощью системы регистрации и обработки сигнала, синхронизованной с оптомодулятором, из электрического сигнала, идущего с приемника излучения, выделяются гармоники с частотой колебаний оптомодулятора и двукратной частотой и измеряются их амплитуды. Поскольку электрический сигнал с приемника излучения зависит от поляризации падающего излучения, для корректности измерений необходимо деполяризовать излучение перед его регистрацией. Для этой цели в прототипе применяется компенсатор, вносящий дополнительный компенсирующий фазовый сдвиг, зависящий от длины волны определяемого элемента. Настройка компенсатора, обеспечивающая необходимый для компенсации фазовый сдвиг, производится оператором вручную. После настройки компенсатора оператор вводит в атомизатор определяемую пробу и осуществляет измерение амплитуд гармоник, из которых находится величина аналитического сигнала, пропорционального массе определяемого элемента в пробе.  The monochromator transmits radiation of the resonant wavelength of the element being determined for further registration with a radiation receiver. Then, using a signal recording and processing system synchronized with the optodulator, harmonics with the optododulator oscillation frequency and double frequency are extracted from the electric signal coming from the radiation receiver and their amplitudes are measured. Since the electric signal from the radiation receiver depends on the polarization of the incident radiation, for correct measurements, it is necessary to depolarize the radiation before recording it. For this purpose, the prototype uses a compensator, introducing an additional compensating phase shift, depending on the wavelength of the element being determined. The adjustment of the compensator, which provides the phase shift necessary for compensation, is performed manually by the operator. After adjusting the compensator, the operator introduces the determined sample into the atomizer and measures the amplitudes of the harmonics from which the value of the analytical signal is proportional to the mass of the element being determined in the sample.
Прототипу свойственны два недостатка. Первый состоит в том, что компенсатор требует ручной подстройки при переходе от измерения одного элемента к другому элементу, так как его настройка, обеспечивающая деполяризацию излучения, зависит от длины волны. Это действие требует вмешательства оператора, а поэтому увеличивает время анализа, затрудняет автоматизацию измерений и при неверных действиях оператора может привести к ошибке измерения. The prototype has two drawbacks. The first is that the compensator requires manual adjustment during the transition from measuring one element to another element, since its adjustment, which ensures depolarization of radiation, depends on the wavelength. This action requires operator intervention, and therefore increases the analysis time, makes it difficult to automate measurements and, if the operator acts incorrectly, can lead to measurement errors.
Другим недостатком прототипа являются большие потери излучения на входной щели монохроматора, связанные с тем, что пучок излучения на входе в монохроматор имеет круглый профиль, в то время как сама щель имеет вытянутую форму. В результате не совпадения профилей пучка и входной щели монохроматора, только небольшая часть излучения попадает в монохроматор, и после регистрации приемником излучения формирует аналитический сигнал. Это обстоятельство ограничивает светосилу спектрометра.  Another disadvantage of the prototype is the large radiation loss at the entrance slit of the monochromator, due to the fact that the radiation beam at the entrance to the monochromator has a round profile, while the slit itself has an elongated shape. As a result of the mismatch between the beam profiles and the entrance slit of the monochromator, only a small part of the radiation enters the monochromator, and after recording the radiation by the receiver, it forms an analytical signal. This circumstance limits the spectrometer luminosity.
Задачей предлагаемого изобретения является повышение светосилы спектрометра, сокращение времени анализа за счет автоматизации процесса измерения, а также устранение потенциального источника ошибок в измерении, в результате некорректных действий оператора при ручной настройке компенсатора.  The objective of the invention is to increase the speed of the spectrometer, reduce analysis time by automating the measurement process, as well as eliminate the potential source of measurement errors, as a result of incorrect operator actions when manually adjusting the compensator.
Поставленная задача достигается тем, что в атомно-абсорбционном спектрометре, основанном на эффекте Зеемана, содержащем оптически связанные источник излучения с длиной волны, соответствующей резонансному поглощению определяемого элемента, поляризатор, оптомодулятор, фазовую пластину и атомизатор, расположенный в постоянном магнитном поле; оптически связанные монохроматор и приемник излучения; систему регистрации и обработки сигнала, электрически связанную с приемником излучения и синхронизованную с оптомодулятором; введено устройство преобразования излучения, оптически сопряженное с атомизатором и монохроматором, выполненное в виде оптически сопряженных второго поляризатора и жгута световодов с переменным профилем, причем входному торцу жгута световодов придана форма, совпадающая с профилем сечения пучка излучения, а выходному торцу придана вытянутая форма и он совмещен с входной щелью монохроматора. The problem is achieved in that in an atomic absorption spectrometer based on the Zeeman effect, containing optically coupled radiation source with a wavelength corresponding to the resonant absorption of the element being determined, a polarizer, optomodulator, phase plate and atomizer located in a constant magnetic field; optically coupled monochromator and radiation receiver; a system for recording and processing a signal electrically connected to a radiation receiver and synchronized with an optomodulator; A radiation conversion device was introduced that was optically coupled to an atomizer and a monochromator, made in the form of optically conjugated a second polarizer and a fiber bundle with a variable profile, and the input end of the fiber bundle was given a shape that coincided with the profile of the radiation beam section, and the output end was given an elongated shape and it was aligned with an entrance slit of a monochromator.
Технический результат, предлагаемого изобретения, а именно, повышение светосилы спектрометра, сокращение времени анализа за счет автоматизации процесса измерения, а также устранение потенциального источника ошибок в измерении, в результате некорректных действий оператора при ручной настройке компенсатора достигается за счет того, что указанная совокупность приведенных признаков The technical result of the invention, namely, increasing the spectrometer luminosity, reducing analysis time by automating the measurement process, and also eliminating the potential source of measurement errors, as a result of incorrect actions during manual adjustment of the compensator is achieved due to the fact that the specified set of characteristics
• вызывает дополнительную модуляцию по интенсивности, необходимую для аналитических измерений; • causes additional modulation in intensity, necessary for analytical measurements;
· осуществляет эффективное оптическое сопряжение пучка излучения и входной щели монохроматора  · Provides effective optical coupling of the radiation beam and the entrance slit of the monochromator
• осуществляет деполяризацию пучка перед вводом его в монохроматор.  • carries out depolarization of the beam before entering it into the monochromator.
Заявленное изобретение поясняется чертежами, где:  The claimed invention is illustrated by drawings, where:
Фиг. 1. Схема предлагаемого атомно-абсорбционного спектрометра основанного на эффекте Зеемана. FIG. 1. Scheme of the proposed atomic absorption spectrometer based on the Zeeman effect.
Фиг. 2. Схема устройства преобразования излучения. FIG. 2. Scheme of the radiation conversion device.
Фиг. 3. Схема формирования аналитических сигналов в атомно- абсорбционном спектрометре, основанном на эффекте Зеемана.  FIG. 3. Scheme for the formation of analytical signals in an atomic absorption spectrometer based on the Zeeman effect.
Схема атомно-абсорбционного спектрометра, основанного на эффекте Зеемана, показана на фигуре 1. Спектрометр содержит оптически связанные элементы: источник излучения 1 с длиной волны, соответствующей резонансному поглощению элемента, содержание которого в пробе измеряется, поляризатор 2, оптомодулятор 3, фазовую пластину 4 и атомизатор 5, расположенный в магнитном поле, создаваемом магнитами 6; устройство преобразования излучения 7, монохроматор 8 и приемник излучения 9; а также систему регистрации и обработки сигнала 10, электрически связанную с приемником излучения и синхронизованную с оптомодулятором. A diagram of an atomic absorption spectrometer based on the Zeeman effect is shown in Figure 1. The spectrometer contains optically coupled elements: a radiation source 1 with a wavelength corresponding to the resonant absorption of the element whose content is measured in the sample, polarizer 2, optomodulator 3, phase plate 4 and an atomizer 5 located in a magnetic field created by magnets 6; a radiation conversion device 7, a monochromator 8 and a radiation receiver 9; as well as a system for recording and processing a signal 10, electrically connected to a radiation receiver and synchronized with an opto-modulator.
Схема устройства преобразования излучения 7, показанная на фиг.2, содержит оптически связанные элементы: второй поляризатор 1 1 и жгут световодов 12. Жгут световодов 12 выполнен с переменным профилем за счет того, что его входной торец помещен во входную оправу 13, которой придана форма, совпадающая с профилем сечения пучка излучения, а выходной торец помещен в выходную оправу 14 вытянутой формы. Выходной торец жгута световодов совмещен с входной щелью монохроматора 8, Источником резонансного излучения может являться, например, спектральная лампа с полым катодом или безэлектродная спектральная лампа. A diagram of the radiation conversion device 7 shown in FIG. 2 contains optically coupled elements: a second polarizer 1 1 and a fiber bundle 12. The fiber bundle 12 is made with a variable profile due to the fact that its input end face is placed in the input frame 13, which is shaped coinciding with the profile of the cross section of the radiation beam, and the output end face is placed in the output frame 14 of an elongated shape. The output end of the fiber bundle is aligned with the input slit of the monochromator 8, A resonant radiation source can be, for example, a hollow cathode spectral lamp or an electrodeless spectral lamp.
В атомно-абсорбционном спектрометре, основанном на эффекте Зеемана, в качестве поляризатора 2, оптомодулятора 3, фазовой пластина 4, монохроматора 8, приемник излучения 9, а также система регистрации и обработки сигнала 10 могут использоваться элементы, подобные используемым в прототипе, или аналогичные.  In an atomic absorption spectrometer based on the Zeeman effect, elements similar to those used in the prototype or similar can be used as a polarizer 2, an optical modulator 3, a phase plate 4, a monochromator 8, a radiation detector 9, and a signal recording and processing system 10.
По технологическим и конструктивным соображениям второй поляризатор может быть реализован различными способами:  For technological and structural reasons, the second polarizer can be implemented in various ways:
- как отдельное устройство,  - as a separate device,
- он может быть совмещен с входной оправой жгута световодов в один узел,  - it can be combined with the input frame of the bundle of optical fibers in one node,
- либо функцию поляризатора может выполнять срез пучка световодов осуществленный под углом Брюстера, по отношению к падающему пучку излучения.  - either the function of the polarizer can be performed by cutting a beam of optical fibers carried out at a Brewster angle with respect to the incident radiation beam.
Для обоснования принципа работы предлагаемого спектрометра рассмотрим изменение состояния поляризации пучка излучения по мере прохождения через его элементы, показанное на фигуре 3. Излучение от источника резонансного излучения 1 проходит сквозь поляризатор 2, после чего приобретает поляризованное состояние. Для достижения максимальной эффективности рекомендуется ориентировать поляризатор под углом в 45 градусов по отношению к направлению, выбранному в качестве системы отчета.  To justify the principle of operation of the proposed spectrometer, we consider the change in the polarization state of the radiation beam as it passes through its elements, shown in figure 3. The radiation from the resonant radiation source 1 passes through the polarizer 2, after which it acquires a polarized state. To achieve maximum efficiency, it is recommended that the polarizer be oriented at an angle of 45 degrees with respect to the direction selected as the reporting system.
Оптомодулятор 3, осуществляет периодический фазовый сдвиг, вследствие чего, после прохождения оптомодулятора излучение становится модулированным по поляризации (имеет место периодическая трансформация состояния поляризации пучка из линейной в эллиптическую, в частном случае круговую). Оптомодулятор может быть реализован, например, в виде фазовой пластины, имеющей переменный во времени фазовый сдвиг, осуществляемый за счет переменного механического напряжения.  Optomodulator 3 performs a periodic phase shift, as a result of which, after passing through the optomodulator, the radiation becomes modulated by polarization (there is a periodic transformation of the polarization state of the beam from linear to elliptical, in the particular case circular). An optomodulator can be implemented, for example, in the form of a phase plate having a time-varying phase shift due to alternating mechanical stress.
После оптомодулятора излучение пропускается через фазовую пластину 4, ось которой ориентирована параллельно выбранному направлению, которая преобразовывает линейную поляризацию в круговую и круговую в линейную. Таким образом, после прохождения фазовой пластины пучок излучения приобретает модуляцию состояния поляризации, характеризующуюся периодической сменой следующих состояний: After the optomodulator, the radiation is passed through a phase plate 4, the axis of which is oriented parallel to the selected a direction that converts linear polarization to circular and circular to linear. Thus, after passing through the phase plate, the radiation beam acquires a modulation of the polarization state, characterized by a periodic change of the following states:
· линейной поляризации, параллельной выбранному направлению (один раз за период колебаний оптомодулятора);  · Linear polarization parallel to the selected direction (once per period of oscillations of the optomodulator);
• линейной поляризации, перпендикулярной выбранному направлению (один раз за период колебаний оптомодулятора);  • linear polarization perpendicular to the selected direction (once during the period of oscillations of the optomodulator);
• круговой поляризации (два раза за период колебаний оптомодулятора).  • circular polarization (twice during the period of oscillations of the optomodulator).
Сформированное таким образом излучение пропускается через атомизатор 5. В атомизатор предварительно вносится проба, которая под воздействием физических факторов, реализованных в атомизаторе (например, высокой температуры, воздействия пламени или плазмы) превращается в облако атомного пара. В атомизаторе с помощью магнитов 6 создается магнитное поле. Магниты ориентированы таким образом, чтобы магнитные силовые линии были параллельны выбранному направлению.  The radiation thus formed is passed through atomizer 5. A sample is preliminarily introduced into the atomizer, which, under the influence of physical factors realized in the atomizer (for example, high temperature, exposure to a flame or plasma), turns into a cloud of atomic vapor. In the atomizer using magnets 6 creates a magnetic field. The magnets are oriented so that the magnetic lines of force are parallel to the selected direction.
Описанное выше взаимное расположение пучка излучения и силовых линий магнитного поля приводит к реализации поперечного эффекта Зеемана, проявляющегося в том что абсорбционная резонансная линия расщепляется на ряд π- и σ- компонентов (эффект Зеемана), причем π- и σ-компоненты поглощают линейно поляризованное излучение, направление поляризации которого параллельно или перпендикулярно направлению магнитных линий, соответственно. Одна из π- компонент не смещается относительно длины волны нерасщепленной линии (длина волны этой линии равна длине волны нерасщепленной линии абсорбции), в то время как σ- компоненты смещаются относительно длины волны нерасщепленной линии, причем это смещение увеличивается с увеличением напряженности магнитного поля. По мере увеличения напряженности магнитного поля σ- компоненты смещаются, и по мере их смещения для них ослабляется эффект резонансного поглощения излучения (при достаточно сильном поле смещение линий достигает такого уровня что резонансное поглощение перестанет реализовываться). В то же время, для несмещенной π- компоненты, резонансное поглощение будет происходить независимо от напряженности магнитного поля. Поскольку π- и σ- компоненты поглощают излучение с разной ориентацией плоскости поляризации, это приведет к появлению модуляции интенсивности: в те моменты времени, когда поляризация излучения линейна и направление поляризации параллельно направлению силовых магнитных линий, резонансное излучение поглощается π- компонентами линии поглощения. В моменты, когда направление поляризации перпендикулярно направлению силовых магнитных линий, резонансное поглощение ослаблено (или отсутствует) , т.к. σ- компоненты смещены относительно линии испускания, а тс- компоненты не могут поглощать излучение с данной поляризацией. В результате будет наблюдаться модуляция интенсивности излучения с периодом колебаний оптомодулятора, как показано на фигуре 3. Причем амплитуда колебаний будет определяться интенсивностью излучения и величиной атомного поглощения, зависящей от концентрации определяемого элемента. The mutual arrangement of the radiation beam and magnetic field lines described above leads to the realization of the transverse Zeeman effect, which manifests itself in the fact that the absorption resonance line splits into a number of π and σ components (Zeeman effect), and the π and σ components absorb linearly polarized radiation whose polarization direction is parallel or perpendicular to the direction of the magnetic lines, respectively. One of the π-components does not shift relative to the wavelength of the undigested line (the wavelength of this line is equal to the wavelength of the undigested absorption line), while the σ-components shift relative to the wavelength of the unsplit line, and this shift increases with increasing magnetic field strength. As the magnetic field increases, the σ-components shift, and as they shift, the effect of resonance absorption of radiation is weakened for them (with a sufficiently strong field, the line shift reaches such a level that resonance absorption ceases to be realized). At the same time, for unbiased π- components, resonant absorption will occur regardless of the magnetic field strength. Since the π and σ components absorb radiation with different orientations of the plane of polarization, this will lead to the appearance of intensity modulation: at those times when the polarization of the radiation is linear and the direction of polarization is parallel to the direction of the magnetic lines of force, the resonance radiation is absorbed by the π components of the absorption line. At moments when the direction of polarization is perpendicular to the direction of the magnetic lines of force, the resonance absorption is weakened (or absent), because The σ components are shifted relative to the emission line, and the TC components cannot absorb radiation with a given polarization. As a result, there will be a modulation of the radiation intensity with a period of oscillations of the optomodulator, as shown in figure 3. Moreover, the amplitude of the oscillations will be determined by the radiation intensity and the value of atomic absorption, depending on the concentration of the element being determined.
После прохождения атомизатора излучение попадает в устройство преобразования излучения 7. Для достижения максимальной эффективности рекомендуется ориентировать входящий в состав устройства преобразования излучения второй поляризатор 11 под углом в 45 градусов по отношению к направлению, выбранному в качестве системы отчета.  After passing through the atomizer, the radiation enters the radiation conversion device 7. To achieve maximum efficiency, it is recommended that the second polarizer 11 included in the radiation conversion device be oriented at an angle of 45 degrees with respect to the direction selected as the reporting system.
После прохождения второго поляризатора 11 оптическое излучение приобретет дополнительную модуляцию по интенсивности, с минимумами в моменты времени, когда поляризация линейна и максимумами в моменты времени, когда поляризация круговая, как показано на фигуре 3, т.е. с частотой двукратной по сравнению с частотой колебаний оптомодулятора. Причем амплитуда колебаний будет зависеть от интенсивности излучения и суммарного (селективного и неселективного поглощения).  After passing through the second polarizer 11, the optical radiation will acquire additional modulation in intensity, with minima at times when the polarization is linear and maxima at times when the polarization is circular, as shown in figure 3, i.e. with a double frequency compared to the oscillation frequency of the optomodulator. Moreover, the amplitude of the oscillations will depend on the radiation intensity and the total (selective and non-selective absorption).
Следующий за вторым поляризатором 11 жгут световодов 12 деполяризует пучок излучения за счет многочисленных переотражений в световодах, причем эффект деполяризации не зависит от длины волны и не требует каких либо действий со стороны оператора. Кроме того, жгуту световодов, придается профиль, обеспечивающий наилучшее согласование между пучком излучения и входной щелью монохроматора. Это достигается тем, что входному торцу жгута световодов придана круглая форма, совпадающая с профилем пучка излучения, а выходному торцу придана вытянутая форма и он совмещен с входной щелью монохроматора. Таким образом, после прохождения устройства преобразования излучения 7 пучок излучения будет иметь модуляцию по интенсивности с двумя гармониками: с частотой оптомодулятора и двукратной частотой оптомодулятора и при этом быть деполяризованным. The bundle of optical fibers 12 following the second polarizer 11 depolarizes the radiation beam due to numerous reflections in the optical fibers, and the depolarization effect is independent of the wavelength and does not require any action on the part of the operator. In addition, a fiber bundle is attached with a profile that provides the best coordination between the radiation beam and the entrance slit of the monochromator. This is achieved by the fact that the input end of the fiber bundle is given a round shape, coinciding with the profile of the radiation beam, and the output end is given an elongated shape and it is combined with the entrance slit of the monochromator. Thus, after passing the radiation conversion device 7, the radiation beam will have intensity modulation with two harmonics: with the frequency of the optomodulator and twice the frequency of the optomodulator and be depolarized.
Благодаря включению второго поляризатора в состав устройства преобразования излучения, появляются дополнительные (по сравнению с прототипом) конструктивные и технологические возможности реализации второго поляризатора. А именно, второй поляризатор можно реализовать не только в виде отдельного устройства (как в прототипе), но и, например, его можно совместить в один узел с оправой жгута световодов, также функцию второго поляризатора может выполнять срез жгута световодов, осуществленный под углом Брюстера к падающему пучку излучения.  Thanks to the inclusion of the second polarizer in the radiation conversion device, there are additional (compared with the prototype) structural and technological capabilities for the implementation of the second polarizer. Namely, the second polarizer can be implemented not only as a separate device (as in the prototype), but, for example, it can be combined into one unit with the frame of the fiber optic cable bundle, and the function of the second polarizer can be performed by cutting the fiber cable bundle at an angle of Brewster to incident beam of radiation.
После прохождения устройства преобразования излучения, деполяризованное и модулированное по интенсивности излучение попадает в монохроматор 8, который выделяет область спектра, вблизи резонансной линии поглощения. Излучение, выделенное монохроматором, регистрируют с помощью приемник излучения 9. Далее, с помощью системы регистрации и обработки сигнала 10, синхронизованной с оптомодулятором, из электрического сигнала, идущего с приемника излучения выделяются гармоники с частотой колебаний оптомодулятора и двукратной частотой, измеряются их амплитуды и находится величина аналитического сигнала, пропорционального массе определяемого элемента в пробе.  After passing through the radiation conversion device, the radiation depolarized and modulated in intensity enters the monochromator 8, which selects a spectral region near the resonance absorption line. The radiation emitted by the monochromator is recorded using the radiation receiver 9. Then, using the signal recording and processing system 10, synchronized with the optomodulator, harmonics with the oscillation frequency of the optomodulator and a double frequency are extracted from the electric signal coming from the radiation receiver, their amplitudes are measured and found the value of the analytical signal proportional to the mass of the determined element in the sample.
Преимущества изобретения проявляются в том, что имеющий место эффект деполяризации не зависит от длины волны излучения, что исключает необходимость каких-либо действий со стороны оператора, а значит, позволяет автоматизировать процесс измерения, сократить время анализа и исключает ошибки оператора. Кроме того, формирование из световодов жгута с различным сечением на входном и на выходном торце позволяет осуществить более полное сопряжение профилей пучка и входной щели монохроматора, и за счет этого увеличить светосилу атомно-абсорбционного спектрометра основанного на эффекте Зеемана. Литература: The advantages of the invention are manifested in the fact that the depolarization effect taking place does not depend on the radiation wavelength, which eliminates the need for any action on the part of the operator, which means that it automates the measurement process, reduces analysis time and eliminates operator errors. In addition, the formation of a bundle of optical fibers with different cross sections at the input and output ends allows a more complete coupling of the beam profiles and the entrance slit of the monochromator, and thereby increase the luminosity of the atomic absorption spectrometer based on the Zeeman effect. Literature:
1. Пупышев АЛ. Атомно-абсорбционный спектральный анализ. М:  1. Pupyshev AL. Atomic absorption spectral analysis. M:
Техносфера, 2009 г., 784 стр.  Technosphere, 2009, 784 pp.
2. Ганеев АЛ., Шолупов С.Е., Сляднев Н.М. Зеемановская модуляционная поляризационная спектроскопия как вариант атомно- абсорбционного анализа возможности: и ограничения // Журнал аналитической химии. 1996. Т. 51 , NQ 8. С. 855-864. 2. Ganeev AL., Sholupov S.E., Slyadnev N.M. Zeeman modulation polarization spectroscopy as a variant of atomic absorption analysis of the possibility: and limitations // Journal of Analytical Chemistry. 1996.Vol. 51, N Q 8.P. 855-864.

Claims

Формула изобретения Claim
1. Атомно-абсорбционный спектрометр, основанный на эффекте Зеемана, включающий оптически связанные источник излучения с длиной волны, соответствующей резонансному поглощению определяемого элемента, поляризатор, оптомодулятор, фазовую пластину; атомизатор, расположенный в постоянном магнитном поле; оптически связанные монохроматор и приемник излучения; систему регистрации и обработки сигнала, электрически связанную с приемником излучения и синхронизованную с оптомодулятором; отличающийся тем, что в спектрометр введено устройство преобразования излучения, выполненное в виде оптически сопряженных второго поляризатора и жгута световодов, причем входному торцу жгута световодов придана форма, совпадающая с профилем сечения пучка излучения, а выходному торцу придана вытянутая форма, и он совмещен с входной щелью монохроматора, причем устройство преобразования оптически сопряжено с атомизатором и монохроматором. 1. Atomic absorption spectrometer based on the Zeeman effect, including optically coupled radiation source with a wavelength corresponding to the resonant absorption of the element being determined, polarizer, optomodulator, phase plate; an atomizer located in a constant magnetic field; optically coupled monochromator and radiation receiver; a system for recording and processing a signal electrically connected to a radiation receiver and synchronized with an optomodulator; characterized in that a radiation conversion device is introduced into the spectrometer in the form of an optically conjugated second polarizer and a fiber bundle, and the input end of the fiber bundle is given a shape that matches the profile of the radiation beam section, and the output end is given an elongated shape and it is aligned with the entrance slit monochromator, and the conversion device is optically coupled to an atomizer and a monochromator.
2. Спектрометр по п.1, отличающийся тем, что, устройство преобразования излучения выполнено в виде единого узла за счет конструктивного совмещения второго поляризатора с оправой входного торца жгута световодов. 2. The spectrometer according to claim 1, characterized in that the radiation conversion device is made in the form of a single unit due to the structural combination of the second polarizer with the frame of the input end of the optical fiber bundle.
3. Спектрометр по п.1 , отличающийся тем, что, функцию второго поляризатора выполняет срез входного торца жгута световодов, осуществленный под углом Брюстера по отношению к падающему пучку излучения. 3. The spectrometer according to claim 1, characterized in that the function of the second polarizer is performed by a slice of the input end of the fiber bundle, carried out at a Brewster angle with respect to the incident radiation beam.
PCT/RU2013/000409 2012-06-18 2013-05-30 Atomic absorption spectrometer on the basis of the zeeman effect WO2013191582A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
UAA201413184A UA109621C2 (en) 2012-06-18 2013-05-30 Atomic Absorption Spectrometer Based on the Earth Effect
EA201401280A EA027448B1 (en) 2012-06-18 2013-05-30 Atomic absorption spectrometer on the basis of the zeeman effect
CN201380032132.6A CN104520697B (en) 2012-06-18 2013-05-30 Atomic absorption spectrometer on the basis of the zeeman effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012126492 2012-06-18
RU2012126492/28A RU2497101C1 (en) 2012-06-18 2012-06-18 Nuclear-absorption spectrometer, based on zeeman effect

Publications (2)

Publication Number Publication Date
WO2013191582A2 true WO2013191582A2 (en) 2013-12-27
WO2013191582A3 WO2013191582A3 (en) 2014-02-27

Family

ID=49446821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000409 WO2013191582A2 (en) 2012-06-18 2013-05-30 Atomic absorption spectrometer on the basis of the zeeman effect

Country Status (5)

Country Link
CN (1) CN104520697B (en)
EA (1) EA027448B1 (en)
RU (1) RU2497101C1 (en)
UA (1) UA109621C2 (en)
WO (1) WO2013191582A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977283B (en) * 2015-07-02 2018-12-28 北京市理化分析测试中心 Stationary magnetic field is placed in the Zeemen effect Atomic Fluorescence Spectrometer of atomizer
CN105047055A (en) * 2015-08-24 2015-11-11 云南师范大学 Permanent magnet type Zeeman effect experiment apparatus and the experimental principle thereof
FR3082946B1 (en) * 2018-06-25 2020-09-04 Centre Nat Rech Scient METHOD AND SYSTEM FOR MEASURING MOLECULES CHIRALITY
CN111537488A (en) * 2020-06-08 2020-08-14 山西中谱能源科技有限公司 Device and method for eliminating mercury element measurement interference by utilizing Zeeman fluorescence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457623A (en) * 1981-02-23 1984-07-03 The Perkin-Elmer Corporation Atomic absorption spectrophotometer providing background correction using the Zeeman effect
GB2285505A (en) * 1994-01-11 1995-07-12 Varian Australia Amplitude modulation of carrier wave by atomic absorption signal
RU2421708C2 (en) * 2009-08-28 2011-06-20 Общество с ограниченной ответственностью "ВИНТЕЛ" Method of determining content of metals in samples via electrothermal atomic absorption spectrometry and device for implementing said method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051054B2 (en) * 1980-09-24 1985-11-12 株式会社日立製作所 Zeeman Atomic Absorption Photometer
DE3113678A1 (en) * 1981-04-04 1982-10-14 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen DEVICE FOR ATOMIC ABSORPTION ANALYSIS OF A SAMPLE
JPS60187844A (en) * 1984-03-07 1985-09-25 Hitachi Ltd Polarization zeeman atomic absorption spectrophotometer
JPH0672841B2 (en) * 1988-03-04 1994-09-14 株式会社日立製作所 Atomic absorption spectrophotometer
DE3809215A1 (en) * 1988-03-18 1989-10-05 Bodenseewerk Perkin Elmer Co ELECTROMAGNET FOR AN ATOMIC ABSORPTION SPECTROMETER
RU2007705C1 (en) * 1991-06-26 1994-02-15 Акционерное общество "Научно-технический комплекс Союзцветметавтоматика" Atomic-absorptive analyzer with absorption coefficient modulation
RU6906U1 (en) * 1997-08-25 1998-06-16 Сергей Евгеньевич Шолупов ATOMIC-ABSORPTION MERCURY ANALYZER
JP3960256B2 (en) * 2003-04-25 2007-08-15 株式会社島津製作所 Atomic absorption spectrophotometer
CN1270174C (en) * 2004-04-16 2006-08-16 广东省测试分析研究所 Method and appts. for atom absorbing analysis of constant magnetic field reverse zeeman effect
RU2373522C1 (en) * 2008-05-26 2009-11-20 Общество с ограниченной ответственностью "ВИНТЕЛ" Atom absorption mercury analyser
CN201368848Y (en) * 2009-02-13 2009-12-23 上海光谱仪器有限公司 AC/DC Zeeman Effect atomic absorption background correction system
CN201522427U (en) * 2009-09-30 2010-07-07 合肥皖仪科技有限公司 Novel dual-lamp dual-atomizer integral atomic-absorption spectrophotometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457623A (en) * 1981-02-23 1984-07-03 The Perkin-Elmer Corporation Atomic absorption spectrophotometer providing background correction using the Zeeman effect
GB2285505A (en) * 1994-01-11 1995-07-12 Varian Australia Amplitude modulation of carrier wave by atomic absorption signal
RU2421708C2 (en) * 2009-08-28 2011-06-20 Общество с ограниченной ответственностью "ВИНТЕЛ" Method of determining content of metals in samples via electrothermal atomic absorption spectrometry and device for implementing said method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GANEEV A. A. ET AL.: 'Zeemanovskaya modulyatsionnaya polyarizatsionnaya spektrometriya kak varian atomno-absorbtsionnogo analiza: vozmozhnosti i ogranicheniya.' ZHURNAL ANALITICHESKOI KHIMII vol. 51, no. 8, 1996, pages 855 - 864 *

Also Published As

Publication number Publication date
RU2497101C1 (en) 2013-10-27
UA109621C2 (en) 2015-09-10
EA201401280A1 (en) 2015-03-31
CN104520697B (en) 2017-03-22
EA027448B1 (en) 2017-07-31
WO2013191582A3 (en) 2014-02-27
CN104520697A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
CN1262825C (en) Real time wavelength calibration of scanning laser
RU2497101C1 (en) Nuclear-absorption spectrometer, based on zeeman effect
US7502111B2 (en) Differential optical technique for chiral analysis
WO2013147296A1 (en) Optically pumped magnetometer and method of measuring magnetic force
CN106093598A (en) A kind of electromagnetic signal characteristic measuring system and method
CN102967566A (en) High-precision and high-speed trace analysis device
CN111492252B (en) Device for measuring an electric and/or magnetic field in an electrical energy transmission conductor
JPWO2015045266A1 (en) measuring device
PL396636A1 (en) Method for measure changes in the magnetic field and a device for measuring the magnetic field changes
CN203011826U (en) Novel high-precision rapid trace analysis device
KR101643006B1 (en) Method and device for one-shot measurement of the transient birefringence induced by a perturbation lying within the terahertz frequency range
WO2018115446A1 (en) Apparatus for measuring optical activity and/or optical anisotropy
Gianella et al. Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection
US8947663B2 (en) Dual-modulation faraday rotation spectroscopy
Gordy Microwave spectroscopy in the region of 4-0.4 millimetres
Bruhns et al. Photoacoustic Hydrocarbon Spectroscopy Using a Mach-Zehnder Modulated cw OPO
Arora et al. Simple alignment technique for polarisation maintaining fibres
RU2421708C2 (en) Method of determining content of metals in samples via electrothermal atomic absorption spectrometry and device for implementing said method
Pelizzari et al. Rotating polarizer and rotating retarder plate polarimeters: comparison of performances
US20110149279A1 (en) Apparatus and method for measuring the mercury content of a gas
Zhang et al. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor
Geisler et al. Measurement of spatial and polarization birefringence in two-mode elliptical core fibers
IE52735B1 (en) Atomic absorption spectrophotometer providing background correction using the zeeman effect
Zhao et al. Two-dimensional terahertz time-domain spectroscopy and its applications
Wang et al. The SNR improvement for quartz-enhanced photoacoustic spectroscopy using wavelength calibration and fiber reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806227

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 201401280

Country of ref document: EA

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13806227

Country of ref document: EP

Kind code of ref document: A2