WO2013191510A1 - 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질 - Google Patents

체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질 Download PDF

Info

Publication number
WO2013191510A1
WO2013191510A1 PCT/KR2013/005510 KR2013005510W WO2013191510A1 WO 2013191510 A1 WO2013191510 A1 WO 2013191510A1 KR 2013005510 W KR2013005510 W KR 2013005510W WO 2013191510 A1 WO2013191510 A1 WO 2013191510A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
biocompatible polymer
coated
medical metal
chitosan
Prior art date
Application number
PCT/KR2013/005510
Other languages
English (en)
French (fr)
Inventor
예성준
최영빈
이현석
최성윤
이원석
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120067428A external-priority patent/KR20140000456A/ko
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2013191510A1 publication Critical patent/WO2013191510A1/ko
Priority to US14/579,662 priority Critical patent/US20150148669A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B17/083Clips, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3991Markers, e.g. radio-opaque or breast lesions markers having specific anchoring means to fixate the marker to the tissue, e.g. hooks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • A61N2005/1024Seeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details

Definitions

  • the present invention is coated with a biocompatible polymer, coated with a biocompatible adhesive, or inserted into the body to insert a medical material after the injection of the biocompatible adhesive, or inserted into the body provided with an anti-movement means provided with a folding anchor It relates to a metallic material.
  • Radioisotope sources such as 1-125, Ir-192, Cs-137, and Pd-103 into tumor tissues.
  • the treatment plan is developed using the patient image only before the treatment, and after that, the image is not used. Even when the patient was laid down and set up for radiation treatment, most of the time, the markers on the surface of the body were aligned with the laser and then irradiated with radiation. In this case, there was a problem in that the error of more than a few millimeters, and more than 1 cm when compared to the time of treatment planning in the process of setting up the patient.
  • IGRT Image Guided Radiation Therapy
  • Brachytherapy is one of the radiotherapy methods that treat tumors by inserting radioisotope sources directly into the treatment site (implants).
  • the radioisotope source used here is generally used in the form of a small rod, and has a shape and size similar to those of the starting point marker described above.
  • the origin markers and radioisotope sources used in the above-described image guided radiation therapy and radiographic proximity therapy are generally rod-shaped, approximately 3.0-5.0 mm long and 0.5-1.0 mm in diameter.
  • the size of the marker is small and it is a metal material, so it is known that the starting point marker and the radioisotope move within the tissue as time passes.
  • the present inventors have applied a biocompatible adhesive after coating a biocompatible polymer having excellent water absorption on the surface of the body inserted medical metal material, coating a biocompatible adhesive, or inserting the body inserted medical metal material.
  • the present invention has been completed by discovering that the implantable medical metal material does not move even after a certain time after insertion by using a means for injecting or introducing a foldable anchor to the surface of the medical metal material for insertion.
  • An object of the present invention is to provide a medical metal material for insertion into a body to which a means capable of preventing its movement when inserted into body tissue is attached.
  • the present invention provides a medical metal material inserted into the body
  • the means for preventing the movement when inserted into the body tissue is attached to the surface of the metal material.
  • the means is a biocompatible polymer coated on at least a portion of the in-vivo medical metal material, the in-vivo medical metal material
  • a biocompatible adhesive, which is coated on at least a part, is inserted into the body, and a foldable anchor is provided on the surface of the medical metal material to be injected or inserted into the body.
  • Means for preventing movement when inserted into the body tissues according to the present invention is attached to the surface of the metal material, characterized in that the medical metal material inserted into the body is prevented from moving after insertion into the body, it is used for radiation proximity therapy It may be useful for medical metal materials inserted into the body such as radioisotope sources, fiducial markers used for the precision of image-guided radiotherapy, surgical clips used in operating rooms, and transponders for generating RF radio frequencies. Can be. ⁇ Brief Description of Drawings ⁇
  • FIG. 1 is an image ( a ) of a radioisotope source or origin marker coated on at least a portion of a biocompatible polymer according to an embodiment of the present invention, and a conventional radioisotope source or origin not applied to the body movement preventing means Image (b) of the movement of the marker in the tissue, and the radioisotope source or origin marker where the biocompatible polymer is coated on at least a portion of the marker is inserted into the body and increased in volume through fluid absorption to be tightly tightened by the surrounding tissue.
  • Image (c) is shown.
  • Example 2 is an image of a polydopamine-coated radioisotope source according to Comparative Example 1 of the present invention and a polydopamine-coated radioisotope source according to Example 5 respectively inserted into a living tissue (left: Comparative Example 1, right side: Example 5).
  • FIG. 3 is an image (a) provided with a folding anchor (anchor) on the surface of a radioisotope source or origin marker according to an embodiment of the present invention, and inserted into the body using an insertion aid, anchoring in the tissue (b) An image showing the anchoring to prevent movement.
  • Example 4 is an image of a polydopamine-coated radioisotope source according to Example 5 of the present invention.
  • Example 5 is an image taken with a scanning electron microscope (SEM) of a polydopamine-coated radioisotope source according to Example 5 of the present invention ((a) is Comparative Example 1, (b) is Example 5 ).
  • SEM scanning electron microscope
  • FIG. 6 is a graph showing the results of capturing the radioisotope source coated with polydopamine according to Example 5 of the present invention by X-ray photoelectron spectroscopy (XPS) ((a) is Comparative Example 1, and (b) Is Example 5.
  • XPS X-ray photoelectron spectroscopy
  • Figure 7 is a schematic diagram for measuring the force of the polydopamine-coated radioisotope source adheres to the living tissue according to Example 5 of the present invention.
  • FIG. 8 is a graph showing the measured force of adhesion of a polydopamine-coated radioisotope source to biological tissue according to Example 5 of the present invention. It is a graph.
  • FIG. 9 is a schematic diagram of an apparatus devised by the present applicant for accurately measuring the degree of movement of the source inserted into the biological tissue in Experimental Example 3 of the present invention.
  • FIG. 10 illustrates the XY plane, the XZ plane, and the YZ plane before and after the insertion of a polydopamine-coated radioisotope source according to Comparative Example 1 of the present invention into a living tissue, and before movement. Image taken by CT.
  • FIG. 11 is a CT diagram of an XY plane, an XZ plane, and a YZ plane before and after inserting a polydopamine-coated radioisotope source according to Example 5 of the present invention into a living tissue and applying movement. Image taken with.
  • the present invention provides a medical metal material inserted into the body
  • Intracorporeal insertion medical metal material characterized in that a means for preventing its movement when inserted into the body tissue is attached to the surface of the metal material.
  • the implantable medical metal material may be a radioisotope source, a starting marker, a surgical clip, a radio frequency (RF) generating transponder, or the like. Any medical metal that is inserted into the can be applied.
  • the radioisotope source include 1-125 Pd-103, Ir-192 Au-198, Yb-169, Cs-131, Cs-137, Co-60, and the like. A sailor used in) can be used without any restrictions.
  • the starting point marker may use a radiopaque material.
  • the first means according to the present invention is a biocompatible polymer coated on at least a portion of the metal material for insertion into the body, the biocompatible polymer may be used to increase the volume through the body fluid absorption.
  • Intracorporeal medical application to which the means (biocompatible polymer coating) is applied The principle that prevents the movement of the molar body accelerating substance within the tissue is shown in FIG.
  • the biocompatible polymer according to the present invention is a biocompatible polymer having a feature of increasing its volume after being inserted into the body.
  • the biocompatibility of the volume is increased through the body fluid absorption
  • polymer examples include chitosan, starch, guargum,
  • Hydrogels such as gelatin and collagen
  • Polylactide PLA
  • Polyglycolide Polyglyco 1 i (le,
  • the biocompatible polymer is a body fluid absorption through
  • the time required for radiation therapy is about 60 days.
  • the biocompatible polymer is at least 60 days after insertion
  • Biodegradation is the end of radiation treatment after the insertion of metal
  • CT or X-ray should be
  • the second means according to the present invention is to insert a medical metal material
  • the adhesive may be coated with metal or inserted into the body prior to insertion into the body.
  • Insertion aids eg, endoscopes, applicators,
  • the biocompatible adhesive may be applied to both metal materials and biological tissues.
  • the adhesive property is excellent, it can be used without limitation.
  • the principle of preventing the movement of the in-body inserted medical metal material to which the means (biocompatible adhesive coating) is applied in the tissue is shown in FIG. 2.
  • the body-insertable medical metal material coated with at least a portion of the biocompatible adhesive according to the present invention may be coated before inserting the metal material into the body, or after inserting into the body.
  • the biocompatible adhesive include, but are not limited to, polydopamine cyanoacrylate, fibrin glue, protein glue, polyurethane, PEG-containing sealant, and the like.
  • biocompatible adhesives may include adhesives such as Az-chitosan, which can add adhesion by reacting liquid or solution polymers with external factors (e.g. UV irradiation, pH change, etc.). It doesn't happen. Furthermore, considering that the time required for radiotherapy is about 60 days, the biocompatible adhesive is biodegraded at least 60 days after the insertion of the body to prevent movement until the end of the radiation treatment after the insertion of the metal material. It is preferable from a viewpoint. In addition, since CT or X-rays are taken again after about 1-2 years to confirm the therapeutic effect after radiation treatment, it is more preferable not to biodegrade for about 1-2 years.
  • adhesives such as Az-chitosan, which can add adhesion by reacting liquid or solution polymers with external factors (e.g. UV irradiation, pH change, etc.). It doesn't happen. Furthermore, considering that the time required for radiotherapy is about 60 days, the biocompatible adhesive is biodegraded at least 60 days after the insertion of the body
  • a third means according to the present invention is a foldable anchor (anchor) provided on the surface of the implantable medical metal material, the anchor is folded during the insertion in the body and stretched after insertion in a predetermined position to anchor the surrounding tissue (anchoring) Can be used.
  • the principle of preventing the insertion of a medical metal material into the body to which the means (foldable anchor) is applied is shown in FIG. 3.
  • the implantable medical metal material provided with a foldable anchor according to the present invention is an anchor structure within an insertion aid (eg, an endoscope, an applicator, a catheter, etc.).
  • Intracorporeal medical metal material characterized in that the means for preventing the movement is attached to the surface of the metal material is prevented from moving after insertion, radioisotope source, radioactive radioactive source used in radio proximity proximity therapy It may be useful for medical metal materials inserted into the body such as an origin marker used for precision, a surgical clip used in an operating room, a transponder for generating an RF radio frequency, and the like.
  • the radioisotope source was used at 1 ⁇ 125 (diameter 0.5-1 mm), and chitosan was used as the biocompatible polymer.
  • the coated source was cut to a length of 5-10 mm to prepare a radioisotope source coated with a biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example la, except that starch was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example la, except that guarum was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example la, except that gelatin was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as used in Example la, except that collagen was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example la, except that polylactide was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example la, except that polyglycolide was used instead of chitosan as the biocompatible polymer.
  • Example lh Preparation of Radioisotope Sources Coated with a Biocompatible Polymer with Excellent Absorption Rate 8
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as used in Example la, except that polyester was used instead of chitosan as a biocompatible polymer.
  • the radioisotope source coated with the biocompatible polymer was prepared in the same manner as in Example la.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as used in Example la, except that polyanhydride was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example la, except that polyhydroxybutyric acid was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example la, except that polyalkyl carbonate was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example la, except that ethyl salose was used instead of chitosan as the biocompatible polymer.
  • Pd-103 (0.5-1 mm in diameter) was used as the radioisotope source
  • chitosan was used as the biocompatible polymer
  • the source was coated by the standard wire coating technique.
  • a radioactive isotope source coated with a biocompatible polymer was prepared by cutting the coated source into 5-10 mm lengths.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 2a, except that starch was used instead of chitosan as the biocompatible polymer.
  • Example 2c Preparation of a Radioisotope Source Coated with a Biocompatible Polymer with Excellent Absorption Rate 19
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 2a, except that guar gum was used instead of chitosan as a biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that gelatin was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that collagen was used instead of chitosan as the biocompatible polymer.
  • Example 2f Preparation of a Radioisotope Source Coated with a Biocompatible Polymer with Excellent Absorption Rate 22
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that polylactide was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that polyglycolide was used instead of chitosan as the biocompatible polymer.
  • Example 2i Preparation of Radioisotope Sources Coated with a Biocompatible Polymer with Excellent Absorption 25
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as in Example 2a, except that polyorthoester was used instead of chitosan as the biocompatible polymer.
  • Example 2k Preparation of a Radioisotope Source Coated with a Biocompatible Polymer with Excellent Absorption Rate 27
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that polyanhydride was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a except that polyamino acid was used instead of chitosan as a biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that polyhydroxybutyric acid was used instead of chitosan as the biocompatible polymer.
  • Example 2n Preparation of a Radioisotope Source Coated with a Biocompatible Polymer with Excellent Absorption Rate 30
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that polycaprolactone was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 2a, except that polyalkyl carbonate was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 2a, except that ethylcellrose was used instead of chitosan as a biocompatible polymer.
  • Ir-192 (diameter 0.5-1 mm) was used as the radioisotope source, and chitosan was used as the biocompatible polymer.
  • the coated source was cut to a length of 5-10 ram to prepare a radioisotope source coated with a biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 3a, except that starch was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that guar gum was used instead of chitosan as a biocompatible polymer.
  • Example 3d Preparation of a Radioisotope Source Coated with a Biocompatible Polymer with Excellent Absorption Rate 36
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that gelatin was used instead of chitosan as a biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that collagen was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 3a, except that polylactide was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that polyglycolide was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 3a, except that poly (lactin-co-glycolic acid) was used instead of chitosan as a biocompatible polymer.
  • Biocompatible polymer-coated radioisotope source was prepared in the same manner as used in Example 3a, except that polyester was used instead of chitosan as a biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 3a, except that polyorthoester was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that polyanhydride was used instead of chitosan as the biocompatible polymer.
  • Example 31 Preparation of a Radioisotope Source Coated with a Biocompatible Polymer with Excellent Absorption Rate 44
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 3a, except that pleamino acid was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that polycaprolactoneol was used instead of chitosan as the biocompatible polymer.
  • a radioisotope source coated with a biocompatible polymer was prepared in the same manner as used in Example 3a, except that polyalkyl carbonate was used instead of chitosan as the biocompatible polymer.
  • a biocompatible polymer-coated radioisotope source was prepared in the same manner as in Example 3a, except that ethylcellrose was used instead of chitosan as the biocompatible polymer.
  • Stainless steel lead (0.5-1 mm in diameter) was used as the starting marker, and chitosan was used as the biocompatible polymer, and the starting marker was coated by the standard conducting coating technique. Next, the coated starting marker was cut into 5-10 mm length to prepare a starting marker coated with a biocompatible polymer.
  • a biomarker-based starting marker was prepared in the same manner as in Example 4a.
  • a biomarker-based starting marker was prepared in the same manner as in Example 4a.
  • biomarker-coated starting marker was prepared in the same manner as in Example 4a.
  • a biomarker-based starting marker was prepared in the same manner as in Example 4a.
  • Example 4i Preparation of the starting point marker coated with a biocompatible polymer having excellent absorption rate 9
  • a biomarker-based starting point marker was prepared in the same manner as in Example 4a, except that pullioletoester was used instead of chitosan as the biocompatible polymer.
  • Example 4k Preparation of the starting point marker coated with a biocompatible polymer having excellent absorption rate 11 Except for using a polyanhydride instead of chitosan as a biocompatible polymer was carried out in the same manner as used in Example 4a to prepare a base marker coated with a biocompatible polymer.
  • Example 41 Preparation of Origin Marker Coated with a Biocompatible Polymer with Excellent Absorption Rate 12
  • a biomarker-based starting point marker was prepared in the same manner as in Example 4a.
  • a biomarker-based starting marker was prepared in the same manner as in Example 4a, except that ethylcellrose was used instead of chitosan as a biocompatible polymer.
  • Example 5 Preparation of a Radioisotope Source Coated with a Biocompatible Adhesive
  • Example 5 1-125 (0.5-1 mm in diameter, 5-10 mm in length) sealed in stainless steel with the radioisotope source used in Example 5 was prepared as a comparative example without a polydopamine coating process.
  • FIGS. 5 and 6 is an image taken with a scanning electron microscope (SEM) of a polydopamine-coated radioisotope source according to Example 5 of the present invention ((a) is Comparative Example 1, (b) is Example 5 ).
  • SEM scanning electron microscope
  • FIG. 6 is a graph showing the results of photographing a polydopamine-coated radioisotope source according to Example 5 of the present invention by X-ray photoelectron spectroscopy (XPS)
  • XPS X-ray photoelectron spectroscopy
  • Fig. 7 (manufacture 1): Instron, model name: Instron—5543), the liver of a pig was attached to the holder of the upper plate with biological tissue, In the polydopamine-coated source prepared in Example 5 Detachment Stress was measured and the results are shown in Table 1 and FIG. 8.
  • Figure 7 is a schematic diagram for measuring the force of the polydopamine-coated radioisotope source adheres to the living tissue according to Example 5 of the present invention.
  • Figure 8 is a graph showing the measurement of the adhesion force to the biological tissue polydopamine-coated radioisotope source according to Example 5 of the present invention.
  • Table 1 and Figure 8 compared to the polydopamine-coated source prepared in Comparative Example 1, the adhesion of the polydopamine-coated source prepared in Example 5 shows about twice the adhesion to the biological tissue could know. Therefore, the metal insertion medical metal material according to the present invention is significantly improved adhesion to biological tissues, it can be useful for the preparation of the metal insertion medical material that is prevented from moving after the body insertion procedure.
  • the biocompatible adhesive (polydopamine) prepared in Example 5 was
  • the applicant has a "holder-reference system" as shown in FIG. Was devised and used in this experiment.
  • the “holder-reference system” prevents tissue-like tissue degeneration and reference movement at the time of CT scan so that the scan can be performed under the same conditions at all times, excluding other external conditions, and accurately moving the source inserted into the tissue. I can figure it out.
  • livers of 4 cm in diameter and 3 cm in height were prepared as biological tissues, and the source prepared in Example 5 and the source prepared in Comparative Example 1 were respectively inserted into three different biological tissues.
  • the biological tissue is placed in the "holder reference system" devised by the present applicant, and the reference rod is inserted into the biological tissue with X, Y and Z axes,
  • the CT scans the XY plane, the X plane, and the X plane first to determine the location of the source before the movement to the living tissue.
  • the motion platform (immersion: Scientific Idustries, Inc, model name: VORTEX- After GENIE 2) motion was applied, CT scans the XY plane, the XZ plane and the YZ plane by secondary imaging to determine the position of the source inserted into the living tissue.
  • the degree of movement of the source in the living tissue was evaluated by comparing the position of the source before the movement with the position of the source after the movement and the results are shown in Table 2 and FIGS. 10-11.
  • Figure 11 is a polydopamine-coated ' radioisotope source in accordance with Example 5 of the present invention in the biological tissue, and before and after the movement (XY plane, XZ plane and YZ plane Image taken by CT.
  • the polydopamine-prepared source prepared in Comparative Example 1 moved up to 3.37 mm in the living tissue after the movement, whereas the polydopamine prepared in Example 5
  • the coated source was found to move up to 1.13 mm in living tissue after the movement. Therefore, the metal insertion medical metal material according to the present invention is significantly reduced in the movement in the biological tissue, it may be useful for the preparation of the body insertion medical metal material is prevented from moving after the body insertion procedure.
  • Medical metal materials inserted into the body such as radioisotope sources, fiducial markers used for the precision of image-guided radiotherapy, surgical clips used in operating rooms, and transponders for generating radio frequency (RF) May be useful for

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 생체적합성 고분자가 코팅되거나, 생체적합성 접착제가 코팅되거나, 체내 삽입 의료용 금속물질을 체내에 삽입한 후에 생체적합성 접착제를 주입하거나, 접이식 앵커가 구비되는 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질에 관한 것으로, 본 발명에 따른 체내 조직에 삽입시 그 이동을 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질은 체내 삽입 후 이동이 방지되므로, 방사선근접치료에 사용하는 방사성동위원소 선원, 영상유도방사선치료의 정밀성을 위해 사용되는 기점마커, 수술실에서 사용되는 외과수술용 클립, RF(radio frequency) 발생용 트랜스폰더(transponder) 등과 같은 체내에 삽입되는 의료용 금속물질에 유용할 수 있다.

Description

【명세서 】
【발명의 명칭 】
체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질 【기술분야 】
본 발명은 생체적합성 고분자가 코팅되거나, 생체적합성 접착제가 코팅되거나, 체내 삽입 의료용 금속물질을 체내에 삽입한 후에 생체적합성 접착제를 주밉하거나, 접이식 앵커가 구비되는 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질에 관한 것이다.
【배경기술 】
유방암, 전립선암 등과 같은 종양을 방사선으로 치료하기 위한 방법은 선형가속기 (linear accelerator )와 같은 방사선치료장비를 이용하여 생체 외부에서 종양 부위에 국소적으로 방사선을 조사하는 영상유도방사선치료 (Image Guided Radiation Therapy : IGRT) 방법과 종양 조직 내에 1-125, Ir-192, Cs-137, Pd-103 등과 같은 방사성동위원소 선원을 직접 삽입하는 방사선근접치료 (brachytherapy) 방법 두 가지가 있다. 기존의 방사선치료 시에는 치료 전에만 환자 영상을 이용하여 치료계획을 수립할 뿐 그 이후에는 영상이 이용되지 않았다. 방사선 치료를 위해 환자를 눕히고 셋업을 하는 경우에도 몸의 표면에 표시해 둔 마커를 레이저에 맞춘 후 그대로 방사선을 조사하여 치료하는 경우가 대부분이었다. 이러한 경우에, 환자를 셋업하는 과정에서 치료계획을 세을 당시와 비교할 때 작게는 수 mm, 크게는 1 cm가 넘는 오차가 발생하는 문제가 있었다. 상기 문제를 해결하기 위하여, 치료 전이나 치료 과정 중에도 암조직의 위치 및 모양 변화를 직접 확인하고자 하는 노력이 계속되어 왔고 , 이를 해결하는 방안으로 영상유도방사선치료 (Image Guided Radiation Therapy : IGRT)가 개발되었다. 상기 영상유도방사선치료에는 치료부위를 정확하게 찾아내기 위한 기점마커 (fiducial marker)를 사용하는 것으로 알려져 있다. 이러한 마커들은 인공 마커로서, 수술의에 의해 인체 내에 삽입되어 이상부위에 또는 인접한 위치에 고정되어, CT 와 MRI 기술과 같은 가시화 기술을 이용한 스캔시 가시화 가능한 명백하고 정확한 참고 지점을 제공한다. 상기 기점마커는 금 또는 탄탈륨과 같은 방사선 불투과성이 높은 금속물질로 이루어진 도선이나 비드 (beads)의 형태로 이용되는 것으로 알려져 있는데 , 체내 삽입 후 시간 경과에 따라 조직 내에서 조금씩 이동하게 되어, 정확한 치료위치를 제공하지 못하는 문제가 있다. 특히 , 전립선 조직에 기점마커를 삽입할 경우 시간 경과에 따라서 요도를 통해 소변으로 배출되어, 정확한 치료위치 셋업에 오차가 발생하는 문제점이 있다. 방사선근접치료 (brachytherapy) 방법은 방사성동위원소 선원 (seed)을 치료부위에 직접 삽입 (임플란트)하여 종양을 치료하는 방사선 치료방법의 하나이다. 여기서 사용되는 상기 방사성동위원소 선원은 일반적으로 작은 막대 형태로 사용하는데 , 상술한 기점마커와 유사한 형태와 크기를 갖는다. 상술한 영상유도방사선치료 및 방사선근접치료에서 사용하는 기점마커와 방사성동위원소 선원은 일반적으로 대략 3.0-5.0 mm 길이와 0.5-1.0 mm 지름의 막대형태이다. 상기 기점마커와 방사성동위원소 선원은 의료인이 방사선치료를 위해 사용할 경우, 그 크기가 작고 금속물질이라 체내 삽입 후 시간이 경과함에 따라서 조직 내에서 이동하는 문제가 알려져 있다 . 이에, 본 발명자들은 상술한 문제점을 해결하기 위하여 체내 삽입 의료용 금속물질의 표면에 흡수율이 우수한 생체적합성 고분자를 코팅하거나, 생체적합성 접착제가 코팅되거나, 체내 삽입 의료용 금속물질을 삽입한 후에 생체적합성 접착제를 주입하거나, 체내 삽입 의료용 금속물질의 표면에 접이식 앵커 (anchor)를 도입하는 수단을 이용함으로써, 체내 삽입 의료용 금속물질이 삽입 후 일정시간이 경과하여도 이동하지 않는 것을 발견하고 본 발명을 완성하였다.
【발명의 상세한 설명 】
【기술적 과제】
본 발명의 목적은 체내 조직에 삽입시 그 이동을 방지할 수 있는 수단이 부착되어 있는 체내 삽입 의료용 금속물질을 제공하는 것이다. 【기술적 해결방법 】
상기 목적을 달성하기 위하여, 본 발명은 체내 삽입 의료용 금속물질에 있어서 ,
체내 조직에 삽입시 그 이동올 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질을 제공한다. 여기서, 상기 수단은 체내 삽입 의료용 금속물질의 적어도 일부에 코팅된 생체적합성 고분자, 체내 삽입 의료용 금속물질의 적어도 일부에 코팅된 생체적합성 접착제, 체내 삽입 의료용 금속물질을 체내에 삽입한 후에 생체적합성 접착제를 주입 또는 체내 삽입 의료용 금속물질의 표면에 구비된 접이식 앵커 (anchor)이다. 【유리한 효과】
본 발명에 따른 체내 조직에 삽입시 그 이동을 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질은 체내 삽입 후 이동이 방지되므로, 방사선근접치료에 사용하는 방사성동위원소 선원, 영상유도방사선치료의 정밀성을 위해 사용되는 기점마커, 수술실에서 사용되는 외과수술용 클립 , RF radio frequency) 발생용 트랜스폰더 (transponder) 등과 같은 체내에 삽입되는 의료용 금속물질에 유용할 수 있다. 【도면의 간단한 설명 】
도 1은 본 발명의 일실시예에 따른 생체적합성 고분자가 적어도 일부에 코팅된 방사성동위원소 선원 또는 기점마커의 이미지 (a)와, 체내 이동 방지 수단이 적용되지 않은 종래의 방사성동위원소 선원 또는 기점마커가 조직 내에서 이동하는 이미지 (b)와, 생체적합성 고분자가 적어도 일부에 코팅된 방사성동위원소 선원 또는 기점마커가 체내 삽입된 후 체액 흡수를 통해 부피가 증가하여 주변 조직에 의해 단단히 조여지는 것을 나타낸 이미지 (c)이다.
도 2는 본 발명의 비교예 1에 따른 폴리도파민이 코팅되지 않은 방사성동위원소 선원 및 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원을 각각 생체조직에 삽입하였을 경우의 이미지이다 (왼편 : 비교예 1, 오른편 : 실시예 5) .
도 3은 본 발명의 일실시예에 따라서 방사성동위원소 선원 또는 기점마커의 표면에 접이식 앵커 (anchor)가 구비된 이미지 (a)와, 이를 삽입보조기구를 이용하여 체내에 삽입하고, 조직 내에 앵커링 (anchor ing)되어 이동을 방지함을 나타내는 이미지이다 (b) .
도 4는 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원의 이미지이다.
도 5는 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원을 주사전자현미경 (SEM)으로 촬영한 이미지이다 ((a)는 비교예 1이고, (b)는 실시예 5이다).
도 6은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원을 X-선 광전자분광법 (XPS)으로 촬영한 결과를 나타낸 그래프이다 ((a)는 비교예 1이고, (b)는 실시예 5이다).
도 7은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원이 생체조직에 접착하는 힘을 측정하기 위한 개략도이다.
도 8은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원이 생체조직에 접착하는 힘을 측정하여 나타낸 그래프이다.
도 9는 본 발명의 실험예 3에서 생체조직 내에 삽입한 선원이 이동하는 정도를 정확하게 측정하기 위하여 본 출원인이 고안한 장치의 개략도이다.
도 10은 본 발명의 비교예 1에 따른 폴리도파민이 코팅되지 않은 방사성동위원소 선원을 생체조직 내에 삽입하고, 움직임을 가하기 전 (before) 및 후 (after)의 XY 평면, XZ 평면 및 YZ평면을 CT로 촬영한 이미지이다.
도 11은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원을 생체조직 내에 삽입하고, 움직임을 가하기 전 (before) 및 후 (after)의 XY 평면, XZ 평면 및 YZ평면을 CT로 촬영한 이미지이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명을 상세히 설명한다. 본 발명은 체내 삽입 의료용 금속물질에 있어서 ,
체내 조직에 삽입시 그 이동을 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질을 제공한다 . 본 발명에 따른 체내 삽입 의료용 금속물질에 있어서 상기 체내 삽입 의료용 금속물질은 방사성동위원소 선원 , 기점마커 , 외과수술용 클립 , RF(radio frequency) 발생용 트랜스폰더 (transponder) 등을 사용할 수 있고, 체내에 삽입하는 의료용 금속물질이라면 모두 적용 가능하다. 이때, 상기 방사성동위원소 선원의 예로는 1-125 Pd-103, Ir- 192 Au-198, Yb-169, Cs-131, Cs-137, Co-60 등이 있고, 암의 방사선근접치료 (brachytherapy)에 사용되는 선원이라면 아무런 제약 없이 사용할 수 있다.
또한, 상기 기점마커는 방사선 불투과성 물질을 사용할 수 있다. 본 발명에 따른 체내 삽입 의료용 금속물질에 있어서, 체내 삽입 의료용 금속물질을 체내 조직에 삽입 후 그 이동을 방지할 수 있는 수단으로는 3가지 수단이 있으며 , 이하 각각의 수단에 대해서 상세히 설명한다 . 본 발명에 따른 첫 번째 수단은, 체내 삽입 의료용 금속물질의 적어도 일부에 코팅된 생체적합성 고분자로서, 상기 생체적합성 고분자는 체액흡수를 통해 부피가 늘어나는 것을 사용할 수 있다. 상기 수단 (생체적합성 고분자 코팅 )이 적용된 체내 삽입 의료용 금적체역이속물질이 조직 내에서 이동을 방지하는 원리는 도 1에 나타낸 바와
같다동어할액 .
도을로이
방흡인일 나타난 바와 같이, 본 발명에 따른 생체적합성 고분자가¬¬지하수부 코팅된 체내 삽입 의료용 금속물질은 체내 삽입 후¬되여하에여 부피가 증가하는 특징을 갖는 생체적합성 고분자의
1게
주변 조직에 의해 단단하게 조여지게 되면서 조직 내
여기서 , 상기 체액흡수를 통해 부피가 늘어나는 생체적합성
고분자의 예로는 키토산 (chitosan), 전분 (starch), 구아검 (guargum),
젤라틴 (gelatin), 콜라겐 (col lagen) 등의 하이드로겔 ; 체액흡수율을
증가시키는 다공성의 구조를 가지도록 제작된
폴리락타이드 (Polylact ide, PLA) , 폴리글라이콜라이드 (Polyglyco 1 i(le,
PGA) 또는 이들의 공중합체인 폴리 (락틴-코 -글리콜산) (Poly(lactic_
co-glycol ic acid) , PLGA); 폴리에스테르 (Po lyester ),
폴리오르토에스테르 (Polyorthoester ),
폴리안하이드라이드 (Polyanhydride)ᅳ 폴리아미노산 (Po lyamino acid) ,
폴리하이드록시부티르산 (Polyhydroxybutyric acid),
폴리카프로락톤 (Polycaprolactone),
폴리알킬카보네이트 (Polya Iky 1 carbonate), 에틸샐를로즈 (Ethyl
cellulose) 등으로부터 선택된 1종 이상일 수 있으며 이에 제한되지는
않는다.
바람직하게는, 상기 생체적합성 고분자로는 체액 흡수를 통한
부피 증가율이 높은 키토산 (chitosan) , 전분 (starch),
구아검 (guarg腦), 젤라틴 (gelatin), 콜라겐 (col lagen) 등으로부터
선택된 1종 이상을 사용하는 것이 바람직하다 . 나아가, 방사선치료에 소요되는 기간이 약 60일인 점을 고려할
때, 상기 생체적합성 고분자는 체내 삽입일로부터 적어도 60일 이후에
생분해되는 것이 금속물질을 체내 삽입 후 방사선치료가 종료되는
시점까지 이동을 방지한다는 관점에서 바람직하다 . 또한, 방사선 치료
후 치료효과를 확인하기 위해서 CT 또는 X-ray를 약 1-2년 후에 다시
촬영하므로, 약 1-2년간 생분해되지 않는 것이 더욱 바람직하다 . 본 발명에 따른 두 번째 수단은, 체내 삽입 의료용 금속물질의
적어도 일부에 코팅된 생체적합성 접착제로서, 상기 생체적합성
접착제는 체내에 삽입하기 전에 금속물질에 코팅하거나 체내에 삽입한
후에 삽입보조기구 (예를 들면 , 내시경 , 어프리케이터 (appl icator),
카테터 등)를 이용하여 생체적합성 접착제를 주입하는 방법을 사용할
수 있고, 상기 생체적합성 접착제로는 금속물질과 생체 조직 모두에
접착성이 우수한 것이라면 제한 없이 사용할 수 있다. 상기 수단 (생체적합성 접착제 코팅 )이 적용된 체내 삽입 의료용 금속물질이 조직 내에서 이동을 방지하는 원리는 도 2에 나타낸 바와 같다. 도 2에 나타난 바와 같이 , 본 발명에 따른 생체적합성 접착제가 적어도 일부에 코팅된 체내 삽입 의료용 금속물질은 금속물질을 체내에 삽입하기 전에 코팅하거나, 체내에 삽입한 후에 삽입보조기구 (예를 들면, 내시경, 어프리케이터 (applicator), 카테터 등)를 이용하여 생체적합성 접착제를 주입함으로써 , 조직 내에 삽입되는 금속물질이 주변 조직과 접착하게 되면서 조직 내 이동이 방지되게 된다. 여기서, 상기 생체적합성 접착제의 예로는 폴리도파민 시아노아크릴레이트, 피브린글루, 단백질글루, 폴리우레탄, PEG 함유 실란트 등이 있으며 이에 제한되는 것은 아니다.
또 다른 생체적합성 접착제의 예로는 액상 또는 용액 상태의 고분자를 외부적 요인 (예 : UV 조사, pH 변화 등)으로 반응시킴으로써 접착력을 부가할 수 있는 Az-키토산 등의 접착제를 사용할 수 있으며, 이에 제한되는 것은 아니다. 나아가, 방사선치료에 소요되는 기간이 약 60일인 점을 고려할 때 , 상기 생체적합성 접착제는 체내 삽입일로부터 적어도 60일 이후에 생분해되는 것이 금속물질을 체내 삽입 후 방사선치료가 종료되는 시점까지 이동을 방지한다는 관점에서 바람직하다. 또한, 방사선 치료 후 치료효과를 확인하기 위해서 CT 또는 X-ray를 약 1-2년 후에 다시 촬영하므로, 약 1-2년간 생분해되지 않는 것이 더욱 바람직하다 . 본 발명에 따른 세 번째 수단은, 체내 삽입 의료용 금속물질의 표면에 구비된 접이식 앵커 (anchor )로서, 상기 앵커는 체내 삽입 중에는 접혀있고 소정의 위치에 삽입한 후에는 펴져 주변 조직에 앵커링 (anchoring)되는 것을 사용할 수 있다. 상기 수단 (접이식 앵커 )이 적용된 체내 삽입 의료용 금속물질이 조직 내에서 이동을 방지하는 원리는 도 3에 나타낸 바와 같다. 도 3에 나타난 바와 같이 , 본 발명에 따른 접이식 앵커 (anchor)가 구비된 체내 삽입 의료용 금속물질은 삽입보조기구 (예를 들면, 내시경, 어프리케이터 (applicator), 카테터 등) 내에서는 앵커 구조물이 접혀있다가, 소정의 위치에 삽입 후에는 앵커 구조물이 펴지면서 주변 조직에 앵커링 (anchor ing)되어, 조직 내에 삽입되는 금속물질의 이동이 방지되게 된다. 바와 같이, 본 발명에 따른 체내 조직에 삽입入ᅳ 이동을 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질은 체내 삽입 후 이동이 방지되므로, 방사선근접치료에 사용하는 방사성동위원소 선원 , 영상유도방사선치료의 정밀성을 위해 사용되는 기점마커, 수술실에서 사용되는 외과수술용 클립, RF radio frequency) 발생용 트랜스폰더 (transponder) 등과 같은 체내에 삽입되는 의료용 금속물질에 유용할 수 있다.
【발명의 실시를 위한 형태】
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 단 , 하기의 실시예는 본 발명을 예시하는 것일 뿐 , 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
<실시예 la> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 1
방사성동위원소 선원으로 1ᅳ125(직경 0.5-1 mm)를 사용하였고, 생체적합성 고분자로 키토산을 사용하여, 표준 도선 코팅 기법으로 선원을 코팅하였다. 다음으로, 코팅된 선원을 5-10 mm 길이로 잘라 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lb> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조
생체적합성 고분자로 키토산 대신에 전분을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lc> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 3
생체적합성 고분자로 키토산 대신에 구아검 (guargum)을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 ld> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 4
생체적합성 고분자로 키토산 대신에 젤라틴을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 le> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 5
생체적합성 고분자로 키토산 대신에 콜라겐을 사용한 것올 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 if> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 6
생체적합성 고분자로 키토산 대신에 폴리락타이드를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lg> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 7
생체적합성 고분자로 키토산 대신에 폴리글라이콜라이드를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 lh> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 8
생체적합성 고분자로 키토산 대신에 폴리 (락틴-코 -글리콜산)을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 li> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 9
*59생체적합성 고분자로 키토산 대신에 폴리에스테르를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lj> 흡수을이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 10
생체작합성 고분자로 키토산 대신에 폴리오르토에스테르를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lk> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 11
생체적합성 고분자로 키토산 대신에 폴리안하이드라이드를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 11> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 12
생체적합성 고분자로 키토산 대신에 폴리아미노산을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원올 제조하였다.
<실시예 lm> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 13
생체적합성 고분자로 키토산 대신에 폴리하이드록시부티르산을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 ln> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 14
생체적합성 고분자로 키토산 대신에 폴리카프로락톤을 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lo> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 15
생체적합성 고분자로 키토산 대신에 폴리알킬카보네이트를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 lp> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 16
생체적합성 고분자로 키토산 대신에 에틸샐를로즈를 사용한 것을 제외하고는 실시예 la에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2a> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 17 '
방사성동위원소 선원으로 Pd-103(직경 0.5-1 mm)를 사용하였고, 생체적합성 고분자로 키토산을 사용하여, 표준 도선 코팅 기법으로 선원을 코팅하였다. 다음으로, 코팅된 선원을 5-10 mm 길이로 잘라 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2b> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 18
생체적합성 고분자로 키토산 대신에 전분을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 2c> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 19
생체적합성 고분자로 키토산 대신에 구아검을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2d> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 20
생체적합성 고분자로 키토산 대신에 젤라틴을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2e> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 21
생체적합성 고분자로 키토산 대신에 콜라겐을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 2f> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 22
생체적합성 고분자로 키토산 대신에 폴리락타이드를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2g> 흡수율이 뛰어난 생체적합성 고분자가 ^팅된 방사성동위원소 선원의 제조 23
생체적합성 고분자로 키토산 대신에 폴리글라이콜라이드를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2h> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 24
생체적합성 고분자로 키토산 대신에 폴리 (락틴-코 -글리콜산)을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 2i> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 25
생체적합성 고분자로 키토산 대신에 폴리에스테르를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다
<실시예 2j> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 26
생체적합성 고분자로 키토산 대신에 폴리오르토에스테르를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다 . <실시예 2k> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 27
생체적합성 고분자로 키토산 대신에 폴리안하이드라이드를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 21> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 28
생체적합성 고분자로 키토산 대신에 폴리아미노산을 사용한 것을 제외하 는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2ra> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 29
생체적합성 고분자로 키토산 대신에 폴리하이드록시부티르산을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 2n> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 30
생체적합성 고분자로 키토산 대신에 폴리카프로락톤을 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2o> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 31
생체적합성 고분자로 키토산 대신에 폴리알킬카보네이트를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 2p> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 32
생체적합성 고분자로 키토산 대신에 에틸셀를로즈를 사용한 것을 제외하고는 실시예 2a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3a> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 33
방사성동위원소 선원으로 Ir-192(직경 0.5-1 mm)를 사용하였고, 생체적합성 고분자로 키토산을 사용하예 표준 도선 코팅 기법으로 선원을 코팅하였다. 다음으로, 코팅된 선원을 5-10 ram 길이로 잘라 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3b> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 34
생체적합성 고분자로 키토산 대신에 전분을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3c> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 35
생체적합성 고분자로 키토산 대신에 구아검을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 3d> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 36
생체적합성 고분자로 키토산 대신에 젤라틴을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다ᅳ
<실시예 3e> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 37
생체적합성 고분자로 키토산 대신에 콜라겐을 사용한 것올 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3f> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 38
생체적합성 고분자로 키토산 대신에 폴리락타이드를 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3g> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 39
생체적합성 고분자로 키토산 대신에 폴리글라이콜라이드를 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3h> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 40
생체적합성 고분자로 키토산 대신에 폴리 (락틴-코 -글리콜산)을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3i> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 41
*123생체적합성 고분자로 키토산 대신에 플리에스테르를 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3j> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 42
생체적합성 고분자로 키토산 대신에 폴리오르토에스테르를 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3k> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 43
생체적합성 고분자로 키토산 대신에 폴리안하이드라이드를 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 31> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 44
생체적합성 고분자로 키토산 대신에 플리아미노산을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3m> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 45
생체적합성 고분자로 키토산 대신에 폴리하이드록시부티르산을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게- 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다. <실시예 3n> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 46
생체적합성 고분자로 키토산 대신에 폴리카프로락톤올 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3o> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 47
생체적합성 고분자로 키토산 대신에 폴리알킬카보네이트를 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 3p> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 방사성동위원소 선원의 제조 48
생체적합성 고분자로 키토산 대신에 에틸셀를로즈을 사용한 것을 제외하고는 실시예 3a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 방사성동위원소 선원을 제조하였다.
<실시예 4a> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 1
기점마커로 스테인레스 스틸 도선 (직경 0.5-1 mm)를 사용하였고 , 생체적합성 고분자로 키토산을 사용하여, 표준 도선 코팅 기법으로 기점마커를 코팅하였다. 다음으로, 코팅된 기점마커를 5—10 mm 길이로 잘라 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4b> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 2
생체적합성 고분자로 키토산 대신에 전분을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4c> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 3
생체적합성 고분자로 키토산 대신에 구아검을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4d> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 4
생체적합성 고분자로 키토산 대신에 젤라틴을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4e> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 5
생체적합성 고분자로 키토산 대신에 콜라겐을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4f> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 6
생체적합성 고분자로 키토산 대신에 폴리락타이드를 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다 .
<실시예 4g> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 7
생체적합성 고분자로 키토산 대신에 폴리글라이콜라이드를 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4h> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 8
생체적합성 고분자로 키토산 대신에 폴리 (락틴-코 -글리콜산)을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다. <실시예 4i> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 9
생체적합성 고분자로 키토산 대신에 폴리에스테르를 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4j> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 10
생체적합성 고분자로 키토산 대신에 풀리오르토에스테르를 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4k> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 11 생체적합성 고분자로 키토산 대신에 폴리안하이드라이드를 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다. <실시예 41> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 12
생체적합성 고분자로 키토산 대신에 폴리아미노산을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4m> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 13
생체적합성 고분자로 키토산 대신에 폴리하이드록시부티르산을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4n> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 14
생체적합성 고분자로 키토산 대신에 폴리카프로락론을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4o> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 15
생체적합성 고분자로 키토산 대신에 전분을 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다.
<실시예 4p> 흡수율이 뛰어난 생체적합성 고분자가 코팅된 기점마커의 제조 16
생체적합성 고분자로 키토산 대신에 에틸셀를로즈를 사용한 것을 제외하고는 실시예 4a에서 사용한 방법과 동일하게 실시하여 생체적합성 고분자가 코팅된 기점마커를 제조하였다. <실시예 5> 생체적합성 접착제가 코팅된 방사성동위원소 선원의 제조
트리스-완층액 (10 mM)에 10 mg/ml 농도로 도파민을 첨가하고, pH 8.5가 되도록 조절한 다음, 방사성동위원소 선원으로 스테인리스 스틸에 밀봉된 1-125(직경 0.5-1 画, 길이 5—10 mm)를 12 시간 동안 침지하여, 풀리도파민이 코팅된 방사성동위원소 선원을 제조하였다. 도 4에 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원의 이미지를 나타내었다. <비교예 1> 생체적합성 접착제가 코팅되지 않은 방사성동위원소 선원의 준비
실시예 5에서 사용한 방사성동위원소 선원으로 스테인리스 스틸에 밀봉된 1-125(직경 0.5-1 mm, 길이 5-10 mm)를 폴리도파민 코팅과정 없이 비교예로 준비하였다 .
<실험예 1〉 방사성동위원소 선원에 생체적합성 접착제의 코팅 평가
실시예 5에서 제조한 생체적합성 접착제 (폴리도파민 )가 코팅된 방사성동위원소 선원에 폴리도파민이 잘 코팅되었는지 확인하기 위하여 , 주사전자현미경 (SEM) (제조사 : Jeol, Japan, 모델명 : 7410F)과 X-선 광전자분광법 (XPS) (제조사: Thermo Scientific Inc. , Ltd, 모델명 : K-Alpha)을 이용하여 평가하였고 , 그 결과를 도 5 및 도 6에 나타내었다. 도 5는 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원을 주사전자현미경 (SEM)으로 촬영한 이미지이다 ((a)는 비교예 1이고, (b)는 실시예 5이다). 도 6은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원을 X-선 광전자분광법 (XPS)으로 촬영한 결과를 나타낸 그래프이다 ((a)는 비교예 1이고, (b)는 실시예 5이다). 도 5 및 도 6에 나타난 바와 같이 , 주사전.자현미경 (SEM) 촬영이미지를 통해 스테인리스 스틸에 밀봉된 .1-125 선원에 폴리도파민이 코팅된 것을 확인할 수 있었다. 또한, X-선 광전자분광법 (XPS) 촬영을 통해 스테인리스 스틸에 없는 원소인 질소 (N)가 검출된 것을 통하여 선원의 표면에 폴리도파민이 코팅되었다는 것을 확인할 수 있었다. 따라서 , 본 발명에 따른 체내 삽입 의료용 금속물질은 생체 내에서 접착제 역할을 하는 도파민이 잘 코팅되므로, 체내 삽입 시술 후 이동이 방지되는 체내 삽입 의료용 금속물질의 제조에 유용할 수 있다.
<실험예 2> 생체조직에 대한 접착력 평가
실시예 5에서 제조한 생체적합성 접착제 (폴리도파민 )가 코팅된 방사성동위원소 선원이 생체조직에 가지는 접착력을 알아보기 위하여 , 도 7에 나타낸 것과 같이 실험하였다.
구체적으로 , 도 7에 나타낸 만능재료시험기 (UTM: Universal testing machine) (제조入 1": Instron, 모델명 : Instron—5543)에서 상판의 홀더 (holder)에 생체조직으로 돼지의 간을 장착하고, 하판에 실시예 5에서 제조한 폴리도파민이 코팅된 선원을 놓고 분리응력 (Detachment Stress)을 측정하였고, 그 결과를 표 1 및 도 8에 나타내었다.
Figure imgf000020_0001
도 7은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원이 생체조직에 접착하는 힘을 측정하기 위한 개략도이다. 도 8은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 방사성동위원소 선원이 생체조직에 접착하는 힘을 측정하여 나타낸 그래프이다. 표 1 및 도 8에 나타난 바와 같이 , 비교예 1에서 준비한 폴리도파민이 코팅되지 않은 선원에 비하여 실시예 5에서 준비한 폴리도파민이 코팅된 선원의 접착력이 생체조직에 대해 약 2배의 접착력을 나타내는 것을 알 수 있었다. 따라서 , 본 발명에 따른 체내 삽입 의료용 금속물질은 생체조직에 대한 접착력이 현저히 향상되므로, 체내 삽입 시술 후 이동이 방지되는 체내 삽입 의료용 금속물질의 제조에 유용할 수 있다.
<실험예 3> 생체조직 내에서의 고정 평가 (in vitro)
실시예 5에서 제조한 생체적합성 접착제 (폴리도파민 )가 코
경같팅 방사성동위원소 선원을 생체조직에 삽입하고, 움직임을 주었을 우된이 생체조직 내에서 고정되는 정도를 알아보기 위하여 다음과 실험하였다.
먼저 , 생체조직에 움직임을 가하였을 때 조직모양 변성 (deformation)으로 인한 선원의 이동 정도를 정확히 파악하기 힘든 문제가 있어 , 이를 해결하기 위하여 본 출원인은 도 9에 나타낸 것과 같은 "홀더-레퍼런스 시스템 "을 고안하여 본 실험에 사용하였다. 상기 "홀더-레퍼런스 시스템 "은 CT 스캔 시에 생체조직의 조직모양 변성과 레퍼런스의 움직임을 방지하여 항상 같은 조건에서 스캔을 가능하게 하여 다른 외부 조건을 배제하고 생체조직에 삽입된 선원의 이동 정도만 정확히 파악할 수 있다 .
구체적으로, 생체조직으로 돼지의 간을 지름 4 cm, 높이 3 cm 크기로 하여 2개 준비하고 실시예 5에서 제조한 선원과 비교예 1에서 준비한 선원을 각각 서로 다른 생체조직에 3개씩 삽입한 다음 상기 생체조직을 본 출원인이 고안한 "홀더-레퍼런스 시스템 "에 넣고, 레퍼런스 막대를 X축, Y축 및 Z축으로 하여 생체조직에 삽입하고, CT로 XY 평면, ΧΖ 평면 및 ΥΖ평면을 1차 촬영하여 생체조직에 움직임을 가하기 전의 선원의 위치를 파악하였다.
다음으로, 실제 환자의 혈류흐름을 모사하기 위하여 실시예 5 및 비교예 1의 선원이 각각 삽입된 생체조직을 PBS 용액에 담가 놓은 상태로 모션 플랫품 (제조사: Scientific Idustries, Inc, 모델명 : VORTEX-GENIE 2)을 이용하여 움직임을 가한 다음, CT로 XY 평면, XZ 평면 및 YZ 평면을 2차 촬영하여 생체조직 내에 삽입된 선원의 위치를 파악하였다.
상기에서 움직임을 가하기 전의 선원의 위치와 움직임을 가한 후의 선원의 위치를 비교하여 생체조직 내에서 선원이 이동한 정도를 평가하였고 그 결과를 표 2 및 도 10-11에 나타내었다.
【표 2】
Figure imgf000021_0001
않은 방사성동위원소 선원을 생체조직 내에 삽입하고, 움직임을 가하기 전 (before) 및 후 (after)의 XY 평면 XZ 평면 및 YZ평면을 CT로 촬영한 이미지이다. 도 11은 본 발명의 실시예 5에 따른 폴리도파민이 코팅된 '방사성동위원소 선원을 생체조직 내에 삽입하고 , 움직임을 가하기 전 (before) 및 후 (after)의 XY 평면, XZ 평면 및 YZ평면을 CT로 촬영한 이미지이다. 표 2 및 도 10-11에 나타난 바와 같이, 비교예 1에서 준비한 폴리도파민이 코팅되지 않은 선원의 경우 움직임을 가한 후에 생체조직 내에서 최대 3.37 mm 이동한 반면에 , 실시예 5에서 제조한 폴리도파민이 코팅된 선원의 경우 움직임을 가한 후에 생체조직 내에서 최대 1.13 mm 움직인 것을 확인할 수 있었다. 따라서 , 본 발명에 따른 체내 삽입 의료용 금속물질은 생체조직 내에서 이동이 현저히 감소하게 되므로, 체내 삽입 시술 후 이동이 방지되는 체내 삽입 의료용 금속물질의 제조에 유용할 수 있다.
【산업상 이용가능성 】 본 발명에 따른 체내 조직에 삽입시 그 이동을 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질은 체내 삽입 후 이동이 방지되므로 , 방사선근접치료에 사용하는 방사성동위원소 선원, 영상유도방사선치료의 정밀성을 위해 사용되는 기점마커 , 수술실에서 사용되는 외과수술용 클립, RF(radio frequency) 발생용 트랜스폰더 (transponder) 등과 같은 체내에 삽입되는 의료용 금속물질의 제조에 유용할 수 있다.

Claims

【청구의 범위 】
【청구항 1】
체내 삽입 의료용 금속물질에 있어서,
체내 조직에 삽입 후 그 이동을 방지할 수 있는 수단이 상기 금속물질 표면에 부착되어 있는 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 2】
제 1항에 있어서 ,
상기 체내 삽입 의료용 금속물질은 방사성동위원소 선원, 기점마커, 외과수술용 클립 및 RF radio frequency) 발생용 트랜스폰더 (transponder)로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 3】
제 2항에 있어서 ,
상기 방사성동위원소 선원은 1-125, Pd-103, Ir-192, Au-198, Yb-169, Cs-131, Cs-137 또는 C으 60인 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 4】
제 2항에 있어서,
상기 기점마커는 방사선 블투과성 물질인 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 5】
제 1항에 있어서,
상기 수단은 체내 삽입 의료용 금속물질의 적어도 일부에 코팅된 생체적합성 고분자로서,
상기 생체적합성 고분자는 체액흡수를 통해 부피가 늘어나는 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 6】
제 5항에 있어서,
상기 생체적합성 고분자는
키토산 (chi tosan) , 전분 (starch), 구아검 (guargum), 젤라틴 (gelatin), 콜라겐 (col lagen) , 폴리락타이드 (Polylact ide, PLA), 폴리글라이콜라이드 (Polyglycolide, PGA), 폴리 (락틴-코- 글리콜산) (Poly(lactic-co— glycolic acid), PLGA) , 폴리에스테르 (Polyester) , 폴리오르토에스테르 (Po lyor thoest er ), 폴리안하이드라이드 (Polyanhydride), 폴리아미노산 (Polyamino acid) , 폴리하이드록시부티르산 (Polyhydroxybutyric acid) , 폴리카프로락톤 (Polycapro lac tone) , 폴리알킬카보네이트 (Polyalkylcarbonate) 및 에틸셀를로즈 (Ethyl cellulose)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 7】
제 5항에 있어서 ,
상기 생체적합성 고분자는 생체 내 삽입일로부터 적어도 60일 이후에 생분해되는 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 8】
제 1항에 있어서 ,
상기 수단은 체내 삽입 의료용 금속물질을 체내에 삽입하기 전에, 체내 삽입 의료용 금속물질의 적어도 일부에 생체적합성 접착제를 코팅하는 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 9】
제 1항에 있어서 ,
상기 수단은 체내 삽입 의료용 금속물질을 체내에 삽입한 후에 , 생체적합성 접착제를 체내로 주입하여 체내 삽입 의료용 금속물질의 적어도 일부에 생체적합성 접착제를 코팅하는 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 10】
제 8항 또는 제 9항에 있어서 ,
상기 생체적합성 접착제는 폴리도파민 , 시아노아크릴레이트, 피브린글루, 단백질글루, 플리우레탄, PEG 함유 실란트 및 Az- 키토산으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 11】
제 8항 또는 제 9항에 있어서
상기 생체적합성 접착제는 생체 내 삽입일로부터 적어도 60일 이후에 생분해되는 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 12】
제 1항에 있어서,
상기 수단은 체내 삽입 의료용 금속물질의 표면에 구비된 접이식 앵커 (anchor)인 것을 특징으로 하는 체내 삽입 의료용 금속물질 .
【청구항 13】
제 12항에 있어서 ,
상기 앵커는 체내 삽입 중에는 접혀있고 소정의 위치에 삽입한 후에는 펴져 주변 조직에 앵커링 (anchor ing)되는 것을 특징으로 하는 체내 삽입 의료용 금속물질ᅳ
PCT/KR2013/005510 2012-06-22 2013-06-21 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질 WO2013191510A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/579,662 US20150148669A1 (en) 2012-06-22 2014-12-22 Medical metal material for in vivo insertion, comprising in vivo movement-preventing means

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120067428A KR20140000456A (ko) 2012-06-22 2012-06-22 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질
KR10-2012-0067428 2012-06-22
KR10-2013-0071641 2013-06-21
KR20130071641 2013-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/579,662 Continuation-In-Part US20150148669A1 (en) 2012-06-22 2014-12-22 Medical metal material for in vivo insertion, comprising in vivo movement-preventing means

Publications (1)

Publication Number Publication Date
WO2013191510A1 true WO2013191510A1 (ko) 2013-12-27

Family

ID=49769038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005510 WO2013191510A1 (ko) 2012-06-22 2013-06-21 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질

Country Status (2)

Country Link
US (1) US20150148669A1 (ko)
WO (1) WO2013191510A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180000997A1 (en) * 2016-06-29 2018-01-04 Berlock Aps Implantable Device Having an Outer Surface Comprising Gold and Its Use as an Anti-Migration Device
CN106693216A (zh) * 2017-02-06 2017-05-24 中国人民解放军总医院 钛合金金标植入体及金标注射器
CN106730419A (zh) * 2017-02-06 2017-05-31 浙江荣诚医疗科技有限公司 一种钴合金金标植入体
CN106730418A (zh) * 2017-02-06 2017-05-31 浙江荣诚医疗科技有限公司 一种钛标植入体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092958A1 (en) * 2001-11-02 2003-05-15 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
KR20060003100A (ko) * 2003-05-16 2006-01-09 블루 멤브레인스 게엠베하 생체적합성 코팅제를 포함하는 의료용 이식물
WO2008129249A2 (en) * 2007-04-20 2008-10-30 Invibio Limited Fiducial marker
JP4489437B2 (ja) * 2002-02-21 2010-06-23 エンセル,インコーポレイテッド 表面コーティングとしての固定化生物活性ヒドロゲルマトリックス
WO2010089717A1 (en) * 2009-02-05 2010-08-12 Newvert Ltd Implantable device for sealing a spinal annular fissure tear and method for deploying the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873811A (en) * 1997-01-10 1999-02-23 Sci-Med Life Systems Composition containing a radioactive component for treatment of vessel wall
US7736293B2 (en) * 2005-07-22 2010-06-15 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
JP5670729B2 (ja) * 2007-07-02 2015-02-18 メディ−フィジックス・インコーポレイテッド 接着剤で補剛したブラキテラピーストランド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092958A1 (en) * 2001-11-02 2003-05-15 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
JP4489437B2 (ja) * 2002-02-21 2010-06-23 エンセル,インコーポレイテッド 表面コーティングとしての固定化生物活性ヒドロゲルマトリックス
KR20060003100A (ko) * 2003-05-16 2006-01-09 블루 멤브레인스 게엠베하 생체적합성 코팅제를 포함하는 의료용 이식물
WO2008129249A2 (en) * 2007-04-20 2008-10-30 Invibio Limited Fiducial marker
WO2010089717A1 (en) * 2009-02-05 2010-08-12 Newvert Ltd Implantable device for sealing a spinal annular fissure tear and method for deploying the same

Also Published As

Publication number Publication date
US20150148669A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US11752361B2 (en) Diagnostic or therapeutic procedure using implantable targets
US10653496B2 (en) Apparatus and methods for implanting objects, such as a bronchoscopically implanting markers in the lung of patients
US8454489B2 (en) Implant comprising radioactive seeds
US10500014B2 (en) Surgical implant for marking soft tissue
JP5629698B2 (ja) 侵入型マーカー及びマーカーを画像技術によって視認可能にする装置
US8170647B2 (en) Fiduciary markers and method of use thereof
EP2621578B1 (en) Delivery catheter for delivering an implant, for example, bronchoscopically implanting a marker in a lung
US20100228074A1 (en) Therapeutic and Directionally Dosed Implants
JP2009540972A (ja) 2以上の画像における要素の同定方法
JP2007535334A (ja) 密封小線源療法のためのシードとスペーサの配置
WO2013191510A1 (ko) 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질
KR101544490B1 (ko) 체내 이동방지 수단이 구비된 체내삽입용 의료용구
KR20140000456A (ko) 체내 이동방지 수단이 구비된 체내 삽입 의료용 금속물질
US20230211176A1 (en) Radiation shielding apparatus for implantable radioactive seeds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806616

Country of ref document: EP

Kind code of ref document: A1