WO2013191490A1 - 타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법 - Google Patents

타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법 Download PDF

Info

Publication number
WO2013191490A1
WO2013191490A1 PCT/KR2013/005459 KR2013005459W WO2013191490A1 WO 2013191490 A1 WO2013191490 A1 WO 2013191490A1 KR 2013005459 W KR2013005459 W KR 2013005459W WO 2013191490 A1 WO2013191490 A1 WO 2013191490A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
seq
tyrosine
gene
gene encoding
Prior art date
Application number
PCT/KR2013/005459
Other languages
English (en)
French (fr)
Inventor
홍영수
최옥식
강선영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority claimed from KR1020130070890A external-priority patent/KR101527802B1/ko
Publication of WO2013191490A1 publication Critical patent/WO2013191490A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the present invention relates to a production method of 4-coumaric acid (4-coumaric acid), caffeic acid (caffeic acid) and perulic acid (ferulic acid) through the metabolic pathway in tyrosine producing strains.
  • Phenolic compounds such as 4-Coumaric acid, caffeic acid and ferulic acid, are cancer-inhibiting substances.
  • 4-coumarin acid has been described in many studies as an inhibitor of melanin production and has an inhibitory effect on bacterial growth.
  • Caffeic acid acts as an anticancer agent, known as an antioxidant in and out of the body, and has been shown to be more effective than other antioxidants. In addition, it not only reduces the production of aflatoxin by more than 95%, but also induces oxidative stress and may interfere with the production of aflatoxin.
  • Allergic acid is named after extracting from plant resins in 1866 (Hlasiwetz He et al, Ann.
  • perlinic acid is used as an additive to prevent the automatic oxidation of natural oils such as linseed oil and to prevent the oxidation of other active ingredients contained in the product by transition metals or other active oxygen species (Tsukiya T et. al., Jpn. Kokai 75: 18621, 1975).
  • 4-coumarin acid, caffeic acid, and perlinic acid are known as intermediates of phenylpropanoid series and flavonoid compounds which are mainly produced in plants. Therefore, genes involved in the biosynthesis of the intermediates have been reported in many organisms, including plants, and recently, transgenic genes related to Arabidopsis thai i and) flavonoid biosynthesis have been transduced into E. coli to establish artificial biosynthetic pathways for flavonoid production. As a result, there have been reports of successful biosynthesis of 4-coumarin acid, an intermediate of perlinic acid (Watts KT et al., Chembiochem 5 (4): 500-507, 2004).
  • E. coli when producing useful compounds using recombinant microbial technology, E. coli is well known for its genetic information, has established various vector systems, and has the advantage of being able to cultivate rapidly at high concentrations in relatively inexpensive media for research or commercial purposes. It is used a lot.
  • the perlinic acid biosynthetic pathway for E. coli producing L-tyrosine the starting material of the perlinic acid biosynthetic pathway, it is possible to produce a large amount of perlinic acid without metabolic control of the initial starting material production. to be. Accordingly, the present inventors have produced a strain producing high L-tyrosine from E.
  • Another object of the present invention is to provide a vector, a transformant or a production method for producing caffeic acid.
  • Another object of the present invention is to provide a vector, a transformant or a production method for producing ferulic acid.
  • Another object of the present invention is to provide a transformant for high production of L-tyrosine (L-tyrosine).
  • the present invention provides a vector, a transformant, a production method or a use thereof for producing 4-coumarin acid (4-Coumaric acid).
  • the present invention also provides a bacte transformant for producing caffeic acid, a production method or a use thereof.
  • the present invention also provides a vector for producing ferulic acid, a transformant, a production method or a use thereof.
  • the present invention provides a tyrA f [tyrogenic acid mutase / prefenic acid dehydrogenase gene (Tyrosine DNA-binding transcriptional repressor, tyrR) lacking and consisting of the nucleotide sequence of SEQ ID NO.
  • the present invention relates to a method for mass production of 4-coumarin acid (4-Coumaric acid), caffeic acid (ferric ic acid) and perulic acid (ferulic acid) through the metabolic pathway in tyrosine producing strains.
  • a strain producing high yield of tyrosine which is a precursor of 4-coumarin acid, caffeic acid and perlinic acid, is produced, and each gene involved in the biosynthesis of 4-coumarin acid, caffeic acid and perlinic acid is added to the strain.
  • the transformed strain was prepared by introducing the included gene cassette.
  • 1 is a diagram showing a biosynthetic pathway of a compound of the Pheny propanoic acids series
  • TAL Tyrosine ammonia lyase
  • C3H 4-coumarin acid 3-hydroxylase (C3H);
  • FIG. 1 Caffeic acid 0-methyl transferase (COMT).
  • Figure 2 shows the genetic map of the pET-TAL, pET-T5 and pET-T5M, or pET-opTAL, pET-opT5 and pET-opT5M vector (each gene is T7 promoter, ribosomal binding site (RBS) And T7 terminator).
  • Figure 3 shows the production of coumarin acid (4-Coumaric acid) produced in general E. coli (C41) transformed pET-Tal and pET-opTal;
  • pET-Tal a strain in which pET-Tal was introduced into a C41 strain
  • pET-opTal A strain in which pET-opTal was introduced into the C41 strain.
  • FIG. 4 is a diagram showing the construction of a tyrR-knockout mutant strain through the Red / ET recombinat ion system
  • tyrR Tyrosine DNA-binding transcript ional repressor
  • Figure 5 shows the selection of kanamycin-sensitive strains by removing the FRT cassette from the FLPe recombinase expression vector in the A37-1 strain with the FRT-neo-FRT cassette inserted at the tyrR gene site.
  • Figure 5A is a photograph showing the case of culture on the LB plate (plate)
  • Figure 5B shows the strain disappeared resistance by culturing on LB + kanamycin (kanamycin) plate.
  • Figure 6 shows the nucleotide sequence of the tyrR gene region in the tyrRl mutant.
  • Figure 7 shows the procedure for cloning the pET-AG vector
  • tyrA f gene having feedback-inhibit ion resistance (f) with chorismate mut ase / rephenate dehydrogenase gene (tyrA);
  • aroG f 3-dioxy-D-arabino-hexulosonate-7-phosphate synthase
  • FIG. 8 is a diagram showing the production of tyrosine according to IPTG induction in the pET-AG / tyrRl strain (AC-AF).
  • 10 shows pET-Tal / C41, pET-Tal / AC-AFl, pET-T5 / C41, pET-T5 / AC-AFl, pET—T5M / C41 and pET-T5M / AC-AFl, or pET-opTal / Coumarin acid (4-Coumaric) produced by strains of C41, pET-opTal / AC-AFl, pET-opT5 / C41, P ET-opT5 / AC-AFl, pET-opT5M / C41 and pET—opT5M / AC-AFl acid), caffeic acid and ferulic acid;
  • the present invention relates to 4-coumarin acid comprising a gene encoding Tyrosine ammonia lyase (TAL) as set forth in SEQ ID NO: 11 or a gene encoding synthetic tyrosine ammonia lyase (opTAL) as set out as SEQ ID NO: 4. It provides an expression vector for the production of (4-Coumaric acid).
  • TAL Tyrosine ammonia lyase
  • opTAL synthetic tyrosine ammonia lyase
  • the present invention provides a transformant for producing 4-coumarin acid transformed host cells with the expression vector.
  • the host cell may be a transformant for producing 4-coumarin acid, which is characterized by biosynthesis of L-tyrosine in high yield, but is not limited thereto.
  • the host cell may be a precursor of L-tyrosine, and may or may not produce 4-coumarin acid, but is not limited thereto.
  • the host cell is deficient in Tyrosine DNA-binding transcriptional repressor (tyrR) and consists of the nucleotide sequence of SEQ ID NO: 7 tyrA f [chorismic acid mutase / prefenic acid dehydrogenase gene (chorismate). mut ase / r ephenat e dehydrogenase gene (tyrA) and the gene of feedback-inhibition-resistant (f) and SEQ ID NO.
  • Tyrosine DNA-binding transcriptional repressor consists of the nucleotide sequence of SEQ ID NO: 7 tyrA f [chorismic acid mutase / prefenic acid dehydrogenase gene (chorismate). mut ase / r ephenat e dehydrogenase gene (tyrA) and the gene of feedback-inhibition-resistant (f) and SEQ ID NO.
  • AroG f [3-deoxy-D-arabino-haplosonite-7-phosphate synthase gene consisting of the nucleotide sequence (3-deoxy-D-ar ab i no-hept u 1 osonat e-7-phosphat e- (DAHP) synt hase, ar oG) feedback-inhibit ion-resistant (f) gene] may be inserted, but is not limited thereto.
  • the tyrA f consisting of the nucleotide sequence of SEQ ID NO: 7 and L-tyrosine high-producing transformant inserted with aroG f consisting of the nucleotide sequence of SEQ ID NO: 9 has a significant increase in production in other vector systems
  • Various vectors can be used by transforming the transformant for production of L-tyrosine.
  • the present invention
  • step 2) transforming the expression vector of step 1) into a host cell
  • the present invention provides a method for producing 4-coumarin acid comprising the step of obtaining 4-coumarin acid in the culture of step 4).
  • the present invention also relates to a gene encoding tyrosine ammonia lyase (TAL) as set out in SEQ ID NO: 11 or a gene encoding synthetic tyrosine ammonia lyase (opTAL) as set out in SEQ ID NO: 4, and 4-coumarin as set out in SEQ ID NO: 1. It provides an expression vector for producing caffeic acid containing a gene encoding acid 3-hydroxylase (C3H).
  • C3H gene encoding acid 3-hydroxylase
  • the present invention provides a transformant for producing caffeic acid transformed host cells with the expression vector.
  • the host cell may be one capable of biosynthesis of L-tyrosine in high yield It is not limited to this.
  • the host cell is a precursor to L-tyrosine, and may not be able to produce 4-coumarin acid and caffeic acid, but is not limited thereto.
  • the host cell may be a precursor of L-tyrosine, may produce 4-coumarin acid, and may not produce caffeic acid, but is not limited thereto.
  • the host cell may be a tyrR-deficient, tyrA f consisting of the base sequence of SEQ ID NO: 7 and aroG f consisting of the nucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
  • step 2) transforming the expression vector of step 1) into a host cell
  • the present invention provides a method for producing caffeic acid comprising the step of obtaining caffeic acid in the culture of step 4).
  • the present invention provides a gene encoding a tyrosine ammonia lyase (TAL) described in SEQ ID NO: 11 or a gene encoding a synthetic tyrosine ammonia lyase (opTAL) described in SEQ ID NO: 4, and a SEQ ID NO:
  • Perlinic acid comprising a gene encoding 4-coumarin acid 3-hydroxylase and a gene encoding Caffeic acid 0-methyl transferase (COMT) It provides an expression vector for production.
  • the present invention is for the production of perlinic acid when transforming the host cell with the expression vector. Provide a transformant.
  • the host cell may be a transformant for producing perlinic acid, which is characterized by biosynthesis of L-tyrosine in high yield, but is not limited thereto.
  • the host cell may be a precursor of L-tyrosine and may not be able to produce 4-coumarin acid, caffeic acid and perlinic acid, but is not limited thereto.
  • the host cell may be a precursor of L-tyrosine, may produce 4-coumarin acid, and may not be able to produce caffeic acid and perlinic acid, but is not limited thereto.
  • the host cell may be a precursor to L-tyrosine, and may produce 4-coumarin acid and caffeic acid, and may not be able to produce perlinic acid, but is not limited thereto.
  • the host cell may be a tyrR-deficient, tyrA f consisting of the nucleotide sequence of SEQ ID NO: 7 and aroG f consisting of the nucleotide sequence of SEQ ID NO: 9 is inserted, but is not limited thereto.
  • step 2) transforming the expression vector of step 1) into a host cell
  • perlinic acid provides a method for producing perlinic acid comprising the step of obtaining perlinic acid in the culture of step 4).
  • the inventors have identified vectors comprising genes involved in phenylpropanoic acid biosynthesis, specifically pET-Tal, pET-T5 and pET-T5M, or pET-opTal, ⁇ - ⁇ ⁇ ⁇ 5 and ⁇ - ⁇ 5 ⁇ (see FIG. 2) were made, and tyrosine high producing strains were prepared (see FIGS. 4 to 8).
  • the present inventors introduced a vector containing the gene involved in the phenylpropanoic acid biosynthesis into the tyrosine-producing strain or the general E. coli strain, and transformed, and then the phenylpropane produced in each transformed strain.
  • tyrosine-producing strains produced in the present invention pAD-AG
  • pET-Tal / C41, pET-T5 / C41, and PET-T5M / C41 were introduced into general E. coli.
  • a strain producing high tyrosine which is a precursor of 4-coumarin acid, caffeic acid, and perlinic acid, is produced, and each of the strains involved in the biosynthesis of 4-coumarin acid, caffeic acid, and perlinic acid.
  • a transformed strain was prepared by introducing a gene cassette containing a gene, and when the transformed strain was cultured, it was confirmed that 4—coumarin acid, caffeic acid, and perlinic acid were produced in high yield.
  • the present invention is a tyrosine DNA-binding transcriptional repressor (tyrR) for the high production of L-tyrosine is missing, SEQ ID NO: TyrA f [feedback-inhibit ion-resistant ⁇ f gene of chorismate mutase / prephenate dehydrogenase gene (tyrA)] And aroG f [3-deoxy-D-arabino-haplosonate-7-phosphate synthase - ⁇ "consisting of the nucleotide sequence of SEQ ID NO: 9 (3-deoxy-D-ar ab i no-hept a feedback-inhibit ion-resistant (f) gene of u 1 osonat e-7-phosphat e (DAHP) synthase, aroG).
  • tyrR tyrosine DNA-binding transcriptional repressor
  • the present invention provides a gene encoding Tyrosine a ⁇ onia lyase (TAL) described in SEQ ID NO: 11 or a synthetic tyrosine ammonia lyase described in SEQ ID NO: 4 for producing 4-coumarin acid.
  • An expression vector comprising a gene encoding (opTAL) provides a use of a transformant transformed into a host cell capable of biosynthesis of L-tyrosine into coriander.
  • the present invention provides a gene encoding tyrosine ammonia lyase (TAL) described in SEQ ID NO: 11 or a gene encoding synthetic tyrosine ammonia lyase (opTAL) described in SEQ ID NO: 4 for producing caffeic acid, And a host vector capable of biosynthesis of L-tyrosine with a high yield in an expression vector comprising a gene encoding 4-coumarin acid 3-hydroxylase (C3H) described in SEQ ID NO: 1. Provides the use of transformed transformants.
  • TAL tyrosine ammonia lyase
  • opTAL synthetic tyrosine ammonia lyase
  • the invention encodes a gene encoding tyrosine ammonia lyase (TAL) as set out in SEQ ID NO: 11 or a synthetic tyrosine ammonia lyase (opTAL) as set out in SEQ ID NO: 4 for producing perlinic acid.
  • TAL tyrosine ammonia lyase
  • opTAL synthetic tyrosine ammonia lyase
  • SEQ ID NO: 4 for producing perlinic acid.
  • the gene encoding the 4-coumarin acid 3-hydroxylase described by SEQ ID NO: 1 and the caffeic acid 0-methyl transferase (C0MT) described by SEQ ID NO: 2.
  • An expression vector containing a gene provides a use of a transformant transformed into a host cell capable of biosynthesis of L-tyrosine in high yield.
  • a strain producing high tyrosine which is a precursor of 4-coumarin acid, caffeic acid, and perlinic acid
  • a transformed strain was prepared by introducing a gene cassette containing each gene involved in biosynthesis.
  • 4-coumarin acid, caffeic acid, and perlinic acid were produced in high yield. Since it was confirmed that the 4-coumarin acid, caffeic acid or perlinic acid production vector of the present invention, each of the transformants introduced the vector or the transformants to mass production of 4-coumarin acid, caffeic acid and perlinic acid This can be useful for.
  • the present invention will be described in detail by way of examples.
  • sara8 encoding tyrosine ammonia lyase (TAL), an enzyme that converts L-tyrosine to 4-coumarin acid, was obtained from the bacterium Saccharothn ' xe 1 ⁇ 27ae / 2s / s) (KCTC9392). The sequence was separated, consisting of SEQ ID NO: 11 (see Korean Patent No. 10-1091155);
  • the tyrosine ammonia lyase gene and 4-coumarin acid 3-hydroxylase gene may be prepared using the method disclosed in Korean Patent No. 10-1091155.
  • a pET-T5 vector was constructed to which the hydroxylase gene was linked (FIG. 2).
  • Tyrosine ammonia using the method disclosed in Korean Patent No. 10-1091155 to prepare a gene expression vector in which a tyrosine ammonia lyase gene, 4-coumarin acid 3-hydroxylase gene, and caffeic acid 0-methyltransferase gene are linked.
  • a pET-T5M vector was constructed in which the lyase gene, 4-coumarin acid 3-hydroxylase gene, and caffeic acid 0-methyltransferase gene were linked (FIG. 2).
  • Tyrosine ammonia lyase (TAU) gene (opTAL) obtained in Example ⁇ 1-1> was synthesized.
  • the base sequence (SEQ ID NO: 4) was determined using the optimal codon usage according to the tRNA ratio for each, and the determined sequence was customized to Bioneer Co., Ltd.
  • the sequence has the recognition sequence of Ndel restriction enzyme before the start codon and the HindU ⁇ restriction enzyme recognition sequence after the termination codon.
  • TAL tyrosine ammonia lyase
  • pGEM-T easy promega, USA
  • opTAL tyrosine ammonia lyase
  • TAL tyrosine ammonia lyase
  • the pGEM-T opTAL vector produced in Example ⁇ 1-3_1> was transformed into Escherichia coli and secured in large quantities, and then the obtained pGEM-T opTAL DNA was restricted to enzyme. 1.53 kb of fragments simultaneously digested with liind l and ⁇ 3 ⁇ 4 ⁇ of pET-28a (+), an E. coli expression vector Insertion into HindiU site completes the expression vector pET-opTAL (FIG. 2).
  • the gene (opT5) was synthesized by linking with opTAL obtained in Example ⁇ 1-3-1> using sam5 consisting of SEQ ID NO: 1, which is a 3-hydroxylase (C3H) gene.
  • the 4-coumarinic acid 3-hydroxylase gene (sam5) obtained in Example ⁇ 1-1> has a recognition sequence of Nde ⁇ restriction enzyme before the start codon and Hi ' nd ll restriction after the stop codon Has an enzyme recognition sequence.
  • the gene of 4-coumarin acid 3-hydroxylase (C3H) thus prepared was linked to the opTAL obtained in Example ⁇ 1-3-1>, using the method of Example ⁇ 1-3-2>, opT5 was produced (FIG. 2).
  • the 0 pTal gene and sam5 gene inserted into the vector have a promoter, ribosomal binding site, and transcription termination sequence, and are designed to be controlled independently.
  • Caffeic acid 0-methyl transferase which is an enzyme for converting the caffeic acid obtained in Example ⁇ 1-1> to perlinic acid, is composed of SEQ ID NO: 2 com was linked with opT5 obtained in Example ⁇ 1-3-3> to synthesize a gene ( ⁇ 5 ⁇ ).
  • the com gene through the nucleotide sequence of Caffeic acid 0-methyl transferase (hereinafter referred to as C0MT), an enzyme for converting the caffeic acid obtained in Example ⁇ 1-1> to perlinic acid Has the recognition sequence of Nde ⁇ restriction enzyme before the start codon and the Hind l restriction enzyme sequence after the termination codon.
  • Manufactured 1 caffeic acid 0-methyltransferase (C0MT) was linked to the opT5 obtained in Example ⁇ 1-3-3> to prepare ⁇ - ⁇ 5 ⁇ (Fig. 2).
  • the opTal gene, sam5 gene, and com gene inserted into the vector have their respective promoters, ribosomal binding sites, and transcription termination sequences.
  • Example 2 Preparation of a vector transformed strain comprising a gene involved in phenylpropanoic acid biosynthesis
  • PET-T5 vector prepared in Example ⁇ 1-2-2> and pET-opT5 vector prepared in Example ⁇ 1-3-3> were transformed into E. coli in the same manner as in ⁇ 2-1>.
  • PET-T5 / C41 and pET-opT5 / C41 transgenic strains were prepared by conversion.
  • PET-T5M prepared in Example ⁇ 1-2-3> and pET-opT5M vector prepared in Examples ⁇ 1-3-3> were transformed into E. coli in the same manner as in ⁇ 2-1>.
  • PET-T5M / C41 and pET-opT5M / C41 type transgenic strains were prepared, respectively.
  • Example 3 Confirmation of Phenylpropanoic Acid Production Effect
  • the E. coli was inoculated in LB medium (50 ug / t Kanamycin) 30 and incubated at 37 0 C to 0D 600 0.6, and protein expression was induced by 1 mM IPTG after 10 minutes cold shock. Thereafter, the cells were further incubated at 26 0 C for 5 hours and cells were obtained to obtain 30 M9C (modified M9 minimal media; added CaC0325 g / l, glucose 15 g / l or 40 g / t; 50 / zg / t Ran, 1 mM IPTG) and incubated at 26 0 C for 36 hours.
  • M9C modified M9 minimal media; added CaC0325 g / l, glucose 15 g / l or 40 g / t; 50 / zg / t Ran, 1 mM IPTG
  • TyrR tyrosine DNA-binding transcription inhibitor in tyrR (E. coli C4 DE3) similar to the method described in Appl Microbiol Biotechnol (2007) 75: 103.110 for the production of E. coli strains that produce high production of tyrosine, a precursor of the phenylpropanoic acid biosynthetic pathway.
  • tyrR By knocking out (Tyrosine DNA-binding transcriptional repressor, tyrR), E. coli strains having a tyrR-deficient mutation (hereinafter described as AtyrRl) were prepared.
  • AtyrRl strain The construction of the AtyrRl strain is shown (FIG. 4). Specifically, Appl Microbiol Biotechnol (2007) 75: 103.110 produced a tyrosine-producing strain based on E. coli 12 strain, the present invention is based on E. coli B strain C41 (DE3), which is mainly used as a protein expression host It was made. E. coli B strains were identified tyrR gene (ACT43188.1) based on the overall sequence (genome sequence) published by Korea Research Institute of Bioscience and Biotechnology.
  • Gene deletion mutant strains were prepared using the Red / ET recombination system using the Quick & Easy E. coli gene deletion kit of Gene Bridges (FIG. 4). First of all, tyrR (ACT43188.1) was used to construct in-frame deletion mutants of tyrR gene. Gene deletion primers (Tyr-Rf: gtcatatcatcatattaattgttcttttttcaggtgaaggttcccatgcgtMTTAACCCT using gene sequences at the 5 'and 3' ends)
  • ACTCACTATAGGGCTC SEQ ID NO: 6
  • the lowercase tyrR sequences were prepared with bold characters starting and ending codes of tyrR and FRT sequences with uppercase letters).
  • PCR was performed using this primer set (Tyr-Rf and Tyr-Rr) and pfu Taq polymerase with the FRT-neo-FRT cassette as a template.
  • the PCR product was transformed into an E. coli B strain transformed with a pRedET vector expressing Red / ET recombinase by electroporation and then kanamycin resistant strain. Only was selected.
  • This resistant strain (A37-1) was confirmed by sequencing of the PCR fragment that the FRT-neo-FRT cassette is inserted in the tyrR gene region.
  • the FRT-neo-FRT cassette was removed from the kanamycin-resistant strain (AtyrRl) using a primer (tyr-vl and tyr—v2), and the chromosome of the yrRl strain.
  • the DNA product was confirmed by sequencing the PCR product. As expected from the sequencing analysis, only 97 bp of the nucleotide sequence including the FRT sequence remained after the ATG start codon of the tyrR gene instead of the tyrR gene (part labeled FR in FIG. 6) (FIG. 6). In this AtyrRl strain, tyrosine production could not be confirmed on HPLC, consistent with the published results.
  • ⁇ 4-2> Cloning of the pET-AG Vector To produce a strain that produces high tyrosine, a vector comprising genes encoding derivatives of tyrA and aroG, which are enzymes involved in feedback in the production of tyrosine, was prepared, respectively, and these two derivatives were produced in a modeled form. Produced in ⁇ 4-1>
  • Biosynthetic enzymes of aromatic amino acids such as tyrosine have been reported to inhibit the activity of the enzymes by aromatic amino acids such as tyrosine, which is the final product, resulting in improved productivity of the final product.
  • tyrA feedback-inhibition-resistance genes of the chorismate mutase / priphenicate dehydrogenase gene (tyrA) among feedback-inhibitory-resistant enzymes are described. (tyrA f ) and
  • 3-deoxy-D-arabino-haplosonite-7-phosphate synthase gene (3-deoxy-D-arab i no-hep tu 1 osonat e-7-phosphat e (DAHP) synt hase, ar oG Feedback-inhibition-resistance gene (aroG f ) was used.
  • tyrA f SEQ ID NO: 7
  • aroG f which encode the substitution of one or two amino acids in the full-length protein of these feedback-inhibition-resistance enzymes.
  • aroG f the AroG15 mutant (146 Asp ⁇ Asn) reported in applied and environmental microbiology (1997) 63 (2) 761-762 was used.
  • aroG f an expression optimized for codon optimization in E. coli (codon optimized) was used aroG f.
  • the nucleotide sequence was determined (SEQ ID NO: 9) determined by the sequence using the optimal codon usage of the tRNA ratio for each of the US DNA Made to order 2.0.
  • the sequence has a recognition sequence of Nde ⁇ restriction enzyme before the start codon and a ⁇ restriction enzyme recognition sequence after the stop codon. Due to this, each enzyme activity was maintained intact by tyrosine production, thereby inducing high production of tyrosine. Meanwhile, in the case of TyrA, chorismate among the mutant strains (chorismate TyrAmut-20, which has both prephenate dehydrogenase activity and resistance while maintaining mutase activity and resistance, was used. this
  • TyrAmut-20 has 53 Met ⁇ lie and 354 Ala ⁇ Val (applied and environmental microbiology (2005) 71 (11) 7224-7228) (SEQ ID NO: 10).
  • each enzyme was transformed into an enzyme whose activity decreasing effect according to the tyrosine concentration was lost.
  • Example ⁇ 4-3> Confirmation of production of tyrosine according to IPTG induction in pET-AG / ⁇ tyrRl strain (AC-AF)
  • Example ⁇ 4-2> to ⁇ tyrRl strain prepared in Example ⁇ 4-1> The produced pET-AG vector was introduced, and the production of tyrosine by IPTG induction was confirmed. Production of tyrosine was confirmed using the method of Example ⁇ 3-1>. At this time, the tyrosine standard was purchased from Sigma (USA) and analyzed.
  • aroG and tyrA feedback inhibitory mutant gene expression vectors were converted from pET vector to pACYCDuet-1 with different vector origins.
  • pET28-tyrA * was inserted into Ncol / Hindl l and pET22-aroG * was inserted into Ndel / Xhol to prepare a pAD—AG vector (FIG. 9).
  • the prepared pAD-AG vector was introduced into the AtyrRl strain prepared in Example ⁇ 4-1> to prepare a pAD-AG / AtyrRl strain (AC-AF1).
  • the vector is introduced into the tyrosine-producing strain (pAD-AG / ⁇ tyrRl strain (AC-AF1)) produced in the present invention, compared with the introduction of pET-opTal, pET-opT5, and pET-opT5M in general Escherichia coli.
  • the production of 4-coumarin acid, caffeic acid, and perlinic acid increased 5.5-fold, 2.4-fold, and 2.6-fold, respectively. It was confirmed that (Fig. 10 and Table 3).

Landscapes

  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 타이로신 생산 균주에서의 인공대사 경로를 통한 4-쿠마린산(4-Coumaric acid), 카페인산(caffeic acid) 및 페룰린산(ferulic acid)의 대량 생산 방법에 관한 것이다. 구체적으로, 4-쿠마린산, 카페인산 및 페룰린산의 전구체인 타이로신을 고생산하는 균주를 제작하고, 상기 균주에 4-쿠마린산, 카페인산 및 페룰린산의 생합성에 관여하는 각각의 유전자가 포함된 유전자 카세트를 도입하여 형질전환된 균주를 제작하였다. 상기 형질전환된 균주를 배양하였을 때, 4-쿠마린산, 카페인산 및 페룰린산이 고수율로 생산되는 것을 확인함으로써, 본 발명의 생산 방법을 이용하여 4-쿠마린산, 카페인산 및 페룰린산의 대량 생산에 유용하게 사용할 수 있다.

Description

【명세서】
【발명의 명칭】
타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페를린산의 생산 방법
【기술분야】
본 발명은 타이로신 (tyrosine) 생산 균주에서의 인공대사 경로를 통한 4-쿠마린산 (4-coumaric acid), 카페인산 (caffeic acid)및 페를린산 (ferulic acid)의 생산 방법에 관한 것이다.
【배경기술】
4-쿠마린산 (4-Coumaric acid), 카페인산 (caffeic acid) 및 페를린산 (ferulic acid) 등의 페놀성 화합물 (phenolic compound)들은 암을 억제하는 물질이다. 또한, 4-쿠마린산은 다수의 연구에 멜라닌 생산의 억제제로서 기재되어 있으며, 세균 증식의 억제효과가 있다. 카페인산은 발암억제제로서 작용하고, 생체 안과 밖에서 항산화제로 알려져 있으며, 다른 항산화제보다 효과가 우수한 것으로 나타났다. 또한, 95% 이상 아플라톡신 (anatoxin)의 생산을 줄여줄 뿐만 아니라, 산화 스트레스를 유발하며, 아플라특신의 생산을 방해할 수 있다. 아을러, 떼를린산은 1866년 식물의 레진에서 추출하여 명명한 것으로서 (HlasiwetzHet al,, Ann.138: 61, 1866), 산소분자로부터 유래 되는 다양한 활성 산소종들에 대해 온화한 항산화력을 가지며, 철 이온 및 구리 이온과 같은 산화성 전이금속들에 대한 강력한 항산화 효과를 나타내는 것으로 보고되어 있다 (Smart MG et al., Aust. J. Plant Physiol. 6:485, 1979). 따라서, 페를린산은 아마인유 등과 같은 천연오일 등의 자동산화 방지 및 전이금속이나 기타 유입된 활성 산소종에 의한 제품 내에 함유된 다른 유효성분들의 산화를 막아주기 위한 첨가제로서 사용되고 있다 (Tsukiya T et al., Jpn. Kokai 75:18621, 1975). 4-쿠마린산, 카페인산 및 페를린산 등은 주로 식물에서 많이 생산되는 페닐프로파노이드 (Phenylpropanoid) 계열 및 플라보노이드 (Flavonoid)의 화합물의 중간체로 알려져 있다 . 이에 , 식물을 비롯한 많은 생물체에서 상기 증간체의 생합성에 관여하는 유전자들이 보고되어 있고 , 최근 플라보노이드 생산을 위한 인공 생합성 경로 구축을 위해 , 애기장대 thai i and) 유래 플라보노이드 생합성 관련 유전자들을 대장균에 형질도입함으로써, 페를린산의 증간체인 4-쿠마린산의 생합성에 성공한 사례가 보고되 었다 (Watts KT et al . , Chembiochem 5(4) : 500-507 , 2004) . 아미노산으로부터 페를린산의 대표적 인 생합성 경로에는 두 가지가 있다 (도 1 참조) : 1) L-타이로신 (L-tyrosine)을 전구체로 하고 상기 4-쿠마린산 및 카페인산을 중간체로 하여 최종적으로 페를린산을 생합성하는 경로 ; 및, 2) L-페닐알라닌 (L-phenyl alanine)을 전구체로 하고, 상기 시나몬산 (cinnamic acid) 및 카페인산을 중간체로 하여 최종적으로 페를린산을 생합성하는 경로 . 상기 Watts 외의 연구는 L-페닐알라닌으로부터 시나몬산을 거 쳐 4-쿠마린산을 생합성하는 경로를 인위 적으로 구축한 것에 관한 것 이다.
이와 같이 재조합 미 생물 기술을 이용하여 유용한 화합물을 생산할 때, 유전정보가 잘 알려져 있으며 다양한 백터 시스템을 구축하고 있고 , 비교적 값싼 배지에서 빠르게 고농도로 배양할 수 있는 장점을 가진 대장균이 연구 또는 상업 적 목적으로 많이 사용되고 있다. 특히, 페를린산 생합성 경로의 시작물질인 L-타이로신을 생산하는 대장균을 대상으로 상기 페를린산 생합성 경로를 구축할 경우 초기 출발 물질 생산량의 대사적 조절 없이 다량의 페를린산의 생산도 가능할 것 이다. 이에, 본 발명자들은 대장균으로부터 L-타이로신을 고생산하는 균주를 제작하고 , 4-쿠마린산, 카페인산 및 페를린산 각각의 생합성에 관여하는 유전자를 상기 L-타이로신 고생산 균주에 도입하여 인공 생합성 경로를 구축하고 , 상기 인공 생합성 경로가 구축된 균주에서 4-쿠마린산, 카페인산 및 페를린산을 대량으로 생합성할 수 있는 것을 확인함으로써 본 발명을 완성하였다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 4-쿠마린산 (4-Coumaric acid) 생산용 백터, 형질전환체 또는 생산 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 카페인산 (caffeic acid) 생산용 백터, 형질전환체 또는 생산 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 페를린산 (ferulic acid) 생산용 백터, 형질전환체 또는 생산 방법을 제공하는 것이다.
아울러, 본 발명의 다른 목적은 L-타이로신 (L-tyrosine) 고생산용 형질전환체를 제공하는 것이다. 【기술적 해결방법】
상기 과제를 해결하기 위하여, 본 발명은 4-쿠마린산 (4-Coumaric acid) 생산용 백터, 형질전환체, 생산 방법 또는 이의 용도을 제공한다.
또한,본 발명은 카페인산 (caffeic acid)생산용 백테 형질전환체, 생산 방법 또는 이의 용도을 제공한다.
또한,본 발명은 페를린산 (ferulic acid)생산용 백터, 형질전환체, 생산 방법 또는 이의 용도을 제공한다.
아울러, 본 발명은 타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA-binding transcriptional repressor, tyrR)가 결손되고, 서열번호 7의 염기서열로 구성되는 tyrAf [코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mut ase/pr ephenat e dehydrogenase gene, tyrA)의 피드백-저해-저항성 (feedback-inhibition-resistant, f) 유전자] 및 서열번호 9의 염기서열로 구성되는 aroGf [3-디옥시 -D-아라비노-햅률로소내이트 -그인산염합성효소 유전자 ( 3-deoxy-D-ar ab i no一 hep t u 1 osonat e— 7一 phosphat e ( DAHP ) synt hase, ar oG )의 피드백-저해-저항성 (feedback-inhib ion-resistant , f ) 유전자]가 동시에 삽입된 L-타이로신 (L-tyrosine) 고생산용 형 질전환체 또는 이의 용도를 제공한다 . 【유리한 효과】
본 발명은 타이로신 생산 균주에서의 인공대사 경로를 통한 4-쿠마린산 (4-Coumaric acid) , 카페인산 (caffeic acid) 및 페를린산 (ferul ic acid)의 대량 생산 방법에 관한 것이다. 구체적으로 , 4-쿠마린산, 카페인산 및 페를린산의 전구체인 타이로신을 고생산하는 균주를 제작하고 , 상기 균주에 4-쿠마린산, 카페인산 및 페를린산의 생합성에 관여하는 각각의 유전자가 포함된 유전자 카세트를 도입하여 형 질전환된 균주를 제작하였다 . 상기 형 질전환된 균주를 배양하였을 때, 4-쿠마린산, 카페인산 및 페를린산이 고수율로 생산되는 것을 확인함으로써, 본 발명의 생산 방법을 이용하여 4-쿠마린산, 카페인산 및 페를린산의 대량 생산에 유용하게 사용할 수 있다.
【도면의 간단한 설명】
도 1은 페닐프로파노익 산 (Pheny propanoic acids) 계열의 화합물의 생합성 경로를 나타낸 도이다 ;
TAL: 타이로신 암모니아 리아제 (Tyrosine ammonia lyase, TAL) ;
C3H: 4-쿠마린산 3-수산화효소 (4-coumarate 3-hydroxylase, C3H) ;및
COM: 카페인산 0-메틸전이효소 (Caffeic acid 0-methyl transferase, COMT) . 도 2는 pET-TAL, pET-T5 및 pET-T5M, 또는 pET-opTAL, pET-opT5 및 pET-opT5M 백터의 유전자 지도를 나타낸 도이다 (각각의 유전자는 T7 promoter , 라이보좀 결합자리 (RBS) 그리고 T7 terminator을 포함한다) .
도 3는 pET-Tal과 pET-opTal이 형 질전환된 일반대장균 (C41)에서 생산되는 쿠마린산 (4-Coumaric acid)의 생산량을 나타낸 것이다 ;
C410?. coli C41) : 막 단백질 발현이 우수한 대장균 (Miroux B, Walker JE (1996) Over-product ion of proteins in Escherichia col i: mutant hosts that al low synthesis of some membrane proteins and globular proteins at high levels . J Mol Biol 260:289-298) ;
pET-Tal: C41 균주에 pET-Tal를 도입한 균주 ; 및
pET-opTal: C41 균주에 pET-opTal를 도입 한 균주 .
도 4는 Red/ET recombinat ion 시스템을 통한 tyrR-유전자 결손 (knockout ) 돌연변이 균주의 구축 과정을 나타낸 도이다;
tyrR: 타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA-binding transcript ional repressor , tyrR) .
도 5는 tyrR 유전자 부위에 FRT— neo-FRT 카세트 (cassette)가 삽입된 A37-1 균주에서 FRT 카세트를 FLPe 재조합효소 (recombinase) 발현 백터를 통해 제거하여 카나마이신 (kanamycin) 감수성 균주를 선택하는 것을 나타낸 도이다; 도 5A는 LB 플레이트 (plate)에 배양한 경우을 나타낸 사진이고, 도 5B는 LB+카나마이신 (kanamycin) 플레이트에 배양하여 내성 이 사라진 균주를 나타낸 것이다 .
도 6은 tyrRl 돌연변이 (mutant )에서 tyrR 유전자 부위의 염기서 열을 나타낸다.
도 7은 pET-AG 백터를 클로닝하는 과정을 나타낸 도이다;
tyrAf : 코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mut ase/ r ephenat e dehydrogenase gene, tyrA)로 피드백 -저해 -저항 (feedback-inhibi t ion-resistant , f)성을 가진 유전자 ; 및
aroGf: 3-디옥시 -D-아라비노-햅률로소내이트 -7-인산염합성효소
-π- ¾ ^} ( 3-deoxy-D-ar ab i no- hep t u 1 osonat e-7-phosphat e (DAHP ) synthase, aroG)의 피드백 -저해 -저항 (feedback— inhibit ion-resistant , f )성을 가진 유전자.
도 8은 pET-AG/tyrRl 균주 (AC-AF)에서 IPTG 유도에 따른 타이로신의 생산에 대하여 나타낸 도이다.
도 9은 pAD-AG 클로닝에 대한 과정을 나타낸 도이다. 도 10은 pET-Tal/C41, pET-Tal/AC-AFl, pET-T5/C41, pET-T5/AC-AFl , pET— T5M/C41 및 pET-T5M/AC-AFl, 또는 pET-opTal/C41, pET-opTal/AC-AFl, pET-opT5/C41, PET-opT5/AC-AFl, pET-opT5M/C41 및 pET— opT5M/AC-AFl 각각의 균주에서 생산되는 쿠마린산 (4-Coumaric acid), 카페인산 (caffeic acid) 및 페롤린산 (ferulic acid)의 생산량을 나타낸 것이다;
W: C41 균주; 및
T: AC-AF1 균주 (tyrRl균주에 pAD-AG백터를 도입한 균주). 【발명의 실시를 위한 형태】 이하, 본 발명을 상세히 설명한다. 본 발명은 서열번호 11로 기재되는 타이로신 암모니아 리아제 (Tyrosine a讀 onia lyase, TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자를 포함하는 4-쿠마린산 (4-Coumaric acid) 생산용 발현백터를 제공한다.
또한, 본 발명은 상기 발현백터로 숙주세포를 형질전환시킨 4-쿠마린산 생산용 형질전환체를 제공한다.
상기 숙주세포는 L-타이로신을 고수율로 생합성할 수 있는 것을 특징으로 하는 4-쿠마린산 생산용 형질전환체일 수 있으나, 이에 한정하지 않는다.
상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산을 생산할 수 있거나 없는 것일 수 있으나, 이에 한정하지 않는다.
상기 숙주세포는 타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA-binding transcriptional repressor, tyrR)가 결손되고, 서열번호 7의 염기서열로 구성되는 tyrAf [코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mut ase/ r ephenat e dehydrogenase gene, tyrA)의 피드백-저해-저항성 (feedback-inhibition-resistant, f) 유전자] 및 서열번호 9의 염기서열로 구성되는 aroGf [3-디옥시 -D-아라비노-햅를로소내이트 -7-인산염합성효소 유전자 ( 3-deoxy-D-ar ab i no-hept u 1 osonat e-7-phosphat e ( DAHP ) synt hase, ar oG)의 피드백-저해-저항성 (feedback-inhibit ion-resistant, f) 유전자]이 삽입된 것일 수 있으나, 이에 한정하지 않는다. 아울러, 상기 서열번호 7의 염기서열로 구성되는 tyrAf 및 서열번호 9의 염기서열로 구성되는 aroGf 이 삽입된 L-타이로신 고생산용 형질전환체는 다른 백터시스템에서도 유의적인 생산 증가효과를 가지므로, 다양한 백터를 상기 L-타이로신 고생산용 형질전환체에 형질전환하여 사용할 수 있다. 또한, 본 발명은
1) 서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자를 포함하는 발현백터를 제조하는 단계;
2) 단계 1)의 발현백터를 숙주세포에 형질전환하는 단계;
3) 단계 2)의 형질전환체를 배양하는 단계;
4) 단계 3)의 배양된 형질전환체의 단백질 발현을 유도한 후, 추가 배양하는 단계; 및,
5) 단계 4)의 배양액에서 4-쿠마린산을 수득하는 단계를 포함하는 4-쿠마린산의 생산 방법을 제공한다. 또한, 본 발명은 서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서열번호 1로 기재되는 4-쿠마린산 3-수산화효소 (4-coumarate 3-hydroxylase, C3H)를 암호화하는 유전자를 포함하는 카페인산 (caffeic acid) 생산용 발현백터를 제공한다.
또한, 본 발명은 상기 발현백터로 숙주세포를 형질전환시킨 카페인산 생산용 형질전환체를 제공한다.
상기 숙주세포는 L-타이로신을 고수율로 생합성할 수 있는 것일 수 있으나 이에 한정하지 않는다 .
상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산 및 카페인산을 생산할 수 없는 것일 수 있으나 이에 한정하지 않는다 .
상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산을 생산할 수 있고, 카페인산을 생산할 수 없는 것일 수 있으나, 이에 한정하지 않는다 .
상기 숙주세포는 tyrR이 결손되고,서 열번호 7의 염 기서 열로 구성되는 tyrAf 및 서열번호 9의 염기서열로 구성되는 aroGf이 삽입된 것일 수 있으나 , 이에 한정하지 않는다.
또한, 본 발명은
1) 서열번호 11로 기 재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서 열번호 1로 기 재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자를 포함하는 발현백터를 제조하는 단계 ;
2) 단계 1)의 발현백터를 숙주세포에 형질전환하는 단계 ;
3) 단계 2)의 형 질전환체를 배양하는 단계 ;
4) 단계 3)의 배양된 형 질전환체의 단백질 발현을 유도한 후, 추가 배양하는 단계 ; 및,
5) 단계 4)의 배양액에서 카페인산을 수득하는 단계를 포함하는 카페인산의 생산 방법을 제공한다 . 또한, 본 발명은 서 열번호 11로 기 재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서 열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서 열번호 1로 기 재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자 및 서 열번호 2로 기 재되는 카페인산 0-메틸전이효소 (Caffeic acid 0-methyl transferase, COMT)를 암호화하는 유전자를 포함하는 페를린산 생산용 발현백터를 제공한다.
또한, 본 발명은 상기 발현백터로 숙주세포를 형 질전환시 킨 페를린산 생산용 형질전환체를 제공한다.
상기 숙주세포는 L-타이로신을 고수율로 생합성할 수 있는 것을 특징으로 하는 페를린산 생산용 형 질전환체일 수 있으나, 이에 한정하지 않는다.
상기 숙주세포는 L-타이로신을 전구체로 하고 , 4-쿠마린산, 카페인산 및 페를린산을 생산할 수 없는 것 일 수 있으나 , 이에 한정하지 않는다.
상기 숙주세포는 L-타이로신을 전구체로 하고 , 4-쿠마린산을 생산할 수 있고 , 카페인산 및 페를린산을 생산할 수 없는 것일 수 있으나 , 이에 한정하지 않는다. 상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산 및 카페인산을 생산할 수 있고, 페를린산을 생산할 수 없는 것 일 수 있으나, 이에 한정하지 않는다.
상기 숙주세포는 tyrR가 결손되고,서 열번호 7의 염기서 열로 구성되는 tyrAf 및 서 열번호 9의 염기서 열로 구성되는 aroGf가 삽입된 것 일 수 있으나, 이에 한정하지 않는다 .
아을러 , 본 발명은
1) 서 열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서 열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서 열번호 1로 기재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자 및 서 열번호 2로 기 재되는 카페인산 0-메틸전이효소 (Caffeic acid O-methyltransferase, C0MT)를 암호화하는 유전자를 포함하는 발현백터를 제조하는 단계 ;
2) 단계 1)의 발현백터를 숙주세포에 형질전환하는 단계 ;
3) 단계 2)의 형 질전환체를 배양하는 단계 ;
4) 단계 3)의 배양된 형질전환체의 단백질 발현을 유도한 후 , 추가 배양하는 단계 ; 및,
5) 단계 4)의 배양액에서 페를린산을 수득하는 단계를 포함하는 페를린산의 생산 방법을 제공한다. 본 발명의 구체적인 실시예에서, 본 발명자들은 페닐프로파노익 산 생합성에 관여하는 유전자를 포함하는 백터를, 구체적으로 pET-Tal, pET-T5및 pET-T5M, 또는 pET-opTal , ρΕΤ-οΡΤ5 및 ρΕΤ-ορΤ5Μ (도 2 참조)를 제작하였고, 타이로신 고생산 균주를 제작하였다 (도 4내지 도 8 참조).
또한, 본 발명자들은 상기 페닐프로파노익 산 생합성에 관여하는 유전자를 포함하는 백터를 상기 제작한 타이로신 고생산 균주 또는 일반 대장균 균주에 도입하여 형질전환한 뒤에, 각각의 형질전환 균주에서 생산되는 페닐프로파노익 산 화합물의 생산 확인 및 비교한 결과, 일반 대장균에 pET-Tal/C41, pET-T5/C41, PET-T5M/C41를 도입하였을 때보다 본 발명에서 제작한 타이로신 고생산 균주 (pAD-AG/AtyrRl 균주 (AOAF1))에 상기 백터를 도입하였을 때, 4-쿠마린산, 카페인산, 페를린산의 생산이 각각 16.5배, 3.5배, 7배 증가된 것을 확인하였다 (도 10 참조). 또한, 일반 대장균에 pET-opTal, pET-opT5, pET-opT5M를 도입하였을 때보다 본 발명에서 제작한 타이로신 고생산 균주 (pAD-AG/AtyrRl 균주 (AC-AF1))에 상기 백터를 도입하였을 때, 4-쿠마린산, 카페인산, 페를린산의 생산이 각각 5.5배, 2.4배, 2.6배 증가된 것을 확인하였다 (도 10 참조).
따라서, 본 발명에서 4-쿠마린산, 카페인산 및 페를린산의 전구체인 타이로신을 고생산하는 균주를 제작하고, 상기 균주에 4-쿠마린산, 카페인산 및 페를린산의 생합성에 관여하는 각각의 유전자가 포함된 유전자 카세트를 도입하여 형질전환된 균주를 제작하였으며, 상기 형질전환된 균주를 배양하였을 때, 4—쿠마린산, 카페인산 및 페를린산이 고수율로 생산되는 것을 확인하였으므로, 본 발명의 4-쿠마린산, 카페인산 또는 페를린산 생산용 백터, 각각의 백터를 도입한 형질전환체 또는 상기 형질전환체들을 이용한 4-쿠마린산, 카페인산 또는 페를린산 생산 방법을 4-쿠마린산, 카페인산 및 페를린산의 대량 생산에 유용하게 사용할 수 있다. 또한, 본 발명은 L-타이로신을 고생산하기 위한, 타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA一 binding transcriptional repressor, tyrR)가 결손되고, 서열번호 7의 염 기서열로 구성되는 tyrAf [코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mutase/prephenate dehydrogenase gene, tyrA)의 피드백-저해-저항성 (feedback-inhibit ion-resistantᅳ f ) 유전자] 및 서 열번호 9의 염기서 열로 구성되는 aroGf [3-디옥시 -D-아라비노-햅를로소내이트 -7-인산염합성효소 -π" ( 3-deoxy-D-ar ab i no-hept u 1 osonat e-7-phosphat e (DAHP ) synthase, aroG)의 피드백-저해-저항성 (feedback-inhibit ion-resistant , f ) 유전자]가 동시에 삽입된 형질전환체의 용도를 제공한다.
또한, 본 발명은 4-쿠마린산을 생산하기 위한, 서 열번호 11로 기재되는 타이로신 암모니아 리아제 (Tyrosine a讓 onia lyase, TAL)를 암호화하는 유전자 또는 서 열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수을로 생합성할 수 있는 숙주세포를 형 질전환시 킨 형질전환체의 용도를 제공한다.
또한, 본 발명은 카페인산을 생산하기 위한 , 서 열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서 열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서 열번호 1로 기재되는 4-쿠마린산 3-수산화효소 (4-coumarate 3-hydroxylase, C3H)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수율로 생합성할 수 있는 숙주세포를 형 질전환시킨 형 질전환체의 용도를 제공한다 .
또한 , 본 발명은 페를린산을 생산하기 위 한 , 서 열번호 11로 기 재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서 열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서 열번호 1로 기재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자 및 서 열번호 2로 기재되는 카페인산 0-메틸전이효소 (Caffeic acid 0-methyl transferase, C0MT)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수율로 생합성할 수 있는 숙주세포를 형 질전환시킨 형 질전환체의 용도를 제공한다 .
본 발명에서 4-쿠마린산, 카페인산 및 페를린산의 전구체인 타이로신을 고생산하는 균주를 제작하고 , 상기 균주에 4—쿠마린산, 카페인산 및 페를린산의 생합성에 관여하는 각각의 유전자가 포함된 유전자 카세트를 도입하여 형질전환된 균주를 제작하였으며,상기 형질전환된 균주를 배양하였을 때, 4-쿠마린산,카페인산 및 페를린산이 고수율로 생산되는 것을 확인하였으므로 본 발명의 4-쿠마린산, 카페인산 또는 페를린산 생산용 백터, 각각의 백터를 도입한 형질전환체 또는 상기 형질전환체들을 4-쿠마린산, 카페인산 및 페를린산의 대량 생산에 유용하게 사용할 수 있다. 이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
<실시예 1> 페닐프로파노익 산 (Phenylpropanoid) 생합성에 관여하는 유전자를 포함하는 백터의 제작
L-타이로신 (L-tyrosine)을 전구체로 하고, 4-쿠마린산 (4-Coumaric acid) 및 카페인산 (caffeic acid)을 중간체로 하여 최종적으로 페를린산 (ferulic acid)을 생합성하는 경로를 유전공학적 기술에 의해 인위적으로 대장균에 구축하고자 하였다 (도 1).
<1-1>페닐프로파노익 산 화합물 생합성 경로에 관여하는 유전자의 수득
1) L-타이로신을 4-쿠마린산으로 변환하는 효소인 타이로신 암모니아 리아제 (Tyrosine a瞧 onia lyase, TAL)를 암호화하는 sara8을 균 Saccharothn'x e ½7ae/2s/s)(KCTC9392)로부터 수득하였고, 염기서열을 분샥하였으며, 서열번호 11로 구성되고 (대한민국 등록특허 제 10-1091155호 참조);
2) 상기 4-쿠마린산을 카페인산으로 변환하는 효소인 4-쿠마린산 3-수산화효소 (4-coumarate 3-hydroxylase, C3H)를 암호화하는 sam5를 ^^균 Saccharothrix e¾ra/¾«?s/s)(KCTC9392)로부터 수득하였고, 염기서열을 분석하였으며, 서열번호 1로 구성되며 (대한민국 등록특허 제 10- 1091155호 참조); 3) 상기 카페인산을 페를린산으로 변환하는 효소인 카페인산 0-메틸전이효소 (Caffeic acid O-methyltransferase, C0MT)를 암호화하는 com을 애기장대 G4r thali ana) ^—^ 수득하였고, 염기서열을 분석하였으며, 서열번호 2로 구성된다 (대한민국 등록특허 제 10-1091155호 참조).
<1-2-1>타이로신 암모니아 리아제 유전자 발현 백터 (pET-TAL)의 제조 타이로신 암모니아 리아제 유전자를 발현하는 백터를 제조하기 위하여, 대한민국 등록특허 제 10-1091155호에 개시된 방법을 이용하여, 상기 실시예 <1-1>의 타이로신 암모니아 리아제를 암호화하는 유전자를 pET-28a (+) 백터 (Invitrogen, USA)에 삽입하여 pET-TAL 백터를 제작하였다 (도 2).
<1-2-2> 타이로신 암모니아 리아제 유전자 및 4-쿠마린산 3-수산화효소 유전자가 연결된 유전자 발현 백터 (PET-T5)의 제조
타이로신 암모니아 리아제 유전자 및 4-쿠마린산 3-수산화효소 유전자가 연결된 유전자 발현 백터를 제조하기 위하여, 대한민국 등록특허 제 10-1091155호에 개시된 방법을 이용하여, 타이로신 암모니아 리아제 유전자 및 4-쿠마린산 3-수산화효소 유전자가 연결된 pET-T5 백터를 제작하였다 (도 2).
<1-2-3>타이로신 암모니아 리아제 유전자 , 4-쿠마린산 3-수산화효소 유전자 및 카페인산 "메틸전이효소 유전자가 연결된 유전자 발현 백터 (pET-T5M)의 제조
타이로신 암모니아 리아제 유전자, 4-쿠마린산 3-수산화효소 유전자 및 카페인산 0-메틸전이효소 유전자가 연결된 유전자 발현 백터를 제조하기 위하여, 대한민국 등록특허 제 10- 1091155호에 개시된 방법을 이용하여, 타이로신 암모니아 리아제 유전자, 4-쿠마린산 3-수산화효소 유전자 및 카페인산 0-메틸전이효소 유전자가 연결된 pET-T5M 백터를 제작하였다 (도 2).
<1-3> 페닐프로파노익 산 화합물 생합성 경로에 관여하는 유전자의 변형 및 발현 백터의 제작
상기 <실시예 1〉에서 수득한 유전자를 변형한 후, 상기 변형된 유전자를 포함하는 백터를 제작하였다. <1-3-1>타이로신 암모니아 리아제 유전자 (opTAL) 합성
상기 실시예 <1-1>에서 수득한 타이로신 암모니아 리아제 (Tyrosine ammonia lyase, TAU의 유전자 (opTAL)를 합성하였다.
구체적으로, 방선균 Saccharothrix espa3a«3s/s(KCTC9392)에서 타이로신 (Tyrosine)을 4-쿠마린산으로 변환하는 효소인 타이로신 암모니아 리아제 (TAL)의 아미노산 서열을 토대로 대장균에서 타이로신 암모니아 리아제 (TAL)의 아미노산 서열 (서열번호 3) 각각에 대한 tRNA 비율에 따른 최적의 codon usage를 사용한 염기 서열 (서열번호 4)을 결정하였으며, 결정한 서열은 바이오니아 (주)에 주문 제작하였다. 상기 서열은 시작코돈 앞에 Ndel 제한효소의 인식서열을 가지고 있으며, 종결코돈 뒤에 HindU\ 제한효소 인식서열을 가지고 있다. 제조된 타이로신 암모니아 리아제 (TAL)의 유전자 (opTAL)는 증폭을 위해 pGEM-T easy(promega, USA)백터에 삽입하였으며, 이를 pGEM— T opTAL이라 명명하였다. 그 결과, 방선균 Saccharothrix espanaens/s CK9392) 유래의 타이로신 암모니아 리아제 (TAL)의 유전자 (opTAL)를 합성하였다. <1-3-2> 합성 타이로신 암모니아 리아제 유전자 (opTAL) 발현 백터 (pET-opTAL) 제조
상기 실시예 <1-3-1>에서 합성한 타이로신 암모니아 리아제 (TAL)의 유전자 (opTAL)를 발현하는 백터를 제조하기 위해, 상기 타이로신 암모니아 리아제 (TAL)의 합성 유전자 (opTAL)를 백터 PET-28a(+)에 삽입하였다.
구체적으로, 상기 실시예 <1-3_1>에서 제작한 pGEM-T opTAL 백터를 대장균에 형질전환하여 대량 확보한 후, 확보된 pGEM-T opTAL DNA를 제한 효소
Figure imgf000015_0001
liind l로 동시에 절단한 단편 1.53 kb를, 대장균 발현 백터인 pET-28a (+)의 Λ¾Ι과 HindiU 자리에 삽입하여 발현 백터 pET-opTAL을 완성하였다 (도 2).
<1-3-3>타이로신 암모니아 리아제 유전자 (opTAU 및 4-쿠마린산 3-수산화효소 유전자가 연결된 유전자 발현 백터 제작 (pET-opT5) 합성
상기 실시예 <1-1>에서 수득한 4-쿠마린산 3-수산화효소 (4-coumarate
3-hydroxylase, C3H)의 유전자인 서열번호 1로 구성되는 sam5을 이용하여 실시예 <1-3-1>에서 수득한 opTAL과 연결하여 유전자 (opT5)를 합성하였다.
구체적으로, 상기 실시예 <1-1>에서 수득한 4-쿠마린산 3-수산화효소의 유전자 (sam5)는 시작코돈 앞에 Nde\ 제한효소의 인식 서열을 가지고 있으며, 종결 코돈 뒤에 Hi'nd ll 제한효소 인식 서열을 가지고 있다. 제조된 4-쿠마린산 3-수산화효소 (C3H)의 유전자를 실시예 <1-3— 1>에서 수득한 opTAL과 연결하여 상기 실시예 <1-3-2>의 방법을 이용하여, pET-opT5를 제작하였다 (도 2).
이 백터에 삽입된 0pTal 유전자와 sam5 유전자는 각각의 프로모터와 리보좀 결합자리 및 전사종결 서열을 가지고 있어 독립적으로 발현 조절을 받도록 제작하였다.
<1-3-4> 타이로신 암모니아 리아제 유전자 (opTAL), 4-쿠마린산 3-수산화효소 유전자 (opT5) 및 카페인산 0~메틸전이효소 유전자가 연결된 발현 백터 (ρΕΤ-ορΤ5Μ) 제조
상기 실시예 <1-1>에서 수득한 카페인산을 페를린산으로 변환하는 효소인 카페인산 0-메틸전이효소 (Caffeic acid 0-methyl transferase; 이하, C0MT)의 유전자 인 서열번호 2로 구성되는 com을 실시예 <1-3-3>에서 수득한 opT5과 연결하여 유전자 (ορΤ5Μ)을 합성하였다.
구체적으로, 상기 실시예 <1— 1〉에서 수득한 카페인산을 페를린산으로 변환하는 효소인 카페인산으메틸전이효소 (Caffeic acid 0-methyl transferase; 이하, C0MT)의 염기서열을 통한 com 유전자는 시작코돈 앞에 Nde\ 제한효소의 인식 서열을 가지고 있으며, 종결 코돈 뒤에 Hind l 제한효소 인식 서열을 가지고 있다. 제조된 1 카페인산 0-메틸전이효소 (C0MT)의 유전자를 실시 예 <1-3-3>에서 수득한 opT5와 연결하여 ρΕΤ-ορΤ5Μ를 제작하였다 (도 2) .
이 백터에 삽입된 opTal 유전자, sam5 유전자 및 com 유전자는 각각의 프로모터와 리보좀 결합자리 및 전사종결 서 열을 가지고 있어 독립적으로 발현 조절을 받도록 제작하였다 .
<실시 예 2> 페닐프로파노익 산 생합성에 관여하는 유전자를 포함하는 백터가 형질전환된 균주의 제조
<2-1> 타이로신 암모니아 리아제 유전자 발현 백터가 형질전환된 균주의 제조 상기 실시 예 <1-2-1>에서 제작한 pET-TAL 백터 및 상기 실시 예 <1-3-2>에서 제작한 pET-opTAL 백터가 각각 형 질전환된 대장균 ( ?/7 C41 , Mi roux B & Walker JE)으로부터 4-쿠마린산 생산을 확인하기 위해, pET-TAL 백터 및 pET-opTAL 백터를 각각 대장균에 형 질전환하여 각각 pET-TAL/C41 및 pET-opTAL/C41 형 질전환 균주를 제조하였다.
<2-2> 타이로신 암모니아 리아제 유전자 및 4-쿠마린산 3-수산화효소 유전자가 연결된 유전자의 발현 백터가 형질전환된 균주의 제조
상기 실시 예 <1-2-2>에서 제작한 pET-T5 백터 및 상기 실시 예 <1-3-3>에서 제작한 pET-opT5 백터를 상기 <2-1>과 동일한 방법으로, 대장균에 형질전환하여 각각 pET-T5/C41 및 pET-opT5/C41 형질전환 균주를 제조하였다 .
<2-3> 타이로신 암모니아 리아제 유전자, 4-쿠마린산 3-수산화효소 유전자 및 카페인산 0 "메틸 전이효소 유전자가 연결된 유전자 발현 백터가 형질전환된 균주의 제조
상기 실시 예 <1-2-3>에서 제작한 pET-T5M 및 상기 실시 예 <1— 3-4>에서 제작한 pET-opT5M 백터를 상기 <2-1>과 동일한 방법으로 , 대장균에 형질전환하여 각각 PET-T5M/C41 및 pET-opT5M/C41 형 질전환 균주를 제조하였다. <실시예 3>페닐프로파노익 산 생산 효과 확인
<3-1> 4-쿠마린산 생산 효과 확인
상기 실시예 <2-1>에서 제조한 형질전환한 대장균주 pET-TAL/C41 또는 pET— opTAL/C41의 4-쿠마린산 생산 효과를 확인하였다.
구체적으로, 상기 대장균을 LB 배지 (50 ug/t Kanamycin) 30 에 접종하여 370C에서 0D6000.6까지 배양하였고, 10분 저온 층격 (cold shock) 이후 1 mM IPTG로 단백질 발현을 유도하였다. 그 후, 260C에서 5시간 동안 추가로 배양하고 세포를 수득하여 30 M9C(modified M9 minimal media; added CaC0325 g/l, glucose 15 g/l 또는 40g/t; 50/zg/t Ran, 1 mM IPTG)배지에 옮기고 260C에서 36시간 동안 배양하였다. 상기 배양액의 일부를 분취하여 초음파로 세포를 파쇄한 후, 막분리 (Sartorius Minisart RC4, 0,2um)하여 그 용액 20 를 아래의 HPLC조건으로 분석하였다. YMC J ' sphere 0DS-H80, 150x4.6隨 I.D.,(YMC,일본)컬럼을 이용하여 CH3CN-H20( J.T.Baker, USA )(0.05% TFA; Sigma-Aldrich, USA) 이동상을 1 i /min의 속도로 기울기 (gradient)로 흘려주어 HPLC분석을 수행하였다. 이때, 4-쿠마린산 표준품은 Sigma(C9008; USA)에서 구입하여 분석하였다.
그 결과,도 3에 나타낸 바와 같이, 상기 pET-TAL/C41또는 pET-opTAL/C41균주 배양액의 추출물에서 4-쿠마린산 표준품과 동일한 시간대 (Rt, 5.8 분)에 동일한 UV 스펙트렘을 가진 피크를 확인하였으며, 이를 통해 상기 형질전환된 균주가 4-쿠마린산 생산 효과가 있음을 확인하였다 (도 3). <3-2> 카페인산 생산 효과 확인
상기 실시예 <2-2〉에서 제조한 형질전환한 대장균주 pET-T5/C41 또는 pET-opT5/C41의 카페인산 생산 효과를 확인하였다.
구체적으로, YMC J' sphere 0DS-H80, 150x4.6 mm I.D.,(YMC, 일본) 컬럼을 이용하여 CH3CN-H20(J/LBaker, USA) (0.05% TFA; Sigma-Aldrich, USA) 이동상을 1 /min의 속도로 15%에서 60%까지 15분간 HPLC분석을 수행하였다. 이때, 카페인산 표준품은 Sigma(USA)에서 구입하여 분석하였다.
그 결과, 하기 표 1에 나타낸 바와 같이 , 상기 PET-T5/C41 또는 pET-opT5/C41 균주 배양액의 추출물에서 카페인산 표준품과 동일한 시간대 (Rt, 6.0 분)에 동일한 UV 스펙트럼을 가진 피크를 확인하였으며, 이를 통해 상기 형질전환된 균주가 카페인산 생산 효과가 있음을 확인하였다 (표 1).
또한, 표 1에 나타낸 바와 같이, pET-T5/C41 또는 pET-opT5/C41의 카페인산 생산 효과를 확인한 결과, 형질전환한 대장균주 pET-T5/C41는 유의적으로 카페인산만을 생산하는 것을 확인하였다 (표 1).
【표 1]
Engineered 4-Coumaric acid €¾ffdc acid Fenilic: add R coli strairts (ΠΜ L) (mgL) (ma/L)
:ΕΓ-Τ5 D 42*19 - pET-opT5 26 ± 8; 14* 2 -
ΡΕΤ-Ϊ5Μ ND ND 28 ±10 pET-opTTS ND m 73 ± 15 t¾t .
<3-3>페를린산 생산효과 확인
상기 실시예 <2-3>에서 제조한 형질전환한 대장균주 pET-T5M/C41 또는 pET-opT5M/C41의 페를린산 생산 효과를 확인하였다.
구체적으로, J'sphere 0DS-H80, 4.6x150 mm I .D. , (Waters, Ireland) 컬럼을 이용하여 CH3CN-H20( J. T.Baker, USA) (0.05% TFA; Sigma-Aldrich, USA) 이동상을 1 i /min의 속도로 20%에서 25¾>까지 15분간 HPLC분석을 수행하였다. 이때, 페를린산 표준품은 Sigma(USA)에서 구입하여 분석하였다.
그 결과, 상기 표 1에 나타낸 바와 같이 상기 PET-T5M/C41또는 pET— opT5M/C41 균주 배양액의 추출물에서 페를린산 표준품과 동일한 시간대 (Rt, 11.7분)에 동일한 UV 스펙트렘을 가진 피크를 확인하였으며, 이를 통해 상기 형질전환된 균주가 페를린산 생산 효과가 있음을 확인하였다 (표 1).
또한, 상기 표 1에 나타낸 바와 같이, 형질전환한 대장균주 pET-T5M/C41 또는 pET-opT5M/C41의 페를린산 생산 효과를 확인한 결과, 형질전환한 대장균주 PET-T5M/C41 또는 pET-opT5M/C41는 유의적으로 페를린산만을 생산하는 것을 확인하였다 (표 1).
<실시예 >타이로신 고생산 균주 제작
<4-1> tyrR이 결손된 돌연변이 균주의 제작
페닐프로파노익 산 생합성 경로의 전구체인 타이로신을 고생산하는 대장균 균주를 제작하기 위해 Appl Microbiol Biotechnol (2007) 75: 103.110에 기재된 방법과 유사하게 대장균 C4 DE3)에서 tyrR (타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA-binding transcriptional repressor, tyrR)을 넉아웃 (knockout)시킴으로써, tyrR이 결손된 돌연변이 (이하 AtyrRl로 기재) 대장균 균주를 제작하였다. 도 4에
AtyrRl 균주의 구축 과정을 나타내었다 (도 4). 구체적으로, Appl Microbiol Biotechnol (2007) 75: 103.110에서는 E. coli 12 균주를 기반으로 타이로신 생산 균주를 제작하였지만, 본 발명은 단백질 발현 호스트로주로 사용되는 E. coli B균주인 C41 (DE3)을 기반으로 하였다. E. coli B 균주는 한국생명공학연구원에서 발표한 전체 서열 (genome sequence)을 토대로 tyrR 유전자 (ACT43188.1)를 확인하였다.
유전자 제거 변이주 제작은 Gene Bridges 사의 Quick & Easy E. coli gene deletion kit을 이용하여 Red/ET재조합 (recombination)시스템을 사용하였다 (도 4). 먼저 tyrR 유전자의 in-frame deletion mutant 제작을 위하여 tyrR (ACT43188.1)의 5' 와 3'말단의 유전자 염기서열을 사용하여 유전자 제거 프라이머 (gene deletion primers)를 (Tyr-Rf: gtcatatcatcatattaattgttcttttttcaggtgaaggttcccatgcgtMTTAACCCT
CACT AGGGCG (서열번호 5) 와 Tyr-Rr: atcaggcat at t cgcgct tactctt cgt tcttct tctgactcagaccat aTAATACG
ACTCACTATAGGGCTC (서열번호 6); 소문자는 tyrR 염기서열 bold 문자는 tyrR의 시작코돈과 종결코드, 대문자는 FRT 염기서열) 제작하였다. 이 프라이머 세트 (primer set) (Tyr-Rf 와 Tyr-Rr)을 사용하고 FRT-neo-FRT 카세트 (cassette)을 주형으로 pfu Taq 폴리머라제 (polymerase)을 이용하여 PCR을 수행하였다. 이 PCR 산물을 Red/ET 재조합효소 (recombinase)을 발현하는 pRedET 백터 (vector)가 형질전환된 E. coli B 균주 (strain)에 전기천공법 (electroporation)으로 형질전환한 후 카나마이신 (kanamycin) 저항성 균주만을 선택하였다. 이 내성 균주 (A37-1)는 tyrR 유전자 부위에 FRT-neo-FRT 카세트가 삽입된 상태임을 PCR 단편의 염기서열 분석으로 확인할 수 있었다. 이 A37-1 균주에서 FRT-neo-FRT 카세트 부위 (region)를 제거한 in-frame deletion 균주 제작을 위해 FLPe 재조합효소 (recombinase) 발현 백터 (707-FLPe)를 다시 형질전환한 후 카나마이신 내성이 제거된 균주 (AtyrRl)를 선택하였다 (도 5). 그리고, 카나마이신 내성이 제거된 균주 (AtyrRl)에서 FRT-neo-FRT 카세트가 제거된 것을 프라이머 (primer)(tyr-vl과 tyr— v2)를 사용하고 yrRl 균주의 염색체
DNA를 주형으로 한 PCR 산물의 염기서열 분석을 통해 확인하였다. 염기서열 분석에서 예상한 대로 tyrR 유전자 대신 tyrR 유전자의 ATG 시작 코돈 뒤에 FRT 염기서열을 포함하여 97 bp의 염기서열만 남아있었다 (도 6의 FR라고 표시된 부분) (도 6). 이 AtyrRl균주에서는 기존의 발표된 결과와 일치하게 HPLC상으로는 타이로신 생산을 확인할 수 없었다.
<4-2> pET-AG 백터의 클로닝 (cloning) 타이로신을 고생산하는 균주를 제작하고자, 타이로신의 생산에서 피드백에 관여하는 효소인 tyrA 및 aroG의 유도체를 암호화하는 유전자를 포함하는 백터를 각각 제작하고, 이들 두 유도체를 모들화된 형태로 제작하여 상기 <4-1>에서 제작된
AtyrRl 균주에 도입하였다.
타이로신과 같은 방향족 (aromatic) 아미노산의 생합성 효소들은 최종 산물인 타이로신과 같은 방향족 아미노산에 의해 효소의 활성이 저해되는 것으로 보고되어 있어, 이들 피드백-저해-저항성 효소의 발현으로 최종산물의 생산성이 향상된 것으로 알려져 있다. Appl Microbiol Biotechnol (2007) 75: 103.110에서는 피드백—저해-저항성 효소 중 코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mut ase/ pr ephenat e dehydrogenase gene, tyrA)의 피드백-저해-저항성을 가진 유전자 (tyrAf) 및
3-디옥시 -D-아라비노 -햅를로소내이트 -7—인산염 합성효소 유전자 ( 3-deoxy-D-arab i no-hep t u 1 osonat e-7-phosphat e ( DAHP ) synt hase, ar oG )의 피드백-저해-저항성을 가진 유전자 (aroGf)를 사용하였다.
본 발명에서는 이와 유사하게 이들 피드백 -저해 -저항 효소의 전장 단백질에서 하나 또는 두 개의 아미노산을 치환한 것을 암호화하는 유전자인 tyrAf (서열번호 7) 및 aroGf를 사용하였다. aroGf의 경우, applied and environmental microbiology(1997) 63(2) 761-762에 보고된 AroG15 변이주 (146 Asp → Asn)을 사용하였다. 아울러, 상기 aroGf 에 대해서는 상기 실시예 <1-3-1>에 기재된 바와 같이, 대장균에서 발현이 최적화되도록 코돈 최적화된 (codon optimized) aroGf를 사용하였다. 구체적으로, aroGf의 아미노산 서열을 토대로 대장균에서 aroGf의 아미노산 서열 (서열번호 8) 각각에 대한 tRNA 비율에 따른 최적의 codon usage를 사용한 염기 서열 (서열번호 9)을 결정하였으며 결정한 서열은 미국 DNA 2.0사에 주문 제작하였다. 상기 서열은 시작코돈 앞에 Nde\ 제한효소의 인식 서열을 가지고 있으며, 종결코돈 뒤에 ΙίϊΐΊώΛΙ 제한효소 인식 서열을 가지고 있다. 이로 인하여 타이로신 생산에 의해 각각의 효소 활성이 그대로 유지되어 타이로신의 고생산을 유도할 수 있었다. 한편, TyrA의 경우, 변이주 중 코리스믹산 뮤타제 (chorismate mutase) 활성과 저항성은 그대로 유지하면서 프리페닉산 탈수소효소 (prephenate dehydrogenase) 활성과 내성을 동시에 가지고 있는 TyrAmut— 20를 사용하였다. 이
TyrAmut -20는 53Met → lie 와 354Ala → Val을 가지고 있다 (applied and environmental microbiology (2005) 71(11) 7224— 7228) (서열번호 10). 상기와 같은 아미노산 치환 과정을 통해 각 효소는 타이로신 농도에 따른 활성 감소 효과가 상실된 효소로 변형되었다.
본 발명에서의 구체적인 실시예는 Appl Microbiol Biotechno 1(2007) 75:103.110에 기재된 방법과 유사하게 실시하였으며, 이때 상기 두 유전자를 모들화하기 위하여 사용한 백터는 상기 참조 논문의 경우, low-copy-vector인 pCL1920이고, 본 발명의 실시예에서는 피드백-저해-저항성 유전자 tyrAf 및 aroGf의 발현을 증가시키기 위하여 high-copy vector인 pET-28(+)를 사용하였다.
그 결과,도 7에 나타낸 바와 같이, tyrAf 및 aroGf이 모들화된 형태인 pET-AG를 제작하였다 (도 7). <4-3> pET-AG/ᅀ tyrRl균주 (AC-AF)에서 IPTG유도에 따른 타이로신의 생산 확인 상기 실시예 <4-1>에서 제작한 Δ tyrRl 균주에 상기 실시예 <4-2>에서 제작한 pET-AG백터를 도입하였고, IPTG유도에 따른 타이로신의 생산을 확인하였다. 상기 실시예 <3-1>의 방법을 이용하여 타이로신의 생산을 확인하였다. 이때, 타이로신 표준품은 Sigma(USA)에서 구입하여 분석하였다.
그 결과, 상기 pET-AG/AtyrRl 균주 (AOAF)는 본 연구실 배양 조건에서 600 mg/L정도의 타이로신 생산 효과가 있음을 확인하였다 (도 8B). 이는 Appl Microbiol BiotechnoK2007)에서의 유사한 균주에서의 346 mg/L 보다 높은 효율을 나타내는 것을 확인하였다.
<4-4> pAD-AG클로닝 (cloning) 및 pAD-AG/ᅀ tyrRl균주 (AC-AF1)의 제작 pET-AG/AtyrRl 균주에서 페닐프로파노익 산 초기 전구체인 아미노산 타이로신 (tyrosine)이 고생산 되는 것을 확인하였다 . 하지만, 본 명세서에서 구축된 나린제닌 인공생합성 경로 백터를 발현하여 프로파노이드 생산을 실험하기 위해서는 프로파노이드 인공생합성 경로 백터에 aroG 와 tyrA 피드백 저해 (feedback inhibit ion) 변이 유전자 발현백터가 동시에 발현하는 two vector 시스템을 개발하여야 한다 .
이 러 한 two vector system을 위해 aroG 와 tyrA 피드백 저해 변이 유전자 발현백터를 pET vector에서 백터 기원 (vector origin)이 다른 pACYCDuet-1로 변환하여 사용하였다. 이를 위해 pET28-tyrA*을 Ncol/Hindl l l에 삽입하고 pET22-aroG*는 Ndel/Xhol 삽입하여 pAD— AG 백터를 제작하였다 (도 9) . 아울러, 상기 제작된 pAD-AG 백터를 상기 실시 예 <4-1>에서 제작한 AtyrRl 균주에 도입하여, pAD-AG/AtyrRl 균주 (AC-AF1)를 제작하였다 . 이 pAD-AG/AtyrRl 균주를 M9 배지에서 배양한 결과 pET-AG/AtyrRl 균주보다는 낮지만 Appl Microbiol Biotechnol (2007)에서의 유사한 균주 400 mg/L의 타이로신 생산을 확인하였다.
<실시 예 5> 페닐프로파노익 산 생합성에 관여하는 유전자를 포함하는 백터를 타이로신 고생산 균주 또는 일반 대장균 균주에 도입하여 형질전환한 뒤에, 각각의 형질전환 균주에서 생산되는 페닐프로파노익 산 화합물의 생산 확인 및 비교
상기 <실시 예 3>에서 , 일반 대장균에 각각
1) pET-Tal , pET-T5, pET-T5M 백터 ; 또는
2) pET-opTal , ρΕΤ-ορΤ5, ΡΕΤ-ορΤ5Μ 백터를 도입하여, 각각의 백터에 대한 형질전환된 균주인
1) pET-Tal/C41 , pET-T5/C41, pET-T5M/C41 ; 또는
2) PET-opTal/C41, pET-opT5/C41 , pET-opT5M/C41를 제작하고 , 각각의 균주에서 4-쿠마린산, 카페인산, 페를린산의 생산을 확인하였다.
상기 페닐프로파노익 산 생산 결과와 상기 실시 예 <4-4>에서 제작한 pAD-AG/ᅀ tyrRl 균주 (AOAFl)에
1) pET-Tal , pET-T5, pET-T5M 백터 ; 또는
2) pET-opTal , pET-opT5, pET-opT5M를 도입하여 제작된
1) pET-Tal/AC-AFl, pET-T5/AC-AFl , pET-T5M/AC-AFl 균주 ; 또는
2) pET-opTal/AC-AFl, pET-opT5/AC-AFl , pET-opT5M/AC-AFl 균주 각각에서
4-쿠마린산, 카페인산, 페를린산의 생산을 비교하였다.
형질전환된 균주의 구체적 인 정보는 하기 표 2와 같다.
【표 2】
Figure imgf000025_0001
그 결과, 도 10에 나타낸 바와 같이, 일반 대장균에 pET-Tal/C41, pET-T5/C41 , PET-T5M/C41를 도입하였을 때보다 본 발명에서 제작한 타이로신 고생산 균주 (PAD-AG/AtyrRl 균주 (AC-AF1) )에 상기 백터를 도입하였을 때 , 4-쿠마린산 , 카페인산, 페를린산의 생산이 각각 16.5배 , 3.5배 , 7배 증가된 것을 확인하였다 (도 10) .
【표 3】 5
Engineered
tyrosine overproducing 4-Coumaric a id Caffeic acid Perulic acid
E. (pAD-AG
AiyriZ)
^Et-TAL 974 ± 30 - pET-opTAL 805 ±. 41 -
PET-T5 307 ±. 8 150 ± 8 - ET-opT5 511 ±' 69 40 16 - ET-TSM 113 ± 12 22 * 3 196 ± 26 pET-opT5M 150 ± 17 4β ± 7 1β7 ± 12 또한, 도 10 및 표 3에 나타낸 바와 같이 , 일반 대장균에 pET-opTal , pET-opT5, pET-opT5M를 도입하였을 때보다 본 발명에서 제작한 타이로신 고생산 균주 (pAD-AG/ᅀ tyrRl 균주 (AC-AF1) )에 상기 백터를 도입하였을 때, 4-쿠마린산, 카페인산, 페를린산의 생산이 각각 5.5배 , 2.4배 , 2.6배 증가된. 것을 확인하였다 (도 10 및 표 3) .
따라서, 본 발명에서 제작한 타이로신 고생산 균주에 페닐프로파노익 산 생합성에 관여하는 유전자를 포함하는 백터를 형질전환 한 경우 , 4—쿠마린산, 카페인산, 페를린산을 대량으로 생합성할 수 있음을 확인하였다.

Claims

【청구의 범위】
【청구항 1】
타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA-binding transcript ional repressor , tyrR)가 결손되고, 서 열번호 7의 염기서 열로 구성되는 tyrAf [코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mut ase/pr ephenat e dehydrogenase gene, tyrA)의 피드백-저해-저항성 (feedback-inhibit ion-resistant , f ) 유전자] 및 서 열번호 9의 염기서 열로 구성되는 aroGf [3-디옥시 -D-아라비노 -햅률로소내이트 -7—인산염합성효소
-π- ¾ ( 3-deoxy-D-ar ab i no-hep t u 1 o s ona t e-7-pho spha t e ( DAHP ) synthase, aroG)의 피드백-저해-저항성 (feedback-inhibit ion-resistant , f ) 유전자]가 동시에 삽입된 L-타이로신 고생산용 형 질전환체 .
【청구항 2】
서 열번호 11로 기 재되는 타이로신 암모니아 리아제 (Tyrosine ammonia lyase, TAL)를 암호화하는 유전자 또는 서 열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수율로 생합성할 수 있는 숙주세포를 형질전환시킨 4-쿠마린산 (4-Coumaric acid) 생산용 형 질전환체 . 【청구항 3】
제 2항에 있어서 , 상기 숙주세포는 L-타이로신을 전구체로 하고,
4-쿠마린산을 생산할 수 있거나, 없는 것을 특징으로 하는 4-쿠마린산 생산용 형질전환체 . 【청구항 4】
제 2항에 있어서 , 상기 숙주세포는 타이로신 DNA-결합 전사 억제 인자 (Tyrosine飄一 binding transcript ional repressor , tyrR)가 결손되고, 서열번호 7의 염기서열로 구성되는 tyrAf [코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mutase/prephenate dehydrogenase gene, tyrA)의 피드백-저해-저항성 (feedback-inhibition-resistant, f) 유전자] 및 서열번호 9의 염기서열로 구성되는 aroGf[3—디옥시 -D-아라비노-햅률로소내이트 -7-인산염합성효소 -π- 3-deoxy-D-ar ab i no-hept u 1 osonat e-7-phosphat e (DAHP) synthase, aroG)의 피드백-저해-저항성 (feedback— inhibition-resistant, f) 유전자]이 삽입된 것을 특징으로 하는 4-쿠마린산 생산용 형질전환체 .
【청구항 5】
1) 서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자를 포함하는 발현백터를 제조하는 단계;
2) 단계 1)의 발현백터를 각각 숙주세포에 형질전환하는 단계;
3) 단계 2)의 형질전환체를 배양하는 단계;
4) 단계 3)의 배양된 각각의 형질전환체의 단백질 발현을 유도한 후, 추가 배양하는 단계; 및,
5) 단계 4)의 배양액에서 4-쿠마린산을 수득하는 단계를 포함하는 4-쿠마린산의 생산 방법 . 【청구항 6】
서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서열번호 1로 기재되는 4-쿠마린산 3-수산화효소 (4-coumarate 3-hydroxylase, C3H)를 암호화하는 유전자를 포함하는 발현백터로 L—타이로신을 고수율로 생합성할 수 있는 숙주세포를 형질전환시킨 카페인산 (caffeic acid) 생산용 형질전환체. 【청구항 7]
제 6항에 있어서, 상기 숙주세포는 L-타이로신을 전구체로 하고,
4-쿠마린산및 카페인산을 생산할 수 없는 것을 특징으로 하는 카페인산 생산용 형질전환체.
【청구항 8】
제 6항에 있어서, 상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산을 생산할 수 있고, 카페인산을 생산할 수 없는 것을 특징으로 하는 카페인산 생산용 형질전환체 .
【청구항 9】
제 6항에 있어서, 상기 숙주세포는 tyrR이 결손되고, 서열번호 7의. 염기서열로 구성되는 tyrAf 및 서열번호 9의 염기서열로 구성되는 aroGf이 삽입된 것을 특징으로 하는 카페인산 생산용 형질전환체.
【청구항 10】
1) 서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서열번호 1로 기재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자를 포함하는 발현백터를 제조하는 단계;
2) 단계 1)의 발현백터를 각각 숙주세포에 형질전환하는 단계;
3) 단계 2)의 형질전환체를 배양하는 단계;
4) 단계 3)의 배양된 각각의 형질전환체의 단백질 발현을 유도한 후, 추가 배양하는 단계; 및,
5) 단계 4)의 배양액에서 카페인산을 수득하는 단계를 포함하는 카페인산의 생산 방법 . 【청구항 111
서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서열번호 1로 기재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자 및 서열번호 2로 기재되는 카페인산 0-메틸전이효소 (Caff eic acid O-methyltransferase, COMT)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수율로 생합성할 수 있는 숙주세포를 형질전환시킨 페를린산 (ferulic acid) 생산용 형질전환체. 【청구항 12】
제 11항에 있어서, 상기 숙주세포는 L-타이로신을 전구체로 하고, 4—쿠마린산 카페인산 및 페를린산을 생산할 수 없는 것올 특징으로 하는 페를린산 생산용 형질전환체. 【청구항 13】
제 11항에 있어세 상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산을 생산할 수 있고, 카페인산 및 페를린산을 생산할 수 없는 것을 특징으로 하는 페를린산 생산용 형질전환체. 【청구항 14】
제 11항에 있어서 , 상기 숙주세포는 L-타이로신을 전구체로 하고, 4-쿠마린산 및 카페인산을 생산할 수 있고, 페를린산을 생산할 수 없는 것을 특징으로 하는 페를린산 생산용 형질전환체. 【청구항 15】
제 11항에 있어서, 상기 숙주세포는 tyrR가 결손되고, 서열번호 7의 염기서열로 구성되는 tyrAf 및 서열번호 9의 염기서열로 구성되는 aroGf가 삽입된 것을 특징으로 하는 페를린산 생산용 형질전환체.
【청구항 16]
1) 서열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서열번호 4로 기재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서열번호 1로 기재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자 및 서열번호 2로 기재되는 카페인산 0-메틸전이효소 (Caffeic acid 0-methyl transferase, COMT)를 암호화하는 유전자를 포함하는 발현백터를 제조하는 단계 ;
2) 단계 1)의 발현백터를 각각의 숙주세포에 형질전환하는 단계;
3) 단계 2)의 형질전환체를 배양하는 단계;
4) 단계 3)의 배양된 각각의 형질전환체의 단백질 발현을 유도한 후, 추가 배양하는 단계; 및,
5) 단계 4)의 배양액에서 페를린산을 수득하는 단계를 포함하는 페를린산의 생산 방법 .
【청구항 17】
L一타이로신을 고생산하기 위한, 타이로신 DNA-결합 전사 억제 인자 (Tyrosine DNA-binding transcriptional repressor, tyrR)가 결손되고, 서열번호 7의 염기서열로 구성되는 tyrAf [코리스믹산 뮤타제 /프리페닉산 탈수소효소 유전자 (chorismate mutase/prephenate dehydrogenase gene, tyrA)의 피드백-저해-저항성 (feedback-inhibition-resistant, f) 유전자] 및 서열번호 9의 염기서열로 구성되는 aroGf [3-디옥시 -D—아라비노-햅률로소내이트 -그인산염합성효소 -Π- ¾ 3-deoxy-D-ar ab i no-hept u 1 osonat e-7-phosphat e (DAHP ) synthase, aroG)의 피드백-저해-저항성 (feedback-inhibition-resistant, f) 유전자]가 동시에 삽입된 형질전환체의 용도. 【청구항 18]
4-쿠마린산을 생산하기 위한, 서 열번호 11로 기 재되는 타이로신 암모니아 리아제 (Tyrosine ammonia lyase , TAL)를 암호화하는 유전자 또는 서열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수을로 생합성할 수 있는 숙주세포를 형질전환시킨 형 질전환체의 용도 .
【청구항 19】
카페인산을 생산하기 위한, 서 열번호 11로 기 재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서 열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTA 를 암호화하는 유전자, 및 서 열번호 1로 기 재되는 4-쿠마린산 3-수산화효소 (4-coumarate 3-hydroxylase, C3H)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수율로 생합성할 수 있는 숙주세포를 형 질전환시킨 형 질전환체의 용도 .
【청구항 20】
페를린산을 생산하기 위한, 서 열번호 11로 기재되는 타이로신 암모니아 리아제 (TAL)를 암호화하는 유전자 또는 서 열번호 4로 기 재되는 합성 타이로신 암모니아 리아제 (opTAL)를 암호화하는 유전자, 및 서 열번호 1로 기 재되는 4-쿠마린산 3-수산화효소를 암호화하는 유전자 및 서 열번호 2로 기재되는 카페인산 0-메틸전이효소 (Caffeic acid 0-methyl transferase , C0MT)를 암호화하는 유전자를 포함하는 발현백터로 L-타이로신을 고수율로 생합성할 수 있는 숙주세포를 형질전환시 킨 형질전환체의 용도 .
PCT/KR2013/005459 2012-06-21 2013-06-20 타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법 WO2013191490A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120066625 2012-06-21
KR10-2012-0066625 2012-06-21
KR10-2013-0070890 2013-06-20
KR1020130070890A KR101527802B1 (ko) 2012-06-21 2013-06-20 타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법

Publications (1)

Publication Number Publication Date
WO2013191490A1 true WO2013191490A1 (ko) 2013-12-27

Family

ID=49769022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005459 WO2013191490A1 (ko) 2012-06-21 2013-06-20 타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법

Country Status (1)

Country Link
WO (1) WO2013191490A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849794A (zh) * 2020-06-29 2020-10-30 扬州大学 一种酿酒酵母重组菌及其构建方法和应用
CN114075524A (zh) * 2020-08-12 2022-02-22 中国科学院分子植物科学卓越创新中心 阿魏酸生产工程菌、其建立方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080102499A1 (en) * 2006-10-27 2008-05-01 Lori Jean Templeton Method of enhancing L-tyrosine production in recombinant bacteria
KR20090131845A (ko) * 2008-06-19 2009-12-30 한국생명공학연구원 4-쿠마린산, 카페익산 및 페룰린산 생합성에 관여하는유전자 및 이를 이용한 생산 방법
US7700328B2 (en) * 2006-06-07 2010-04-20 E.I. Du Pont De Nemours And Company Method for producing an L-tyrosine over-producing bacterial strain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700328B2 (en) * 2006-06-07 2010-04-20 E.I. Du Pont De Nemours And Company Method for producing an L-tyrosine over-producing bacterial strain
US20080102499A1 (en) * 2006-10-27 2008-05-01 Lori Jean Templeton Method of enhancing L-tyrosine production in recombinant bacteria
KR20090131845A (ko) * 2008-06-19 2009-12-30 한국생명공학연구원 4-쿠마린산, 카페익산 및 페룰린산 생합성에 관여하는유전자 및 이를 이용한 생산 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, OK SIK ET AL.: "Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, vol. 38, no. 10, 20 March 2011 (2011-03-20), pages 1657 - 1665 *
KANG, SUN-YOUNG ET AL.: "Artificial biosynthesis ofphenylpropanoic acids in a tyrosine overproducing Escherichia coli strain", MICROBIAL CELL FACTORIES, vol. 11, 3 December 2012 (2012-12-03), pages 1 - 9 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849794A (zh) * 2020-06-29 2020-10-30 扬州大学 一种酿酒酵母重组菌及其构建方法和应用
CN111849794B (zh) * 2020-06-29 2022-05-31 扬州大学 一种酿酒酵母重组菌及其构建方法和应用
CN114075524A (zh) * 2020-08-12 2022-02-22 中国科学院分子植物科学卓越创新中心 阿魏酸生产工程菌、其建立方法及其应用
CN114075524B (zh) * 2020-08-12 2024-02-23 中国科学院分子植物科学卓越创新中心 阿魏酸生产工程菌、其建立方法及其应用

Similar Documents

Publication Publication Date Title
JP6998466B2 (ja) クエン酸シンターゼの活性が弱化された変異型ポリペプチド及びそれを用いたl-アミノ酸生産方法
KR101091155B1 (ko) 4-쿠마린산, 카페익산 및 페룰린산 생합성에 관여하는유전자 및 이를 이용한 생산 방법
ES2884800T3 (es) Nuevo mutante de aspartoquinasa y método para la producción de L-aminoácido mediante su uso
CN103865864B (zh) 一种代谢工程改造大肠杆菌产圣草酚的方法
EP2875136B1 (en) Rhodobacter for preparing terpenoids
JP2022515018A (ja) バイオレチノールを生産する微生物及びそれを用いたバイオレチノールの生産方法
Yu et al. Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering
KR102052134B1 (ko) 헴, 코프로포르피린 iii 및 우로포르피린 iii의 생산능력이 향상된 재조합 미생물 및 이를 이용한 헴, 코프로포르피린 iii 및 우로포르피린 iii의 생산방법
JP2023507482A (ja) グアニジノ酢酸の発酵生産方法
CN115803442A (zh) 发酵制备胍基乙酸的方法
CN116096908A (zh) 发酵制备胍基乙酸的方法
KR101527802B1 (ko) 타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법
CN107099559B (zh) 用于生物技术制备甲基化的肉桂酸和肉桂酸酯、甲基化的苯乙胺和其偶联产物、尤其肉桂酸酰胺的偶联产物的方法
WO2013191490A1 (ko) 타이로신 고생산 균주에서의 인공대사 경로를 통한 4-쿠마린산, 카페인산 및 페룰린산의 생산 방법
KR101601404B1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
CA2946813A1 (en) Drimenol synthases ii
CN110268046A (zh) 产生l-赖氨酸的棒杆菌属的微生物,以及使用其产生l-赖氨酸的方法
KR101726288B1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
KR101336760B1 (ko) 나린제닌 또는 레스베라트롤의 생합성에 관여하는 유전자 및 이를 이용한 생산 방법
JP5227219B2 (ja) クルクミノイド合成酵素およびクルクミノイド製造方法
JP6959978B2 (ja) アシル転移酵素の活性を有する微生物及びその用途
JP6635535B1 (ja) Efpタンパク質を発現する大腸菌およびそれを用いたフラボノイド化合物製造方法
CN112877349B (zh) 一种重组表达载体、包含其的基因工程菌及其应用
KR101578652B1 (ko) 스틸벤 화합물을 생산하는 재조합 미생물 및 이를 이용한 스틸벤 화합물의 생산 방법
WO2020262107A1 (ja) (r)-レチクリンの生産方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807523

Country of ref document: EP

Kind code of ref document: A1