WO2013190944A1 - 極端紫外光生成システム - Google Patents

極端紫外光生成システム Download PDF

Info

Publication number
WO2013190944A1
WO2013190944A1 PCT/JP2013/064249 JP2013064249W WO2013190944A1 WO 2013190944 A1 WO2013190944 A1 WO 2013190944A1 JP 2013064249 W JP2013064249 W JP 2013064249W WO 2013190944 A1 WO2013190944 A1 WO 2013190944A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
laser beam
pulse laser
pulse
light
Prior art date
Application number
PCT/JP2013/064249
Other languages
English (en)
French (fr)
Inventor
柳田 達哉
計 溝口
若林 理
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2014521231A priority Critical patent/JP6121414B2/ja
Publication of WO2013190944A1 publication Critical patent/WO2013190944A1/ja
Priority to US14/578,141 priority patent/US20150102239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component

Definitions

  • This disclosure relates to an extreme ultraviolet light generation system.
  • the EUV light generation apparatus includes an LPP (Laser Produced Plasma) type apparatus that uses plasma generated by irradiating a target material with pulsed laser light, and a DPP (Discharge Produced Plasma) that uses plasma generated by discharge. ) Type devices and SR (Synchrotron Radiation) type devices using synchrotron radiation light have been proposed.
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • An extreme ultraviolet light generation system is configured to generate extreme ultraviolet light by irradiating a target with a first pulse laser beam and a second pulse laser beam to convert the target into plasma.
  • An extreme ultraviolet light generation system that includes a chamber provided with at least one introduction port for introducing a first pulse laser beam and a second pulse laser beam, and a target in a predetermined region in the chamber.
  • a target supply device configured to supply, and a first pulse laser beam irradiated to a target in the chamber, the first pulse laser beam having a pulse width of less than 1 ns is output.
  • the first laser device and the second pulse laser beam irradiated to the target irradiated with the first pulse laser beam are output.
  • a second laser device may be provided.
  • FIG. 1 schematically shows the configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 is a partial cross-sectional view schematically showing a configuration example of the EUV light generation system according to the first embodiment.
  • FIG. 3 is a graph showing the relationship between CE and irradiation conditions of prepulse laser light in an EUV light generation system.
  • 4A is a graph showing the relationship between the fluence of prepulse laser light and CE in the EUV light generation system
  • FIG. 4B is a graph showing the relationship between the light intensity of prepulse laser light and CE in the EUV light generation system. .
  • FIGS. 5A and 5B are photographs of a target irradiated with prepulse laser light in an EUV light generation system.
  • FIG. 6 schematically shows the arrangement of devices when the photographs shown in FIGS. 5A and 5B are taken.
  • 7A and 7B are cross-sectional views schematically showing the diffusion target shown in FIGS. 5A and 5B, respectively.
  • 8A to 8C are cross-sectional views schematically showing a diffusion target generation process when a pre-pulse laser beam having a pulse width on the order of picoseconds is irradiated onto the target.
  • 9A to 9C are cross-sectional views schematically showing a diffusion target generation process when a pre-pulse laser beam having a pulse width on the order of nanoseconds is irradiated onto the target.
  • FIG. 10 schematically shows a configuration example of the prepulse laser apparatus shown in FIG.
  • FIG. 11 schematically shows a configuration example of the mode-locked laser device shown in FIG.
  • FIG. 12 schematically shows a configuration example of the regenerative amplifier shown in FIG.
  • FIG. 13 schematically shows an optical path when a voltage is applied to the Pockels cell in the regenerative amplifier shown in FIG. 14A to 14E are timing charts of respective signals in the prepulse laser apparatus shown in FIG.
  • FIG. 15 schematically shows a configuration example of the main pulse laser apparatus shown in FIG.
  • FIG. 16 is a partial cross-sectional view schematically showing a configuration example of an EUV light generation system according to the second embodiment.
  • FIG. 17 schematically shows a configuration example of the delay time control apparatus shown in FIG.
  • FIG. 18 is a flowchart showing the operation of the control unit shown in FIG.
  • a droplet-shaped target may be irradiated with a pre-pulse laser beam to diffuse the target to form a diffusion target, and then the diffusion target may be irradiated with a main pulse laser beam.
  • the main pulse laser beam is irradiated to the diffusion target, the target material can be efficiently converted into plasma. According to this, the conversion efficiency (Conversion Efficiency: CE) from the energy of pulsed laser light to the energy of EUV light can be improved.
  • Conversion Efficiency: CE Conversion Efficiency
  • the pre-pulse laser beam for forming the diffusion target may be a short pulse in which the pulse width of each pulse is less than 1 ns, preferably less than 500 ps, and more preferably less than 50 ps.
  • the fluence of each pulse is not more than the fluence of each pulse of the main pulse laser beam, and is 6.5 J / cm 2 or more, preferably 30 J / cm 2 or more, more preferably 45 J / cm 2. It may be set as above.
  • the target can be broken into fine particles and diffused by shortening the pulse width of each pulse of the pre-pulse laser beam.
  • the target when the diffused target is irradiated with the main pulse laser beam, the target can be efficiently converted to plasma and CE can be improved.
  • Pulse laser light may mean laser light including a plurality of pulses. “Laser light” is not limited to pulsed laser light and may mean general laser light.
  • the “target material” may mean a material such as tin, gadolinium, or terbium that is turned into plasma when irradiated with pulsed laser light and can emit EUV light from the plasma.
  • Target may mean a mass containing a minute amount of target material that is supplied into a chamber by a target supply device and irradiated with pulsed laser light.
  • the term “droplet-shaped target” may mean that a minute amount of a melted target material is discharged into the chamber and becomes substantially spherical due to the surface tension of the target material.
  • “Diffusion target” may mean a target diffused into fine particles or the like by irradiating the target with prepulse laser light.
  • the diffusion target may contain plasma.
  • the light absorption rate of the diffusion target is higher than that of the droplet-shaped target, and the target can be efficiently converted into plasma by being irradiated with the main pulse laser beam.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system 11.
  • the EUV light generation apparatus 1 may be used with at least one laser system 3.
  • a system including the EUV light generation apparatus 1 and the laser system 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply device 26.
  • the chamber 2 may be sealable.
  • the target supply device 26 may be attached, for example, so as to penetrate the wall of the chamber 2.
  • the material of the target substance supplied from the target supply device 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole, and the pulse laser beam 32 may be transmitted through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed on the surface of the EUV collector mirror 23.
  • the EUV collector mirror 23 is preferably arranged such that its first focal point is located in the plasma generation region 25 and its second focal point is located in the intermediate focal point (IF) 292.
  • IF intermediate focal point
  • a through hole 24 for allowing the pulse laser beam 33 to pass therethrough may be provided at the center of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may further include an EUV light generation control apparatus 5 and a target sensor 4.
  • the target sensor 4 may have an imaging function, and may detect the presence, trajectory, position, speed, and the like of the target.
  • the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other.
  • a wall 291 in which an aperture is formed may be provided inside the connection portion 29.
  • the wall 291 is preferably arranged so that its aperture is located in a region including the second focal point of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control device 34, a laser beam collector mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser beam traveling direction control device 34 may include an optical system for defining the traveling direction of the pulsed laser beam and an actuator for adjusting the arrangement, posture, and the like of the optical system.
  • the pulsed laser beam 31 output from the laser system 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control device 34 and enters the chamber 2. May be.
  • the pulse laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
  • the target supply device 26 may be configured to output the target 27 toward the plasma generation region 25 in the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulse laser beam 33 is turned into plasma, and radiation light 251 can be emitted from the plasma.
  • the EUV light 252 included in the radiation light 251 may be selectively reflected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be output to the exposure apparatus 6 through the intermediate condensing point 292.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation control device 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may process image data of the target 27 captured by the target sensor 4. Further, the EUV light generation control device 5 may be configured to control the timing of outputting the target 27, the output direction of the target 27, and the like, for example. Further, the EUV light generation controller 5 may be configured to control, for example, the oscillation timing of the laser system 3, the traveling direction of the pulse laser light 32, the condensing position of the pulse laser light 33, and the like.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 is a partial cross-sectional view schematically showing a configuration example of the EUV light generation system 11 according to the first embodiment.
  • the chamber 2 includes a laser beam condensing optical system 22 a, an EUV collector mirror 23, a target recovery unit 28, an EUV collector mirror holder 41, plates 42 and 43, A beam dump 44 and a beam dump support member 45 may be provided.
  • the plate 42 may be fixed to the chamber 2 and the plate 43 may be fixed to the plate 42.
  • the EUV collector mirror 23 may be fixed to the plate 42 via the EUV collector mirror holder 41.
  • the laser beam condensing optical system 22a may include an off-axis parabolic mirror 221 and a plane mirror 222, and holders 221a and 222a for holding the mirrors, respectively.
  • the off-axis paraboloid mirror 221 and the plane mirror 222 are arranged via the respective holders so that the pulse laser beam reflected by the respective mirrors is in a position and posture so as to be collected in the plasma generation region 25. It may be fixed to.
  • the beam dump 44 may be fixed to the chamber 2 via the beam dump support member 45 so as to be positioned on the extension line of the optical path of the pulse laser beam.
  • the target collection unit 28 may be disposed on an extension line of the trajectory of the target 27.
  • a target sensor 4 In the chamber 2, a target sensor 4, an EUV light sensor 7, a window 21, and a target supply device 26 may be attached.
  • a laser beam traveling direction control device 34 and an EUV light generation control device 5 may be disposed outside the chamber 2.
  • the EUV light sensor 7 may detect the light intensity of the EUV light generated in the plasma generation region 25 and output a detection signal to the EUV controller 51.
  • the target supply device 26 may be a device that continues to output the target at regular time intervals, or may be an on-demand device that outputs a single drop of target at a timing according to a trigger signal received from the target controller 52.
  • the laser beam traveling direction control device 34 may include high reflection mirrors 351, 352, and 353, a dichroic mirror 354, and holders 351a, 352a, 353a, and 354a for holding these mirrors, respectively.
  • the EUV light generation controller 5 may include an EUV controller 51, a target controller 52, and a delay circuit 53.
  • the EUV controller 51 may output control signals to the target controller 52, the delay circuit 53, and the laser system 3.
  • the laser system 3 may include a prepulse laser apparatus 300 that outputs a prepulse laser beam and a main pulse laser apparatus 390 that outputs a main pulse laser beam.
  • the dichroic mirror 354 described above has a coating that reflects the wavelength component included in the pre-pulse laser beam with high reflectance and transmits the wavelength component included in the main pulse laser beam with high transmittance, and functions as a beam combiner. Also good.
  • the target controller 52 may output a target supply start signal to the target supply device 26 so that the target supply device 26 starts supplying the target 27 to the plasma generation region 25 in the chamber 2.
  • the target supply device 26 may receive a target supply start signal from the target controller 52 and output the droplet-shaped target 27 toward the plasma generation region 25.
  • the target controller 52 may receive a target detection signal from the target sensor 4 and output the signal to the delay circuit 53.
  • the target sensor 4 may be a sensor that detects a timing at which the target 27 passes through a predetermined position before reaching the plasma generation region 25.
  • the target sensor 4 may include a lighting device and an optical sensor (not shown).
  • the illumination device may be, for example, a laser device, and the laser device may be arranged to irradiate the predetermined position with CW laser light.
  • the optical sensor may be disposed at a position where reflected light from the target 27 is detected when the target 27 passes through the predetermined position. When the target 27 passes through the predetermined position, the optical sensor can detect the passing timing of the target 27 by detecting the reflected light from the target 27 and output a target detection signal.
  • the delay circuit 53 may output a timing signal by giving a predetermined delay time to the input target detection signal.
  • the delay circuit 53 may output the first timing signal to the prepulse laser apparatus 300 so that the target 27 is irradiated with the prepulse laser light at the timing when the target 27 reaches the vicinity of the plasma generation region 25.
  • the first timing signal may be a signal obtained by giving a first delay time to the target detection signal.
  • the delay circuit 53 sends the second timing signal to the main pulse laser so that the main pulse laser beam is irradiated to the diffusion target at a timing when the target irradiated with the pre-pulse laser beam diffuses and reaches a predetermined diffusion diameter. You may output to the apparatus 390.
  • the time from the first timing signal output to the second timing signal output may be the second delay time.
  • the prepulse laser apparatus 300 may output a prepulse laser beam in accordance with the first timing signal from the delay circuit 53.
  • the main pulse laser device 390 may output main pulse laser light in accordance with the second timing signal from the delay circuit 53.
  • the prepulse laser beam output from the prepulse laser apparatus 300 may be reflected by the high reflection mirror 353 and the dichroic mirror 354 and may enter the laser beam condensing optical system 22 a via the window 21.
  • the main pulse laser beam output from the main pulse laser device 390 is reflected by the high reflection mirror 351 and the high reflection mirror 352, passes through the dichroic mirror 354, and enters the laser beam condensing optical system 22a through the window 21. May be.
  • the pre-pulse laser beam and the main pulse laser beam incident on the laser beam condensing optical system 22 a may be reflected by the off-axis paraboloid mirror 221 and the plane mirror 222 and guided to the plasma generation region 25.
  • the target 27 irradiated with the pre-pulse laser beam diffuses and can become a diffusion target.
  • the main pulse laser beam is irradiated onto the diffusion target, and the target can be turned into plasma.
  • FIG. 3 is a graph showing a relationship between irradiation conditions of prepulse laser light and CE in the EUV light generation system 11.
  • the horizontal axis indicates the delay time ( ⁇ s) of the main pulse laser beam with respect to the pre-pulse laser beam
  • the vertical axis indicates the conversion efficiency from the energy of the main pulse laser beam to the energy of EUV light, that is, CE (%).
  • the delay time of the main pulse laser beam irradiation with respect to the pre-pulse laser beam irradiation may be set as the third delay time.
  • the third delay time can depend on the second delay time.
  • the reason is that a time depending on the system may be required from when the timing signal is input to the laser device until the target material is irradiated with the laser beam. Therefore, the target value of the third delay time may be determined, and the second delay time may be adjusted so that the third delay time approaches the target value.
  • the target value of the third delay time may be a value obtained by actually measuring in advance the time until the target irradiated with the pre-pulse laser beam diffuses and reaches a predetermined diffusion diameter. Further, in FIG.
  • the fluence is a value obtained by dividing the energy of the pulsed laser beam by the area within the focused spot diameter.
  • a condensing spot diameter be a diameter of the part which has intensity
  • Tin (Sn) was used as a target material, which was melted to obtain a droplet-shaped target having a diameter of about 21 ⁇ m.
  • the prepulse laser device when the pulse width is 10 ns, an Nd: YAG laser device is used, the wavelength is 1.06 ⁇ m, and the pulse energy is 0.5 mJ to 2.7 mJ.
  • a mode-locked laser device including an Nd: YVO 4 crystal is used as a master oscillator, a laser device including an Nd: YAG crystal is used as a regenerative amplifier, and a wavelength is set to 1.06 ⁇ m.
  • the pulse energy was set to 0.25 mJ to 2 mJ.
  • the focused spot diameter of the prepulse laser beam by these prepulse laser devices was 70 ⁇ m.
  • the main pulse laser device a CO 2 laser device was used, the wavelength was 10.6 ⁇ m, and the pulse energy was 135 mJ to 170 mJ.
  • the pulse width of the main pulse laser beam by this main pulse laser apparatus was 15 ns, and the focused spot diameter was 300 ⁇ m.
  • the CE can be remarkably improved when the pulse width of the pre-pulse laser beam is on the order of about 10 ps and on the order of picoseconds on the order of 10 ns. Further, the third delay time for obtaining the maximum CE was shorter when the pulse width of the pre-pulse laser beam was in the picosecond order than in the nanosecond order. Therefore, it was found that the case where the pulse width of the pre-pulse laser beam is in the picosecond order is more advantageous for generating EUV light at a high repetition frequency than the case where the pulse width is in the nanosecond order.
  • the pulse width of the pre-pulse laser beam and pico-second order, when the fluence and 13J / cm 2 ⁇ 52J / cm 2 , the third delay time the following ranges Is preferable. 0.5 ⁇ s or more, 1.8 ⁇ s or less, More preferably, it is 0.7 ⁇ s or more and 1.6 ⁇ s or less, More preferably, it is 1.0 ⁇ s or more and 1.4 ⁇ s or less.
  • FIG. 4A is a graph showing the relationship between the fluence of prepulse laser light and CE in the EUV light generation system.
  • the horizontal axis indicates the fluence (J / cm 2 ) of the prepulse laser beam
  • the vertical axis indicates CE (%).
  • CE was measured with various settings of the third delay time, and only CE at the optimum third delay time was plotted. Note that the result of FIG. 3 was used for a part of the result when the pulse width was 10 ps or 10 ns. In the case where the pulse width is 15 ns, the same prepulse laser device as that in the case where the pulse width is 10 ns was used.
  • the CE increases as the fluence of the prepulse laser light is increased in any of the cases where the pulse width of the prepulse laser light is 10 ps, 10 ns, and 15 ns, but the CE saturates when the fluence exceeds the predetermined fluence. It turned out that there was a tendency. Further, it was found that the CE was higher when the pulse width was 10 ps than when the pulse width was 10 ns or 15 ns, and the CE was relatively high even at a low fluence.
  • FIG. 4B is a graph showing the relationship between the light intensity of the pre-pulse laser beam and the CE in the EUV light generation system 11.
  • the horizontal axis indicates the light intensity (W / cm 2 ) of the prepulse laser beam
  • the vertical axis indicates CE (%).
  • the light intensity was calculated from the result of FIG. 4A.
  • the light intensity is a value obtained by dividing the fluence of the pulse laser beam by the pulse width defined by the full width at half maximum.
  • the CE tends to increase when the light intensity of the pre-pulse laser beam is increased in both cases where the pulse width of the pre-pulse laser beam is 10 ps, 10 ns, and 15 ns. It was also found that CE was higher when the pulse width was 10 ps than when the pulse width was 10 ns or 15 ns. Furthermore, when the pulse width is 10 ps, when the light intensity is in the range of 2.6 ⁇ 10 11 W / cm 2 to 5.6 ⁇ 10 11 W / cm 2 , CE increases rapidly, and the light intensity It was found that when CE was 5.6 ⁇ 10 11 W / cm 2 or more, higher CE was obtained.
  • CE can be improved by irradiating the target with prepulse laser light having a pulse width on the order of picoseconds to form a diffusion target and irradiating the diffusion target with main pulse laser light.
  • FIGS. 5A and 5B are photographs of the diffusion target after the prepulse laser light is irradiated onto the droplet-like target in the EUV light generation system 11.
  • 5A and 5B are images taken at the delay time at which the maximum CE was obtained as the third delay time. In order to observe the diffusion state of the target, the main pulse laser beam is not irradiated.
  • FIG. 5A is a photograph taken in each case where the pulse width of the pre-pulse laser beam is 10 ps and three fluences are set. That is, as in the description of FIG. 3, FIG.
  • FIG. 5A if the fluence 52J / cm 2 in the third delay time 1.2 ⁇ s about, if the fluence 26J / cm 2 in the third delay time 1.1 ⁇ s about, the 3 is a photograph of the diffusion target in each of the cases where the delay time is about 1.3 ⁇ s and the fluence is 13 J / cm 2 .
  • FIG. 5B is a photograph taken in each case where the pulse width of the pre-pulse laser beam is 10 ns and two fluences are set. That is, FIG.
  • the diameter Dt of the diffusion target was 360 ⁇ m to 384 ⁇ m when the pulse width of the prepulse laser beam was 10 ps, and 325 ⁇ m to 380 ⁇ m when the pulse width of the prepulse laser beam was 10 ns. That is, the diameter Dt of the diffusion target is slightly larger than 300 ⁇ m, which is the focused spot diameter of the main pulse laser beam. However, since the condensing spot diameter of the main pulse laser beam is a value of 1 / e 2 width, the main pulse laser beam can be irradiated to most of the diffusion target even when the diameter of the diffusion target is about 400 ⁇ m.
  • the diffusion target diameter Dt is equivalent to 300 ⁇ m, which is the condensing spot diameter of the main pulse laser beam, in a shorter time than when the pulse width is 10 ns. It became. That is, it was found that the diffusion speed of the diffusion target was faster when the pulse width was 10 ps than when the pulse width was 10 ns.
  • FIG. 6 schematically shows the arrangement of devices when the pictures shown in FIGS. 5A and 5B are taken.
  • cameras C1 and C2 are arranged in directions of 60 degrees and 90 degrees with respect to the traveling optical path of the prepulse laser beam, respectively, and the positions opposite to the positions of the cameras C1 and C2 with respect to the target.
  • Flash lamps L1 and L2 were arranged at the positions, respectively.
  • FIGS. 5A and 7B are cross-sectional views schematically showing the diffusion target shown in FIGS. 5A and 5B, respectively.
  • the pulse width of the prepulse laser light is on the order of picoseconds of about 10 ps, as shown in FIGS. 5A and 7A
  • the target diffuses in an annular shape on the Z direction side, which is the traveling direction of the prepulse laser light, The light was diffused in a dome shape on the incident side opposite to the traveling direction of the pre-pulse laser beam.
  • the diffusion target includes a first portion T1 in which the target is diffused in an annular shape, a second portion T2 in which the target is diffused adjacent to the first portion T1, and a first portion T1 and And a third portion T3 surrounded by the second portion T2.
  • the first portion T1 has a higher target material density than the second portion T2
  • the second portion T2 has a higher target material density than the third portion T3.
  • the target diffused in a disk shape or an annular shape as shown in FIGS. 5B and 7B. Further, the diffusion target diffused in the Z direction side, which is the traveling direction of the prepulse laser light, from the position of the target before the prepulse laser light was irradiated.
  • the pulse width of the pre-pulse laser beam When the pulse width of the pre-pulse laser beam is on the order of nanoseconds, heat input to the target can occur over a time on the order of nanoseconds. Within that time, heat is also transferred to the inside of the target, and a part of the target is considered to be evaporated by ablation, or the target is diffused in the traveling direction of the laser beam by the reaction of ablation.
  • the pulse width of the pre-pulse laser beam is on the order of picoseconds, it is considered that the droplet-like target can be instantaneously destroyed before heat is transferred into the target. As shown in FIG.
  • the particle size of the fine particles of the target material contained in the diffusion target was smaller when the pulse width of the pre-pulse laser beam was in the picosecond order than in the nanosecond order.
  • the surface area of the target can be relatively increased. For this reason, it can be estimated that the absorption of the laser light irradiated to the target increases. Therefore, when the pulse width of the pre-pulse laser beam is on the order of picoseconds, the target can be efficiently converted to plasma when the main pulse laser beam is irradiated onto the diffusion target. It is estimated that this is one of the causes for obtaining a high CE when the pulse width is set to the picosecond order than when the pulse width is set to the nanosecond order.
  • FIGS. 8A to 8C are cross-sectional views schematically showing a diffusion target generation process when the target is irradiated with prepulse laser light having a pulse width on the order of picoseconds.
  • FIG. 8A shows the state of the target estimated when the time of picosecond order has elapsed from the start of irradiation of the pre-pulse laser beam having the pulse width of picosecond order.
  • FIG. 8B shows the state of the target estimated at the time when a time on the order of nanoseconds has elapsed from the start of irradiation of the pre-pulse laser beam having a pulse width on the order of picoseconds on the target.
  • FIG. 8C shows the state of the diffusion target based on FIG. 7A when approximately 1 ⁇ s has elapsed from the start of irradiation of the pre-pulse laser beam having a pulse width on the order of picoseconds on the target.
  • This pre-pulse laser beam has a fluence of, for example, 6.5 J / cm 2 or more, and can irradiate the target within a time on the order of picoseconds, so that the target is irradiated per time as shown in FIG. 4B.
  • the energy of light is great. Therefore, powerful laser ablation can occur in a short time. For this reason, the reaction by laser ablation is also large, and it is estimated that a shock wave is generated inside the target.
  • the shock wave can be focused at the substantial center of the droplet-shaped target.
  • the wavefront of the shock wave may initially be a substantially hemispherical shape that is substantially parallel to the surface of the target. As the shock wave converges, energy concentrates, and when the concentrated energy exceeds a certain magnitude, the droplet-shaped target can begin to break.
  • the target destruction is presumed to start from a substantially hemispherical wavefront of a shock wave whose energy exceeds a certain level by focusing. This is considered to be the reason why the target diffuses in a dome shape on the incident side of the pre-pulse laser beam as shown in FIG. 8C.
  • FIG. 8A when the shock wave is focused to the center of the droplet-shaped target, the energy is most concentrated and the remaining part of the target can be destroyed at once. This is considered to be the reason why the target diffuses in an annular shape toward the traveling direction side of the pre-pulse laser beam as shown in FIG. 8C.
  • FIG. 8A it is estimated that powerful laser ablation has occurred, but the time during which laser ablation has occurred is very short, and it is estimated that the time until the shock wave reaches the center of the target is also short. Is done. Then, as shown in FIG. 8B, it is presumed that the target has begun to be destroyed when the time on the order of nanoseconds has elapsed. This is presumed to be the reason why the center of gravity of the target has not moved so much from the position before the irradiation with the pre-pulse laser beam, as shown in FIG. 8C.
  • FIG. 9A to 9C are cross-sectional views schematically showing a diffusion target generation process when a pre-pulse laser beam having a pulse width of nanosecond order is irradiated onto the target.
  • FIG. 9A shows the state of the target estimated when a time on the order of picoseconds has elapsed from the start of irradiation of a pre-pulse laser beam having a pulse width on the order of nanoseconds on the target.
  • FIG. 9B shows the state of the target estimated when a time on the order of nanoseconds has elapsed from the start of irradiation of the pre-pulse laser beam having a pulse width on the order of nanoseconds on the target.
  • FIG. 9C shows the state of the diffusion target based on FIG. 7B when a time of several ⁇ s has elapsed from the start of irradiation with the pre-pulse laser beam having a pulse width of nanosecond order.
  • This pre-pulse laser beam has a pulse width on the order of nanoseconds of about 10 ns.
  • This pre-pulse laser beam may have a fluence equivalent to the pre-pulse laser beam having a pulse width on the order of picoseconds, but is irradiated over a time on the order of nanoseconds. Therefore, as shown in FIG. The energy of light irradiated to the target is small.
  • the speed of sound V in the liquid tin that constitutes the target can be about 2500 m / s.
  • the fluence of the pre-pulse laser beam is not set to such a size that the entire droplet-like target is vaporized as ions or atoms by laser ablation. Therefore, as a result of irradiating the target with prepulse laser light having a pulse width of 10 ns, it is considered that the thickness of the target along the traveling direction of the prepulse laser light does not decrease by 21 ⁇ m or more within the time of 10 ns. That is, it is considered that the speed at which the thickness of the target decreases due to the reaction by laser ablation does not exceed the speed of sound in the liquid tin. Therefore, it is estimated that almost no shock wave is generated inside the target.
  • a target irradiated with such a pre-pulse laser beam having a pulse width of nanosecond order has a reaction due to laser ablation over a time of nanosecond order, and is deformed into a flat disk shape. Can do.
  • the force that deforms the target due to the reaction caused by laser ablation exceeds the surface tension, the target can be destroyed. The above is considered to be the reason why the target diffused in a disk shape or an annular shape as shown in FIG. 9C.
  • the reaction due to laser ablation acts on the target for a time on the order of nanoseconds.
  • This target can be accelerated by receiving a reaction due to laser ablation over about 1000 times as compared with the case where the prepulse laser beam having a pulse width of picosecond order is irradiated. This is presumed to be the reason why the center of gravity of the target has moved to the traveling direction side of the prepulse laser beam, as shown in FIG. 9C.
  • the conditions for generating a shock wave by the pre-pulse laser beam and destroying the target can be defined as follows.
  • the diameter D of the droplet-like target for generating EUV light may be 10 ⁇ m to 40 ⁇ m.
  • the pulse width Tp of the pre-pulse laser beam is preferably sufficiently smaller than the time Ts that the sound wave reaches from the surface of the target to the center.
  • the coefficient K is defined.
  • the coefficient K is a coefficient that determines a preferable pulse width Tp as a value sufficiently smaller than the time Ts that the sound wave reaches from the surface of the target to the center.
  • a value smaller than a value obtained by multiplying a time Ts at which a sound wave reaches from the surface of the target to the center by a coefficient K is preferable as the pulse width Tp of the pre-pulse laser beam.
  • Tp ⁇ K ⁇ Ts (Formula 1)
  • a preferable value for the pulse width Tp of the pre-pulse laser beam is derived from (Equation 1) as follows.
  • the main pulse is set with the optimum third delay time. It can be seen that CE of 3.5% or more can be obtained when laser light is irradiated. Similarly, when the fluence is 30 J / cm 2 or more, 4% or more of CE can be obtained. Similarly, when the fluence is 45 J / cm 2 or more, it can be seen that CE of 4.5% or more can be obtained.
  • the fluence of the pre-pulse laser beam having a pulse width on the order of picoseconds is preferably 6.5 J / cm 2 or more, more preferably 30 J / cm 2 or more, and 45 J / cm 2 or more. Is more preferable.
  • the energy Ed absorbed by the target can be approximated by the following equation. Ed ⁇ F ⁇ A ⁇ ⁇ ⁇ (D / 2) 2
  • F is the fluence of the prepulse laser beam.
  • A is the absorption rate of the prepulse laser beam by the target.
  • D is the diameter of the droplet-like target.
  • is the density of the target, which is about 6.94 g / cm 3 when the target is liquid tin.
  • Edp is obtained from (Equation 2) as follows. Edp ⁇ (3/2) ⁇ 6.5 ⁇ 0.16 / (6.94 ⁇ 21 ⁇ 10 ⁇ 4 ) ⁇ 107J / g
  • the fluence F of the pre-pulse laser beam for obtaining the CE of 3.5% with an arbitrary target is obtained as follows using the value of the energy Edp described above.
  • the fluence F of the pre-pulse laser beam for obtaining 4% CE with an arbitrary target is obtained as follows. F ⁇ (2/3) ⁇ 494 ⁇ ⁇ ⁇ D / A ⁇ 329 ( ⁇ ⁇ D / A)
  • the fluence F of the pre-pulse laser beam for obtaining a CE of 4.5% with an arbitrary target is obtained as follows.
  • the value of the fluence F of the prepulse laser beam be greater than or equal to these values. Further, the value of the fluence F of the pre-pulse laser beam may be equal to or less than the value of the fluence of the main pulse laser beam. Fluence of the main pulse laser beam, for example, may be 150J / cm 2 ⁇ 300J / cm 2.
  • 6.1 Pre-Pulse Laser Device 6.1 Schematic Configuration As described above, it is desirable that the pre-pulse laser light for diffusing the target is a short pulse with a pulse width on the order of picoseconds.
  • a mode-locked laser device can be considered as a device that outputs pulsed laser light with a short pulse width.
  • the mode-locked laser device can oscillate laser light in a plurality of longitudinal modes whose phases are relatively fixed. Then, by overlapping these longitudinal mode lights, a pulse laser beam having a short pulse width can be output.
  • the timing at which the mode-locked laser device outputs each pulse of the pulsed laser light can depend on the timing at which the previous pulse is output and the repetition frequency corresponding to the optical resonator length of the mode-locked laser device. . Therefore, it is not easy to control the mode-locked laser device so that each pulse is output at a desired timing. Therefore, in order to realize timing control for irradiating the droplet-shaped target supplied into the chamber with the pre-pulse laser beam, the pre-pulse laser apparatus may have the following configuration.
  • FIG. 10 schematically shows a configuration example of the prepulse laser apparatus 300 shown in FIG.
  • the pre-pulse laser apparatus 300 includes a clock generator 301, a mode-locked laser apparatus 302, an optical resonator length adjustment driver 303, a pulse laser light detector 304, a regenerative amplifier 305, an excitation power source 306, and a control unit 310. And may be included.
  • the clock generator 301 may output a clock signal with a repetition frequency of 100 MHz, for example.
  • the mode-locked laser device 302 may oscillate laser light in a plurality of longitudinal modes whose phases are relatively fixed, and output pulsed laser light having a repetition frequency of about 100 MHz, for example.
  • the mode-locked laser device 302 may include an optical resonator described later, and the optical resonator length may be adjustable by the optical resonator length adjustment driver 303.
  • a beam splitter 307 may be disposed in the optical path of the pulse laser beam output from the mode-locked laser device 302.
  • a pulsed laser light detector 304 may be disposed in one optical path of the pulsed laser light branched into two optical paths by the beam splitter 307. The pulse laser light detector 304 may detect the pulse laser light and output a detection signal.
  • the regenerative amplifier 305 may be arranged in the other optical path of the pulsed laser beam branched by the beam splitter 307.
  • the regenerative amplifier 305 may include an optical resonator, and amplifies the pulsed laser light by reciprocating a plurality of times in the optical resonator and takes out the amplified pulsed laser light at a timing when the pulsed laser light reciprocated a predetermined number of times. It may be.
  • a laser medium (described later) may be disposed in the optical resonator of the regenerative amplifier 305, and energy for exciting the laser medium may be applied via the excitation power source 306.
  • the regenerative amplifier 305 may include a Pockels cell (described later).
  • the control unit 310 may include a phase adjustment unit 311 and an AND circuit 312.
  • the phase adjustment unit 311 may feedback control the optical resonator length adjustment driver 303 based on the clock signal output by the clock generator 301 and the detection signal output by the pulse laser beam detector 304.
  • the control unit 310 controls the regenerative amplifier 305 based on the clock signal output from the clock generator 301 and the first timing signal output from the delay circuit 53 described in the description of FIG. Also good.
  • the AND circuit 312 may generate an AND signal of the clock signal and the first timing signal, and the Pockels cell in the regenerative amplifier 305 may be controlled by this AND signal.
  • FIG. 11 schematically shows a configuration example of the mode-locked laser device shown in FIG.
  • the mode-locked laser device 302 includes a laser crystal 322, a concave mirror 323, a plane mirror 324, an output coupling mirror 325, and a concave mirror 326 between the plane mirror 320 and the saturable absorber mirror 321.
  • You may include the optical resonator arrange
  • the mode-locked laser device 302 may include a pumping light source 327 for introducing pumping light E1 into the laser crystal 322 from the outside of the optical resonator.
  • the excitation light source 327 may include a laser diode that generates the excitation light E1.
  • the plane mirror 320 may be a mirror that transmits the wavelength component included in the excitation light E1 from the excitation light source 327 with high transmittance and reflects the wavelength component included in the light emitted from the laser crystal 322 with high reflectance.
  • the laser crystal 322 is a laser medium that performs excitation emission upon receiving excitation light E1, and may be, for example, a crystal of Nd: YVO 4 (neodymium-doped yttrium orthovanadate).
  • the light emitted from the laser crystal 322 may include a plurality of longitudinal modes (frequency components). Further, the laser crystal 322 may be arranged so that the incident angle of the laser beam becomes a Brewster angle.
  • the concave mirror 323, the plane mirror 324, and the concave mirror 326 may each reflect the light emitted from the laser crystal 322 with a high reflectance.
  • the output coupling mirror 325 transmits a part of the laser light amplified in the laser crystal 322 toward the outside of the optical resonator, and reflects the remaining part so as to be further amplified in the laser crystal 322. May be. From the output coupling mirror 325, the first light and the second light having different traveling directions may be transmitted to the outside of the optical resonator.
  • the first light is light that has passed through the output coupling mirror 325 among the reflected light from the plane mirror 324.
  • the second light is light that has passed through the output coupling mirror 325 out of the reflected light from the concave mirror 326.
  • the beam splitter 307 described above may be disposed in the optical path of the first light.
  • a laser damper (not shown) may be disposed in the optical path of the second light.
  • the saturable absorber mirror 321 may be a mirror in which a reflective layer and a saturable absorber layer are laminated in this order on a mirror substrate.
  • the saturable absorber layer substantially absorbs incident light while the incident light is weaker than a predetermined threshold, and when the incident light becomes stronger than the threshold, the saturable absorber layer is incident light. May be transmitted at a high transmittance, and the reflective layer may reflect the incident light. As a result, only the light whose intensity is instantaneously increased at the timing when the phases of the plurality of longitudinal modes are aligned can be reflected by the saturable absorber mirror 321.
  • the pulsed light whose phases of the plurality of longitudinal modes are relatively fixed can be amplified by reciprocating in the optical resonator. This state is sometimes called mode lock.
  • the amplified pulsed light can be periodically output from the output coupling mirror 325 as pulsed laser light.
  • the refractive index in the optical path may be a value obtained by dividing the speed of light in vacuum by the speed of light in a substance in the optical path.
  • the saturable absorber mirror 321 may be supported by a mirror holder, and the mirror holder may be movable along the light traveling direction by the linear stage 328.
  • the traveling direction of light may be the left-right direction in the figure.
  • the linear stage 328 may be drivable by the optical resonator length adjustment driver 303 described above.
  • the saturable absorber mirror 321 may be moved along the light traveling direction, thereby adjusting the optical resonator length and adjusting the repetition frequency of the pulsed laser light.
  • the phase adjustment unit 311 controls the optical resonator length adjustment driver 303 based on the clock signal output from the clock generator 301 and the detection signal output from the pulse laser light detector 304. May be. Specifically, the phase adjustment unit 311 detects the phase difference between the clock signal and the detection signal, and controls the optical resonator length adjustment driver 303 so that the clock signal and the detection signal are synchronized with a certain delay time. May be. A fixed delay time between the clock signal and the detection signal is set as a fourth delay time. The fourth delay time will be described later with reference to FIGS. 14A and 14B.
  • FIG. 12 schematically shows a configuration example of the regenerative amplifier 305 shown in FIG.
  • the regenerative amplifier 305 includes a laser crystal 336, a concave mirror 337, a flat mirror 338, a polarization beam splitter 339, a Pockels cell 340, and a ⁇ / 4 wavelength plate 341 between the flat mirror 334 and the concave mirror 335.
  • an optical resonator arranged in this order from the plane mirror 334 side may be included.
  • the optical resonator of the regenerative amplifier 305 may have an optical resonator length shorter than the optical resonator of the mode-locked laser device 302 described above.
  • the regenerative amplifier 305 may include a pumping light source 342 for introducing pumping light E2 into the laser crystal 336 from the outside of the optical resonator.
  • the excitation light source 342 may include a laser diode that generates the excitation light E2.
  • the regenerative amplifier 305 may include a polarization beam splitter 330, a Faraday optical isolator 331, a plane mirror 332, and a plane mirror 333.
  • the Faraday optical isolator 331 may include a Faraday rotator (not shown) and a ⁇ / 2 wavelength plate (not shown).
  • the plane mirror 334 may be a mirror that transmits the wavelength component included in the excitation light E2 from the excitation light source 342 with high transmittance and reflects the wavelength component included in the light emitted from the laser crystal 336 with high reflectance.
  • the laser crystal 336 is a laser medium that is excited by receiving the excitation light E2, and may be a crystal of Nd: YAG (neodymium-doped yttrium miumaluminum garnet), for example. Further, the laser crystal 336 may be arranged so that the incident angle of the laser beam becomes the Brewster angle. When the seed light output from the mode-locked laser device 302 is incident on the laser crystal 336 excited by receiving the excitation light E2, the seed light can be amplified by stimulated emission.
  • the polarization beam splitter 330 may be disposed in the optical path of the pulsed laser beam B1 output from the mode-locked laser device 302.
  • the polarization beam splitter 330 may be arranged such that the surface on which the pulse laser beam B1 is incident is perpendicular to the paper surface.
  • the polarization beam splitter 330 may transmit the pulse laser beam B1 linearly polarized in a direction parallel to the paper surface with high transmittance.
  • the polarization beam splitter 330 may reflect the pulsed laser beam B29 linearly polarized in a direction perpendicular to the paper surface with a high reflectance.
  • the Faraday optical isolator 331 may be disposed in the optical path of the pulsed laser beam B2 that has passed through the polarization beam splitter 330 from the lower side in the drawing.
  • the Faraday optical isolator 331 may rotate the plane of polarization of the linearly polarized pulsed laser beam B2 incident from the lower side in the drawing by 90 degrees and transmit it as the pulsed laser beam B3. Further, as will be described later, the Faraday optical isolator 331 may transmit the pulsed laser beam B28 incident from the opposite direction corresponding to the upper side in the drawing toward the polarization beam splitter 330 without rotating the polarization plane.
  • the plane mirror 332 may be disposed in the optical path of the pulsed laser beam B3 that has passed through the Faraday optical isolator 331.
  • the plane mirror 332 may reflect the pulsed laser beam B3 with a high reflectance.
  • the plane mirror 333 may reflect the pulsed laser light B4 reflected by the plane mirror 332 with a high reflectance.
  • the polarization beam splitter 339 arranged in the optical resonator may be located on the optical path of the pulsed laser beam B5 reflected by the plane mirror 333.
  • the polarization beam splitter 339 may be arranged such that the surface on which the pulse laser beam B5 is incident is perpendicular to the paper surface, and the pulse laser beam B5 may be incident on the right surface of the polarization beam splitter 339 in the drawing.
  • the polarization beam splitter 339 may reflect the pulsed laser beam B5 linearly polarized in a direction perpendicular to the paper surface with a high reflectance and guide the pulsed laser beam B6 into the optical resonator as the pulsed laser beam B6.
  • the polarization beam splitter 339 may transmit the pulse laser beam B11 and the like linearly polarized in a direction parallel to the paper surface with high transmittance.
  • the Pockels cell 340, the ⁇ / 4 wavelength plate 341, and the concave mirror 335 may be arranged in the optical path on the right side in the drawing as viewed from the polarization beam splitter 339.
  • the plane mirror 334, the laser crystal 336, the concave mirror 337, and the plane mirror 338 may be disposed in the optical path on the left side in the drawing as viewed from the polarization beam splitter 339.
  • the Pockels cell 340 may be capable of applying a voltage by a high voltage power supply 343.
  • the Pockels cell 340 may transmit the pulse laser beam B6 reflected by the polarization beam splitter 339 as the pulse laser beam B7 without rotating the polarization plane when the voltage is not applied by the high voltage power supply 343. .
  • a state where the high voltage power supply 343 is not applying a voltage to the Pockels cell 340 is referred to as “voltage is OFF”, and a state where the high voltage power supply 343 is applying a voltage is referred to as “voltage is ON”.
  • the ⁇ / 4 wavelength plate 341 may be arranged with the surface on which the pulse laser beam B7 is incident perpendicular to the paper surface. Further, the ⁇ / 4 wavelength plate 341 may be disposed so that the optical axis of the crystal of the ⁇ / 4 wavelength plate 341 is inclined by 45 degrees with respect to the paper surface in a plane perpendicular to the incident optical axis. .
  • the pulsed laser beam B7 incident on the ⁇ / 4 wavelength plate 341 has a first polarization component parallel to the optical axis of the crystal and a first perpendicular to both the optical axis of the crystal and the traveling direction of the pulsed laser beam B7. And two polarization components. The direction of the combined vector of the first polarization component and the second polarization component coincides with the direction along the polarization plane of the pulse laser beam B7, and the direction may be a direction perpendicular to the paper surface.
  • the ⁇ / 4 wavelength plate 341 may have a birefringence function that transmits the first polarization component and the second polarization component through different optical paths. As a result, the ⁇ / 4 wavelength plate 341 transmits the pulse laser beam B7 transmitted through the Pockels cell 340 while shifting the phase of the second polarization component by 1 ⁇ 4 wavelength with respect to the phase of the first polarization component. May be.
  • the concave mirror 335 may reflect the pulsed laser beam B8 transmitted through the ⁇ / 4 wavelength plate 341 with a high reflectance.
  • the phase of the second polarization component is further shifted by 1 ⁇ 4 wavelength with respect to the phase of the first polarization component. May be. That is, the pulse laser beam B7 is transmitted twice through the ⁇ / 4 wavelength plate 341, so that the phase of the second polarization component is shifted by a half wavelength in total with respect to the phase of the first polarization component. Also good.
  • the pulse laser beam B7 linearly polarized in the direction perpendicular to the paper surface can be incident on the Pockels cell 340 as the pulse laser light B10 linearly polarized in the direction parallel to the paper surface, with the polarization surface rotated by 90 degrees.
  • the Pockels cell 340 can transmit the incident light without rotating the polarization plane in the state where the voltage from the high voltage power supply 343 is not applied. Accordingly, the pulsed laser beam B11 transmitted through the Pockels cell 340 can enter the polarization beam splitter 339 in a state of being linearly polarized in a direction parallel to the paper surface.
  • the polarization beam splitter 339 may transmit the pulsed laser beam B11 linearly polarized in a direction parallel to the paper surface with high transmittance.
  • the plane mirror 338 may reflect the pulsed laser beam B12 transmitted through the polarization beam splitter 339 with a high reflectance.
  • the concave mirror 337 may reflect the pulsed laser beam B13 reflected by the plane mirror 338 with a high reflectance.
  • the laser crystal 336 may amplify and transmit the pulse laser beam B14 as seed light reflected by the concave mirror 337.
  • the plane mirror 334 may reflect the pulsed laser beam B15 amplified by the laser crystal 336 and transmitted through the laser crystal 336 with a high reflectivity, and enter the laser crystal 336 as the pulsed laser beam B16.
  • the pulse laser beam B17 amplified again by the laser crystal 336 passes through the concave mirror 337, the plane mirror 338, the polarization beam splitter 339, and the Pockels cell 340 to the ⁇ / 4 wavelength plate 341 as the pulse laser beam B21. It may be incident.
  • the pulse laser beam B21 is transmitted through the ⁇ / 4 wavelength plate 341, reflected by the concave mirror 335, and transmitted again through the ⁇ / 4 wavelength plate 341, so that the polarization plane is rotated by 90 degrees, and in the direction perpendicular to the paper surface.
  • This can be a linearly polarized pulsed laser beam B24.
  • the pulse laser beam B24 may pass through the Pockels cell 340, be reflected by the polarization beam splitter 339 with a high reflectance, and be output to the outside of the optical resonator as the pulse laser beam B26.
  • the pulse laser beam B26 may be incident on the Faraday optical isolator 331 as the pulse laser beam B28 via the plane mirror 333 and the plane mirror 332 from the upper side in the drawing.
  • the Faraday optical isolator 331 may transmit the linearly polarized pulsed laser beam B28 incident from the upper side in the figure as the pulsed laser beam B29 without rotating the polarization plane.
  • the polarization beam splitter 330 may reflect the pulse laser beam B29 linearly polarized in a direction perpendicular to the paper surface with a high reflectance.
  • the pulsed laser beam B30 reflected by the polarization beam splitter 330 may be guided to the plasma generation region 25 via the laser beam focusing optical system 22a shown in FIG.
  • this pulsed laser beam B30 which is output only after one reciprocation within the optical resonator of the regenerative amplifier 305, is weak enough not to diffuse the target and turn the target into plasma even if it is irradiated to the target. It may have strength.
  • the high voltage power supply 343 continues until one pulse of the pulse laser beam B11 that has once passed through the Pockels cell 340 enters the Pockels cell 340 as the pulse laser beam B20.
  • the voltage applied to the Pockels cell 340 may be switched from OFF to ON at the timing between.
  • the Pockels cell 340 transmits the incident light with the second polarization component with respect to the phase of the first polarization component, similarly to the ⁇ / 4 wavelength plate 341.
  • the phase may be transmitted by shifting by a quarter wavelength.
  • FIG. 13 schematically shows an optical path when a voltage is applied to the Pockels cell 340 in the regenerative amplifier 305 shown in FIG.
  • the pulse laser beam B20 passes through the Pockels cell 340 and the ⁇ / 4 wavelength plate 341 twice, and returns as the pulse laser beam B11 through optical paths indicated by the pulse laser beams Ba1, Ba2, Ba3, and Ba4.
  • Pulse laser light whose polarization plane is rotated 90 degrees by passing through the ⁇ / 4 wavelength plate 341 twice, and whose polarization plane is further rotated by 90 degrees by passing through the Pockels cell 340 to which voltage is applied twice.
  • B11 may have the same polarization plane direction as the pulsed laser beam B20.
  • the pulse laser beam B11 can be transmitted again through the polarization beam splitter 339 and amplified by the laser crystal 336. While the voltage from the high voltage power supply 343 is applied to the Pockels cell 340, this amplification operation can be repeated.
  • the high voltage power supply 343 causes the Pockels cell 340 at a timing until the pulse laser beam B11 that has once passed through the Pockels cell 340 enters the Pockels cell 340 as the pulse laser beam B20.
  • the voltage applied to may be switched from ON to OFF.
  • the Pockels cell 340 does not need to rotate the polarization plane of the incident light when the voltage from the high voltage power supply 343 is not applied as shown in FIG. Therefore, at this time, the pulse laser beam B20 incident on the Pockels cell 340 from the left side in the drawing is transmitted as the pulse laser beams B21, B22, B23, and B24 in FIG.
  • the plane can be rotated by 90 degrees.
  • the pulse laser beam after the amplification operation is repeated is linearly polarized in the direction perpendicular to the paper surface, enters the polarization beam splitter 339 as the pulse laser beam B25 from the right side in the drawing, and enters the outside of the optical resonator. Can be output.
  • the pulse laser beam B1 newly output from the mode-locked laser device 302 has a polarization plane perpendicular to the paper surface. Can be incident on the Pockels cell 340 as pulse laser light B6 linearly polarized. While the voltage is applied to the Pockels cell 340, the pulse laser beam B6 passes through the ⁇ / 4 wavelength plate 341 and the Pockels cell 340, and passes through the optical path shown as the pulse laser beams Ba5, Ba6, Ba7, Ba8. You may return as pulsed laser beam B25. At this time, the pulse laser beam B25 may have the same polarization plane as the pulse laser beam B6.
  • the pulse laser beam B25 is incident on the polarization beam splitter 339 from the right side in the drawing as a pulse laser beam whose polarization plane is a linearly polarized light perpendicular to the paper surface. It can be output outside the resonator.
  • the timing at which the high voltage power supply 343 turns on / off the voltage applied to the Pockels cell 340 may be determined by an AND signal of the clock signal and the first timing signal.
  • the AND signal may be supplied from the AND circuit 312 to the voltage waveform generation circuit 344 included in the regenerative amplifier 305.
  • the voltage waveform generation circuit 344 may generate a voltage waveform using the AND signal as a trigger, and supply this voltage waveform to the high voltage power supply 343.
  • the high voltage power supply 343 may generate a pulse voltage according to the voltage waveform and apply the voltage to the Pockels cell 340.
  • the first timing signal, the AND signal, and the voltage waveform generated by the voltage waveform generation circuit 344 will be described later with reference to FIGS. 14C to 14E.
  • FIGS. 14A to 14E are timing charts of respective signals in the prepulse laser apparatus 300 shown in FIG.
  • FIG. 14A is a timing chart of the clock signal output from the clock generator 301.
  • the clock signal output from the clock generator 301 may have a repetition frequency of 100 MHz, for example. In this case, the pulse generation interval can be 10 ns.
  • FIG. 14B is a timing chart of a detection signal output from the pulse laser beam detector 304.
  • the repetition frequency of the detection signal output from the pulse laser light detector 304 can depend on the repetition frequency of the pulse laser light output from the mode-locked laser device 302.
  • the repetition frequency of the pulsed laser light output from the mode-locked laser device 302 can be adjusted by adjusting the optical resonator length of the mode-locked laser device 302.
  • the pulse laser beam may have a repetition frequency of about 100 MHz.
  • the mode-locked laser device 302 may be feedback controlled so that the detection signal of the pulse laser beam is synchronized with the clock signal of 100 MHz shown in FIG. 14A, for example, with a fourth delay time of 5 ns, for example.
  • FIG. 14C is a timing chart of the first timing signal output from the delay circuit 53.
  • the first timing signal output from the delay circuit 53 may be a signal obtained by adding a first delay time to the target detection signal from the target sensor 4.
  • the repetition frequency of the first timing signal may depend on the repetition frequency of the target output by the target supply device 26.
  • the repetition frequency of the target output by the target supply device 26 may be about 100 kHz, for example.
  • the pulse width of the first timing signal may be set to a time width equivalent to the pulse generation interval of the clock signal shown in FIG. 14A. Therefore, the pulse width of the first timing signal may be 10 ns, for example.
  • FIG. 14D is a timing chart of the AND signal output from the AND circuit 312.
  • the AND signal output from the AND circuit 312 may be a signal obtained by ANDing the clock signal and the first timing signal.
  • the pulse width of the first timing signal is set to a time width equal to the generation interval of the clock signal, one pulse of the AND signal can be generated for one pulse of the first timing signal.
  • the AND signal can be generated almost in synchronization with some of the plurality of pulses of the clock signal.
  • FIG. 14E is a timing chart of the voltage waveform output from the voltage waveform generation circuit 344.
  • the voltage waveform output from the voltage waveform generation circuit 344 may be generated substantially in synchronization with the AND signal when the AND signal is output from the AND circuit 312.
  • This voltage waveform may be, for example, a pulse having a pulse width of 300 ns.
  • the time for which the pulse laser beam having a light speed of 3 ⁇ 10 8 m / s travels 50 times in the optical resonator can be 300 ns.
  • the clock signal and the pulse laser beam from the mode-locked laser device 302 are synchronized with the fourth delay time, and the AND signal is a part of the plurality of pulses of the clock signal. Can be synchronized.
  • the voltage applied by the high voltage power supply 343 to the Pockels cell 340 can be switched while the pulse laser beam propagates through a specific section in the optical resonator of the regenerative amplifier 305. Therefore, only a desired pulse included in the pulse laser beam output from the mode-locked laser device 302 can be amplified to a desired intensity and irradiated onto the target.
  • the generation timing of the pulse output from the regenerative amplifier 305 can be controlled with the resolution corresponding to the generation interval of the pulses by the mode-locked laser device 302.
  • a target that is output from the target supply device 26 and moves in the chamber 2 at a speed of 30 m / s to 60 m / s is 0.3 ⁇ m within a time of 10 ns, which is a pulse generation interval by the mode-locked laser device 302. Can move ⁇ 0.6 ⁇ m. If the diameter of the droplet target is about 20 ⁇ m, a resolution of 10 ns may be sufficient to irradiate the target with pulsed laser light.
  • an Nd: YVO 4 crystal is used as the laser crystal 322 included in the mode-locked laser device 302
  • an Nd: YAG crystal is used as the laser crystal 336 included in the regenerative amplifier 305.
  • an Nd: YAG crystal may be used as the laser crystal in both the mode-locked laser device 302 and the regenerative amplifier 305.
  • a Ti: sapphire (Titanium-doped Sapphire) crystal may be used as the laser crystal in either or both of the mode-locked laser device 302 and the regenerative amplifier 305.
  • a ruby crystal may be used as the laser crystal in either or both of the mode-locked laser device 302 and the regenerative amplifier 305.
  • a dye cell may be used as a laser medium in either or both of the mode-locked laser device 302 and the regenerative amplifier 305.
  • Nd 3+ : glass triply ionized neodymium-doped glass may be used as a laser medium in either or both of the mode-locked laser device 302 and the regenerative amplifier 305.
  • FIG. 15 schematically shows a configuration example of the main pulse laser device 390 shown in FIG.
  • the main pulse laser device 390 may include a master oscillator MO, a plurality of amplifiers PA1, PA2, and PA3, and a control unit 391.
  • the master oscillator MO may be a CO 2 laser device using CO 2 gas as a laser medium, or may be a quantum cascade laser device that oscillates in the wavelength region of the CO 2 laser.
  • the plurality of amplifiers PA1, PA2, and PA3 may be arranged in series in the optical path of the pulse laser beam output from the master oscillator MO.
  • Each of the plurality of amplifiers PA1, PA2, and PA3 includes a laser chamber containing, for example, CO 2 gas as a laser medium, at least a pair of electrodes (not shown) disposed in the laser chamber, and a voltage between at least a pair of electrodes (not shown). And a power source for applying.
  • the CO 2 gas when CO 2 gas is used as a laser medium, the CO 2 gas may be diluted with nitrogen, helium, neon, xenon, or other gas.
  • the control unit 391 may control the master oscillator MO and the plurality of amplifiers PA1, PA2, and PA3 based on a control signal from the EUV controller 51.
  • the control unit 391 may output the timing signal from the delay circuit 53 to the master oscillator MO.
  • the timing signal from the delay circuit 53 may be the second timing signal described above.
  • the master oscillator MO may output each pulse of the pulsed laser light using each pulse of the second timing signal as a trigger.
  • This pulsed laser beam may be amplified by a plurality of amplifiers PA1, PA2, and PA3.
  • the main pulse laser device 390 may output the main pulse laser beam in synchronization with the second timing signal from the delay circuit 53.
  • FIG. 16 is a partial cross-sectional view schematically showing a configuration example of the EUV light generation system 11 according to the second embodiment.
  • the EUV light generation system 11 according to the second embodiment may include beam splitters 61 and 62, optical sensors 63 and 64, and a delay time measurement unit 65. Further, the EUV light generation system 11 may include a delay time control device 50 instead of the delay circuit 53 shown in FIG. Other points may be the same as those in the first embodiment.
  • the beam splitter 61 may be disposed in the optical path of the pre-pulse laser beam and the main pulse laser beam between the dichroic mirror 354 and the laser beam focusing optical system 22a.
  • the beam splitter 61 may be coated with a film that transmits the prepulse laser light and the main pulse laser light with high transmittance and reflects each remaining part of the prepulse laser light and the main pulse laser light.
  • the beam splitter 62 may be disposed in the optical path of the pre-pulse laser beam and the main pulse laser beam reflected by the beam splitter 61.
  • the beam splitter 62 may be coated with a film that reflects the wavelength component included in the pre-pulse laser beam with high reflectance and transmits the wavelength component included in the main pulse laser beam with high transmittance.
  • the optical sensor 63 may be disposed in the optical path of the pre-pulse laser beam reflected by the beam splitter 62.
  • the optical sensor 64 may be disposed in the optical path of the main pulse laser beam that has passed through the beam splitter 62.
  • the optical sensors 63 and 64 may be disposed at positions where the optical path lengths from the beam splitter 62 are equal to each other.
  • the optical sensor 63 may detect pre-pulse laser light and output a detection signal.
  • the optical sensor 63 may include, for example, a high-speed photodiode that detects prepulse laser light having a wavelength of 1.06 ⁇ m.
  • the optical sensor 64 may detect the main pulse laser beam and output a detection signal.
  • the optical sensor 64 may include, for example, a high-speed thermoelectric element that detects main pulse laser light having a wavelength of 10.6 ⁇ m.
  • the delay time measuring unit 65 may be connected to the optical sensors 63 and 64 by signal lines.
  • the delay time measuring unit 65 receives each detection signal output by each of the optical sensors 63 and 64, and based on the timing at which each detection signal is received, the third output of the main pulse laser light with respect to the output of the prepulse laser light.
  • the delay time ⁇ T may be measured.
  • the delay time measuring unit 65 may output data of the measured third delay time ⁇ T to the delay time control device 50.
  • FIG. 17 schematically shows a configuration example of the delay time control device and the like shown in FIG.
  • the delay time control device 50 may include a delay circuit 53 and a control unit 54.
  • the delay circuit 53 may give a first delay time to the target detection signal output from the target controller 52 and output the first timing signal to the prepulse laser apparatus 300. Further, the delay circuit 53 may output a second timing signal having a second delay time ⁇ To with respect to the first timing signal to the main pulse laser device 390.
  • the second delay time ⁇ To may be variable.
  • the control unit 54 may receive data of the target value ⁇ Tt of the third delay time from the EUV controller 51. Further, the control unit 54 may receive data of the measured third delay time ⁇ T from the delay time measuring unit 65. The control unit 54 may control the delay circuit 53 so as to change the second delay time ⁇ To based on the difference between the third delay time ⁇ T and the target value ⁇ Tt.
  • FIG. 18 is a flowchart showing the operation of the control unit shown in FIG.
  • the control unit 54 may feedback control the delay circuit 53 as follows based on the difference between the third delay time ⁇ T and the target value ⁇ Tt.
  • the control unit 54 may receive data of an initial value of the delay parameter ⁇ from the EUV controller 51 (S1).
  • Lm may be the optical path length of the main pulse laser beam from the master oscillator MO of the main pulse laser apparatus 390 in FIG.
  • Lp may be the optical path length of the prepulse laser light from the regenerative amplifier 305 to the plasma generation region 25 of the prepulse laser apparatus 300 in FIG. c is the speed of light, and may be 3 ⁇ 10 8 m / s.
  • the main pulse laser device 390 may include more amplifiers than the prepulse laser device 300 in order to output a main pulse laser beam having higher energy than the prepulse laser beam. Therefore, the optical path length Lm of the main pulse laser beam is longer than the optical path length Lp of the pre-pulse laser beam, and the value of the delay parameter ⁇ can be a value greater than zero.
  • control unit 54 may receive data of the target value ⁇ Tt of the third delay time from the EUV controller 51 (S2). Next, the control unit 54 may calculate the second delay time ⁇ To by subtracting the delay parameter ⁇ from the target value ⁇ Tt (S3). Next, the control unit 54 may transmit the data of the calculated second delay time ⁇ To to the delay circuit 53 (S4).
  • control unit 54 may determine whether or not the pre-pulse laser apparatus 300 and the main pulse laser apparatus 390 oscillate (S5). If both or any of these laser devices are not oscillating (S5: NO), it is possible to wait until these laser devices oscillate. If these laser devices oscillate (S5: YES), the process may proceed to S6.
  • control unit 54 may update the value of the delay parameter ⁇ by adding the difference ⁇ T between the third delay time ⁇ T and the target value ⁇ Tt to the delay parameter ⁇ (S8). That is, for example, when the third delay time ⁇ T is longer than the target value ⁇ Tt ( ⁇ T> 0), even if the value of the delay parameter ⁇ is increased by ⁇ T so that the second delay time ⁇ To is shortened. Good.
  • the control unit 54 may determine whether to stop the feedback control of the delay circuit 53 (S9). For example, when the output of the pulse laser beam is stopped by a control signal from the EUV controller 51, the feedback control of the delay circuit 53 may be stopped. Alternatively, if the output energy of the EUV light becomes equal to or greater than a predetermined value as a result of repeating the processes of S2 to S8 described above, the feedback control of the delay circuit 53 is stopped and the value of the second delay time ⁇ To EUV light may be generated by fixing When the feedback control of the delay circuit 53 is not stopped (S9: NO), the process returns to S2 described above to receive the data of the target value ⁇ Tt of the third delay B time, and the delay circuit 53 may be feedback-controlled. When the feedback control of the delay circuit 53 is stopped (S9: YES), the processing of this flowchart may be ended.
  • the third delay time ⁇ T can be stabilized with high accuracy by feedback control of the delay circuit 53 based on the measured third delay time ⁇ T.
  • the main pulse laser beam can be irradiated to the diffusion target with the optimum third delay time, and CE can be improved.
  • the third delay time ⁇ T can be stabilized by feedback control.
  • the delay circuit may be feedback controlled based on the measured third delay time, but the present invention is not limited to this, and the third delay time may not be measured.
  • the second delay time ⁇ To may be calculated from the initial value of the delay parameter ⁇ and the target value ⁇ Tt, and the delay circuit 53 may be controlled using the value of the second delay time ⁇ To. Good.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

極端紫外光生成システムは、ターゲットに第1のパルスレーザ光及び第2のパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成システムであって、第1のパルスレーザ光及び第2のパルスレーザ光を導入するための少なくとも1つの導入口が設けられたチャンバと、チャンバ内の所定の領域にターゲットを供給するように構成されたターゲット供給装置と、チャンバ内のターゲットに照射される第1のパルスレーザ光であって、1ns未満のパルス幅を有する第1のパルスレーザ光を出力するように構成された第1のレーザ装置と、第1のパルスレーザ光を照射されたターゲットに照射される第2のパルスレーザ光を出力するように構成された第2のレーザ装置と、を備えてもよい。

Description

極端紫外光生成システム
 本開示は、極端紫外光生成システムに関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にパルスレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、シンクロトロン放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
概要
 本開示の1つの観点に係る極端紫外光生成システムは、ターゲットに第1のパルスレーザ光及び第2のパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成システムであって、第1のパルスレーザ光及び第2のパルスレーザ光を導入するための少なくとも1つの導入口が設けられたチャンバと、チャンバ内の所定の領域にターゲットを供給するように構成されたターゲット供給装置と、チャンバ内のターゲットに照射される第1のパルスレーザ光であって、1ns未満のパルス幅を有する第1のパルスレーザ光を出力するように構成された第1のレーザ装置と、第1のパルスレーザ光を照射されたターゲットに照射される第2のパルスレーザ光を出力するように構成された第2のレーザ装置と、を備えてもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP式のEUV光生成システムの構成を概略的に示す。 図2は、第1の実施形態に係るEUV光生成システムの構成例を概略的に示す一部断面図である。 図3は、EUV光生成システムにおけるプリパルスレーザ光の照射条件とCEとの関係を示すグラフである。 図4Aは、EUV光生成システムにおけるプリパルスレーザ光のフルーエンスとCEとの関係を示すグラフであり、図4Bは、EUV光生成システムにおけるプリパルスレーザ光の光強度とCEとの関係を示すグラフである。 図5A及び図5Bは、EUV光生成システムにおいてプリパルスレーザ光が照射されたターゲットの写真である。 図6は、図5A及び図5Bに示す写真を撮影したときの機器の配置を概略的に示す。 図7A及び図7Bは、それぞれ、図5A及び図5Bに示される拡散ターゲットを模式的に示す断面図である。 図8A~図8Cは、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光が照射された場合の拡散ターゲットの生成過程を模式的に示す断面図である。 図9A~図9Cは、ターゲットにナノ秒オーダーのパルス幅を有するプリパルスレーザ光が照射された場合の拡散ターゲットの生成過程を模式的に示す断面図である。 図10は、図2に示すプリパルスレーザ装置の構成例を概略的に示す。 図11は、図10に示すモードロックレーザ装置の構成例を概略的に示す。 図12は、図10に示す再生増幅器の構成例を概略的に示す。 図13は、図12に示す再生増幅器においてポッケルスセルに電圧が印加されている場合の光路を概略的に示す。 図14A~図14Eは、図10に示すプリパルスレーザ装置における各信号のタイミングチャートである。 図15は、図2に示すメインパルスレーザ装置の構成例を概略的に示す。 図16は、第2の実施形態に係るEUV光生成システムの構成例を概略的に示す一部断面図である。 図17は、図16に示す遅延時間制御装置の構成例を概略的に示す。 図18は、図17に示す制御部の動作を示すフローチャートである。
実施形態
<内容>
1.概要
2.用語の説明
3.極端紫外光生成システムの全体説明
 3.1 構成
 3.2 動作
4.プリパルスレーザ装置を含む極端紫外光生成システム
 4.1 構成
 4.2 動作
5.プリパルスレーザ光のパラメータ
 5.1 パルス幅とCEとの関係
 5.2 パルス幅とフルーエンス及び光強度との関係
 5.3 パルス幅と拡散ターゲットの状態との関係
 5.4 拡散ターゲットの生成過程
 5.5 パルス幅の範囲
 5.6 フルーエンスの範囲
6.プリパルスレーザ装置
 6.1 概略構成
 6.2 モードロックレーザ装置
 6.3 再生増幅器
  6.3.1 ポッケルスセルに電圧を印加しない場合
  6.3.2 ポッケルスセルに電圧を印加する場合
 6.4 タイミング制御
 6.5 レーザ媒質の例
7.メインパルスレーザ装置
8.第2の遅延時間を制御する装置を含む極端紫外光生成システム
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
 LPP式のEUV光生成装置においては、レーザシステムから出力されるパルスレーザ光を、チャンバ内に供給されるドロップレット状のターゲットに集光して照射することにより、ターゲット物質をプラズマ化してもよい。プラズマからは、EUV光を含む光が放射されてもよい。放射されたEUV光は、チャンバ内に配置されたEUV集光ミラーによって集光され、露光装置等に出力されてもよい。
 LPP式のEUV光生成装置において、ドロップレット状のターゲットにプリパルスレーザ光を照射してターゲットを拡散させ、拡散ターゲットを形成した後、この拡散ターゲットにメインパルスレーザ光を照射する場合がある。このように、拡散ターゲットにメインパルスレーザ光を照射すれば、ターゲット物質が効率良くプラズマ化され得る。これによれば、パルスレーザ光のエネルギーからEUV光のエネルギーへの変換効率(Conversion Efficiency:CE)が向上し得る。
 本開示の1つの観点においては、拡散ターゲットを形成するためのプリパルスレーザ光は、各パルスのパルス幅が1ns未満、好ましくは500ps未満、さらに好ましくは50ps未満の短パルスとされてもよい。さらに、プリパルスレーザ光は、各パルスのフルーエンスが、メインパルスレーザ光の各パルスのフルーエンス以下で、且つ、6.5J/cm以上、好ましくは30J/cm以上、さらに好ましくは45J/cm以上とされてもよい。
 このような構成によれば、プリパルスレーザ光の各パルスのパルス幅を短くすることにより、ターゲットを細かい粒子状に破壊して拡散させ得る。これにより、拡散したターゲットにメインパルスレーザ光を照射したときに、ターゲットが効率良くプラズマ化され、CEが向上し得る。
2.用語の説明
 「パルスレーザ光」は、複数のパルスを含むレーザ光を意味し得る。
 「レーザ光」は、パルスレーザ光に限らずレーザ光一般を意味し得る。
 「ターゲット物質」は、パルスレーザ光が照射されることによってプラズマ化し、そのプラズマからEUV光を放射し得るスズ、ガドリニウム、テルビウム等の物質を意味し得る。
 「ターゲット」は、ターゲット供給装置によってチャンバ内に供給され、パルスレーザ光が照射される、微小量のターゲット物質を含む塊を意味し得る。特に、「ドロップレット状のターゲット」というときは、微小量の溶融したターゲット物質がチャンバ内に放出され、当該ターゲット物質の表面張力によってほぼ球状となったものを意味し得る。
 「拡散ターゲット」は、ターゲットにプリパルスレーザ光が照射されたことにより微細な粒子等に拡散したターゲットを意味し得る。その拡散ターゲットにはプラズマが含まれる場合がある。ドロップレット状のターゲットに比較してこの拡散ターゲットの光吸収率が高く、これにメインパルスレーザ光が照射されることにより、ターゲットを効率良くプラズマ化し得る。
3.極端紫外光生成システムの全体説明
 3.1 構成
 図1に、例示的なLPP式のEUV光生成システム11の構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザシステム3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザシステム3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2及びターゲット供給装置26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給装置26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給装置26から供給されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられてもよい。その貫通孔には、ウインドウ21が設けられてもよく、ウインドウ21をパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されてもよい。EUV集光ミラー23は、例えば、その第1の焦点が、プラズマ生成領域25に位置し、その第2の焦点が、中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には、パルスレーザ光33を通過させるための貫通孔24が設けられてもよい。
 EUV光生成装置1は、EUV光生成制御装置5及びターゲットセンサ4をさらに含んでもよい。ターゲットセンサ4は、撮像機能を有してもよく、ターゲットの存在、軌道、位置、速度等を検出してもよい。
 さらに、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含んでもよい。接続部29内部には、アパーチャが形成された壁291が設けられてもよい。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点を含む領域に位置するように配置されるのが好ましい。
 さらに、EUV光生成装置1は、レーザ光進行方向制御装置34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含んでもよい。レーザ光進行方向制御装置34は、パルスレーザ光の進行方向を規定するための光学系と、この光学系の配置、姿勢等を調節するためのアクチュエータとを備えてもよい。
 3.2 動作
 図1を参照に、レーザシステム3から出力されたパルスレーザ光31は、レーザ光進行方向制御装置34を経て、パルスレーザ光32としてウインドウ21を透過して、チャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給装置26は、ターゲット27をチャンバ2内のプラズマ生成領域25に向けて出力するよう構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光33が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射され得る。放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292を通って露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御装置5は、EUV光生成システム11全体の制御を統括するよう構成されてもよい。EUV光生成制御装置5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理してもよい。また、EUV光生成制御装置5は、例えば、ターゲット27を出力するタイミング、ターゲット27の出力方向等を制御するよう構成されてもよい。さらに、EUV光生成制御装置5は、例えば、レーザシステム3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
4.プリパルスレーザ装置を含む極端紫外光生成システム
 4.1 構成
 図2は、第1の実施形態に係るEUV光生成システム11の構成例を概略的に示す一部断面図である。図2に示すように、チャンバ2の内部には、レーザ光集光光学系22aと、EUV集光ミラー23と、ターゲット回収部28と、EUV集光ミラーホルダ41と、プレート42及び43と、ビームダンプ44と、ビームダンプ支持部材45とが設けられてもよい。
 チャンバ2にプレート42が固定され、プレート42にプレート43が固定されてもよい。EUV集光ミラー23は、EUV集光ミラーホルダ41を介してプレート42に固定されてもよい。
 レーザ光集光光学系22aは、軸外放物面ミラー221及び平面ミラー222と、それらのミラーをそれぞれ保持するためのホルダ221a及び222aとを含んでもよい。軸外放物面ミラー221及び平面ミラー222は、それぞれのミラーで反射されたパルスレーザ光がプラズマ生成領域25で集光するような位置及び姿勢となるように、それぞれのホルダを介してプレート43に固定されてもよい。
 ビームダンプ44は、パルスレーザ光の光路の延長線上に位置するように、ビームダンプ支持部材45を介してチャンバ2に固定されてもよい。ターゲット回収部28は、ターゲット27の軌道の延長線上に配置されてもよい。
 チャンバ2には、ターゲットセンサ4と、EUV光センサ7と、ウインドウ21と、ターゲット供給装置26とが取り付けられてもよい。チャンバ2の外部には、レーザ光進行方向制御装置34と、EUV光生成制御装置5とが配置されてもよい。
 EUV光センサ7は、プラズマ生成領域25において発生したEUV光の光強度を検出して検出信号をEUVコントローラ51へ出力してもよい。ターゲット供給装置26は、ターゲットを一定の時間間隔で出力し続ける装置でもよいし、ターゲットコントローラ52から受信するトリガ信号に応じたタイミングで一滴一滴のターゲットを出力するオンデマンド式の装置でもよい。レーザ光進行方向制御装置34は、高反射ミラー351、352及び353と、ダイクロイックミラー354と、それらのミラーをそれぞれ保持するためのホルダ351a,352a,353a及び354aとを含んでもよい。
 EUV光生成制御装置5は、EUVコントローラ51と、ターゲットコントローラ52と、遅延回路53とを含んでもよい。EUVコントローラ51は、ターゲットコントローラ52、遅延回路53及びレーザシステム3に制御信号を出力してもよい。
 レーザシステム3は、プリパルスレーザ光を出力するプリパルスレーザ装置300と、メインパルスレーザ光を出力するメインパルスレーザ装置390とを含んでもよい。上述のダイクロイックミラー354は、プリパルスレーザ光に含まれる波長成分を高い反射率で反射し、メインパルスレーザ光に含まれる波長成分を高い透過率で透過させるコーティングを有し、ビームコンバイナとして機能してもよい。
 4.2 動作
 ターゲットコントローラ52は、ターゲット供給装置26がターゲット27をチャンバ2内のプラズマ生成領域25に供給開始するように、ターゲット供給装置26にターゲット供給開始信号を出力してもよい。
 ターゲット供給装置26は、ターゲットコントローラ52からのターゲット供給開始信号を受信して、ドロップレット状のターゲット27をプラズマ生成領域25に向けて出力してもよい。ターゲットコントローラ52は、ターゲットセンサ4によるターゲット検出信号を受信し、その信号を遅延回路53に出力してもよい。ターゲットセンサ4は、ターゲット27がプラズマ生成領域25に到達する前の所定の位置を通過したタイミングを検出するセンサであってもよい。例えば、ターゲットセンサ4は、図示しない照明装置及び光センサを含んでいてもよい。照明装置は例えばレーザ装置であってよく、レーザ装置は上記所定の位置にCWレーザ光を照射するように配置されてもよい。光センサは、ターゲット27が上記所定の位置を通過した時にターゲット27からの反射光を検出する位置に配置されてもよい。ターゲット27が上記所定の位置を通過すると、光センサはターゲット27からの反射光を検出することによってターゲット27の通過タイミングを検出し、ターゲット検出信号を出力し得る。
 遅延回路53は、入力されたターゲット検出信号に所定の遅延時間を与えてタイミング信号を出力してもよい。遅延回路53は、ターゲット27がプラズマ生成領域25近傍に到達するタイミングでプリパルスレーザ光がターゲット27に照射されるように、第1のタイミング信号をプリパルスレーザ装置300に出力してもよい。第1のタイミング信号は、ターゲット検出信号に第1の遅延時間を与えた信号であってもよい。また、遅延回路53は、プリパルスレーザ光を照射されたターゲットが拡散して所定の拡散径に達するタイミングでメインパルスレーザ光が拡散ターゲットに照射されるように、第2のタイミング信号をメインパルスレーザ装置390に出力してもよい。第1のタイミング信号出力から第2のタイミング信号出力までの時間を第2の遅延時間としてもよい。
 プリパルスレーザ装置300は、遅延回路53からの第1のタイミング信号に応じてプリパルスレーザ光を出力してもよい。メインパルスレーザ装置390は、遅延回路53からの第2のタイミング信号に応じてメインパルスレーザ光を出力してもよい。
 プリパルスレーザ装置300から出力されたプリパルスレーザ光は、高反射ミラー353及びダイクロイックミラー354によって反射されて、ウインドウ21を介してレーザ光集光光学系22aに入射してもよい。メインパルスレーザ装置390から出力されたメインパルスレーザ光は、高反射ミラー351及び高反射ミラー352によって反射され、ダイクロイックミラー354を透過して、ウインドウ21を介してレーザ光集光光学系22aに入射してもよい。
 レーザ光集光光学系22aに入射したプリパルスレーザ光及びメインパルスレーザ光は、軸外放物面ミラー221及び平面ミラー222によって反射されて、プラズマ生成領域25に導かれてもよい。プリパルスレーザ光が照射されたターゲット27は拡散し、拡散ターゲットとなり得る。メインパルスレーザ光は、この拡散ターゲットに照射され、ターゲットをプラズマ化し得る。
5.プリパルスレーザ光のパラメータ
 5.1 パルス幅とCEとの関係
 図3は、EUV光生成システム11におけるプリパルスレーザ光の照射条件とCEとの関係を示すグラフである。図3においては、横軸は、プリパルスレーザ光に対するメインパルスレーザ光の遅延時間(μs)を示し、縦軸は、メインパルスレーザ光のエネルギーからEUV光のエネルギーへの変換効率すなわちCE(%)を示す。プリパルスレーザ光照射に対するメインパルスレーザ光照射の遅延時間を第3の遅延時間としてもよい。前述の通り、第1のタイミング信号出力から第2のタイミング信号出力までの時間を第2の遅延時間とした場合、第3の遅延時間は第2の遅延時間に依存し得る。その理由は、レーザ装置にタイミング信号が入力されてから、ターゲット物質にレーザ光が照射されるまでにシステムに依存した時間が必要となり得るためである。そこで、第3の遅延時間の目標値を決めて、第3の遅延時間がその目標値に近づくように、第2の遅延時間が調整されてもよい。第3の遅延時間の目標値は、プリパルスレーザ光を照射されたターゲットが拡散して所定の拡散径に達するまでの時間を予め実測した値でもよい。また、図3においては、プリパルスレーザ光の半値全幅で規定されるパルス幅とエネルギー密度の指標としてフルーエンスとの組合せを7通り設定し、それぞれの組合せについて、測定を行い、その結果を折れ線で示した。なお、フルーエンスとは、パルスレーザ光のエネルギーを、集光スポット径内の面積で除算した値とする。なお、集光スポット径は、集光点の強度分布において、ピーク強度の1/e以上の強度を有する部分の直径とする。
 測定条件の詳細は次の通りである。ターゲット物質としてスズ(Sn)を用い、これを溶融させて直径約21μmのドロップレット状のターゲットとした。
 プリパルスレーザ装置としては、パルス幅を10nsとする場合には、Nd:YAGレーザ装置を用い、波長を1.06μmとし、パルスエネルギーを0.5mJ~2.7mJとした。パルス幅を10psとする場合には、マスターオシレータとしてNd:YVOの結晶を含むモードロックレーザ装置を用い、再生増幅器としてNd:YAGの結晶を含むレーザ装置を用い、波長を1.06μmとし、パルスエネルギーを0.25mJ~2mJとした。これらのプリパルスレーザ装置によるプリパルスレーザ光の集光スポット径は、70μmとした。
 メインパルスレーザ装置としては、COレーザ装置を用い、波長を10.6μmとし、パルスエネルギーを135mJ~170mJとした。このメインパルスレーザ装置によるメインパルスレーザ光のパルス幅は15nsとし、集光スポット径を300μmとした。
 測定結果は次の通りである。図3に示されるように、プリパルスレーザ光のパルス幅を10nsとした場合のCEは、最高でも3.5%に達することはなかった。また、プリパルスレーザ光のパルス幅を10nsとした場合のCEは、第3の遅延時間が3μs以上である場合に、上記組合せのそれぞれにおける最高値が得られた。
 一方、プリパルスレーザ光のパルス幅を10psとした場合のCEは、上記組合せのそれぞれにおける最高値が、いずれも3.5%を超えた。これらの最高値は、第3の遅延時間が3μs未満である場合に得られた。特に、プリパルスレーザ光のパルス幅を10psとし、フルーエンスを52J/cmとし、第3の遅延時間を1.2μsとした場合に、CE4.7%を実現した。
 以上の結果から、プリパルスレーザ光のパルス幅は、10ns程度のナノ秒オーダーである場合よりも、10ps程度のピコ秒オーダーである場合の方が、格段にCEを向上し得ることがわかった。また、プリパルスレーザ光のパルス幅が、ナノ秒オーダーである場合よりも、ピコ秒オーダーである場合の方が、最大のCEを得るための第3の遅延時間が短かった。従って、プリパルスレーザ光のパルス幅が、ナノ秒オーダーである場合よりも、ピコ秒オーダーである場合の方が、高い繰り返し周波数でEUV光を生成するのにも有利であることがわかった。
 また、図3に示された結果から、プリパルスレーザ光のパルス幅をピコ秒オーダーとし、フルーエンスを13J/cm~52J/cmとする場合には、第3の遅延時間は、以下の範囲とするのが好ましい。
 0.5μs以上、1.8μs以下、
 より好ましくは、0.7μs以上、1.6μs以下、
 さらに好ましくは、1.0μs以上、1.4μs以下。
 5.2 パルス幅とフルーエンス及び光強度との関係
 図4Aは、EUV光生成システムにおけるプリパルスレーザ光のフルーエンスとCEとの関係を示すグラフである。図4Aにおいて、横軸は、プリパルスレーザ光のフルーエンス(J/cm)を示し、縦軸は、CE(%)を示す。プリパルスレーザ光のパルス幅を10ps、10ns、15nsとした場合のそれぞれにおいて、第3の遅延時間を種々設定してCEを測定し、最適な第3の遅延時間におけるCEのみをプロットした。なお、パルス幅を10ps又は10nsとする場合の結果の一部については、図3の結果を流用した。また、パルス幅を15nsとする場合については、パルス幅を10nsとする場合と同様のプリパルスレーザ装置を用いた。
 その結果、プリパルスレーザ光のパルス幅を10ps、10ns、15nsとした場合のいずれにおいても、プリパルスレーザ光のフルーエンスを高くするに伴いCEは増大するが、それぞれ所定のフルーエンスを超えるとCEが飽和する傾向にあることがわかった。また、パルス幅を10ns又は15nsとする場合よりも、パルス幅を10psとする場合の方が、CEが高く、低いフルーエンスでも比較的CEが高いことがわかった。さらに、パルス幅を10psとする場合に、フルーエンスを2.6J/cmから6.5J/cmにすると、CEが急激に上昇し、フルーエンスを6.5J/cm以上にすると、フルーエンスの上昇に対するCEの上昇の割合が小さくなることがわかった。
 図4Bは、EUV光生成システム11におけるプリパルスレーザ光の光強度とCEとの関係を示すグラフである。図4Bにおいて、横軸は、プリパルスレーザ光の光強度(W/cm)を示し、縦軸は、CE(%)を縦軸を示す。光強度は、図4Aの結果から算出した。なお、光強度とは、パルスレーザ光のフルーエンスを、半値全幅で規定されるパルス幅で除算した値とする。
 その結果、プリパルスレーザ光のパルス幅を10ps、10ns、15nsとした場合のいずれにおいても、プリパルスレーザ光の光強度を高くするとCEは増大する傾向にあることがわかった。また、パルス幅を10ns又は15nsとする場合よりも、パルス幅を10psとする場合の方が、CEが高いことがわかった。さらに、パルス幅を10psとする場合には、光強度を2.6×1011W/cmから5.6×1011W/cmの範囲にすると、CEが急激に上昇し、光強度を5.6×1011W/cm以上にすると、さらに高いCEが得られることがわかった。
 以上の通り、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光を照射して拡散ターゲットを形成し、拡散ターゲットにメインパルスレーザ光を照射することにより、CEを向上し得る。
 5.3 パルス幅と拡散ターゲットの状態との関係
 図5A及び図5Bは、EUV光生成システム11においてプリパルスレーザ光がドロップレット状のターゲットに照射された後の拡散ターゲットの写真である。図5A及び図5Bは、第3の遅延時間として、最大のCEが得られた遅延時間において撮影したものである。なお、ターゲットの拡散状態を観測するために、メインパルスレーザ光は照射していない。図5Aは、プリパルスレーザ光のパルス幅を10psとし、フルーエンスを3通り設定した場合のそれぞれにおいて撮影したものである。つまり、図3の説明の通り、図5Aは、第3の遅延時間1.2μs程度でフルーエンス52J/cmの場合、第3の遅延時間1.1μs程度でフルーエンス26J/cmの場合、第3の遅延時間1.3μs程度でフルーエンス13J/cmの場合でのそれぞれにおいて拡散ターゲットを撮影したものである。図5Bは、プリパルスレーザ光のパルス幅を10nsとし、フルーエンスを2通り設定した場合のそれぞれにおいて撮影したものである。つまり、図5Bは、第3の遅延時間3μsでフルーエンス70J/cmの場合、第3の遅延時間5μsでフルーエンス26J/cmの場合でのそれぞれにおいて拡散ターゲットを撮影したものである。図5A及び図5Bのいずれにおいても、プリパルスレーザ光の進行光路に対して60度の方向と90度の方向とから、拡散ターゲットを撮影した。撮影機器の配置は後に説明される。
 拡散ターゲットの直径Dtは、プリパルスレーザ光のパルス幅が10psである場合には360μm~384μmであり、プリパルスレーザ光のパルス幅が10nsである場合には325μm~380μmであった。つまり、拡散ターゲットの直径Dtは、メインパルスレーザ光の集光スポット径である300μmに対して多少大きくなった。しかし、メインパルスレーザ光の集光スポット径は、1/e幅の値であるため、メインパルスレーザ光は拡散ターゲットの直径が400μm程度でも拡散ターゲットの大部分に照射され得る。
 また、プリパルスレーザ光のパルス幅が10psである場合の方が、パルス幅が10nsである場合よりも短時間で、拡散ターゲットの直径Dtがメインパルスレーザ光の集光スポット径である300μmと同等となった。すなわち、パルス幅が10psである場合の方が、パルス幅が10nsである場合よりも拡散ターゲットの拡散スピードが速いことがわかった。
 図6は、図5A及び図5Bに示す写真を撮影したときの機器の配置を概略的に示す。図6に示すように、プリパルスレーザ光の進行光路に対して60度の方向と90度の方向とにそれぞれカメラC1及びC2を配置し、ターゲットを基準としてカメラC1及びC2の位置と反対側の位置にそれぞれフラッシュランプL1及びL2を配置した。
 図7A及び図7Bは、それぞれ、図5A及び図5Bに示される拡散ターゲットを模式的に示す断面図である。プリパルスレーザ光のパルス幅を10ps程度のピコ秒オーダーとした場合、図5A及び図7Aに示されるように、ターゲットは、プリパルスレーザ光の進行方向であるZ方向側には円環状に拡散し、プリパルスレーザ光の進行方向と逆側である入射側にはドーム型に拡散した。より詳しくは、拡散ターゲットは、ターゲットが円環状に拡散した第1の部分T1と、第1の部分T1に隣接しターゲットがドーム型に拡散した第2の部分T2と、第1の部分T1及び第2の部分T2に囲まれた第3の部分T3とを有していた。第1の部分T1は第2の部分T2よりターゲット物質の密度が大きく、第2の部分T2は第3の部分T3よりターゲット物質の密度が大きかった。
 一方、プリパルスレーザ光のパルス幅を10ns程度のナノ秒オーダーとした場合、図5B及び図7Bに示されるように、ターゲットは、円盤状又は円環状に拡散した。また、この拡散ターゲットは、プリパルスレーザ光が照射される前のターゲットの位置よりもプリパルスレーザ光の進行方向であるZ方向側に拡散した。
 プリパルスレーザ光のパルス幅がナノ秒オーダーである場合には、ターゲットへの入熱がナノ秒オーダーの時間にわたって生じ得る。その時間内に、ターゲット内部にも熱が伝達され、ターゲットの一部がアブレーションにより蒸発したり、アブレーションの反作用によりそのターゲットがレーザ光の進行方向に拡散したりするものと考えられる。これに対し、プリパルスレーザ光のパルス幅がピコ秒オーダーである場合には、ターゲット内部に熱が伝達されるよりも前に、瞬間的にドロップレット状のターゲットを破壊できるものと考えられる。図4Aに示したようにパルス幅をナノ秒オーダーとする場合よりもピコ秒オーダーとする場合の方が、プリパルスレーザ光のフルーエンスが低くても高いCEが得られる原因の一つとして、このようなターゲットの拡散過程の相違があると推定される。
 また、プリパルスレーザ光のパルス幅がナノ秒オーダーである場合よりも、ピコ秒オーダーである場合の方が、拡散ターゲットに含まれるターゲット物質の微粒子の粒径が小さかった。ターゲットを多数の小さな粒径の微粒子に分散させた場合、相対的にターゲットの表面積が増大し得る。このため、ターゲットに照射されるレーザ光の吸収が多くなると推測し得る。従って、プリパルスレーザ光のパルス幅がピコ秒オーダーである場合の方が、拡散ターゲットにメインパルスレーザ光を照射したときに、ターゲットが効率良くプラズマ化され得る。このことが、パルス幅をナノ秒オーダーとする場合よりもピコ秒オーダーとする場合の方が、高いCEを得られた原因の一つであると推定される。
 5.4 拡散ターゲットの生成過程
 図8A~図8Cは、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光が照射された場合の拡散ターゲットの生成過程を模式的に示す断面図である。図8Aは、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からピコ秒オーダーの時間が経過した時点において推定されるターゲットの状態を示す。図8Bは、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からナノ秒オーダーの時間が経過した時点において推定されるターゲットの状態を示す。図8Cは、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始から約1μsの時間が経過した時点における拡散ターゲットの状態を図7Aに基づいて示す。
 図8Aに示すように、ドロップレット状のターゲットにプリパルスレーザ光が照射されると、ターゲット表面にプリパルスレーザ光のエネルギーの一部が吸収され得る。その結果、プリパルスレーザ光が照射されたターゲット表面からほぼ垂直にターゲットの外側に向かうイオンや原子等の噴射を伴う、レーザアブレーションが発生し得る。これにより、プリパルスレーザ光が照射されたターゲット表面に対して垂直かつターゲット内部に向かって、レーザアブレーションによる反作用が働き得る。
 このプリパルスレーザ光は、例えば、6.5J/cm以上のフルーエンスを有し、ピコ秒オーダーの時間内でターゲット照射を終了し得るので、図4Bに示したように時間あたりにターゲットへ照射される光のエネルギーが大きい。従って、強力なレーザアブレーションが短時間で発生し得る。このため、レーザアブレーションによる反作用も大きく、ターゲットの内部に衝撃波が発生するものと推測される。
 衝撃波は、プリパルスレーザ光が照射されたターゲットの表面に対してほぼ垂直に進行するので、ドロップレット状のターゲットのほぼ中心に集束し得る。衝撃波の波面は、当初、ターゲットの表面とほぼ平行なほぼ半球面状であり得る。衝撃波が集束するに伴って、エネルギーが集中し、集中したエネルギーが一定の大きさを超えると、ドロップレット状のターゲットの破壊が始まり得る。
 ターゲットの破壊は、集束することによってエネルギーが一定の大きさを超えた衝撃波の、ほぼ半球面状の波面から始まるものと推測される。このことが、図8Cに示すように、ターゲットがプリパルスレーザ光の入射側にドーム型に拡散した理由であると考えられる。
 図8Aにおいて、衝撃波がドロップレット状のターゲットの中心にまで集束すると、エネルギーが最も集中し、ターゲットの残りの部分も一気に破壊され得る。このことが、図8Cに示すように、ターゲットがプリパルスレーザ光の進行方向側に円環状に拡散した理由であると考えられる。
 また、図8Aにおいては、強力なレーザアブレーションが発生していると推測されるが、レーザアブレーションが発生している時間は僅かであり、衝撃波がターゲットの中心に到達するまでの時間も短いと推測される。そして、図8Bに示すように、おそらくナノ秒オーダーの時間が経過した時にはターゲットが破壊され始めていると推測される。このことが、図8Cに示すように、ターゲットの重心がプリパルスレーザ光の照射前の位置からあまり移動していない理由であると推測される。
 図9A~図9Cは、ターゲットにナノ秒オーダーのパルス幅を有するプリパルスレーザ光が照射された場合の拡散ターゲットの生成過程を模式的に示す断面図である。図9Aは、ターゲットにナノ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からピコ秒オーダーの時間が経過した時点において推定されるターゲットの状態を示す。図9Bは、ターゲットにナノ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からナノ秒オーダーの時間が経過した時点において推定されるターゲットの状態を示す。図9Cは、ターゲットにナノ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始から数μsの時間が経過した時点における拡散ターゲットの状態を図7Bに基づいて示す。
 図9Aに示すように、ドロップレット状のターゲットにプリパルスレーザ光が照射されると、ターゲット表面にプリパルスレーザ光のエネルギーの一部が吸収され得る。その結果、プリパルスレーザ光が照射されたターゲット表面からほぼ垂直に、ターゲット物質のイオンや原子等の噴射を伴う、レーザアブレーションが発生し得る。これにより、プリパルスレーザ光が照射されたターゲット表面に対してほぼ垂直かつターゲット内部に向かって、レーザアブレーションによる反作用が働き得る。
 このプリパルスレーザ光は、10ns程度のナノ秒オーダーのパルス幅を有している。このプリパルスレーザ光は、上述のピコ秒オーダーのパルス幅を有するプリパルスレーザ光と同等のフルーエンスを有し得るが、ナノ秒オーダーの時間にわたって照射されるので、図4Bに示したように時間あたりにターゲットへ照射される光のエネルギーは小さい。
 ターゲットを構成する液体のスズ中における音速Vは、約2500m/sであり得る。ドロップレット状のターゲットの直径Dが21μmであるとすると、プリパルスレーザ光を照射されたターゲット表面からターゲットの中心まで音波が伝わる時間Tsは、次のように算出し得る。
   Ts=(D/2)/V
     =(21×10-6/2)/2500
     =4.2ns
 図3~図6を用いて説明した測定において、プリパルスレーザ光のフルーエンスは、ドロップレット状のターゲットの全体をレーザアブレーションによってイオンや原子等として気化するほどの大きさには設定されていない。従って、ターゲットに10nsのパルス幅を有するプリパルスレーザ光を照射した結果、10nsの時間内に、プリパルスレーザ光の進行方向に沿ったターゲットの厚みが21μm以上減少することはないと考えられる。すなわち、レーザアブレーションによる反作用に押されてターゲットの厚みが減少する速度は、液体のスズ中における音速を超えないと考えられる。従って、ターゲットの内部に、衝撃波は殆ど発生していないと推測される。
 このようなナノ秒オーダーのパルス幅を有するプリパルスレーザ光が照射されたターゲットは、図9Bに示すように、ナノ秒オーダーの時間にわたってレーザアブレーションによる反作用が働き、偏平形状のほぼ円板状に変形し得る。そして、レーザアブレーションによる反作用に起因してターゲットを変形させる力が表面張力に勝ると、ターゲットは破壊され得る。以上のことが、図9Cに示すように、ターゲットが円板状又は円環状に拡散した理由であると考えられる。
 また、前述のように、ターゲットにはナノ秒オーダーの時間にわたってレーザアブレーションによる反作用が働くと推測される。このターゲットは、ピコ秒オーダーのパルス幅を有するプリパルスレーザ光が照射された場合と比べて、約1000倍の時間にわたって、レーザアブレーションによる反作用を受けて加速され得ることになる。このことが、図9Cに示すように、ターゲットの重心がプリパルスレーザ光の進行方向側に移動した理由であると推測される。
 5.5 パルス幅の範囲
 上述の通り、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光を照射した場合には、ターゲットの内部に衝撃波が形成され、ターゲットがその中心付近から破壊されると推測され得る。一方、ターゲットにナノ秒オーダーのパルス幅を有するプリパルスレーザ光を照射した場合には、衝撃波の形成は抑制され、ターゲットがその表面から破壊されると推測され得る。
 このような推測に基づいて、プリパルスレーザ光によって衝撃波を発生させてターゲットを破壊するための条件は、以下のように規定し得る。
 まず、EUV光を生成するためのドロップレット状のターゲットの直径Dは、10μm~40μmであってもよい。
 ターゲットの直径Dが40μmである場合、ターゲットの表面から中心まで音波が到達する時間Tsは、以下のように導かれる。
   Ts=(D/2)/V
     =(40×10-6/2)/2500
     =8ns
 プリパルスレーザ光のパルス幅Tpは、ターゲットの表面から中心まで音波が到達する時間Tsよりも十分小さいことが好ましい。そのような短い時間内に、ある程度のフルーエンスを有するプリパルスレーザ光をターゲットに照射することにより、衝撃波を形成し、ターゲットを微細な粒子に破壊し得る。そこで、係数Kを定義する。係数Kは、ターゲットの表面から中心まで音波が到達する時間Tsよりも十分小さい値として好ましいパルス幅Tpを決定する係数である。式1に示すように、ターゲットの表面から中心まで音波が到達する時間Tsに係数Kを乗算した値よりも小さい値が、プリパルスレーザ光のパルス幅Tpとして好ましい。
   Tp<K・Ts ・・・(式1)
係数Kは、例えば、K=1/8でもよい。また、K=1/16が好ましい。また、K=1/160がより好ましい。
 ターゲットの直径Dが40μmである場合、プリパルスレーザ光のパルス幅Tpとして好ましい値は、(式1)から以下のように導かれる。
 K=1/8の場合は、Tp<1nsでもよい。
 より好ましくは、K=1/16とし、Tp<500psでもよい。
 より好ましくは、K=1/160とし、Tp<50psでもよい。
 5.6 フルーエンスの範囲
 図4Aを再び参照すると、ピコ秒オーダーのパルス幅を有するプリパルスレーザ光のフルーエンスを6.5J/cm以上とした場合には、最適な第3の遅延時間でメインパルスレーザ光を照射すると、3.5%以上のCEが得られことが判る。同様に、フルーエンスを30J/cm以上とした場合には、4%以上のCEが得られることが判る。同様に、フルーエンスを45J/cm以上とした場合には、4.5%以上のCEが得られることが判る。従って、ピコ秒オーダーのパルス幅を有するプリパルスレーザ光のフルーエンスは、6.5J/cm以上とすることが好ましく、30J/cm以上とすることがより好ましく、45J/cm以上とすることがさらに好ましい。
 ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光を照射したときに、ターゲットに吸収されるエネルギーEdは、以下の式で近似され得る。
   Ed≒F・A・π・(D/2)
ここで、Fはプリパルスレーザ光のフルーエンスである。Aはターゲットによるプリパルスレーザ光の吸収率である。ターゲットを液体のスズとし、プリパルスレーザ光の波長を1.06μmとすると、Aは約16%である。Dはドロップレット状のターゲットの直径である。
 一方、ターゲットの質量mは以下の式で求められる。
   m=ρ・(4π/3)・(D/2)
ここで、ρはターゲットの密度であり、ターゲットを液体のスズとすると、約6.94g/cmである。
 次に、ターゲットの単位質量に対して、吸収されるプリパルスレーザ光のエネルギーEdpは、以下の(式2)で求められる。
   Edp=Ed/m
      ≒(3/2)・F・A/(ρD) ・・・(式2)
 従って、ターゲットが液体のスズの場合で、3.5%のCEが得られるようプリパルスレーザ光のフルーエンスFを6.5J/cmとした場合に、ターゲットの単位質量に対して吸収されるエネルギーEdpは、(式2)より、次のように求められる。
   Edp≒(3/2)×6.5×0.16/(6.94×21×10-4
      ≒107J/g
 同様に、4%のCEが得られるようプリパルスレーザ光のフルーエンスFを30J/cmとした場合に、ターゲットの単位質量に対して吸収されるエネルギーEdpは、次のように求められる。
   Edp≒(3/2)×30×0.16/(6.94×21×10-4
      ≒494J/g
 同様に、4.5%のCEが得られるようプリパルスレーザ光のフルーエンスFを45J/cmとした場合に、ターゲットの単位質量に対して吸収されるエネルギーEdpは、次のように求められる。
   Edp≒(3/2)×45×0.16/(6.94×21×10-4
      ≒741J/g
 さらに、(式2)から、プリパルスレーザ光のフルーエンスFと、ターゲットの単位質量に対して吸収されるエネルギーEdpとの関係は、以下のようになる。
   F≒(2/3)Edp・ρ・D/A
 従って、任意のターゲットで、3.5%のCEが得られるようにするためのプリパルスレーザ光のフルーエンスFは、上述のエネルギーEdpの値を用いて、次のように求められる。
   F≒(2/3)×107・ρ・D/A
    ≒71.3(ρ・D/A)
 同様に、任意のターゲットで、4%のCEが得られるようにするためのプリパルスレーザ光のフルーエンスFは、次のように求められる。
   F≒(2/3)×494・ρ・D/A
    ≒329(ρ・D/A)
 同様に、任意のターゲットで、4.5%のCEが得られるようにするためのプリパルスレーザ光のフルーエンスFは、次のように求められる。
   F≒(2/3)×741・ρ・D/A
    ≒494(ρ・D/A)
 従って、プリパルスレーザ光のフルーエンスFの値は、これらの値以上とすることが望ましい。また、プリパルスレーザ光のフルーエンスFの値は、メインパルスレーザ光のフルーエンスの値以下であってもよい。メインパルスレーザ光のフルーエンスは、例えば、150J/cm~300J/cmであってもよい。
6.プリパルスレーザ装置
 6.1 概略構成
 上述のように、ターゲットを拡散させるためのプリパルスレーザ光は、そのパルス幅がピコ秒オーダーの短パルスとされるのが望ましい。
 パルス幅の短いパルスレーザ光を出力する装置として、モードロックレーザ装置が考えられる。モードロックレーザ装置は、相対的に位相が固定された複数の縦モードでレーザ光を発振させ得る。そして、それらの縦モードの光が重なり合うことにより、パルス幅の短いパルスレーザ光が出力され得る。しかしながら、モードロックレーザ装置がパルスレーザ光の各パルスを出力するタイミングは、1つ前のパルスを出力したタイミングと、当該モードロックレーザ装置の光共振器長に応じた繰り返し周波数とに依存し得る。従って、所望のタイミングで各パルスが出力されるようにモードロックレーザ装置を制御することは容易ではない。そこで、チャンバ内に供給されるドロップレット状のターゲットにプリパルスレーザ光を照射するタイミング制御を実現するために、プリパルスレーザ装置は以下の構成を備えてもよい。
 図10は、図2に示すプリパルスレーザ装置300の構成例を概略的に示す。プリパルスレーザ装置300は、クロック生成器301と、モードロックレーザ装置302と、光共振器長調整ドライバ303と、パルスレーザ光検出器304と、再生増幅器305と、励起用電源306と、制御部310とを含んでもよい。
 クロック生成器301は、例えば繰り返し周波数を100MHzとするクロック信号を出力してもよい。モードロックレーザ装置302は、相対的に位相が固定された複数の縦モードでレーザ光を発振させて、例えば繰り返し周波数を100MHz程度とするパルスレーザ光を出力してもよい。モードロックレーザ装置302は、後述の光共振器を含んでもよく、その光共振器長は、光共振器長調整ドライバ303によって調整可能であってもよい。
 モードロックレーザ装置302から出力されるパルスレーザ光の光路には、ビームスプリッタ307が配置されてもよい。ビームスプリッタ307によって2つの光路に分岐されたパルスレーザ光の一方の光路には、パルスレーザ光検出器304が配置されてもよい。パルスレーザ光検出器304は、パルスレーザ光を検出して検出信号を出力してもよい。
 再生増幅器305は、ビームスプリッタ307によって分岐されたパルスレーザ光の他方の光路に配置されてもよい。再生増幅器305は、光共振器を含んでもよく、その光共振器内でパルスレーザ光を複数回往復させて増幅し、パルスレーザ光が所定回数往復したタイミングで増幅されたパルスレーザ光を取り出す装置であってもよい。再生増幅器305の光共振器内にはレーザ媒質(後述)が配置され、このレーザ媒質を励起するためのエネルギーが、励起用電源306を介して与えられてもよい。再生増幅器305は、内部にポッケルスセル(後述)を含んでもよい。
 制御部310は、位相調整部311と、AND回路312とを含んでもよい。位相調整部311は、クロック生成器301によって出力されるクロック信号と、パルスレーザ光検出器304によって出力される検出信号とに基づいて、光共振器長調整ドライバ303をフィードバック制御してもよい。
 また、制御部310は、クロック生成器301によって出力されるクロック信号と、図2の説明で述べた遅延回路53から出力される第1のタイミング信号とに基づいて、再生増幅器305を制御してもよい。具体的には、AND回路312が、クロック信号と第1のタイミング信号とのAND信号を生成し、このAND信号によって再生増幅器305内のポッケルスセルを制御してもよい。
 6.2 モードロックレーザ装置
 図11は、図10に示すモードロックレーザ装置の構成例を概略的に示す。モードロックレーザ装置302は、平面ミラー320と可飽和吸収体ミラー321との間に、レーザ結晶322と、凹面ミラー323と、平面ミラー324と、出力結合ミラー325と、凹面ミラー326とが、この順に平面ミラー320側から配置された光共振器を含んでもよい。この光共振器の光路は紙面にほぼ平行でもよい。さらに、モードロックレーザ装置302は、光共振器の外部からレーザ結晶322に励起光E1を導入するための励起光源327を含んでもよい。励起光源327は、励起光E1を発生するレーザダイオードを含んでもよい。
 平面ミラー320は、励起光源327からの励起光E1に含まれる波長成分を高い透過率で透過させ、レーザ結晶322からの放出光に含まれる波長成分を高い反射率で反射するミラーでもよい。レーザ結晶322は、励起光E1を受けて励起されて誘導放出を行うレーザ媒質であり、例えば、Nd:YVO(neodymium-doped yttrium orthovanadate)の結晶であってもよい。レーザ結晶322から放出される光は、複数の縦モード(周波数成分)を含んでもよい。さらに、このレーザ結晶322はレーザ光の入射角度がブリュースタ角となるように配置されてもよい。
 凹面ミラー323と、平面ミラー324と、凹面ミラー326とは、レーザ結晶322から放出された光をそれぞれ高い反射率で反射してもよい。出力結合ミラー325は、レーザ結晶322内で増幅されたレーザ光の一部を、光共振器の外部に向けて透過させ、残りの一部を、レーザ結晶322内でさらに増幅されるように反射してもよい。出力結合ミラー325からは進行方向の異なる第1の光及び第2の光が光共振器の外部に透過してもよい。第1の光は平面ミラー324からの反射光のうち出力結合ミラー325を透過した光である。第2の光は凹面ミラー326からの反射光のうち出力結合ミラー325を透過した光である。第1の光の光路には、上述のビームスプリッタ307が配置されてもよい。第2の光の光路には、図示しないレーザダンパが配置されてもよい。
 可飽和吸収体ミラー321は、ミラー基板上に反射層と可飽和吸収体層とがこの順で積層されたミラーでもよい。可飽和吸収体ミラー321においては、入射光が所定の閾値より弱い間は可飽和吸収体層が入射光をほぼ吸収し、入射光がその閾値以上に強くなると、可飽和吸収体層が入射光を高い透過率で透過させて、反射層が入射光を反射してもよい。これにより、複数の縦モードの位相がそろったタイミングで瞬間的に強度が高くなった光のみが、可飽和吸収体ミラー321によって反射され得る。
 こうして、複数の縦モードの光の位相が相対的に固定されたパルス光が、光共振器内を往復することにより、増幅され得る。この状態はモードロックと呼ばれる場合がある。増幅されたパルス光は出力結合ミラー325からパルスレーザ光として周期的に出力され得る。このパルスレーザ光の繰り返し周波数は、光が光共振器内を一往復する時間の逆数に相当し得る。例えば、光共振器長L=1.5m、真空中の光速c=3×10m/s、光路内の屈折率を1とすると、繰り返し周波数fは、次式の通り、100MHzとなり得る。なお、光路内の屈折率は真空中の光速を光路内の物質中の光速で除算した値であってよい。
   f=c/(2L)
    =(3×10)/(2×1.5)
    =100MHz
この出力されるパルスレーザ光は、レーザ結晶322がブリュースタ角で図11のように配置されているので、偏光面が紙面に平行な直線偏光となり得る。
 可飽和吸収体ミラー321は、ミラーホルダに支持され、このミラーホルダが、リニアステージ328によって光の進行方向に沿って移動可能であってもよい。光の進行方向は、図中の左右方向であってよい。リニアステージ328は、上述の光共振器長調整ドライバ303によって駆動可能であってもよい。可飽和吸収体ミラー321が光の進行方向に沿って移動させられることにより、光共振器長が調整され、パルスレーザ光の繰り返し周波数が調整されてもよい。
 上述のように、位相調整部311は、クロック生成器301によって出力されるクロック信号と、パルスレーザ光検出器304によって出力される検出信号とに基づいて、光共振器長調整ドライバ303を制御してもよい。具体的には、位相調整部311は、クロック信号と検出信号との位相差を検出し、クロック信号と検出信号とが一定の遅延時間をもって同期するように、光共振器長調整ドライバ303を制御してもよい。クロック信号と検出信号との一定の遅延時間を第4の遅延時間とする。第4の遅延時間については、図14A及び図14Bを参照しながら後述する。
 6.3 再生増幅器
 図12は、図10に示す再生増幅器305の構成例を概略的に示す。再生増幅器305は、平面ミラー334と凹面ミラー335との間に、レーザ結晶336と、凹面ミラー337と、平面ミラー338と、偏光ビームスプリッタ339と、ポッケルスセル340と、λ/4波長板341とが、この順に平面ミラー334側から配置された光共振器を含んでもよい。例えば、再生増幅器305の光共振器は、上述のモードロックレーザ装置302の光共振器よりも短い光共振器長を有してもよい。さらに、再生増幅器305は、光共振器の外部からレーザ結晶336に励起光E2を導入するための励起光源342を含んでもよい。励起光源342は、励起光E2を発生するレーザダイオードを含んでもよい。また、再生増幅器305は、偏光ビームスプリッタ330と、ファラデー光アイソレータ331と、平面ミラー332と、平面ミラー333とを含んでもよい。ファラデー光アイソレータ331は、図示しないファラデーローテータと図示しないλ/2波長板とを含んでいてもよい。
 平面ミラー334は、励起光源342からの励起光E2に含まれる波長成分を高い透過率で透過させ、レーザ結晶336からの放出光に含まれる波長成分を高い反射率で反射するミラーでもよい。レーザ結晶336は、励起光E2を受けて励起されるレーザ媒質であり、例えば、Nd:YAG(neodymium-doped yttrium aluminum garnet)の結晶であってもよい。さらに、レーザ結晶336はレーザ光の入射角度がブリュースタ角となるように配置されてもよい。励起光E2を受けて励起されたレーザ結晶336に、モードロックレーザ装置302から出力された種光が入射すると、誘導放出によって種光が増幅され得る。
 6.3.1 ポッケルスセルに電圧を印加しない場合
 偏光ビームスプリッタ330は、モードロックレーザ装置302から出力されたパルスレーザ光B1の光路に配置されてもよい。偏光ビームスプリッタ330は、パルスレーザ光B1が入射する面が紙面に対して垂直に配置されてもよい。偏光ビームスプリッタ330は、紙面に平行な方向に直線偏光したパルスレーザ光B1を高い透過率で透過させてもよい。偏光ビームスプリッタ330は、後述のように、紙面に垂直な方向に直線偏光したパルスレーザ光B29を高い反射率で反射してもよい。
 ファラデー光アイソレータ331は、図中下側から偏光ビームスプリッタ330を透過したパルスレーザ光B2の光路に配置されてもよい。ファラデー光アイソレータ331は、図中下側から入射した直線偏光のパルスレーザ光B2の偏光面を90度回転させてパルスレーザ光B3として透過させてもよい。また、ファラデー光アイソレータ331は、後述のように、図中上側に相当する逆方向から入射するパルスレーザ光B28の偏光面を回転させずに、偏光ビームスプリッタ330に向けて透過させてもよい。
 平面ミラー332は、ファラデー光アイソレータ331を透過したパルスレーザ光B3の光路に配置されてもよい。平面ミラー332は、パルスレーザ光B3を高い反射率で反射してもよい。平面ミラー333は、平面ミラー332によって反射されたパルスレーザ光B4を高い反射率で反射してもよい。
 光共振器内に配置された偏光ビームスプリッタ339は、平面ミラー333によって反射されたパルスレーザ光B5の光路上に位置していてもよい。偏光ビームスプリッタ339は、パルスレーザ光B5が入射する面が紙面に対して垂直に配置されてもよく、パルスレーザ光B5は、偏光ビームスプリッタ339の図中右側の面に入射してもよい。偏光ビームスプリッタ339は、紙面に垂直な方向に直線偏光したパルスレーザ光B5を高い反射率で反射し、パルスレーザ光B6として光共振器内に導いてもよい。偏光ビームスプリッタ339は、後述のように、紙面に平行な方向に直線偏光したパルスレーザ光B11等を高い透過率で透過させてもよい。
 ポッケルスセル340と、λ/4波長板341と、凹面ミラー335とは、偏光ビームスプリッタ339からみて図中右側の光路に配置されていてもよい。平面ミラー334と、レーザ結晶336と、凹面ミラー337と、平面ミラー338とは、偏光ビームスプリッタ339からみて図中左側の光路に配置されていてもよい。
 ポッケルスセル340は、高電圧電源343によって電圧を印加可能であってもよい。ポッケルスセル340は、高電圧電源343によって電圧が印加されていない状態においては、偏光ビームスプリッタ339によって反射されたパルスレーザ光B6の偏光面を回転させずにパルスレーザ光B7として透過させてもよい。なお、ポッケルスセル340に高電圧電源343が電圧を印加していない状態は「電圧がOFF」と称し、高電圧電源343が電圧を印加している状態は「電圧がON」と称する。
 λ/4波長板341は、パルスレーザ光B7が入射する面が紙面に対して垂直な状態で配置されてもよい。更に、λ/4波長板341の結晶の光学軸が、入射光軸に垂直な面内において、紙面に対して45度傾いた状態となるよう、λ/4波長板341が配置されてもよい。λ/4波長板341に入射するパルスレーザ光B7は、上記結晶の光学軸に平行な第1の偏光成分と、上記結晶の光学軸とパルスレーザ光B7の進行方向との両方に垂直な第2の偏光成分とを有し得る。第1の偏光成分と第2の偏光成分との合成ベクトルの方向は、パルスレーザ光B7の偏光面に沿った方向と一致し、その方向は紙面に垂直な方向であり得る。
 λ/4波長板341は、第1の偏光成分と第2の偏光成分とを互いに異なる光路で透過させる複屈折作用を有してもよい。その結果、λ/4波長板341は、ポッケルスセル340を透過したパルスレーザ光B7を、第1の偏光成分の位相に対して第2の偏光成分の位相を1/4波長分ずらして透過させてもよい。凹面ミラー335は、λ/4波長板341を透過したパルスレーザ光B8を高い反射率で反射してもよい。凹面ミラー335によって反射されたパルスレーザ光B9は、λ/4波長板341を再び透過するので、第1の偏光成分の位相に対して第2の偏光成分の位相がさらに1/4波長分ずらされてもよい。つまり、パルスレーザ光B7は、λ/4波長板341を2回透過することにより、第1の偏光成分の位相に対して第2の偏光成分の位相が合計で1/2波長分ずらされてもよい。その結果、紙面に垂直な方向に直線偏光したパルスレーザ光B7は、その偏光面が90度回転し、紙面に平行な方向に直線偏光したパルスレーザ光B10としてポッケルスセル340に入射し得る。
 ポッケルスセル340は、上述の通り、高電圧電源343による電圧が印加されていない状態においては、入射光の偏光面を回転させないで透過させ得る。従って、ポッケルスセル340を透過したパルスレーザ光B11は、紙面に平行な方向に直線偏光した状態で偏光ビームスプリッタ339に入射し得る。偏光ビームスプリッタ339は、紙面に平行な方向に直線偏光したパルスレーザ光B11を高い透過率で透過させてもよい。
 平面ミラー338は、偏光ビームスプリッタ339を透過したパルスレーザ光B12を高い反射率で反射してもよい。凹面ミラー337は、平面ミラー338によって反射されたパルスレーザ光B13を高い反射率で反射してもよい。レーザ結晶336は、凹面ミラー337によって反射された種光としてのパルスレーザ光B14を増幅して透過させてもよい。
 平面ミラー334は、レーザ結晶336によって増幅されてレーザ結晶336を透過したパルスレーザ光B15を高い反射率で反射し、パルスレーザ光B16としてレーザ結晶336に入射させてもよい。レーザ結晶336によって再び増幅されたパルスレーザ光B17は、凹面ミラー337と、平面ミラー338と、偏光ビームスプリッタ339と、ポッケルスセル340とを介して、パルスレーザ光B21としてλ/4波長板341に入射してもよい。パルスレーザ光B21はλ/4波長板341を透過し、凹面ミラー335によって反射されて再びλ/4波長板341を透過することにより、その偏光面が90度回転し、紙面に垂直な方向に直線偏光したパルスレーザ光B24となり得る。パルスレーザ光B24は、ポッケルスセル340を透過した後、偏光ビームスプリッタ339によって高い反射率で反射され、パルスレーザ光B26として光共振器の外部に出力されてもよい。
 パルスレーザ光B26は、平面ミラー333と平面ミラー332とを介して、パルスレーザ光B28としてファラデー光アイソレータ331に図中上側から入射してもよい。ファラデー光アイソレータ331は、図中上側から入射した直線偏光のパルスレーザ光B28を、その偏光面を回転させずに、パルスレーザ光B29として透過させてもよい。偏光ビームスプリッタ330は、紙面に垂直な方向に直線偏光したパルスレーザ光B29を高い反射率で反射してもよい。
 偏光ビームスプリッタ330によって反射されたパルスレーザ光B30は、図2に示したレーザ光集光光学系22aを介してプラズマ生成領域25に導かれてもよい。ただし、再生増幅器305の光共振器内を一往復しただけで出力された、このパルスレーザ光B30は、仮にターゲットに照射されても、ターゲットを拡散させず、ターゲットをプラズマ化もしない程度の弱い強度を有していてもよい。
 6.3.2 ポッケルスセルに電圧を印加する場合
 高電圧電源343は、一度ポッケルスセル340を透過したパルスレーザ光B11の1つのパルスが、次にパルスレーザ光B20としてポッケルスセル340に入射するまでの間のタイミングで、ポッケルスセル340に印加する電圧をOFFからONにしてもよい。ポッケルスセル340は、高電圧電源343によって電圧が印加されている状態においては、λ/4波長板341と同様に、入射光を、第1の偏光成分の位相に対して第2の偏光成分の位相を1/4波長分ずらして透過させてもよい。
 図13は、図12に示す再生増幅器305においてポッケルスセル340に電圧が印加されている場合の光路を概略的に示す。このとき、パルスレーザ光B20は、ポッケルスセル340及びλ/4波長板341をそれぞれ2回透過する過程で、パルスレーザ光Ba1、Ba2、Ba3、Ba4として示す光路を経て、パルスレーザ光B11として戻ってきてもよい。λ/4波長板341を2回透過することで偏光面が90度回転し、且つ、電圧が印加されているポッケルスセル340を2回透過することでさらに偏光面が90度回転したパルスレーザ光B11は、その偏光面の向きがパルスレーザ光B20と同じであり得る。従って、パルスレーザ光B11は、偏光ビームスプリッタ339を再び透過して、レーザ結晶336によって増幅され得る。ポッケルスセル340に高電圧電源343による電圧が印加されている間、この増幅動作が繰り返され得る。
 増幅動作が繰り返された後、高電圧電源343は、一度ポッケルスセル340を透過したパルスレーザ光B11が、次にパルスレーザ光B20としてポッケルスセル340に入射するまでの間のタイミングで、ポッケルスセル340に印加する電圧をONからOFFにしてもよい。ポッケルスセル340は、上述の通り、図12のように高電圧電源343による電圧が印加されていない状態においては、入射光の偏光面を回転させなくてもよい。従って、このときポッケルスセル340に図中左側から入射したパルスレーザ光B20は、図12のパルスレーザ光B21、B22、B23、B24として、λ/4波長板341を2回透過することによってその偏光面が90度だけ回転し得る。よって、増幅動作が繰り返された後のパルスレーザ光は、紙面に垂直な方向に直線偏光した状態で、パルスレーザ光B25として偏光ビームスプリッタ339に図中右側から入射し、光共振器の外部に出力され得る。
 なお、図13のようにポッケルスセル340に電圧が印加されて増幅動作が繰り返されている間、新たにモードロックレーザ装置302から出力されたパルスレーザ光B1は、偏光面が紙面に垂直な方向に直線偏光したパルスレーザ光B6としてポッケルスセル340に入射し得る。ポッケルスセル340に電圧が印加されている間は、パルスレーザ光B6は、λ/4波長板341及びポッケルスセル340を透過しながら、パルスレーザ光Ba5、Ba6、Ba7、Ba8として示す光路を経て、パルスレーザ光B25として戻ってきてもよい。このとき、パルスレーザ光B25は、その偏光面がパルスレーザ光B6と同じであり得る。従って、このパルスレーザ光B25は、偏光面が紙面に垂直な直線偏光であるパルスレーザ光として偏光ビームスプリッタ339に図中右側から入射し、一度も増幅されることなく、パルスレーザ光B26として光共振器の外部に出力され得る。
 高電圧電源343がポッケルスセル340に印加する電圧をON/OFFするタイミングは、上述のクロック信号と第1のタイミング信号とのAND信号によって決定されてもよい。AND信号は、AND回路312から、再生増幅器305に含まれる電圧波形生成回路344に供給されてもよい。電圧波形生成回路344は、AND信号をトリガとして電圧波形を生成し、この電圧波形を高電圧電源343に供給してもよい。高電圧電源343は、この電圧波形に従ってパルス状の電圧を生成し、この電圧をポッケルスセル340に印加してもよい。第1のタイミング信号と、AND信号と、電圧波形生成回路344による電圧波形とについては、図14C~図14Eを参照しながら後述する。
 6.4 タイミング制御
 図14A~図14Eは、図10に示すプリパルスレーザ装置300における各信号のタイミングチャートである。図14Aは、クロック生成器301から出力されるクロック信号のタイミングチャートである。クロック生成器301から出力されるクロック信号は、例えば、繰り返し周波数を100MHzとしてもよい。この場合、パルスの発生間隔は10nsとなり得る。
 図14Bは、パルスレーザ光検出器304から出力される検出信号のタイミングチャートである。パルスレーザ光検出器304から出力される検出信号の繰り返し周波数は、モードロックレーザ装置302から出力されるパルスレーザ光の繰り返し周波数に依存し得る。モードロックレーザ装置302から出力されるパルスレーザ光の繰り返し周波数は、モードロックレーザ装置302の光共振器長を調整することによって、調整され得る。このパルスレーザ光は、例えば、繰り返し周波数が100MHz程度であってもよい。パルスレーザ光の繰り返し周波数を微調整することによって、図14Aに示すクロック信号との位相差を調整し得る。これにより、パルスレーザ光の検出信号が図14Aに示す例えば100MHzのクロック信号に対して、例えば5nsの第4の遅延時間をもって同期するように、モードロックレーザ装置302がフィードバック制御されてもよい。
 図14Cは、遅延回路53から出力される第1のタイミング信号のタイミングチャートである。上述のように、遅延回路53から出力される第1のタイミング信号は、ターゲットセンサ4によるターゲット検出信号に第1の遅延時間を与えた信号であってもよい。第1のタイミング信号の繰り返し周波数は、ターゲット供給装置26によるターゲット出力の繰り返し周波数に依存し得る。ターゲット供給装置26によるターゲット出力の繰り返し周波数は、例えば、100kHz程度であってもよい。第1のタイミング信号のパルス幅は、図14Aに示すクロック信号のパルスの発生間隔と同等の時間幅とされてもよい。よって、第1のタイミング信号のパルス幅は、例えば10nsであってよい。
 図14Dは、AND回路312から出力されるAND信号のタイミングチャートである。AND回路312から出力されるAND信号は、クロック信号と第1のタイミング信号との論理積をとった信号であってもよい。第1のタイミング信号のパルス幅が、クロック信号の発生間隔と同等の時間幅とされた場合には、第1のタイミング信号の1つのパルスに対して、AND信号の1つのパルスが生成され得る。このAND信号は、クロック信号の複数のパルスのうちの一部のパルスにほぼ同期して生成され得る。
 図14Eは、電圧波形生成回路344から出力される電圧波形のタイミングチャートである。電圧波形生成回路344から出力される電圧波形は、AND回路312からAND信号が出力されたときに、AND信号にほぼ同期して生成されてもよい。この電圧波形は、例えば、パルス幅が300nsのパルスであってもよい。例えば、再生増幅器305の光共振器長が1mの場合、光速3×10m/sのパルスレーザ光が光共振器内を50往復する時間は、300nsであり得る。このように電圧波形のパルス幅を設定することにより、パルスレーザ光を再生増幅器305の光共振器内で何回往復させて出力するかを設定し得る。
 以上のタイミング制御によれば、クロック信号とモードロックレーザ装置302からのパルスレーザ光とが第4の遅延時間をもって同期し、且つ、AND信号がクロック信号の複数のパルスのうちの一部のパルスに同期し得る。これにより、パルスレーザ光が再生増幅器305の光共振器内の特定の区間を伝搬している間に、高電圧電源343がポッケルスセル340に印加する電圧を切り替えることができる。従って、モードロックレーザ装置302から出力されたパルスレーザ光に含まれる所望のパルスのみを所望の強度に増幅し、ターゲットに照射することができる。
 また、以上のタイミング制御によれば、モードロックレーザ装置302によるパルスの発生間隔に応じた分解能で、再生増幅器305から出力されるパルスの発生タイミングを制御し得る。例えば、ターゲット供給装置26から出力されて30m/s~60m/sの速度でチャンバ2内を移動するターゲットは、モードロックレーザ装置302によるパルスの発生間隔である10nsの時間内に、0.3μm~0.6μm移動し得る。ドロップレット状のターゲットの直径が20μm程度であれば、10nsという分解能は、ターゲットにパルスレーザ光を照射するのに十分であり得る。
 6.5 レーザ媒質の例
 上述の例では、モードロックレーザ装置302に含まれるレーザ結晶322としてNd:YVOの結晶を用い、再生増幅器305に含まれるレーザ結晶336としてNd:YAGの結晶を用いた場合について説明したが、本開示はこれに限定されない。
 例えば、モードロックレーザ装置302及び再生増幅器305のいずれにも、レーザ結晶としてNd:YAGの結晶を用いてもよい。
 また、例えば、モードロックレーザ装置302及び再生増幅器305のいずれかまたは両方に、レーザ結晶としてTi:サファイア(Titanium-doped Sapphire)の結晶を用いてもよい。
 また、例えば、モードロックレーザ装置302及び再生増幅器305のいずれかまたは両方に、レーザ結晶としてルビー結晶を用いてもよい。
 また、例えば、モードロックレーザ装置302及び再生増幅器305のいずれかまたは両方に、レーザ媒質として色素セルを用いてもよい。
 また、例えば、モードロックレーザ装置302及び再生増幅器305のいずれかまたは両方に、レーザ媒質としてNd3+:ガラス(triply ionized neodymium-doped glass)を用いてもよい。
7.メインパルスレーザ装置
 図15は、図2に示すメインパルスレーザ装置390の構成例を概略的に示す。メインパルスレーザ装置390は、マスターオシレータMOと、複数の増幅器PA1、PA2及びPA3と、制御部391とを含んでもよい。
 マスターオシレータMOは、COガスをレーザ媒質として用いたCOレーザ装置であってもよいし、COレーザの波長域で発振する量子カスケードレーザ装置であってもよい。複数の増幅器PA1、PA2及びPA3は、マスターオシレータMOから出力されるパルスレーザ光の光路に直列に配置されてもよい。複数の増幅器PA1、PA2及びPA3は、それぞれ、例えばCOガスをレーザ媒質として収容したレーザチャンバと、レーザチャンバ内に配置された図示しない少なくとも一対の電極と、図示しない少なくとも一対の電極間に電圧を印加する電源とを含んでいてもよい。なお、以下の説明においてCOガスをレーザ媒質とする場合、COガスを窒素、ヘリウム、ネオン、キセノンあるいはその他のガスによって希釈して利用してもよい。
 制御部391は、EUVコントローラ51からの制御信号に基づいて、マスターオシレータMOと、複数の増幅器PA1、PA2及びPA3とを制御してもよい。制御部391は、遅延回路53からのタイミング信号をマスターオシレータMOに出力してもよい。遅延回路53からのタイミング信号は、上述の第2のタイミング信号であってよい。マスターオシレータMOは、第2のタイミング信号の各パルスをトリガとして、パルスレーザ光の各パルスを出力してもよい。このパルスレーザ光は、複数の増幅器PA1、PA2及びPA3によって増幅されてもよい。これにより、メインパルスレーザ装置390は、遅延回路53からの第2のタイミング信号と同期して、メインパルスレーザ光を出力してもよい。
8.第2の遅延時間を制御する装置を含む極端紫外光生成システム
 図16は、第2の実施形態に係るEUV光生成システム11の構成例を概略的に示す一部断面図である。第2の実施形態に係るEUV光生成システム11は、ビームスプリッタ61及び62と、光センサ63及び64と、遅延時間計測部65とを含んでもよい。また、EUV光生成システム11は、図2に示す遅延回路53の代わりに、遅延時間制御装置50を含んでもよい。他の点については第1の実施形態と同様でよい。
 ビームスプリッタ61は、ダイクロイックミラー354とレーザ光集光光学系22aとの間のプリパルスレーザ光及びメインパルスレーザ光の光路に配置されてもよい。ビームスプリッタ61には、プリパルスレーザ光及びメインパルスレーザ光を高い透過率で透過させ、プリパルスレーザ光及びメインパルスレーザ光の各残りの一部を反射する膜がコーティングされていてもよい。
 ビームスプリッタ62は、ビームスプリッタ61によって反射されたプリパルスレーザ光及びメインパルスレーザ光の光路に配置されてもよい。ビームスプリッタ62には、プリパルスレーザ光に含まれる波長成分を高い反射率で反射し、メインパルスレーザ光に含まれる波長成分を高い透過率で透過させる膜がコーティングされていてもよい。
 光センサ63は、ビームスプリッタ62によって反射されたプリパルスレーザ光の光路に配置されてもよい。光センサ64は、ビームスプリッタ62を透過したメインパルスレーザ光の光路に配置されてもよい。光センサ63及び64は、ビームスプリッタ62からの光路長が互いに等しい位置に配置されてもよい。光センサ63は、プリパルスレーザ光を検出して、検出信号を出力してもよい。光センサ63は、例えば、波長1.06μmのプリパルスレーザ光を検出する高速のフォトダイオードを含んでもよい。光センサ64は、メインパルスレーザ光を検出して、検出信号を出力してもよい。光センサ64は、例えば、波長10.6μmのメインパルスレーザ光を検出する高速の熱電素子を含んでもよい。
 遅延時間計測部65は、光センサ63及び64に対してそれぞれ信号線によって接続されていてもよい。遅延時間計測部65は、光センサ63及び64によってそれぞれ出力された各検出信号を受信し、各検出信号を受信したタイミングに基づいて、プリパルスレーザ光の出力に対するメインパルスレーザ光の出力の第3の遅延時間δTを計測してもよい。遅延時間計測部65は、計測された第3の遅延時間δTのデータを、遅延時間制御装置50に出力してもよい。
 図17は、図16に示す遅延時間制御装置等の構成例を概略的に示す。遅延時間制御装置50は、遅延回路53と、制御部54とを含んでもよい。遅延回路53は、ターゲットコントローラ52から出力されたターゲット検出信号に第1の遅延時間を与えて第1のタイミング信号をプリパルスレーザ装置300に出力してもよい。また、遅延回路53は、第1のタイミング信号に対して第2の遅延時間δToを有する第2のタイミング信号をメインパルスレーザ装置390に出力してもよい。第2の遅延時間δToは可変であってもよい。
 制御部54は、EUVコントローラ51から、第3の遅延時間の目標値δTtのデータを受信してもよい。また、制御部54は、遅延時間計測部65から、計測された第3の遅延時間δTのデータを受信してもよい。制御部54は、第3の遅延時間δTとその目標値δTtとの差に基づいて、第2の遅延時間δToを変更するように、遅延回路53を制御してもよい。
 図18は、図17に示す制御部の動作を示すフローチャートである。制御部54は、第3の遅延時間δTとその目標値δTtとの差に基づいて、以下のように遅延回路53をフィードバック制御してもよい。
 まず、制御部54は、遅延パラメータαの初期値のデータを、EUVコントローラ51から受信してもよい(S1)。遅延パラメータαの初期値は、例えば、以下の式で算出される値であってもよい。
   α=(Lm-Lp)/c
ここで、Lmは、図15におけるメインパルスレーザ装置390のマスターオシレータMOからプラズマ生成領域25までのメインパルスレーザ光の光路長でもよい。Lpは、図10におけるプリパルスレーザ装置300の再生増幅器305からプラズマ生成領域25までのプリパルスレーザ光の光路長でもよい。cは、光速であり、3×10m/sであってもよい。
 メインパルスレーザ装置390は、プリパルスレーザ光より高エネルギーのメインパルスレーザ光を出力するために、プリパルスレーザ装置300よりも多くの増幅器を含み得る。従って、メインパルスレーザ光の光路長Lmがプリパルスレーザ光の光路長Lpよりも長く、遅延パラメータαの値は0より大きい値であり得る。
 次に、制御部54は、第3の遅延時間の目標値δTtのデータを、EUVコントローラ51から受信してもよい(S2)。次に、制御部54は、目標値δTtから遅延パラメータαを減算することにより、第2の遅延時間δToを算出してもよい(S3)。次に、制御部54は、算出された第2の遅延時間δToのデータを遅延回路53に送信してもよい(S4)。
 次に、制御部54は、プリパルスレーザ装置300及びメインパルスレーザ装置390が発振したか否かを判定してもよい(S5)。これらのレーザ装置の両方又は何れかが発振していない場合(S5:NO)、これらのレーザ装置が発振するまで待機してもよい。これらのレーザ装置が発振した場合(S5:YES)、処理をS6に進めてもよい。
 S6において、制御部54は、遅延時間計測部65から、計測された第3の遅延時間δTのデータを受信してもよい。次に、制御部54は、以下の式によって、第3の遅延時間δTとその目標値δTtとの差ΔTを算出してもよい(S7)。
   ΔT=δT-δTt
 次に、制御部54は、遅延パラメータαに、第3の遅延時間δTとその目標値δTtとの差ΔTを加算することにより、遅延パラメータαの値を更新してもよい(S8)。すなわち、例えば第3の遅延時間δTがその目標値δTtより長かった(ΔT>0)場合に、第2の遅延時間ΔToが短くなるように、遅延パラメータαの値を、ΔTだけ大きくしてもよい。
 次に、制御部54は、遅延回路53のフィードバック制御を中止するか否かを判定してもよい(S9)。例えば、EUVコントローラ51からの制御信号により、パルスレーザ光の出力を中止するときは、遅延回路53のフィードバック制御を中止してもよい。あるいは、上述のS2~S8の処理を複数回繰り返した結果、EUV光の出力エネルギーが所定値以上となった場合には、遅延回路53のフィードバック制御を中止し、第2の遅延時間δToの値を固定してEUV光が生成されてもよい。遅延回路53のフィードバック制御を中止しない場合は(S9:NO)、上述のS2に戻って第3の遅延B時間の目標値δTtのデータを受信し、遅延回路53をフィードバック制御してもよい。遅延回路53のフィードバック制御を中止する場合は(S9:YES)、本フローチャートの処理を終了してもよい。
 以上のように、計測された第3の遅延時間δTに基づいて遅延回路53をフィードバック制御することにより、第3の遅延時間δTを高精度に安定化させ得る。これにより、拡散ターゲットに対して最適な第3の遅延時間でメインパルスレーザ光を照射し、CEを向上し得る。また、第2の遅延時間δToを固定した場合に何らかの要因で第3の遅延時間δTが変動する場合でも、フィードバック制御することにより、第3の遅延時間δTを安定化させ得る。
 第2の実施形態においては、計測された第3の遅延時間に基づいて遅延回路をフィードバック制御してもよいが、これに限らず、第3の遅延時間を計測しなくてもよい。例えば、上述の遅延パラメータαの初期値と、上述の目標値δTtとから、第2の遅延時間δToを算出し、この第2の遅延時間δToの値を用いて遅延回路53を制御してもよい。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (6)

  1.  ターゲットに第1のパルスレーザ光及び第2のパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成システムであって、
     前記第1のパルスレーザ光及び前記第2のパルスレーザ光を導入するための少なくとも1つの導入口が設けられたチャンバと、
     前記チャンバ内の所定の領域にターゲットを供給するように構成されたターゲット供給装置と、
     前記チャンバ内のターゲットに照射される前記第1のパルスレーザ光であって、1ns未満のパルス幅を有する前記第1のパルスレーザ光を出力するように構成された第1のレーザ装置と、
     前記第1のパルスレーザ光を照射されたターゲットに照射される前記第2のパルスレーザ光を出力するように構成された第2のレーザ装置と、
    を備える極端紫外光生成システム。
  2.  ターゲットに第1のパルスレーザ光及び第2のパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成システムであって、
     前記第1のパルスレーザ光及び前記第2のパルスレーザ光を導入するための少なくとも1つの導入口が設けられたチャンバと、
     前記チャンバ内の所定の領域にターゲットを供給するように構成されたターゲット供給装置と、
     前記チャンバ内のターゲットに照射される前記第1のパルスレーザ光であって、500ps未満のパルス幅を有する前記第1のパルスレーザ光を出力するように構成された第1のレーザ装置と、
     前記第1のパルスレーザ光を照射されたターゲットに照射される前記第2のパルスレーザ光を出力するように構成された第2のレーザ装置と、
    を備える極端紫外光生成システム。
  3.  ターゲットに第1のパルスレーザ光及び第2のパルスレーザ光を照射してターゲットをプラズマ化することにより極端紫外光を生成するように構成された極端紫外光生成システムであって、
     前記第1のパルスレーザ光及び前記第2のパルスレーザ光を導入するための少なくとも1つの導入口が設けられたチャンバと、
     前記チャンバ内の所定の領域にターゲットを供給するように構成されたターゲット供給装置と、
     前記チャンバ内のターゲットに照射される前記第1のパルスレーザ光であって、50ps未満のパルス幅を有する前記第1のパルスレーザ光を出力するように構成された第1のレーザ装置と、
     前記第1のパルスレーザ光を照射されたターゲットに照射される前記第2のパルスレーザ光を出力するように構成された第2のレーザ装置と、
    を備える極端紫外光生成システム。
  4.  前記第1のレーザ装置は、前記第2のパルスレーザ光のフルーエンスより小さく且つ6.5J/cm以上のフルーエンスを有する前記第1のパルスレーザ光を出力するように構成された、
    請求項1~3の何れか一項記載の極端紫外光生成システム。
  5.  前記第1のレーザ装置は、前記第2のパルスレーザ光のフルーエンスより小さく且つ30J/cm以上のフルーエンスを有する前記第1のパルスレーザ光を出力するように構成された、
    請求項1~3の何れか一項記載の極端紫外光生成システム。
  6.  前記第1のレーザ装置は、前記第2のパルスレーザ光のフルーエンスより小さく且つ45J/cm以上のフルーエンスを有する前記第1のパルスレーザ光を出力するように構成された、
    請求項1~3の何れか一項記載の極端紫外光生成システム。
PCT/JP2013/064249 2012-06-22 2013-05-22 極端紫外光生成システム WO2013190944A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014521231A JP6121414B2 (ja) 2012-06-22 2013-05-22 極端紫外光生成システム
US14/578,141 US20150102239A1 (en) 2012-06-22 2014-12-19 Extreme ultraviolet light generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141079 2012-06-22
JP2012141079 2012-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/578,141 Continuation US20150102239A1 (en) 2012-06-22 2014-12-19 Extreme ultraviolet light generation system

Publications (1)

Publication Number Publication Date
WO2013190944A1 true WO2013190944A1 (ja) 2013-12-27

Family

ID=49768549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064249 WO2013190944A1 (ja) 2012-06-22 2013-05-22 極端紫外光生成システム

Country Status (4)

Country Link
US (1) US20150102239A1 (ja)
JP (1) JP6121414B2 (ja)
TW (1) TWI606753B (ja)
WO (1) WO2013190944A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102239A1 (en) * 2012-06-22 2015-04-16 Gigaphoton Inc. Extreme ultraviolet light generation system
JP2018507437A (ja) * 2015-02-19 2018-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
WO2019092831A1 (ja) * 2017-11-09 2019-05-16 ギガフォトン株式会社 極端紫外光生成装置及び電子デバイスの製造方法
JP2019174851A (ja) * 2014-01-22 2019-10-10 エーエスエムエル ネザーランズ ビー.ブイ. 極紫外光源
JP2021018364A (ja) * 2019-07-23 2021-02-15 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法
JP2022502690A (ja) * 2018-09-26 2022-01-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィシステムにおいて高精度遅延を提供するための装置及び方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155180B1 (en) * 2011-10-10 2015-10-06 Kla-Tencor Corporation System and method of simultaneously fueling and mitigating debris for a plasma-based illumination source
WO2016151723A1 (ja) * 2015-03-23 2016-09-29 国立大学法人九州大学 レーザドーピング装置及びレーザドーピング方法
US9426872B1 (en) * 2015-08-12 2016-08-23 Asml Netherlands B.V. System and method for controlling source laser firing in an LPP EUV light source
JP6616427B2 (ja) * 2015-12-15 2019-12-04 ギガフォトン株式会社 極端紫外光生成装置
US10048199B1 (en) * 2017-03-20 2018-08-14 Asml Netherlands B.V. Metrology system for an extreme ultraviolet light source
JP6978852B2 (ja) * 2017-05-10 2021-12-08 キヤノン株式会社 同期信号出力装置、制御方法、及び、プログラム
US11317500B2 (en) 2017-08-30 2022-04-26 Kla-Tencor Corporation Bright and clean x-ray source for x-ray based metrology
US10777386B2 (en) * 2017-10-17 2020-09-15 Lam Research Corporation Methods for controlling plasma glow discharge in a plasma chamber
US10477663B2 (en) * 2017-11-16 2019-11-12 Taiwan Semiconductor Manufacturing Co., Ltd. Light source for lithography exposure process
US10802405B2 (en) 2018-07-27 2020-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Radiation source for lithography exposure process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204752A (ja) * 2007-02-20 2008-09-04 Komatsu Ltd 極端紫外光源装置
JP2010103499A (ja) * 2008-09-29 2010-05-06 Komatsu Ltd 極端紫外光源装置および極端紫外光生成方法
WO2011122397A1 (ja) * 2010-03-29 2011-10-06 ギガフォトン株式会社 極端紫外光生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264505B2 (ja) * 2003-03-24 2009-05-20 独立行政法人産業技術総合研究所 レーザープラズマ発生方法及び装置
US9072152B2 (en) * 2010-03-29 2015-06-30 Gigaphoton Inc. Extreme ultraviolet light generation system utilizing a variation value formula for the intensity
JP5926521B2 (ja) * 2011-06-15 2016-05-25 ギガフォトン株式会社 チャンバ装置
JP5765759B2 (ja) * 2010-03-29 2015-08-19 ギガフォトン株式会社 極端紫外光生成装置および方法
EP2556729A1 (en) * 2010-04-08 2013-02-13 ASML Netherlands BV Euv radiation source and euv radiation generation method
US9335637B2 (en) * 2011-09-08 2016-05-10 Kla-Tencor Corporation Laser-produced plasma EUV source with reduced debris generation utilizing predetermined non-thermal laser ablation
JP6121414B2 (ja) * 2012-06-22 2017-04-26 ギガフォトン株式会社 極端紫外光生成システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204752A (ja) * 2007-02-20 2008-09-04 Komatsu Ltd 極端紫外光源装置
JP2010103499A (ja) * 2008-09-29 2010-05-06 Komatsu Ltd 極端紫外光源装置および極端紫外光生成方法
WO2011122397A1 (ja) * 2010-03-29 2011-10-06 ギガフォトン株式会社 極端紫外光生成装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102239A1 (en) * 2012-06-22 2015-04-16 Gigaphoton Inc. Extreme ultraviolet light generation system
JP2019174851A (ja) * 2014-01-22 2019-10-10 エーエスエムエル ネザーランズ ビー.ブイ. 極紫外光源
JP2018507437A (ja) * 2015-02-19 2018-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
WO2019092831A1 (ja) * 2017-11-09 2019-05-16 ギガフォトン株式会社 極端紫外光生成装置及び電子デバイスの製造方法
US10955751B2 (en) 2017-11-09 2021-03-23 Gigaphoton Inc. Extreme ultraviolet light generation apparatus and electronic device manufacturing method
JP2022502690A (ja) * 2018-09-26 2022-01-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィシステムにおいて高精度遅延を提供するための装置及び方法
JP7394843B2 (ja) 2018-09-26 2023-12-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィシステムにおいて高精度遅延を提供するための装置及び方法
JP2021018364A (ja) * 2019-07-23 2021-02-15 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法
JP7261683B2 (ja) 2019-07-23 2023-04-20 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2013190944A1 (ja) 2016-05-26
US20150102239A1 (en) 2015-04-16
TW201404246A (zh) 2014-01-16
JP6121414B2 (ja) 2017-04-26
TWI606753B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6121414B2 (ja) 極端紫外光生成システム
JP6594490B2 (ja) 極端紫外光生成システム
US10306743B1 (en) System and method for generating extreme ultraviolet light
JP6134313B2 (ja) レーザシステム及び極端紫外光生成システム
US9402297B2 (en) Extreme ultraviolet light generation system
JP6434404B2 (ja) 極端紫外光生成システム
US20190239329A1 (en) Extreme ultraviolet light generation apparatus
US20190150260A1 (en) Droplet detector and euv light generation device
US20210026254A1 (en) Extreme ultraviolet light generation system and electronic device manufacturing method
WO2016027346A1 (ja) 極端紫外光生成システムおよび極端紫外光生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806484

Country of ref document: EP

Kind code of ref document: A1