WO2013187802A2 - Способ очистки газов - Google Patents

Способ очистки газов Download PDF

Info

Publication number
WO2013187802A2
WO2013187802A2 PCT/RU2013/000459 RU2013000459W WO2013187802A2 WO 2013187802 A2 WO2013187802 A2 WO 2013187802A2 RU 2013000459 W RU2013000459 W RU 2013000459W WO 2013187802 A2 WO2013187802 A2 WO 2013187802A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
condensate
gases
purification
liquid
Prior art date
Application number
PCT/RU2013/000459
Other languages
English (en)
French (fr)
Other versions
WO2013187802A3 (ru
Inventor
Рафик Наилович ХАМИДУЛЛИН
Original Assignee
Khamidullin Rafik Nailovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Khamidullin Rafik Nailovich filed Critical Khamidullin Rafik Nailovich
Priority to US14/406,986 priority Critical patent/US20150231554A1/en
Priority to CN201380042701.5A priority patent/CN104540574A/zh
Priority to EP13803846.8A priority patent/EP2870989A4/en
Priority to EA201590003A priority patent/EA201590003A1/ru
Publication of WO2013187802A2 publication Critical patent/WO2013187802A2/ru
Publication of WO2013187802A3 publication Critical patent/WO2013187802A3/ru
Priority to IN352DEN2015 priority patent/IN2015DN00352A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/05Separating dispersed particles from gases, air or vapours by liquid as separating agent by condensation of the separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/228Treatment of condensate, e.g. sterilising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention is intended for conducting heat and mass transfer processes for a gas-liquid system, including for air conditioning and drying, purification of gases from impurities of other gases, liquid vapors and dispersed solid particles.
  • the invention can be used in air conditioning systems, sanitary cleaning of gas emissions, for the preparation of natural or associated petroleum gases before their use or transport (drying, extraction of higher hydrocarbons, hydrogen sulfide, carbon dioxide, etc.).
  • the scope of this invention is oil and gas processing, power, metallurgy, chemical, construction and other industries.
  • a known method of drying gas oil is that a 70-80% aqueous solution of ethylene glycol (as a hydrate inhibitor) is fed into the cooled gas stream (Analysis of the operation of oil gas drying plants at the sub-Siberian gas processing plants. G. Pluzhnikov. Cleaning and drying petroleum gases and the protection of equipment from corrosion. (Collection of scientific papers). M., VNIIOENG, 1984.). During gas cooling, most of the water vapor condenses, as a result, their content in the gas decreases many times (by 30-200 times depending on the cooling temperature). The aqueous solution is supplied in a finely dispersed state directly onto the tube sheets of heat exchangers and propane coolers in the annular region.
  • the disadvantage of this method is the complexity of the hardware design process, a weak degree of drying and cooling of the gas due to
  • a known method of purification of gases from gas condensate including the absorption of liquid absorbent in the form of its own gas condensate, swirling the gas stream in a vortex tube with simultaneous condensation of the absorbent in it, the removal of purified gas and condensate.
  • the absorption is carried out under reduced pressure, enriched with its own gas condensate, the gas stream is divided into two streams, one of which is vortexed in a vortex tube with its simultaneous supercooling, purification and removal of purified gas.
  • the other gas stream is cooled and separated, and the separated gas is fed into the general stream of purified gas (Description of the patent for inventions of the Russian Federation N ° 2179880 “Method for gas purification and device for its implementation. Malyshev A.I .; Mokshin V.I .; Malysheva EA, etc., CJSC LUKOIL-PERM February 27, 2002).
  • the disadvantage of this method is the need for large energy consumption to create a large pressure drop, speeds for the implementation of this process.
  • certain conditions are necessary (supersaturation, the presence of condensation centers, etc.) that reduce the efficiency of gas purification and increase the time of the process.
  • the method consists in processing the gas by cooling and drying it while passing through a fluidized bed of solid particles of a substance wetted by a liquid, the vapor of which is removed from the gas, where the temperature of the solid particles is maintained below the freezing temperature of the liquid.
  • SUBSTITUTE SHEET (RULE 26)
  • the disadvantage of the prototype is the complexity of the process, its automation and regulation, the presence of an intermediate coolant in the form of a solid phase, which creates certain difficulties with its cooling, dosing and discharge.
  • the objective of the invention is to develop a simple, effective and reliable method of purification of gases from gas, liquid and solid impurities, reducing the material consumption of equipment and operating costs.
  • the task is achieved in that when cleaning gases, including cooling the gas stream, the formation of condensate, its allocation with absorbed gas and mechanical impurities as a coolant, the previously formed condensate from the purified gas stream, cooled to a temperature below the dew point of the gas stream, is used.
  • a part of the previously obtained condensate is introduced without cooling it in order to saturate the gas phase with steam and then increase the amount of condensate on liquid or solid particles to increase their separation efficiency.
  • Various components are added to the condensate used as a coolant to give it certain physicochemical properties. Gas purification is carried out in several stages in order to isolate at each stage a separate component or groups of components of the gas phase.
  • the method is implemented as follows.
  • the gas to be purified and the cold condensate are supplied to the mixer 1 (see Fig. 1), where heat and mass transfer between the flows take place.
  • the gas to be purified is cooled to the conditions of supersaturation of the extracted gas components, and gas impurities condense on the surface of the cold condensate.
  • the gas stream is separated from the droplet liquid in the separator 2, if necessary
  • SUBSTITUTE SHEET (RULE 26) heated in heater 3 (for example, to the initial temperature), and in a purified form is sent further to its destination.
  • the liquid which is a mixture of the initial cold condensate, condensed vaporous and absorbed gas impurities, is separated from the gas stream in the separator 2, enters the tank 4, is cooled in the refrigerator 5 (due to an external source of cold), and, then, comes back to the beginning of the process to interact with the gas stream.
  • Excess condensate is removed from tank 4 and sent further for its intended purpose or for processing and disposal.
  • the process of gas purification and condensate evolution is conducted continuously, in a closed cycle.
  • Condensate in the process of its interaction with the gas stream acts as a condensation center for trapped vapor impurities, which helps to accelerate the process by reducing the formation of condensation centers.
  • Condensate is an absorbent for the physical absorption of other gas impurities, which makes it possible to extract components from the gas stream to be cleaned whose dew point (or condensation temperature) is much lower than the temperature of the process.
  • This process is also accelerated by the fact that at low temperatures the distribution coefficient according to Henry's law, which characterizes the content of the absorbed component in the liquid with its equilibrium concentration in the gas, decreases, which contributes to an increase in the amount of the absorbed component in the liquid, and, as a result, the degree of its extraction from the gas phase.
  • This process also allows for the capture of solid impurities in the gas stream.
  • solid impurities are deposited on the surface of the liquid due to the forces of inertia of the particles and turbulent diffusion.
  • the condensation process in which dust particles are also centers of condensation for
  • the gas purification process is carried out in several stages.
  • the process conditions in stages may differ in temperature and pressure, depending on the conditions of condensation of one or another component of the gas stream being cleaned.
  • the condensate recovered and used again to interact with the gas stream has a certain composition corresponding to the conditions of the process.
  • SUBSTITUTE SHEET (RULE 26) The implementation of the inventive gas purification method is illustrated by the circuit shown in FIG. one.
  • An example implementation of the method is presented in the process of separating water vapor from the air (cooling and drying of moist air).
  • the interaction of air with cold condensate (water) is carried out according to the scheme I-Ia-11- ⁇ .
  • the initial conditions correspond to point I.
  • Air under initial conditions enters the mixer 1 (Fig. 1), where it interacts with cold condensate.
  • the conditions after this interaction correspond to point II.
  • the intermediate state of interaction in the mixer of air and cold condensate, in which the air is cooled to the temperature of the dew point corresponds to point 1a (not shown in the diagram). Since the condensate temperature is less than the dew point, the transition of condensate to the gas phase is generally excluded, therefore, during this interaction, only the gas stream is cooled to the dew point, and then air is cooled simultaneously with the condensation of water vapor. Further, upon reaching the necessary parameters for moisture content (point I), the flow is separated from the liquid phase, if necessary, it is heated (point III) and then transported as intended.
  • Point 16 corresponds to the temperature of the wet thermometer for the conditions of point I.
  • the air is cooled to the temperature of the wet thermometer due to the evaporation of water, while the proportion of vaporous water in the air increases (see Table, point 16) and, subsequently, the amount condensed water vapor on liquid and solid impurities, which simplifies their further separation.
  • the amount of heat removed from the gas phase in this embodiment is similar to the amount of heat in the embodiment of the interaction of air with cold condensate, scheme I-Ia-11- ⁇ .
  • the position of the intermediate points 1a and 16 (Fig. 2) can be located at any other place bounded by the vertices of the triangle with points 1-1a-1b.
  • the process will follow the line 1a-P and then in all cases the same along the saturation line.
  • the heat consumption from the air will be 4.61 kW, including 0.49 kW returned to the heating of the air (from point II to point III).
  • the water consumption will be 0.794 m 3 / h (including 2.185 l / h of recovered condensate), its temperature change during the interaction with air is 5 ° ⁇ (from 8.52 to 13.52 - outlet dew point temperature). If necessary, at the end of the cleaning process, the air temperature (point III) can be raised to its original value (point I).
  • SUBSTITUTE SHEET (RULE 26)
  • the advantages of this invention are the simplification of the gas purification process, the reduction of energy consumption and metal consumption of the hardware design process.
  • the proposed method allows you to accurately maintain and automate the parameters of the cleaning process (the number of extracted vaporous, dispersed and absorbed gas impurities) by controlling the temperature and amount of condensate supplied.
  • This method avoids significant pressure losses of the gas stream for the implementation of the cleaning process by reducing the temperature of the gas by an external cooling source, in contrast to gas cooling due to its throttling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)

Abstract

Изобретение относится к способам для проведения тепло-массобменных процессов для системы газ-жидкость, в том числе для кондиционирования воздуха и его осушки, очистки газов от примесей других газов, паров жидкости и дисперсных твердых частиц и может быть использовано в системах кондиционирования воздуха, санитарной очистки газовых выбросов, для подготовки природных или попутных нефтяных газов перед их использованием или транспортом (осушка, извлечение высших углеводородов, сероводорода, двуокиси углерода и т.д.). Задачей данного изобретения является разработка простого, эффективного и надежного способа очистки газов от газовых, жидких и твердых примесей, снижение материалоемкости оборудования и эксплуатационных затрат. Сущность изобретения заключается в том, что при очистке газов, включающей охлаждение газового потока, образование конденсата, выделение его с абсорбированными газовыми и механическими примесями в качестве холодного теплоносителя, непосредственно контактирующего с газовым потоком, используется ранее образованный конденсат из очищаемого газового потока, охлажденный до температуры ниже точки росы газового потока. Перед взаимодействием разделяемого газа и охлажденного конденсата вводят часть ранее полученного конденсата без его охлаждения с целью насыщения паром газовой фазы и последующего увеличения количества конденсата на жидких или твердых частицах для повышения эффективности их сепарации. В конденсат, используемый в качестве теплоносителя, добавляется различные компоненты для придания ему определенных физико-химических свойств. Очистку газа проводят в несколько этапов с целью выделения на каждом этапе отдельного компонента или групп компонентов газовой фазы. Преимуществами данного изобретения являются упрощение процесса очистки газов, снижение энергозатрат и металлоемкости аппаратурного оформления процесса, возможность дополнительно эффективно очищать газ от твердых примесей, точно поддерживать и автоматизировать параметры процесса очистки (количество извлекаемых парообразных, дисперсных и абсорбированных газовых примесей) за счет регулирования температуры и количества подаваемого конденсата, а также возможность избежать значительных потерь давления газового потока на осуществление процесса очистки за счет снижения температуры газа внешним источником охлаждения, в отличие от охлаждения газа за счет его дросселирования.

Description

Способ очистки газов
Изобретение предназначено для проведения тепло-массобменных процессов для системы газ-жидкость, в том числе для кондиционирования воздуха и его осушки, очистки газов от примесей других газов, паров жидкости и дисперсных твердых частиц. Изобретение может быть использовано в системах кондиционирования воздуха, санитарной очистки газовых выбросов, для подготовки природных или попутных нефтяных газов перед их использованием или транспортом (осушка, извлечение высших углеводородов, сероводорода, двуокиси углерода и т.д.). Областью применения данного изобретения является нефтегазопереработка, теплоэнергетика, металлургия, химическая, строительная и другие отрасли промышленности.
Известен метод осушки нефтяного газа, заключающийся в том, что в охлаждаемый газовый поток подается 70-80 %-ный водный раствор этиленгликоля (в качестве ингибитора гидратообразования) (Анализ работы установок осушки нефтяного газа на заподносибирских ГПЗ. Плужников Г.С. Очистка и осушка нефтяных газов и защита оборудования от коррозии. (Сборник научных трудов). М., ВНИИОЭНГ, 1984.). При охлаждении газа большая часть водяных паров конденсируется, в результате их содержание в газе многократно уменьшается (в 30-200 раз в зависимоти от температуры охлаждения). Водный раствор подают в мелкодисперсном состоянии непосредственно на трубные решетки теплообменников и пропановых холодильников в область межтрубного пространства.
Недостатком данного способа является сложность аппаратурного оформления процесса, слабая степень осушки и охладжения газа за счет
1
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) низкой эффективности теплообмена в следствии наличия термического сопротивления пленки раствора этиленгликоля вместе с образовавшимся конденсатом и разделяющей твердой стенки теплообменного аппарата.
Известен способ очистки газов от газового конденсата, включающий асборбцию жидким абсорбентом в виде собственного газового конденсата, завихрение газового потока в вихревой трубе с одновременной конденсацией абсорбента в ней, отвод очищенного газа и конденсатаю. Абсорбцию ведут при пониженном давлении, обогащенный собственным газовым конденсатом, поток газа делят на два потока, один из которых завихряют в вихревой трубе с одновременным его переохлаждением, очисткой и отводом очищенного газа. При этом другой газовый поток охлаждают и сепарируют, а отсепарированный газ подают в общий поток очищенного газа (Описание к патенту на изобретения РФ N° 2179880 «Способ очистки газов и устройство для его осуществления. Малышев А.И.; Мокшин В.И.; Малышева Е.А. и т.д., ЗАО «ЛУКОЙЛ-ПЕРМЬ» 27.02.2002).
Недостатком данного способа является необходимость больших энергозатрат на создания большого перепада давления, скоростей для реализации данного процесса. Для конденсации разделяемых компонентов из газового потка необходимы определенные условия (пересыщение, наличие центров конденсации и т.д.) которые снижают эффективность очистки газов и увеличивают время проведения процесса.
Наиболее близким к предлагаемому способу очистки газов (прототипом) является способ обработки газа. (Описание изобретения к авторскому свидетельству ЛЬ 352094 21.09.1972, Бюл.Я 28. Н.В.Царенко, В.М.Минаковский, В.А.Антоненко. Способ обработки газов). Способ заключается в обработке газа посредством охлаждения и осушки его при пропуске через псевдоожжиженный слой твердых частиц вещества, смачиваемого жидкостью, пары которой удаляют из газа, где температуру твердых частиц поддерживают ниже температуры замерзания жидкости.
2
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Недостатком прототипа является сложность процесса, его автоматизации и регулирования, наличие промежуточного теплоносителя в виде твердой фазы, создающие определенные сложности с его охлаждением, дозированием и отведением.
Задачей данного изобретения является разработка простого, эффективного и надежного способа очистки газов от газовых, жидких и твердых примесей, снижение материалоемкости оборудования и эксплуатационных затрат.
Поставленная задача достигается тем, что при очистке газов, включающей охлаждение газового потока, образование конденсата, выделение его с абсорбированными газовыми и механическими примесями в качестве холодного теплоносителя, используется ранее образованный конденсат из очищаемого газового потока, охлажденный до температуры ниже точки росы газового потока. Перед взаимодействием разделяемого газа и охлажденного конденсата вводят часть ранее полученного конденсата без его охлаждения с целью насыщения паром газовой фазы и последующего увеличения количества конденсата на жидких или твердых частицах для повышения эффективности их сепарации. В конденсат, используемый в качестве теплоносителя, добавляются различные компоненты для придания ему определенных физико-химических свойств. Очистку газа проводят в несколько этапов с целью выделения на каждом этапе отдельного компонента или групп компонентов газовой фазы.
Способ реализуется следующим образом.
Очищаемый газ и холодный конденсат подаются в смеситель 1 (см. фиг. 1), где происходит тепло и массообмен между потоками. В результате данного взаимодействия очищаемый газ охлаждается до условий пересыщения по извлекаемым газовым компонентам, а газовые примеси конденсируются на поверхности холодного конденсата. Далее газовый поток сепарируется от капельной жидкости в сепараторе 2, в случае необходимости
3
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) подогревается в подогревателе 3 (например, до первоначальной температуры), и в очищенном виде направляется далее по своему назначению. Жидкость, представляющая собой смесь исходного холодного конденсата, сконденсированных парообразных и абсорбированных газовых примесей, отделяется от газового потока в сепараторе 2, поступает в емкость 4, охлаждается в холодильнике 5 (за счет внешнего источника холода), и, далее, вновь поступает в начало процесса на взаимодействие с газовым потоком. Излишки конденсата удаляются из емкости 4 и направляются далее по своему назначению или на переработку и утилизацию. Процесс очистки газа и выделения конденсата ведут непрерывно, замкнутым циклом.
Конденсат в процессе своего взаимодействия с газовым потоком выступает в роли центра конденсации для улавливаемых парообразных примесей, что способствует ускорению процесса за счет уменьшения времени образование центров конденсации.
Конденсат является абсорбентом для физической абсорбции других газовых примесей, что позволяет извлекать из очищаемого газового потока компоненты, точка росы (или температура конденсации) которых значительно ниже температуры проведения процесса. Данный процесс ускоряется еще тем, что при низких температурах коэффицент распределения по закону Генри, характеризующий содержание поглощенного компонента в жидкости с равновесной его концентрацией в газе, снижается, что способствует увеличению количества поглощенного компонента в жидкости, и, в итоге, степени извлечения его из газовой фазы.
Данный процесс позволяет также осуществлять процесс улавливания твердых примесей газового потока. При взаимодействия жидкого конденсата с очищаемым газовым потоком твердые примеси осаждаются на поверхности жидкости за счет сил инерции частиц и турбулентной диффузии. Ускорению процесса очистки от твердых примесей способствует процесс конденсации, при котором частицы пыли также являются центрами конденсации для
4
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) улавливаемых паров. К тому же в процессе взаимодействия поверхность исходной жидкости после захвата твердых частиц за счет конденсириующихся паров хорошо обновляется, что способствует интенсификации процесса очистки газов от твердых частиц. При очистке газов от твердых частиц, жидкость, с уловленными твердыми примесями при отделении от газового потока, также сепараируется и от них.
Для увеличения количества паров (если возможно при данных условиях), которые конденсируются в процессе взаимодействия очищаемого газа и холодного конденсата, часть ранее выделенного конденсата направляют на смешение с газовым потоком перед его охлаждением. Увеличение количества паров в газе способствут увеличению количества конденсата на поверхности твердых и жидких примесей в процессе охлаждения (при неизменном количестве отводимого тепла), что позволяет за счет большей инерции улавливаемых частиц эффективней их сепараировать.
Если физико-химические свойства жидкой фазы в условиях проведения процесса не позволяют эффективно взаимодействовать с газовой фазой (высокие значения вязкости, коррозионной активности, изменения фазового состояния примесей, выделения твердой фазы т.д.), то в конденсат добавляют различные компоненты, обеспечивающие ему необходимые свойства.
С целью разделения получаемого конденсата на составляющие компоненты процесс очистки газа проводят в несколько этапов. Условия проведения процесса по этапам могут отличаться температурой и давлением, в зависимости от условий образования конденсата того или иного компонента очищаемого газового потока. На каждом этапе конденсат, выделяемый и используемый заново для взаимодействия с газовым потоком имеет определенный состав соответствующий условиям проведения процесса.
5
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Реализация заявленного способа очистки газов поясняется схемой, изображенной на фиг. 1.
Пример реализации способа представлен на процессе выделения паров воды из воздуха (охлаждение и осушка влажного воздуха).
Начальные условия: температура воздуха на входе 35°С, влажность 40 %, влагосодержание 13,89 г/кг, температура точки росы 19,35°С. Температура воздуха на выходе 17°С, влажность 80 %, влагосодержание 9,52 г/кг. Расход воздуха 500 кг/ч (435 м 1ч), температура подаваемого конденсата 8,52°С. Потерей тепла пренебрегаем, эффективность взаимодействия газа и жидкости принимается 100%.
Графическая иллюстрация примера представлена на I-d диаграмме Рамзина, фиг.2, параметры начальных, промежуточных и конечных состояний влажного воздуха рассматриваемого процесса представлены в таблице.
Взаимодействие воздуха с холодным конденсатом (водой) осуществляется по схеме I-Ia-11-ΙΙΙ. Исходные условия соответствуют точке I. Воздух при начальных условиях поступает в смеситель 1 (фиг. 1), где взаимодействует с холодным конденсатом. Условия после данного взаимодействия соответствуют точке II. Промежуточному состоянию взаимодействия в смесителе воздуха и холодного конденсата, при котором воздух охлаждается до температуры точки росы, соответствует точка 1а (на схеме не показана). Поскольку температура конденсата меньше точки росы, то переход конденсата в газовую фазу в общем виде исключен, поэтому при данном взаимодействии происходит только охлаждение газового потока до точки росы, а после этого идет охлаждение воздуха одновременно с конденсацией паров воды. Далее, при достижения необходимых параметров по влагосодержанию (точка И), поток отделяется от жидкой фазы, при необходимости подогревается (точка III) и далее транспортируется по своему назначению.
6
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Таблица параметров процесса осушки и охлаждения влажного воздуха.
Figure imgf000009_0001
В случае если перед взаимодействием разделяемого газа и охлажденного конденсата вводят на испарение ранее полученный конденсат без его охлаждения, то процесс идет по схеме I-I6-II-III, фиг. 2. Точка 16 соответствует температуре мокрого термометра для условий точки I. При данном варианте взаимодействия воздух охлаждается до температуры мокрого термометра за счет испарения воды, при этом увеличивается доля парообразной воды в воздухе (см. Таблицу, точка 16) и, в дальнейшем, количество сконденсировавшихся паров воды на жидких и твердых примесей, что упрощает дальнейшую их сепарацию. Количество отведенной теплоты от газовой фазы по данному варианту аналогично количеству теплоты по варианту взаимодействия воздуха с холодным конденсатом, схема I-Ia-11-ΙΙΙ.
В рассматриваемом примере, как и в предлагаемом способе, в зависимости от теплового и материального баланса отдельных участков взаимодействия газа и жидкости, а также доли направляемого неохлажденного конденсата на испарение, в независимости от схемы взаимодействия, положение промежуточных точек 1а и 16 (фиг. 2) может находиться на любом другом месте, ограниченное вершинами треугольника с точками 1-1а-1б. Однако при увеличении отвода энергии от газового потока, свыше разницы значений энтальпий точек I и 1а, процесс будет идти по лини 1а-П и далее во всех случаях одинаково вдоль линии насыщения.
В рассматриваемом примере при расходе воздуха 500 кг/ч, расход тепла отводимый от воздуха составит 4,61 кВт, в том числе 0,49 кВт возвращается обратно на нагрев воздуха (от точки II до точки III). Расход воды составит 0,794 м3/ч (включая 2,185 л/ч извлеченного конденсата), изменение ее температуры в ходе взаимодействия с воздухом 5 °С (с 8,52 до 13,52 - температура точки росы воздуха на выходе). При необходимости в конце процесса очистки температуру воздуха (точка III) можно поднять до первоначального значения (точка I).
8
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Преимуществами данного изобретения являются упрощение процесса очистки газов, снижение энергозатрат и металлоемкости аппаратурного оформления процесса.
При данном способе очистки, возможно дополнительно эффективно очищать газ от твердых примесей, что позволяет комплексно осуществлять очистку газов от различных примесей.
Предлагаемый способ позволяет точно поддерживать и автоматизировать параметры процесса очистки (количество извлекаемых парообразных, дисперсных и абсорбированных газовых примесей) за счет регулирования температуры и количества подаваемого конденсата.
Данный способ позволяет избежать значительных потерь давления газового потока на осуществление процесса очистки за счет снижения температуры газа внешним источником охлаждения, в отличие от охлаждения газа за счет его дросселирования.
Предложенное техническое решение названо заявителем процессом «Очистка газов холодным конденсатом».
9
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

Формула изобретения
1. Способ очистки газов, включающий охлаждение газового потока, образование конденсата, выделение его с абсорбированными газовыми и механическими примесями, отличающийся тем, что в качестве холодного теплоносителя, непосредственно контактирующего с газовым потоком, используется ранее образованный конденсат из очищаемого газового потока, охлажденный до температуры ниже точки росы газового потока.
2. Способ по п.1 отличающийся тем, что перед взаимодействием разделяемого газа и охлажденного конденсата вводят часть ранее полученного конденсата без его охлаждения с целью насыщения паром газовой фазы и последующего увеличения количества конденсата на жидких или твердых частицах для повышения эффективности их сепарации.
3. Способ по п.1 отличающийся тем, что в конденсат, используемый в качестве теплоносителя, добавляются различные компоненты для придания ему определенных физико-химических свойств.
4. Способ по п.1 отличающийся тем, что очистку газа проводят в несколько этапов с целью выделения на каждом этапе отдельного компонента или групп компонентов газовой фазы.
10
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2013/000459 2012-06-15 2013-06-05 Способ очистки газов WO2013187802A2 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/406,986 US20150231554A1 (en) 2012-06-15 2013-06-05 Gas purification method
CN201380042701.5A CN104540574A (zh) 2012-06-15 2013-06-05 气体净化方法
EP13803846.8A EP2870989A4 (en) 2012-06-15 2013-06-05 PROCESS FOR PURIFYING GAS
EA201590003A EA201590003A1 (ru) 2012-06-15 2013-06-05 Способ очистки газов
IN352DEN2015 IN2015DN00352A (ru) 2012-06-15 2015-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012124943/05A RU2505341C1 (ru) 2012-06-15 2012-06-15 Способ очистки газов
RU2012124943 2012-06-15

Publications (2)

Publication Number Publication Date
WO2013187802A2 true WO2013187802A2 (ru) 2013-12-19
WO2013187802A3 WO2013187802A3 (ru) 2014-03-27

Family

ID=49758827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000459 WO2013187802A2 (ru) 2012-06-15 2013-06-05 Способ очистки газов

Country Status (7)

Country Link
US (1) US20150231554A1 (ru)
EP (1) EP2870989A4 (ru)
CN (1) CN104540574A (ru)
EA (1) EA201590003A1 (ru)
IN (1) IN2015DN00352A (ru)
RU (1) RU2505341C1 (ru)
WO (1) WO2013187802A2 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2179880C1 (ru) 2001-01-09 2002-02-27 Закрытое акционерное общество "ЛУКОЙЛ-Пермь" Способ очистки газов от газового конденсата и устройство для его осуществления

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3132292C2 (de) * 1981-08-14 1986-05-07 Lohmann Gmbh & Co Kg, 5450 Neuwied Verfahren und Anlage zur Entfernung von Verunreinigungen aus einem Lösungsmitteldämpfe enthaltenden Gasstrom
US4696679A (en) * 1985-10-23 1987-09-29 Foster Wheeler Usa Corporation Method for cleaning gas produced from solid carbonaceous material in a two-stage gas producer
RU1790983C (ru) * 1990-09-04 1993-01-30 Казахский Химико-Технологический Институт Способ очистки газов от паров органических растворителей
DE4233685C2 (de) * 1992-10-02 1998-02-12 Ver Energiewerke Ag Verfahren und Anordnung zur Energienutzung von Rauchgasen in kohlegefeuerten Kraftwerken
FR2717248B1 (fr) * 1994-03-14 1996-05-31 Speic Procédé et installation d'épuration de fumées.
FR2717297B1 (fr) * 1994-03-14 1996-05-31 Speic Procédé et installation d'épuration de fumées issues de l'incinération de déchets faiblement radioactifs.
RU2139751C1 (ru) * 1997-11-26 1999-10-20 Открытое акционерное общество "Лукойл-Пермнефть" Способ очистки газов от газового конденсата и устройство для его осуществления
RU2217221C2 (ru) * 2001-06-27 2003-11-27 Курский государственный технический университет Способ и устройство для выделения двуокиси углерода из дымовых газов
US7252703B2 (en) * 2003-06-30 2007-08-07 Honeywell International, Inc. Direct contact liquid air contaminant control system
PL1946006T3 (pl) * 2005-09-27 2010-03-31 Dall Energy Holding Aps Sposób i układ do ogrzewania wody za pomocą gorących gazów
US8518148B2 (en) * 2010-07-12 2013-08-27 Babcock & Wilcox Power Generation Group, Inc. Integrated flue gas dehumidification and wet cooling tower system
CN103357191B (zh) * 2012-03-31 2015-06-17 承源环境科技企业有限公司 挥发性有机物处理方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2179880C1 (ru) 2001-01-09 2002-02-27 Закрытое акционерное общество "ЛУКОЙЛ-Пермь" Способ очистки газов от газового конденсата и устройство для его осуществления

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MALYSHEV A.I.; MOKSHIN V.I.; MALYSHEVA E.A.: "Gas purification method and device for its implementation", LUKOIL-PERM ZAO (CJSC, 27 February 2002 (2002-02-27)
N.V. TSARENKO; V.M. MINAKOVSKY; V.A. ANTONENKO: "Specification of author's certificate No. 352094 21.09.1972", GAS TREATMENT METHOD
See also references of EP2870989A4

Also Published As

Publication number Publication date
IN2015DN00352A (ru) 2015-06-12
RU2012124943A (ru) 2013-12-27
EP2870989A2 (en) 2015-05-13
US20150231554A1 (en) 2015-08-20
WO2013187802A3 (ru) 2014-03-27
EA201590003A1 (ru) 2015-04-30
EP2870989A4 (en) 2016-03-30
CN104540574A (zh) 2015-04-22
RU2505341C1 (ru) 2014-01-27

Similar Documents

Publication Publication Date Title
US10294123B2 (en) Humidification-dehumidification systems and methods at low top brine temperatures
US9500404B2 (en) Method and system for removing H2S from a natural gas stream
CN108147608B (zh) 一种利用压缩空气和热泵处理电厂含盐废水的多效蒸发结晶系统及方法
CN103900396B (zh) 减少白烟发生装置及利用其的废热及用水回收方法
RU2019136828A (ru) Способ извлечения потока с2+ углеводородов, содержащихся в нефтезаводском остаточном газе, и установка для его осуществления
KR100892892B1 (ko) 폐기산의 농축방법
US3518812A (en) Process for removing dust from hot dust-laden gases
CN210103494U (zh) 一种脱硫废水低温蒸发系统
CN206755210U (zh) 燃煤锅炉烟气净化及余热回收处理系统
RU2505341C1 (ru) Способ очистки газов
CN206027114U (zh) 加湿除湿系统
CN203754456U (zh) 一种氮气循环的低温蒸发浓缩装置
CN110015668A (zh) 初级液氨纯化为高纯度液氨的方法及其系统
AU2011100201A4 (en) Method of Concentrating a Bayer Process Liquor
RU2272972C2 (ru) Способ низкотемпературного разделения попутных нефтяных газов (варианты)
US20190031531A1 (en) Temperature-Matched Influent Injection in Humidifier Systems and Associated Methods
CN113731097A (zh) 一种基于载气组分影响调控水汽环境促进细颗粒长大的装置
RU2569550C2 (ru) Способ очистки воздуха в разнотемпературной конденсационной камере
TWI734084B (zh) 初級液氨純化為高純度液氨的方法
RU2569555C2 (ru) Способ очистки воздуха
RU2458723C1 (ru) Тепломассообменный аппарат для подогрева и выпаривания жидких продуктов
RU2569553C2 (ru) Способ очистки воздуха в разнотемпературной конденсационной камере
GB2145343A (en) Improved solvent recovery
CN203200221U (zh) 一种汽化态或半汽化态的短链烷烃油的收集器
EP1647321B1 (en) Process and apparatus for purifying gases with heat exchangers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201590003

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2013803846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013803846

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803846

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14406986

Country of ref document: US