WO2013187513A1 - 浸漬膜ユニット - Google Patents

浸漬膜ユニット Download PDF

Info

Publication number
WO2013187513A1
WO2013187513A1 PCT/JP2013/066504 JP2013066504W WO2013187513A1 WO 2013187513 A1 WO2013187513 A1 WO 2013187513A1 JP 2013066504 W JP2013066504 W JP 2013066504W WO 2013187513 A1 WO2013187513 A1 WO 2013187513A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
pipe
membrane element
liquid
Prior art date
Application number
PCT/JP2013/066504
Other languages
English (en)
French (fr)
Inventor
林 稔
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Publication of WO2013187513A1 publication Critical patent/WO2013187513A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/06External membrane module supporting or fixing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration

Definitions

  • the present invention relates to an immersion membrane unit that is immersed in a liquid to be processed and filters the liquid to be processed.
  • an immersion membrane unit as described in Patent Document 1 is known as an immersion membrane that is immersed in the treatment liquid and filters the treatment liquid.
  • the immersion membrane unit described in Patent Document 1 includes a plurality of hollow fiber membrane elements in which a collecting tube communicating with each hollow fiber membrane is fixed to both ends of a group of hollow fiber membranes in which a large number of hollow fiber membranes are arranged in parallel.
  • a liquid collection header pipe connected in parallel and connected to the suction device is connected to a liquid collection pipe of each hollow fiber membrane element via a liquid collection branch pipe.
  • a diffuser tube is arranged below the hollow fiber membrane element, and the residue (residue) attached to the hollow fiber membrane is removed by aeration from the diffuser tube.
  • an immersion membrane unit that has a large area as a unit is provided. Proposed.
  • a liquid collection branch pipe suspended from a liquid collection header pipe is disposed between a pair of adjacent hollow fiber membrane elements.
  • a nozzle for connecting to the liquid collection branch pipe is formed on the surface of the liquid collection pipe on the other adjacent hollow fiber membrane element side (surface on the liquid collection branch pipe side).
  • each hollow fiber membrane element is slid to the other adjacent hollow fiber membrane element side (collection branch pipe side), and the nozzle formed in each collection pipe is detached from the collection branch pipe, so that it is immersed
  • the membrane unit is assembled and the hollow fiber membrane element is replaced.
  • the immersion membrane unit described in Patent Document 2 has a problem that the space utilization efficiency is poor because the liquid collection branch pipe is disposed between a pair of adjacent hollow fiber membrane elements. Further, in the immersion membrane unit described in Patent Document 2, the nozzle connected to the liquid collection branch pipe is formed on the surface on the other adjacent hollow fiber membrane element side (surface on the liquid collection branch pipe side). There is a problem that the assembly workability of the submerged membrane unit is poor.
  • the submerged membrane in order to prevent the accumulation of filtrate on the membrane surface, the submerged membrane can be aerated from the bottom of the membrane element to create an upward flow of the liquid to be treated, and the membrane surface can be cleaned with bubbles accompanying the upward flow.
  • the gap between adjacent pairs of hollow fiber membrane elements is too wide, turbulent flow in which the liquid to be treated is not directed upward or the reverse flow flowing downward may occur around the gap. is there. In a region where such turbulent flow or reverse flow occurs, it is difficult to remove the filtrate from the membrane surface due to bubbles, and there is a problem that it is difficult to perform uniform filtration over the entire surface of the hollow fiber membrane element.
  • the present invention provides a submerged membrane unit having a high space utilization rate and good workability when a pair of hollow fiber membrane elements is linearly arranged to increase the area of the hollow fiber membrane unit. Objective.
  • An object of the present invention is to provide an immersion membrane unit that realizes uniform filtration over the entire surface.
  • the immersion membrane unit according to the present invention is an immersion membrane unit that is immersed in a liquid to be processed and filters the liquid to be processed, and includes a collection pipe that extends linearly and a number of hollows that are suspended from the collection pipe. And a hollow fiber membrane element in which the filtrate filtered through the hollow fiber membrane is collected in a collecting tube, and a pair of hollow fiber membrane elements are arranged along the extending direction of the collecting tube And a liquid collecting header pipe disposed above the hollow fiber membrane element, and a liquid collecting branch pipe connecting the liquid collecting pipe and the liquid collecting header pipe. A connecting portion connected to the branch pipe is formed.
  • the filtrate obtained by filtering the liquid to be treated by each hollow fiber membrane is collected in the liquid collection tube by the liquid collection header tube being sucked by a suction device or the like. Thereafter, the liquid is collected into the liquid collection header pipe through the liquid collection branch pipe.
  • the collecting pipe, the collecting branch pipe, and the header pipe serve as a flow path for the filtrate, but the more the bent corners are formed in the flow path, the larger the turbulent flow is generated in the filtrate flowing through the flow path. Therefore, the pressure loss increases. For this reason, in the technical field of fluids, it is common knowledge to design to form a flow path with fewer bent corners. Also in the technical field of immersion membranes, when a pair of hollow fiber membrane elements are linearly arranged to increase the area of the hollow fiber membrane elements, the liquid collecting tube is used as in the immersion membrane unit shown in Patent Document 2. By forming a connecting portion connected to the liquid collecting branch pipe on the side surface on the liquid collecting branch pipe side, the bent corner formed in the flow path from the liquid collecting pipe to the liquid collecting header pipe is suppressed to one place. .
  • the present inventors diligently studied the flow of the liquid to be processed around the hollow fiber membrane element, when the distance between the pair of linearly arranged hollow fiber membrane elements is wide, the liquid to be processed is around the gap. It has been found that a turbulent flow occurs, and a back flow of the liquid to be treated is generated in the gap, resulting in a region in which the filtrate cannot be removed due to bubbles diffused from the diffuser tube.
  • the immersion membrane unit according to the present invention has a connecting part for connecting the collecting branch pipe and the collecting pipe formed on the upper surface of the collecting pipe. Accordingly, there is no need to dispose the liquid collecting branch pipe between the pair of hollow fiber membrane elements, and the liquid collecting branch pipe can be disposed on the projection surface of the liquid collecting pipe in a plan view. It is possible to reduce the projected area of the submerged membrane unit in plan view by narrowing the interval between the elements. For this reason, it becomes possible to make the space utilization efficiency of an immersion membrane unit high.
  • this interval can be narrowed, the turbulent flow of the liquid to be treated generated around the gap between the pair of hollow fiber membrane elements and the backflow of the liquid to be treated generated in this gap can be suppressed.
  • the amount of filtrate removed by air bubbles can be averaged over the entire surface of the hollow fiber membrane element, and the amount of filtrate adhered to the hollow fiber membrane element can be controlled, thereby extending the life of the hollow fiber membrane element. be able to.
  • the connecting portion is formed on the upper surface of the collecting pipe, the desorbing operation between the collecting branch pipe and the connecting portion can be easily performed from the outside of the submerged membrane unit. The workability can be improved.
  • the connecting portion may be formed on the opposite side of the adjacent hollow fiber membrane element.
  • the present invention further includes a plurality of air diffusion holes arranged below the hollow fiber membrane element, and the air diffusion holes are arranged on a line parallel to the extending direction of the liquid collecting pipe in a plan view. It can be.
  • the air holes By arranging the air holes in this manner, the air bubbles diffused from the air holes are uniformly dispersed with respect to the hollow fiber membrane element. As a result, the removal amount of the filtrate due to the bubbles on the entire surface of the hollow fiber membrane element can be averaged, and the amount of the filtrate attached to the hollow fiber membrane element can be controlled.
  • the air holes may be arranged so that the distance between the air holes and the lower end of the hollow fiber membrane element is equal when viewed from the front.
  • the air holes By arranging the air holes in this manner, the air bubbles diffused from the air holes are uniformly dispersed with respect to the hollow fiber membrane element. As a result, the removal amount of the filtrate due to the bubbles on the entire surface of the hollow fiber membrane element can be averaged, and the amount of the filtrate attached to the hollow fiber membrane element can be controlled.
  • the separation distance may be 150 mm or more.
  • the ratio of the interval between adjacent hollow fiber membrane elements to the width of the hollow fiber membrane element can be 0.07 or less, preferably 0.05 or less.
  • the present invention when a pair of hollow fiber membrane elements is arranged linearly to increase the area of the hollow fiber membrane unit, it is possible to provide an immersion membrane unit with high space utilization and good workability. it can.
  • an object of the present invention to provide an immersion membrane unit that can appropriately suppress turbulent flow of the liquid to be treated generated around the gap between the pair of hollow fiber membrane elements and backflow of the liquid to be treated generated in the gap. Can do.
  • FIG. 1 is a front view of an immersion membrane unit according to the embodiment.
  • the immersion membrane unit 1 according to this embodiment is an immersion membrane that is immersed in the treatment liquid and filters the treatment liquid.
  • the pair of hollow fiber membrane elements 2A and 2B and the frame 3 A liquid collection header pipe 4, a liquid collection branch pipe 5, a suction device 6, and a diffuser pipe 7. Since the hollow fiber membrane element 2A and the hollow fiber membrane element 2B have basically the same configuration, the hollow fiber membrane element 2A and the hollow fiber membrane element 2B are combined together unless otherwise specifically described. This will be described as element 2.
  • FIG. 2 is a front view of the hollow fiber membrane element.
  • the hollow fiber membrane element 2 includes a hollow fiber membrane group 22 formed in a flat membrane shape (or a flat plate shape) in which a large number of hollow fiber membranes 21 extending in the vertical direction are arranged in parallel, An upper liquid collecting pipe 23 and a lower liquid collecting pipe 24 that are connected to the upper and lower ends of the hollow fiber membrane group 22 and extend linearly in a direction intersecting the extending direction of the hollow fiber membrane 21, And a pair of support tubes 25 connected to both ends of the lower liquid collection tube 24 and extending linearly in a direction parallel to the extending direction of the hollow fiber membrane 21.
  • hollow fiber membrane element 2 a large number of hollow fiber membranes 21 constituting the hollow fiber membrane group 22 are suspended from the upper liquid collection pipe 23 that extends in a straight line.
  • a lower liquid collection pipe 24 is connected to the lower ends of a large number of hollow fiber membranes 21.
  • the hollow fiber membrane 21 filters the liquid to be treated by immersing the immersion membrane unit 1 in the liquid to be treated, and allows the filtrate to pass through the hollow interior.
  • the arrangement of the hollow fiber membranes 21 in the hollow fiber membrane group 22 is not particularly limited as long as it is formed in a film shape.
  • n can be 1 to several tens and m can be several tens to several thousand.
  • the upper liquid collection pipe 23 and the lower liquid collection pipe 24 are connected to all the hollow fiber membranes 21 and collect the filtrate filtered by each hollow fiber membrane 21. For this reason, the inside of the upper liquid collection pipe 23 and the lower liquid collection pipe 24 communicates with the hollow inside of each hollow fiber membrane 21, and the extending direction of the upper liquid collection pipe 23 and the lower liquid collection pipe 24 ( A space portion (not shown) extending along the direction in which the hollow fiber membrane 21 extends is formed.
  • the shape of the upper side liquid collection tube 23 and the lower side liquid collection tube 24 is not specifically limited, For example, it can be set as the circular tube which is a circular cross section, and the rectangular tube which is a rectangular cross section.
  • the pair of support pipes 25 support the upper liquid collection pipe 23 and the lower liquid collection pipe 24 in parallel at a predetermined interval, and move the filtrate between the upper liquid collection pipe 23 and the lower liquid collection pipe 24. Is possible. For this reason, inside the pair of support pipes 25 are communicated with the upper liquid collection pipe 23 and the lower liquid collection pipe 24, and extend along the extending direction of the support pipe 25 (the extending direction of the hollow fiber membrane 21). An extending space (not shown) is formed.
  • a nozzle 26 is formed on the upper surface of the upper liquid collecting pipe 23 to connect to the liquid collecting branch pipe 5.
  • the nozzle 26 will be described later.
  • the frame 3 supports a pair of hollow fiber membrane elements 2A and 2B and arranges the pair of hollow fiber membrane elements 2A and 2B in a straight line along the upper liquid collection pipe 23. It is.
  • the frame 3 includes a lower rail portion 31 on which the lower ends of the pair of hollow fiber membrane elements 2A and 2B are placed to regulate the positions of the pair of hollow fiber membrane elements 2A and 2B, and the pair of hollow fiber membrane elements.
  • an upper rail portion 32 that regulates the position of the pair of hollow fiber membrane elements 2A and 2B with the upper end portions of 2A and 2B interposed therebetween.
  • the frame 3 is provided with a plurality of sets of lower rail portions 31 and upper rail portions 32 in a direction perpendicular to the surface of the hollow fiber membrane element 2, and a pair of linearly arranged on the frame 3.
  • the hollow fiber membrane elements 2A and 2B can be arranged in parallel in an arbitrary number.
  • FIG. 3 is a perspective view showing the relationship between the lower rail portion and the hollow fiber membrane element.
  • the hollow fiber membrane element is simplified and shown.
  • the lower rail portion 31 extends linearly and is formed in a U shape with a cross section opened upward.
  • the hollow fiber membrane elements 2 ⁇ / b> A and 2 ⁇ / b> B can be moved left and right along the lower rail portion 31 by being placed on the lower rail portion 31.
  • a stopper 31a with which the lower liquid collection pipe 24 of the hollow fiber membrane element 2A and the hollow fiber membrane element 2B abuts is provided at the center of the lower rail portion 31.
  • the stopper 31a prevents the one hollow fiber membrane element 2A, 2B from moving toward the other hollow fiber membrane element 2B, 2A, and the lower collecting pipe of the hollow fiber membrane element 2A and the hollow fiber membrane element 2B.
  • a gap is formed between the hollow fiber membrane element 2A and the hollow fiber membrane element 2B. For this reason, it is possible to adjust the space
  • the liquid collection header pipe 4 is disposed above the hollow fiber membrane element 2 and connected to the suction device 6, and is connected to the upper liquid collection pipe via the liquid collection branch pipe 5. 23.
  • the filtrate filtered by the hollow fiber membrane 21 is collected through the hollow portion of the hollow fiber membrane 21 into the upper liquid collection pipe 23 and the lower liquid collection pipe 24.
  • the filtrate collected in the lower collecting tube 24 is collected in the upper collecting tube 23 through the pair of support tubes 25.
  • the filtrate collected in the upper liquid collection pipe 23 is collected from the nozzle 26 through the liquid collection branch pipe 5 to the liquid collection header pipe 4 and then sucked into the suction device 6.
  • the liquid collection branch pipe 5 is connected to the side surface of the liquid collection header pipe 4.
  • the diffuser tube 7 is disposed below the hollow fiber membrane element 2 and has a large number of diffuser holes 7a for aeration.
  • the air diffuser 7 is connected to a gas supply device (blower, compressor, etc.). When gas is supplied from this device, air is diffused from the air diffuser hole 7a of the air diffuser 7 and the bubbles are Thus, it is possible to remove the filtrate attached to the hollow fiber membrane 21.
  • a large number of air diffusion holes 7a formed in the air diffusion tube 7 are disposed below the hollow fiber membrane element 2A and the hollow fiber membrane element 2B, respectively.
  • Each air diffuser hole 7 a is arranged on a line parallel to the extending direction of the upper liquid collecting pipe 23 and the lower liquid collecting pipe 24 in a plan view.
  • each air diffuser hole 7a may be at the same position as the upper liquid collection pipe 23 and the lower liquid collection pipe 24 in plan view, and is separated from the upper liquid collection pipe 23 and the lower liquid collection pipe 24. It may be a position.
  • the separation distance between the lower end of the hollow fiber membrane element 2A and the lower end of the hollow fiber membrane element 2B (lower liquid collecting pipe 24) and each of the air diffusion holes 7a (hereinafter, this separation distance is simply referred to as “separation”.
  • the “distance” is also better.
  • the planar view refers to the line of sight when viewed from above in the vertical direction
  • the front view refers to the line of sight when viewed from the horizontal direction orthogonal to the vertical direction.
  • the separation distance is a distance from the lower end of the hollow fiber membrane element 2 to the opening of the air diffusion hole 7a in a front view.
  • the separation distance between the opening of the air diffuser hole 7a in plan view and the upper liquid collection pipe 23 and the lower liquid collection pipe 24 is not necessarily the same as the actual separation distance (in the three-dimensional space).
  • the separation distance between the lower end of the hollow fiber membrane element 2A and the lower end of the hollow fiber membrane element 2B and each air diffuser hole 7a in front view is not necessarily the same as the actual separation distance (in three-dimensional space). Absent.
  • the diffuser holes 7a By arranging the diffuser holes 7a in this way, the air bubbles diffused from the diffuser holes 7a are uniformly dispersed in the hollow fiber membrane element 2. As a result, it is possible to average the amount of filtrate removed by bubbles on the entire surface of the hollow fiber membrane element 2 and to control the amount of filtrate adhered to the hollow fiber membrane element 2.
  • the separation distance is preferably 150 mm or more.
  • the separation distance is preferably 150 mm or more.
  • the upper limit of the separation distance is not particularly limited. However, as the separation distance increases, the discharge pressure necessary for supplying air to each air diffuser hole 7a increases. Therefore, by setting the separation distance to 350 mm or less, it is necessary for supplying air to each air diffuser hole 7a. The discharge pressure can be reduced. Thereby, the power consumption of the diffuser which sends air when washing
  • the uniform separation distance means that the difference between the longest separation distance and the shortest separation distance is 20 mm or less, and more preferably 10 mm or less. By setting the difference between the longest separation distance and the shortest separation distance to 20 mm or less, it is possible to control the variation in the amount of air diffused from each air diffuser hole 7a.
  • the shape and arrangement of the diffuser tube 7 are not particularly limited.
  • the air diffusing tube 7 may have a shape extending in a straight line shape, a curved line shape, a bent line shape, or the like.
  • the air diffusion pipe 7 may be arranged on a line parallel to the extending direction of the upper liquid collecting pipe 23 and the lower liquid collecting pipe 24 in a plan view. You may arrange
  • the nozzle 26 formed on the upper surface of the upper liquid collecting pipe 23 is disposed at the opposite end of the adjacent hollow fiber membrane element 2 when the hollow fiber membrane element 2 is installed on the frame 3. That is, the nozzle 26 of the hollow fiber membrane element 2A is disposed on the opposite end (left side in FIG. 1) of the adjacent hollow fiber membrane element 2B, and the nozzle 26 of the hollow fiber membrane element 2B is adjacent to the hollow fiber membrane element 2B. It is arrange
  • the opposite end of the adjacent hollow fiber membrane element 2 refers to a portion on the opposite side of the adjacent hollow fiber membrane element 2 with respect to the longitudinal center of the upper liquid collection tube 23.
  • the nozzle 26 is formed in the vicinity of the edge of the upper liquid collection pipe 23. These nozzles 26 have a shape protruding upward from the upper surface of the upper liquid collection pipe 23. However, the nozzle 26 is not necessarily required to protrude upward from the upper surface of the upper liquid collection tube 23, and may be formed on the upper surface of the upper liquid collection tube 23.
  • FIG. 4 is a front view showing the positional relationship between a pair of hollow fiber membrane elements.
  • 5 and 6 are front views showing the flow of the liquid to be treated.
  • the width of the hollow fiber membrane element 2 (the length of the upper liquid collection tube 23 and the lower liquid collection tube 24) is A, and the distance between the hollow fiber membrane element 2A and the hollow fiber membrane element 2B is as follows.
  • the ratio of B to A (B / A) is preferably 0.07 or less, and more preferably 0.05 or less.
  • the liquid collection branch is formed between the pair of hollow fiber membrane elements 2A and 2B by forming the nozzle 26 on the upper surface of the upper liquid collection tube 23. Since it is not necessary to arrange the pipe 5 and the liquid collection branch pipe 5 can be arranged on the projection surface of the upper liquid collection pipe 23 in a plan view, the distance between the pair of hollow fiber membrane elements 2A, 2B is reduced to The projected area of the immersion film unit 1 in view can be reduced. For this reason, it becomes possible to make the space utilization efficiency of the immersion membrane unit 1 high.
  • this interval can be narrowed, the turbulent flow of the liquid to be processed generated around the gap between the pair of hollow fiber membrane elements 2A and 2B and the backflow of the liquid to be processed generated in this gap can be suppressed. Can do. As a result, the amount of filtrate removed by bubbles can be averaged over the entire surface of the hollow fiber membrane element 2 and the amount of filtrate adhered to the hollow fiber membrane element 2 can be controlled. Life can be extended.
  • the nozzle 26 is formed on the upper surface of the upper liquid collection pipe 23 on the opposite side of the adjacent hollow fiber membrane element 2, so that the desorption operation between the liquid collection branch pipe 5 and the nozzle 26 can be performed. Therefore, the workability at the time of detaching the hollow fiber membrane element 2 can be improved.
  • the air diffusion holes 7a are arranged on a line parallel to the extending direction of the upper liquid collection pipe 23 and the lower liquid collection pipe 24 in a plan view, and the air diffusion holes 7a are further arranged in the front view.
  • the air bubbles diffused from the air diffuser holes 7a are uniformly dispersed with respect to the hollow fiber membrane element 2 by arranging them so that the separation distance between them and the lower end of the hollow fiber membrane element 2 is equal. As a result, it is possible to average the amount of filtrate removed by bubbles on the entire surface of the hollow fiber membrane element 2 and to control the amount of filtrate adhered to the hollow fiber membrane element 2.
  • the filtrate filtered with the hollow fiber membrane was demonstrated as what collects with the upper liquid collection pipe 23 and the lower liquid collection pipe 24, it collects with the upper liquid collection pipe 23 only. Also good.
  • the lower liquid collection pipe 24 may have a structure that does not have a liquid collection function
  • the pair of support pipes 25 may have a structure that does not communicate with the upper liquid collection pipe 23 and the lower liquid collection pipe 24.
  • the tube 25 may have a structure having no space inside.
  • liquid collection branch pipe 5 connected to the pair of hollow fiber membrane elements 2A and 2B (upper liquid collection pipe 23) is described as being connected to the same liquid collection header pipe 4.
  • a liquid collection header pipe may be provided for each hollow fiber membrane element arranged on one side, and the liquid collection header pipe may be divided into two.
  • a submerged membrane unit in which a nozzle (connecting portion) is formed on the upper surface of an upper liquid collecting pipe (liquid collecting pipe) is immersed in a water tank in which water is stored as a liquid to be treated, and the lower side of the hollow fiber membrane element.
  • the direction of water flow in the submerged membrane unit when the air was diffused with a predetermined amount of air was observed with an underwater camera.
  • Table 1 The detailed conditions of each example are shown in Table 1.
  • the width of the hollow fiber membrane group of each hollow fiber membrane element was 875 mm.
  • the separation distance was 220 mm.
  • the width of the hollow fiber membrane group of each hollow fiber membrane element was 1375 mm.
  • the separation distance was 220 mm.
  • Table 1 shows the observation conditions of each example and the observation results of the flow of the liquid to be treated in the immersion membrane unit.
  • A indicates the width of the hollow fiber membrane element (the length of the upper and lower liquid collection tubes), and B indicates the distance between the pair of hollow fiber membrane elements. (See FIG. 4).
  • B indicates the distance between the pair of hollow fiber membrane elements. (See FIG. 4).
  • the ratio of the region where the uniform upward flow is not generated by the action of backflow / turbulent flow is the turbulence with respect to the entire width C of the hollow fiber membrane elements arranged in a pair as shown in FIG.
  • the ratio of the width D of the region where the flow or the reverse flow occurs, that is, D / C is shown.

Abstract

 被処理液に浸漬して被処理液を濾過する浸漬膜ユニットであって、直線状に延在する集液管と、集液管から垂下される多数の中空糸膜と、を有し、中空糸膜で濾過した濾過液が集液管に集液される中空糸膜エレメントと、集液管の延在方向に沿って一対の中空糸膜エレメントを配列させる枠体と、中空糸膜エレメントの上方に配置された集液ヘッダー管と、集液管と集液ヘッダー管とを連結する集液枝管と、を備える、浸漬膜ユニット。

Description

浸漬膜ユニット
 本発明は、被処理液に浸漬して被処理液を濾過する浸漬膜ユニットに関する。
 従来、被処理液に浸漬して被処理液を濾過する浸漬膜として、特許文献1に記載されたような浸漬膜ユニットが知られている。特許文献1に記載された浸漬膜ユニットは、多数の中空糸膜が並列された中空糸膜群の両端部に各中空糸膜と連通する集液管が固定された複数の中空糸膜エレメントが並列されており、吸引装置に接続された集液ヘッダー管が、集液枝管を介して各中空糸膜エレメントの集液管に接続されている。そして、中空糸膜エレメントの下方に散気管を配置し、この散気管から散気することで、中空糸膜に付着した濾物(残渣)を除去している。
 近年、処理能力向上の観点から、浸漬膜ユニットを大面積化したいとの要望がある。しかしながら、一般的な中空糸膜エレメントは、膜面積が約25m、重量が約20kgと既に大型である。従って、中空糸膜エレメントを更に大型化することによって浸漬膜ユニットの膜面積の大型化を図ることは、作業性の観点から難しい。
 そこで、特許文献2に記載されたように、一対の中空糸膜エレメントを集液管の延在方向に沿って直線状に配列させることで、ユニットとしての大面積化を図った浸漬膜ユニットが提案されている。特許文献2に記載された浸漬膜ユニットは、隣接する一対の中空糸膜エレメントの間に、集液ヘッダー管から下垂される集液枝管が配置されている。また、この集液管には、隣接する他方の中空糸膜エレメント側の面(集液枝管側の面)に、集液枝管に連結するためのノズルが形成されている。そして、各中空糸膜エレメントを隣接する他方の中空糸膜エレメント側(集液枝管側)にスライドして、各集液管に形成されたノズルを集液枝管に脱着させることで、浸漬膜ユニットを組み立て及び中空糸膜エレメントの交換を行っている。
特開2008-055376号公報 国際公開公報第02/094421号
 しかしながら、特許文献2に記載された浸漬膜ユニットは、隣接する一対の中空糸膜エレメントの間に集液枝管が配置されるため、空間利用効率が悪いという問題がある。また、特許文献2に記載された浸漬膜ユニットは、集液枝管に連結するノズルが、隣接する他方の中空糸膜エレメント側の面(集液枝管側の面)に形成されているため、浸漬膜ユニットの組み立て作業性が悪いという問題がある。
 また、浸漬膜では濾物の膜面への堆積防止のために、膜エレメント下部より曝気を行って被処理液の上昇流を作り出して、上昇流に伴う気泡により膜面の洗浄を行うことがよく知られている。しかし、隣接する一対の中空糸膜エレメント間の隙間が広過ぎた場合、この隙間周辺で被処理液が均一に上方に向かわない乱流や、下方に向けて流れる逆流が発生してしまうことがある。このような乱流や逆流が発生した領域では、気泡による膜面からの濾物除去が困難になるため、中空糸膜エレメント全面において均一な濾過を行う事が困難になるという問題がある。
 そこで、本発明は、一対の中空糸膜エレメントを直線状に配列させて中空糸膜ユニットの大面積化を図る場合に、空間利用率が高く、作業性の良い浸漬膜ユニットを提供することを目的とする。
 また、隣接する一対の中空糸膜エレメント間の隙間を狭めることによって、この隙間周辺に被処理液の乱流や逆流の発生を防止し、均一な上昇流を形成することで、中空糸膜エレメント全面における均一な濾過を実現する浸漬膜ユニットを提供することを目的とする。
 本発明に係る浸漬膜ユニットは、被処理液に浸漬して被処理液を濾過する浸漬膜ユニットであって、直線状に延在する集液管と、集液管から垂下される多数の中空糸膜と、を有し、中空糸膜で濾過した濾過液が集液管に集液される中空糸膜エレメントと、集液管の延在方向に沿って一対の中空糸膜エレメントを配列させる枠体と、中空糸膜エレメントの上方に配置された集液ヘッダー管と、集液管と集液ヘッダー管とを連結する集液枝管と、を備え、集液管の上面に、集液枝管と連結される連結部が形成されている。
 本発明に係る浸漬膜ユニットによれば、吸引装置などにより集液ヘッダー管が吸引されることで、各中空糸膜により被処理液が濾過された濾過液は、集液管に集液された後、集液枝管を介して集液ヘッダー管に集液される。
 ここで、集液管、集液枝管及びヘッダー管が濾過液の流路となるが、流路に屈曲角部が多く形成されるほど、当該流路を流れる濾過液に大きな乱流が発生するため、圧力損失が大きくなる。このため、流体の技術分野では、より屈曲角部の少ない流路を形成するように設計するのが常識となっている。浸漬膜の技術分野においても、一対の中空糸膜エレメントを直線的に配列して中空糸膜エレメントの大面積化を図る場合は、特許文献2に示す浸漬膜ユニットのように、集液管の集液枝管側の側面に集液枝管と連結される連結部を形成することで、集液管から集液ヘッダー管に至る流路において形成される屈曲角部を1箇所に抑えている。
 ところが、本発明者らが浸漬膜ユニットによる濾過効率について鋭意研究したところ、集液管から集液ヘッダー管に至る流路の圧力損失よりも、むしろ、中空糸膜エレメントの空間利用効率が重要であることを見出した。
 また、本発明者らが中空糸膜エレメント周りの被処理液の流れについて鋭意研究したところ、直線的に配列される一対の中空糸膜エレメントの間隔が広いと、この隙間の周辺に被処理液の乱流が発生するとともに、この隙間に被処理液の逆流が発生してしまい、散気管から散気された気泡により濾物を除去できない領域が発生することを見出した。
 本発明に係る浸漬膜ユニットは、このような知見に基づき、集液枝管と集液管とを連結する連結部を集液管の上面に形成するものとしたものである。これにより、一対の中空糸膜エレメントの間に集液枝管を配置する必要がなくなり、平面視における集液管の投影面に集液枝管を配置することができるため、一対の中空糸膜エレメントの間隔を狭めて、平面視における浸漬膜ユニットの投影面積を小さくすることができる。このため、浸漬膜ユニットの空間利用効率を高くすることが可能となる。
 更に、この間隔を狭くすることができれば、一対の中空糸膜エレメントの間の隙間周辺に発生する被処理液の乱流や、この隙間に発生する被処理液の逆流を抑止することができる。これにより、中空糸膜エレメント全面において気泡による濾物の除去量を平均化することができるとともに、中空糸膜エレメントに付着する濾物量を制御することができるため、中空糸膜エレメントの寿命を延ばすことができる。
 しかも、連結部を集液管の上面に形成することで、集液枝管と連結部との脱着作業を浸漬膜ユニットの外側から容易に行うことができるため、中空糸膜エレメントを脱着する際の作業性を向上させることができる。
 また、本発明は、連結部が、隣接する中空糸膜エレメントの反対側に形成されているものとすることができる。このように連結部を配置することで、更に容易に、浸漬膜ユニットの外側から集液枝管と連結部とを脱着することができる。
 また、本発明は、中空糸膜エレメントの下方に配置される複数の散気穴を更に備え、散気穴は、平面視において集液管の延在方向と平行な線上に配列されているものとすることができる。このように散気穴を配列することで、各散気穴から散気された気泡が中空糸膜エレメントに対して均一に分散される。これにより、中空糸膜エレメント全面における気泡による濾物の除去量を平均化することができるとともに、中空糸膜エレメントに付着する濾物量を制御することができる。
 また、本発明は、散気穴は、正面視における、散気穴と中空糸膜エレメントの下端との離隔距離が均等になるように配列されているものとすることができる。このように散気穴を配列することで、各散気穴から散気された気泡が中空糸膜エレメントに対して均一に分散される。これにより、中空糸膜エレメント全面における気泡による濾物の除去量を平均化することができるとともに、中空糸膜エレメントに付着する濾物量を制御することができる。
 この場合、離隔距離が、150mm以上であるものとすることができる。これにより、各散気穴から散気された気泡が中空糸膜エレメントに対してより均一に分散される。
 また、本発明は、中空糸膜エレメントの幅に対する隣接する中空糸膜エレメントの間隔の割合が、0.07以下、好ましくは0.05以下であるものとすることができる。このように一対の中空糸膜エレメントを配置することで、一対の中空糸膜エレメントの間の隙間の周辺に発生する被処理液の乱流や、この隙間に生ずる被処理液の逆流を適切に抑止することができる。
 本発明によれば、一対の中空糸膜エレメントを直線状に配列させて中空糸膜ユニットの大面積化を図る場合に、空間利用率が高く、作業性の良い浸漬膜ユニットを提供することができる。
 また、一対の中空糸膜エレメントの間の隙間の周辺に発生する被処理液の乱流や、この隙間に生ずる被処理液の逆流を、適切に抑止することができる浸漬膜ユニットを提供する事ができる。
実施形態に係る浸漬膜ユニットの正面図である。 中空糸膜エレメントの正面図である。 下側レール部と中空糸膜エレメントとの関係を示す斜視図である。 一対の中空糸膜エレメントの配置関係を示す正面図である。 被処理液の流れを示す正面図である。 被処理液の流れを示す正面図である。
 以下、図面を参照して、本発明に係る浸漬膜ユニットの好適な実施形態について詳細に説明する。なお、以下の説明において、上下などの方向は、被処理液に浸漬される浸漬膜ユニットにおける上下などの方向をいう。また、全図中、同一又は相当部分には同一符号を付すこととする。
 図1は、実施形態に係る浸漬膜ユニットの正面図である。図1に示すように、本実施形態に係る浸漬膜ユニット1は、被処理液に浸漬して被処理液を濾過する浸漬膜であり、一対の中空糸膜エレメント2A,2Bと、枠体3と、集液ヘッダー管4と、集液枝管5と、吸引装置6と、散気管7と、を備えている。なお、中空糸膜エレメント2Aと中空糸膜エレメント2Bとは基本的に同じ構成であるため、特に分けて説明する場合を除き、中空糸膜エレメント2A及び中空糸膜エレメント2Bを纏めて中空糸膜エレメント2として説明する。
 図2は、中空糸膜エレメントの正面図である。図2に示すように、中空糸膜エレメント2は、鉛直方向に延在する多数の中空糸膜21が並列されて平膜状(又は、平板状)に形成された中空糸膜群22と、中空糸膜群22の上端及び下端に接続されて中空糸膜21の延在方向と交差する方向に直線状に延びる上側集液管23及び下側集液管24と、上側集液管23及び下側集液管24の両端部に接続されて中空糸膜21の延在方向と平行な方向に直線状に延びる一対の支持管25と、を備えている。つまり、中空糸膜エレメント2は、直線状に延在する上側集液管23から、中空糸膜群22を構成する多数の中空糸膜21が垂下されており、中空糸膜群22を構成する多数の中空糸膜21の下端に下側集液管24が接続されている。
 中空糸膜21は、浸漬膜ユニット1が被処理液に浸漬されることで被処理液を濾過し、その濾過液を中空内部に透過させるものである。中空糸膜群22における中空糸膜21の配列は、膜状に形成されれば、特に限定されるものではない。例えば、中空糸膜群22における中空糸膜21の配列をn行m列とした場合、nは1~数十とすることができ、mは、数十~数千とすることができる。
 上側集液管23及び下側集液管24は、全ての中空糸膜21と連通されて各中空糸膜21で濾過された濾過液を集液するものである。このため、上側集液管23及び下側集液管24の内部には、各中空糸膜21の中空内部と連通されて、上側集液管23及び下側集液管24の延在方向(中空糸膜21の延在方向と交差する方向)に沿って延びる空間部(不図示)が形成されている。なお、上側集液管23及び下側集液管24の形状は特に限定されるものではなく、例えば、円形断面である円管状や矩形断面である矩形管状とすることができる。
 一対の支持管25は、上側集液管23及び下側集液管24を平行に所定の間隔で支持するとともに、上側集液管23と下側集液管24との間で濾過液の移動を可能とするものである。このため、一対の支持管25の内部には、上側集液管23及び下側集液管24と連通されて、支持管25の延在方向(中空糸膜21の延在方向)に沿って延びる空間部(不図示)が形成されている。
 そして、上側集液管23の上面に、集液枝管5と連結するためのノズル26が形成されている。なお、ノズル26については後述する。
 図1に示すように、枠体3は、一対の中空糸膜エレメント2A,2Bを支持して、一対の中空糸膜エレメント2A,2Bを上側集液管23に沿って直線状に配列するものである。この枠体3は、一対の中空糸膜エレメント2A,2Bの下端部を載置して一対の中空糸膜エレメント2A,2Bの位置を規制する下側レール部31と、一対の中空糸膜エレメント2A,2Bの上端部を挟み込んで一対の中空糸膜エレメント2A,2Bの位置を規制する上側レール部32と、を備えている。なお、枠体3には、中空糸膜エレメント2の面と垂直な方向に下側レール部31及び上側レール部32が複数組設けられており、枠体3に、直線状に配列された一対の中空糸膜エレメント2A,2Bを、任意の組数だけ並列配置することが可能となっている。
 図3は、下側レール部と中空糸膜エレメントとの関係を示す斜視図である。なお、図3では、中空糸膜エレメントを簡略化して示している。図3に示すように、下側レール部31は、直線状に延びており、断面が上方に開口したコ字状に形成されている。このため、中空糸膜エレメント2A,2Bは、下側レール部31に載置されることで、下側レール部31に沿って左右に移動可能となっている。
 また、下側レール部31の中央部には、中空糸膜エレメント2A及び中空糸膜エレメント2Bの下側集液管24が当接されるストッパー31aが設けられている。ストッパー31aは、一方の中空糸膜エレメント2A,2Bが他方の中空糸膜エレメント2B,2A側に移動するのを阻止するとともに、中空糸膜エレメント2A及び中空糸膜エレメント2Bの下側集液管24がストッパー31aに当接することで、中空糸膜エレメント2Aと中空糸膜エレメント2Bとの間に隙間を形成するものである。このため、ストッパー31aの幅を調整することで、中空糸膜エレメント2Aと中空糸膜エレメント2Bとの間隔を調整することが可能となっている。
 図1及び図2に示すように、集液ヘッダー管4は、中空糸膜エレメント2の上方に配置されて、吸引装置6と連結されており、集液枝管5を介して上側集液管23と連結されている。このため、吸引装置6で吸引力を発生すると、中空糸膜21で濾過された濾過液は、中空糸膜21の中空部を通じて、上側集液管23及び下側集液管24に集液される。下側集液管24に集液された濾過液は、一対の支持管25を伝って上側集液管23に集液される。そして、上側集液管23に集液された濾過液は、ノズル26から集液枝管5を伝って集液ヘッダー管4に集液された後、吸引装置6に吸引される。なお、集液枝管5は、集液ヘッダー管4の側面に連結されている。
 散気管7は、中空糸膜エレメント2の下方に配置されており、散気するための多数の散気穴7aが形成されている。この散気管7には、気体を供給する装置(ブロワ、コンプレッサ等)に接続されており、この装置から気体が供給されることで、散気管7の散気穴7aから散気され、この気泡により中空糸膜21に付着した濾物を除去することが可能となっている。
 散気管7に形成された多数の散気穴7aは、中空糸膜エレメント2A及び中空糸膜エレメント2Bそれぞれの下方に配置されている。そして、各散気穴7aは、平面視において上側集液管23及び下側集液管24の延在方向と平行な線上に配列されている。この場合、各散気穴7aは、平面視において、上側集液管23及び下側集液管24と同じ位置であってもよく、上側集液管23及び下側集液管24から離隔した位置であってもよい。また、正面視における、中空糸膜エレメント2Aの下端及び中空糸膜エレメント2Bの下端(下側集液管24)と各散気穴7aとの離隔距離(以下では、この離隔距離を単に「離隔距離」とも言う。)は、均等である方が良い。なお、平面視とは、鉛直方向上方から見た場合の視線方向をいい、正面視とは、鉛直方向に直交する水平方向から見た場合の視線方向をいう。また、離隔距離とは、正面視において中空糸膜エレメント2の下端から散気穴7aの開口部までの距離のことである。なお、平面視における散気穴7aの開口部と上側集液管23及び下側集液管24との離隔距離は、必ずしも実際の(三次元空間における)離隔距離と同一であるとは限らない。また、正面視における中空糸膜エレメント2Aの下端及び中空糸膜エレメント2Bの下端と各散気穴7aとの離隔距離は、必ずしも実際の(三次元空間における)離隔距離と同一であるとは限らない。
 このように散気穴7aを配列することで、各散気穴7aから散気された気泡が中空糸膜エレメント2に対して均一に分散される。これにより、中空糸膜エレメント2全面における気泡による濾物の除去量を平均化することができるとともに、中空糸膜エレメント2に付着する濾物量を制御することができる。
 この場合、離隔距離は、150mm以上であることが好ましい。離隔距離を150mm以上にすることで、各散気穴から散気された気泡が中空糸膜エレメント2に対してより均一に分散される。このため、中空糸膜エレメント2全面における気泡による濾物の除去量をより平均化することができるとともに、中空糸膜エレメント2に付着する濾物量をより正確に制御することができる。
 なお、離隔距離の上限値は、特に限定されるものではない。但し、離隔距離が長くなるにつれて各散気穴7aへの空気供給に必要な吐出圧が高くなることから、離隔距離を350mm以下にすることで、各散気穴7aへの空気供給に必要な吐出圧を低減することができる。これにより、中空糸膜エレメント2の膜面を洗浄する際に空気を送る散気装置の消費電力を大幅に削減することができる。さらに、浸漬膜ユニット1の容積を小さくすることもできるため、浸漬膜ユニット1を設置するスペースを小規模化することができる。また、離隔距離を280mm以下にするとより好ましい。
 また、離隔距離が均等であるとは、最長の離隔距離と最短の離隔距離との差が、20mm以下である場合をいい、さらに好ましくは10mm以下である場合をいう。最長の離隔距離と最短の離隔距離との差を20mm以下に設定することで、各散気穴7aから散気される散気量のばらつきを制御することができる。
 そして、散気穴7aが上記の配置であれば、散気管7の形状や配置などは特に限定されるものではない。例えば、散気管7は、直線状、曲線状、折線状等に延びる形状とすることができる。また、散気管7は、平面視において、上側集液管23及び下側集液管24の延在方向と平行な線上に配置してよく、上側集液管23及び下側集液管24の延在方向に対して傾斜した線上に配置してもよい。
 ここで、上述したノズル26について詳しく説明する。
 上側集液管23の上面に形成されるノズル26は、中空糸膜エレメント2が枠体3に設置された際に、隣接する中空糸膜エレメント2の反対側の端部に配置されている。すなわち、中空糸膜エレメント2Aのノズル26は、隣接する中空糸膜エレメント2Bの反対側(図1において左側)の端部に配置されており、中空糸膜エレメント2Bのノズル26は、隣接する中空糸膜エレメント2Aの反対側(図1において右側)の端部に配置されている。隣接する中空糸膜エレメント2の反対側の端部とは、上側集液管23の長さ方向中心よりも、隣接する中空糸膜エレメント2の反対側の部分をいう。但し、作業性の観点からは、上側集液管23の端縁近傍にノズル26が形成されていることが好ましい。そして、これらのノズル26は、上側集液管23の上面から上方に向けて突出した形状となっている。但し、ノズル26は、必ずしも上側集液管23の上面から上方に向けて突出する必要はなく、上側集液管23の上面に形成されていればよい。
 次に、図4~図6を参照して、中空糸膜エレメント2Aと中空糸膜エレメント2Bとの配置関係について詳しく説明する。図4は、一対の中空糸膜エレメントの配置関係を示す正面図である。図5及び図6は、被処理液の流れを示す正面図である。
 図4に示すように、中空糸膜エレメント2の幅(上側集液管23及び下側集液管24の長さ)をAとし、中空糸膜エレメント2Aと中空糸膜エレメント2Bとの間隔をBとした場合に、Aに対するBの割合(B/A)が、0.07以下であることが好ましく、0.05以下であることが更に好ましい。
 通常、散気管7から散気すると被処理液は上方に向けて流れていく。しかしながら、被処理液の流れを観察したところ、Aに対するBの割合(B/A)によっては、一対の中空糸膜エレメント2A,2Bの間の隙間における被処理液の流れに乱れが生じることが分かった。
 図5に示すように、Aに対するBの割合(B/A)が小さい場合、中空糸膜エレメント2Aと中空糸膜エレメント2Bとの間の隙間における被処理液の流れは、上方に向かう均一な上昇流となる。
 しかしながら、図6に示すように、Aに対するBの割合(B/A)が大きい場合、中空糸膜エレメント2Aと中空糸膜エレメント2Bとの間の隙間の周辺で被処理液が均一に上方へ向かわない乱流が発生するとともに、この隙間において被処理液が下方に向けて流れる逆流が発生してしまう。このような乱流及び逆流が発生すると、散気管7から散気された気泡により濾物を除去できない領域が発生してしまうため、気泡による濾物の除去を中空糸膜エレメント2全面において平均化することができず、また、中空糸膜エレメント2に付着する濾物量を制御することができない。その結果、中空糸膜エレメント2の寿命が短くなってしまう。
 そこで、上述したように、Aに対するBの割合(B/A)を0.07以下とすることで、乱流及び逆流が発生するのを抑制することができ、Aに対するBの割合(B/A)を0.05以下とすることで、この抑制効果を更に高めることができる。
 以上説明したように、本実施形態に係る浸漬膜ユニット1によれば、ノズル26を上側集液管23の上面に形成することで、一対の中空糸膜エレメント2A,2Bの間に集液枝管5を配置する必要がなくなり、平面視における上側集液管23の投影面に集液枝管5を配置することができるため、一対の中空糸膜エレメント2A,2Bの間隔を狭めて、平面視における浸漬膜ユニット1の投影面積を小さくすることができる。このため、浸漬膜ユニット1の空間利用効率を高くすることが可能となる。
 更に、この間隔を狭くすることができれば、一対の中空糸膜エレメント2A,2Bの間の隙間周辺に発生する被処理液の乱流や、この隙間に発生する被処理液の逆流を抑止することができる。これにより、中空糸膜エレメント2全面において気泡による濾物の除去量を平均化することができるとともに、中空糸膜エレメント2に付着する濾物量を制御することができるため、中空糸膜エレメント2の寿命を延ばすことができる。
 しかも、ノズル26を、上側集液管23の上面であって、隣接する中空糸膜エレメント2の反対側に形成することで、集液枝管5とノズル26との脱着作業を浸漬膜ユニット1の外側から容易に行うことができるため、中空糸膜エレメント2を脱着する際の作業性を向上させることができる。
 また、散気穴7aを、平面視において上側集液管23及び下側集液管24の延在方向と平行な線上に配列し、さらに、散気穴7aを、正面視における散気穴7aと中空糸膜エレメント2の下端との離隔距離が均等になるように配列することで、各散気穴7aから散気された気泡が中空糸膜エレメント2に対して均一に分散される。これにより、中空糸膜エレメント2全面における気泡による濾物の除去量を平均化することができるとともに、中空糸膜エレメント2に付着する濾物量を制御することができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、上記実施形態では、一対の支持管25の双方が上側集液管23及び下側集液管24と連通している構造として説明したが、どちらか一方のみが連通している構造としてもよい。
 また、上記実施形態では、中空糸膜で濾過した濾過液は、上側集液管23及び下側集液管24で集液するものとして説明したが、上側集液管23のみで集液してもよい。この場合、下側集液管24は集液機能を持たない構造としてもよく、一対の支持管25は上側集液管23及び下側集液管24と連通していない構造としてもよく、支持管25は内部に空間部を有しない構造としてもよい。
 また、上記実施形態では、上側集液管23及び下側集液管24を支持管25で固定することで、中空糸膜を鉛直方向に延在させるものとして説明したが、例えば、支持管25を設けることなく、上側集液管23及び下側集液管24を枠体3に直接設置することで、中空糸膜を鉛直方向に延在させるものとしてもよい。
 また、上記実施形態では、一対の中空糸膜エレメント2A,2B(上側集液管23)に接続されている集液枝管5が同一の集液ヘッダー管4に接続されるものとして説明したが、一対の中空糸膜エレメントが並列的に配列される場合に、片側に配列される中空糸膜エレメントごとに集液ヘッダー管を設け、集液ヘッダー管を2つに分ける構造としてもよい。
 次に、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。
 本実施例では、被処理液として水を溜めた水槽に、ノズル(連結部)を上部集液管(集液管)の上面に形成した浸漬膜ユニットを浸漬させ、中空糸膜エレメントの下側から所定の散気量で散気した場合の、浸漬膜ユニット内の水の流れの向きを水中カメラで観察した。各実施例の詳細な条件は表1に示した。
 表1に示した各実施例において、直線状に配列された一対の中空糸膜エレメントを並列に十対配列し、ユニット内に十対(20枚)の中空糸膜エレメントを配置した。また、並列する中空糸膜エレメント間の配列ピッチは、集液管の中心線間で49mmとした。中空糸膜ユニット外周には、十対の中空糸膜エレメントを囲うように邪魔板を配置した。
 実施例1~8において、浸漬膜ユニットを入れた水槽の大きさは、縦×横×深さ=4000mm×1300mm×3300mmであった。また各中空糸膜エレメントの中空糸膜群の幅は875mmであった。また、離隔距離は220mmであった。
 実施例9~20において、浸漬膜ユニットを入れた水槽の大きさは、縦×横×深さ=5000mm×1300mm×3300mmであった。また各中空糸膜エレメントの中空糸膜群の幅は1375mmであった。また、離隔距離は220mmであった。
 表1に、各実施例の観察条件と浸漬膜ユニット内の被処理液の流れの観察結果を示す。なお、表1において、Aは、中空糸膜エレメントの幅(上側集液管及び下側集液管の長さ)を示しており、Bは、一対の中空糸膜エレメントの間隔を示している(図4参照)。また、表1において、逆流・乱流等の作用で均一な上昇流が生じていない領域の割合とは、図6に示した、一対に配列された中空糸膜エレメントの幅全体C、に対する乱流や逆流の生じた領域の幅D、の比、すなわち、D/Cを示している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Aに対するBの割合(B/A)が0.10以上となる実施例1~2については、被処理液の流れに乱流や逆流が30%を超える割合で発生したが、Aに対するBの割合(B/A)が0.07以下となる実施例4~20については、被処理液の流れに乱流や逆流が発生する割合を20%未満にできることが分かった。なお、この現象は、表1に示した通り、散気量が3~36Nm/hr/Mo.の範囲で確認された。
 また、Aに対するBの割合(B/A)が0.05以下となる実施例4~8,13~20については、被処理液の流れに乱流や逆流が発生する割合を15%未満にできることが分かった。
 1…浸漬膜ユニット、2,2A,2B…中空糸膜エレメント、3…枠体、4…集液ヘッダー管、5…集液枝管、6…吸引装置、7…散気管、7a…散気穴、21…中空糸膜、22…中空糸膜群、23…上側集液管(集液管)、24…下側集液管、25…支持管、26…ノズル(連結部)、31…下側レール部、31a…ストッパー、32…上側レール部。

Claims (7)

  1.  被処理液に浸漬して前記被処理液を濾過する浸漬膜ユニットであって、
     直線状に延在する集液管と、前記集液管から垂下される多数の中空糸膜と、を有し、前記中空糸膜で濾過した濾過液が前記集液管に集液される中空糸膜エレメントと、
     前記集液管の延在方向に沿って一対の前記中空糸膜エレメントを配列させる枠体と、
     前記中空糸膜エレメントの上方に配置された集液ヘッダー管と、
     前記集液管と前記集液ヘッダー管とを連結する集液枝管と、
    を備え、
     前記集液管の上面に、前記集液枝管と連結される連結部が形成されている、浸漬膜ユニット。
  2.  前記連結部は、隣接する前記中空糸膜エレメントの反対側に形成されている、請求項1に記載の浸漬膜ユニット。
  3.  前記中空糸膜エレメントの下方に配置される複数の散気穴を更に備え、
     前記散気穴は、平面視において前記集液管の延在方向と平行な線上に配列されている、請求項1又は2に記載の浸漬膜ユニット。
  4.  前記中空糸膜エレメントの下方に配置される複数の散気穴を更に備え、
     前記散気穴は、正面視における、前記散気穴と前記中空糸膜エレメントの下端との離隔距離が均等になるように配列されている、請求項1~3の何れか一項に記載の浸漬膜ユニット。
  5.  前記離隔距離が、150mm以上である、請求項4に記載の浸漬膜ユニット。
  6.  前記中空糸膜エレメントの幅に対する隣接する前記中空糸膜エレメントの間隔の割合が、0.07以下である、請求項1~5の何れか一項に記載の浸漬膜ユニット。
  7.  前記中空糸膜エレメントの幅に対する隣接する前記中空糸膜エレメントの間隔の割合が、0.05以下である、請求項1~5の何れか一項に記載の浸漬膜ユニット。
PCT/JP2013/066504 2012-06-15 2013-06-14 浸漬膜ユニット WO2013187513A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136187 2012-06-15
JP2012136187A JP2015157231A (ja) 2012-06-15 2012-06-15 カセ型膜ユニット

Publications (1)

Publication Number Publication Date
WO2013187513A1 true WO2013187513A1 (ja) 2013-12-19

Family

ID=49758331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066504 WO2013187513A1 (ja) 2012-06-15 2013-06-14 浸漬膜ユニット

Country Status (2)

Country Link
JP (1) JP2015157231A (ja)
WO (1) WO2013187513A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN109562328A (zh) * 2016-08-18 2019-04-02 东洋纺株式会社 扁平型中空纤维膜组件以及膜分离单元

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185271A (ja) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd 浸漬膜装置
WO2002094421A1 (en) * 2001-05-18 2002-11-28 Zenon Environmental Inc. Immersed membrane apparatus
JP2003112017A (ja) * 2001-10-04 2003-04-15 Toray Ind Inc 濾過膜モジュールおよび造水方法
JP2003513784A (ja) * 1999-11-18 2003-04-15 ゼノン、エンバイロンメンタル、インコーポレーテッド 浸漬型薄膜エレメントおよびモジュール
JP2007083229A (ja) * 2005-08-26 2007-04-05 Toray Ind Inc 浸漬型膜ろ過装置
WO2008139617A1 (ja) * 2007-05-14 2008-11-20 Mitsubishi Rayon Engineering Co., Ltd. 膜ろ過ユニット
WO2012008115A1 (ja) * 2010-07-13 2012-01-19 川崎重工業株式会社 浸漬型膜濾過ユニット及び浸漬型膜濾過装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185271A (ja) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd 浸漬膜装置
JP2003513784A (ja) * 1999-11-18 2003-04-15 ゼノン、エンバイロンメンタル、インコーポレーテッド 浸漬型薄膜エレメントおよびモジュール
WO2002094421A1 (en) * 2001-05-18 2002-11-28 Zenon Environmental Inc. Immersed membrane apparatus
JP2003112017A (ja) * 2001-10-04 2003-04-15 Toray Ind Inc 濾過膜モジュールおよび造水方法
JP2007083229A (ja) * 2005-08-26 2007-04-05 Toray Ind Inc 浸漬型膜ろ過装置
WO2008139617A1 (ja) * 2007-05-14 2008-11-20 Mitsubishi Rayon Engineering Co., Ltd. 膜ろ過ユニット
WO2012008115A1 (ja) * 2010-07-13 2012-01-19 川崎重工業株式会社 浸漬型膜濾過ユニット及び浸漬型膜濾過装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN109562328A (zh) * 2016-08-18 2019-04-02 东洋纺株式会社 扁平型中空纤维膜组件以及膜分离单元

Also Published As

Publication number Publication date
JP2015157231A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5566031B2 (ja) 間隔保持部材および膜エレメントおよび浸漬型膜分離装置
JPH1085565A (ja) 膜分離装置
WO2013187513A1 (ja) 浸漬膜ユニット
CN106102882B (zh) 过滤装置
JP5174367B2 (ja) 膜エレメントおよび浸漬型平膜ろ過装置
WO2011058835A1 (ja) 浸漬平膜エレメント、浸漬平膜ユニット、並びに浸漬平膜濾過装置
JP5495129B2 (ja) 膜エレメント、膜モジュール及び膜分離システム
KR101830068B1 (ko) 산기 장치 및 이를 포함하는 수처리장치
JP2010247086A (ja) 平膜モジュールおよびそれを用いた水処理装置
JP5425394B2 (ja) 濾過モジュール、濾過モジュール積層体、および濾過装置
CN103842056B (zh) 曝气单元及包括其的过滤装置
JP2015016446A (ja) 浸漬膜ユニット
US11524264B2 (en) Aerator device and filter system including the same
JP4902684B2 (ja) 浸漬型膜分離装置における膜カートリッジ
JP2012157849A (ja) 膜分離活性汚泥装置
JP2010075846A (ja) 膜カートリッジ
CN105828918A (zh) 膜分离装置
JPWO2013103083A1 (ja) 膜分離方法及び膜分離装置
JP4143453B2 (ja) 膜分離活性汚泥処理装置
JP2003144864A (ja) 浸漬型膜ろ過装置
CN218495168U (zh) 滤网组件和空气净化设备
WO2023243445A1 (ja) 濾過装置
JP5481603B2 (ja) 浸漬型中空糸膜モジュール
CN105771664A (zh) 一种帘式中空纤维膜过滤装置
JP2019030843A (ja) 中空糸膜モジュール及びその洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP