WO2013187411A1 - Power-driven device, power-driven-device system, and electric-power-tool management system - Google Patents

Power-driven device, power-driven-device system, and electric-power-tool management system Download PDF

Info

Publication number
WO2013187411A1
WO2013187411A1 PCT/JP2013/066092 JP2013066092W WO2013187411A1 WO 2013187411 A1 WO2013187411 A1 WO 2013187411A1 JP 2013066092 W JP2013066092 W JP 2013066092W WO 2013187411 A1 WO2013187411 A1 WO 2013187411A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
setting
power
unit
tool
Prior art date
Application number
PCT/JP2013/066092
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 達也
西河 智雅
弘識 益子
和隆 岩田
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012133007A external-priority patent/JP5995064B2/en
Priority claimed from JP2012156110A external-priority patent/JP2014018868A/en
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Publication of WO2013187411A1 publication Critical patent/WO2013187411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • B25B23/1475Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers for impact wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to a power device, a power device system including a power device and an external device that can be connected to the power device, and a control of the power tool, and more particularly to a power tool management system capable of changing setting parameters.
  • the impact tool includes a pulse mode and an impact mode as a plurality of control modes.
  • the user works by selecting the optimum mode for fastening. Specifically, the user has selected each mode by operating a dial provided on the impact tool.
  • the detailed parameters of the pulse mode and the impact mode are set in advance, and the work width in each mode is narrow. Furthermore, even if a large number of control modes are provided, a control mode unnecessary for the user is installed.
  • a trigger switch is provided in the electric tool and the motor rotation speed is controlled by operating the trigger switch.
  • a screw tightening operation is performed using a screwdriver as a tip tool.
  • the operator usually operates the trigger switch by a small amount while the screw is pressed against the workpiece, and rotates the motor by a small amount to position the screw tip at the target position. I do.
  • the screw diameter is small or the screw length is short, the necessary torque is small and the working time is short, so that it is desirable that the motor rotation speed be easily adjusted in a low region. Therefore, it is desirable that the adjustment in the region where the number of rotations operable by the operation of the trigger switch (hereinafter referred to as trigger operation) is also low is easy.
  • trigger operation the adjustment in the region where the number of rotations operable by the operation of the trigger switch
  • the screw diameter is large or the screw length is long
  • the necessary torque is large and the working time is long. Therefore, it is desirable that the motor rotation speed be easily adjusted in a high region. . Therefore, it is desirable that the adjustment in the region where the number of rotations operable by the trigger operation is high is easy.
  • the set value of the motor rotation speed with respect to the trigger switch operation amount is usually one relational expression. For this reason, there is only one trigger operation specification despite the different trigger operation specifications required for the type of screw, and work efficiency deteriorates if the trigger operation specifications are not appropriate.
  • the present invention provides a power device including a drive unit, an output unit that is driven by the drive unit and acts dynamically on the outside, and a control unit that controls the drive unit.
  • a power device characterized by comprising a communication means that allows the parameter constituting the control mode stored in the control unit to be set by accessing the control unit from outside.
  • the user can easily create a specific control mode suitable for various tasks by setting optimum parameters according to the work contents.
  • the control mode is preferably configured by combining a plurality of parameters that can be set from the outside.
  • an optimal control mode is realized by changing a combination of a plurality of parameters. It becomes possible.
  • a power device system comprising a power device and an external device connectable to the power device, wherein the power device uses a motor and the driving force of the motor as a tip tool.
  • a drive unit for transmitting a storage unit for storing a control mode for controlling driving of the motor, a control unit for controlling the motor based on the control mode, and a connection unit connectable to the external device,
  • the external device includes a connected portion connectable to the power device via the connection portion, and a setting portion capable of setting the parameter of the control mode.
  • the parameters of the control mode can be set by an external device, the operation of the electronic pulse driver 1 can be set in more detail, and the fastening operation can be performed under optimum conditions. Can do. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
  • the driving unit includes a hammer driven by the motor and an anvil that holds the tip tool and rotates by being struck by the hammer, and the parameter is a hit between the hammer and the anvil. Preferably it is a period.
  • the hitting cycle can be set, so that the reaction of the power equipment during the fastening work can be reduced and workability can be improved.
  • the hit frequency it is possible to set the hit frequency to a value that the user does not feel uncomfortable, and workability can be improved.
  • control mode includes a pulse mode in which the hammer and the anvil are struck by rotating the motor in both directions, and the pulse mode can set parameters different from the normal hit and the normal hit. It is preferable to have a correction hit.
  • the fastener since a correction hit can be set, compared with a case where fastening is performed only in a normal pulse mode, by performing a correction hit after performing a normal hit, the fastener can be used as a processing member. It can be fastened stably. Thereby, a fastener can be fastened with the target torque.
  • the parameters of the correction batting include the striking cycle between the hammer and the anvil, the number of hits between the hammer and the anvil, and the torque of the hammer when the hammer strikes the anvil. It is preferable that at least one can be set.
  • the parameter is a total rotation speed of the tip tool after the motor is operated.
  • the parameter is a rotation speed of the motor during a period set by the total number of rotations.
  • the rotation speed of the motor during the period set by the total number of rotations can be set, so that the power equipment can be operated by control according to the user's request.
  • the power equipment can be operated by control according to the user's request.
  • the external device preferably includes a display unit that displays the parameter, and the display unit includes a graph display unit that can display the parameter related to the parameter as a horizontal axis and a vertical axis. .
  • the external device since the external device includes the graph display unit, the user can visually recognize the control mode. This makes it easier to imagine the operation of the power equipment when setting parameters.
  • the parameter is set as a ratio to the maximum capacity of the motor.
  • the parameter is set at a ratio to the maximum capacity of the motor, a device for measuring output torque or the like is not necessary. Thereby, the number of parts can be reduced and a low-cost power equipment can be provided.
  • the power device further includes a communication conversion circuit that converts a communication signal when connected to the external device.
  • the power device since the power device further includes the communication conversion circuit, it is not necessary to provide the communication conversion circuit in the cable connecting the connection portion and the connected portion. Thereby, a versatile cable can be used for communication between the power device and the external device.
  • a motor in another aspect of the present invention, a motor, a drive unit that transmits a driving force of the motor to a tip tool, a control unit that controls the motor, a first housing that houses the motor and the drive unit, A housing having a second housing that houses the control unit, a handle unit that connects the first housing and the second housing, a communication unit that is housed in the second housing and capable of wireless communication with an external device, Provides power equipment.
  • the communication unit is accommodated in the second housing, compared to the case where the communication unit is accommodated in the handle portion, the radio wave is not disturbed by the user's hand.
  • the power device can stably communicate with the external device.
  • the communication part is accommodated in the same 2nd housing as a control part, the wiring inside power equipment can be simplified.
  • control unit includes a control circuit board that controls the motor, and the communication unit is provided on the control circuit board.
  • the communication unit is provided on the control circuit board, wiring for connecting the communication unit and the control unit is not necessary, and wiring inside the power equipment can be simplified. Furthermore, since the distance between the communication unit and the control unit is reduced, it is less likely to be affected by noise from the power equipment.
  • a power device including a motor, a housing that houses the motor, and a drive unit that is housed in the housing and transmits a driving force of the motor to a tip tool, A power device capable of setting the total number of rotations of the tip tool after the motor is operated is provided.
  • the power device can be operated by control according to the user's request. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
  • connection unit connectable with an external device is further provided, and the total number of rotations can be set by the external device by being connected to the external device.
  • the external device can set the initial rotation speed as a ratio with respect to the maximum output of the motor.
  • the torque of the motor after the period set by the total number of rotations can be set.
  • an initial rotation speed that is a rotation speed of the motor in a period set by the total rotation speed can be set.
  • the power device can be operated by control according to the user's request. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
  • a power tool management system includes a power tool, a control circuit in the power tool that controls the power tool with a predetermined setting parameter, and the power tool that changes a setting value of the setting parameter from the outside of the power tool.
  • the setting parameter setting value can be changed when the operation is stopped, and the setting parameter setting value cannot be changed when the electric tool is operating.
  • a switch is provided in the electric tool, and the state of the electric tool is switched between a changeable state and a non-changeable state of the setting parameter by operating the switch, and the state of the electric tool is changeable.
  • the setting parameter can be changed when the power tool is in a state, and the setting parameter cannot be changed when the power tool is in the unchangeable state.
  • the power tool is provided with a notification unit, and when the communication is correctly performed between the power tool and the portable device and the setting parameter is correctly changed, the notification unit notifies the power tool.
  • the notification means may be a light that illuminates the tip of the power tool.
  • the communication unit of the power tool for performing the wireless communication can only receive and the communication unit of the portable device can only transmit.
  • the power tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and controls the motor in response to an operation of the trigger operation unit.
  • the rotation speed of the motor is adjusted according to the magnitude of the operation amount, the operation amount of the trigger operation unit and the rotation speed of the motor are defined by a predetermined relational expression, and the relational expression is the setting parameter,
  • the relational expression may be changed by changing the setting parameter.
  • the power tool has a housing, a motor mounted in the housing, and a maximum rotational speed that is an upper limit of a rotational speed that can be operated by the motor, and the motor is operated at the maximum rotational speed.
  • the control circuit is controlled so that the maximum rotation speed is the setting parameter, and the maximum rotation speed is changed by changing the setting parameter.
  • a changeover switch for setting the maximum number of rotations is provided, and the maximum number of rotations can be switched to a plurality of different values by operating the changeover switch.
  • the electric tool includes a housing, a motor mounted in the housing, a trigger operation unit, controls the motor in response to an operation of the trigger operation unit, and operates the motor. If the operation time after the trigger operation is performed and the operation of the motor is started reaches the automatic stop time, the motor is also operated even when the trigger operation is performed. It is preferable that the control circuit is controlled to stop the operation, the automatic stop time is the setting parameter, and the automatic stop time is changed by changing the setting parameter. In addition, it is preferable that a switch for setting the automatic stop time is provided, and the automatic stop time can be switched to a plurality of different values by operating the switch.
  • the power tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and controls the motor in response to an operation of the trigger operation unit.
  • the motor is controlled by the control circuit with the target current value, the target current value is the setting parameter, and the target current value is changed by changing the setting parameter.
  • a changeover switch for setting the target current value is provided, and the target current value can be switched to a plurality of different values by operating the changeover switch.
  • the power tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and controls the motor in response to an operation of the trigger operation unit.
  • the motor is controlled by the control circuit at the automatic stop angle, the automatic stop angle is the setting parameter, and the automatic stop angle is changed by changing the setting parameter.
  • a changeover switch for setting the automatic stop angle is provided, and the automatic stop angle can be switched to a plurality of different values by operating the changeover switch.
  • a power device and a power device system having a control mode in which parameters can be set can be provided. Furthermore, according to the present invention, it is possible to provide a power tool management system capable of significantly improving work efficiency by enabling an operator to set optimum setting parameters for various work of the power tool from the outside of the power tool. it can.
  • FIG. 1 is a schematic perspective view of an electronic pulse driver according to a first embodiment of the present invention.
  • the figure which the electronic pulse driver which concerns on the 1st Embodiment of this invention is connected with the external apparatus via the communication cable.
  • the flowchart of the application software preserve
  • the flowchart of the application software preserve
  • the window displayed on the display part of the external apparatus which concerns on the modification of the 1st Embodiment of this invention.
  • the window displayed on the smart phone which concerns on the modification of the 1st Embodiment of this invention.
  • the flowchart of the application software preserve
  • the figure which the electronic pulse driver which concerns on the 2nd Embodiment of this invention is connected with the external apparatus via the communication cable. Sectional drawing of the electronic pulse driver which concerns on the 3rd Embodiment of this invention.
  • the block diagram which shows the structure of the drive control system of the motor in the 4th Embodiment of this invention.
  • the graph which showed the relationship of the PWM duty ratio corresponding to the detection signal of the trigger operation amount (stroke) in the 4th Embodiment of this invention.
  • surface which shows the setting value of the automatic stop angle in the 4th Embodiment of this invention.
  • the electronic pulse driver 1 is mainly composed of a housing 2, a motor 3, a hammer part 4, an anvil part 5, an inverter circuit 6, and a control part 7. Yes.
  • the housing 2 is made of resin and forms an outer shell of the electronic pulse driver 1, and includes a substantially cylindrical body portion 21, a handle portion 22 extending from the body portion 21, and a substrate housing portion connected to the handle portion 22. 23 mainly.
  • the body portion 21 corresponds to the first housing of the present invention, and the substrate housing portion 23 corresponds to the second housing of the present invention.
  • the hammer part 4 and the anvil part 5 correspond to a drive part and an output part of the present invention.
  • the electronic pulse driver 1 is an example of a power device according to the present invention.
  • the motor 3 is arranged so that the longitudinal direction thereof coincides with the axial direction of the motor 3, and the hammer portion 4 and the anvil portion 5 are arranged side by side toward one end side in the axial direction of the motor 3.
  • the anvil portion 5 side is defined as the front side
  • the motor 3 side is defined as the rear side
  • a direction parallel to the axial direction of the motor 3 is defined as the front-rear direction.
  • the body part 21 side is defined as the upper side
  • the handle part 22 side is defined as the lower side
  • the direction in which the handle part 22 extends from the body part 21 is defined as the vertical direction.
  • a direction orthogonal to the front-rear direction and the up-down direction is defined as the left-right direction.
  • a metal hammer case 24 in which the hammer part 4 and the anvil part 5 are incorporated is disposed at the front side position in the body part 21.
  • the hammer case 24 has a substantially funnel shape in which the diameter gradually decreases toward the front, an opening 24a is formed at the front end portion, and a metal portion 24A is provided on the inner wall that defines the opening 24a. Yes.
  • the body portion 21 is formed with a plurality of intake ports 21a and exhaust ports 21b through which a later-described fan 32 sucks and discharges outside air into the body portion 21 (FIG. 1).
  • the motor 3 is cooled by the outside air.
  • An inverter circuit 6 is provided on the rear side of the motor 3.
  • the handle portion 22 extends downward from a substantially central position in the front-rear direction of the body portion 21 and is configured integrally with the body portion 21.
  • a trigger 25 is provided above the handle portion 22 and at the front side position.
  • a forward / reverse switching lever 28 for switching the rotation direction of the motor 3 is provided behind the trigger 25.
  • the substrate housing unit 23 is provided with a control unit 7 that controls the electronic pulse driver 1.
  • a battery 26 is detachably provided in the substrate housing part 23.
  • the battery 26 is attached / detached to / from the substrate housing portion 23 by attachment / detachment switches 23A provided on both side surfaces of the substrate housing portion 23 in the left-right direction.
  • a mode switching panel 27 that switches the control mode of the electronic pulse driver 1 is provided on the left side surface of the substrate housing portion 23.
  • the mode switching panel 27 is provided with a mode switching switch 27A that switches the control mode when pressed, and a mode display lamp 27B that lights a control mode that is set according to the pressing of the mode switching switch 27A.
  • four control modes A to D can be set.
  • the motor 3 is a brushless motor mainly composed of a rotor 3A having an output shaft portion 31 and a stator 3B arranged to face the rotor 3A. It arrange
  • the rotor 3A includes a permanent magnet 3C
  • the stator 3B includes a coil 3D that faces the permanent magnet 3C (FIG. 5).
  • the output shaft portion 31 protrudes forward and backward of the rotor 3A, and is rotatably supported on the body portion 21 by a bearing at the protruding portion.
  • a fan 32 that rotates coaxially and integrally with the output shaft portion 31 is provided at a location protruding to the front side of the output shaft portion 31. Further, a pinion gear 31A is connected to the output shaft portion 31 at the foremost end position of the location. It is provided so as to rotate coaxially.
  • the inverter circuit 6 includes an inverter circuit board 61, a plurality of switching elements 62 provided on the inverter circuit board 61 and protruding rearward, and a hall element 63 for detecting the position of the motor 3. Since the air inlet 21a is located in the vicinity of the switching element 62, the switching element 62 can be efficiently cooled.
  • the hammer section 4 is mainly composed of a gear mechanism 41 and a hammer 42 and is built in the front side of the motor 3 in the hammer case 24.
  • the gear mechanism 41 includes a planetary gear mechanism 41B having an outer gear 41A.
  • the outer gear 41 ⁇ / b> A is built in the hammer case 24 and is fixed to the body portion 21.
  • the planetary gear mechanism 41B is disposed in the outer gear 41A so as to mesh with the outer gear 41A, and uses the pinion gear 31A as a sun gear.
  • the hammer 42 is defined on the front surface of the planet carrier of the planetary gear mechanism 41B, protrudes toward the front side, and is disposed at a position shifted from the rotation center of the planetary gear mechanism 41B planet carrier.
  • the planetary gear mechanism 41B has a first engagement protrusion 42A and a second engagement protrusion (not shown) located at the counter electrode across the rotation center of the planet carrier.
  • the anvil portion 5 is disposed in front of the hammer portion 4 and mainly includes a tip tool mounting portion 51 and an anvil 52.
  • the tip tool mounting portion 51 is formed in a cylindrical shape and is rotatably supported in the opening 24a of the hammer case 24 via a metal portion 24A.
  • the tip tool mounting portion 51 is provided with a perforation 51a into which the tip tool 53 is inserted in the front-rear direction, and a chuck 51A for detachably holding the tip tool 53 is provided at the front end portion.
  • the anvil 52 is configured to be integrated with the tip tool mounting portion 51 in the hammer case 24 at the rear of the tip tool mounting portion 51, and is disposed opposite to the rotation center of the tip tool mounting portion 51. It has the 1st to-be-engaged protrusion 52A and the 2nd to-be-engaged protrusion 52B which protruded toward.
  • the first engagement protrusion 42A and the first engagement protrusion 52A collide with each other, and at the same time, the second engagement protrusion (not shown) and the second engagement protrusion 52B collide, The rotational force of the hammer 42 is transmitted to the anvil 52.
  • the control unit 7 mainly includes a control circuit board 71, a microcomputer 83 provided on the upper surface of the control circuit board 71, and a connection part 72 provided on the lower surface of the control circuit board 71.
  • the connecting portion 72 is provided so as to protrude downward from the lower surface of the control circuit board 71, and can connect the communication cable 8 (FIG. 6).
  • the connection portion 72 includes a lid 73 and a connection terminal 74, and the connection terminal 74 is configured to be openable and closable by the lid 73.
  • the connection terminal 74 is configured to be openable and closable by the lid 73.
  • the connection terminal 74 is configured to be openable and closable by the lid 73.
  • the communication cable 8 can be connected to the connection terminal 74 by opening the lid 73 as shown in FIG. 4.
  • the connection unit 72 corresponds to the communication unit of the present invention.
  • the inverter circuit 6 is composed of six switching elements 62-1 to 62-6 such as FETs connected in a three-phase bridge format.
  • the control unit 7 is connected to the battery 26 and connected to the trigger 25, the inverter circuit 6, the mode changeover switch 27A, the mode display lamp 27B, the forward / reverse changeover lever 28, and the connection terminal 74.
  • the control unit 7 also includes a current detection circuit 75, a switch operation detection circuit 76, an applied voltage setting circuit 77, a rotation direction setting circuit 78, a mode setting circuit 79, a rotor position detection circuit 80, and a rotation speed.
  • a detection circuit 81 and an LED lighting circuit 82 are provided.
  • the microcomputer 83 includes a program storage unit 83A that stores a control mode for controlling the electronic pulse driver 1 and various parameters.
  • the program storage unit 83A corresponds to the storage unit of the present invention.
  • the hall element 63 is provided at a position facing the permanent magnet 3C of the rotor 3A, and is arranged at predetermined intervals (for example, every angle of 60 °) in the circumferential direction of the rotor 3A.
  • the motor 3 is a three-phase brushless DC motor
  • the rotor 3A has a permanent magnet 3C including a plurality of sets (two sets in the present embodiment) N poles and S poles, and a coil 3D.
  • N poles and S poles are star-connected three-phase stator windings U, V, and W.
  • the gates of the switching elements 62-1 to 62-6 of the inverter circuit 6 are connected to the control signal output circuit 84, and the drains or sources of the switching elements 62-1 to 62-6 are the stator windings of the stator 3B. Connected to U, V, W.
  • the six switching elements 62-1 to 62-6 perform a switching operation by a switching element drive signal input from the microcomputer 83 via the control signal output circuit 84, and are applied to the inverter circuit 6 by the DC voltage of the battery 26. Is supplied to the stator windings U, V, and W as three-phase (U-phase, V-phase, and W-phase) voltages Vu, Vv, and Vw.
  • stator windings U, V energized by the output switching signals H1, H2, H3 input from the control signal output circuit 84 to the positive power supply side switching elements 62-1, 62-2, 62-3.
  • W that is, the rotation direction of the rotor 3A is controlled.
  • stator windings U, V are obtained by pulse width modulation signals (PWM signals) H4, H5, H6 inputted from the control signal output circuit 84 to the negative power supply side switching elements 62-4, 62-5, 62-6.
  • PWM signals pulse width modulation signals
  • the current detection circuit 75 detects the current value supplied to the motor 3 by the resistor 75A and outputs it to the microcomputer 83.
  • the switch operation detection circuit 76 detects the presence or absence of the operation of the trigger 25 and outputs it to the microcomputer 83.
  • the applied voltage setting circuit 77 outputs a signal corresponding to the operation amount of the trigger 25 to the microcomputer 83.
  • the rotation direction setting circuit 78 detects the switching of the forward / reverse switching lever 28, the rotation direction setting circuit 78 transmits a signal for switching the rotation direction of the motor 3 to the microcomputer 83.
  • the mode setting circuit 79 outputs the control mode set by the mode changeover switch 27A to the microcomputer 83.
  • the microcomputer 83 controls the electronic pulse driver 1 based on the control mode input from the mode setting circuit 79.
  • the rotor position detection circuit 80 detects the rotational position of the rotor 3A based on the signal from the hall element 63 and outputs it to the microcomputer 83.
  • the rotation speed detection circuit 81 detects the rotation speed of the rotor 3 ⁇ / b> A based on a signal from the rotor position detection circuit 80 and outputs the rotation speed to the microcomputer 83.
  • the microcomputer 83 includes a central processing unit (CPU) for outputting a drive signal based on a processing program and data, a RAM for temporarily storing data, and a timer.
  • the microcomputer 83 outputs the output switching signals H1, H2, and H3 based on the signals from the rotation direction setting circuit 78 and the rotor position detection circuit 80, and the pulse width modulation signal (PWM signal) based on the signal from the applied voltage setting circuit 77.
  • H4, H5, and H6 are generated and output to the control signal output circuit 84.
  • the PWM signal may be output to the positive power supply side switching elements 62-1 to 62-3, and the output switching signal may be output to the negative power supply side switching elements 62-4 to 62-6.
  • the program storage unit (hereinafter referred to as ROM) 83A stores at least four control modes (control programs) for controlling the motor 3. Then, four control modes among at least four control modes stored in the ROM 83A are stored in the RAM as selectable control modes. The control mode selected from the four control modes by the mode switch 27A is displayed on the mode display lamp 27B as the currently selected control mode. The CPU reads out a control mode corresponding to the selected control mode from the ROM 83A and controls the motor 3.
  • the communication cable 8 includes a terminal box 85 provided at one end of the communication cable 8 and connectable to the connection terminal 74, a communication conversion circuit 86 housed in the terminal box 85, and the communication cable 8.
  • An external device connection portion 87 provided at the end and connectable to the external device 9 is provided.
  • the communication conversion circuit 86 is a circuit for converting the communication signal output from the electronic pulse driver 1 into a signal that can be read by the external device 9.
  • the external device connection unit 87 is, for example, a USB (Universal Serial Bus) or a serial cable.
  • the external device 9 includes a display unit 91, an input unit 92, and a connected unit 93 that can be connected to the external device connection unit 87.
  • the external device 9 is a PC (personal computer), for example, and includes a CPU, a ROM, a RAM, and the like (not shown).
  • the external device 9 can communicate with the electronic pulse driver 1 by connecting to the electronic pulse driver 1 via the communication cable 8.
  • the battery 26 is in a removed state, but power is supplied to the electronic pulse driver 1 from the external device 9 via the communication cable 8. Therefore, the mode display lamp 27B of the mode switching panel 27 is in a state where the currently selected control mode is lit.
  • application software for setting the control mode of the electronic pulse driver 1 is stored in the ROM, and when the software is started, a window 94 shown in FIG. 7 is displayed.
  • the window 94 includes a button area 95, a clutch mode parameter setting area 96, a clutch mode graph display area 97, a normal hit parameter setting area 98, a corrected hit parameter setting area 99, and a pulse mode graph display area 100. I have. On the upper right of the window 94, an end button 94A is provided.
  • the clutch mode graph display area 97 and the pulse mode graph display area 100 correspond to the graph display section of the present invention.
  • the CPU and window 94 of the external device 9 correspond to the setting unit of the present invention.
  • the control mode of this embodiment is mainly classified into a drill mode, a clutch mode, and a pulse mode.
  • the drill mode is a mode in which the hammer 42 and the anvil 52 are integrally rotated, and is mainly used when a wood screw is fastened.
  • the current flowing through the motor 3 increases as the fastening proceeds.
  • the clutch mode is a mode in which the tip tool 53 is rotated with a preset torque after the tip tool 53 has rotated a predetermined number of revolutions while the hammer 42 and the anvil 52 are integrally rotated. It is used when attaching importance to accurate torque, such as when fastening fasteners that appear on the exterior after fastening.
  • each parameter of the clutch mode and the pulse mode can be set.
  • a communication button 95A In the button area 95, a communication button 95A, a read button 95B, a set value read button 95C, a save button 95D, and a set send button 95E are provided.
  • the communication button 95 ⁇ / b> A is displayed as “communication” immediately after the software is started, and when pressed, the external device 9 starts communication with the electronic pulse driver 1.
  • “disconnect” is displayed, and when pressed, the external device 9 interrupts communication with the electronic pulse driver 1.
  • the read button 95B is a button for reading various parameters stored in the ROM of the external device 9.
  • the set value reading button 95 ⁇ / b> C is a button for reading various parameters stored in the electronic pulse driver 1.
  • the set value reading button 95C is pressed, parameters stored in the electronic pulse driver 1 are displayed in an area 96-100. Specifically, the parameter of the control mode selected by the mode display lamp 27B is displayed on the window 94.
  • the save button 95D is a button for saving each parameter of the areas 96, 98, and 99 in the ROM of the external device 9.
  • the setting transmission button 95E is a button for transmitting each parameter of the regions 96, 98, and 99 to the electronic pulse driver 1. When the setting transmission button 95E is pressed, each parameter of the control mode selected by the mode display lamp 27B is updated to the parameter displayed in the window 94.
  • torque, initial rotation speed, and initial rotation speed can be set as parameters.
  • a selection button 96A at the top of the clutch mode parameter setting area 96 the clutch mode can be selected as the control mode.
  • the torque indicates the output torque of the motor 3 after the rotation speed set by the initial rotation speed has elapsed, and can be set at a ratio when the maximum output of the motor 3 is 100%.
  • the torque can be set by operating the torque setting slide bar 96B or by inputting a numerical value to the torque input unit 96C through the input unit 92.
  • the initial rotational speed is the total rotational speed at which the tip tool 53 has rotated since the user pulled the trigger 25.
  • the initial rotation speed is a value indicating how many times the tip tool 53 has rotated since the electronic pulse driver 1 was operated.
  • the microcomputer 83 calculates the rotational speed of the tip tool 53 in response to a signal from the rotational speed detection circuit 81.
  • the initial rotational speed can be set by operating the initial rotational speed setting slide bar 96D or by inputting a numerical value into the initial rotational speed input unit 96E.
  • the initial rotation speed is the rotation speed of the motor 3 during the period set by the initial rotation speed, and can be set at a ratio when the maximum rotation speed of the motor 3 is 100%.
  • the initial rotation speed can be set by operating the initial rotation speed setting slide bar 96F or by inputting a numerical value to the initial rotation speed input unit 96G.
  • the clutch mode graph display area 97 displays a surface graph of the rotation speed of the motor 3 on the vertical axis and the number of rotations of the tip tool 53 on the horizontal axis.
  • the torque is set to 52%
  • the initial rotational speed is 24 times
  • the initial rotational speed is set to 75%. This means that the motor 3 rotates at a speed of 75% until the tip tool 53 rotates 24 times, and thereafter rotates at a torque of 52%.
  • the speed of the motor 3 decreases with the number of rotations being 24.
  • the tip tool 53 When performing a general screw tightening operation, the tip tool 53 is rotated at a high speed until the screw is seated to shorten the screw tightening time, and is tightened with a desired torque after the seat is seated.
  • the initial rotational speed can be set, the rotational speed and torque of the motor 3 can be changed before and after the screw is seated by setting the initial rotational speed in accordance with the number of screws. it can. As a result, it is possible to shorten the screw tightening operation time and improve the work efficiency.
  • the pulse mode includes normal hitting and corrected hitting, and the torque, the number of hits, and the hitting cycle can be set as parameters in normal hitting and corrected hitting, respectively.
  • the pulse mode it is possible to set whether or not to use the correction hit, and it is possible to perform only the normal hit operation.
  • the selection button 98A at the top of the normal hitting parameter setting area 98, the pulse mode can be selected as the control mode.
  • the torque is the torque of the motor 3 when the hammer 42 strikes the anvil 52 when the motor 3 alternately switches between forward rotation and reverse rotation, and is set at a ratio when the maximum output of the motor 3 is 100%. be able to.
  • the torque can be set by operating the torque setting slide bar 98B or by inputting a numerical value to the torque input unit 98C.
  • the number of hits is the number of times the hammer 42 hits the anvil 52.
  • the microcomputer 83 detects an impact based on the current value from the current detection circuit 75.
  • the motor 3 automatically stops.
  • the number of strokes can be set by operating the stroke number setting slide bar 98D or by inputting a numerical value to the stroke number input unit 98E.
  • the striking cycle is a cycle in which the hammer 42 strikes the anvil 52.
  • the striking cycle is a parameter related to the feeling of the electronic pulse driver 1 during the fastening operation, and can be set at a ratio when the shortest cycle when the hammer 42 strikes the anvil 52 is 100%.
  • the maximum cycle is determined by the characteristics of the motor 3, the structure of the hammer 42 and the anvil 52, and the like.
  • the striking cycle can be set by operating the striking cycle setting slide bar 98F or by inputting a numerical value to the striking cycle input unit 98G.
  • the correction hitting can be performed by selecting the selection button 99A at the top.
  • the correction batting is a batting performed after the hammer 42 bakes the anvil 52 by the batting number set in the batting number input unit 98E.
  • the correction hitting By performing the correction hit, loosening of the screw after the normal hit with respect to the processed member can be prevented, and the screw can be tightened at a value closer to the torque set by the torque input portion 98C.
  • the hitting operation is generally performed a plurality of times with a smaller torque than in the normal hitting.
  • the correction hitting torque can be set by operating the torque setting slide bar 99B or by inputting a numerical value to the torque input unit 99C.
  • the number of hits for correction batting can be set by operating the batting number setting slide bar 99D or by inputting a numerical value into the batting number input unit 99E.
  • the hitting period of the corrected hitting can be set by operating the hitting period setting slide bar 99F or by inputting a numerical value into the hitting period input unit 99G.
  • a vertical axis represents a striking cycle and a horizontal axis represents a scatter diagram of torque of the motor 3.
  • a region A surrounded by a solid line is a parameter setting range determined by the shape of the motor 3, the hammer 42, the shape of the anvil 52, and the like.
  • One of the points in the area A indicates a normal hit, and the other indicates a corrected hit.
  • FIG. 8 shows a flowchart after starting the application software installed in the external device 9.
  • the application software When the application software is activated, first, it enters an input standby state (S1). Next, it is determined whether or not the end button 94A is pressed (S2). If the end button 94A is pressed (S2: YES), the application ends. If the end button 94A is not pressed (S2: NO), it is determined whether or not the communication button 95A is pressed (S3).
  • the process returns to the input standby state (S1).
  • the communication button 95A is pressed (S3: YES)
  • the electronic pulse driver 1 is not connected to the external device 9 (S4: NO)
  • connection processing between the electronic pulse driver 1 and the external device 9 is performed.
  • the display of the communication button 95A changes from “communication” to “disconnect”, and again enters an input standby state (S6).
  • each parameter displayed in the areas 96, 98, 99 at this time is saved in the ROM of the external device 9 (S10). Thereafter, the process returns to S6 again to enter the input standby state.
  • S9: NO it is determined whether or not the set value reading button 95C has been pressed (S11).
  • S11: YES the mode setting circuit 79 reads the parameters of the mode currently set in the electronic pulse driver 1 among the four modes stored in the ROM 83A of the electronic pulse driver 1 (S11: YES). S12). Then, each parameter read from the electronic pulse driver 1 is reflected in the area 96-100 (S13). Thereafter, the process returns to S6 again to enter the input standby state. If the set value reading button 95C has not been pressed (S11: NO), it is determined whether or not the read button 95B has been pressed (S14).
  • each parameter of the regions 96, 98, 99 is reflected in the graphs of the graph display regions 97, 100 as shown in FIG.
  • the input standby state it is determined whether or not the slide bars 96B, 96D, 96F, 98B, 98D, 98F, 99B, 99D, 99F have been operated (S21).
  • S21: YES the numerical value of the input unit is changed according to the position of the slide bar (S22). Based on the changed numerical values, the graphs displayed in the graph display areas 97 and 100 are changed (S23). Thereafter, the input standby state is entered again. If it is not operated (S21: NO), it is determined whether or not a numerical value is input to the input units 96C, 96E, 96G, 98C, 98E, 98G, 99C, 99E, 99G (S24).
  • the parameters constituting the control mode can be set by accessing the control unit 7 from the external device 9, the user himself / herself can set various parameters according to the work content. It is possible to easily create a specific control mode suitable for work.
  • the external device 9 can set a plurality of parameters, even when only one parameter is changed, even when the optimal control mode cannot be realized, the combination of the plurality of parameters can be changed. An optimal control mode can be realized.
  • the operation of the electronic pulse driver 1 can be set in more detail, and the fastening operation is performed under optimum conditions. be able to.
  • work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
  • the screw is processed by performing the correction hit after performing the normal hit. It can be stably fastened with the member. Thereby, a screw can be fastened with the target torque.
  • the hitting period, the number of hits, and the torque can be set, so that the electronic pulse driver 1 can be operated by control according to the user's request.
  • work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
  • the control before and after the seating of the screw can be changed by setting the number of screw strips as the total number of rotations.
  • work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
  • the electronic pulse driver 1 since the rotation speed of the motor 3 during the period set by the total number of rotations can be set, the electronic pulse driver 1 can be operated by control according to the user's request. Thereby, the workability
  • the external device 9 since the external device 9 includes the clutch mode graph display area 97 and the pulse mode graph display area 100, the user can visually recognize the control mode. This makes it easier to imagine the operation of the electronic pulse driver 1 when setting parameters.
  • the torque, the initial rotation speed, and the striking cycle are set in proportion to the maximum capacity of the brushless motor, so that no device or the like for measuring the output torque or the like is required. Thereby, the number of parts can be reduced and the low-cost electronic pulse driver 1 can be provided.
  • the parameter of the control mode can be set by the external device 9, it is not necessary to provide a circuit and a device for setting the parameter in the electronic pulse driver 1 main body. Thereby, the number of parts of the electronic pulse driver 1 can be reduced, and the low-cost electronic pulse driver 1 can be provided.
  • a tab area 195 is provided below the button area 95.
  • the tab area 195 has a drill mode tab 195A, a clutch mode tab 195B, and a pulse mode tab 195C.
  • three tabs are provided, but four or more tabs may be provided.
  • a plurality of pulse modes such as a first pulse mode and a second pulse mode may be provided even in the pulse mode.
  • FIG. 10 shows a state where the drill mode tab 195A is pressed. At this time, a parameter setting area 196 and a graph display area 197 are displayed in the window 194.
  • torque and rotation speed can be set as parameters.
  • the torque can be set by operating the torque setting slide bar 196A or by inputting a numerical value to the torque input unit 196B.
  • the rotation speed can be set by operating the rotation speed setting slide bar 196C or by inputting a numerical value to the rotation speed input unit 196D.
  • the graph display area 197 displays the parameters input to the parameter setting area 196 as a graph.
  • a surface graph in which the vertical axis represents torque and the horizontal axis represents the rotational speed is displayed.
  • FIG. 11 shows a window 294 in which the application software according to the modification of the present embodiment is activated on the smartphone.
  • the window 294 includes a communication button 95A, an end button 94A, a tab area 195, a parameter setting area 196, a button display button 295, and a graph display button 296.
  • a new window including a read button 95B, a set value read button 95C, a save button 95D, and a setting send button 95E is displayed.
  • the graph display button 296 is pressed, a new window with a graph is displayed.
  • FIG. 12 shows a flowchart of application software in the modification.
  • the input standby state of S6 in FIG. 8 is entered, it is determined which tab in the tab area 195 has been pressed. Specifically, it is determined whether or not the clutch mode tab 195B has been pressed (S121).
  • S121 When the button is pressed (S121: YES), a clutch mode setting screen is displayed in the window 194 (S122).
  • the clutch mode parameter setting area 96 of the first embodiment is displayed in the parameter setting area 196, and the clutch mode graph display area 97 is displayed in the graph display area 197. Thereafter, the process proceeds to S21.
  • the tab in the tab area 195 is automatically switched to the control mode currently selected by the electronic pulse driver 1. For example, when the drill mode is selected by the electronic pulse driver 1, the screen automatically switches to a screen as shown in FIG. 10 when the set value is read.
  • the control circuit board 71 of the electronic pulse driver 201 includes a communication conversion circuit 285. As shown in FIG. 14, the communication conversion circuit 285 is connected to the microcomputer 83 and the connection terminal 74.
  • the communication conversion circuit 285 is a circuit for converting a signal from the external device 9 into a signal readable by the microcomputer 83 and converting a signal from the microcomputer 83 into a signal readable by the external device 9, for example, An AD conversion circuit or the like is used.
  • both are connected using a communication cable 208 that does not include the communication conversion circuit 86 of the first embodiment.
  • the electronic pulse driver 201 since the electronic pulse driver 201 further includes the communication conversion circuit 86, it is not necessary to provide a signal conversion circuit in the cable connecting the connection portion and the connected portion. Thereby, the communication cable 208 which has versatility can be used for communication between the electronic pulse driver 201 and the external device 9.
  • the control circuit board 71 of the electronic pulse driver 301 includes a wireless module 385.
  • the wireless module 385 is accommodated in the substrate accommodating portion 23.
  • the electronic pulse driver 301 can wirelessly communicate with the external device 9 via the wireless module 385.
  • As the wireless communication for example, Bluetooth (registered trademark), wireless LAN, Zigbee (registered trademark), or the like is employed.
  • the wireless module 385 is connected to the microcomputer 83. Thereby, the electronic pulse driver 1 can communicate with a PC or tablet device on which a wireless communication device is mounted.
  • the wireless module 385 corresponds to the communication unit of the present invention.
  • the wireless module 385 is accommodated in the substrate accommodating portion 23, compared with the case where it is accommodated in the handle portion 22, the radio wave is not disturbed by the user's hand. Thereby, the electronic pulse driver 301 can communicate with the external device 9 stably. Further, since the wireless module 385 is accommodated in the same substrate accommodating portion 23 as the control portion 7, the wiring inside the electronic pulse driver 301 can be simplified.
  • FIG. 19 shows an overall configuration of the electric power tool management system (power equipment system) according to the embodiment of the present invention, which is an example of a power equipment that works by driving various tip tools with a built-in motor. 401 and a mobile device 459 which is a separate accessory device.
  • the internal configuration of the electric power tool 401 is shown as a side sectional view.
  • the electric tool 401 is, for example, an impact driver that operates by connecting the AC cord 409 to an AC power source such as a commercial power source.
  • the mechanical configuration for rotationally driving the tip tool in the impact driver may be known, but an example will be described below.
  • the electric power tool 401 uses an AC power source such as a commercial power source as a power source, drives a rotary impact mechanism 421 using a motor 403 mounted on the housing 402 as a drive source, and applies a rotational force and an impact force to the anvil 430 that is an output shaft.
  • the rotary impact force is intermittently transmitted to a tip tool (not shown) such as a driver bit held in the mounting hole 430a covered with the sleeve 431 to perform operations such as screw tightening and bolt tightening.
  • a brushless motor (for example, 4 poles, 6 coils, 2 poles, 3 coils, etc.) 403 is housed in a cylindrical body 402a of a housing 402 having a substantially T-shape when viewed from the side.
  • the rotation shaft 403e of the motor 403 is rotatably held by a bearing 419a (bearing member) and a rear end side bearing 419b (bearing member) provided near the center of the body portion 402a of the housing 402.
  • a rotor 403a having a rotor magnet 403d is integrated with the rotary shaft 403e.
  • a stator core 403b around which a stator coil 403c is wound is fixed via an insulator 415 inside the body portion 402a.
  • a rotor fan 413 that is coaxially mounted with the rotation shaft 403e and rotates in synchronization with the motor 403 is provided.
  • An inverter circuit board 404 for driving the motor 403 is disposed behind the motor 403.
  • the air flow generated by the rotor fan 413 is generated from an air intake hole 417 formed on the rear side of the body portion 402 a of the housing 402 and an air intake port (not shown) formed in a housing portion around the inverter circuit board 404. Is taken into the portion 402a and flows mainly between the rotor 403a and the stator core 403b, and further sucked from the rear of the rotor fan 413 and flows in the radial direction of the rotor fan 413.
  • the housing around the rotor fan 413 The air is discharged to the outside of the housing 402 through an air discharge port (not shown) formed in the portion.
  • the inverter circuit board 404 is an annular multilayer board having substantially the same diameter as the outer shape of the motor 403.
  • a plurality of switching elements 405 such as FETs (Field-Effect-Transistors) and positions of Hall ICs are arranged.
  • a detection element and other electronic elements are mounted.
  • a plastic spacer 435 is provided between the rotor 403a and the bearing 419b.
  • the spacer 435 has a substantially cylindrical shape and is arranged to keep a constant distance between the bearing 419b and the rotor 403a.
  • a trigger switch 406 having a trigger 406a is disposed in an upper portion of a handle portion 402b that integrally extends from the body portion 402a of the housing 402 at a substantially right angle, and a switch substrate 407 is provided below the trigger switch 406.
  • a control circuit board 408 having a function of controlling the speed of the motor 403 by the pulling operation of the trigger 406a is accommodated in the lower part in the handle portion 402b.
  • the control circuit board 408 is connected to an AC power source (AC code 409). It is electrically connected to the trigger switch 406.
  • the trigger switch 406 is connected to the inverter circuit board 404 via the signal line 411, and the control circuit board 408 is connected to the inverter circuit board 404 via the signal line 412.
  • the rotary striking mechanism 421 includes a planetary gear reduction mechanism 422, a spindle 427, and a hammer 424, and the rear end is held by a bearing 420 and the front end is held by a metal bearing 429.
  • the motor 403 starts to rotate in the direction set by the forward / reverse switching lever 410, and the rotational force is decelerated by the planetary gear reduction mechanism 422 and transmitted to the spindle 427.
  • the spindle 427 is driven to rotate at a predetermined speed.
  • the spindle 427 and the hammer 424 are connected by a cam mechanism, and this cam mechanism is formed on the V-shaped spindle cam groove 425 formed on the outer peripheral surface of the spindle 427 and the inner peripheral surface of the hammer 424.
  • a hammer cam groove 428 and balls 426 engaged with the cam grooves 425 and 428 are formed.
  • the hammer 424 is always urged forward by a spring 423, and when stationary, the ball 426 and the cam grooves 425 and 428 are engaged with each other so as to be spaced from the end face of the anvil 430.
  • the convex part which is not illustrated is symmetrically formed in two places on the rotation plane which the hammer 424 and the anvil 430 mutually oppose.
  • the hammer 424 When the protrusion of the hammer 424 moves over the protrusion of the anvil 430 due to the backward movement of the hammer 424 and the engagement between the two is released, the hammer 424 is accumulated in the spring 423 in addition to the rotational force of the spindle 427. While being accelerated rapidly in the rotational direction and forward by the action of the elastic energy and the cam mechanism, it is moved forward by the biasing force of the spring 423, and the convex portion is reengaged with the convex portion of the anvil 430 to rotate integrally. start.
  • the rotational impact force is transmitted to the screw via a tip tool (not shown) attached to the mounting hole 430a of the anvil 430. Thereafter, the same operation is repeated, and the rotational impact force is intermittently and repeatedly transmitted from the tip tool to the screw.
  • the screw is screwed into a processing member (not shown) such as wood.
  • the light 451 illuminates the tip side of the tip tool and the processing member.
  • the communication unit 458 is provided in the housing 402.
  • the communication unit 458 performs wireless communication with an external portable device 459 and can change the setting parameters of the power tool 401 from the outside.
  • Wireless communication between the communication unit 458 and the portable device 459 is performed by, for example, an infrared communication method.
  • the communication unit 458 includes only a wireless communication receiving circuit and can receive only
  • the portable device 459 includes only a wireless communication transmitting circuit and can perform only transmission.
  • a normal communication circuit is equipped with a transmission / reception circuit capable of transmission and reception, but the circuit volume is increased as compared with a reception circuit only for reception. Since the electric tool 401 is held in the hand, downsizing is desired.
  • the circuit volume can be reduced, and the electric tool can be reduced in size. Can do.
  • the light 451 is blinked to notify the operator that the communication is correctly performed.
  • the external portable device 459 may be a mobile phone, a portable personal computer, or the like.
  • FIG. 20 is a plan view of an external portable device 459.
  • the portable device 459 is provided with a display unit 591 such as a liquid crystal screen for displaying the current setting value, and operation buttons 592 (four in the illustrated example) as changeover switches for changing the setting value.
  • the display unit 591 displays the current set value. For example, the set value of the maximum rotation speed, which will be described later, the current set value of the automatic stop time, and the like are displayed.
  • the current set value displayed on the display unit 591 can be changed by operating the operation button 592.
  • the infrared transmission unit 593 is provided in the portable device 459 so as to face the communication unit 458 of the electric tool, thereby transmitting infrared rays from the infrared transmission unit 593 and performing wireless communication with the communication unit 458 of the electric tool.
  • FIG. 21 is a block diagram showing the configuration of the drive control system of the motor 403 in the electric tool 401 shown in FIG.
  • a supply voltage from an AC power supply 439 such as a commercial power supply is converted into, for example, a full-wave rectified wave by a rectifier circuit 440 and supplied to an inverter circuit 447 as a motor drive circuit without a smoothing capacitor.
  • the motor 403 is, for example, a three-phase brushless motor.
  • the motor 403 is a so-called inner rotor type, and includes a rotor 403a, a stator, and three position detection elements 442.
  • the rotor 403a includes a rotor magnet 403d including a plurality of sets (two sets in the present embodiment) of N poles and S poles.
  • the stator includes a stator coil 403c and a stator core 403b composed of three-phase stator windings U, V, and W that are star-connected.
  • the three position detection elements 442 are arranged at predetermined intervals in the circumferential direction, for example, at an angle of 60 °, in order to detect the rotational position of the rotor 403a. Based on the rotational position detection signals from these position detection elements 442, the energization direction and time for the stator windings U, V, W are controlled, and the motor 403 rotates.
  • the position detection element 442 is provided on the inverter circuit board 404 at a position facing the rotor 403a. The signal output from the position detection element 442 is applied to the rotor position detection circuit 443.
  • the electronic elements mounted on the inverter circuit board 404 include six switching elements Q1 to Q6 such as FETs connected in a three-phase bridge format.
  • the control circuit mounted on the control circuit board 408 includes at least a calculation unit 441 and a control signal output circuit 446.
  • the gates of the six switching elements Q1 to Q6 that are bridge-connected in the inverter circuit 447 are connected to the control signal output circuit 446, and the drains or the sources of the six switching elements Q1 to Q6 are star-connected. Connected to the stator windings U, V, W.
  • the six switching elements Q1 to Q6 perform the switching operation by the switching element drive signals (H1 to H6) input from the control signal output circuit 446, and the voltage (full-wave rectified wave) applied to the inverter circuit 447 ) As three-phase (U-phase, V-phase and W-phase) voltages Vu, Vv and Vw, and power is supplied to the stator windings U, V and W.
  • the switching element driving signals for driving the gates of the low-side switching elements Q4, Q5, Q6 are pulse width modulation signals (PWM signals) H4, H5, H6.
  • PWM signals pulse width modulation signals
  • the power supply amount to the motor 403 is adjusted by the calculation unit 441 by changing the pulse width (duty ratio) of the PWM signal based on the detection signal of the trigger operation amount (stroke) of the trigger switch 406. It is possible to control the start / stop and rotation speed.
  • the relationship between the PWM duty ratios corresponding to the trigger operation amount (stroke) detection signal is a one-to-one relationship, and is represented by one relational expression.
  • the PWM signal may be supplied to any one of the high side switching elements Q1 to Q3 or the low side switching elements Q4 to Q6 of the inverter circuit 447, and the switching elements Q1 to Q3 or the switching elements Q4 to Q6 are switched at high speed.
  • the power supplied to each stator winding U, V, W can be controlled.
  • the PWM signal is supplied to the low-side switching elements Q4 to Q6, the power supplied to each of the stator windings U, V, and W is adjusted by controlling the pulse width of the PWM signal.
  • the rotational speed of the motor 403 can be controlled.
  • the electric tool 401 is provided with a forward / reverse switching lever 410 for switching the rotational direction of the motor 403, and the rotational direction setting circuit 450 switches the rotational direction of the motor each time a change in the forward / reverse switching lever 410 is detected.
  • the control signal is transmitted to the calculation unit 441.
  • the calculation unit 441 is, for example, a microcomputer, which is not shown, but a central processing unit (CPU) for outputting a drive signal based on the processing program and data, a ROM for storing the processing program and control data, It includes a RAM for temporarily storing data, a timer, and the like.
  • the control signal output circuit 446 generates a drive signal for alternately switching predetermined switching elements Q1 to Q6 based on the output signals of the rotation direction setting circuit 450 and the rotor position detection circuit 443 according to the control of the arithmetic unit 441. To do. As a result, the predetermined windings of the stator windings U, V, and W are alternately energized to rotate the rotor in the set rotation direction. In this case, the drive signal applied to the low-side switching elements Q4 to Q6 is output as a PWM modulation signal based on the output control signal of the applied voltage setting circuit 449.
  • the current value supplied to the motor 403 (current value flowing through the resistor Rs) is measured by the current detection circuit 448, and the voltage value supplied to the motor 403 is measured by the voltage detection circuit 452.
  • the measured current value and voltage value are fed back to the calculation unit 441 so that the drive power supplied to the motor 403 is adjusted to the set drive power.
  • the PWM signal may be applied to the high side switching elements Q1 to Q3.
  • the three position detection elements 442 are arranged at predetermined angles in the circumferential direction in order to detect the rotational position of the rotor 403a. Therefore, the signal change of the position detection elements changes in time interval depending on the motor rotation speed. Then, the rotation speed detection circuit 1411 inside the calculation unit 441 detects the motor rotation speed by detecting the time interval of the signal change. Similarly, the rotation angle detection circuit 1412 detects the rotation angle of the anvil 430 (tip tool) based on the signal change of the position detection element 442.
  • the operation time detection circuit 1413 measures the energization time to the motor 403 using a timer inside the calculation unit 441.
  • the motor 403 starts to be started, and the operation time detection circuit 1413 starts measuring the operation time simultaneously with the start of the motor start.
  • the calculation unit 441 stops the motor 403 even if the trigger switch 406 is operated.
  • the automatic stop time setting circuit 1414 sets an automatic stop time based on an input signal from the operation unit 453 (described later in FIG. 24).
  • the automatic stop time has a plurality of different values, and the automatic stop time is switched every time an input signal is input from the operation unit 453.
  • FIG. 22 shows the set value of the automatic stop time in the present embodiment.
  • the automatic stop time can be set by selecting any of the setting modes A to D by operating the operation unit 453.
  • the operation unit 453 on the power tool side cannot switch between FIGS. 22A and 22B (the switching between FIGS. 22A and 22B is performed by the portable device 459 as described later).
  • the maximum rotation number setting circuit 1415 sets the maximum rotation number of the motor 403 based on the input signal from the operation unit 453.
  • the maximum rotation speed has a plurality of different values, and the maximum rotation speed is switched each time an input signal is input from the operation unit 453.
  • FIG. 23 shows the set value of the maximum rotational speed in the present embodiment.
  • the maximum number of rotations is a set value of the upper limit of the number of rotations that can be rotated by the motor 403, and the calculation unit 441 controls the motor number of rotations by changing the PWM duty ratio so as to be equal to or less than the set maximum number of rotations.
  • the maximum rotation speed can be set by selecting one of the setting modes A to D by operating the operation unit 453.
  • the operation unit 453 on the power tool side cannot switch between FIGS. 23A and 23B (the switching between FIGS. 23A and 23B is performed by the portable device 459 as described later).
  • the communication circuit 1416 receives the infrared transmission signal transmitted from the portable device 459, and reflects the value of the setting parameter in the setting value of the maximum rotation speed and the setting value of the automatic stop time.
  • FIG. 22A shows an example of the set value of the automatic stop time, but it can be changed to the set value shown in FIG. 22B, for example, by changing the setting parameter by communication (from FIG. 22B). Changes to (A) are also possible).
  • FIG. 23A shows an example of the setting value of the maximum rotation speed, but it can be changed to, for example, the setting value shown in FIG. 23B by changing the setting parameter by communication (FIG. 23B ) To (A) is also possible).
  • the changed setting parameters are stored in the storage circuit inside the calculation unit 441. Even when the power to the calculation unit is turned off, the set parameters do not disappear. After the power is turned on again, the setting parameters are stored. It is possible to operate with the set parameters.
  • the operation unit 453 shown in FIG. 24 includes, for example, a maximum rotation number display unit 454, an automatic stop time display unit 455, a maximum rotation number setting button 456 and an automatic stop time setting button 457 as a changeover switch.
  • the calculation unit 441 switches the setting value of the maximum rotation speed, and a numerical value corresponding to the maximum rotation speed is displayed on the maximum rotation speed display section 454.
  • the calculation unit 441 switches the set value of the automatic stop time, and a numerical value corresponding to the automatic stop time is displayed on the automatic stop time display unit 455.
  • the maximum rotation speed setting button 456 and the automatic stop time setting button 457 are each operated independently. Therefore, when the set value is switched, the maximum rotation speed setting button 456 and the automatic rotation time setting button 457 are automatically operated.
  • the stop time setting buttons 457 are not operated simultaneously. Therefore, when the maximum rotation speed setting button 456 and the automatic stop time setting button 457 are operated at the same time, the mode shifts to a setting parameter switching mode by infrared communication with the portable device 459. For example, when the setting parameter is switched from the portable device 459 by mistake, the setting parameter is not switched unless the mode is shifted to the setting parameter switchable mode. Accordingly, it is possible to prevent the setting parameter from being switched unintentionally by the operator.
  • the operation unit 453 may have a function of setting and displaying a motor target current value and an automatic stop angle as setting parameters. For example, it is possible to adopt a configuration having a changeover switch such as a push button for setting a target current value and an automatic stop angle. Further, the maximum rotation number display unit 454 and the automatic stop time display unit 455 may display the setting modes (A, B, etc.) shown in FIGS.
  • FIG. 25 shows a graph of the relationship between the tightening time and the tightening torque with respect to the motor rotation speed during the bolt tightening operation.
  • the desired tightening torque differs depending on the work, and in order to perform the bolt tightening operation with the desired tightening torque, it is necessary to keep the tightening time and the motor rotation speed constant for each bolt.
  • the values of the automatic stop time and the maximum number of rotations can be switched to constant values corresponding to the work, so that it is always possible to work with a constant and accurate tightening torque.
  • Fig. 26 shows a graph of the relationship between the tightening time and the screw specifications relative to the optimum motor speed during screw tightening.
  • the shorter the overall length of the screw the shorter the tightening time for the operation. Therefore, it is necessary to control the motor from operation to stop as soon as possible, and it is difficult to cope with trigger operation.
  • the values of the automatic stop time and the maximum number of rotations can be switched to constant values corresponding to the size of the screw, so that stable screw tightening work can always be performed.
  • FIG. 27 shows the relationship of the PWM duty ratio corresponding to the trigger operation amount (stroke) detection signal.
  • the relational expressions (A), (B), and (C) are shown.
  • the relational expression (A) is a relational expression when the change of the PWM duty ratio is simply proportional to the trigger operation amount.
  • the relational expression (B) is a relational expression in which the PWM duty is low from the start of the trigger operation to just before reaching the full stroke, and after that, the PWM duty rapidly reaches 100% of the maximum value.
  • the operator usually positions the tip of the screw at the target position by operating the trigger switch by a small amount and rotating the motor by a small amount while pressing the screw against the workpiece. Do.
  • the relational expression (C) is a relational expression in which the PWM duty increases immediately after the trigger operation is started, and after that, the PWM duty gradually reaches 100% of the maximum value.
  • the relational expression (C) is suitable.
  • the relational expressions (A), (B), (C ), And a relational expression suitable for each work can be selected.
  • the calculation unit 441 acquires from the applied voltage setting circuit 449 whether the operation of the trigger switch 406 is on (S201).
  • the calculation unit 441 starts the operation of the motor 403 (S202).
  • the operation time detection circuit 1413 starts measuring the operation time (S203).
  • the calculation unit 441 obtains from the applied voltage setting circuit 449 whether the operation of the trigger switch 406 is on (S205).
  • the calculation unit 441 If the operation of the trigger switch 406 is off (S205: NO), the calculation unit 441 The operation of the motor 403 is stopped (S204), and the process returns to S201 again. On the other hand, when the operation of the trigger switch 406 is ON in S205 (S205: YES), the calculation unit 441 detects the rotation speed of the motor 403 by the rotation speed detection circuit 1411 (S206), and the maximum motor speed is set. Motor control is performed while adjusting the PWM duty ratio so that the motor is operated at the rotational speed (S207), the value of the operating time measured by the operating time detection circuit 1413 is confirmed (S208), and the measured operating time is measured. It is confirmed whether or not the automatic stop time has been reached (S209).
  • the determination in S216 it is determined whether or not it is a communicable mode in which the setting parameter of the electric tool 401 can be changed.
  • a communicable mode in which the setting parameter can be changed specifically, when the communicable mode is started in S221) (S216: YES)
  • infrared communication is performed from the portable device 459 to perform communication.
  • the infrared ray is received by the unit 458 (S217: YES)
  • the parameters of the automatic stop time and the maximum rotation speed are changed based on the value of the received communication signal (S218), and the communicable mode is ended (S219).
  • the automatic stop angle has a plurality of different set values
  • FIG. 29 shows the set values of the automatic stop angle in the present embodiment.
  • one of the setting modes A to D can be selected by the operation of the operation unit 453 to set the automatic stop angle.
  • the operation unit 453 on the power tool side cannot switch between FIGS. 29A and 29B, but by performing infrared communication from the portable device 459, the setting parameter is switched by communication, for example, FIG. ) To the set value shown in (B) (change from FIG. 29 (B) to (A) is also possible).
  • the control method when the setting value of the operation time and the maximum number of revolutions can be switched has been described. However, separately from this control method, the setting value of the operation time and the target current value of the motor can be switched.
  • the control method in this case will be described with reference to the flowchart of FIG.
  • the operation unit 453 has a target current value setting button as a changeover switch.
  • S231 to S235 are the same as S201 to S205 of FIG. 28.
  • the calculation unit 441 is controlled by the current detection circuit 448.
  • the current value of the motor 403 is detected (S236), the motor is controlled while adjusting the PWM duty ratio so that the motor is operated at the set target current value (S237), and measured by the operation time detection circuit 1413.
  • the value of the running time is confirmed (S238).
  • Steps S239 to S243 are the same as steps S209 to S213 in FIG. 28.
  • the set value can be switched only when the operation of the trigger switch 406 is OFF and the motor 403 is stopped.
  • S246 to S251 are the same as S216 to S221 in FIG.
  • a control circuit (a circuit configuration including a calculation unit 441 and a control signal output circuit 446) on the control circuit board 408 that controls the electric tool 401 with predetermined setting parameters, and an electric motor that changes the setting values of the setting parameters from the outside.
  • a portable device 459 separate from the tool 401 is provided, and when the setting value of the setting parameter is changed from the portable device 459 to the electric tool 401, the electric tool 401 and the portable device 459 perform wireless communication to set the setting parameter.
  • the configuration can change the value. As a result, the operator can set the optimum setting parameter for the work from the outside, and the setting parameter suitable for each work can be set, so that the work efficiency can be greatly improved.
  • the electric tool 401 can change the setting value of the setting parameter when the operation of the electric tool 401 is stopped, and cannot change the setting value of the setting parameter when the operation of the electric tool 401 is operating. is there. As a result, the setting parameter is changed during the operation of the electric power tool 401, and it is possible to prevent danger when the operation of the electric power tool 401 during the operation changes unintentionally.
  • An operation unit 453 having switches (setting buttons 456 and 457) operated by a worker is provided in the electric tool 401, and the state of the electric tool 401 can be changed by a switch operation.
  • the power tool 401 is switched and is in a changeable state (in this example, when the setting buttons 456 and 457 are pressed simultaneously)
  • the setting parameter can be changed by the portable device 459.
  • the state is an unchangeable state
  • the setting parameter cannot be changed by the portable device 459. Thereby, it is possible to prevent the setting parameters from being changed against the operator's intention.
  • the power tool 401 is provided with notifying means (light 451 that illuminates the tip of the power tool 401), communication is correctly performed between the power tool 401 and the portable device 459, and the setting parameter is correctly changed. Since the notification means notifies the worker, it is possible to reliably notify the worker that the setting parameter has been set correctly. By using the light 451 also as the notification means, it is not necessary to newly provide another notification means, and the configuration can be simplified.
  • notifying means light 451 that illuminates the tip of the power tool 401
  • the communication unit 458 of the electric tool 401 can only receive, and the communication unit of the portable device 459 can only transmit, so that only the circuit of the receiving unit is mounted on the electric tool 401.
  • the circuit does not increase in size, and as a result, the electric tool 401 does not increase in size.
  • the configuration of the power tool 401 side communication unit 458 and the portable device 459 is simplified.
  • the relational expression is Since the setting parameter can be changed by the portable device 459, the setting value (relational expression) can be changed according to various work applications to improve work efficiency.
  • the maximum rotational speed is set in the electric tool 401 that has the maximum rotational speed that is the upper limit of the rotational speed that can be operated by the motor 403 and is controlled by the control circuit so that the operation of the motor 403 is less than or equal to the maximum rotational speed. Since the parameter can be changed by the portable device 459, the setting value (maximum rotation speed) can be changed according to various work applications to improve the work efficiency.
  • the maximum rotation number is set by operating the maximum rotation number setting button 456. Since it is possible to switch to a plurality of different values and the set value of the maximum number of rotations of the motor 403 can be changed, the set value can be changed according to various work applications, and work efficiency can be improved. .
  • (9) It has an automatic stop time for controlling the operation time of the motor 403, and when the operation time after the trigger 406a is operated and the motor 403 is started reaches the automatic stop time, the trigger operation is performed.
  • the automatic stop time can be changed as a setting parameter by the portable device 459, so that the set value according to various work applications By changing (automatic stop time), work efficiency can be improved.
  • the electric tool 401 is provided with an operation unit 453 having an automatic stop time setting button 457 as a changeover switch for setting the automatic stop time, the automatic stop time is set by operating the automatic stop time setting button 457. Since it is possible to switch to a plurality of different values and the set value of the automatic stop time can be changed, it is possible to improve the work efficiency by changing the set value according to various work applications.
  • the target current value can be changed by the portable device 459 as a setting parameter. Therefore, it is possible to improve the work efficiency by changing the set value (target current value) according to various work applications.
  • the power tool 401 When the power tool 401 is provided with an operation unit 453 having a target current value setting button as a changeover switch for setting the target current value, the target current value varies depending on the operation of the target current value setting button. Since the set value of the target current value during operation of the motor can be changed, it is possible to improve the work efficiency by changing the set value according to various work applications.
  • the automatic stop angle can be changed by the portable device 459 as a setting parameter. Therefore, it is possible to improve the work efficiency by changing the set value (automatic stop angle) according to various work applications.
  • the automatic stop angle differs depending on the operation of the automatic stop angle setting button. Since the setting value of the automatic stop angle during operation of the motor can be changed, the setting value can be changed according to various work applications to improve work efficiency.
  • the power device, power device system, and power tool management system of the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made within the scope described in the claims.
  • the electronic pulse driver 1 and the electric tool 401 are employed as an example of the power equipment, but are not limited thereto.
  • the present invention can be applied to an air tool using compressed air, an engine tool using an internal combustion engine, and the like.
  • the present invention can be applied to work equipment such as a brush cutter and a chain saw driven by electricity or an engine.
  • the electronic pulse driver can select one control mode from the four control modes.
  • the electronic pulse driver may be configured to be selectable from five or more control modes.
  • the torque and the rotation speed can be set between 0 and 100% in consideration of the temperature rise of the device, but a value of 100% or more may be set. As a result, it can be used in a wider range of applications.
  • the torque can be set as a ratio with respect to the maximum output of the motor, but it may be set by the torque “N” (Newton) of the tip tool.
  • N Newton
  • the graphs displayed in the clutch mode graph display area 97 and the pulse mode graph display area 100 are area graphs and scatter diagrams, but are not limited thereto.
  • it may be a line graph, a pie graph, or a bar graph.
  • a graph that visually represents the hit state of the hammer 42 and the anvil 52 with the vertical axis representing the torque and the horizontal axis representing the number of hits may be used.
  • the tab area 195 is provided with three tabs corresponding to each mode, but the present invention is not limited to this.
  • four tabs may be provided so that each tab corresponds to four control modes stored in the RAM of the electronic pulse driver 1.
  • the four modes stored in the electronic pulse driver 1 can be read at once.
  • the screen displayed on the window displays a screen on which all parameters of the drill mode, the clutch mode, and the pulse mode can be set.
  • a communication setting button may be further provided in the window 94 of the above-described embodiment. By pressing the communication setting button, a communication setting window is newly opened, and the communication protocol setting can be changed in the window.
  • communication with the external device 9 is possible via the wireless module 385, but communication with a smartphone via wireless communication may be possible. Thereby, the control mode of the electronic pulse driver can be changed more easily.
  • the communication between the communication unit 458 of the power tool 401 and the portable device 459 is exemplified by the infrared communication method, but a short-range wireless communication method using radio waves other than the infrared communication method is adopted. It is also possible to do.
  • a notification means that notifies the operator that communication between the power tool 401 and the portable device 459 is correctly performed and the setting parameter has been changed correctly is provided. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

The purpose of the present invention is to provide: a power-driven device provided with control modes capable of having the parameters thereof set, and a power-driven-device system; and an electric-power-tool management system with which a worker can set, externally from an electric power tool, optimal set parameters for each type of work performed by the electric power tool, to greatly improve work efficiency. An electronic pulse driver (1) is capable of being connected with an external device (9) via a communication cable (8). The electronic pulse driver (1) is provided with: a motor (3); a tip tool (53) operated by the motor (3); a program storage unit (83A) in which control modes are stored; a microcomputer (83); and a connection unit (72) which connects with the external device (9). The external device (9) is provided with a connection-receiving unit (93) which connects with the connection unit (72), and thus is capable of communicating with the electronic pulse driver (1) to modify parameters of the control modes.

Description

動力機器、動力機器システム、及び電動工具管理システムPower equipment, power equipment system, and power tool management system
 本発明は動力機器、及び動力機器と動力機器に接続可能な外部機器とから構成される動力機器システム及び、電動工具の制御に係り、とくに設定パラメータを変更可能な電動工具管理システムに関する。 The present invention relates to a power device, a power device system including a power device and an external device that can be connected to the power device, and a control of the power tool, and more particularly to a power tool management system capable of changing setting parameters.
 従来の動力機器又は電動工具の一例であるインパクト工具では、モータの回転力により回転するハンマによって、アンビルが打撃され先端工具が動作する構造が知られている(例えば特許文献1及び特許文献2参照)。そして、当該インパクト工具では、複数の制御モードとしてパルスモード及びインパクトモードを備えている。 In an impact tool that is an example of a conventional power device or electric tool, a structure in which an anvil is struck and a tip tool operates by a hammer that is rotated by the rotational force of a motor is known (see, for example, Patent Document 1 and Patent Document 2). ). The impact tool includes a pulse mode and an impact mode as a plurality of control modes.
特開2011-31313号公報JP 2011-31313 A 特開2010-99823号公報JP 2010-99823 A
 従来のインパクト工具においては、ユーザは締結に最適なモードを選択することによって作業を行っていた。具体的には、ユーザはインパクト工具に設けられたダイヤルを操作することにより各モードを選択していた。しかし、パルスモード及びインパクトモードの詳細なパラメータについては予め設定されており、各モードにおける作業の幅が狭くなっていた。更に、多数の制御モードを設けたとしても、ユーザにとって不要な制御モードを搭載することとなる。 In the conventional impact tool, the user works by selecting the optimum mode for fastening. Specifically, the user has selected each mode by operating a dial provided on the impact tool. However, the detailed parameters of the pulse mode and the impact mode are set in advance, and the work width in each mode is narrow. Furthermore, even if a large number of control modes are provided, a control mode unnecessary for the user is installed.
 さらに、従来の電動工具は様々な種類の先端工具が装着可能であり、さらに工具の作業用途も様々な種類がある。従って先端工具の種類・作業の種類に応じて、求められるモータの制御も異なってくる。モータを制御する方式としては、電動工具にトリガスイッチを設けて、トリガスイッチを操作することによりモータ回転数を制御するものがある。例えば、先端工具にドライバを使用してねじ締め作業を行う場合について例を挙げる。ねじ締め作業の開始時には、作業者は、通常、ねじを加工部材に押しつけた状態でトリガスイッチを微小量だけ操作させモータを微小量だけ回転させることにより、ねじの先端を目標位置に位置決めする作業を行う。また、ねじ径が小さい場合やねじ長さが短い場合には、必要なトルクも小さく、作業時間も短いために、モータの回転数は低い領域で調整することが容易であることが望まれる。従って、トリガスイッチの操作(以下、トリガ操作という)で操作可能な回転数も低い領域での調整が容易であることが望まれる。対して、ねじ径が大きい場合やねじ長さが長い場合には、必要なトルクも大きく、作業時間が長いために、モータの回転数は高い領域で調整することが容易であることが望まれる。従って、トリガ操作で操作可能な回転数も高い領域での調整が容易であることが望まれる。トリガスイッチ操作量に対するモータ回転数の設定値は、通常一つの関係式である。そのため、ねじの種類に対して求められるトリガ操作の仕様は異なるのにも係わらず、トリガ操作の仕様は一つしかなく、トリガ操作の仕様が適切でない場合は作業効率が悪化する。 Furthermore, conventional power tools can be equipped with various types of tip tools, and there are also various types of tool applications. Therefore, the required motor control varies depending on the type of the tip tool and the type of work. As a system for controlling the motor, there is a system in which a trigger switch is provided in the electric tool and the motor rotation speed is controlled by operating the trigger switch. For example, an example will be given for a case where a screw tightening operation is performed using a screwdriver as a tip tool. At the beginning of the screw tightening operation, the operator usually operates the trigger switch by a small amount while the screw is pressed against the workpiece, and rotates the motor by a small amount to position the screw tip at the target position. I do. Further, when the screw diameter is small or the screw length is short, the necessary torque is small and the working time is short, so that it is desirable that the motor rotation speed be easily adjusted in a low region. Therefore, it is desirable that the adjustment in the region where the number of rotations operable by the operation of the trigger switch (hereinafter referred to as trigger operation) is also low is easy. On the other hand, when the screw diameter is large or the screw length is long, the necessary torque is large and the working time is long. Therefore, it is desirable that the motor rotation speed be easily adjusted in a high region. . Therefore, it is desirable that the adjustment in the region where the number of rotations operable by the trigger operation is high is easy. The set value of the motor rotation speed with respect to the trigger switch operation amount is usually one relational expression. For this reason, there is only one trigger operation specification despite the different trigger operation specifications required for the type of screw, and work efficiency deteriorates if the trigger operation specifications are not appropriate.
 また先端工具にレンチを使用してボルト締め作業を行う場合について例を挙げる。ボルト締め作業の場合は、位置決め作業は必要でないために、トリガ操作し始めから直ぐにモータ回転数は最大になってもよく、トリガ操作に対するモータ回転数の調整も求められない。従って上記のねじ締め時のトリガ操作の仕様とは、求められる特性が異なる。また、電動工具に押しボタンなどを設け、運転時の設定回転数を切り替えられる電動工具もある。ボルト締め作業時には、ある所定の回転数で工具を運転し、締め付けトルクを一定値に保つ必要がある。その際の回転数は、ボルトの仕様によって異なり、設定値も適宜変更する必要がある。 An example is given for the case where bolting is performed using a wrench on the tip tool. In the case of the bolt tightening work, since the positioning work is not necessary, the motor rotation speed may be maximized immediately after the trigger operation is started, and adjustment of the motor rotation speed with respect to the trigger operation is not required. Therefore, the required characteristics are different from the specifications of the trigger operation at the time of screw tightening. In addition, there is an electric tool that is provided with a push button or the like on the electric tool so that the set rotational speed during operation can be switched. During the bolting operation, it is necessary to operate the tool at a predetermined rotation speed and keep the tightening torque at a constant value. The number of rotations at that time depends on the specifications of the bolt, and the set value must be changed as appropriate.
 そこで本発明は、パラメータが設定可能な制御モードを備える動力機器及び動力機器システムを提供することを目的とする。本発明の別の目的は、電動工具の各種作業に最適な設定パラメータを作業者が電動工具の外部から設定可能として、作業効率の大幅向上を図ることのできる電動工具管理システムを提供することにある。 Therefore, an object of the present invention is to provide a power device and a power device system having a control mode in which parameters can be set. Another object of the present invention is to provide a power tool management system that enables a worker to set optimum setting parameters for various operations of a power tool from the outside of the power tool, and can greatly improve work efficiency. is there.
 上記目的を達成するために、本発明は、駆動部と、前記駆動部により駆動され外部に対して力学的に作用する出力部と、前記駆動部を制御する制御部と、を備えた動力機器において、前記制御部に記憶された制御モードを構成するパラメータを外部から前記制御部にアクセスして設定可能とする通信手段を備えていることを特徴とする動力機器を提供している。 In order to achieve the above object, the present invention provides a power device including a drive unit, an output unit that is driven by the drive unit and acts dynamically on the outside, and a control unit that controls the drive unit. In the above, there is provided a power device characterized by comprising a communication means that allows the parameter constituting the control mode stored in the control unit to be set by accessing the control unit from outside.
 このような構成によると、作業内容に応じた最適なパラメータを設定することで、ユーザ自身が様々な作業に適した特有の制御モードを容易に作り出すことが可能となる。 According to such a configuration, the user can easily create a specific control mode suitable for various tasks by setting optimum parameters according to the work contents.
 また、前記制御モードは外部から設定可能な複数のパラメータを組み合わせて構成されていることが好ましい。 The control mode is preferably configured by combining a plurality of parameters that can be set from the outside.
 このような構成によると、1つのパラメータのみを変更した場合では最適な制御モードが実現できない場合でも、このような構成によれば、複数のパラメータの組合せを変更することで最適な制御モードが実現可能となる。 According to such a configuration, even when only one parameter is changed, an optimal control mode cannot be realized. According to such a configuration, an optimal control mode is realized by changing a combination of a plurality of parameters. It becomes possible.
 本発明の別の観点では、動力機器と、前記動力機器と接続可能な外部機器と、を備えた動力機器システムであって、前記動力機器は、モータと、前記モータの駆動力を先端工具に伝達する駆動部と、前記モータの駆動を制御するための制御モードを記憶する記憶部と、前記制御モードに基づき前記モータを制御する制御部と、前記外部機器と接続可能な接続部と、を備え、前記外部機器は、前記接続部を介して前記動力機器と接続可能な被接続部と、前記制御モードのパラメータを設定可能な設定部と、を備えていることを特徴とする動力機器システムを提供している。 In another aspect of the present invention, a power device system comprising a power device and an external device connectable to the power device, wherein the power device uses a motor and the driving force of the motor as a tip tool. A drive unit for transmitting, a storage unit for storing a control mode for controlling driving of the motor, a control unit for controlling the motor based on the control mode, and a connection unit connectable to the external device, And the external device includes a connected portion connectable to the power device via the connection portion, and a setting portion capable of setting the parameter of the control mode. Is provided.
 このような構成によれば、制御モードのパラメータを外部機器によって設定することができるため、電子パルスドライバ1の動作をより詳細に設定することが可能になり、最適な条件で締結作業を行うことができる。これにより、動力機器による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, since the parameters of the control mode can be set by an external device, the operation of the electronic pulse driver 1 can be set in more detail, and the fastening operation can be performed under optimum conditions. Can do. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
 また、前記駆動部は、前記モータにより駆動されるハンマと、前記先端工具を保持し前記ハンマに打撃されることによって回転するアンビルと、を備え、前記パラメータは、前記ハンマと前記アンビルとの打周期であることが好ましい。 In addition, the driving unit includes a hammer driven by the motor and an anvil that holds the tip tool and rotates by being struck by the hammer, and the parameter is a hit between the hammer and the anvil. Preferably it is a period.
 このような構成によれば、打周期を設定することができるため、締結作業時における動力機器の反動を低減し作業性の改善を図ることができる。また、打撃の周波数をユーザが不快と感じない値に設定することが可能となり、作業性を改善することができる。 According to such a configuration, the hitting cycle can be set, so that the reaction of the power equipment during the fastening work can be reduced and workability can be improved. In addition, it is possible to set the hit frequency to a value that the user does not feel uncomfortable, and workability can be improved.
 また、前記制御モードは、前記モータを双方向に回転させることで前記ハンマと前記アンビルとを打撃させるパルスモードを備え、前記パルスモードは、通常打撃と前記通常打撃とは異なるパラメータを設定可能な補正打撃とを有することが好ましい。 In addition, the control mode includes a pulse mode in which the hammer and the anvil are struck by rotating the motor in both directions, and the pulse mode can set parameters different from the normal hit and the normal hit. It is preferable to have a correction hit.
 このような構成によると、補正打撃を設定することができるため、通常のパルスモードのみで締結を行う場合と比較すると、通常打撃をおこなった後に補正打撃を行うことにより、止具を加工部材と安定的に締結させることができる。これにより、目標としたトルクで止具を締結することができる。 According to such a configuration, since a correction hit can be set, compared with a case where fastening is performed only in a normal pulse mode, by performing a correction hit after performing a normal hit, the fastener can be used as a processing member. It can be fastened stably. Thereby, a fastener can be fastened with the target torque.
 また、前記補正打撃の前記パラメータは、前記ハンマと前記アンビルとの打周期と、前記ハンマと前記アンビルとの打撃数と、前記ハンマが前記アンビルを打撃する際の前記ハンマのトルクと、のうち少なくとも1つを設定可能であることが好ましい。 In addition, the parameters of the correction batting include the striking cycle between the hammer and the anvil, the number of hits between the hammer and the anvil, and the torque of the hammer when the hammer strikes the anvil. It is preferable that at least one can be set.
 このような構成によると、打周期と、打撃数と、トルクとのうち少なくとも一つを設定可能であるため、ユーザの要求に応じた制御により動力機器を動作させることができる。これにより、動力機器による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, it is possible to set at least one of the hit period, the number of hits, and the torque, so that the power device can be operated by control according to the user's request. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
 また、前記パラメータは、前記モータが動作してからの前記先端工具の総回転数であることが好ましい。 Further, it is preferable that the parameter is a total rotation speed of the tip tool after the motor is operated.
 このような構成によると、先端工具の総回転数を設定することができるため、ネジの条数を総回転数として設定することによりネジの着座前後での制御を変えることができる。これにより、動力機器による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, since the total number of rotations of the tip tool can be set, the control before and after the seating of the screw can be changed by setting the number of screw strips as the total number of rotations. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
 また、前記パラメータは、前記総回転数により設定された期間の前記モータの回転速度であることが好ましい。 Further, it is preferable that the parameter is a rotation speed of the motor during a period set by the total number of rotations.
 このような構成によると、総回転数により設定された期間のモータの回転速度を設定することができるため、ユーザの要求に応じた制御により動力機器を動作させることができる。これにより、動力機器による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, the rotation speed of the motor during the period set by the total number of rotations can be set, so that the power equipment can be operated by control according to the user's request. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
 また、前記外部機器は、前記パラメータを表示する表示部を備え、前記表示部は、前記パラメータに関連するパラメータを横軸及び縦軸として、グラフ化して表示可能なグラフ表示部を有することが好ましい。 The external device preferably includes a display unit that displays the parameter, and the display unit includes a graph display unit that can display the parameter related to the parameter as a horizontal axis and a vertical axis. .
 このような構成によると、外部機器はグラフ表示部を備えているため、ユーザは視覚的に制御モードを認識することができる。これにより、パラメータ設定時に動力機器の動作がイメージし易くなる。 According to such a configuration, since the external device includes the graph display unit, the user can visually recognize the control mode. This makes it easier to imagine the operation of the power equipment when setting parameters.
 また、前記パラメータは、前記モータの有する最大能力に対する割合で設定されることが好ましい。 Further, it is preferable that the parameter is set as a ratio to the maximum capacity of the motor.
 このような構成によると、パラメータはモータの最大能力に対する割合で設定されるため、出力トルク等を計測するための機器等が不要となる。これにより、部品点数を削減し低コストの動力機器を提供することができる。 According to such a configuration, since the parameter is set at a ratio to the maximum capacity of the motor, a device for measuring output torque or the like is not necessary. Thereby, the number of parts can be reduced and a low-cost power equipment can be provided.
 前記動力機器は、前記外部機器との接続時に通信信号を変換する通信変換回路をさらに備えることが好ましい。 It is preferable that the power device further includes a communication conversion circuit that converts a communication signal when connected to the external device.
 このような構成によると、動力機器は通信変換回路をさらに備えているため、接続部と被接続部とを繋ぐケーブルに通信変換回路を備える必要が無くなる。これにより、動力機器と外部機器との通信に汎用性のあるケーブルを使用することができる。 According to such a configuration, since the power device further includes the communication conversion circuit, it is not necessary to provide the communication conversion circuit in the cable connecting the connection portion and the connected portion. Thereby, a versatile cable can be used for communication between the power device and the external device.
 本発明の別の観点では、モータと、前記モータの駆動力を先端工具に伝達する駆動部と、前記モータを制御する制御部と、前記モータ及び前記駆動部を収容する第1ハウジングと、前記制御部を収容する第2ハウジングと、前記第1ハウジングと前記第2ハウジングとを繋ぐハンドル部と、を有するハウジングと、前記第2ハウジングに収容され外部機器と無線通信が可能な通信部と、を備えた動力機器を提供している。 In another aspect of the present invention, a motor, a drive unit that transmits a driving force of the motor to a tip tool, a control unit that controls the motor, a first housing that houses the motor and the drive unit, A housing having a second housing that houses the control unit, a handle unit that connects the first housing and the second housing, a communication unit that is housed in the second housing and capable of wireless communication with an external device, Provides power equipment.
 このような構成によると、通信部が第2ハウジングに収容されているため、ハンドル部に収容されている場合と比較すると、ユーザの手によって無線の電波が妨害されることが無い。これにより、動力機器は外部機器と安定的に通信することができる。また、通信部が制御部と同じ第2ハウジングに収容されているため、動力機器内部の配線を簡素化することができる。 According to such a configuration, since the communication unit is accommodated in the second housing, compared to the case where the communication unit is accommodated in the handle portion, the radio wave is not disturbed by the user's hand. As a result, the power device can stably communicate with the external device. Moreover, since the communication part is accommodated in the same 2nd housing as a control part, the wiring inside power equipment can be simplified.
 また、前記制御部は、前記モータを制御する制御回路基板を備え、前記通信部は制御回路基板上に設けられていることが好ましい。 Further, it is preferable that the control unit includes a control circuit board that controls the motor, and the communication unit is provided on the control circuit board.
 このような構成によると、通信部は制御回路基板上に設けられているため、通信部と制御部とを繋ぐ配線が不要となり、動力機器内部の配線を簡素化することができる。さらに、通信部と制御部との距離が近くなるため、動力機器のノイズの影響を受けにくくなる。 According to such a configuration, since the communication unit is provided on the control circuit board, wiring for connecting the communication unit and the control unit is not necessary, and wiring inside the power equipment can be simplified. Furthermore, since the distance between the communication unit and the control unit is reduced, it is less likely to be affected by noise from the power equipment.
 本発明の別の観点では、モータと、前記モータを収容するハウジングと、前記ハウジングに収容され、前記モータの駆動力を先端工具に伝達する駆動部と、を備えた動力機器であって、前記モータが動作してからの前記先端工具の総回転数を設定可能な動力機器を提供している。 In another aspect of the present invention, there is provided a power device including a motor, a housing that houses the motor, and a drive unit that is housed in the housing and transmits a driving force of the motor to a tip tool, A power device capable of setting the total number of rotations of the tip tool after the motor is operated is provided.
 このような構成によると、モータが動作してからの先端工具の総回転数を設定することができるため、ユーザの要求に応じた制御により動力機器を動作させることができる。これにより、動力機器による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, since the total number of rotations of the tip tool after the motor is operated can be set, the power device can be operated by control according to the user's request. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
 また、外部機器と接続可能な接続部をさらに備え、前記総回転数は、前記外部機器と接続されることにより、前記外部機器によって設定可能であることが好ましい。 Further, it is preferable that a connection unit connectable with an external device is further provided, and the total number of rotations can be set by the external device by being connected to the external device.
 このような構成によると、外部機器によって総回転数が設定可能であるため、動力機器本体に総回転数を設定するための回路及び装置を設ける必要が無い。これにより、動力機器の部品点数を削減し低コストの動力機器を提供することができる。 According to such a configuration, since the total number of revolutions can be set by an external device, it is not necessary to provide a circuit and a device for setting the total number of revolutions in the power device body. Thereby, the number of parts of a power equipment can be reduced and a low-cost power equipment can be provided.
 また、前記外部機器は、前記初期回転速度を前記モータの最大出力に対する割合で設定可能であることが好ましい。 In addition, it is preferable that the external device can set the initial rotation speed as a ratio with respect to the maximum output of the motor.
 また、前記総回転数により設定された期間が経過した後の前記モータのトルクを設定可能であることが好ましい。 Further, it is preferable that the torque of the motor after the period set by the total number of rotations can be set.
 また、前記総回転数により設定された期間の前記モータの回転速度である初期回転速度を設定可能であることが好ましい。 Further, it is preferable that an initial rotation speed that is a rotation speed of the motor in a period set by the total rotation speed can be set.
 このような構成によると、ユーザの要求に応じた制御により動力機器を動作させることができる。これにより、動力機器による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, the power device can be operated by control according to the user's request. As a result, it is possible to improve the workability of the tightening work by the power device and improve the feeling.
 本発明の別の観点によると、電動工具管理システムを提供している。この電動工具管理システムは、電動工具と、前記電動工具を所定の設定パラメータで制御する前記電動工具内の制御回路と、前記設定パラメータの設定値を前記電動工具の外部から変更する前記電動工具とは別体の携帯機器とを具備し、前記携帯機器から前記電動工具へ前記設定パラメータの設定値の変更を行う場合に、前記電動工具と前記携帯機器は無線による通信を行い、前記電動工具の運転が停止中のときには前記設定パラメータの設定値を変更可能とし、前記電動工具の運転が動作中のときには前記設定パラメータの設定値を変更不能とすることを特徴とする。 According to another aspect of the present invention, a power tool management system is provided. The power tool management system includes a power tool, a control circuit in the power tool that controls the power tool with a predetermined setting parameter, and the power tool that changes a setting value of the setting parameter from the outside of the power tool. Comprises a separate mobile device, and when the setting value of the setting parameter is changed from the mobile device to the power tool, the power tool and the mobile device perform wireless communication, and the power tool The setting parameter setting value can be changed when the operation is stopped, and the setting parameter setting value cannot be changed when the electric tool is operating.
 前記態様において、スイッチを前記電動工具に設け、前記スイッチの操作により前記電動工具の状態が前記設定パラメータの変更が変更可能状態か変更不能状態かに切り替えられ、前記電動工具の状態が前記変更可能状態である時には前記設定パラメータの変更が可能であり、前記電動工具の状態が前記変更不能状態である時には前記設定パラメータの変更が不能である構成であるとよい。 In the above aspect, a switch is provided in the electric tool, and the state of the electric tool is switched between a changeable state and a non-changeable state of the setting parameter by operating the switch, and the state of the electric tool is changeable. The setting parameter can be changed when the power tool is in a state, and the setting parameter cannot be changed when the power tool is in the unchangeable state.
 前記態様において、前記電動工具に報知手段を設け、前記電動工具と前記携帯機器との間で正しく通信が行われ、前記設定パラメータの変更が正しく行われた時に、前記報知手段により報知する構成であるとよい。また、前記報知手段は、前記電動工具の先端部を照らすライトであるとよい。 In the aspect, the power tool is provided with a notification unit, and when the communication is correctly performed between the power tool and the portable device and the setting parameter is correctly changed, the notification unit notifies the power tool. There should be. Moreover, the notification means may be a light that illuminates the tip of the power tool.
 前記態様において、前記無線による通信を行うための、前記電動工具の通信部は受信のみが可能であり、前記携帯機器の通信部は送信のみが可能であるとよい。 In the above aspect, it is preferable that the communication unit of the power tool for performing the wireless communication can only receive and the communication unit of the portable device can only transmit.
 前記態様において、前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記トリガ操作部の操作に応答して前記モータを制御し、前記トリガ操作部の操作量の大きさに応じて前記モータの回転数は調整され、前記トリガ操作部の操作量と前記モータの回転数は所定の関係式で定義され、前記関係式は前記設定パラメータであり、前記設定パラメータの変更により前記関係式は変更される構成であるとよい。 In the above aspect, the power tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and controls the motor in response to an operation of the trigger operation unit. The rotation speed of the motor is adjusted according to the magnitude of the operation amount, the operation amount of the trigger operation unit and the rotation speed of the motor are defined by a predetermined relational expression, and the relational expression is the setting parameter, The relational expression may be changed by changing the setting parameter.
 前記態様において、前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、前記モータで運転可能な回転数の上限である最大回転数を有し、前記モータの運転は前記最大回転数以下になるよう前記制御回路により制御され、前記最大回転数は前記設定パラメータであり、前記設定パラメータの変更により前記最大回転数は変更される構成であるとよい。また、前記最大回転数を設定する切替スイッチを有し、前記切替スイッチの操作によって前記最大回転数は複数の異なる値に切り替え可能であるとよい。 In the above aspect, the power tool has a housing, a motor mounted in the housing, and a maximum rotational speed that is an upper limit of a rotational speed that can be operated by the motor, and the motor is operated at the maximum rotational speed. It is preferable that the control circuit is controlled so that the maximum rotation speed is the setting parameter, and the maximum rotation speed is changed by changing the setting parameter. Further, it is preferable that a changeover switch for setting the maximum number of rotations is provided, and the maximum number of rotations can be switched to a plurality of different values by operating the changeover switch.
 前記態様において、前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記トリガ操作部の操作に応答して前記モータを制御し、前記モータの運転時間を制御する自動停止時間を有し、前記トリガ操作がなされて前記モータの運転が開始されてからの運転時間が前記自動停止時間に到達すると、前記トリガ操作がなされている状態においても前記モータの運転を停止するように前記制御回路により制御され、前記自動停止時間は前記設定パラメータであり、前記設定パラメータの変更により前記自動停止時間は変更される構成であるとよい。また、前記自動停止時間を設定する切替スイッチを有し、前記切替スイッチの操作によって前記自動停止時間は複数の異なる値に切り替え可能であるとよい。 In the above aspect, the electric tool includes a housing, a motor mounted in the housing, a trigger operation unit, controls the motor in response to an operation of the trigger operation unit, and operates the motor. If the operation time after the trigger operation is performed and the operation of the motor is started reaches the automatic stop time, the motor is also operated even when the trigger operation is performed. It is preferable that the control circuit is controlled to stop the operation, the automatic stop time is the setting parameter, and the automatic stop time is changed by changing the setting parameter. In addition, it is preferable that a switch for setting the automatic stop time is provided, and the automatic stop time can be switched to a plurality of different values by operating the switch.
 前記態様において、前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記トリガ操作部の操作に応答して前記モータを制御し、前記モータの運転時の目標電流値を有し、前記モータは前記目標電流値で前記制御回路により制御され、前記目標電流値は前記設定パラメータであり、前記設定パラメータの変更により前記目標電流値は変更される構成であるとよい。また、前記目標電流値を設定する切替スイッチを有し、前記切替スイッチの操作によって前記目標電流値は複数の異なる値に切り替え可能であるとよい。 In the above aspect, the power tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and controls the motor in response to an operation of the trigger operation unit. The motor is controlled by the control circuit with the target current value, the target current value is the setting parameter, and the target current value is changed by changing the setting parameter. There should be. It is preferable that a changeover switch for setting the target current value is provided, and the target current value can be switched to a plurality of different values by operating the changeover switch.
 前記態様において、前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記トリガ操作部の操作に応答して前記モータを制御し、前記モータの運転時の自動停止角度を有し、前記モータは前記自動停止角度で前記制御回路により制御され、前記自動停止角度は前記設定パラメータであり、前記設定パラメータの変更により前記自動停止角度は変更される構成であるとよい。また、前記自動停止角度を設定する切替スイッチを有し、前記切替スイッチの操作によって前記自動停止角度は複数の異なる値に切り替え可能であるとよい。 In the above aspect, the power tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and controls the motor in response to an operation of the trigger operation unit. The motor is controlled by the control circuit at the automatic stop angle, the automatic stop angle is the setting parameter, and the automatic stop angle is changed by changing the setting parameter. There should be. Further, it is preferable that a changeover switch for setting the automatic stop angle is provided, and the automatic stop angle can be switched to a plurality of different values by operating the changeover switch.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between methods and systems are also effective as an aspect of the present invention.
 本発明によれば、パラメータが設定可能な制御モードを備える動力機器及び動力機器システムを提供することができる。さらに、本発明によれば、電動工具の各種作業に最適な設定パラメータを作業者が電動工具の外部から設定可能として、作業効率の大幅向上を図ることのできる電動工具管理システムを提供することができる。 According to the present invention, a power device and a power device system having a control mode in which parameters can be set can be provided. Furthermore, according to the present invention, it is possible to provide a power tool management system capable of significantly improving work efficiency by enabling an operator to set optimum setting parameters for various work of the power tool from the outside of the power tool. it can.
本発明の第1の実施の形態に係る電子パルスドライバの概観斜視図。1 is a schematic perspective view of an electronic pulse driver according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る電子パルスドライバの断面図。Sectional drawing of the electronic pulse driver which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電子パルスドライバの図2のIII-IIIに沿った断面図。Sectional drawing along III-III of FIG. 2 of the electronic pulse driver which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電子パルスドライバの図2のIII-IIIに沿った断面図。Sectional drawing along III-III of FIG. 2 of the electronic pulse driver which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電子パルスドライバの制御ブロック図。The control block diagram of the electronic pulse driver which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電子パルスドライバが外部機器と通信ケーブルを介して接続されている図。The figure which the electronic pulse driver which concerns on the 1st Embodiment of this invention is connected with the external apparatus via the communication cable. 本発明の第1の実施の形態に係る外部機器の表示部に表示されるウィンドウ。The window displayed on the display part of the external apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る外部機器に保存されているアプリケーションソフトウェアのフローチャート。The flowchart of the application software preserve | saved at the external apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る外部機器に保存されているアプリケーションソフトウェアのフローチャート。The flowchart of the application software preserve | saved at the external apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る外部機器の表示部に表示されるウィンドウ。The window displayed on the display part of the external apparatus which concerns on the modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係るスマートフォンに表示されるウィンドウ。The window displayed on the smart phone which concerns on the modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る外部機器に保存されているアプリケーションソフトウェアのフローチャート。The flowchart of the application software preserve | saved at the external apparatus which concerns on the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る電子パルスドライバの断面図。Sectional drawing of the electronic pulse driver which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る電子パルスドライバの制御ブロック図。The control block diagram of the electronic pulse driver which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る電子パルスドライバが外部機器と通信ケーブルを介して接続されている図。The figure which the electronic pulse driver which concerns on the 2nd Embodiment of this invention is connected with the external apparatus via the communication cable. 本発明の第3の実施の形態に係る電子パルスドライバの断面図。Sectional drawing of the electronic pulse driver which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る電子パルスドライバの制御ブロック図。The control block diagram of the electronic pulse driver which concerns on the 3rd Embodiment of this invention. 本発明の変形例に係るグラフ表示領域に表示されるグラフ。The graph displayed on the graph display area which concerns on the modification of this invention. 本発明の第4の実施の形態に係る電動工具管理システムであって、電動工具の内部構成を側断面として示す説明図。It is an electric tool management system concerning a 4th embodiment of the present invention, and is an explanatory view showing an internal configuration of an electric tool as a side section. 本発明の第4の実施の形態に係る携帯機器の平面図。The top view of the portable apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態における、モータの駆動制御系の構成を示すブロック図。The block diagram which shows the structure of the drive control system of the motor in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、自動停止時間の設定値を示す表。The table | surface which shows the setting value of automatic stop time in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、最大回転数の設定値を示す表。The table | surface which shows the setting value of the maximum rotation speed in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、操作部の構成を示す平面図。The top view which shows the structure of the operation part in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、ボルト締め付け作業時の、締め付け時間とモータ回転数に対する締め付けトルクのグラフ。The graph of the fastening torque with respect to the fastening time and motor rotation speed at the time of bolt fastening operation | work in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、ねじ締め作業時の、締め付け時間とモータの最適回転数に対するねじの仕様のグラフ。The graph of the specification of the screw with respect to the fastening time and the optimal rotation speed of a motor at the time of the screw fastening operation | work in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、トリガ操作量(ストローク)の検出信号に対応するPWMデューティー比の関係を示したグラフ。The graph which showed the relationship of the PWM duty ratio corresponding to the detection signal of the trigger operation amount (stroke) in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、モータ制御のフローチャート。The flowchart of the motor control in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、自動停止角度の設定値を示す表。The table | surface which shows the setting value of the automatic stop angle in the 4th Embodiment of this invention. 本発明の第4の実施の形態における、もう一つのモータ制御のフローチャート。The flowchart of another motor control in the 4th Embodiment of this invention.
 以下、本発明の第1の実施形態に係る動力機器システムの一例である電子パルスドライバ1、及び通信ケーブル8を介して電子パルスドライバ1と接続される外部機器9(図6)の構成について、図1から図9に基づき説明する。 Hereinafter, regarding the configuration of the electronic pulse driver 1 which is an example of the power device system according to the first embodiment of the present invention and the external device 9 (FIG. 6) connected to the electronic pulse driver 1 via the communication cable 8, This will be described with reference to FIGS.
 図1及び図2に示すように、電子パルスドライバ1は、ハウジング2と、モータ3と、ハンマ部4と、アンビル部5と、インバータ回路6と、制御部7と、から主に構成されている。ハウジング2は樹脂製であって電子パルスドライバ1の外郭を成しており、略筒状の胴体部21と、胴体部21から延出されるハンドル部22と、ハンドル部22に接続する基板収容部23と、から主に構成されている。胴体部21は、本発明の第1ハウジングに相当し、基板収容部23が本発明の第2ハウジングに相当する。ハンマ部4及びアンビル部5は、本発明の駆動部及び出力部に相当する。電子パルスドライバ1は、本発明の動力機器の一例である。 As shown in FIGS. 1 and 2, the electronic pulse driver 1 is mainly composed of a housing 2, a motor 3, a hammer part 4, an anvil part 5, an inverter circuit 6, and a control part 7. Yes. The housing 2 is made of resin and forms an outer shell of the electronic pulse driver 1, and includes a substantially cylindrical body portion 21, a handle portion 22 extending from the body portion 21, and a substrate housing portion connected to the handle portion 22. 23 mainly. The body portion 21 corresponds to the first housing of the present invention, and the substrate housing portion 23 corresponds to the second housing of the present invention. The hammer part 4 and the anvil part 5 correspond to a drive part and an output part of the present invention. The electronic pulse driver 1 is an example of a power device according to the present invention.
 胴体部21内には、その長手方向がモータ3の軸方向と一致するようにモータ3が配置されると共に、モータ3の軸方向一端側に向かってハンマ部4、アンビル部5が並んで配置されている。以下の説明においては、アンビル部5側を前側、モータ3側を後側、モータ3の軸方向と平行な方向を前後方向と定義する。また、胴体部21側を上側、ハンドル部22側を下側、胴体部21からハンドル部22が延びる方向を上下方向と定義する。また、前後方向及び上下方向と直交する方向を左右方向と定義する。 In the body portion 21, the motor 3 is arranged so that the longitudinal direction thereof coincides with the axial direction of the motor 3, and the hammer portion 4 and the anvil portion 5 are arranged side by side toward one end side in the axial direction of the motor 3. Has been. In the following description, the anvil portion 5 side is defined as the front side, the motor 3 side is defined as the rear side, and a direction parallel to the axial direction of the motor 3 is defined as the front-rear direction. Further, the body part 21 side is defined as the upper side, the handle part 22 side is defined as the lower side, and the direction in which the handle part 22 extends from the body part 21 is defined as the vertical direction. Further, a direction orthogonal to the front-rear direction and the up-down direction is defined as the left-right direction.
 胴体部21内の前側位置には、ハンマ部4及びアンビル部5が内蔵される金属製のハンマケース24が配置されている。ハンマケース24は、前方に向かうに従って徐々に径が細くなる略漏斗形状を成しており、前端部分には開口24aが形成され、開口24aを画成する内壁にはメタル部24Aが設けられている。 A metal hammer case 24 in which the hammer part 4 and the anvil part 5 are incorporated is disposed at the front side position in the body part 21. The hammer case 24 has a substantially funnel shape in which the diameter gradually decreases toward the front, an opening 24a is formed at the front end portion, and a metal portion 24A is provided on the inner wall that defines the opening 24a. Yes.
 また、胴体部21には、後述のファン32により胴体部21内に外気を吸入・排出する複数の吸気口21a及び排気口21bが形成されている(図1)。当該外気によりモータ3は冷却される。また、モータ3の後側には、インバータ回路6が設けられている。 Also, the body portion 21 is formed with a plurality of intake ports 21a and exhaust ports 21b through which a later-described fan 32 sucks and discharges outside air into the body portion 21 (FIG. 1). The motor 3 is cooled by the outside air. An inverter circuit 6 is provided on the rear side of the motor 3.
 ハンドル部22は、胴体部21の前後方向略中央位置から下側に向けて延出され胴体部21と一体に構成されている。ハンドル部22の上部かつ前側位置には、トリガ25が設けられている。トリガ25の後方には、モータ3の回転方向を切替える正逆切替レバー28が設けられている。 The handle portion 22 extends downward from a substantially central position in the front-rear direction of the body portion 21 and is configured integrally with the body portion 21. A trigger 25 is provided above the handle portion 22 and at the front side position. A forward / reverse switching lever 28 for switching the rotation direction of the motor 3 is provided behind the trigger 25.
 基板収容部23には、電子パルスドライバ1を制御する制御部7が設けられている。基板収容部23には、電池26が着脱可能に設けられている。電池26は、基板収容部23の左右方向の両側面に設けられた着脱スイッチ23Aにより基板収容部23に着脱される。図1に示すように、基板収容部23の左側面には、電子パルスドライバ1の制御モードを切り替えるモード切替パネル27が設けられている。モード切替パネル27は、押下することにより制御モードを切替えるモード切替スイッチ27A及びモード切替スイッチ27Aの押下に応じて設定された制御モードが点灯するモード表示ランプ27Bが設けられている。本実施の形態の電子パルスドライバ1では、AからDまで4つの制御モードを設定することができる。 The substrate housing unit 23 is provided with a control unit 7 that controls the electronic pulse driver 1. A battery 26 is detachably provided in the substrate housing part 23. The battery 26 is attached / detached to / from the substrate housing portion 23 by attachment / detachment switches 23A provided on both side surfaces of the substrate housing portion 23 in the left-right direction. As shown in FIG. 1, a mode switching panel 27 that switches the control mode of the electronic pulse driver 1 is provided on the left side surface of the substrate housing portion 23. The mode switching panel 27 is provided with a mode switching switch 27A that switches the control mode when pressed, and a mode display lamp 27B that lights a control mode that is set according to the pressing of the mode switching switch 27A. In the electronic pulse driver 1 of the present embodiment, four control modes A to D can be set.
 図2に示すように、モータ3は、出力軸部31を有するロータ3Aと、ロータ3Aと対向配置されたステータ3Bとから主に構成されるブラシレスモータであり、出力軸部31の軸方向が前後方向と一致するように胴体部21内に配置されている。ロータ3Aは永久磁石3Cを備えており、ステータ3Bは永久磁石3Cと対向するコイル3Dを備えている(図5)。出力軸部31は、ロータ3Aの前後に突出しており、その突出した箇所でベアリングにより胴体部21に回転可能に支承されている。出力軸部31の前側に突出している箇所には、出力軸部31と同軸一体回転するファン32が設けられており、更に、当該箇所の最前端位置には、ピニオンギヤ31Aが出力軸部31と同軸一体回転するように設けられている。 As shown in FIG. 2, the motor 3 is a brushless motor mainly composed of a rotor 3A having an output shaft portion 31 and a stator 3B arranged to face the rotor 3A. It arrange | positions in the trunk | drum 21 so that it may correspond with the front-back direction. The rotor 3A includes a permanent magnet 3C, and the stator 3B includes a coil 3D that faces the permanent magnet 3C (FIG. 5). The output shaft portion 31 protrudes forward and backward of the rotor 3A, and is rotatably supported on the body portion 21 by a bearing at the protruding portion. A fan 32 that rotates coaxially and integrally with the output shaft portion 31 is provided at a location protruding to the front side of the output shaft portion 31. Further, a pinion gear 31A is connected to the output shaft portion 31 at the foremost end position of the location. It is provided so as to rotate coaxially.
 インバータ回路6は、インバータ回路基板61と、インバータ回路基板61に設けられ後方に突出する複数のスイッチング素子62と、モータ3の位置を検出するためのホール素子63から構成される。スイッチング素子62の近傍に吸気口21aが位置しているため、スイッチング素子62を効率的に冷却することができる。 The inverter circuit 6 includes an inverter circuit board 61, a plurality of switching elements 62 provided on the inverter circuit board 61 and protruding rearward, and a hall element 63 for detecting the position of the motor 3. Since the air inlet 21a is located in the vicinity of the switching element 62, the switching element 62 can be efficiently cooled.
 ハンマ部4は、ギヤ機構41と、ハンマ42とから主に構成されており、ハンマケース24内のモータ3の前側に内蔵されている。ギヤ機構41は、アウターギヤ41Aを有する遊星歯車機構41Bから構成されている。アウターギヤ41Aは、ハンマケース24内に内蔵されると共に胴体部21に固定されている。遊星歯車機構41Bは、アウターギヤ41Aと噛合するようにアウターギヤ41A内に配置され、ピニオンギヤ31Aを太陽ギヤとして用いている。 The hammer section 4 is mainly composed of a gear mechanism 41 and a hammer 42 and is built in the front side of the motor 3 in the hammer case 24. The gear mechanism 41 includes a planetary gear mechanism 41B having an outer gear 41A. The outer gear 41 </ b> A is built in the hammer case 24 and is fixed to the body portion 21. The planetary gear mechanism 41B is disposed in the outer gear 41A so as to mesh with the outer gear 41A, and uses the pinion gear 31A as a sun gear.
 ハンマ42は、遊星歯車機構41Bの遊星キャリアの前面に規定されており、前側に向けて突出すると共に遊星歯車機構41B遊星キャリアの回転中心からずれた位置に配置された第1係合突起42Aと、遊星歯車機構41Bの遊星キャリアの回転中心を挟んで第1係合突起42Aと対極に位置する図示せぬ第2係合突起とを有している。 The hammer 42 is defined on the front surface of the planet carrier of the planetary gear mechanism 41B, protrudes toward the front side, and is disposed at a position shifted from the rotation center of the planetary gear mechanism 41B planet carrier. The planetary gear mechanism 41B has a first engagement protrusion 42A and a second engagement protrusion (not shown) located at the counter electrode across the rotation center of the planet carrier.
 アンビル部5は、ハンマ部4の前方に配置されており、先端工具装着部51と、アンビル52とから主に構成されている。先端工具装着部51は、円筒状に構成され、ハンマケース24の開口24a内にメタル部24Aを介して回転可能に支持されている。先端工具装着部51には、先端工具53が挿入される穿孔51aが前後方向へ穿設されており、前端部分には、先端工具53を着脱可能に保持するチャック51Aが設けられている。 The anvil portion 5 is disposed in front of the hammer portion 4 and mainly includes a tip tool mounting portion 51 and an anvil 52. The tip tool mounting portion 51 is formed in a cylindrical shape and is rotatably supported in the opening 24a of the hammer case 24 via a metal portion 24A. The tip tool mounting portion 51 is provided with a perforation 51a into which the tip tool 53 is inserted in the front-rear direction, and a chuck 51A for detachably holding the tip tool 53 is provided at the front end portion.
 アンビル52は、先端工具装着部51の後方であってハンマケース24内に先端工具装着部51と一体に構成されており、先端工具装着部51の回転中心に対して対極に配置され後側に向けて突出した第1被係合突起52A及び第2被係合突起52Bを有している。ハンマ42が回転すると、第1係合突起42Aと第1被係合突起52Aとが衝突すると同時に、図示せぬ第2係合突起と第2被係合突起52Bとが衝突し、これにより、ハンマ42の回転力がアンビル52に伝達される。 The anvil 52 is configured to be integrated with the tip tool mounting portion 51 in the hammer case 24 at the rear of the tip tool mounting portion 51, and is disposed opposite to the rotation center of the tip tool mounting portion 51. It has the 1st to-be-engaged protrusion 52A and the 2nd to-be-engaged protrusion 52B which protruded toward. When the hammer 42 rotates, the first engagement protrusion 42A and the first engagement protrusion 52A collide with each other, and at the same time, the second engagement protrusion (not shown) and the second engagement protrusion 52B collide, The rotational force of the hammer 42 is transmitted to the anvil 52.
 制御部7は、制御回路基板71と、制御回路基板71の上面に設けられたマイコン83と、制御回路基板71の下面に設けられた接続部72と、を主に備えている。接続部72は、制御回路基板71の下面から下方に突出するように設けられていて、通信ケーブル8(図6)を接続可能である。図3及び図4に示すように、接続部72は、蓋73及び接続端子74を備えており、接続端子74は蓋73によって開閉可能に構成されている。締結作業時は、図3に示すように、蓋73で接続端子74を閉塞することで、接続端子74に粉塵等が付着することを防止できる。外部機器9との接続時には、図4に示すように、蓋73を開けることで通信ケーブル8を接続端子74と接続することができる。接続部72は、本発明の通信手段に相当する。 The control unit 7 mainly includes a control circuit board 71, a microcomputer 83 provided on the upper surface of the control circuit board 71, and a connection part 72 provided on the lower surface of the control circuit board 71. The connecting portion 72 is provided so as to protrude downward from the lower surface of the control circuit board 71, and can connect the communication cable 8 (FIG. 6). As shown in FIGS. 3 and 4, the connection portion 72 includes a lid 73 and a connection terminal 74, and the connection terminal 74 is configured to be openable and closable by the lid 73. At the time of the fastening operation, as shown in FIG. 3, it is possible to prevent dust and the like from adhering to the connection terminal 74 by closing the connection terminal 74 with the lid 73. When connecting to the external device 9, the communication cable 8 can be connected to the connection terminal 74 by opening the lid 73 as shown in FIG. 4. The connection unit 72 corresponds to the communication unit of the present invention.
 図5に示すように、インバータ回路6は、3相ブリッジ形式に接続されたFET等の6個のスイッチング素子62-1~62-6から構成されている。 As shown in FIG. 5, the inverter circuit 6 is composed of six switching elements 62-1 to 62-6 such as FETs connected in a three-phase bridge format.
 制御部7は、電池26に接続されると共にトリガ25、インバータ回路6、モード切替スイッチ27A、モード表示ランプ27B、正逆切替レバー28、接続端子74に接続されている。また、制御部7は、電流検出回路75と、スイッチ操作検出回路76と、印加電圧設定回路77と、回転方向設定回路78と、モード設定回路79と、回転子位置検出回路80と、回転数検出回路81と、LED点灯回路82と、を備えている。マイコン83は、電子パルスドライバ1を制御するための制御モード及び各種パラメータを記憶するプログラム格納部83Aを備えている。プログラム格納部83Aは、本発明の記憶部に相当する。 The control unit 7 is connected to the battery 26 and connected to the trigger 25, the inverter circuit 6, the mode changeover switch 27A, the mode display lamp 27B, the forward / reverse changeover lever 28, and the connection terminal 74. The control unit 7 also includes a current detection circuit 75, a switch operation detection circuit 76, an applied voltage setting circuit 77, a rotation direction setting circuit 78, a mode setting circuit 79, a rotor position detection circuit 80, and a rotation speed. A detection circuit 81 and an LED lighting circuit 82 are provided. The microcomputer 83 includes a program storage unit 83A that stores a control mode for controlling the electronic pulse driver 1 and various parameters. The program storage unit 83A corresponds to the storage unit of the present invention.
 ホール素子63は、ロータ3Aの永久磁石3Cに対向する位置に設けられており、ロータ3Aの周方向に所定の間隔毎(例えば角度60°毎)に配置されている。 The hall element 63 is provided at a position facing the permanent magnet 3C of the rotor 3A, and is arranged at predetermined intervals (for example, every angle of 60 °) in the circumferential direction of the rotor 3A.
 本実施の形態では、モータ3は、3相のブラシレスDCモータであり、ロータ3Aは複数組(本実施の形態では2組)のN極とS極を含む永久磁石3Cを有し、コイル3Dはスター結線された3相の固定子巻線U、V、Wである。 In the present embodiment, the motor 3 is a three-phase brushless DC motor, and the rotor 3A has a permanent magnet 3C including a plurality of sets (two sets in the present embodiment) N poles and S poles, and a coil 3D. Are star-connected three-phase stator windings U, V, and W.
 インバータ回路6の各スイッチング素子62-1~62-6のゲートは、制御信号出力回路84に接続され、各スイッチング素子62-1~62-6のドレイン又はソースは、ステータ3Bの固定子巻線U、V、Wに接続されている。6個のスイッチング素子62-1~62-6は、マイコン83から制御信号出力回路84を介して入力されるスイッチング素子駆動信号によってスイッチング動作を行い、インバータ回路6に印加される電池26の直流電圧を3相(U相、V相及びW相)電圧Vu、Vv、Vwとして固定子巻線U、V、Wに電力を供給する。詳細には、制御信号出力回路84から正電源側スイッチング素子62-1、62-2、62-3に入力される出力切替信号H1、H2、H3により、通電される固定子巻線U、V、W、すなわち、ロータ3Aの回転方向が制御される。また、制御信号出力回路84から負電源側スイッチング素子62-4、62-5、62-6に入力されるパルス幅変調信号(PWM信号)H4、H5、H6により、固定子巻線U、V、Wへの電力供給量、すなわち、ロータ3Aの回転速度が制御される。 The gates of the switching elements 62-1 to 62-6 of the inverter circuit 6 are connected to the control signal output circuit 84, and the drains or sources of the switching elements 62-1 to 62-6 are the stator windings of the stator 3B. Connected to U, V, W. The six switching elements 62-1 to 62-6 perform a switching operation by a switching element drive signal input from the microcomputer 83 via the control signal output circuit 84, and are applied to the inverter circuit 6 by the DC voltage of the battery 26. Is supplied to the stator windings U, V, and W as three-phase (U-phase, V-phase, and W-phase) voltages Vu, Vv, and Vw. Specifically, the stator windings U, V energized by the output switching signals H1, H2, H3 input from the control signal output circuit 84 to the positive power supply side switching elements 62-1, 62-2, 62-3. , W, that is, the rotation direction of the rotor 3A is controlled. Further, stator windings U, V are obtained by pulse width modulation signals (PWM signals) H4, H5, H6 inputted from the control signal output circuit 84 to the negative power supply side switching elements 62-4, 62-5, 62-6. , The amount of power supplied to W, that is, the rotational speed of the rotor 3A is controlled.
 電流検出回路75は、抵抗75Aによってモータ3に供給される電流値を検出し、マイコン83に出力する。スイッチ操作検出回路76は、トリガ25の操作の有無を検出してマイコン83に出力する。印加電圧設定回路77は、トリガ25の操作量に応じた信号をマイコン83に出力する。 The current detection circuit 75 detects the current value supplied to the motor 3 by the resistor 75A and outputs it to the microcomputer 83. The switch operation detection circuit 76 detects the presence or absence of the operation of the trigger 25 and outputs it to the microcomputer 83. The applied voltage setting circuit 77 outputs a signal corresponding to the operation amount of the trigger 25 to the microcomputer 83.
 回転方向設定回路78は、正逆切替レバー28の切り替えを検出すると、モータ3の回転方向を切り替えるための信号をマイコン83に送信する。モード設定回路79は、モード切替スイッチ27Aによって設定された制御モードをマイコン83に出力する。マイコン83は、モード設定回路79から入力された制御モードに基づいて電子パルスドライバ1を制御する。 When the rotation direction setting circuit 78 detects the switching of the forward / reverse switching lever 28, the rotation direction setting circuit 78 transmits a signal for switching the rotation direction of the motor 3 to the microcomputer 83. The mode setting circuit 79 outputs the control mode set by the mode changeover switch 27A to the microcomputer 83. The microcomputer 83 controls the electronic pulse driver 1 based on the control mode input from the mode setting circuit 79.
 回転子位置検出回路80は、ホール素子63からの信号に基づきロータ3Aの回転位置を検出し、マイコン83に出力する。回転数検出回路81は、回転子位置検出回路80からの信号に基づきロータ3Aの回転数を検出し、マイコン83へ出力する。 The rotor position detection circuit 80 detects the rotational position of the rotor 3A based on the signal from the hall element 63 and outputs it to the microcomputer 83. The rotation speed detection circuit 81 detects the rotation speed of the rotor 3 </ b> A based on a signal from the rotor position detection circuit 80 and outputs the rotation speed to the microcomputer 83.
 マイコン83は、図示していないが、処理プログラムとデータに基づいて駆動信号を出力するための中央処理装置(CPU)と、データを一時記憶するためのRAMと、タイマとを備えている。マイコン83は、回転方向設定回路78と回転子位置検出回路80からの信号に基づき、出力切替信号H1、H2、H3を、印加電圧設定回路77からの信号に基づきパルス幅変調信号(PWM信号)H4、H5、H6を生成し、制御信号出力回路84に出力する。なお、PWM信号を正電源側スイッチング素子62-1~62-3に出力し、出力切替信号を負電源側スイッチング素子62-4~62-6に出力してもよい。 Although not shown, the microcomputer 83 includes a central processing unit (CPU) for outputting a drive signal based on a processing program and data, a RAM for temporarily storing data, and a timer. The microcomputer 83 outputs the output switching signals H1, H2, and H3 based on the signals from the rotation direction setting circuit 78 and the rotor position detection circuit 80, and the pulse width modulation signal (PWM signal) based on the signal from the applied voltage setting circuit 77. H4, H5, and H6 are generated and output to the control signal output circuit 84. The PWM signal may be output to the positive power supply side switching elements 62-1 to 62-3, and the output switching signal may be output to the negative power supply side switching elements 62-4 to 62-6.
 プログラム格納部(以下、ROM)83Aには、モータ3を制御するための制御モード(制御プログラム)が少なくとも4つ記憶されている。そして、ROM83Aに記憶された少なくとも4つの制御モード内の4つの制御モードが、選択可能な制御モードとしてRAMに記憶されている。モード切替スイッチ27Aにより4つの制御モードから選択された制御モードが、現在選択されている制御モードとしてモード表示ランプ27Bに表示される。CPUは、選択された制御モードに対応する制御モードをROM83Aから読み出してモータ3を制御する。 The program storage unit (hereinafter referred to as ROM) 83A stores at least four control modes (control programs) for controlling the motor 3. Then, four control modes among at least four control modes stored in the ROM 83A are stored in the RAM as selectable control modes. The control mode selected from the four control modes by the mode switch 27A is displayed on the mode display lamp 27B as the currently selected control mode. The CPU reads out a control mode corresponding to the selected control mode from the ROM 83A and controls the motor 3.
 通信ケーブル8は、図6に示すように、通信ケーブル8の一端に設けられ接続端子74に接続可能な端子ボックス85と、端子ボックス85に収容された通信変換回路86と、通信ケーブル8の他端に設けられ外部機器9と接続可能な外部機器接続部87とを備えている。通信変換回路86は、電子パルスドライバ1から出力された通信信号を外部機器9でも読取可能な信号に変換するための回路である。外部機器接続部87は、例えば、USB(ユニバーサル・シリアル・バス)やシリアルケーブル等である。 As shown in FIG. 6, the communication cable 8 includes a terminal box 85 provided at one end of the communication cable 8 and connectable to the connection terminal 74, a communication conversion circuit 86 housed in the terminal box 85, and the communication cable 8. An external device connection portion 87 provided at the end and connectable to the external device 9 is provided. The communication conversion circuit 86 is a circuit for converting the communication signal output from the electronic pulse driver 1 into a signal that can be read by the external device 9. The external device connection unit 87 is, for example, a USB (Universal Serial Bus) or a serial cable.
 外部機器9は、表示部91と、入力部92と、外部機器接続部87と接続可能な被接続部93とを備えている。外部機器9は、例えばPC(パーソナルコンピュータ)であって、図示せぬCPU、ROM、RAM、等を備えている。外部機器9は、通信ケーブル8を介して電子パルスドライバ1と接続することにより、電子パルスドライバ1と通信することができる。電子パルスドライバ1が外部機器9と接続されているときは、電池26は取り外された状態であるが、電子パルスドライバ1には通信ケーブル8を介して外部機器9から電源が供給されている。従って、モード切替パネル27のモード表示ランプ27Bは、現在選択されている制御モードが点灯した状態である。外部機器9には、電子パルスドライバ1の制御モードを設定するためのアプリケーションソフトウェアがROMに記憶されており、当該ソフトウェアを起動すると、図7に示すウィンドウ94が表示される。 The external device 9 includes a display unit 91, an input unit 92, and a connected unit 93 that can be connected to the external device connection unit 87. The external device 9 is a PC (personal computer), for example, and includes a CPU, a ROM, a RAM, and the like (not shown). The external device 9 can communicate with the electronic pulse driver 1 by connecting to the electronic pulse driver 1 via the communication cable 8. When the electronic pulse driver 1 is connected to the external device 9, the battery 26 is in a removed state, but power is supplied to the electronic pulse driver 1 from the external device 9 via the communication cable 8. Therefore, the mode display lamp 27B of the mode switching panel 27 is in a state where the currently selected control mode is lit. In the external device 9, application software for setting the control mode of the electronic pulse driver 1 is stored in the ROM, and when the software is started, a window 94 shown in FIG. 7 is displayed.
 ウィンドウ94は、ボタン領域95と、クラッチモードパラメータ設定領域96と、クラッチモードグラフ表示領域97と、通常打撃パラメータ設定領域98と、補正打撃パラメータ設定領域99と、パルスモードグラフ表示領域100と、を備えている。ウィンドウ94の右上には、終了ボタン94Aが設けられている。クラッチモードグラフ表示領域97及びパルスモードグラフ表示領域100は、本発明のグラフ表示部に相当する。外部機器9のCPU及びウィンドウ94は、本発明の設定部に相当する。 The window 94 includes a button area 95, a clutch mode parameter setting area 96, a clutch mode graph display area 97, a normal hit parameter setting area 98, a corrected hit parameter setting area 99, and a pulse mode graph display area 100. I have. On the upper right of the window 94, an end button 94A is provided. The clutch mode graph display area 97 and the pulse mode graph display area 100 correspond to the graph display section of the present invention. The CPU and window 94 of the external device 9 correspond to the setting unit of the present invention.
 本実施の形態の制御モードは、主にドリルモードと、クラッチモードと、パルスモードに分類される。 The control mode of this embodiment is mainly classified into a drill mode, a clutch mode, and a pulse mode.
 ドリルモードとは、ハンマ42とアンビル52とを一体的に回転させるモードであって、主に、木ネジを締結する場合等に用いられる。モータ3に流れる電流は締結が進むにつれて増加する。 The drill mode is a mode in which the hammer 42 and the anvil 52 are integrally rotated, and is mainly used when a wood screw is fastened. The current flowing through the motor 3 increases as the fastening proceeds.
 クラッチモードとは、ハンマ42とアンビル52とを一体的に回転させた状態で先端工具53が所定回転数回転した後、予め設定されたトルクで先端工具53を回転させるモードであって、主に、締結後に外観に現れる留め金具を締結する場合等、正確なトルクで締結することを重要視する場合に用いられる。 The clutch mode is a mode in which the tip tool 53 is rotated with a preset torque after the tip tool 53 has rotated a predetermined number of revolutions while the hammer 42 and the anvil 52 are integrally rotated. It is used when attaching importance to accurate torque, such as when fastening fasteners that appear on the exterior after fastening.
 パルスモードとは、ハンマ42とアンビル52とを一体的に回転させた状態でモータ3に流れる電流が所定値(所定トルク)まで増加した場合にモータ3の正転及び逆転を交互に切り換えて打撃により留め金具を締結するモードであって、主に、外観に現れない場所で用いられる長尺のネジを締結する場合等に用いられる。これにより、強力な締結力を供給することができると同時に、加工部材からの反発力を低減することができる。第1の実施の形態のアプリケーションソフトウェアでは、クラッチモード及びパルスモードの各パラメータを設定することができる。 In the pulse mode, when the current flowing in the motor 3 increases to a predetermined value (predetermined torque) while the hammer 42 and the anvil 52 are integrally rotated, the forward rotation and the reverse rotation of the motor 3 are alternately switched and hit. This mode is used to fasten a fastener, and is mainly used for fastening a long screw used in a place that does not appear in the appearance. Thereby, a strong fastening force can be supplied, and at the same time, a repulsive force from the processed member can be reduced. In the application software of the first embodiment, each parameter of the clutch mode and the pulse mode can be set.
 ボタン領域95には、通信ボタン95Aと、読出ボタン95Bと、設定値読込ボタン95Cと、保存ボタン95Dと、設定送信ボタン95Eとが設けられている。通信ボタン95Aは、ソフトウェア起動直後は「通信」と表示されており、押下すると外部機器9は電子パルスドライバ1との通信を開始する。電子パルスドライバ1と通信した状態のときは「切断」と表示され、押下すると外部機器9は電子パルスドライバ1との通信を遮断する。 In the button area 95, a communication button 95A, a read button 95B, a set value read button 95C, a save button 95D, and a set send button 95E are provided. The communication button 95 </ b> A is displayed as “communication” immediately after the software is started, and when pressed, the external device 9 starts communication with the electronic pulse driver 1. When in communication with the electronic pulse driver 1, “disconnect” is displayed, and when pressed, the external device 9 interrupts communication with the electronic pulse driver 1.
 読出ボタン95Bは、外部機器9のROM内に保存された各種パラメータを読み出すためのボタンである。設定値読込ボタン95Cは、電子パルスドライバ1に保存されている各種パラメータを読み込むためのボタンである。設定値読込ボタン95Cを押下すると、領域96-100に電子パルスドライバ1に保存されているパラメータが表示される。具体的には、モード表示ランプ27Bで選択されている制御モードのパラメータが、ウィンドウ94に表示される。保存ボタン95Dは、領域96,98,99の各パラメータを外部機器9のROMに保存するためのボタンである。設定送信ボタン95Eは、領域96、98,99の各パラメータを電子パルスドライバ1に送信するためのボタンである。設定送信ボタン95Eが押下されると、モード表示ランプ27Bで選択されている制御モードの各パラメータがウィンドウ94に表示されているパラメータに更新される。 The read button 95B is a button for reading various parameters stored in the ROM of the external device 9. The set value reading button 95 </ b> C is a button for reading various parameters stored in the electronic pulse driver 1. When the set value reading button 95C is pressed, parameters stored in the electronic pulse driver 1 are displayed in an area 96-100. Specifically, the parameter of the control mode selected by the mode display lamp 27B is displayed on the window 94. The save button 95D is a button for saving each parameter of the areas 96, 98, and 99 in the ROM of the external device 9. The setting transmission button 95E is a button for transmitting each parameter of the regions 96, 98, and 99 to the electronic pulse driver 1. When the setting transmission button 95E is pressed, each parameter of the control mode selected by the mode display lamp 27B is updated to the parameter displayed in the window 94.
 クラッチモードでは、トルクと、初期回転数と、初期回転時速度とをパラメータとして設定することができる。クラッチモードパラメータ設定領域96の上部にある選択ボタン96Aを押下することで、制御モードとしてクラッチモードを選択することができる。トルクは、初期回転数により設定された回転数が経過した後のモータ3の出力トルクを示しており、モータ3の最大出力を100%としたときの割合で設定することができる。トルクは、トルク設定スライドバー96Bを操作するか、又は入力部92によってトルク入力部96Cに数値を入力することにより設定できる。初期回転数とは、ユーザがトリガ25を引いてから先端工具53が回転した総回転数である。つまり、初期回転数とは、電子パルスドライバ1が動作してから先端工具53が何回回転したかという値である。先端工具53の回転数は、回転数検出回路81からの信号を受けてマイコン83が算出する。初期回転数は、初期回転数設定スライドバー96Dを操作するか、又は初期回転数入力部96Eに数値を入力することにより設定できる。初期回転時速度とは、初期回転数により設定された期間のモータ3の回転速度であり、モータ3の最大回転速度を100%としたときの割合で設定することができる。初期回転時速度は、初期回転時速度設定スライドバー96Fを操作するか、又は初期回転時速度入力部96Gに数値を入力することにより設定できる。 In the clutch mode, torque, initial rotation speed, and initial rotation speed can be set as parameters. By pressing a selection button 96A at the top of the clutch mode parameter setting area 96, the clutch mode can be selected as the control mode. The torque indicates the output torque of the motor 3 after the rotation speed set by the initial rotation speed has elapsed, and can be set at a ratio when the maximum output of the motor 3 is 100%. The torque can be set by operating the torque setting slide bar 96B or by inputting a numerical value to the torque input unit 96C through the input unit 92. The initial rotational speed is the total rotational speed at which the tip tool 53 has rotated since the user pulled the trigger 25. That is, the initial rotation speed is a value indicating how many times the tip tool 53 has rotated since the electronic pulse driver 1 was operated. The microcomputer 83 calculates the rotational speed of the tip tool 53 in response to a signal from the rotational speed detection circuit 81. The initial rotational speed can be set by operating the initial rotational speed setting slide bar 96D or by inputting a numerical value into the initial rotational speed input unit 96E. The initial rotation speed is the rotation speed of the motor 3 during the period set by the initial rotation speed, and can be set at a ratio when the maximum rotation speed of the motor 3 is 100%. The initial rotation speed can be set by operating the initial rotation speed setting slide bar 96F or by inputting a numerical value to the initial rotation speed input unit 96G.
 本実施の形態では、クラッチモードグラフ表示領域97に、縦軸がモータ3の回転速度、横軸に先端工具53の回転回数の面グラフが表示される。クラッチモードパラメータ設定領域96では、トルクが52%、初期回転数が24回、初期回転時速度が75%と設定されている。これは、モータ3が先端工具53が24回転するまでは速度75%で回転し、その後はトルク52%で回転することを意味している。クラッチモードグラフ表示領域97のグラフでは、回転回数が24を境にモータ3の速度が低下している。一般的なネジ締め作業を行う場合は、ネジ締め時間短縮のためにネジが着座するまでは先端工具53を高速回転させ、着座してからは所望のトルクで締結させる。本実施の形態では、初期回転数が設定可能であるため、ネジの条数に応じて初期回転数を設定することにより、ネジの着座の前後でモータ3の回転数及びトルクを変更させることができる。これにより、ネジ締め作業時間を短縮し作業効率を改善することができる。 In the present embodiment, the clutch mode graph display area 97 displays a surface graph of the rotation speed of the motor 3 on the vertical axis and the number of rotations of the tip tool 53 on the horizontal axis. In the clutch mode parameter setting area 96, the torque is set to 52%, the initial rotational speed is 24 times, and the initial rotational speed is set to 75%. This means that the motor 3 rotates at a speed of 75% until the tip tool 53 rotates 24 times, and thereafter rotates at a torque of 52%. In the graph of the clutch mode graph display area 97, the speed of the motor 3 decreases with the number of rotations being 24. When performing a general screw tightening operation, the tip tool 53 is rotated at a high speed until the screw is seated to shorten the screw tightening time, and is tightened with a desired torque after the seat is seated. In this embodiment, since the initial rotational speed can be set, the rotational speed and torque of the motor 3 can be changed before and after the screw is seated by setting the initial rotational speed in accordance with the number of screws. it can. As a result, it is possible to shorten the screw tightening operation time and improve the work efficiency.
 パルスモードは、通常打撃と補正打撃とを備えており、通常打撃及び補正打撃のそれぞれにおいてトルクと、打数と、打周期とをパラメータとして設定することができる。パルスモードでは、補正打撃の使用の可否についても設定することができ、通常打撃のみの動作も可能である。通常打撃パラメータ設定領域98の上部にある選択ボタン98Aを押下することで、制御モードとしてパルスモードを選択することができる。トルクとは、モータ3が正転及び逆転を交互に切り換えることによりハンマ42がアンビル52を打撃する際のモータ3のトルクであり、モータ3の最大出力を100%としたときの割合で設定することができる。トルクは、トルク設定スライドバー98Bを操作するか、又はトルク入力部98Cに数値を入力することにより設定できる。打数とは、ハンマ42がアンビル52を打撃する回数であり、設定された打数が終了すると通常打撃から補正打撃に移行する。マイコン83は、電流検出回路75からの電流値に基づいて、打撃を検出する。補正打撃を行わない場合には、モータ3は自動的に停止する。打数は、打数設定スライドバー98Dを操作するか、又は打数入力部98Eに数値を入力することにより設定できる。打周期とは、ハンマ42がアンビル52を打撃する周期である。打周期は、締結作業時の電子パルスドライバ1のフィーリングに関連したパラメータであって、ハンマ42がアンビル52を打撃するときの最短周期を100%としたときの割合で設定することができる。最大周期は、モータ3の特性、ハンマ42及びアンビル52の構造等により決定される。打周期は、打周期設定スライドバー98Fを操作するか、又は打周期入力部98Gに数値を入力することにより設定できる。 The pulse mode includes normal hitting and corrected hitting, and the torque, the number of hits, and the hitting cycle can be set as parameters in normal hitting and corrected hitting, respectively. In the pulse mode, it is possible to set whether or not to use the correction hit, and it is possible to perform only the normal hit operation. By pressing the selection button 98A at the top of the normal hitting parameter setting area 98, the pulse mode can be selected as the control mode. The torque is the torque of the motor 3 when the hammer 42 strikes the anvil 52 when the motor 3 alternately switches between forward rotation and reverse rotation, and is set at a ratio when the maximum output of the motor 3 is 100%. be able to. The torque can be set by operating the torque setting slide bar 98B or by inputting a numerical value to the torque input unit 98C. The number of hits is the number of times the hammer 42 hits the anvil 52. When the set number of hits is completed, the normal hit is changed to the corrected hit. The microcomputer 83 detects an impact based on the current value from the current detection circuit 75. When the correction hit is not performed, the motor 3 automatically stops. The number of strokes can be set by operating the stroke number setting slide bar 98D or by inputting a numerical value to the stroke number input unit 98E. The striking cycle is a cycle in which the hammer 42 strikes the anvil 52. The striking cycle is a parameter related to the feeling of the electronic pulse driver 1 during the fastening operation, and can be set at a ratio when the shortest cycle when the hammer 42 strikes the anvil 52 is 100%. The maximum cycle is determined by the characteristics of the motor 3, the structure of the hammer 42 and the anvil 52, and the like. The striking cycle can be set by operating the striking cycle setting slide bar 98F or by inputting a numerical value to the striking cycle input unit 98G.
 補正打撃パラメータ設定領域99では、上部にある選択ボタン99Aを選択することにより補正打撃を行うことができる。補正打撃とは、ハンマ42がアンビル52を打数入力部98Eに設定された打数だけ打撃した後に行う打撃である。補正打撃を行うことにより、通常打撃を行った後のネジの加工部材に対する緩みを防止し、トルク入力部98Cで設定されたトルクにより近い値でネジの締結作業を行うことができる。補正打撃では、一般的には通常打撃と比較して小さいトルクで複数回打撃動作が行われる。補正打撃のトルクは、トルク設定スライドバー99Bを操作するか、又はトルク入力部99Cに数値を入力することにより設定できる。補正打撃の打数は、打数設定スライドバー99Dを操作するか、又は打数入力部99Eに数値を入力することにより設定できる。補正打撃の打周期は、打周期設定スライドバー99Fを操作するか、又は打周期入力部99Gに数値を入力することにより設定できる。 In the correction hitting parameter setting area 99, the correction hitting can be performed by selecting the selection button 99A at the top. The correction batting is a batting performed after the hammer 42 bakes the anvil 52 by the batting number set in the batting number input unit 98E. By performing the correction hit, loosening of the screw after the normal hit with respect to the processed member can be prevented, and the screw can be tightened at a value closer to the torque set by the torque input portion 98C. In the correction hitting, the hitting operation is generally performed a plurality of times with a smaller torque than in the normal hitting. The correction hitting torque can be set by operating the torque setting slide bar 99B or by inputting a numerical value to the torque input unit 99C. The number of hits for correction batting can be set by operating the batting number setting slide bar 99D or by inputting a numerical value into the batting number input unit 99E. The hitting period of the corrected hitting can be set by operating the hitting period setting slide bar 99F or by inputting a numerical value into the hitting period input unit 99G.
 本実施の形態では、パルスモードグラフ表示領域100に、縦軸が打周期、横軸がモータ3のトルクの散布図が表示される。グラフ中において、実線で囲まれている領域Aは、モータ3、ハンマ42の形状、アンビル52の形状等により定まるパラメータの設定範囲である。領域A内にある点の1つは通常打撃を示し、他は補正打撃を示している。 In the present embodiment, in the pulse mode graph display area 100, a vertical axis represents a striking cycle and a horizontal axis represents a scatter diagram of torque of the motor 3. In the graph, a region A surrounded by a solid line is a parameter setting range determined by the shape of the motor 3, the hammer 42, the shape of the anvil 52, and the like. One of the points in the area A indicates a normal hit, and the other indicates a corrected hit.
 図8に外部機器9にインストールされたアプリケーションソフトウェアを起動した後のフローチャートを示す。アプリケーションソフトウェアが起動されると、まず入力待機状態となる(S1)。次に、終了ボタン94Aが押下されたか否かを判断する(S2)。終了ボタン94Aが押下された場合には(S2:YES)、アプリケーションは終了する。終了ボタン94Aが押下されない場合には(S2:NO)、通信ボタン95Aが押下されたか否かを判断する(S3)。 FIG. 8 shows a flowchart after starting the application software installed in the external device 9. When the application software is activated, first, it enters an input standby state (S1). Next, it is determined whether or not the end button 94A is pressed (S2). If the end button 94A is pressed (S2: YES), the application ends. If the end button 94A is not pressed (S2: NO), it is determined whether or not the communication button 95A is pressed (S3).
 通信ボタン95Aが押下されない場合には(S3:NO)、入力待機状態に戻る(S1)。通信ボタン95Aが押下された場合には(S3:YES)、電子パルスドライバ1が外部機器9に接続されているか否かを判断する(S4)。電子パルスドライバ1が外部機器9に接続されていない場合には(S4:NO)、入力待機状態に戻る(S1)。電子パルスドライバ1が外部機器9に接続されている場合には(S4:YES)、電子パルスドライバ1と外部機器9との接続処理を行う。電子パルスドライバ1と外部機器9との接続処理が完了すると、通信ボタン95Aの表示が「通信」から「切断」となり、再び入力待機状態となる(S6)。 If the communication button 95A is not pressed (S3: NO), the process returns to the input standby state (S1). When the communication button 95A is pressed (S3: YES), it is determined whether or not the electronic pulse driver 1 is connected to the external device 9 (S4). When the electronic pulse driver 1 is not connected to the external device 9 (S4: NO), it returns to the input standby state (S1). When the electronic pulse driver 1 is connected to the external device 9 (S4: YES), connection processing between the electronic pulse driver 1 and the external device 9 is performed. When the connection processing between the electronic pulse driver 1 and the external device 9 is completed, the display of the communication button 95A changes from “communication” to “disconnect”, and again enters an input standby state (S6).
 次に、ボタン領域95の複数のボタンのうちいずれのボタンが押下されたかを判断する。具体的には、設定送信ボタン95Eが押下されたか否かを判断する(S7)。押下された場合は(S7:YES)、この時点で領域96,98,99に表示されているパラメータを電子パルスドライバ1に送信する(S8)。これにより、モード切替パネル27のモード表示ランプ27Bが点灯しているモードが更新される。その後、再びS6に戻り入力待機状態となる。押下されなかった場合には(S7:NO)、保存ボタン95Dが押下されたか否かを判断する(S9)。 Next, it is determined which of the plurality of buttons in the button area 95 has been pressed. Specifically, it is determined whether or not the setting transmission button 95E has been pressed (S7). If pressed (S7: YES), the parameters displayed in the areas 96, 98, 99 at this time are transmitted to the electronic pulse driver 1 (S8). Thereby, the mode in which the mode display lamp 27B of the mode switching panel 27 is lit is updated. Thereafter, the process returns to S6 again to enter the input standby state. If not pressed (S7: NO), it is determined whether or not the save button 95D is pressed (S9).
 保存ボタン95Dが押下された場合は(S9:YES)、この時点で領域96,98,99に表示されている各パラメータを外部機器9のROMに保存する(S10)。その後、再びS6に戻り入力待機状態となる。押下されなかった場合には(S9:NO)、設定値読込ボタン95Cが押下されたか否かを判断する(S11)。押下された場合には(S11:YES)、電子パルスドライバ1のROM83Aに保存されている4つのモードのうちモード設定回路79によって現在電子パルスドライバ1に設定されているモードのパラメータを読込む(S12)。そして、電子パルスドライバ1から読込んだ各パラメータを領域96-100に反映させる(S13)。その後、再びS6に戻り入力待機状態となる。設定値読込ボタン95Cが押下されなかった場合には(S11:NO)、読出ボタン95Bが押下されたか否かを判断する(S14)。 When the save button 95D is pressed (S9: YES), each parameter displayed in the areas 96, 98, 99 at this time is saved in the ROM of the external device 9 (S10). Thereafter, the process returns to S6 again to enter the input standby state. If not pressed (S9: NO), it is determined whether or not the set value reading button 95C has been pressed (S11). When pressed (S11: YES), the mode setting circuit 79 reads the parameters of the mode currently set in the electronic pulse driver 1 among the four modes stored in the ROM 83A of the electronic pulse driver 1 (S11: YES). S12). Then, each parameter read from the electronic pulse driver 1 is reflected in the area 96-100 (S13). Thereafter, the process returns to S6 again to enter the input standby state. If the set value reading button 95C has not been pressed (S11: NO), it is determined whether or not the read button 95B has been pressed (S14).
 読出ボタン95Bが押下された場合には(S14:YES)、外部機器9のROMに保存されている複数の制御モードのうち指定された制御モードのパラメータを読み出し(S15)、領域96-100に反映させる(S13)。その後、再びS6に戻り入力待機状態となる。読出ボタン95Bが押下されなかった場合には(S14:NO)、通信ボタン95Aが「切断」の表示の状態で押下されたか否かを判断する(S16)。押下された場合には(S16:YES)、電子パルスドライバ1と外部機器9との通信の切断処理を行う(S17)。その後、再びS1に戻り入力待機状態となる。押下されなかった場合には(S16:NO)、終了ボタン94Aが押下されたか否かを判断する(S18)。終了ボタン94Aが押下された場合には(S18:YES)、電子パルスドライバ1と外部機器9との通信の切断処理を行い(S19)、アプリケーションを終了する。押下されなかった場合には(S18:NO)、再びS6に戻り入力待機状態となる。 When the read button 95B is pressed (S14: YES), parameters of the designated control mode among the plurality of control modes stored in the ROM of the external device 9 are read (S15), and the area 96-100 is read. Reflect (S13). Thereafter, the process returns to S6 again to enter the input standby state. If the read button 95B has not been pressed (S14: NO), it is determined whether or not the communication button 95A has been pressed in a state of “disconnected” (S16). When the button is pressed (S16: YES), the communication between the electronic pulse driver 1 and the external device 9 is disconnected (S17). Thereafter, the process returns to S1 again to enter the input standby state. If not pressed (S16: NO), it is determined whether or not the end button 94A is pressed (S18). When the end button 94A is pressed (S18: YES), the communication between the electronic pulse driver 1 and the external device 9 is disconnected (S19), and the application is terminated. If it is not pressed (S18: NO), the process returns to S6 again to enter an input standby state.
 S6の入力待機時には、図9に示すように、領域96,98,99の各パラメータが変更される度に、グラフ表示領域97,100のグラフに反映させている。具体的には、入力待機状態となると、スライドバー96B,96D,96F,98B,98D,98F、99B,99D,99Fが操作されたか否かを判断する(S21)。操作された場合には(S21:YES)、スライドバーの位置に応じて入力部の数値を変更する(S22)。変更された数値に基づいて、グラフ表示領域97,100に表示されたグラフを変更する(S23)。その後、再び入力待機状態となる。操作されていない場合には(S21:NO)、入力部96C,96E,96G,98C,98E,98G,99C,99E,99Gに数値が入力されたか否かを判断する(S24)。 At the time of input standby in S6, as shown in FIG. 9, each parameter of the regions 96, 98, 99 is reflected in the graphs of the graph display regions 97, 100 as shown in FIG. Specifically, in the input standby state, it is determined whether or not the slide bars 96B, 96D, 96F, 98B, 98D, 98F, 99B, 99D, 99F have been operated (S21). When operated (S21: YES), the numerical value of the input unit is changed according to the position of the slide bar (S22). Based on the changed numerical values, the graphs displayed in the graph display areas 97 and 100 are changed (S23). Thereafter, the input standby state is entered again. If it is not operated (S21: NO), it is determined whether or not a numerical value is input to the input units 96C, 96E, 96G, 98C, 98E, 98G, 99C, 99E, 99G (S24).
 入力部に数値が入力されていない場合には(S24:NO)、S7へ移行する。入力された場合には(S24:YES)、スライドバーの位置を入力された数値に基づいて変更し、変更された数値に基づいて、グラフ表示領域97,100に表示されたグラフを変更する(S23)。その後、S7へ移行する。 If no numerical value is input to the input unit (S24: NO), the process proceeds to S7. If it is input (S24: YES), the position of the slide bar is changed based on the input numerical value, and the graphs displayed in the graph display areas 97 and 100 are changed based on the changed numerical value ( S23). Thereafter, the process proceeds to S7.
 このような構成によると、制御モードを構成するパラメータを外部機器9から制御部7にアクセスして設定可能であるため、作業内容に応じた最適なパラメータを設定することで、ユーザ自身が様々な作業に適した特有の制御モードを容易に作り出すことが可能となる。 According to such a configuration, since the parameters constituting the control mode can be set by accessing the control unit 7 from the external device 9, the user himself / herself can set various parameters according to the work content. It is possible to easily create a specific control mode suitable for work.
 このような構成によると、外部機器9は複数のパラメータを設定可能であるため、1つのパラメータのみを変更した場合では最適な制御モードが実現できない場合でも、複数のパラメータの組合せを変更することで最適な制御モードが実現可能となる。 According to such a configuration, since the external device 9 can set a plurality of parameters, even when only one parameter is changed, even when the optimal control mode cannot be realized, the combination of the plurality of parameters can be changed. An optimal control mode can be realized.
 このような構成によれば、制御モードのパラメータを外部機器9によって設定することができるため、電子パルスドライバ1の動作をより詳細に設定することが可能になり、最適な条件で締結作業を行うことができる。これにより、電子パルスドライバ1による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, since the parameters of the control mode can be set by the external device 9, the operation of the electronic pulse driver 1 can be set in more detail, and the fastening operation is performed under optimum conditions. be able to. Thereby, the workability | operativity of the fastening operation | work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
 このような構成によれば、パルスモードの打周期を設定することができるため、締結作業時における電子パルスドライバ1の反動を低減し作業性の改善を図ることができる。 According to such a configuration, it is possible to set the pulse mode striking cycle, so that it is possible to reduce the reaction of the electronic pulse driver 1 during the fastening operation and to improve the workability.
 このような構成によると、パルスモードにおいて補正打撃を設定することができるため、通常のパルスモードのみで締結を行う場合と比較すると、通常打撃をおこなった後に補正打撃を行うことにより、ネジを加工部材と安定的に締結させることができる。これにより、目標としたトルクでネジを締結することができる。 According to such a configuration, it is possible to set a correction hit in the pulse mode. Therefore, compared with the case where the fastening is performed only in the normal pulse mode, the screw is processed by performing the correction hit after performing the normal hit. It can be stably fastened with the member. Thereby, a screw can be fastened with the target torque.
 このような構成によると、打周期と、打撃数と、トルクとを設定可能であるため、ユーザの要求に応じた制御により電子パルスドライバ1を動作させることができる。これにより、電子パルスドライバ1による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, the hitting period, the number of hits, and the torque can be set, so that the electronic pulse driver 1 can be operated by control according to the user's request. Thereby, the workability | operativity of the fastening operation | work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
 このような構成によると、先端工具53の総回転数を設定することができるため、ネジの条数を総回転数として設定することによりネジの着座前後での制御を変えることができる。これにより、電子パルスドライバ1による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, since the total number of rotations of the tip tool 53 can be set, the control before and after the seating of the screw can be changed by setting the number of screw strips as the total number of rotations. Thereby, the workability | operativity of the fastening operation | work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
 このような構成によると、総回転数により設定された期間のモータ3の回転速度を設定することができるため、ユーザの要求に応じた制御により電子パルスドライバ1を動作させることができる。これにより、電子パルスドライバ1による締付作業の作業性の改善やフィーリングの向上を図ることができる。 According to such a configuration, since the rotation speed of the motor 3 during the period set by the total number of rotations can be set, the electronic pulse driver 1 can be operated by control according to the user's request. Thereby, the workability | operativity of the fastening operation | work by the electronic pulse driver 1 and the improvement of feeling can be aimed at.
 このような構成によると、外部機器9はクラッチモードグラフ表示領域97及びパルスモードグラフ表示領域100を備えているため、ユーザは視覚的に制御モードを認識することができる。これにより、パラメータ設定時に電子パルスドライバ1の動作がイメージし易くなる。 According to such a configuration, since the external device 9 includes the clutch mode graph display area 97 and the pulse mode graph display area 100, the user can visually recognize the control mode. This makes it easier to imagine the operation of the electronic pulse driver 1 when setting parameters.
 このような構成によると、トルク、初期回転時速度、打周期はブラシレスモータの最大能力に対する割合で設定されるため、出力トルク等を計測するための機器等が不要となる。これにより、部品点数を削減し低コストの電子パルスドライバ1を提供することができる。 According to such a configuration, the torque, the initial rotation speed, and the striking cycle are set in proportion to the maximum capacity of the brushless motor, so that no device or the like for measuring the output torque or the like is required. Thereby, the number of parts can be reduced and the low-cost electronic pulse driver 1 can be provided.
 このような構成によると、外部機器9によって制御モードのパラメータが設定可能であるため、電子パルスドライバ1本体にパラメータを設定するための回路及び装置を設ける必要が無い。これにより、電子パルスドライバ1の部品点数を削減し低コストの電子パルスドライバ1を提供することができる。 According to such a configuration, since the parameter of the control mode can be set by the external device 9, it is not necessary to provide a circuit and a device for setting the parameter in the electronic pulse driver 1 main body. Thereby, the number of parts of the electronic pulse driver 1 can be reduced, and the low-cost electronic pulse driver 1 can be provided.
 次に、本発明の第1の実施の形態の変形例について、図10から図12を参照して説明する。第1の実施の形態と同一の構成は、同一の符号を付して説明を省略する。変形例では、外部機器9の表示部91に表示されるウィンドウ194,294の構成が第1の実施の形態と異なっている。 Next, a modification of the first embodiment of the present invention will be described with reference to FIGS. The same configurations as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the modification, the configuration of windows 194 and 294 displayed on the display unit 91 of the external device 9 is different from that of the first embodiment.
 ウィンドウ194において、ボタン領域95の下部には、タブ領域195が設けられている。タブ領域195は、ドリルモードタブ195Aと、クラッチモードタブ195Bと、パルスモードタブ195Cと、を有している。変形例では、3つのタブを備えているが、4つ以上のタブを備えていてもよい。例えば、パルスモードでも第1パルスモード、第2パルスモードというように複数のパルスモードを備えていてもよい。 In the window 194, a tab area 195 is provided below the button area 95. The tab area 195 has a drill mode tab 195A, a clutch mode tab 195B, and a pulse mode tab 195C. In the modification, three tabs are provided, but four or more tabs may be provided. For example, a plurality of pulse modes such as a first pulse mode and a second pulse mode may be provided even in the pulse mode.
 図10では、ドリルモードタブ195Aが押下された状態を示している。このとき、ウィンドウ194にはパラメータ設定領域196と、グラフ表示領域197とが表示される。ドリルモードでは、トルクと、回転数とをパラメータとして設定することができる。先端工具53が設定された回転数だけ回転すると、モータ3は自動的に停止する。トルクは、トルク設定スライドバー196Aを操作するか、又はトルク入力部196Bに数値を入力することにより設定できる。回転数は、回転数設定スライドバー196Cを操作するか、又は回転数入力部196Dに数値を入力することにより設定できる。 FIG. 10 shows a state where the drill mode tab 195A is pressed. At this time, a parameter setting area 196 and a graph display area 197 are displayed in the window 194. In the drill mode, torque and rotation speed can be set as parameters. When the tip tool 53 rotates by the set number of rotations, the motor 3 automatically stops. The torque can be set by operating the torque setting slide bar 196A or by inputting a numerical value to the torque input unit 196B. The rotation speed can be set by operating the rotation speed setting slide bar 196C or by inputting a numerical value to the rotation speed input unit 196D.
 グラフ表示領域197は、パラメータ設定領域196に入力されたパラメータをグラフ化して表示している。グラフ表示領域197には、縦軸はトルク、横軸が回転数の面グラフが表示されている。 The graph display area 197 displays the parameters input to the parameter setting area 196 as a graph. In the graph display area 197, a surface graph in which the vertical axis represents torque and the horizontal axis represents the rotational speed is displayed.
 アプリケーションソフトウェアは、スマートフォン等のタブレット機器にもインストールすることができる。スマートフォンにおいて、本実施の形態の変形例のアプリケーションソフトウェアを起動したウィンドウ294を図11に示す。 Application software can also be installed on tablet devices such as smartphones. FIG. 11 shows a window 294 in which the application software according to the modification of the present embodiment is activated on the smartphone.
 ウィンドウ294は、通信ボタン95A、終了ボタン94A、タブ領域195、パラメータ設定領域196、ボタン表示ボタン295、グラフ表示ボタン296を備えている。ボタン表示ボタン295を押下すると、読出ボタン95B、設定値読込ボタン95C、保存ボタン95D、設定送信ボタン95Eを備えた新たなウィンドウが表示される。グラフ表示ボタン296を押下すると、グラフを備えた新たなウィンドウが表示される。 The window 294 includes a communication button 95A, an end button 94A, a tab area 195, a parameter setting area 196, a button display button 295, and a graph display button 296. When the button display button 295 is pressed, a new window including a read button 95B, a set value read button 95C, a save button 95D, and a setting send button 95E is displayed. When the graph display button 296 is pressed, a new window with a graph is displayed.
 次に、変形例におけるアプリケーションソフトウェアのフローチャートを図12に示す。変形例では、図8のS6の入力待機状態となると、タブ領域195のいずれのタブが押下されたかを判断する。具体的には、クラッチモードタブ195Bが押下されたか否かを判断する(S121)。押下された場合には(S121:YES)、ウィンドウ194にクラッチモードの設定画面を表示する(S122)。具体的には、第1の実施の形態のクラッチモードパラメータ設定領域96をパラメータ設定領域196に、クラッチモードグラフ表示領域97をグラフ表示領域197にそれぞれ表示する。その後、S21へと移行する。 Next, FIG. 12 shows a flowchart of application software in the modification. In the modified example, when the input standby state of S6 in FIG. 8 is entered, it is determined which tab in the tab area 195 has been pressed. Specifically, it is determined whether or not the clutch mode tab 195B has been pressed (S121). When the button is pressed (S121: YES), a clutch mode setting screen is displayed in the window 194 (S122). Specifically, the clutch mode parameter setting area 96 of the first embodiment is displayed in the parameter setting area 196, and the clutch mode graph display area 97 is displayed in the graph display area 197. Thereafter, the process proceeds to S21.
 クラッチモードタブ195Bが押下されなかった場合には(S121:NO)、パルスモードタブ195Cが押下されたか否かを判断する(S123)。押下された場合には(S123:YES)、ウィンドウ194にパルスモードの設定画面を表示する(S124)。具体的には、第1の実施の形態の通常打撃パラメータ設定領域98及び補正打撃パラメータ設定領域99をパラメータ設定領域196に、パルスモードグラフ表示領域100をグラフ表示領域197にそれぞれ表示する。その後、S21へと移行する。 If the clutch mode tab 195B is not pressed (S121: NO), it is determined whether or not the pulse mode tab 195C is pressed (S123). When the button is pressed (S123: YES), a pulse mode setting screen is displayed in the window 194 (S124). Specifically, the normal hitting parameter setting area 98 and the corrected hitting parameter setting area 99 of the first embodiment are displayed in the parameter setting area 196, and the pulse mode graph display area 100 is displayed in the graph display area 197, respectively. Thereafter, the process proceeds to S21.
 パルスモードタブ195Cが押下されなかった場合には(S123:NO)、ドリルモードタブ195Aが押下されたか否かを判断する(S125)。押下された場合には(S125:YES)、図10に示すような画面が表示部91に表示され(S126)、S21へと移行する。押下されなかった場合には(S125:NO)、再び入力待機状態となる。 When the pulse mode tab 195C is not pressed (S123: NO), it is determined whether or not the drill mode tab 195A is pressed (S125). When the button is pressed (S125: YES), a screen as shown in FIG. 10 is displayed on the display unit 91 (S126), and the process proceeds to S21. If it has not been pressed (S125: NO), the input standby state is entered again.
 ユーザが設定値読込ボタン95Cを押下すると(S11:YES)、タブ領域195のタブが電子パルスドライバ1で現在選択されている制御モードに自動的に切替わる。例えば、電子パルスドライバ1でドリルモードが選択された状態である場合には、設定値読込時に自動的に図10に示すような画面に切替わる。 When the user presses the set value reading button 95C (S11: YES), the tab in the tab area 195 is automatically switched to the control mode currently selected by the electronic pulse driver 1. For example, when the drill mode is selected by the electronic pulse driver 1, the screen automatically switches to a screen as shown in FIG. 10 when the set value is read.
 次に、第2の実施の形態の電子パルスドライバ201について、図13から図15に基づいて説明する。第1の実施の形態と同一の構成については、同一の符号を付して説明を省略する。 Next, an electronic pulse driver 201 according to the second embodiment will be described with reference to FIGS. About the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 電子パルスドライバ201の制御回路基板71は、通信変換回路285を備えている。図14に示すように、通信変換回路285は、マイコン83及び接続端子74と接続されている。通信変換回路285は、外部機器9からの信号をマイコン83が読取可能な信号に変換するとともに、マイコン83からの信号を外部機器9が読取可能な信号に変換するための回路であり、例えば、AD変換回路などが用いられる。 The control circuit board 71 of the electronic pulse driver 201 includes a communication conversion circuit 285. As shown in FIG. 14, the communication conversion circuit 285 is connected to the microcomputer 83 and the connection terminal 74. The communication conversion circuit 285 is a circuit for converting a signal from the external device 9 into a signal readable by the microcomputer 83 and converting a signal from the microcomputer 83 into a signal readable by the external device 9, for example, An AD conversion circuit or the like is used.
 電子パルスドライバ201と外部機器9とを接続する場合、図15に示すように、第1の実施の形態の通信変換回路86を備えていない通信ケーブル208を用いて両者を接続する。 When connecting the electronic pulse driver 201 and the external device 9, as shown in FIG. 15, both are connected using a communication cable 208 that does not include the communication conversion circuit 86 of the first embodiment.
 このような構成によると、電子パルスドライバ201は通信変換回路86をさらに備えているため、接続部と被接続部とを繋ぐケーブルに通信号変換回路を備える必要が無くなる。これにより、電子パルスドライバ201と外部機器9との通信に汎用性のある通信ケーブル208を使用することができる。 According to such a configuration, since the electronic pulse driver 201 further includes the communication conversion circuit 86, it is not necessary to provide a signal conversion circuit in the cable connecting the connection portion and the connected portion. Thereby, the communication cable 208 which has versatility can be used for communication between the electronic pulse driver 201 and the external device 9.
 次に、第3の実施の形態の電子パルスドライバ301について、図16から図17に基づいて説明する。第1の実施の形態と同一の構成については、同一の符号を付して説明を省略する。 Next, an electronic pulse driver 301 according to a third embodiment will be described with reference to FIGS. About the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 電子パルスドライバ301の制御回路基板71は、無線モジュール385を備えている。無線モジュール385は、基板収容部23に収容されている。電子パルスドライバ301は、無線モジュール385を介して外部機器9と無線通信が可能である。無線通信としては、例えばBluetooth(登録商標)、無線LAN、Zigbee(登録商標)等が採用される。図17に示すように、無線モジュール385は、マイコン83と接続されている。これにより、電子パルスドライバ1は、無線通信機器が搭載されたPCやタブレット機器と通信することができる。無線モジュール385は、本発明の通信部に相当する。 The control circuit board 71 of the electronic pulse driver 301 includes a wireless module 385. The wireless module 385 is accommodated in the substrate accommodating portion 23. The electronic pulse driver 301 can wirelessly communicate with the external device 9 via the wireless module 385. As the wireless communication, for example, Bluetooth (registered trademark), wireless LAN, Zigbee (registered trademark), or the like is employed. As shown in FIG. 17, the wireless module 385 is connected to the microcomputer 83. Thereby, the electronic pulse driver 1 can communicate with a PC or tablet device on which a wireless communication device is mounted. The wireless module 385 corresponds to the communication unit of the present invention.
 このような構成によると、無線モジュール385が基板収容部23に収容されているため、ハンドル部22に収容されている場合と比較すると、ユーザの手によって無線の電波が妨害されることが無い。これにより、電子パルスドライバ301は外部機器9と安定的に通信することができる。また、無線モジュール385が制御部7と同じ基板収容部23に収容されているため、電子パルスドライバ301内部の配線を簡素化することができる。 According to such a configuration, since the wireless module 385 is accommodated in the substrate accommodating portion 23, compared with the case where it is accommodated in the handle portion 22, the radio wave is not disturbed by the user's hand. Thereby, the electronic pulse driver 301 can communicate with the external device 9 stably. Further, since the wireless module 385 is accommodated in the same substrate accommodating portion 23 as the control portion 7, the wiring inside the electronic pulse driver 301 can be simplified.
 このような構成によると、無線モジュール385は制御回路基板71上に設けられているため、無線モジュール385と制御部7とを繋ぐ配線が不要となり、電子パルスドライバ301内部の配線を簡素化することができる。 According to such a configuration, since the wireless module 385 is provided on the control circuit board 71, wiring for connecting the wireless module 385 and the control unit 7 becomes unnecessary, and wiring inside the electronic pulse driver 301 is simplified. Can do.
 次に、図19~30を参照しながら本発明の第4の実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Next, a fourth embodiment of the present invention will be described in detail with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図19は、本発明の実施の形態に係る電動工具管理システム(動力機器システム)の全体構成であって、内蔵するモータで各種先端工具を駆動して作業を行う動力機器の一例である電動工具401と、これとは別体の付属機器である携帯機器459と、から構成される。図19において、電動工具401の内部構成は側断面図として示されている。電動工具401は、ACコード409を商用電源等の交流電源に接続して動作する例えばインパクトドライバである。インパクトドライバにおいて先端工具を回転駆動する機械的構成は公知のものでよいが、以下、一例を説明する。 FIG. 19 shows an overall configuration of the electric power tool management system (power equipment system) according to the embodiment of the present invention, which is an example of a power equipment that works by driving various tip tools with a built-in motor. 401 and a mobile device 459 which is a separate accessory device. In FIG. 19, the internal configuration of the electric power tool 401 is shown as a side sectional view. The electric tool 401 is, for example, an impact driver that operates by connecting the AC cord 409 to an AC power source such as a commercial power source. The mechanical configuration for rotationally driving the tip tool in the impact driver may be known, but an example will be described below.
 電動工具401は、商用電源等の交流電源を電源とし、ハウジング402に装着されたモータ403を駆動源として回転打撃機構421を駆動し、出力軸であるアンビル430に回転力と打撃力を与え、スリーブ431に覆われる取付穴430aに保持されるドライバビット等の図示しない先端工具に回転打撃力を間欠的に伝達してねじ締めやボルト締め等の作業を行う。 The electric power tool 401 uses an AC power source such as a commercial power source as a power source, drives a rotary impact mechanism 421 using a motor 403 mounted on the housing 402 as a drive source, and applies a rotational force and an impact force to the anvil 430 that is an output shaft. The rotary impact force is intermittently transmitted to a tip tool (not shown) such as a driver bit held in the mounting hole 430a covered with the sleeve 431 to perform operations such as screw tightening and bolt tightening.
 ブラシレス方式(例えば4極6コイル、2極3コイル等)のモータ403は、側面視で略T字状の形状を成すハウジング402の筒状の胴体部402a内に収容される。モータ403の回転軸403eは、ハウジング402の胴体部402aの中央部付近に設けられるベアリング419a(軸受け部材)と後端側のベアリング419b(軸受け部材)とによって回転可能に保持される。回転軸403eには、ロータマグネット403dを有するロータ403aが一体化されている。インシュレータ415を介してステータコイル403cが巻かれたステータコア403bが胴体部402a内側に固定されている。モータ403の前方には、回転軸403eと同軸に取り付けられモータ403と同期して回転するロータファン413が設けられる。モータ403の後方には、モータ403を駆動するためのインバータ回路基板404が配設される。ロータファン413によって起こされる空気流は、ハウジング402の胴体部402aの後ろ側に形成された空気取入孔417、及びインバータ回路基板404の周囲のハウジング部分に形成された図示しない空気取入口から胴体部402aの内部に取り込まれ、主にロータ403aとステータコア403bの間を通過するように流れ、さらにロータファン413の後方から吸引されてロータファン413の半径方向に流れ、ロータファン413の周囲のハウジング部分に形成された図示しない空気排出口からハウジング402の外部に排出される。 A brushless motor (for example, 4 poles, 6 coils, 2 poles, 3 coils, etc.) 403 is housed in a cylindrical body 402a of a housing 402 having a substantially T-shape when viewed from the side. The rotation shaft 403e of the motor 403 is rotatably held by a bearing 419a (bearing member) and a rear end side bearing 419b (bearing member) provided near the center of the body portion 402a of the housing 402. A rotor 403a having a rotor magnet 403d is integrated with the rotary shaft 403e. A stator core 403b around which a stator coil 403c is wound is fixed via an insulator 415 inside the body portion 402a. In front of the motor 403, a rotor fan 413 that is coaxially mounted with the rotation shaft 403e and rotates in synchronization with the motor 403 is provided. An inverter circuit board 404 for driving the motor 403 is disposed behind the motor 403. The air flow generated by the rotor fan 413 is generated from an air intake hole 417 formed on the rear side of the body portion 402 a of the housing 402 and an air intake port (not shown) formed in a housing portion around the inverter circuit board 404. Is taken into the portion 402a and flows mainly between the rotor 403a and the stator core 403b, and further sucked from the rear of the rotor fan 413 and flows in the radial direction of the rotor fan 413. The housing around the rotor fan 413 The air is discharged to the outside of the housing 402 through an air discharge port (not shown) formed in the portion.
 インバータ回路基板404は、モータ403の外形とほぼ同径の円環状の多層基板であり、インバータ回路基板404上にはFET(Field Effect Transistor)等の複数のスイッチング素子405や、ホールIC等の位置検出素子、及びその他の電子素子が搭載される。ロータ403aとベアリング419bの間には、プラスチック製のスペーサ435が設けられる。スペーサ435の形状は略円筒形で、ベアリング419bとロータ403aとの間の間隔を一定に保つために配置される。 The inverter circuit board 404 is an annular multilayer board having substantially the same diameter as the outer shape of the motor 403. On the inverter circuit board 404, a plurality of switching elements 405 such as FETs (Field-Effect-Transistors) and positions of Hall ICs are arranged. A detection element and other electronic elements are mounted. A plastic spacer 435 is provided between the rotor 403a and the bearing 419b. The spacer 435 has a substantially cylindrical shape and is arranged to keep a constant distance between the bearing 419b and the rotor 403a.
 ハウジング402の胴体部402aから略直角に一体に延びるハンドル部402b内の上部にはトリガ406aを有するトリガスイッチ406が配設され、トリガスイッチ406の下方にはスイッチ基板407が設けられる。ハンドル部402b内の下部には、トリガ406aの引き動作によって前記モータ403の速度を制御する機能を備えた制御回路基板408が収容され、この制御回路基板408は、交流電源(ACコード409)とトリガスイッチ406とに電気的に接続される。トリガスイッチ406は信号線411を介して、また制御回路基板408は信号線412を介してそれぞれインバータ回路基板404と接続される。 A trigger switch 406 having a trigger 406a is disposed in an upper portion of a handle portion 402b that integrally extends from the body portion 402a of the housing 402 at a substantially right angle, and a switch substrate 407 is provided below the trigger switch 406. A control circuit board 408 having a function of controlling the speed of the motor 403 by the pulling operation of the trigger 406a is accommodated in the lower part in the handle portion 402b. The control circuit board 408 is connected to an AC power source (AC code 409). It is electrically connected to the trigger switch 406. The trigger switch 406 is connected to the inverter circuit board 404 via the signal line 411, and the control circuit board 408 is connected to the inverter circuit board 404 via the signal line 412.
 回転打撃機構421は、遊星歯車減速機構422とスピンドル427とハンマ424とを備え、後端がベアリング420、前端がメタル軸受429により保持される。トリガ406aが引かれてモータ403が起動されると、正逆切替レバー410で設定された方向にモータ403が回転を始め、その回転力は遊星歯車減速機構422によって減速されてスピンドル427に伝達され、スピンドル427が所定の速度で回転駆動される。ここで、スピンドル427とハンマ424とはカム機構によって連結され、このカム機構は、スピンドル427の外周面に形成されたV字状のスピンドルカム溝425と、ハンマ424の内周面に形成されたハンマカム溝428と、これらのカム溝425、428に係合するボール426によって構成される。 The rotary striking mechanism 421 includes a planetary gear reduction mechanism 422, a spindle 427, and a hammer 424, and the rear end is held by a bearing 420 and the front end is held by a metal bearing 429. When the trigger 406a is pulled and the motor 403 is activated, the motor 403 starts to rotate in the direction set by the forward / reverse switching lever 410, and the rotational force is decelerated by the planetary gear reduction mechanism 422 and transmitted to the spindle 427. The spindle 427 is driven to rotate at a predetermined speed. Here, the spindle 427 and the hammer 424 are connected by a cam mechanism, and this cam mechanism is formed on the V-shaped spindle cam groove 425 formed on the outer peripheral surface of the spindle 427 and the inner peripheral surface of the hammer 424. A hammer cam groove 428 and balls 426 engaged with the cam grooves 425 and 428 are formed.
 ハンマ424は、スプリング423によって常に前方に付勢されており、静止時にはボール426とカム溝425、428との係合によってアンビル430の端面とは隙間を隔てた位置にある。そして、ハンマ424とアンビル430の相対向する回転平面上の2箇所には図示しない凸部がそれぞれ対称的に形成されている。 The hammer 424 is always urged forward by a spring 423, and when stationary, the ball 426 and the cam grooves 425 and 428 are engaged with each other so as to be spaced from the end face of the anvil 430. And the convex part which is not illustrated is symmetrically formed in two places on the rotation plane which the hammer 424 and the anvil 430 mutually oppose.
 スピンドル427が回転駆動されると、その回転はカム機構を介してハンマ424に伝達され、ハンマ424が半回転しないうちにハンマ424の凸部がアンビル430の凸部に係合してアンビル430を回転させるが、そのときの係合反力によってスピンドル427とハンマ424との間に相対回転が生ずると、ハンマ424はカム機構のスピンドルカム溝425に沿ってスプリング423を圧縮しながらモータ403側へと後退を始める。 When the spindle 427 is driven to rotate, the rotation is transmitted to the hammer 424 through the cam mechanism, and the convex portion of the hammer 424 engages with the convex portion of the anvil 430 before the hammer 424 is rotated halfway. When the relative reaction occurs between the spindle 427 and the hammer 424 by the engagement reaction force at that time, the hammer 424 compresses the spring 423 along the spindle cam groove 425 of the cam mechanism and moves toward the motor 403 side. And start retreating.
 そして、ハンマ424の後退動によってハンマ424の凸部がアンビル430の凸部を乗り越えて両者の係合が解除されると、ハンマ424は、スピンドル427の回転力に加え、スプリング423に蓄積されていた弾性エネルギーとカム機構の作用によって回転方向及び前方に急速に加速されつつ、スプリング423の付勢力によって前方へ移動し、その凸部がアンビル430の凸部に再び係合して一体に回転し始める。このとき、強力な回転打撃力がアンビル430に加えられるため、アンビル430の取付穴430aに装着される図示しない先端工具を介してねじに回転打撃力が伝達される。以後、同様の動作が繰り返されて先端工具からねじに回転打撃力が間欠的に繰り返し伝達され、例えば、ねじが木材等の図示しない加工部材にねじ込まれる。なお、ライト451は、先端工具の先端側と加工部材を照らす。 When the protrusion of the hammer 424 moves over the protrusion of the anvil 430 due to the backward movement of the hammer 424 and the engagement between the two is released, the hammer 424 is accumulated in the spring 423 in addition to the rotational force of the spindle 427. While being accelerated rapidly in the rotational direction and forward by the action of the elastic energy and the cam mechanism, it is moved forward by the biasing force of the spring 423, and the convex portion is reengaged with the convex portion of the anvil 430 to rotate integrally. start. At this time, since a strong rotational impact force is applied to the anvil 430, the rotational impact force is transmitted to the screw via a tip tool (not shown) attached to the mounting hole 430a of the anvil 430. Thereafter, the same operation is repeated, and the rotational impact force is intermittently and repeatedly transmitted from the tip tool to the screw. For example, the screw is screwed into a processing member (not shown) such as wood. The light 451 illuminates the tip side of the tip tool and the processing member.
 ハウジング402には通信部458が設けられている。通信部458は、外部の携帯機器459と無線通信を行い、電動工具401の設定パラメータを外部から変更可能である。通信部458と携帯機器459との無線通信は例えば赤外線通信方式により行うものである。また通信部458は無線通信の受信回路のみ搭載し受信のみが可能であり、携帯機器459は無線通信の送信回路のみ搭載し送信のみが可能である。通常の通信回路では送信と受信が可能な送受信回路を搭載するが、受信のみの受信回路に比べて、回路容積が大型化する。電動工具401は手に持つため小型化が望まれており、通信部458の通信回路に受信回路のみを使用することにより、回路容積を小型化することができ、電動工具の小型化を図ることができる。また、携帯機器459から通信部458への通信が正しく行われたときにはライト451を点滅させて、通信が正しく行われたことを作業者に知らせる。また、外部の携帯機器459は、携帯電話、携帯型パーソナルコンピュータなどでも良い。 The communication unit 458 is provided in the housing 402. The communication unit 458 performs wireless communication with an external portable device 459 and can change the setting parameters of the power tool 401 from the outside. Wireless communication between the communication unit 458 and the portable device 459 is performed by, for example, an infrared communication method. In addition, the communication unit 458 includes only a wireless communication receiving circuit and can receive only, and the portable device 459 includes only a wireless communication transmitting circuit and can perform only transmission. A normal communication circuit is equipped with a transmission / reception circuit capable of transmission and reception, but the circuit volume is increased as compared with a reception circuit only for reception. Since the electric tool 401 is held in the hand, downsizing is desired. By using only the receiving circuit for the communication circuit of the communication unit 458, the circuit volume can be reduced, and the electric tool can be reduced in size. Can do. In addition, when communication from the portable device 459 to the communication unit 458 is correctly performed, the light 451 is blinked to notify the operator that the communication is correctly performed. The external portable device 459 may be a mobile phone, a portable personal computer, or the like.
 図20は、外部の携帯機器459の平面図である。携帯機器459には、現在の設定値を表示する液晶画面等の表示部591と、設定値を変更する切替スイッチとしての操作ボタン592(図示の場合4個)と、が設けられている。表示部591には現在の設定値が表示されるが、例えば後で説明する最大回転数の設定値や自動停止時間の現在の設定値などを表示する。表示部591に表示された現在の設定値は、操作ボタン592を操作することにより設定値を変更可能である。また携帯機器459に赤外線送信部593を設けて、電動工具の通信部458と対向させることにより、赤外線送信部593から赤外線を送信し、電動工具の通信部458との無線通信を行う。 FIG. 20 is a plan view of an external portable device 459. The portable device 459 is provided with a display unit 591 such as a liquid crystal screen for displaying the current setting value, and operation buttons 592 (four in the illustrated example) as changeover switches for changing the setting value. The display unit 591 displays the current set value. For example, the set value of the maximum rotation speed, which will be described later, the current set value of the automatic stop time, and the like are displayed. The current set value displayed on the display unit 591 can be changed by operating the operation button 592. Further, the infrared transmission unit 593 is provided in the portable device 459 so as to face the communication unit 458 of the electric tool, thereby transmitting infrared rays from the infrared transmission unit 593 and performing wireless communication with the communication unit 458 of the electric tool.
 図21は、図19に示す電動工具401における、モータ403の駆動制御系の構成を示すブロック図である。本実施の形態では、商用電源等の交流電源439からの供給電圧を整流回路440で例えば全波整流波に変換し、平滑コンデンサ無しでモータ駆動回路としてのインバータ回路447に供給する。モータ403は、例えば3相のブラシレスモータである。モータ403は、いわゆるインナーロータ型であって、ロータ403aと、ステータと、3つの位置検出素子442とを有する。ロータ403aは、複数組(本実施の形態では2組)のN極とS極を含むロータマグネット403dを含んで構成される。ステータは、スター結線された3相の固定子巻線U、V、Wから成るステータコイル403c及びステータコア403bを含む。3つの位置検出素子442は、ロータ403aの回転位置を検出するために周方向に所定の間隔毎、例えば角度60°毎に配置される。これら位置検出素子442からの回転位置検出信号に基づいて固定子巻線U、V、Wへの通電方向と時間が制御され、モータ403が回転する。位置検出素子442は、インバータ回路基板404上の、ロータ403aに対向する位置に設けられる。位置検出素子442の信号出力は回転子位置検出回路443に加えられる。 FIG. 21 is a block diagram showing the configuration of the drive control system of the motor 403 in the electric tool 401 shown in FIG. In this embodiment, a supply voltage from an AC power supply 439 such as a commercial power supply is converted into, for example, a full-wave rectified wave by a rectifier circuit 440 and supplied to an inverter circuit 447 as a motor drive circuit without a smoothing capacitor. The motor 403 is, for example, a three-phase brushless motor. The motor 403 is a so-called inner rotor type, and includes a rotor 403a, a stator, and three position detection elements 442. The rotor 403a includes a rotor magnet 403d including a plurality of sets (two sets in the present embodiment) of N poles and S poles. The stator includes a stator coil 403c and a stator core 403b composed of three-phase stator windings U, V, and W that are star-connected. The three position detection elements 442 are arranged at predetermined intervals in the circumferential direction, for example, at an angle of 60 °, in order to detect the rotational position of the rotor 403a. Based on the rotational position detection signals from these position detection elements 442, the energization direction and time for the stator windings U, V, W are controlled, and the motor 403 rotates. The position detection element 442 is provided on the inverter circuit board 404 at a position facing the rotor 403a. The signal output from the position detection element 442 is applied to the rotor position detection circuit 443.
 インバータ回路基板404上に搭載される電子素子には、3相ブリッジ形式に接続されたFET等の6個のスイッチング素子Q1~Q6を含む。制御回路基板408に搭載される制御回路としては演算部441及び制御信号出力回路446を少なくとも含む。インバータ回路447におけるブリッジ接続された6個のスイッチング素子Q1~Q6の各ゲートは、制御信号出力回路446に接続され、6個のスイッチング素子Q1~Q6の各ドレインまたは各ソースは、スター結線された固定子巻線U、V、Wに接続される。これによって、6個のスイッチング素子Q1~Q6は、制御信号出力回路446から入力されたスイッチング素子駆動信号(H1~H6)によってスイッチング動作を行い、インバータ回路447に印加される電圧(全波整流波)を3相(U相、V相及びW相)電圧Vu、Vv、Vwとして固定子巻線U、V、Wに電力を供給する。 The electronic elements mounted on the inverter circuit board 404 include six switching elements Q1 to Q6 such as FETs connected in a three-phase bridge format. The control circuit mounted on the control circuit board 408 includes at least a calculation unit 441 and a control signal output circuit 446. The gates of the six switching elements Q1 to Q6 that are bridge-connected in the inverter circuit 447 are connected to the control signal output circuit 446, and the drains or the sources of the six switching elements Q1 to Q6 are star-connected. Connected to the stator windings U, V, W. As a result, the six switching elements Q1 to Q6 perform the switching operation by the switching element drive signals (H1 to H6) input from the control signal output circuit 446, and the voltage (full-wave rectified wave) applied to the inverter circuit 447 ) As three-phase (U-phase, V-phase and W-phase) voltages Vu, Vv and Vw, and power is supplied to the stator windings U, V and W.
 各スイッチング素子のゲートを駆動するスイッチング素子駆動信号(3相信号)のうちローサイドスイッチング素子Q4、Q5、Q6のゲートを駆動するスイッチング素子駆動信号をパルス幅変調信号(PWM信号)H4、H5、H6とし、演算部441によって、トリガスイッチ406のトリガ操作量(ストローク)の検出信号に基づいてPWM信号のパルス幅(デューティー比)を変化させることによってモータ403への電力供給量を調整し、モータ403の起動/停止と回転速度を制御することができる。トリガ操作量(ストローク)の検出信号に対応するPWMデューティー比の関係は一対一の関係であり、一つの関係式で表される。 Of the switching element driving signals (three-phase signals) for driving the gates of the switching elements, the switching element driving signals for driving the gates of the low-side switching elements Q4, Q5, Q6 are pulse width modulation signals (PWM signals) H4, H5, H6. Then, the power supply amount to the motor 403 is adjusted by the calculation unit 441 by changing the pulse width (duty ratio) of the PWM signal based on the detection signal of the trigger operation amount (stroke) of the trigger switch 406. It is possible to control the start / stop and rotation speed. The relationship between the PWM duty ratios corresponding to the trigger operation amount (stroke) detection signal is a one-to-one relationship, and is represented by one relational expression.
 ここで、PWM信号は、インバータ回路447のハイサイドスイッチング素子Q1~Q3又はローサイドスイッチング素子Q4~Q6の何れか一方に供給されればよく、スイッチング素子Q1~Q3またはスイッチング素子Q4~Q6を高速スイッチングさせることによって結果的に各固定子巻線U、V、Wに供給する電力を制御可能である。尚、本実施の形態では、ローサイドスイッチング素子Q4~Q6にPWM信号が供給されるため、PWM信号のパルス幅を制御することによって各固定子巻線U、V、Wに供給する電力を調整してモータ403の回転速度を制御することができる。 Here, the PWM signal may be supplied to any one of the high side switching elements Q1 to Q3 or the low side switching elements Q4 to Q6 of the inverter circuit 447, and the switching elements Q1 to Q3 or the switching elements Q4 to Q6 are switched at high speed. As a result, the power supplied to each stator winding U, V, W can be controlled. In this embodiment, since the PWM signal is supplied to the low-side switching elements Q4 to Q6, the power supplied to each of the stator windings U, V, and W is adjusted by controlling the pulse width of the PWM signal. Thus, the rotational speed of the motor 403 can be controlled.
 電動工具401には、モータ403の回転方向を切り替えるための正逆切替レバー410が設けられ、回転方向設定回路450は正逆切替レバー410の変化を検出するごとに、モータの回転方向を切り替えて、その制御信号を演算部441に送信する。演算部441は、例えばマイクロコンピュータであり、図示していないが、処理プログラムとデータに基づいて駆動信号を出力するための中央処理装置(CPU)、処理プログラムや制御データを記憶するためのROM、データを一時記憶するためのRAM、タイマ等を含んで構成される。 The electric tool 401 is provided with a forward / reverse switching lever 410 for switching the rotational direction of the motor 403, and the rotational direction setting circuit 450 switches the rotational direction of the motor each time a change in the forward / reverse switching lever 410 is detected. The control signal is transmitted to the calculation unit 441. The calculation unit 441 is, for example, a microcomputer, which is not shown, but a central processing unit (CPU) for outputting a drive signal based on the processing program and data, a ROM for storing the processing program and control data, It includes a RAM for temporarily storing data, a timer, and the like.
 制御信号出力回路446は、演算部441の制御に従い、回転方向設定回路450と回転子位置検出回路443の出力信号に基づいて所定のスイッチング素子Q1~Q6を交互にスイッチングするための駆動信号を発生する。これによって固定子巻線U、V、Wの所定の巻線に交互に通電し、ロータを設定された回転方向に回転させる。この場合、ローサイドスイッチング素子Q4~Q6に印加する駆動信号は、印加電圧設定回路449の出力制御信号に基づいてPWM変調信号として出力される。モータ403に供給される電流値(抵抗Rsに流れる電流値)は、電流検出回路448によって測定されるとともに、モータ403に供給される電圧値は電圧検出回路452によって測定される。測定された電流値及び電圧値が演算部441にフィードバックされることにより、モータ403に供給される駆動電力が設定された駆動電力となるように調整される。尚、PWM信号はハイサイドスイッチング素子Q1~Q3に印加してもよい。 The control signal output circuit 446 generates a drive signal for alternately switching predetermined switching elements Q1 to Q6 based on the output signals of the rotation direction setting circuit 450 and the rotor position detection circuit 443 according to the control of the arithmetic unit 441. To do. As a result, the predetermined windings of the stator windings U, V, and W are alternately energized to rotate the rotor in the set rotation direction. In this case, the drive signal applied to the low-side switching elements Q4 to Q6 is output as a PWM modulation signal based on the output control signal of the applied voltage setting circuit 449. The current value supplied to the motor 403 (current value flowing through the resistor Rs) is measured by the current detection circuit 448, and the voltage value supplied to the motor 403 is measured by the voltage detection circuit 452. The measured current value and voltage value are fed back to the calculation unit 441 so that the drive power supplied to the motor 403 is adjusted to the set drive power. The PWM signal may be applied to the high side switching elements Q1 to Q3.
 3つの位置検出素子442は、ロータ403aの回転位置を検出するために周方向に所定の角度毎に配置されており、従って位置検出素子の信号変化はモータ回転数に大きさよりその時間間隔は変化し、演算部441内部の回転数検出回路1411は、その信号変化の時間間隔を検出してモータ回転数を検出している。回転角度検出回路1412も、同様に、位置検出素子442の信号変化を基にアンビル430(先端工具)の回転角度を検出している。 The three position detection elements 442 are arranged at predetermined angles in the circumferential direction in order to detect the rotational position of the rotor 403a. Therefore, the signal change of the position detection elements changes in time interval depending on the motor rotation speed. Then, the rotation speed detection circuit 1411 inside the calculation unit 441 detects the motor rotation speed by detecting the time interval of the signal change. Similarly, the rotation angle detection circuit 1412 detects the rotation angle of the anvil 430 (tip tool) based on the signal change of the position detection element 442.
 運転時間検出回路1413は、演算部441内部のタイマを使用してモータ403への通電時間の計測を行っている。トリガスイッチ406が操作されるとモータ403の起動を開始し、モータの起動開始と同時に運転時間検出回路1413は運転時間の計時を開始する。運転時間検出回路1413で計測された運転時間が自動停止時間に到達すると、演算部441はトリガスイッチ406の操作がなされていてもモータ403を停止する。自動停止時間設定回路1414は操作部453(図24にて後述する)からの入力信号を基に、自動停止時間を設定する。自動停止時間は複数の異なる値を持ち、操作部453から入力信号が入力されるごとに、自動停止時間は切り替えられる。 The operation time detection circuit 1413 measures the energization time to the motor 403 using a timer inside the calculation unit 441. When the trigger switch 406 is operated, the motor 403 starts to be started, and the operation time detection circuit 1413 starts measuring the operation time simultaneously with the start of the motor start. When the operation time measured by the operation time detection circuit 1413 reaches the automatic stop time, the calculation unit 441 stops the motor 403 even if the trigger switch 406 is operated. The automatic stop time setting circuit 1414 sets an automatic stop time based on an input signal from the operation unit 453 (described later in FIG. 24). The automatic stop time has a plurality of different values, and the automatic stop time is switched every time an input signal is input from the operation unit 453.
 図22に本実施の形態における自動停止時間の設定値を示す。図22(A)又は(B)の何れかの設定パラメータが選択された状態において、操作部453の操作により設定モードA~Dの何れかを選択して自動停止時間の設定ができる。但し、電動工具側の操作部453では図22(A)と(B)間の切替はできない(後述するように図22(A)と(B)間の切替は携帯機器459で行う)。 FIG. 22 shows the set value of the automatic stop time in the present embodiment. In a state where any one of the setting parameters shown in FIGS. 22A and 22B is selected, the automatic stop time can be set by selecting any of the setting modes A to D by operating the operation unit 453. However, the operation unit 453 on the power tool side cannot switch between FIGS. 22A and 22B (the switching between FIGS. 22A and 22B is performed by the portable device 459 as described later).
 最大回転数設定回路1415は操作部453からの入力信号を基に、モータ403の最大回転数を設定する。最大回転数は複数の異なる値を持ち、操作部453から入力信号が入力されるごとに、最大回転数は切り替えられる。 The maximum rotation number setting circuit 1415 sets the maximum rotation number of the motor 403 based on the input signal from the operation unit 453. The maximum rotation speed has a plurality of different values, and the maximum rotation speed is switched each time an input signal is input from the operation unit 453.
 図23に本実施の形態における最大回転数の設定値を示す。最大回転数は、モータ403で回転可能な回転数の上限の設定値であり、設定された最大回転数以下になるように演算部441はPWMデューティー比を変化させてモータ回転数を制御する。図23(A)又は(B)の何れかの設定パラメータが選択された状態において、操作部453の操作により設定モードA~Dの何れかを選択して最大回転数の設定ができる。但し、電動工具側の操作部453では図23(A)と(B)間の切替はできない(後述するように図23(A)と(B)間の切替は携帯機器459で行う)。 FIG. 23 shows the set value of the maximum rotational speed in the present embodiment. The maximum number of rotations is a set value of the upper limit of the number of rotations that can be rotated by the motor 403, and the calculation unit 441 controls the motor number of rotations by changing the PWM duty ratio so as to be equal to or less than the set maximum number of rotations. In a state where any one of the setting parameters shown in FIGS. 23A and 23B is selected, the maximum rotation speed can be set by selecting one of the setting modes A to D by operating the operation unit 453. However, the operation unit 453 on the power tool side cannot switch between FIGS. 23A and 23B (the switching between FIGS. 23A and 23B is performed by the portable device 459 as described later).
 通信回路1416は携帯機器459から送信された赤外線送信信号を受信し、その設定パラメータの値を最大回転数の設定値や自動停止時間の設定値に反映する。図22(A)には自動停止時間の設定値の一例を示したが、通信による設定パラメータの変更により、例えば図22(B)示す設定値にも変更可能である(図22(B)から(A)への変更も可能)。同様に図23(A)には最大回転数の設定値の一例を示したが、通信による設定パラメータの変更により、例えば図23(B)示す設定値にも変更可能である(図23(B)から(A)への変更も可能)。また、変更された設定パラメータは演算部441内部の記憶回路により記憶されており、演算部の電源が遮断された時も設定パラメータが消えることなく、再度電源が投入後には、遮断前の記憶された設定パラメータで運転することが可能となる。 The communication circuit 1416 receives the infrared transmission signal transmitted from the portable device 459, and reflects the value of the setting parameter in the setting value of the maximum rotation speed and the setting value of the automatic stop time. FIG. 22A shows an example of the set value of the automatic stop time, but it can be changed to the set value shown in FIG. 22B, for example, by changing the setting parameter by communication (from FIG. 22B). Changes to (A) are also possible). Similarly, FIG. 23A shows an example of the setting value of the maximum rotation speed, but it can be changed to, for example, the setting value shown in FIG. 23B by changing the setting parameter by communication (FIG. 23B ) To (A) is also possible). The changed setting parameters are stored in the storage circuit inside the calculation unit 441. Even when the power to the calculation unit is turned off, the set parameters do not disappear. After the power is turned on again, the setting parameters are stored. It is possible to operate with the set parameters.
 図24に示される操作部453は、例えば最大回転数表示部454と、自動停止時間表示部455と、切替スイッチとしての最大回転数設定ボタン456及び自動停止時間設定ボタン457を具備する。回転数設定ボタン456の操作が検出されると演算部441は最大回転数の設定値を切り替え、その最大回転数に対応した数値が最大回転数表示部454に表示される。自動停止時間設定ボタン457の操作が検出されると演算部441は自動停止時間の設定値を切り替え、その自動停止時間に対応した数値が自動停止時間表示部455に表示される。また、通常は設定値の切替をする場合は最大回転数設定ボタン456と自動停止時間設定ボタン457はそれぞれ単独で操作されるので、設定値の切替の際には最大回転数設定ボタン456と自動停止時間設定ボタン457が同時に操作されることは無い。従って最大回転数設定ボタン456と自動停止時間設定ボタン457が同時に操作された場合には、携帯機器459との赤外線通信による設定パラメータの切替可能モードに移行する。例えば、誤って携帯機器459から設定パラメータの切替がなされた場合に、設定パラメータ切替可能モードに移行していない限り、設定パラメータの切替がなされない。従って作業者が意図せず設定パラメータが切替えられることを防ぐことができる。なお、操作部453は、設定パラメータとしてのモータの目標電流値や自動停止角度を設定、表示する機能を備えていてもよい。例えば目標電流値や自動停止角度を設定するための押しボタン等の切替スイッチを有する構成とすることも可能である。また、最大回転数表示部454及び自動停止時間表示部455には、図22及び図23に示す設定モード(A、B等)を表示してもよい。 The operation unit 453 shown in FIG. 24 includes, for example, a maximum rotation number display unit 454, an automatic stop time display unit 455, a maximum rotation number setting button 456 and an automatic stop time setting button 457 as a changeover switch. When the operation of the rotation speed setting button 456 is detected, the calculation unit 441 switches the setting value of the maximum rotation speed, and a numerical value corresponding to the maximum rotation speed is displayed on the maximum rotation speed display section 454. When the operation of the automatic stop time setting button 457 is detected, the calculation unit 441 switches the set value of the automatic stop time, and a numerical value corresponding to the automatic stop time is displayed on the automatic stop time display unit 455. Normally, when the set value is switched, the maximum rotation speed setting button 456 and the automatic stop time setting button 457 are each operated independently. Therefore, when the set value is switched, the maximum rotation speed setting button 456 and the automatic rotation time setting button 457 are automatically operated. The stop time setting buttons 457 are not operated simultaneously. Therefore, when the maximum rotation speed setting button 456 and the automatic stop time setting button 457 are operated at the same time, the mode shifts to a setting parameter switching mode by infrared communication with the portable device 459. For example, when the setting parameter is switched from the portable device 459 by mistake, the setting parameter is not switched unless the mode is shifted to the setting parameter switchable mode. Accordingly, it is possible to prevent the setting parameter from being switched unintentionally by the operator. The operation unit 453 may have a function of setting and displaying a motor target current value and an automatic stop angle as setting parameters. For example, it is possible to adopt a configuration having a changeover switch such as a push button for setting a target current value and an automatic stop angle. Further, the maximum rotation number display unit 454 and the automatic stop time display unit 455 may display the setting modes (A, B, etc.) shown in FIGS.
 図25にボルト締め付け作業時の、締め付け時間とモータ回転数に対する締め付けトルクの関係のグラフを示す。作業によって望まれる締め付けトルクは異なり、所望の締め付けトルクでボルト締め作業を行うためには、各ボルト毎に締め付け時間とモータ回転数を一定に保つ必要がある。本実施の形態においては、自動停止時間と最大回転数の値を作業に対応して一定の値に切り替えることが可能であるので、常に一定の正確な締め付けトルクで作業することが可能となる。 FIG. 25 shows a graph of the relationship between the tightening time and the tightening torque with respect to the motor rotation speed during the bolt tightening operation. The desired tightening torque differs depending on the work, and in order to perform the bolt tightening operation with the desired tightening torque, it is necessary to keep the tightening time and the motor rotation speed constant for each bolt. In the present embodiment, the values of the automatic stop time and the maximum number of rotations can be switched to constant values corresponding to the work, so that it is always possible to work with a constant and accurate tightening torque.
 図26にねじ締め作業時の、締め付け時間とモータの最適回転数に対するねじの仕様の関係のグラフを示す。ねじ(木ねじなどの先細形状のもの)の径が小さく、全長が短い場合ほど最適回転数が小さく締め付け時間も短くなり、ねじの径が大きく、全長が長い場合ほど最適回転数が大きく締め付け時間も長くなる。締め付け時の回転数が最適回転数より大幅に大きくなると、ねじ頭の破損や締め付け過ぎによる加工部材の損傷につながるために、ねじの締め付け時には最適回転数でモータを制御する必要がある。また、ねじの全長が短くなるほど作業の締め付け時間が短くなるので、モータも運転から停止まで早く制御する必要あり、トリガ操作で対応するためには困難である。本実施の形態においては、自動停止時間と最大回転数の値をねじの大きさに対応して一定の値に切り替えることが可能であるので、常に安定したねじ締め作業が可能となる。 Fig. 26 shows a graph of the relationship between the tightening time and the screw specifications relative to the optimum motor speed during screw tightening. The smaller the screw (wooden screw or other tapered shape) diameter and the shorter the overall length, the smaller the optimum rotational speed and the shorter the tightening time. The larger the screw diameter and the longer the overall length, the larger the optimum rotational speed and the tightening time. become longer. If the number of rotations at the time of tightening is significantly greater than the optimum number of rotations, it may lead to breakage of the screw head or damage to the processed member due to excessive tightening, so it is necessary to control the motor at the optimum number of rotations when tightening the screws. In addition, the shorter the overall length of the screw, the shorter the tightening time for the operation. Therefore, it is necessary to control the motor from operation to stop as soon as possible, and it is difficult to cope with trigger operation. In the present embodiment, the values of the automatic stop time and the maximum number of rotations can be switched to constant values corresponding to the size of the screw, so that stable screw tightening work can always be performed.
 図27に、トリガ操作量(ストローク)の検出信号に対応するPWMデューティー比の関係を示す。関係としては(A)、(B)、(C)の関係式を示す。(A)の関係式は、トリガ操作量に対してPWMデューティー比の変化を単純比例させて変化させた場合の関係式である。(B)の関係式は、トリガ操作の開始から全ストロークに到達する直前までの領域まではPWMデューティーは低く、それ以降は急速にPWMデューティーが最大値の100%に到達する関係式である。ねじ締め作業の開始時には、作業者は、通常、ねじを加工部材に押しつけた状態でトリガスイッチを微小量だけ操作させモータを微小量だけ回転させることにより、ねじの先端を目標位置に位置決め作業を行う。また、ねじ径が小さい場合やねじ長さが短い場合には、必要なトルクも小さく、作業時間も短いために、モータの回転数は低い領域で調整することが容易であることが望まれる。従って、トリガ操作で操作可能な回転数も低い領域での調整が容易であることが望まれ、(B)の関係式の場合が、その場合に適する。(C)の関係式は、トリガ操作の開始してから直ぐにPWMデューティーが上昇し、それ以降は徐々にPWMデューティーが最大値の100%に到達する関係式である。ねじ締め作業時に、ねじ径が大きい場合やねじ長さが長い場合には、必要なトルクも大きく、作業時間が長いために、モータの回転数は高い領域で調整することが容易であることが望まれる。また先端工具にレンチを使用してボルト締め作業を行う場合は、位置決め作業は必要でないために、トリガ操作し始めから直ぐにモータ回転数は最大になってもよく、トリガ操作に対するモータ回転数の調整も求められない。従って、ねじ径が大きい場合のねじ締め作業やボルト締め作業を行う場合は、(C)の関係式が適する。それぞれ作業用途に応じて求められるトリガ操作量(ストローク)の検出信号に対応するPWMデューティー比の関係は異なるが、通信による設定パラメータの変更により、関係式が(A)、(B)、(C)の間で切り替えることができ、作業毎に適した関係式を選択することが可能となる。 FIG. 27 shows the relationship of the PWM duty ratio corresponding to the trigger operation amount (stroke) detection signal. As the relationship, the relational expressions (A), (B), and (C) are shown. The relational expression (A) is a relational expression when the change of the PWM duty ratio is simply proportional to the trigger operation amount. The relational expression (B) is a relational expression in which the PWM duty is low from the start of the trigger operation to just before reaching the full stroke, and after that, the PWM duty rapidly reaches 100% of the maximum value. At the beginning of the screw tightening operation, the operator usually positions the tip of the screw at the target position by operating the trigger switch by a small amount and rotating the motor by a small amount while pressing the screw against the workpiece. Do. Further, when the screw diameter is small or the screw length is short, the necessary torque is small and the working time is short, so that it is desirable that the motor rotation speed be easily adjusted in a low region. Therefore, it is desirable that the adjustment in the region where the number of rotations operable by the trigger operation is also low is easy, and the case of the relational expression (B) is suitable in that case. The relational expression (C) is a relational expression in which the PWM duty increases immediately after the trigger operation is started, and after that, the PWM duty gradually reaches 100% of the maximum value. During screw tightening, if the screw diameter is large or the screw length is long, the required torque is large and the work time is long, so the motor rotation speed can be easily adjusted in a high region. desired. In addition, when bolting is performed using a wrench for the tip tool, positioning work is not required, so the motor rotation speed may be maximized immediately after the trigger operation starts, and the motor rotation speed can be adjusted in response to the trigger operation. Is also not required. Therefore, when performing screw tightening work and bolt tightening work when the screw diameter is large, the relational expression (C) is suitable. Although the relationship of the PWM duty ratio corresponding to the detection signal of the trigger operation amount (stroke) required according to the work application is different, the relational expressions (A), (B), (C ), And a relational expression suitable for each work can be selected.
 図28のフローチャートを用いて演算部441で行われる本実施の形態の制御方式について示す。まず演算部441はトリガスイッチ406の操作がオンになっているか印加電圧設定回路449より取得する(S201)。ここでトリガスイッチ406の操作がオンの場合には(S201:YES)、演算部441はモータ403の運転を開始する(S202)。モータ403の運転開始と同時に運転時間検出回路1413は運転時間の計測を開始する(S203)。次に演算部441はトリガスイッチ406の操作がオンになっているか印加電圧設定回路449より取得し(S205)、トリガスイッチ406の操作がオフの場合には(S205:NO)、演算部441はモータ403の運転を停止し(S204)、再びS201に戻る。一方S205でトリガスイッチ406の操作がオンの場合には(S205:YES)、演算部441は回転数検出回路1411によりモータ403の回転数を検出し(S206)、モータ回転数が設定された最大回転数で運転されるようにPWMデューティー比を調整しながらモータ制御を行い(S207)、運転時間検出回路1413で計測している運転時間の値を確認し(S208)、計測された運転時間が自動停止時間に到達したかどうか確認する(S209)。計測された運転時間が自動停止時間に到達していない場合は(S209:NO)、S205に戻りモータ403の運転を継続する。一方S209で計測された運転時間が自動停止時間に到達したと判断した場合は(S209:YES)、演算部441はモータ403の運転を停止させて(S210)、トリガスイッチ406の操作が継続されているか判別する(S211)。トリガスイッチ406の操作が継続されている場合は(S211:YES)、モータ403の停止状態を保持し続ける。トリガスイッチ406の操作が解除された場合は(S211:NO)、S201に戻る。 The control method of this embodiment performed by the calculation unit 441 will be described using the flowchart of FIG. First, the calculation unit 441 acquires from the applied voltage setting circuit 449 whether the operation of the trigger switch 406 is on (S201). When the operation of the trigger switch 406 is on (S201: YES), the calculation unit 441 starts the operation of the motor 403 (S202). Simultaneously with the start of operation of the motor 403, the operation time detection circuit 1413 starts measuring the operation time (S203). Next, the calculation unit 441 obtains from the applied voltage setting circuit 449 whether the operation of the trigger switch 406 is on (S205). If the operation of the trigger switch 406 is off (S205: NO), the calculation unit 441 The operation of the motor 403 is stopped (S204), and the process returns to S201 again. On the other hand, when the operation of the trigger switch 406 is ON in S205 (S205: YES), the calculation unit 441 detects the rotation speed of the motor 403 by the rotation speed detection circuit 1411 (S206), and the maximum motor speed is set. Motor control is performed while adjusting the PWM duty ratio so that the motor is operated at the rotational speed (S207), the value of the operating time measured by the operating time detection circuit 1413 is confirmed (S208), and the measured operating time is measured. It is confirmed whether or not the automatic stop time has been reached (S209). When the measured operation time has not reached the automatic stop time (S209: NO), the process returns to S205 and the operation of the motor 403 is continued. On the other hand, when it is determined that the operation time measured in S209 has reached the automatic stop time (S209: YES), the calculation unit 441 stops the operation of the motor 403 (S210) and the operation of the trigger switch 406 is continued. Is determined (S211). When the operation of the trigger switch 406 is continued (S211: YES), the motor 403 is kept stopped. When the operation of the trigger switch 406 is released (S211: NO), the process returns to S201.
 S201の判断でトリガスイッチ406の操作がオフの場合には(S201:NO)、操作部453の自動停止時間設定ボタン457の操作の有無を判定し(S212)、自動停止時間設定ボタン457の操作があった場合は(S212:YES)、自動停止時間の設定値の切替を行う(S213)。次に、操作部453の最大回転数設定ボタン456の操作の有無を判定し(S214)、最大回転数設定ボタン456の操作があった場合は(S214:YES)、最大回転数の設定値の切替を行う(S215)。トリガスイッチ406の操作がオフであり、モータ403が停止中の場合のみ設定値の切替が可能である。S216の判断では、電動工具401の設定パラメータの変更が可能である通信可能モードであるかどうか判断している。設定パラメータの変更が可能である通信可能モードである場合(具体的には、S221で通信可能モードが開始されているとき)には(S216:YES)、携帯機器459から赤外線通信が行われ通信部458で赤外線を受信した場合には(S217:YES)、受信した通信信号の値に基づき自動停止時間や最大回転数のパラメータを変更し(S218)、通信可能モードを終了する(S219)。一方、通信可能モードでは無い場合には(S216:NO)、自動停止時間設定ボタン457と最大回転数設定ボタン456の操作が同時に押されているか判断し(S220)、同時に押されていると判断した場合には(S220:YES)、通信可能モードに移行する(S221)。 When the operation of the trigger switch 406 is OFF in the determination of S201 (S201: NO), it is determined whether or not the automatic stop time setting button 457 of the operation unit 453 is operated (S212), and the automatic stop time setting button 457 is operated. If there is (S212: YES), the set value of the automatic stop time is switched (S213). Next, it is determined whether or not the maximum rotation number setting button 456 of the operation unit 453 is operated (S214). When the maximum rotation number setting button 456 is operated (S214: YES), the setting value of the maximum rotation number is set. Switching is performed (S215). The set value can be switched only when the operation of the trigger switch 406 is OFF and the motor 403 is stopped. In the determination in S216, it is determined whether or not it is a communicable mode in which the setting parameter of the electric tool 401 can be changed. When it is a communicable mode in which the setting parameter can be changed (specifically, when the communicable mode is started in S221) (S216: YES), infrared communication is performed from the portable device 459 to perform communication. When the infrared ray is received by the unit 458 (S217: YES), the parameters of the automatic stop time and the maximum rotation speed are changed based on the value of the received communication signal (S218), and the communicable mode is ended (S219). On the other hand, when the mode is not the communication enable mode (S216: NO), it is determined whether the operations of the automatic stop time setting button 457 and the maximum rotation speed setting button 456 are pressed at the same time (S220). If it is determined (S220: YES), the communication mode is entered (S221).
 図28のフローチャートにおいては、運転時間と最大回転数の設定値を切替可能な場合の制御方式について説明したが、この制御方式とは別に、回転角度と最大回転数の設定値を切替可能な場合の制御方式について説明する。トリガスイッチ406が操作されるとモータ403の起動を開始されるが、回転角度検出回路1412はモータ403の起動開始と同時にアンビル430(先端工具)の回転角度の検出を開始する。回転角度検出回路1412で計測された回転角度(累積回転角度)が自動停止角度に到達すると、演算部441はトリガスイッチ406の操作がなされていてもモータ403を停止する。つまり、図28のS203,S208,S209の運転時間を回転角度に置き換えて制御すればよい。 In the flowchart of FIG. 28, the control method in the case where the setting value of the operation time and the maximum rotation speed can be switched has been described. However, separately from this control method, the setting value of the rotation angle and the maximum rotation speed can be switched. The control method will be described. When the trigger switch 406 is operated, the motor 403 starts to be started, but the rotation angle detection circuit 1412 starts detecting the rotation angle of the anvil 430 (tip tool) simultaneously with the start of the motor 403. When the rotation angle (cumulative rotation angle) measured by the rotation angle detection circuit 1412 reaches the automatic stop angle, the calculation unit 441 stops the motor 403 even if the trigger switch 406 is operated. That is, the operation time of S203, S208, and S209 in FIG.
 自動停止角度は複数の異なる設定値を持ち、図29に本実施の形態における自動停止角度の設定値を示す。図29(A)又は(B)の何れかの設定パラメータが選択された状態において、操作部453の操作により設定モードA~Dの何れかを選択して自動停止角度の設定ができる。但し、電動工具側の操作部453では図29(A)と(B)間の切替はできないが、携帯機器459から赤外線通信を行うことで、通信による設定パラメータの切替により、例えば図29(A)から(B)示す設定値にも切替可能である(図29(B)から(A)への変更も可能)。 The automatic stop angle has a plurality of different set values, and FIG. 29 shows the set values of the automatic stop angle in the present embodiment. In a state where any one of the setting parameters shown in FIGS. 29A and 29B is selected, one of the setting modes A to D can be selected by the operation of the operation unit 453 to set the automatic stop angle. However, the operation unit 453 on the power tool side cannot switch between FIGS. 29A and 29B, but by performing infrared communication from the portable device 459, the setting parameter is switched by communication, for example, FIG. ) To the set value shown in (B) (change from FIG. 29 (B) to (A) is also possible).
 図28のフローチャートにおいては、運転時間と最大回転数の設定値を切替可能な場合の制御方式について説明したが、この制御方式とは別に、運転時間とモータの目標電流値の設定値を切替可能な場合の制御方式について図30のフローチャートで説明する。この場合、操作部453は切替スイッチとして目標電流値設定ボタンを有するものとする。図30の場合、S231~S235までは、図28のS201~S205と同じであり、S235でトリガスイッチ406の操作がオンの場合には(S235:YES)、演算部441は電流検出回路448によりモータ403の電流値を検出し(S236)、モータが設定された目標電流値で運転されるようにPWMデューティー比を調整しながらモータ制御を行い(S237)、運転時間検出回路1413で計測している運転時間の値を確認する(S238)。S239~S243までは、図28のS209~S213と同じであり、次に、操作部453の目標電流値設定ボタンの操作の有無を判定し(S244)、目標電流値設定ボタンの操作があった場合は(S244:YES)、目標電流値の設定値の切替を行う(S245)。トリガスイッチ406の操作がオフであり、モータ403が停止中の場合のみ設定値の切替が可能である。S246~S251は図28のS216~S221と同じである。 In the flowchart of FIG. 28, the control method when the setting value of the operation time and the maximum number of revolutions can be switched has been described. However, separately from this control method, the setting value of the operation time and the target current value of the motor can be switched. The control method in this case will be described with reference to the flowchart of FIG. In this case, the operation unit 453 has a target current value setting button as a changeover switch. In the case of FIG. 30, S231 to S235 are the same as S201 to S205 of FIG. 28. When the operation of the trigger switch 406 is ON in S235 (S235: YES), the calculation unit 441 is controlled by the current detection circuit 448. The current value of the motor 403 is detected (S236), the motor is controlled while adjusting the PWM duty ratio so that the motor is operated at the set target current value (S237), and measured by the operation time detection circuit 1413. The value of the running time is confirmed (S238). Steps S239 to S243 are the same as steps S209 to S213 in FIG. 28. Next, it is determined whether or not the target current value setting button of the operation unit 453 is operated (S244), and the target current value setting button is operated. In this case (S244: YES), the set value of the target current value is switched (S245). The set value can be switched only when the operation of the trigger switch 406 is OFF and the motor 403 is stopped. S246 to S251 are the same as S216 to S221 in FIG.
 本実施の形態によれば、下記の効果を奏することができる。 According to this embodiment, the following effects can be achieved.
(1) 電動工具401を所定の設定パラメータで制御する制御回路基板408上の制御回路(演算部441及び制御信号出力回路446を含む回路構成)と、設定パラメータの設定値を外部から変更する電動工具401とは別体の携帯機器459とを具備し、携帯機器459から電動工具401へ設定パラメータの設定値の変更時には、電動工具401と携帯機器459は無線による通信を行い、設定パラメータの設定値を変更することができる構成である。これにより、作業に最適な設定パラメータを作業者が外部から設定可能であり、作業毎に適した設定パラメータが設定可能であるために、作業効率の大幅な向上が可能となる。 (1) A control circuit (a circuit configuration including a calculation unit 441 and a control signal output circuit 446) on the control circuit board 408 that controls the electric tool 401 with predetermined setting parameters, and an electric motor that changes the setting values of the setting parameters from the outside. A portable device 459 separate from the tool 401 is provided, and when the setting value of the setting parameter is changed from the portable device 459 to the electric tool 401, the electric tool 401 and the portable device 459 perform wireless communication to set the setting parameter. The configuration can change the value. As a result, the operator can set the optimum setting parameter for the work from the outside, and the setting parameter suitable for each work can be set, so that the work efficiency can be greatly improved.
(2) 電動工具401は、電動工具401の運転が停止中のときには設定パラメータの設定値の変更が可能であり、電動工具401の運転が動作中のときには設定パラメータの設定値の変更が不能である。これにより、設定パラメータが電動工具401の運転中に変更され、運転中の電動工具401の動作が意図せず変化した場合の危険を防ぐことが可能となる。 (2) The electric tool 401 can change the setting value of the setting parameter when the operation of the electric tool 401 is stopped, and cannot change the setting value of the setting parameter when the operation of the electric tool 401 is operating. is there. As a result, the setting parameter is changed during the operation of the electric power tool 401, and it is possible to prevent danger when the operation of the electric power tool 401 during the operation changes unintentionally.
(3) 作業者により操作されるスイッチ(設定ボタン456,457)を有する操作部453を電動工具401に設け、スイッチ操作により電動工具401の状態が設定パラメータが変更可能状態か変更不能状態かに切り替えられ、電動工具401の状態が変更可能状態である時(本例では設定ボタン456,457が同時に押されたとき)には携帯機器459による設定パラメータの変更が可能であり、電動工具401の状態が変更不能状態である時には携帯機器459による設定パラメータの変更が不能である構成である。これにより、設定パラメータが作業者の意図に反して変更されることを防ぐことが可能となる。 (3) An operation unit 453 having switches (setting buttons 456 and 457) operated by a worker is provided in the electric tool 401, and the state of the electric tool 401 can be changed by a switch operation. When the power tool 401 is switched and is in a changeable state (in this example, when the setting buttons 456 and 457 are pressed simultaneously), the setting parameter can be changed by the portable device 459. When the state is an unchangeable state, the setting parameter cannot be changed by the portable device 459. Thereby, it is possible to prevent the setting parameters from being changed against the operator's intention.
(4) 電動工具401に報知手段(電動工具401の先端部を照らすライト451)を設け、電動工具401と携帯機器459の間で正しく通信が行われ、設定パラメータの変更が正しく行われた時に、報知手段により作業者に報知すること構成であるため、設定パラメータが正しく設定されたことを作業者に確実に知らせることが可能となる。ライト451を報知手段に兼用することで、新たに別の報知手段を設ける必要がなく、構成の簡素化が図れる。 (4) When the power tool 401 is provided with notifying means (light 451 that illuminates the tip of the power tool 401), communication is correctly performed between the power tool 401 and the portable device 459, and the setting parameter is correctly changed. Since the notification means notifies the worker, it is possible to reliably notify the worker that the setting parameter has been set correctly. By using the light 451 also as the notification means, it is not necessary to newly provide another notification means, and the configuration can be simplified.
(5) 電動工具401の通信部458は受信のみが可能であり、携帯機器459の通信部は送信のみが可能であり、これにより、電動工具401には受信部の回路のみ搭載されるので、回路が大型化することなく、ひいては電動工具401の大型化を招くことがない。また、電動工具401側通信部458及び携帯機器459の構成が簡素化される。 (5) The communication unit 458 of the electric tool 401 can only receive, and the communication unit of the portable device 459 can only transmit, so that only the circuit of the receiving unit is mounted on the electric tool 401. The circuit does not increase in size, and as a result, the electric tool 401 does not increase in size. In addition, the configuration of the power tool 401 side communication unit 458 and the portable device 459 is simplified.
(6) ハウジング402と、ハウジング402内に装着されたモータ403と、トリガ操作部としてのトリガスイッチ406を有し、トリガスイッチ406が有するトリガ406aの操作に応答してモータ403を制御し、トリガ406aの操作量の大きさに応じてモータ403の回転数は調整され、トリガ406aの操作量とモータ403の回転数は所定の関係式で定義されるようにした電動工具401において、関係式を設定パラメータとして携帯機器459によって変更可能であるので、様々な作業用途に応じて設定値(関係式)を変更して、作業効率を向上させることができる。 (6) A saddle housing 402, a motor 403 mounted in the housing 402, a trigger switch 406 as a trigger operation unit, and controls the motor 403 in response to an operation of a trigger 406a included in the trigger switch 406. In the electric tool 401 in which the rotation speed of the motor 403 is adjusted according to the magnitude of the operation amount of 406a, and the operation amount of the trigger 406a and the rotation speed of the motor 403 are defined by a predetermined relational expression, the relational expression is Since the setting parameter can be changed by the portable device 459, the setting value (relational expression) can be changed according to various work applications to improve work efficiency.
(7) モータ403で運転可能な回転数の上限である最大回転数を有し、モータ403の運転は最大回転数以下になるよう制御回路により制御される電動工具401において、最大回転数を設定パラメータとして携帯機器459によって変更可能であるので、様々な作業用途に応じて設定値(最大回転数)を変更して、作業効率を向上させることができる。 (7) The maximum rotational speed is set in the electric tool 401 that has the maximum rotational speed that is the upper limit of the rotational speed that can be operated by the motor 403 and is controlled by the control circuit so that the operation of the motor 403 is less than or equal to the maximum rotational speed. Since the parameter can be changed by the portable device 459, the setting value (maximum rotation speed) can be changed according to various work applications to improve the work efficiency.
(8) 電動工具401には、最大回転数を設定する切替スイッチとしての最大回転数設定ボタン456を有する操作部453が設けられているから、最大回転数設定ボタン456の操作によって最大回転数は複数の異なる値に切り替えることが可能であり、モータ403の最大回転数の設定値が変更可能であるので、様々な作業用途に応じて設定値を変更して、作業効率を向上させることができる。 (8) Since the electric tool 401 is provided with the operation unit 453 having the maximum rotation number setting button 456 as a changeover switch for setting the maximum rotation number, the maximum rotation number is set by operating the maximum rotation number setting button 456. Since it is possible to switch to a plurality of different values and the set value of the maximum number of rotations of the motor 403 can be changed, the set value can be changed according to various work applications, and work efficiency can be improved. .
(9) モータ403の運転時間を制御する自動停止時間を有し、トリガ406aの操作がなされてモータ403の運転が開始されてからの運転時間が自動停止時間に到達すると、トリガ操作がなされている状態においてもモータ403の運転を停止するように制御回路により制御される電動工具401において、自動停止時間を設定パラメータとして携帯機器459によって変更可能であるので、様々な作業用途に応じて設定値(自動停止時間)を変更して、作業効率を向上させることができる。 (9) It has an automatic stop time for controlling the operation time of the motor 403, and when the operation time after the trigger 406a is operated and the motor 403 is started reaches the automatic stop time, the trigger operation is performed. In the electric tool 401 controlled by the control circuit so as to stop the operation of the motor 403 even in the state of being in the state, the automatic stop time can be changed as a setting parameter by the portable device 459, so that the set value according to various work applications By changing (automatic stop time), work efficiency can be improved.
(10) 電動工具401には、自動停止時間を設定する切替スイッチとしての自動停止時間設定ボタン457を有する操作部453が設けられているから、自動停止時間設定ボタン457の操作によって自動停止時間は複数の異なる値に切り替えることが可能であり、自動停止時間の設定値が変更可能であるので、様々な作業用途に応じて設定値を変更して、作業効率を向上させることができる。 (10) Since the electric tool 401 is provided with an operation unit 453 having an automatic stop time setting button 457 as a changeover switch for setting the automatic stop time, the automatic stop time is set by operating the automatic stop time setting button 457. Since it is possible to switch to a plurality of different values and the set value of the automatic stop time can be changed, it is possible to improve the work efficiency by changing the set value according to various work applications.
(11) モータ403の運転時の目標電流値を有し、モータ403は目標電流値で制御回路により制御される電動工具401の場合、目標電流値を設定パラメータとして携帯機器459によって変更可能であるので、様々な作業用途に応じて設定値(目標電流値)を変更して、作業効率を向上させることができる。 (11) In the case of the electric tool 401 that has a target current value at the time of operation of the saddle motor 403 and the motor 403 is controlled by the control circuit with the target current value, the target current value can be changed by the portable device 459 as a setting parameter. Therefore, it is possible to improve the work efficiency by changing the set value (target current value) according to various work applications.
(12) 電動工具401に、目標電流値を設定する切替スイッチとしての目標電流値設定ボタンを有する操作部453が設けられている場合、目標電流値設定ボタンの操作によって目標電流値は複数の異なる値に切り替えることが可能であり、モータの運転時の目標電流値の設定値が変更可能であるので、様々な作業用途に応じて設定値を変更して、作業効率を向上させることができる。 (12) When the power tool 401 is provided with an operation unit 453 having a target current value setting button as a changeover switch for setting the target current value, the target current value varies depending on the operation of the target current value setting button. Since the set value of the target current value during operation of the motor can be changed, it is possible to improve the work efficiency by changing the set value according to various work applications.
(13) モータ403の運転時の自動停止角度を有し、モータ403は自動停止角度で制御回路により制御される電動工具401の場合、自動停止角度を設定パラメータとして携帯機器459によって変更可能であるので、様々な作業用途に応じて設定値(自動停止角度)を変更して、作業効率を向上させることができる。 (13) In the case of the electric tool 401 that has an automatic stop angle during operation of the saddle motor 403 and the motor 403 is controlled by the control circuit at the automatic stop angle, the automatic stop angle can be changed by the portable device 459 as a setting parameter. Therefore, it is possible to improve the work efficiency by changing the set value (automatic stop angle) according to various work applications.
(14) 電動工具401に、自動停止角度を設定する切替スイッチとしての自動停止角度設定ボタンを有する操作部453が設けられている場合、自動停止角度設定ボタンの操作によって自動停止角度は複数の異なる値に切り替えることが可能であり、モータの運転時の自動停止角度の設定値が変更可能であるので、様々な作業用途に応じて設定値を変更して、作業効率を向上させることができる。 (14) When the electric tool 401 is provided with an operation unit 453 having an automatic stop angle setting button as a changeover switch for setting an automatic stop angle, the automatic stop angle differs depending on the operation of the automatic stop angle setting button. Since the setting value of the automatic stop angle during operation of the motor can be changed, the setting value can be changed according to various work applications to improve work efficiency.
 なお、本発明の動力機器、動力機器システム、及び電動工具管理システムは、上述した実施の形態に限定されず、請求の範囲に記載した範囲で種々の変形や改良が可能である。 The power device, power device system, and power tool management system of the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made within the scope described in the claims.
 上述の実施の形態では、動力機器の一例として電子パルスドライバ1及び電動工具401を採用したが、これに限定されない。例えば、圧縮空気を利用した空気工具や内燃機関を利用したエンジン工具などにも適用することができる。さらに、電気又はエンジンで駆動する刈払機、チェーンソーなどの作業機器にも適用することができる。 In the above-described embodiment, the electronic pulse driver 1 and the electric tool 401 are employed as an example of the power equipment, but are not limited thereto. For example, the present invention can be applied to an air tool using compressed air, an engine tool using an internal combustion engine, and the like. Furthermore, the present invention can be applied to work equipment such as a brush cutter and a chain saw driven by electricity or an engine.
 上述の実施の形態では、電子パルスドライバは4つの制御モードのうちから1の制御モードを選択可能であったが、5つ以上の制御モードから選択可能な構成であってもよい。 In the above-described embodiment, the electronic pulse driver can select one control mode from the four control modes. However, the electronic pulse driver may be configured to be selectable from five or more control modes.
 上述の実施の形態では、トルクや回転速度は機器の温度上昇などを考慮して0から100%の間で設定可能としたが、100%以上の値を設定可能としてもよい。これにより、さらに幅広い用途での使用が可能となる。 In the above-described embodiment, the torque and the rotation speed can be set between 0 and 100% in consideration of the temperature rise of the device, but a value of 100% or more may be set. As a result, it can be used in a wider range of applications.
 上述の実施の形態では、トルクはモータの最大出力に対する割合で設定可能だったが、先端工具のトルク「N」(ニュートン)で設定可能であっても良い。これにより、ユーザは所望のトルクの値でネジを締結することができる。 In the above-described embodiment, the torque can be set as a ratio with respect to the maximum output of the motor, but it may be set by the torque “N” (Newton) of the tip tool. As a result, the user can fasten the screw with a desired torque value.
 上述の実施の形態では、クラッチモードグラフ表示領域97及びパルスモードグラフ表示領域100に表示されるグラフは面グラフや散布図だったが、これに限定されない。例えば、折れ線グラフでもよく、円グラフでも棒グラフでも良い。また、パルスモードでは、図18に示すような、縦軸にトルク、横軸に打数を示したハンマ42とアンビル52との打撃の状態を視覚的に表すようなグラフであっても良い。 In the above-described embodiment, the graphs displayed in the clutch mode graph display area 97 and the pulse mode graph display area 100 are area graphs and scatter diagrams, but are not limited thereto. For example, it may be a line graph, a pie graph, or a bar graph. Further, in the pulse mode, as shown in FIG. 18, a graph that visually represents the hit state of the hammer 42 and the anvil 52 with the vertical axis representing the torque and the horizontal axis representing the number of hits may be used.
 上述の第1の実施の形態の変形例では、タブ領域195には、各モードに応じたタブが3つ設けられていたが、これに限定されない。例えば、4つのタブを設けてそれぞれのタブが電子パルスドライバ1のRAMに記憶されている4つの制御モードに対応するように構成しても良い。ユーザが設定値読込ボタン95Cを押下すると、電子パルスドライバ1に記憶されている4つのモードを一気に読込むことができる。また、このときウィンドウに表示される画面には、ドリルモード、クラッチモード、パルスモードのすべてのパラメータを設定可能な画面が表示される。 In the modification of the first embodiment described above, the tab area 195 is provided with three tabs corresponding to each mode, but the present invention is not limited to this. For example, four tabs may be provided so that each tab corresponds to four control modes stored in the RAM of the electronic pulse driver 1. When the user presses the set value reading button 95C, the four modes stored in the electronic pulse driver 1 can be read at once. At this time, the screen displayed on the window displays a screen on which all parameters of the drill mode, the clutch mode, and the pulse mode can be set.
 上述の実施の形態のウィンドウ94に、さらに通信設定ボタンを設けても良い。通信設定ボタンを押下することにより、通信設定ウィンドウが新たに開き、当該ウィンドウで通信プロトコルの設定変更などを行うことができる。 A communication setting button may be further provided in the window 94 of the above-described embodiment. By pressing the communication setting button, a communication setting window is newly opened, and the communication protocol setting can be changed in the window.
 上述の実施の形態では、無線モジュール385を介して外部機器9と通信可能だったが、無線通信によりスマートフォンと通信可能に構成しても良い。これにより、さらに手軽に電子パルスドライバの制御モードを変更することができる。 In the above-described embodiment, communication with the external device 9 is possible via the wireless module 385, but communication with a smartphone via wireless communication may be possible. Thereby, the control mode of the electronic pulse driver can be changed more easily.
 上記の実施の形態では、電動工具401の通信部458と携帯機器459との通信は、赤外線通信方式で行う場合を例示したが、赤外線通信方式以外の電波を用いた短距離無線通信方式を採用することも可能である。 In the above embodiment, the communication between the communication unit 458 of the power tool 401 and the portable device 459 is exemplified by the infrared communication method, but a short-range wireless communication method using radio waves other than the infrared communication method is adopted. It is also possible to do.
 電動工具401と携帯機器459の間で正しく通信が行われ、設定パラメータの変更が正しく行われたことを作業者に知らせる報知手段を、電動工具401の先端部を照らすライト451とは別に設けてもよい。 In addition to the light 451 that illuminates the tip of the power tool 401, a notification means that notifies the operator that communication between the power tool 401 and the portable device 459 is correctly performed and the setting parameter has been changed correctly is provided. Also good.
1・・電子パルスドライバ 2・・ハウジング 3・・モータ 4・・ハンマ部 5・・アンビル部 6・・インバータ回路 7・・制御部 8・・通信ケーブル 9・・外部機器 21・・胴体部 22・・ハンドル部 23・・基板収容部 25・・トリガ 26・・電池 27・・モード切替パネル 42・・ハンマ 52・・アンビル 53・・先端工具 62・・スイッチング素子 63・・ホール素子 72・・接続部 74・・接続端子 83・・マイコン 86・・通信変換回路 87・・外部機器接続部 91・・表示部 94・・ウィンドウ 285・・通信変換回路 385・・無線モジュール 401・・電動工具 402・・ハウジング 403・・モータ 404・・インバータ回路基板 405・・スイッチング素子 406・・トリガスイッチ 407・・スイッチ基板 408・・制御回路基板 441・・演算部 1411・・回転数検出回路 1412・・回転角度検出回路 1413・・運転時間検出回路 1414・・自動停止時間設定回路 1415・・最大回転数設定回路 448・・電流検出回路 451・・ライト 452・・電圧検出回路 453・・操作部 454・・最大回転数表示部 455・・自動停止時間表示部 458・・通信部 459・・携帯機器 1 .... Electronic pulse driver 2 .... Housing 3 .... Motor 4 .... Hammer part 5 .... Anvil part 6 .... Inverter circuit 7 .... Control part 8 .... Communication cable 9 .... External equipment 21 ... Body part 22・ Handle part 23 ・ ・ Board housing part 25 ・ ・ Trigger 26 ・ ・ Battery 27 ・ ・ Mode switching panel 42 ・ Hammer 52 ・ Anvil 53 ・ ・ Tip tool 62 ・ Switching element 63 ・ Hall element 72 ・ ・Connection unit 74 ··· Connection terminal 83 · Microcomputer 86 · · Communication conversion circuit 87 · · External device connection unit 91 · · Display unit 94 · Window 285 · · Communication conversion circuit 385 · · Wireless module 401 · · Electric tool 402 · · Housing 403 · · Motor 404 · · Inverter circuit board 405 · · Switch 406 ・ ・ Trigger switch 407 ・ ・ Switch board 408 ・ ・ Control circuit board 441 ・ ・ Calculation unit 1411 ・ ・ Rotation speed detection circuit 1412 ・ ・ Rotation angle detection circuit 1413 ・ ・ Operating time detection circuit 1414 ・ ・ Automatic stop time Setting circuit 1415 ・ ・ Maximum rotation speed setting circuit 448 ・ ・ Current detection circuit 451 ・ ・ Light 452 ・ ・ Voltage detection circuit 453 ・ ・ Operation unit 454 ・ ・ Maximum rotation speed display unit 455 ・ ・ Automatic stop time display unit 458 ・ ・Communication Department 459 ・ ・ Mobile devices

Claims (32)

  1.  駆動部と、
     前記駆動部により駆動され外部に対して力学的に作用する出力部と、
     前記駆動部を制御する制御部と、を備えた動力機器において、
     前記制御部に記憶された制御モードを構成するパラメータを外部から前記制御部にアクセスして設定可能とする通信手段を備えていることを特徴とする動力機器。
    A drive unit;
    An output unit that is driven by the driving unit and acts dynamically on the outside;
    In a power device comprising a control unit that controls the drive unit,
    A power device comprising a communication unit that allows a parameter constituting a control mode stored in the control unit to be set by accessing the control unit from outside.
  2.  前記制御モードは外部から設定可能な複数のパラメータを組み合わせて構成されていることを特徴とする請求項1に記載の動力機器。 The power device according to claim 1, wherein the control mode is configured by combining a plurality of parameters that can be set from the outside.
  3.  動力機器と、前記動力機器と接続可能な外部機器と、を備えた動力機器システムであって、
     前記動力機器は、
     モータと、
     前記モータの駆動力を先端工具に伝達する駆動部と、
     前記モータの駆動を制御するための制御モードを記憶する記憶部と、
     前記制御モードに基づき前記ブラシレスモータを制御する制御部と、
     前記外部機器と接続可能な接続部と、を備え、
     前記外部機器は、
     前記接続部を介して前記動力機器と接続可能な被接続部と、
     前記制御モードのパラメータを設定可能な設定部と、を備えていることを特徴とする動力機器システム。
    A power device system comprising a power device and an external device connectable to the power device,
    The power equipment is
    A motor,
    A drive unit for transmitting the driving force of the motor to a tip tool;
    A storage unit for storing a control mode for controlling the driving of the motor;
    A control unit for controlling the brushless motor based on the control mode;
    A connection portion connectable with the external device,
    The external device is
    A connected portion connectable to the power device via the connecting portion;
    A power unit system comprising: a setting unit capable of setting a parameter of the control mode.
  4.  前記駆動部は、前記モータにより駆動されるハンマと、前記先端工具を保持し前記ハンマに打撃されることによって回転するアンビルと、を備え、前記パラメータは、前記ハンマと前記アンビルとの打周期であることを特徴とする請求項3に記載の動力機器システム。 The driving unit includes a hammer driven by the motor, and an anvil that rotates by being struck by the hammer while holding the tip tool, and the parameter is a hitting cycle of the hammer and the anvil. The power equipment system according to claim 3, wherein the power equipment system is provided.
  5.  前記制御モードは、前記モータを双方向に回転させることで前記ハンマと前記アンビルとを打撃させるパルスモードを備え、前記パルスモードは、通常打撃と前記通常打撃とは異なるパラメータを設定可能な補正打撃とを有することを特徴とする請求項4に記載の動力機器システム。 The control mode includes a pulse mode in which the hammer and the anvil are struck by rotating the motor in both directions, and the pulse mode is a correction struck capable of setting parameters different from the normal struck and the normal struck The power equipment system according to claim 4, wherein:
  6.  前記補正打撃の前記パラメータは、前記ハンマと前記アンビルとの前記打周期と、前記ハンマと前記アンビルとの打撃数と、前記ハンマが前記アンビルを打撃する際の前記ハンマのトルクと、のうち少なくとも1つを設定可能であることを特徴とする請求項5に記載の動力機器システム。 The parameter of the correction hit is at least one of the hitting period of the hammer and the anvil, the number of hits of the hammer and the anvil, and the torque of the hammer when the hammer hits the anvil. The power equipment system according to claim 5, wherein one can be set.
  7.  前記パラメータは、前記モータが動作してからの前記先端工具の総回転数であることを特徴とする請求項3に記載の動力機器システム。 4. The power equipment system according to claim 3, wherein the parameter is a total number of rotations of the tip tool after the motor is operated.
  8.  前記パラメータは、前記総回転数により設定された期間の前記モータの回転速度である初期回転速度であることを特徴とする請求項7に記載の動力機器システム。 The power device system according to claim 7, wherein the parameter is an initial rotation speed that is a rotation speed of the motor in a period set by the total rotation speed.
  9.  前記外部機器は、前記パラメータを表示する表示部を備え、
     前記表示部は、前記パラメータに関連するパラメータを横軸及び縦軸として、グラフ化して表示可能なグラフ表示部を有することを特徴とする請求項3に記載の動力機器システム。
    The external device includes a display unit that displays the parameter,
    The power device system according to claim 3, wherein the display unit includes a graph display unit capable of displaying a graph related to the parameter with a horizontal axis and a vertical axis as a graph.
  10.  前記パラメータは、前記モータの有する最大能力に対する割合で設定されることを特徴とする請求項3に記載の動力機器システム。 4. The power equipment system according to claim 3, wherein the parameter is set as a ratio to a maximum capacity of the motor.
  11.  前記動力機器は、前記外部機器との接続時に通信信号を変換する通信信号変換回路をさらに備えることを特徴とする請求項3から10のいずれか1項に記載の動力機器システム。 The power device system according to any one of claims 3 to 10, wherein the power device further includes a communication signal conversion circuit that converts a communication signal when connected to the external device.
  12.  モータと、
     前記モータの駆動力を先端工具に伝達する駆動部と、
     前記モータを制御する制御部と、
     前記モータ及び前記駆動部を収容する第1ハウジングと、前記制御部を収容する第2ハウジングと、前記第1ハウジングと前記第2ハウジングとを繋ぐハンドル部と、を有するハウジングと、
     前記第2ハウジングに収容され外部機器と無線通信が可能な通信部と、を備えた動力機器。
    A motor,
    A drive unit for transmitting the driving force of the motor to a tip tool;
    A control unit for controlling the motor;
    A housing having a first housing that houses the motor and the drive unit, a second housing that houses the control unit, and a handle unit that connects the first housing and the second housing;
    A power device comprising: a communication unit housed in the second housing and capable of wireless communication with an external device.
  13.  前記制御部は、前記モータを制御する制御回路基板を備え、前記通信部は制御回路基板上に設けられていることを特徴とする請求項12に記載の動力機器。 The power device according to claim 12, wherein the control unit includes a control circuit board that controls the motor, and the communication unit is provided on the control circuit board.
  14.  モータと、
     前記モータを収容するハウジングと、
     前記ハウジングに収容され、前記モータの駆動力を先端工具に伝達する駆動部と、を備えた動力機器であって、
     前記モータが動作してからの前記先端工具の総回転数を設定可能であることを特徴とする動力機器。
    A motor,
    A housing for housing the motor;
    A power unit that is housed in the housing and transmits a driving force of the motor to a tip tool,
    A power device capable of setting a total rotation speed of the tip tool after the motor is operated.
  15.  外部機器と接続可能な接続部をさらに備え、前記総回転数は、前記外部機器と接続されることにより、前記外部機器によって設定可能であることを特徴とする請求項14に記載の動力機器。 15. The power device according to claim 14, further comprising a connection portion connectable to an external device, wherein the total number of rotations can be set by the external device by being connected to the external device.
  16.  前記外部機器は、前記初期回転速度を前記モータの最大出力に対する割合で設定可能であることを特徴とする請求項15に記載の動力機器。 The power device according to claim 15, wherein the external device is capable of setting the initial rotational speed at a ratio to the maximum output of the motor.
  17.  前記総回転数により設定された期間が経過した後の前記モータのトルクを設定可能であることを特徴とする請求項14に記載の動力機器。 The power equipment according to claim 14, wherein the torque of the motor after a period set by the total number of rotations can be set.
  18.  前記総回転数により設定された期間の前記モータの回転速度である初期回転速度を設定可能であることを特徴とする請求項14に記載の動力機器。 The power device according to claim 14, wherein an initial rotation speed that is a rotation speed of the motor in a period set by the total rotation speed can be set.
  19.  電動工具と、
     前記電動工具を所定の設定パラメータで制御する前記電動工具内の制御回路と、
     前記設定パラメータの設定値を前記電動工具の外部から変更する前記電動工具とは別体の携帯機器とを具備し、
     前記携帯機器から前記電動工具へ前記設定パラメータの設定値の変更を行う場合に、前記電動工具と前記携帯機器は無線による通信を行い、前記電動工具の運転が停止中のときには前記設定パラメータの設定値を変更可能とし、前記電動工具の運転が動作中のときには前記設定パラメータの設定値を変更不能とすることを特徴とする電動工具管理システム。
    An electric tool,
    A control circuit in the power tool for controlling the power tool with a predetermined setting parameter;
    A portable device separate from the electric tool for changing the setting value of the setting parameter from the outside of the electric tool;
    When changing the setting value of the setting parameter from the portable device to the electric tool, the electric tool and the portable device communicate wirelessly, and when the operation of the electric tool is stopped, the setting parameter is set. A power tool management system characterized in that a value can be changed and the setting value of the setting parameter cannot be changed when the operation of the power tool is in operation.
  20.  スイッチを前記電動工具に設け、前記スイッチの操作により前記電動工具の状態が前記設定パラメータの変更が変更可能状態か変更不能状態かに切り替えられ、前記電動工具の状態が前記変更可能状態である時には前記設定パラメータの変更が可能であり、前記電動工具の状態が前記変更不能状態である時には前記設定パラメータの変更が不能であることを特徴とする請求項19に記載の電動工具管理システム。 A switch is provided in the electric tool, and the state of the electric tool is switched to a changeable state or a non-changeable state by the operation of the switch, and when the state of the electric tool is the changeable state The power tool management system according to claim 19, wherein the setting parameter can be changed, and the setting parameter cannot be changed when the power tool is in the unchangeable state.
  21.  前記電動工具に報知手段を設け、前記電動工具と前記携帯機器との間で正しく通信が行われ、前記設定パラメータの変更が正しく行われた時に、前記報知手段により報知することを特徴する請求項19又は20に記載の電動工具管理システム。 The notification means is provided in the electric tool, and the communication means notifies when the communication is correctly performed between the electric tool and the portable device, and the setting parameter is correctly changed. The power tool management system according to 19 or 20.
  22.  前記報知手段は、前記電動工具の先端部を照らすライトであることを特徴とする請求項21に記載の電動工具管理システム。 The power tool management system according to claim 21, wherein the notification means is a light that illuminates a tip of the power tool.
  23.  前記無線による通信を行うための、前記電動工具の通信部は受信のみが可能であり、前記携帯機器の通信部は送信のみが可能であることを特徴とする請求項19に記載の電動工具管理システム。 The power tool management according to claim 19, wherein the communication unit of the power tool for performing the wireless communication can only receive, and the communication unit of the portable device can only transmit. system.
  24.  前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記制御回路は前記トリガ操作部の操作に応答して前記モータを制御し、前記トリガ操作部の操作量の大きさに応じて前記モータの回転数は調整され、前記トリガ操作部の操作量と前記モータの回転数は所定の関係式で定義され、前記関係式は前記設定パラメータであり、前記設定パラメータの変更により前記関係式は変更されることを特徴とする請求項19に記載の電動工具管理システム。 The power tool includes a housing, a motor mounted in the housing, and a trigger operation unit. The control circuit controls the motor in response to an operation of the trigger operation unit. The rotation speed of the motor is adjusted according to the magnitude of the operation amount, the operation amount of the trigger operation unit and the rotation speed of the motor are defined by a predetermined relational expression, and the relational expression is the setting parameter, The power tool management system according to claim 19, wherein the relational expression is changed by changing a setting parameter.
  25.  前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータとを有し、前記モータで運転可能な回転数の上限である最大回転数を設定可能であって、前記モータの運転は前記最大回転数以下になるよう前記制御回路により制御され、前記最大回転数は前記設定パラメータであり、前記設定パラメータの変更により前記最大回転数は変更されることを特徴とする請求項19に記載の電動工具管理システム。 The electric tool includes a housing and a motor mounted in the housing, and can set a maximum number of rotations that is an upper limit of a number of rotations that can be operated by the motor. 20. The electric motor according to claim 19, wherein the electric motor is controlled by the control circuit so as to be equal to or lower than a rotational speed, the maximum rotational speed is the setting parameter, and the maximum rotational speed is changed by changing the setting parameter. Tool management system.
  26.  前記最大回転数を設定する切替スイッチを有し、前記切替スイッチの操作によって前記最大回転数は複数の異なる値に切り替え可能であることを特徴とする請求項25に記載の電動工具管理システム。 26. The electric tool management system according to claim 25, further comprising a changeover switch for setting the maximum rotation speed, wherein the maximum rotation speed can be switched to a plurality of different values by operating the changeover switch.
  27.  前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記制御回路は前記トリガ操作部の操作に応答して前記モータを制御し、前記モータの運転時間を制御する自動停止時間を設定可能であって、前記トリガ操作がなされて前記モータの運転が開始されてからの運転時間が前記自動停止時間に到達すると、前記トリガ操作がなされている状態においても前記モータの運転を停止するように前記制御回路により制御され、前記自動停止時間は前記設定パラメータであり、前記設定パラメータの変更により前記自動停止時間は変更されることを特徴とする請求項19に記載の電動工具管理システム。 The electric tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and the control circuit controls the motor in response to the operation of the trigger operation unit, and the operation time of the motor In the state where the trigger operation is performed when the operation time after the trigger operation is performed and the operation of the motor is started reaches the automatic stop time. 20. The control circuit according to claim 19, wherein the control circuit controls the motor to stop operation, the automatic stop time is the setting parameter, and the automatic stop time is changed by changing the setting parameter. The power tool management system described.
  28.  前記自動停止時間を設定する切替スイッチを有し、前記切替スイッチの操作によって前記自動停止時間は複数の異なる値に切り替え可能であることを特徴とする請求項27に記載の電動工具管理システム。 28. The electric tool management system according to claim 27, further comprising a changeover switch for setting the automatic stop time, wherein the automatic stop time can be switched to a plurality of different values by operating the changeover switch.
  29.  前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記制御回路は前記トリガ操作部の操作に応答して前記モータを制御し、前記モータの運転時の目標電流値を設定可能であって、前記モータは前記目標電流値で前記制御回路により制御され、前記目標電流値は前記設定パラメータであり、前記設定パラメータの変更により前記目標電流値は変更されることを特徴とする請求項19に記載の電動工具管理システム。 The electric tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and the control circuit controls the motor in response to an operation of the trigger operation unit, and operates the motor. The target current value can be set, and the motor is controlled by the control circuit with the target current value, the target current value is the setting parameter, and the target current value is changed by changing the setting parameter. The power tool management system according to claim 19.
  30.  前記目標電流値を設定する切替スイッチを有し、前記切替スイッチの操作によって前記目標電流値は複数の異なる値に切り替え可能であることを特徴とする請求項29に記載の電動工具管理システム。 30. The electric tool management system according to claim 29, further comprising a changeover switch for setting the target current value, wherein the target current value can be switched to a plurality of different values by operating the changeover switch.
  31.  前記電動工具は、ハウジングと、前記ハウジング内に装着されたモータと、トリガ操作部を有し、前記制御回路は前記トリガ操作部の操作に応答して前記モータを制御し、前記モータの運転時の自動停止角度を設定可能であって、前記モータは前記自動停止角度で停止するように前記制御回路により制御され、前記自動停止角度は前記設定パラメータであり、前記設定パラメータの変更により前記自動停止角度は変更されることを特徴とする請求項19に記載の電動工具管理システム。 The electric tool includes a housing, a motor mounted in the housing, and a trigger operation unit, and the control circuit controls the motor in response to an operation of the trigger operation unit, and operates the motor. The automatic stop angle can be set, and the motor is controlled by the control circuit to stop at the automatic stop angle, and the automatic stop angle is the setting parameter, and the automatic stop is performed by changing the setting parameter. The power tool management system according to claim 19, wherein the angle is changed.
  32.  前記自動停止角度を設定する切替スイッチを有し、前記切替スイッチの操作によって前記自動停止角度は複数の異なる値に切り替え可能であることを特徴とする請求項31に記載の電動工具管理システム。 32. The electric tool management system according to claim 31, further comprising a changeover switch for setting the automatic stop angle, wherein the automatic stop angle can be switched to a plurality of different values by operating the changeover switch.
PCT/JP2013/066092 2012-06-12 2013-06-11 Power-driven device, power-driven-device system, and electric-power-tool management system WO2013187411A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012133007A JP5995064B2 (en) 2012-06-12 2012-06-12 Power equipment and power equipment system
JP2012-133007 2012-06-12
JP2012-156110 2012-07-12
JP2012156110A JP2014018868A (en) 2012-07-12 2012-07-12 Electric tool management system

Publications (1)

Publication Number Publication Date
WO2013187411A1 true WO2013187411A1 (en) 2013-12-19

Family

ID=49758233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066092 WO2013187411A1 (en) 2012-06-12 2013-06-11 Power-driven device, power-driven-device system, and electric-power-tool management system

Country Status (1)

Country Link
WO (1) WO2013187411A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457549A (en) * 2014-05-26 2017-02-22 株式会社牧田 Device for power tool
WO2017102516A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Hand-held power tool comprising a gearshift unit
KR20180052632A (en) * 2015-09-14 2018-05-18 외르크 호흐만 Tool system with power wrench and external operator controls
CN112203802A (en) * 2018-05-25 2021-01-08 工机控股株式会社 Punching tool
EP3326758B1 (en) * 2016-11-28 2022-08-10 Guido Valentini Power tool
GB2605278A (en) * 2021-03-23 2022-09-28 Snap On Incorporated Motor timeout in power tool
US11529726B2 (en) 2015-12-18 2022-12-20 Robert Bosch Gmbh Hand-held power tool comprising a communication interface
WO2023096718A1 (en) * 2021-11-24 2023-06-01 Apex Brands, Inc. Rotating power tool assembly for torque control
EP4144483A4 (en) * 2020-04-28 2023-11-08 Koki Holdings Co., Ltd. Work machine
DE102022113384A1 (en) 2022-05-27 2023-11-30 Bayerische Motoren Werke Aktiengesellschaft Screwing tool for screwing a screw device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106075A (en) * 2002-09-13 2004-04-08 Nitto Seiko Co Ltd Torque wrench
JP2005351683A (en) * 2004-06-09 2005-12-22 Makita Corp Fastening tool, its management system, and set of those
JP2007007852A (en) * 2006-08-08 2007-01-18 Makita Corp Fastening tool
JP2008221371A (en) * 2007-03-09 2008-09-25 Matsushita Electric Works Ltd Rotary tool
JP2009056555A (en) * 2007-08-31 2009-03-19 Panasonic Electric Works Co Ltd Fastening tool
JP2009083002A (en) * 2007-09-27 2009-04-23 Panasonic Electric Works Co Ltd Impact rotary tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106075A (en) * 2002-09-13 2004-04-08 Nitto Seiko Co Ltd Torque wrench
JP2005351683A (en) * 2004-06-09 2005-12-22 Makita Corp Fastening tool, its management system, and set of those
JP2007007852A (en) * 2006-08-08 2007-01-18 Makita Corp Fastening tool
JP2008221371A (en) * 2007-03-09 2008-09-25 Matsushita Electric Works Ltd Rotary tool
JP2009056555A (en) * 2007-08-31 2009-03-19 Panasonic Electric Works Co Ltd Fastening tool
JP2009083002A (en) * 2007-09-27 2009-04-23 Panasonic Electric Works Co Ltd Impact rotary tool

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074267B2 (en) 2014-05-26 2018-09-11 Makita Corporation Apparatus for electric power tool
CN106457549A (en) * 2014-05-26 2017-02-22 株式会社牧田 Device for power tool
KR20180052632A (en) * 2015-09-14 2018-05-18 외르크 호흐만 Tool system with power wrench and external operator controls
JP2018526236A (en) * 2015-09-14 2018-09-13 ヨルク ホーマンJoerg Hohmann Tool system with power wrench and external control
JP7021075B2 (en) 2015-09-14 2022-02-16 ホーマン ヨルク Tool system with power wrench and external controls
KR102594778B1 (en) * 2015-09-14 2023-10-26 외르크 호흐만 Tool system with power wrench and external operator controls
US11529726B2 (en) 2015-12-18 2022-12-20 Robert Bosch Gmbh Hand-held power tool comprising a communication interface
WO2017102516A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Hand-held power tool comprising a gearshift unit
US10994403B2 (en) 2015-12-18 2021-05-04 Robert Bosch Gmbh Hand-held power tool comprising a gearshift unit
EP3326758B1 (en) * 2016-11-28 2022-08-10 Guido Valentini Power tool
CN112203802A (en) * 2018-05-25 2021-01-08 工机控股株式会社 Punching tool
CN112203802B (en) * 2018-05-25 2023-07-14 工机控股株式会社 Perforating tool
EP4144483A4 (en) * 2020-04-28 2023-11-08 Koki Holdings Co., Ltd. Work machine
TWI812097B (en) * 2021-03-23 2023-08-11 美商施耐寶公司 Motor timeout in power tool
GB2605278A (en) * 2021-03-23 2022-09-28 Snap On Incorporated Motor timeout in power tool
AU2022201922B2 (en) * 2021-03-23 2023-12-07 Snap-On Incorporated Motor timeout in power tool
GB2620297A (en) * 2021-03-23 2024-01-03 Snap On Incorporated Motor timeout in power tool
GB2605278B (en) * 2021-03-23 2024-04-03 Snap On Incorporated Motor timeout in power tool
WO2023096718A1 (en) * 2021-11-24 2023-06-01 Apex Brands, Inc. Rotating power tool assembly for torque control
DE102022113384A1 (en) 2022-05-27 2023-11-30 Bayerische Motoren Werke Aktiengesellschaft Screwing tool for screwing a screw device

Similar Documents

Publication Publication Date Title
WO2013187411A1 (en) Power-driven device, power-driven-device system, and electric-power-tool management system
JP5995064B2 (en) Power equipment and power equipment system
US10322498B2 (en) Electric power tool
EP2459347B1 (en) Impact tool
JP5991439B2 (en) Electric tool and polisher using the same
EP2467239B1 (en) Power tool
JP6128037B2 (en) Electric tool
US20130062088A1 (en) Impact tool
JP2014018868A (en) Electric tool management system
US20130333910A1 (en) Impact tool
JP2012076160A (en) Power tool
US20190047131A1 (en) Electric working machine and method of controlling rotational state of motor of electric working machine
JP2023029579A (en) Electric tool or gardening tool
JP2015039750A (en) Electric tool polishing attachment
JP7540557B2 (en) Work Machine
WO2015029660A1 (en) Boring tool
JP5446253B2 (en) Impact type screw tightening device
JP2012240165A (en) Power tool
JP2012011504A (en) Power tool
JP5605685B2 (en) Electric tool
JP5463987B2 (en) Electric tool
JP6484918B2 (en) Electric working machine
JP2012130989A (en) Rotary tool
JP2017024101A (en) Working tool
JP5556218B2 (en) Impact tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13805124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13805124

Country of ref document: EP

Kind code of ref document: A1