WO2013187141A1 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
WO2013187141A1
WO2013187141A1 PCT/JP2013/062376 JP2013062376W WO2013187141A1 WO 2013187141 A1 WO2013187141 A1 WO 2013187141A1 JP 2013062376 W JP2013062376 W JP 2013062376W WO 2013187141 A1 WO2013187141 A1 WO 2013187141A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
intake air
egr gas
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2013/062376
Other languages
French (fr)
Japanese (ja)
Inventor
小原 徹也
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013187141A1 publication Critical patent/WO2013187141A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine that recirculates part of exhaust gas upstream of a supercharger.
  • Patent Document 1 discloses an internal combustion engine in which a part of exhaust gas is introduced from a downstream side of a catalyst for purifying exhaust gas to a compressor upstream side of a supercharger provided in an intake passage, a compressor, a throttle valve downstream of the compressor, If an air release valve that opens to the atmosphere is provided and the engine is decelerated during EGR execution, the EGR gas staying in the intake passage is released into the atmosphere by opening the air release valve, and the state is shifted to the acceleration state.
  • a technique for reducing the amount of EGR gas sucked into the cylinder at the time of acceleration by closing the air release valve and improving the acceleration response is disclosed.
  • Patent Document 1 since the gas released to the atmosphere from the atmosphere release valve is not measured, the amount of EGR gas sucked into the cylinder during acceleration cannot be grasped, and fuel consumption and driving May deteriorate.
  • the control apparatus for an internal combustion engine in an internal combustion engine in which a part of exhaust gas is introduced into the intake passage from the upstream side of the supercharger as EGR gas, the flow of intake air including EGR gas toward the upstream side of the intake passage When this is detected, the introduction of EGR gas into the intake passage is prohibited.
  • the present invention it is possible to prevent the EGR gas from being further added to the intake air containing the EGR gas, and to supply the intake air with a stable EGR rate into the cylinder. Can be improved.
  • FIG. 1 is a system diagram showing the overall configuration of an internal combustion engine to which the present invention is applied.
  • Explanatory drawing which showed typically the mode of the intake system at the time of high load steady operation.
  • Explanatory drawing which showed typically the mode of the intake system at the time of recirculation valve opening.
  • Explanatory drawing which showed the mode of the intake system at the time of reacceleration typically.
  • Explanatory drawing which showed typically the intake system before and behind a compressor. Timing chart when the backflow of intake air is detected. The flowchart which shows the flow of control at the time of detecting the backflow of intake air.
  • FIG. 1 is a system diagram showing an overall configuration of an internal combustion engine 1 to which the present invention is applied.
  • the internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to each other.
  • a throttle valve 5 is provided in the intake passage 2 connected to the internal combustion engine 1 via the intake manifold 4, and an air flow meter 6 and an air cleaner 7 for detecting the intake air amount are provided upstream thereof. Yes.
  • An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
  • the internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3.
  • the compressor 11 is located upstream from the throttle valve 5 and is located downstream from the air flow meter 6.
  • the turbine 12 is located on the upstream side of the exhaust catalyst 9.
  • reference numeral 13 in FIG. 1 denotes an intercooler provided on the upstream side of the throttle valve 5.
  • a recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor is connected to the intake passage 2.
  • a recirculation valve 15 that controls the intake flow rate in the recirculation passage 14 is interposed in the recirculation passage 14.
  • the exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12.
  • a waste gate valve 17 that controls the exhaust gas flow rate in the exhaust bypass passage 16 is interposed in the exhaust bypass passage 16.
  • the internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage (exhaust gas recirculation passage) 20 is provided between the exhaust passage 3 and the intake passage 2.
  • EGR exhaust gas recirculation
  • One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11. Even during supply, a part of the exhaust gas can be recirculated to the intake passage 2.
  • An EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20. The valve opening degree of the EGR control valve 21 is controlled by the control unit 25 so as to obtain a predetermined EGR rate corresponding to the operating conditions.
  • the control unit 25 includes a crank angle sensor 26 that detects a crank angle of a crankshaft (not shown), a downstream side of the intercooler 13 and an upstream side of the throttle valve 5.
  • the control unit 25 controls the ignition timing and the air-fuel ratio of the internal combustion engine 1 and controls the valve opening of the EGR control valve 21 to control the intake passage from the exhaust passage 3. 2 performs exhaust gas recirculation control (EGR control) for recirculating part of the exhaust gas.
  • EGR control exhaust gas recirculation control
  • the valve openings of the throttle valve 5, the recirculation valve 15, and the waste gate valve 17 are also controlled by the control unit 25.
  • the recirculation valve 15 is not controlled to be opened and closed by the control unit 25, and a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used. is there.
  • the EGR control valve 21 opens at a predetermined opening with the recirculation valve 15 closed, and the intake passage 2 and the EGR passage 14 merge.
  • the intake air has a predetermined EGR rate.
  • the EGR gas is determined from the change in the mass flow rate of the intake air passing through the compressor 11 (compressor passing mass flow rate Qcomp [kg / s]). Detects backflow of intake air containing Then, the EGR control valve 21 is closed until the intake air that has passed upstream of the compressor 11 is re-inhaled after the reverse flow of the intake air is detected.
  • the compressor passing mass flow rate Qcomp is the sum of the mass flow rates passing through the compressor 11 and the recirculation valve 15, and the throttle valve passing mass flow rate Qth [kg / s] passing through the throttle valve 5, the intake air temperature sensor 27, and It is calculated using the detected value of the intake pressure sensor 28 (the temperature T [K] and the pressure P [kPa] described above).
  • the section from the compressor 11 to the throttle valve 5 is a closed system A having a volume V, and the intake air temperature sensor 27 and the intake pressure sensor 28 located in the closed system A are Using the detected value, the intake air density ⁇ A in the closed system A is calculated from the gas state equation. Further, the mass change of the intake air in the closed system A is calculated from the change in the intake density ⁇ A. Then, using this mass change and the throttle valve passing mass flow rate Qth, the compressor passing mass flow rate Qcomp is calculated from the mass conservation law in the closed system A.
  • the compressor passage mass flow rate Qcomp in the present embodiment is a positive value when flowing toward the downstream side of the intake passage 2 and a negative value when flowing toward the upstream side of the intake passage 2.
  • the throttle valve passage mass flow rate Qth is calculated from the differential pressure across the throttle valve 5 and the opening ratio of the throttle valve 5.
  • the pressure on the upstream side of the throttle valve 5 is detected by the intake pressure sensor 28.
  • the pressure on the downstream side of the throttle valve 5 can be estimated using, for example, a detection value of the air flow meter 6.
  • FIG. 6 is a timing chart when the backflow of the intake air containing the EGR gas is detected.
  • the opening of the throttle valve 5 is reduced from time t1, and the throttle valve 5 is closed at time t3.
  • the compressor passage mass flow rate Qcomp gradually decreases from the time t1, and becomes a negative value at the time t2. In other words, from time t2, the intake air passing through the compressor 11 toward the upstream side is greater than the intake air passing through the compressor 11 toward the downstream side.
  • the compressor passing mass flow rate Qcomp is a negative value, it is determined that the intake air including the EGR gas flows toward the upstream side of the intake passage 2.
  • the intake air including EGR gas has flowed (backward) toward the upstream side of the intake passage 2, and the EGR control valve 21 is closed, and EGR is prohibited from this timing. .
  • the integration of the compressor passage mass flow rate Qcomp is started from time t2, and the integration value (back flow integration value) during the period (time t2 to t4) when the compressor passage mass flow rate Qcomp is a negative value and the compressor passage mass flow rate Qcomp.
  • the EGR control valve 21 is kept closed until the integrated value (forward flow rate integrated value) from the negative value to the positive value (period t4 to t5) becomes the same amount.
  • the area between the characteristic line of the compressor passing mass flow rate Qcomp and the straight line P where the compressor passing mass flow rate Qcomp is “0” is an integrated value, and the Qcomp characteristic line and the straight line during the period from time t2 to t4.
  • the area B1 sandwiched between P corresponds to the backflow integrated value
  • the area B2 sandwiched between the Qcomp characteristic line and the straight line P during the period from time t4 to t5 corresponds to the forward flow integrated value.
  • the EGR control valve 21 is allowed to open and the EGR prohibition is released. That is, when the intake flow is flowing backward, the intake reverse flow rate integrated value is calculated, and when the intake flow is switched from the reverse flow to the forward flow, the intake forward flow rate integrated value is calculated. Then, after the backflow integrated value and the forward flow integrated value become the same amount, that is, after the area B1 and the area B2 in FIG.
  • the intake air can be supplied to the internal combustion engine 1.
  • forward flow rate integrated value can be calculated by integrating the detected value of the air flow meter 6 instead of the compressor passing mass flow rate Qcomp.
  • FIG. 7 is a flowchart showing the flow of control when the backflow of the intake air containing EGR gas is detected.
  • S1 it is determined whether or not the compressor passing mass flow rate Qcomp is a negative value (Qcomp ⁇ 0). If the compressor passing mass flow rate Qcomp is a negative value, the process proceeds to S2, and if not, the process proceeds to S3. In S2, it is determined that the intake air including the EGR gas has flowed toward the upstream side of the intake passage 2 (back flow), the flag that is the back flow detection flag is set to “1”, and the flow proceeds to S3. That is, when the Flag is “1”, the intake air flowing into the EGR junction 31 contains EGR gas.
  • the compressor passing mass flow rate Qcomp is integrated, and in S5, it is determined whether or not the integrated value ( ⁇ Qcomp) of the compressor passing mass flow rate Qcomp is a negative value. If it is determined in S5 that the integrated value of the compressor passage mass flow rate Qcomp is a negative value, the process proceeds to S6, the EGR control valve 21 is closed, and EGR is prohibited. On the other hand, if the integrated value of the compressor passing mass flow rate Qcomp is not a negative value in S5, the process proceeds to S7. In S7, it is determined that all the intake air that has passed through the compressor 11 upstream has been re-inhaled, and the flag state is switched from "1" to "0”, and the process proceeds to S8. That is, when the Flag is “0”, the intake air flowing into the EGR merging portion 31 does not contain EGR gas. In S8, the opening of the EGR control valve 21 is permitted and the prohibition of EGR is canceled.
  • EGR may be prohibited only while the recirculation valve 15 is open.
  • EGR gas is added again after the recirculation valve 15 is closed with respect to the intake air that flows from the downstream side to the upstream side of the compressor 11 while the recirculation valve 15 is opened. Therefore, more EGR gas is added during the transition than in the above-described embodiment.
  • intake air with a stable EGR rate is put into the cylinder of the internal combustion engine 1. It can be supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

With the present invention, when an EGR control valve is opened and a throttle valve is closed, the reverse flow of intake air containing EGR gas is detected from a change in the mass flow volume of the intake air passing through a compressor (the compressor flow-through volume Qcomp). After the reverse flow of the intake air is detected, the EGR control valve is closed until the intake air that has passed to the upstream side is again drawn into the compressor. Thus, it is possible to prevent the addition of EGR gas to intake air which already contains EGR gas, and thus it is possible to supply intake air having a stable EGR ratio to cylinders of an internal combustion engine (1), and to improve fuel consumption performance and drivability.

Description

内燃機関の制御装置及び制御方法Control device and control method for internal combustion engine
 本発明は、過給機の上流側に排気の一部を還流する内燃機関の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for an internal combustion engine that recirculates part of exhaust gas upstream of a supercharger.
 特許文献1には、排気を浄化する触媒の下流側から、排気の一部を吸気通路に設けられた過給機のコンプレッサ上流側に導入する内燃機関において、コンプレッサと、コンプレッサ下流のスロットル弁との間に大気開放する大気開放バルブを設け、EGR実行中に減速状態となった場合、吸気通路内に滞留したEGRガスをこの大気開放バルブを開くことで大気中に放出し、加速状態に移行する前に、大気開放バルブを閉じることで、加速時に筒内に吸入されるEGRガス量を減少させ、加速応答性を向上させる技術が開示されている。 Patent Document 1 discloses an internal combustion engine in which a part of exhaust gas is introduced from a downstream side of a catalyst for purifying exhaust gas to a compressor upstream side of a supercharger provided in an intake passage, a compressor, a throttle valve downstream of the compressor, If an air release valve that opens to the atmosphere is provided and the engine is decelerated during EGR execution, the EGR gas staying in the intake passage is released into the atmosphere by opening the air release valve, and the state is shifted to the acceleration state. Prior to this, a technique for reducing the amount of EGR gas sucked into the cylinder at the time of acceleration by closing the air release valve and improving the acceleration response is disclosed.
 しかしながら、このような特許文献1においては、大気開放バルブから大気開放されたガスの計量を行っていないため、加速時に筒内に吸入されるEGRガス量を把握することができず、燃費や運転性が悪化してしまう可能性がある。 However, in such Patent Document 1, since the gas released to the atmosphere from the atmosphere release valve is not measured, the amount of EGR gas sucked into the cylinder during acceleration cannot be grasped, and fuel consumption and driving May deteriorate.
特開2011-112012号公報JP 2011-111212 A
 本発明に係る内燃機関の制御装置は、排気の一部をEGRガスとして過給機よりも上流側から吸気通路に導入する内燃機関において、EGRガスを含んだ吸気の吸気通路上流側へ向かう流れを検知すると吸気通路へのEGRガスの導入を禁止することを特徴としている。 The control apparatus for an internal combustion engine according to the present invention, in an internal combustion engine in which a part of exhaust gas is introduced into the intake passage from the upstream side of the supercharger as EGR gas, the flow of intake air including EGR gas toward the upstream side of the intake passage When this is detected, the introduction of EGR gas into the intake passage is prohibited.
 本発明によれば、EGRガスを含んだ吸気に対して、さらにEGRガスを添加してしまうことが防止され、安定したEGR率の吸気を筒内に供給することが可能となり、燃費性能や運転性を向上させることができる。 According to the present invention, it is possible to prevent the EGR gas from being further added to the intake air containing the EGR gas, and to supply the intake air with a stable EGR rate into the cylinder. Can be improved.
本発明が適用される内燃機関の全体構成を示すシステム図。1 is a system diagram showing the overall configuration of an internal combustion engine to which the present invention is applied. 高負荷定常運転時の吸気系の様子を模式的に示した説明図。Explanatory drawing which showed typically the mode of the intake system at the time of high load steady operation. リサーキュレーション弁開時の吸気系の様子を模式的に示した説明図。Explanatory drawing which showed typically the mode of the intake system at the time of recirculation valve opening. 再加速時の吸気系の様子を模式的に示した説明図。Explanatory drawing which showed the mode of the intake system at the time of reacceleration typically. コンプレッサ前後の吸気系を模式的に示した説明図。Explanatory drawing which showed typically the intake system before and behind a compressor. 吸気の逆流を検知した際のタイミングチャート。Timing chart when the backflow of intake air is detected. 吸気の逆流を検知した際の制御の流れを示すフローチャート。The flowchart which shows the flow of control at the time of detecting the backflow of intake air.
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用される内燃機関1の全体構成を示すシステム図である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing an overall configuration of an internal combustion engine 1 to which the present invention is applied.
 内燃機関1は、駆動源として自動車等の車両に搭載されるものであって、吸気通路2と排気通路3とが接続されている。吸気マニホールド4を介して内燃機関1に接続された吸気通路2には、スロットル弁5が設けられていると共に、その上流側には吸入空気量を検出するエアフローメータ6、エアクリーナ7が設けられている。排気マニホールド8を介して内燃機関1に接続された排気通路3には、排気浄化用として、三元触媒等の排気触媒9が設けられている。 The internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to each other. A throttle valve 5 is provided in the intake passage 2 connected to the internal combustion engine 1 via the intake manifold 4, and an air flow meter 6 and an air cleaner 7 for detecting the intake air amount are provided upstream thereof. Yes. An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
 また、この内燃機関1は、吸気通路2に配置されたコンプレッサ11と排気通路3に配置されたタービン12とを同軸上に備えたターボ過給機10を有している。コンプレッサ11は、スロットル弁5よりも上流側に位置するとともに、エアフローメータ6よりも下流側に位置している。タービン12は、排気触媒9よりも上流側に位置している。なお、図1中の13は、スロットル弁5の上流側に設けられたインタークーラである。 The internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3. The compressor 11 is located upstream from the throttle valve 5 and is located downstream from the air flow meter 6. The turbine 12 is located on the upstream side of the exhaust catalyst 9. Note that reference numeral 13 in FIG. 1 denotes an intercooler provided on the upstream side of the throttle valve 5.
 吸気通路2には、コンプレッサ11を迂回してコンプレッサの上流側と下流側とを接続するリサーキュレーション通路14が接続されている。リサーキュレーション通路14には、リサーキュレーション通路14内の吸気流量を制御するリサーキュレーション弁15が介装されている。 A recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor is connected to the intake passage 2. A recirculation valve 15 that controls the intake flow rate in the recirculation passage 14 is interposed in the recirculation passage 14.
 排気通路3には、タービン12を迂回してタービン12の上流側と下流側とを接続する排気バイパス通路16が接続されている。排気バイパス通路16には、排気バイパス通路16内の排気流量を制御するウエストゲート弁17が介装されている。 The exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12. A waste gate valve 17 that controls the exhaust gas flow rate in the exhaust bypass passage 16 is interposed in the exhaust bypass passage 16.
 また、内燃機関1は、排気還流(EGR)が実施可能なものであって、排気通路3と吸気通路2との間には、EGR通路(排気還流通路)20が設けられている。EGR通路20は、その一端が排気触媒9の下流側の位置で排気通路3に接続され、その他端がエアクリーナ7の下流側となりコンプレッサ11の上流側となる位置で吸気通路2に接続され、過給時であっても、排気の一部を吸気通路2に還流させることが可能な構成となっている。このEGR通路20には、EGR制御弁21とEGRクーラ22が介装されている。EGR制御弁21の弁開度は、コントロールユニット25によって制御され、運転条件に応じた所定のEGR率を得るようになっている。 Also, the internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage (exhaust gas recirculation passage) 20 is provided between the exhaust passage 3 and the intake passage 2. One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11. Even during supply, a part of the exhaust gas can be recirculated to the intake passage 2. An EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20. The valve opening degree of the EGR control valve 21 is controlled by the control unit 25 so as to obtain a predetermined EGR rate corresponding to the operating conditions.
 コントロールユニット25は、上述したエアフローメータ6の検出信号のほか、クランクシャフト(図示せず)のクランク角を検出するクランク角センサ26、インタークーラ13よりも下流側でスロットル弁5よりも上流側となる位置の吸気通路2内の温度T[K]及び圧力(絶対圧)P[kPa]を検出する吸気温センサ27及び吸気圧センサ28、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ29等のセンサ類の検出信号が入力されている。 In addition to the detection signal of the air flow meter 6 described above, the control unit 25 includes a crank angle sensor 26 that detects a crank angle of a crankshaft (not shown), a downstream side of the intercooler 13 and an upstream side of the throttle valve 5. An intake air temperature sensor 27 and an intake pressure sensor 28 for detecting a temperature T [K] and a pressure (absolute pressure) P [kPa] in the intake passage 2 at a position, and an accelerator for detecting a depression amount of an accelerator pedal (not shown). Detection signals of sensors such as the opening sensor 29 are input.
 そして、コントロールユニット25は、これらの検出信号に基づいて、内燃機関1の点火時期や空燃比等の制御を実施すると共に、EGR制御弁21の弁開度を制御して排気通路3から吸気通路2に排気の一部を還流する排気還流制御(EGR制御)を実施している。なお、スロットル弁5、リサーキュレーション弁15、ウエストゲート弁17の弁開度もコントロールユニット25により制御されている。リサーキュレーション弁15としては、コントロールユニット25により開閉制御されるものではなく、コンプレッサ11下流側の圧力が所定圧力以上となったときのみ開弁するようないわゆる逆止弁を用いることも可能である。 Based on these detection signals, the control unit 25 controls the ignition timing and the air-fuel ratio of the internal combustion engine 1 and controls the valve opening of the EGR control valve 21 to control the intake passage from the exhaust passage 3. 2 performs exhaust gas recirculation control (EGR control) for recirculating part of the exhaust gas. Note that the valve openings of the throttle valve 5, the recirculation valve 15, and the waste gate valve 17 are also controlled by the control unit 25. The recirculation valve 15 is not controlled to be opened and closed by the control unit 25, and a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used. is there.
 このような内燃機関1においては、高負荷域から減速時によりスロットル弁5が閉じられるような場合、コンプレッサ11下流側の圧力が高くなりすぎないように、リサーキュレーション弁15を開弁することがある。 In such an internal combustion engine 1, when the throttle valve 5 is closed during deceleration from a high load range, the recirculation valve 15 is opened so that the pressure on the downstream side of the compressor 11 does not become too high. There is.
 図2に示すように、高負荷定常運転中では、リサーキュレーション弁15が閉弁した状態でEGR制御弁21が所定の開度で開弁し、吸気通路2とEGR通路14とが合流するEGR合流部31よりも下流側では、吸気は所定のEGR率となっている。 As shown in FIG. 2, during high load steady operation, the EGR control valve 21 opens at a predetermined opening with the recirculation valve 15 closed, and the intake passage 2 and the EGR passage 14 merge. On the downstream side of the EGR merging portion 31, the intake air has a predetermined EGR rate.
 そして、高負荷定常運転中から車両が減速するような場合、リサーキュレーション弁15が開弁すると、コンプレッサ11下流側の吸気がリサーキュレーション通路14を通りコンプレッサ11上流側に押し出されるため、EGR合流部31では、既にEGRガスを含んだ吸気が上流側に向かって流れることになる。このとき、EGR制御弁21が開弁していると、既にEGRガスを含んだ吸気に対して、さらにEGRガスが添加されることになる。その結果、図3示すように、EGR合流部31より上流側には、EGR制御弁21の開度に応じたEGR率よりも高いEGR率の吸気が生じることになる。 When the vehicle decelerates during high-load steady operation, when the recirculation valve 15 is opened, the intake air on the downstream side of the compressor 11 is pushed out to the upstream side of the compressor 11 through the recirculation passage 14. In the merging portion 31, the intake air that already contains the EGR gas flows toward the upstream side. At this time, if the EGR control valve 21 is open, the EGR gas is further added to the intake air that already contains the EGR gas. As a result, as shown in FIG. 3, intake air having an EGR rate higher than the EGR rate corresponding to the opening degree of the EGR control valve 21 is generated upstream of the EGR merging portion 31.
 そして、この状態から車両が加速する場合、スロットル弁5が開き、リサーキュレーション弁15が閉弁するため、EGR合流部31では、吸気が下流側に向って流れることになる。そのため、このときEGR制御弁21が開弁していると、EGR合流部31より上流側に生じた高いEGR率の吸気に対して、さらにEGRガスが添加されることになり、図4に示すように、さらに高いEGR率の吸気が内燃機関1に供給されることなる。 When the vehicle accelerates from this state, the throttle valve 5 opens and the recirculation valve 15 closes, so that the intake air flows toward the downstream side in the EGR junction 31. Therefore, if the EGR control valve 21 is open at this time, EGR gas is further added to the intake air having a high EGR rate generated upstream of the EGR merging portion 31, as shown in FIG. In this way, intake air with a higher EGR rate is supplied to the internal combustion engine 1.
 つまり、EGR制御弁21を開弁している状態でリサーキュレーション弁15を開弁してしまうと、EGRガスが2重(図3参照)、3重(図4参照)に、EGR合流部31で添加されることになり、安定したEGR率の吸気を内燃機関1の筒内に供給できなくなる。 That is, if the recirculation valve 15 is opened while the EGR control valve 21 is open, the EGR gas is doubled (see FIG. 3) and tripled (see FIG. 4), Therefore, intake air having a stable EGR rate cannot be supplied into the cylinder of the internal combustion engine 1.
 そこで、本実施例では、EGR制御弁21の開弁時にスロットル弁5が閉じられると、コンプレッサ11を通過する吸気の質量流量(コンプレッサ通過質量流量Qcomp[kg/s])の変化から、EGRガスを含んだ吸気の逆流を検知する。そして、吸気の逆流が検知されてから、コンプレッサ11を上流側に通過した吸気が再吸入されるまで、EGR制御弁21を閉弁する。 Therefore, in this embodiment, when the throttle valve 5 is closed when the EGR control valve 21 is opened, the EGR gas is determined from the change in the mass flow rate of the intake air passing through the compressor 11 (compressor passing mass flow rate Qcomp [kg / s]). Detects backflow of intake air containing Then, the EGR control valve 21 is closed until the intake air that has passed upstream of the compressor 11 is re-inhaled after the reverse flow of the intake air is detected.
 このコンプレッサ通過質量流量Qcompは、コンプレッサ11とリサーキュレーション弁15を通過する質量流量の総和であり、スロットル弁5を通過するスロットル弁通過質量流量Qth[kg/s]と、吸気温センサ27及び吸気圧センサ28の検出値(上述の温度T[K]と圧力P[kPa])を用いて算出される。 The compressor passing mass flow rate Qcomp is the sum of the mass flow rates passing through the compressor 11 and the recirculation valve 15, and the throttle valve passing mass flow rate Qth [kg / s] passing through the throttle valve 5, the intake air temperature sensor 27, and It is calculated using the detected value of the intake pressure sensor 28 (the temperature T [K] and the pressure P [kPa] described above).
 具体的には、図5に示すように、コンプレッサ11からスロットル弁5までの区間を容積Vの閉じた系Aとして、この閉じた系A内に位置する吸気温センサ27及び吸気圧センサ28の検出値を用いて、気体の状態方程式からこの閉じた系A内の吸気密度ρAを算出する。また、吸気密度ρAの変化から、この閉じた系A内における吸気の質量変化分を算出する。そして、この質量変化と、スロットル弁通過質量流量Qthを用い、この閉じた系Aにおける質量保存則からコンプレッサ通過質量流量Qcompを算出する。 Specifically, as shown in FIG. 5, the section from the compressor 11 to the throttle valve 5 is a closed system A having a volume V, and the intake air temperature sensor 27 and the intake pressure sensor 28 located in the closed system A are Using the detected value, the intake air density ρA in the closed system A is calculated from the gas state equation. Further, the mass change of the intake air in the closed system A is calculated from the change in the intake density ρA. Then, using this mass change and the throttle valve passing mass flow rate Qth, the compressor passing mass flow rate Qcomp is calculated from the mass conservation law in the closed system A.
 なお、本実施例おけるコンプレッサ通過質量流量Qcompは、吸気通路2下流側に向かって流れるときを正の値とし、吸気通路2上流側に向かって流れるときを負の値とする。また、スロットル弁通過質量流量Qthは、スロットル弁5の前後差圧とスロットル弁5の開口率から算出される。スロットル弁5の上流側の圧力は、吸気圧センサ28で検出される。スロットル弁5の下流側の圧力は、例えば、エアフローメータ6の検出値を用いて推定可能である。 The compressor passage mass flow rate Qcomp in the present embodiment is a positive value when flowing toward the downstream side of the intake passage 2 and a negative value when flowing toward the upstream side of the intake passage 2. The throttle valve passage mass flow rate Qth is calculated from the differential pressure across the throttle valve 5 and the opening ratio of the throttle valve 5. The pressure on the upstream side of the throttle valve 5 is detected by the intake pressure sensor 28. The pressure on the downstream side of the throttle valve 5 can be estimated using, for example, a detection value of the air flow meter 6.
 図6は、EGRガスを含んだ吸気の逆流を検知した際のタイミングチャートである。 FIG. 6 is a timing chart when the backflow of the intake air containing the EGR gas is detected.
 時刻t1からスロットル弁5の開度が小さくなり、時刻t3でスロットル弁5が閉弁されている。このとき、コンプレッサ通過質量流量Qcompは、時刻t1から徐々に小さくなり、時刻t2を境に負値となる。換言すれば、時刻t2から、コンプレッサ11を下流側に向かって通過する吸気よりも、コンプレッサ11を上流側に向かって通過する吸気が上回ることになる。 The opening of the throttle valve 5 is reduced from time t1, and the throttle valve 5 is closed at time t3. At this time, the compressor passage mass flow rate Qcomp gradually decreases from the time t1, and becomes a negative value at the time t2. In other words, from time t2, the intake air passing through the compressor 11 toward the upstream side is greater than the intake air passing through the compressor 11 toward the downstream side.
 そこで、コンプレッサ通過質量流量Qcompが負値の状態であれば、EGRガスを含んだ吸気が吸気通路2上流側へ向かって流れているものと判定する。本実施例では、時刻t2において、EGRガスを含んだ吸気が吸気通路2上流側へ向かう流れ(逆流)になったと判定し、EGR制御弁21を閉弁して、このタイミングからEGRを禁止する。 Therefore, if the compressor passing mass flow rate Qcomp is a negative value, it is determined that the intake air including the EGR gas flows toward the upstream side of the intake passage 2. In this embodiment, at time t2, it is determined that the intake air including EGR gas has flowed (backward) toward the upstream side of the intake passage 2, and the EGR control valve 21 is closed, and EGR is prohibited from this timing. .
 これにより、EGRガスを含んだ吸気に対して、さらにEGRガスを添加してしまうことを防止することができ、安定したEGR率の吸気を内燃機関1の筒内に供給することが可能なり、燃費性能や運転性を向上させることができる。 As a result, it is possible to prevent the EGR gas from being further added to the intake air containing the EGR gas, and to supply the intake air having a stable EGR rate into the cylinder of the internal combustion engine 1. Fuel efficiency and drivability can be improved.
 そして、この時刻t2からコンプレッサ通過質量流量Qcompの積算を開始し、コンプレッサ通過質量流量Qcompが負値となる期間(時刻t2~t4)の積算値(逆流流量積算値)と、コンプレッサ通過質量流量Qcompが負値から正値になってから(時刻t4~t5の期間)の積算値(順流流量積算値)が同じ量になるまで、EGR制御弁21を閉弁状態に維持する。図6において、コンプレッサ通過質量流量Qcompの特性線と、コンプレッサ通過質量流量Qcompが「0」となる直線Pに挟まれた面積が積算値であり、時刻t2~t4の期間にQcomp特性線と直線Pに挟まれた面積B1が逆流流量積算値に相当し、時刻t4~t5の期間にQcomp特性線と直線Pに挟まれた面積B2が順流流量積算値に相当する。 Then, the integration of the compressor passage mass flow rate Qcomp is started from time t2, and the integration value (back flow integration value) during the period (time t2 to t4) when the compressor passage mass flow rate Qcomp is a negative value and the compressor passage mass flow rate Qcomp. The EGR control valve 21 is kept closed until the integrated value (forward flow rate integrated value) from the negative value to the positive value (period t4 to t5) becomes the same amount. In FIG. 6, the area between the characteristic line of the compressor passing mass flow rate Qcomp and the straight line P where the compressor passing mass flow rate Qcomp is “0” is an integrated value, and the Qcomp characteristic line and the straight line during the period from time t2 to t4. The area B1 sandwiched between P corresponds to the backflow integrated value, and the area B2 sandwiched between the Qcomp characteristic line and the straight line P during the period from time t4 to t5 corresponds to the forward flow integrated value.
 このように、時刻t4で、吸気の流れがコンプレッサ11を下流側に向かって通過する順流となっても、EGR制御弁21の開弁を禁止し、コンプレッサ11を上流側に通過した吸気が全て再吸入される時刻t5で、EGR制御弁21を開弁を許可し、EGRの禁止を解除する。すわわち、吸気の流れが逆流しているときに、吸気の逆流流量積算値を算出し、吸気の流れが逆流から順流に切り替わると、吸気の順流流量積算値を算出する。そして、逆流流量積算値と順流流量積算値とが同じ量になってから、つまり図6における面積B1と面積B2とが等しくなってからEGRの禁止を解除する。 Thus, even at time t4, even if the intake air flow becomes a forward flow passing through the compressor 11 toward the downstream side, the opening of the EGR control valve 21 is prohibited, and all the intake air that has passed through the compressor 11 upstream is At the time t5 at which re-inhalation is performed, the EGR control valve 21 is allowed to open and the EGR prohibition is released. That is, when the intake flow is flowing backward, the intake reverse flow rate integrated value is calculated, and when the intake flow is switched from the reverse flow to the forward flow, the intake forward flow rate integrated value is calculated. Then, after the backflow integrated value and the forward flow integrated value become the same amount, that is, after the area B1 and the area B2 in FIG.
 そのため、EGRガスを含んだ吸気に対して、2重、3重にEGRガスが添加されてしまうことを確実に防止することができる。 Therefore, it is possible to reliably prevent the EGR gas from being added twice or triple to the intake air containing the EGR gas.
 また、逆流流量積算値と、順流流量積算値を用いることで、合流部31における吸気中にEGRガスが含まれているのか否かを精度良く推定することが可能となり、より安定したEGR率の吸気を内燃機関1に供給することが可能となる。 Further, by using the backflow integrated value and the forward flow integrated value, it is possible to accurately estimate whether or not the EGR gas is contained in the intake air in the merging portion 31, and a more stable EGR rate can be obtained. The intake air can be supplied to the internal combustion engine 1.
 なお、順流流量積算値は、コンプレッサ通過質量流量Qcompではなく、エアフローメータ6の検出値を積算することで算出する事も可能である。 Note that the forward flow rate integrated value can be calculated by integrating the detected value of the air flow meter 6 instead of the compressor passing mass flow rate Qcomp.
 図7は、EGRガスを含んだ吸気の逆流を検知した際の制御の流れを示すフローチャートである。 FIG. 7 is a flowchart showing the flow of control when the backflow of the intake air containing EGR gas is detected.
 S1では、コンプレッサ通過質量流量Qcompが負値(Qcomp<0)であるか否かを判定し、コンプレッサ通過質量流量Qcompが負値であればS2へ進み、負値でなければS3へ進む。S2では、EGRガスを含んだ吸気が吸気通路2上流側へ向かう流れ(逆流)になったと判定し、逆流検知フラグであるFlagを「1」として、S3へ進む。つまり、上記Flagが「1」のときには、EGR合流部31に流れ込む吸気にEGRガスが含まれている状態となっている。 In S1, it is determined whether or not the compressor passing mass flow rate Qcomp is a negative value (Qcomp <0). If the compressor passing mass flow rate Qcomp is a negative value, the process proceeds to S2, and if not, the process proceeds to S3. In S2, it is determined that the intake air including the EGR gas has flowed toward the upstream side of the intake passage 2 (back flow), the flag that is the back flow detection flag is set to “1”, and the flow proceeds to S3. That is, when the Flag is “1”, the intake air flowing into the EGR junction 31 contains EGR gas.
 S3では、上記Flagの状態が「1」であるか否かを判定し、「1」であればS4へ進み、「0」であればS8へ進む。 In S3, it is determined whether or not the flag state is “1”. If “1”, the process proceeds to S4, and if “0”, the process proceeds to S8.
 S4ではコンプレッサ通過質量流量Qcompを積算し、S5ではコンプレッサ通過質量流量Qcompの積算値(ΣQcomp)が負値であるか否かを判定する。S5にて、コンプレッサ通過質量流量Qcompの積算値が負値であると判定されると、S6へ進み、EGR制御弁21の閉弁し、EGRを禁止する。一方、S5にて、コンプレッサ通過質量流量Qcompの積算値が負値でなければS7へ進む。S7では、コンプレッサ11を上流側に通過した吸気が全て再吸入されたものと判定して上記Flagの状態を「1」から「0」に切り替えてS8へ進む。つまり、上記Flagが「0」のときには、EGR合流部31に流れ込む吸気にEGRガスが含まれていない状態となっている。そして、S8では、EGR制御弁21の開弁を許可し、EGRの禁止を解除する。 In S4, the compressor passing mass flow rate Qcomp is integrated, and in S5, it is determined whether or not the integrated value (ΣQcomp) of the compressor passing mass flow rate Qcomp is a negative value. If it is determined in S5 that the integrated value of the compressor passage mass flow rate Qcomp is a negative value, the process proceeds to S6, the EGR control valve 21 is closed, and EGR is prohibited. On the other hand, if the integrated value of the compressor passing mass flow rate Qcomp is not a negative value in S5, the process proceeds to S7. In S7, it is determined that all the intake air that has passed through the compressor 11 upstream has been re-inhaled, and the flag state is switched from "1" to "0", and the process proceeds to S8. That is, when the Flag is “0”, the intake air flowing into the EGR merging portion 31 does not contain EGR gas. In S8, the opening of the EGR control valve 21 is permitted and the prohibition of EGR is canceled.
 なお、上述した実施例では、コンプレッサ通過質量流量Qcompが負値になったときに、EGRガスを含んだ吸気が吸気通路2上流側へ向かう流れ(逆流)になったとしてEGRを禁止しているが、リサーキュレーション弁15が開弁したときに、EGRガスを含んだ吸気が吸気通路2上流側へ向かう流れ(逆流)になったとしてEGRを禁止するようにしてもよい。 In the above-described embodiment, when the compressor passing mass flow rate Qcomp becomes a negative value, EGR is prohibited because the intake air including EGR gas becomes a flow (back flow) toward the upstream side of the intake passage 2. However, when the recirculation valve 15 is opened, the EGR may be prohibited on the assumption that the intake air containing the EGR gas becomes a flow (back flow) toward the upstream side of the intake passage 2.
 また、リサーキュレーション弁15が開弁している間だけEGRの禁止するようにしてもよい。この場合には、リサーキュレーション弁15の開弁中にコンプレッサ11の下流側から上流側に流れ込んだ吸気に対して、リサーキュレーション弁15が閉弁後にEGRガスが再度添加されることになるため上述した実施例に比べて、過渡時により多くのEGRガスが添加されることになるが、EGRガスの添加量が少ない場合には、安定したEGR率の吸気を内燃機関1の筒内に供給可能である。 Further, EGR may be prohibited only while the recirculation valve 15 is open. In this case, EGR gas is added again after the recirculation valve 15 is closed with respect to the intake air that flows from the downstream side to the upstream side of the compressor 11 while the recirculation valve 15 is opened. Therefore, more EGR gas is added during the transition than in the above-described embodiment. However, when the amount of EGR gas added is small, intake air with a stable EGR rate is put into the cylinder of the internal combustion engine 1. It can be supplied.

Claims (8)

  1.  吸気通路に設けられた過給機と、排気の一部をEGRガスとして上記過給機よりも上流側から上記吸気通路に導入する排気還流手段と、を有する内燃機関の制御装置において、
     上記吸気通路内の吸気の状態を検知する吸気状態検知手段を有し、
     上記吸気状態検知手段がEGRガスを含んだ吸気の吸気通路上流側へ向かう流れを検知すると、上記排気還流手段によるEGRガスの導入を禁止する内燃機関の制御装置。
    In a control apparatus for an internal combustion engine, comprising: a supercharger provided in an intake passage; and an exhaust gas recirculation unit that introduces a part of exhaust gas into the intake passage from the upstream side of the supercharger as EGR gas.
    Intake state detection means for detecting the state of intake air in the intake passage,
    A control apparatus for an internal combustion engine, which prohibits introduction of EGR gas by the exhaust gas recirculation means when the intake state detection means detects a flow of intake air including EGR gas toward the upstream side of the intake passage.
  2.  上記吸気状態検知手段は、EGRガスを含んだ吸気の吸気通路上流側へ向かう流れを検知し、上記排気還流手段によるEGRガスの導入を禁止した後、上記吸気状態検知手段がEGRガスを含んだ吸気の吸気通路下流側へ向かう流れを検知して所定期間が経過したら、上記排気還流手段によるEGRガスの導入を許可する請求項1に記載の内燃機関の制御装置。 The intake state detection means detects the flow of intake air including EGR gas toward the upstream side of the intake passage, prohibits the introduction of EGR gas by the exhaust gas recirculation means, and then the intake state detection means includes EGR gas. 2. The control device for an internal combustion engine according to claim 1, wherein when the flow of intake air toward the downstream side of the intake passage is detected and a predetermined period has elapsed, introduction of EGR gas by the exhaust gas recirculation means is permitted.
  3.  上記吸気状態検知手段は、EGRガスを含んだ吸気が吸気通路上流側へ逆流している間の吸気の逆流量の積算値と、吸気の流れが逆流から吸気通路下流側へ向かう順流に切り替わってからの吸気の順流量の積算値と、を算出し、上記逆流量の積算値と上記順流量の積算値から吸気通路内の吸気の状態を検知するものであり、
     上記逆流量の積算値が上記順流量の積算値と等しい量になると、上記排気還流手段によるEGRガスの導入を許可する請求項2に記載の内燃機関の制御装置。
    The intake state detection means switches between the integrated value of the reverse flow rate of the intake air while the intake air containing EGR gas flows backward to the upstream side of the intake passage and the forward flow from the reverse flow toward the downstream side of the intake passage. And calculating the integrated value of the forward flow rate of the intake air, and detecting the state of the intake air in the intake passage from the integrated value of the reverse flow rate and the integrated value of the forward flow rate,
    3. The control device for an internal combustion engine according to claim 2, wherein when the integrated value of the reverse flow becomes equal to the integrated value of the forward flow, introduction of EGR gas by the exhaust gas recirculation means is permitted.
  4.  上記過給機と該過給機よりも下流側に位置するスロットル弁との間の吸気温度及び吸気圧力を検知する温度圧力検知手段を有し、
     上記吸気状態検知手段は、吸気温度及び吸気圧力を用いて上記逆流量と上記順流量とを算出する請求項3に記載の内燃機関の制御装置。
    Temperature pressure detecting means for detecting an intake air temperature and an intake air pressure between the supercharger and a throttle valve located downstream of the supercharger;
    4. The control apparatus for an internal combustion engine according to claim 3, wherein the intake air state detection means calculates the reverse flow rate and the forward flow rate using intake air temperature and intake air pressure.
  5.  上記過給機よりも上流側に位置し、吸気通路内の吸入空気量を検知するエアフローメータを有し、上記エアフローメータの検出を用いて上記順流量を算出する請求項3または4に記載の内燃機関の制御装置。 5. The forward flow rate is calculated according to claim 3, further comprising an air flow meter positioned upstream of the supercharger and detecting an intake air amount in the intake passage, and calculating the forward flow rate using detection of the air flow meter. Control device for internal combustion engine.
  6.  上記過給機の上流側と下流側とを連通するよう上記吸気通路に接続されたバイパス通路と、該バイパス通路を開閉するバイパス弁と、を有し、
     上記吸気状態検知手段は、上記バイパス弁が開弁している状態を、EGRガスを含んだ吸気が吸気通路上流側へ逆流している状態として検知する請求項1に記載の内燃機関の制御装置。
    A bypass passage connected to the intake passage so as to communicate the upstream side and the downstream side of the supercharger, and a bypass valve for opening and closing the bypass passage,
    2. The control device for an internal combustion engine according to claim 1, wherein the intake state detection means detects a state in which the bypass valve is open as a state in which intake air including EGR gas flows backward to the upstream side of the intake passage. .
  7.  上記吸気状態検知手段は、上記バイパス弁が開弁した時点を、EGRガスを含んだ吸気が吸気通路上流側へ逆流を開始したときと判定する請求項6に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 6, wherein the intake state detection means determines that the time when the bypass valve is opened is that the intake air including EGR gas starts a reverse flow upstream of the intake passage.
  8.  排気の一部であるEGRガスを含んだ吸気の吸気通路上流側へ向かう流れを検知すると、吸気通路に設けられた過給機よりも上流側から導入されるEGRガスの吸気通路への導入を禁止する内燃機関の制御方法。 When a flow of intake air including EGR gas that is a part of exhaust gas toward the upstream side of the intake passage is detected, introduction of EGR gas introduced from the upstream side of the supercharger provided in the intake passage is introduced into the intake passage. Control method of internal combustion engine to be prohibited.
PCT/JP2013/062376 2012-06-15 2013-04-26 Control device and control method for internal combustion engine WO2013187141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-135281 2012-06-15
JP2012135281 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013187141A1 true WO2013187141A1 (en) 2013-12-19

Family

ID=49757976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062376 WO2013187141A1 (en) 2012-06-15 2013-04-26 Control device and control method for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013187141A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132207A (en) * 2014-01-14 2015-07-23 愛三工業株式会社 Control device for engine with supercharger
EP3150824A1 (en) * 2014-05-30 2017-04-05 Nissan Motor Co., Ltd. Internal combustion engine and method for controlling internal combustion engine
EP4130456A4 (en) * 2020-04-02 2023-08-30 Nissan Motor Co., Ltd. Egr estimation method for internal combustion engine and egr estimation device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726994A (en) * 1993-07-06 1995-01-27 Mazda Motor Corp Intake device of engine provided with supercharger
JP2008106615A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Egr control system for internal combustion engine
JP2011069263A (en) * 2009-09-24 2011-04-07 Honda Motor Co Ltd Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726994A (en) * 1993-07-06 1995-01-27 Mazda Motor Corp Intake device of engine provided with supercharger
JP2008106615A (en) * 2006-10-23 2008-05-08 Toyota Motor Corp Egr control system for internal combustion engine
JP2011069263A (en) * 2009-09-24 2011-04-07 Honda Motor Co Ltd Control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132207A (en) * 2014-01-14 2015-07-23 愛三工業株式会社 Control device for engine with supercharger
EP3150824A1 (en) * 2014-05-30 2017-04-05 Nissan Motor Co., Ltd. Internal combustion engine and method for controlling internal combustion engine
EP3150824A4 (en) * 2014-05-30 2017-04-05 Nissan Motor Co., Ltd Internal combustion engine and method for controlling internal combustion engine
US9926839B2 (en) 2014-05-30 2018-03-27 Nissan Motor Co., Ltd. Internal combustion engine and method for controlling internal combustion engine
EP4130456A4 (en) * 2020-04-02 2023-08-30 Nissan Motor Co., Ltd. Egr estimation method for internal combustion engine and egr estimation device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5673896B2 (en) Control device for internal combustion engine
JP5773094B2 (en) Exhaust gas recirculation control device and exhaust gas recirculation control method for internal combustion engine
CN104487690B (en) Internal combustion engine
JP5170339B2 (en) Control device for an internal combustion engine with a supercharger
JP5246350B2 (en) Turbocharged internal combustion engine
JP5545654B2 (en) Turbocharged internal combustion engine
JP5585942B2 (en) Control device for internal combustion engine
JP5649343B2 (en) Intake throttle control method for internal combustion engine
JP5381653B2 (en) Control device for an internal combustion engine with a supercharger
JP2005054588A (en) Control device of internal combustion engine
JP2008014289A (en) Control device for engine for vehicle travel
WO2013187141A1 (en) Control device and control method for internal combustion engine
JP2009209784A (en) Egr control device of engine with supercharger
JP4613812B2 (en) diesel engine
JP2008190435A (en) Abnormality detection device for intercooler
JP2014227844A (en) Controller of internal combustion engine
JP5930288B2 (en) Internal combustion engine
JP2009013872A (en) Intake control device for internal combustion engine
JP6540239B2 (en) Engine control device
JP2007331399A (en) Control device for securing negative pressure of booster
JP2012180822A (en) Supercharged internal combustion engine control device
JP2012246891A (en) Intake device of internal combustion engine with supercharger
JP2014231821A (en) Controller for internal combustion engine equipped with supercharger
JP6477191B2 (en) Control device for internal combustion engine
JP4758147B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP