WO2013187095A1 - 二次電池システム及び二次電池故障検出システム - Google Patents

二次電池システム及び二次電池故障検出システム Download PDF

Info

Publication number
WO2013187095A1
WO2013187095A1 PCT/JP2013/056850 JP2013056850W WO2013187095A1 WO 2013187095 A1 WO2013187095 A1 WO 2013187095A1 JP 2013056850 W JP2013056850 W JP 2013056850W WO 2013187095 A1 WO2013187095 A1 WO 2013187095A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
conduit
secondary battery
battery system
sub
Prior art date
Application number
PCT/JP2013/056850
Other languages
English (en)
French (fr)
Inventor
福原基広
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP13803708.0A priority Critical patent/EP2863471B1/en
Priority to JP2014520971A priority patent/JP6144677B2/ja
Priority to CN201380031264.7A priority patent/CN104396084B/zh
Publication of WO2013187095A1 publication Critical patent/WO2013187095A1/ja
Priority to US14/564,473 priority patent/US9595740B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4228Leak testing of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system and a secondary battery failure detection system that specify at least a module in which an active material leaks among two or more modules in which a large number of secondary batteries are housed in a casing.
  • the frequency adjustment of the power system and the adjustment of power demand and supply power of the power system are performed by a plurality of generators and storage batteries in the system.
  • adjustment of the difference between the generated power from the natural energy power generation device and the planned output power and the relaxation of fluctuations in the generated power from the natural energy power generation device are often performed by a plurality of generators, storage batteries, and the like.
  • the storage battery can change the output power at a higher speed than a general generator, adjust the frequency of the power system, adjust the difference between the generated power from the natural energy generator and the planned output power, It is effective for adjusting power demand and power supply.
  • NaS battery sodium-sulfur battery
  • This NaS battery is a high-temperature secondary battery having a structure in which metallic sodium and sulfur, which are active materials, are separated and housed by a solid electrolyte tube, and when heated to a high temperature of about 300 ° C., A predetermined energy is generated by the chemical reaction.
  • NaS batteries are used in the form of modules in which a plurality of unit cells are erected and connected to each other.
  • the module has a structure in which a circuit (string) in which a plurality of single cells are connected in series is connected in parallel to form a block, and at least two or more such blocks are connected in series and then accommodated in a heat insulating container.
  • a method of detecting such a module failure As a method of detecting such a module failure, a method of detecting a battery failure by comparing the depth of discharge of each block is disclosed (for example, see Japanese Patent Laid-Open No. 3-158781). Since this method determines the presence or absence of a battery failure for each block constituting the module, the apparatus is not complicated as compared with a method for detecting a failure for each individual NaS cell constituting the block. This is a failure detection method suitable in that the manufacturing cost can be reduced.
  • the cause of the failure of the unit cell and the failure of the module is the internal short circuit or the external short circuit of the unit cell.
  • the external short circuit of the unit cell includes the formation of an external short circuit loop due to leakage of the active material in the unit cell.
  • An internal short circuit of the unit cell may be a short circuit due to a beta tube breakage or the like.
  • the external short circuit and internal short circuit of these cells can be detected by grasping the voltage change for each block described above, but the voltage change due to the short circuit is not abrupt and is gradually performed over a relatively long period. If the detection accuracy is low, there is a risk that the initial action when a failure occurs is delayed. Thus, although it is conceivable to improve the detection accuracy of the voltage change, it is desired to propose a failure detection method using a method different from the method of detecting the voltage change.
  • the present invention has been made in consideration of such problems, and by taking out gas (atmosphere) in the casing from each of a plurality of modules and detecting the active material contained in the gas, the active material leaks. It is an object of the present invention to provide a secondary battery system and a secondary battery failure detection system that can easily identify a module being installed.
  • the secondary battery system includes two or more modules in which a plurality of secondary battery cells are housed in a casing, and at least an active material of the two or more modules.
  • a monitoring unit for identifying a leaking module, a main conduit piped between two or more of the modules and the monitoring unit, and a plurality of sub-conduits attached to each of the modules in correspondence with each other
  • a plurality of solenoid valves provided corresponding to each of the sub-conducts to open and close the communication between the corresponding sub-conduit and the main conduit
  • the monitoring unit is connected to the main conduit and is Based on the pump that draws the gas from the sub-conduit introduced into the pipe into the monitoring unit, the active material detection sensor that detects the active material contained in the gas flowing through the main conduit, and the output from the active material detection sensor Active material leaks And having a failure module specifying unit configured to specify the referenced module, and a sequence control unit for executing according to a preset sequence the opening and closing
  • the sequence control unit performs opening / closing operations of the plurality of solenoid valves according to a preset sequence.
  • casing in a some module is introduce
  • the gas introduced into the main conduit is drawn into the monitoring unit by a pump.
  • the active material detection sensor detects an active material contained in the gas flowing through the main conduit.
  • specification part specifies the module which the active material has leaked based on the output from the said active material detection sensor.
  • the gas (atmosphere) in the housing is taken out from each of the plurality of modules by a method different from the method for detecting the voltage change, and the active material contained in the gas is detected,
  • the module in which the active material is leaking can be easily identified.
  • the sequence control unit opens the plurality of electromagnetic valves in order, and sets the time for opening the electromagnetic valves to be a certain period, whereby the sub-conduits that are different from the main conduits.
  • the failure module specifying unit samples the output from the active material detection sensor based on the switching timing of the opening operation of the solenoid valve, thereby detecting the detected value for each sub-conduit. May be obtained.
  • the sequence control unit detects that the failure module identification unit has detected that the sampled detection value is equal to or higher than an exhaust request setting value that requires exhaust, or a past sampling (detection value).
  • the average value may be obtained continuously from the above), and the following operation may be performed when the average value is detected to be + 1 ⁇ (standard deviation) or more.
  • the failure module specifying unit may be configured such that, among the detection values corresponding to all the sub-conduit, a module in which a sub-conduit corresponding to a detection value equal to or higher than a preset specified value is attached is an active material. You may make it identify as a module which is leaking.
  • the failure module identification unit extracts one detection value from detection values corresponding to all the sub-conduit, and compares the extracted detection value with other detection values to calculate a deviation.
  • the module in which the sub-conduit corresponding to the higher detection value among the detected detection values is attached is identified as the module in which the active material is leaking. You may make it perform.
  • the monitoring unit preferably includes a drain tank that removes at least moisture from the gas flowing through the main conduit.
  • a predetermined number of the modules are installed corresponding to each of the two or more module rows configured in series, and the number of the modules corresponding to the predetermined number is provided.
  • a valve station having a solenoid valve, and the sequence control unit is installed corresponding to each of the module rows and a main control unit installed in the monitoring unit, and based on a command signal from the main control unit And a remote control unit for controlling the solenoid valve of the corresponding valve station.
  • Two of the sub-conduit may be attached to one module.
  • the housing of the module includes a box body that houses a large number of the unit cells, and a lid body that closes an upper surface opening of the box body. It may be piped to the outside with a base point at a position that is a bottom portion and is spaced apart from each other so as to sandwich a battery structure composed of a large number of stored unit cells.
  • the module may be configured by connecting two or more blocks in series, and the block may be configured by connecting in parallel two or more circuits in which two or more cells are connected in series.
  • the block specifying unit is installed corresponding to each module, and the block specifying unit calculates the open circuit voltage value at the end of discharge of all the blocks included in the corresponding module. Detecting and identifying a failed block based on the detected open-circuit voltage value, and the failed module identifying unit is a module in which an active material is leaking from a plurality of the modules including the failed block May be specified.
  • the block specifying unit includes: The open circuit voltage value at the end of discharge of all the blocks included in the corresponding module row is detected, the failed block is identified based on the detected open circuit voltage value, and the failed module identifying unit includes a plurality of modules.
  • the module including the failed block may be specified as the module in which the active material is leaking.
  • the block specifying unit may specify a block corresponding to an open voltage value that is equal to or lower than a preset specified voltage value among the detected open voltage values as a failed block.
  • the block specifying unit extracts one open-circuit voltage value from the detected open-circuit voltage values, and compares the extracted open-circuit voltage value with other open-circuit voltage values to calculate a deviation, When the deviation is out of the set range, processing for specifying a block corresponding to a low voltage value among the compared voltage values as a failed block may be sequentially performed.
  • the secondary battery failure detection system is a module in which at least an active material leaks among two or more modules in which a large number of secondary battery cells are housed in a casing.
  • a plurality of solenoid valves provided corresponding to the conduits for opening and closing communication between the corresponding sub-conduit and the main conduit, and the monitoring unit is connected to the main conduit and introduced into the main conduit
  • a pump that draws gas from the sub-conduit into the monitoring unit, an active material detection sensor that detects an active material contained in the gas flowing through the main conduit, and an active material that leaks based on an output from the active material detection sensor Module
  • the gas (atmosphere) in the housing is taken out from each of the plurality of modules, and the active material contained in the gas is detected.
  • the active material contained in the gas is detected.
  • FIG. 2A is a cross-sectional view showing the configuration of the module
  • FIG. 2B is a top view showing the module configuration in a partially broken view. It is sectional drawing which expands and shows a part of module shown to FIG. 2A.
  • the secondary battery system 10 includes two or more modules 16 in which a large number of secondary battery cells 12 (see FIG. 2) are accommodated in a housing 14.
  • a large number of secondary battery cells 12 see FIG. 2
  • Each module row 18 is installed on a corresponding gantry 20.
  • the housing 14 is a heat insulating container, and is constituted by a box body 22 having an upper surface opening and a lid body 24 having a lower surface opening.
  • the box body 22 is made of, for example, a plate material made of stainless steel and is formed in a box shape having a hollow portion.
  • the hollow portion is a hermetically sealed space, and has a structure in which the hollow portion and the external space can communicate with each other by a vacuum valve (not shown).
  • a porous vacuum heat insulation board 26 in which glass fibers are solidified into a plate shape with an adhesive is loaded into the hollow portion, and the box 22 has a vacuum heat insulation structure.
  • the lid 24 is made of, for example, a plate made of stainless steel like the box 22, and a heat insulating material layer 27 (see FIG. 3) for obtaining the minimum heat insulating property is arranged on the inner surface side (lower surface side) thereof. Then, by laminating and filling at least two or more detachable heat insulating plates 30 in the hollow portion 28, only the lid 24 (upper surface) is made into an air heat insulating structure, and the heat radiation amount from the upper surface of the housing 14 is controlled. Made possible.
  • a buffer material 32, a heater 34, a reinforcing plate 36, and a mica sheet 38 for electrical insulation were laminated and laid on the inner bottom surface of the box 22.
  • the heater 34 is also installed on one side surface of the box 22.
  • a single battery component 42 formed by a large number of single cells 12 is stored in an internal space 40 formed by the box 22 and the lid 24.
  • silica sand was filled in the gap between the box 22 and the battery component 42 as digested sand so as to cope with breakage of the unit cell 12, abnormal heating, or leakage of the active material.
  • the battery structure 42 includes two or more blocks 44 connected in series, and each block 44 includes two or more circuits (strings 46) in which two or more single cells 12 are connected in series. It is configured to be connected in parallel. For example, eight unit cells 12 are connected in series to form one string 46, twelve strings 46 are connected in parallel to form one block 44, and four blocks 44 are connected in series to 1 For example, constituting two battery components 42.
  • a control device 48 is installed corresponding to each module row 18.
  • Each control device 48 is provided in the gantry 20 and mainly includes a measurement control unit 50 and a heater driving unit 52.
  • the measurement control unit 50 includes a temperature measurement unit 54 and a voltage measurement unit 56 that measure the operation temperature T and the operation voltage V for each module 16, and a module row in which a plurality of modules 16 are connected in series.
  • the current measurement unit 60 that measures 18 currents via the current measurement line 58, and based on the measurement results from the temperature measurement unit 54, the voltage measurement unit 56, and the current measurement unit 60, the discharge cutoff voltage and the charge cut It has the calculating part 62 which calculates
  • the temperature measurement unit 54 measures the operating temperature T for each module 16 based on, for example, a detection value sent through a temperature measurement line 66 from a temperature sensor (not shown) installed in each module 16.
  • a temperature sensor include a sensor using a thermocouple, a sensor using a change in electrical resistance due to temperature, and the like.
  • the temperature measurement unit 54 is preferably capable of measuring each part corresponding to the heater 34 for each module 16. That is, when the heater 34 includes a bottom heater and a side heater for each module 16, it is preferable that the temperature of the bottom portion and the side portion of each module 16 can be measured.
  • 1 and 5 show an example in which one temperature measurement line 66 is wired corresponding to each module 16, but if a plurality of temperature sensors are installed in each module 16, each module 16 Are provided with a plurality of temperature measurement lines 66.
  • the voltage measuring unit 56 can measure the voltage for each block 44 in the module 16. This is because measurement can be performed with high accuracy, and overcharge or overdischarge can be surely avoided.
  • a circuit configuration of the voltage measuring unit 56 for example, a circuit configuration corresponding to one module is shown.
  • four blocks 44 first block 44A to fourth block 44D
  • Five voltage measurement lines 68 connected to both ends (one end and the other end) and the contact between each block 44, a fuse 70 connected in series corresponding to each voltage measurement line 68, and interlocked during voltage measurement
  • the relay 72 that is turned on, the switch circuit SW (first switch circuit SW1 to fifth switch circuit SW5) that selects the signal line in units of blocks, and the signal supplied in units of blocks is rectified to generate a substantially direct current.
  • Each switch circuit SW can be composed of, for example, a power metal oxide semiconductor field effect transistor in which an avalanche diode is built in antiparallel.
  • the relay 72 is first turned on, and then both the first switch circuit SW1 and the second switch circuit SW2 are turned on. To.
  • the switching timing is transmitted to the arithmetic unit 62, and a signal indicating a “positive” sign bit is transmitted from the arithmetic unit 62 to the A / D converter 76 via the photocoupler 80.
  • the first switch circuit SW1 and the second switch circuit SW2 are turned on, the voltage across the first block 44A is supplied to the A / D converter 76 via the rectifier 74, and is converted into a digital signal as it is.
  • the data is sent to the calculation unit 62 via the coupler array 78.
  • the first switch circuit SW1 is turned off and the third switch circuit SW3 is turned on.
  • the switching timing is transmitted to the arithmetic unit 62, and a signal indicating a “negative” sign bit is transmitted from the arithmetic unit 62 to the A / D converter 76 via the photocoupler 80. Since the second switch circuit SW2 and the third switch circuit SW3 are ON, the voltage across the second block 44B is supplied to the A / D converter 76 via the rectifier 74 and converted into a digital signal. , The sign is inverted (converted to a positive voltage value), and sent to the arithmetic unit 62 via the photocoupler array 78. Similarly, the voltages at both ends of the third block 44C and the fourth block 44D are converted into digital signals and sent to the calculation unit 62.
  • the circuit configuration shown in FIG. 6 shows a circuit configuration corresponding to one module 16 for the sake of simplicity of description. However, as shown in the present embodiment, two or more modules 16 are connected in series. In the case of corresponding to one module row 18, the number of fuses 70, relays 72, and switch circuits SW that are obtained by multiplying the number of modules 16 included in one module row 18 by the number of blocks 44 included in one module 16 are respectively provided.
  • the relays 72 may be connected and on / off controlled on a module basis, and the switch circuit SW may be on / off controlled on a block basis.
  • the heater driving unit 52 has a relay made of, for example, a semiconductor element having a capacity capable of withstanding a current flowing through the heater 34 (load), which is usually about several kW, and the relay.
  • a relay made of, for example, a semiconductor element having a capacity capable of withstanding a current flowing through the heater 34 (load), which is usually about several kW, and the relay.
  • the measured values (data) of temperature, voltage, and current measured by the temperature measurement unit 54, the voltage measurement unit 56, and the current measurement unit 60 are taken into the calculation unit 62, and the interface 64 and the external For example, it is transmitted to a remote monitoring device through an electric wire (including a network).
  • the calculation unit 62 calculates from the operating temperature T and the discharge current I d measured by the temperature measuring unit 54 and the current measuring unit 60, the module internal resistance R, and the temperature coefficient K t (varies depending on the operating temperature T).
  • V o indicates the open circuit voltage of the single cell 12 immediately before the sodium of the cathode is deficient, and is approximately 1.82 V
  • n is the number of the single cells 12 included in the block 44.
  • V I indicates the open circuit voltage of the unit cell 12 at the end of charging and is approximately 2.075 V
  • n is the number of the unit cells 12 included in the block 44.
  • indicates the polarization resistance generated at the end of charging, and is approximately 0.05 to 0.15V. That is, the charge cut-off voltage V H indicates a voltage that allows for the polarization resistance component of the theoretical end-of-charge open circuit voltage as a NaS battery.
  • the charging or discharging is prohibited or stopped, and the NaS battery is operated more stably.
  • the measurement control unit 50 outputs a heater control signal for each heater to the heater driving unit 52 according to a time schedule that is set in advance and stored in the calculation unit 62, for example.
  • the heater drive unit 52 supplies / stops the heater power supplied to each heater 34 via the heater power supply line 84 in accordance with a heater control signal (for example, a contact signal) received from the measurement control unit 50, whereby each heater 34. ON / OFF control.
  • a heater control signal for example, a contact signal
  • the heater 34 is composed of a bottom heater and a side heater that can be controlled independently, and is arranged for each module 16.
  • Each bottom heater and each side heater operate with the same period of on time and off time, and with a phase shift of 1/6 period.
  • the operating temperature of the NaS battery can be maintained in a desired temperature range, and the power consumption between the two lines of the three-phase three-wire AC power supply is substantially balanced.
  • Measured values such as operating temperature, operating voltage, discharge current, etc. measured by each measuring unit, NaS battery state (discharge completion, etc.) signal that can be determined by the calculating unit 62, and the above measured values are measured in advance.
  • Various set values input to the control unit 50, or signals resulting from comparison between the fixed value and the calculation unit 62, for example, abnormal signals such as “high temperature” are displayed on a display device (not shown) provided on the gantry 20. And is sent as is to the remote monitoring device or the like as an external signal.
  • the secondary battery system 10 which concerns on this Embodiment has the secondary battery failure detection system 100 shown below in addition to the two or more module row
  • the failure detection system 100 includes a monitoring unit 102 that identifies at least a module 16 in which an active material leaks among two or more modules 16 installed in the secondary battery system 10, and two or more.
  • a main conduit 104 piped between the module 16 and the monitoring unit 102, a plurality of sub-conducts 106 attached to each of the modules 16, and a sub-conduct 106.
  • a plurality of sub-conduit solenoid valves SV for opening and closing the communication between the corresponding sub-conduit 106 and the main conduit 104.
  • the monitoring unit 102 is connected to the main conduit 104, and a pump 110 that draws the gas from the sub-conduit 106 introduced into the main conduit 104 into the monitoring unit 102, and an active material that detects an active material contained in the gas flowing through the main conduit 104.
  • a substance detection sensor 112 in this example, an SO 2 sensor
  • an upstream of the active material detection sensor 112 are removed, and at least moisture is removed from the gas flowing through the main conduit 104 to prevent dew condensation on the active material detection sensor 112.
  • the drain tank 114, the failure module identification unit 116 that identifies the module 16 in which the active material leaks based on the output from the active material detection sensor 112, and the opening / closing operations of the plurality of sub-conduit solenoid valves SV are preset.
  • the main control unit 120 of the sequence control unit 118 is executed according to the sequence.
  • two auxiliary conduits 106 are attached to one module 16.
  • the first module row 18 (1), the second module row 18 (2),..., The nth module row 18 (n) may be arranged in the order closest to the monitoring unit 102.
  • the two sub-conducts 106 attached to each module 16 are at the bottom of the box 22 and spaced apart from each other so as to sandwich the battery component 42 therebetween. Piped outside.
  • the gas containing the active material SO 2 gas in this example
  • air reference gas
  • valve station 122 and a remote control unit 124 are installed corresponding to each module row 18.
  • Each valve station 122 has the same number of sub-conduit solenoid valves SV as the number of sub-conducts 106. That is, each sub conduit 106 is connected to the main conduit 104 via the corresponding sub conduit solenoid valve SV.
  • the main conduit 104 includes a plurality of conduits 128 (first conduit 128 (1), second conduit 128 (2)... Nth conduit 128 (n)) installed corresponding to each valve station 122, and And a connecting pipe 130 for connecting the conduit 128. Further, the main conduit solenoid valve MV is connected to the end of each conduit 128. Among them, the main conduit solenoid valve MV1 connected to the end of the first conduit 128 (1) corresponding to the first module row 18 (1) is a solenoid valve for introducing a reference gas (external air). The main conduit solenoid valve MV connected to the other end of the conduit 128 is a solenoid valve for introducing gas from the immediately preceding conduit 128. Further, an electromagnetic valve HV for introducing the gas from the main conduit 104 into the monitoring unit 102 is connected between the nth conduit 128 (n) and the drain tank 114.
  • Each remote control unit 124 controls the opening / closing operation of the plurality of sub-conduit solenoid valves SV and the main conduit solenoid valve MV of the corresponding valve station 122 based on the command signal from the main control unit 120.
  • the opening / closing operation of the solenoid valve HV is controlled by the remote control unit 124 of the nth module row 18 (n) based on a command signal from the main control unit 120.
  • Each remote control unit 124 sequentially opens the plurality of sub-conduit solenoid valves SV of the corresponding valve station 122, and sets the time for opening each sub-conduit solenoid valve SV to a fixed time, so that each sub-conduit is different from the main conduit 104.
  • the gas from 106 is introduced in turn.
  • the remote control unit 124 opens the first sub-conduit solenoid valve SV1 based on the input of the failure detection command signal Sa from the main control unit 120, and allows the gas from the module 16 corresponding to the first sub-conduit 106 to flow. It is introduced into the main conduit 104.
  • the predetermined period Ta has elapsed
  • the second sub-conduit solenoid valve SV2 is opened, and the gas from the module 16 corresponding to the second sub-conduit 106 is introduced into the main conduit 104.
  • Tb Tb> Ta
  • the two sub-conduit solenoid valves SV1 and SV2 are both opened for a certain period Tc from the opening of the second sub-conduit solenoid valve SV2 until the first sub-conduit solenoid valve SV1 is closed.
  • Tc time period from the opening of the second sub-conduit solenoid valve SV2 until the first sub-conduit solenoid valve SV1 is closed.
  • the pump 110 is overloaded and an overcurrent flows. If the number of times of switching of the sub-conduit solenoid valve SV is large, a load is applied to the pump 110, which causes a failure.
  • the third sub-conduit solenoid valve SV3 is opened and the gas from the module 16 corresponding to the third sub-conduit 106 is led. Introduce into the tube 104.
  • the plurality of sub-conduit solenoid valves SV of the valve station 122 are sequentially opened, and the opening time of each sub-conduit solenoid valve SV is set to a predetermined period Tb. Introduce gas in order.
  • the eighth sub-conduit solenoid valve SV8 is closed, a one-round completion signal Sb is output.
  • the main control unit 120 now outputs a failure detection command signal Sa to the next remote control unit 124 based on the input of the round-trip completion signal Sb from the remote control unit 124.
  • the next remote control unit 124 Based on the input of the failure detection command signal Sa from the main control unit 120, the next remote control unit 124 sequentially opens the plurality of sub-conduit solenoid valves SV of the valve station 122 in the same manner as described above.
  • gases from the different sub-conduit 106 are sequentially introduced into the main conduit 104.
  • the two sub-conduit solenoid valves SV are opened redundantly, but three or more sub-conduit solenoid valves SV may be opened overlappingly.
  • the failure module specifying unit 116 obtains a detection value for each sub-conduit 106 by sampling the output from the active material detection sensor 112 based on the switching timing of the opening operation of the plurality of sub-conduit solenoid valves SV.
  • the time (delay) until the gas introduced from each valve station 122 to the main conduit 104 reaches the active material detection sensor 112. Time) is different for each valve station 122. Therefore, the failure module specifying unit 116 performs the above sampling in consideration of the delay time for each valve station 122.
  • the failure module identification unit 116 leaks the active material from the module 16 to which the sub-conduit 106 corresponding to a detection value equal to or higher than a preset specified value among the detection values corresponding to all the sub-conducts 106 is attached.
  • the module 16 is identified.
  • the failure module identification unit 116 extracts one detection value from the detection values corresponding to all the sub-conduit 106, calculates the deviation by comparing the extracted detection value with the other detection values, Is outside the set range, the module 16 to which the sub-conduit 106 corresponding to the higher detection value among the detected values compared is attached is identified in order as the module 16 in which the active material is leaking. .
  • step S1 a valve closing command signal for closing the sub-conduit solenoid valve SV is output to all remote control units 124. All the remote controllers 124 close all the sub-conduit solenoid valves SV based on the input of the valve close command signal.
  • step S2 a command signal for opening the main conduit solenoid valve MV is output to all the remote controllers 124. All remote control units 124 open all the main conduit solenoid valves MV based on the input of the command signal.
  • step S3 the pump 110 is started. As a result, an external reference gas (air) is introduced into the main conduit 104 through the main conduit solenoid valve MV and exhausted by the pump 110.
  • an external reference gas air
  • step S4 the value of the counter i is set to an initial value “1”, and in step S5, a command signal (failure detection command) is sent to the i-th remote control unit 124 and the failure module specifying unit 116.
  • Signal Sa see FIG. 7
  • the i-th remote control unit 124 opens the plurality of sub-conduit solenoid valves SV of the corresponding valve station 122 in order, and sets the time for opening each sub-conduit solenoid valve SV for a certain period.
  • Ta see FIG. 7
  • the failure module identification unit 116 starts sampling of the detection value from the active material detection sensor 112 based on the input of the failure detection command signal Sa. Details of this operation will also be described later.
  • step S6 it is determined whether or not there is an exhaust request from the failure module specifying unit 116.
  • a gas containing an active material for example, SO 2 gas
  • the failure module specifying unit 116 outputs an exhaust request signal to the main control unit 120 when the sampled detected value is equal to or higher than an exhaust request setting value that requires exhaust of the main conduit 104, and then a restart command described later. Wait for signal input.
  • the exhaust request signal stores information (sampling count) of the sub-conduit solenoid valve SV whose detected value is equal to or greater than the exhaust request set value.
  • information of the sub-conduit solenoid valve SV for example, the number of times of sampling in the i-th module row 18 (the number of times of sampling) can be cited.
  • the detected value and the exhaust request set value are compared.
  • an average value is continuously obtained from past sampling (detected value), and the average value is + 1 ⁇ (standard deviation).
  • the exhaust request signal stores information (sampling count) of the sub-conduit solenoid valve SV at the time when the average value is + 1 ⁇ (standard deviation) or more.
  • step S6 If it is determined in step S6 that there is an exhaust request, the process proceeds to the next step S7, and the remote control unit 124 (in this example, the monitoring unit) that controls the main conduit solenoid valve MV capable of introducing the reference gas from the outside.
  • a command signal (reference gas introduction command signal) for instructing introduction of the reference gas is output to the remote control unit 124) farthest from 102.
  • the remote control unit 124 opens the corresponding main conduit solenoid valve MV based on the input of the reference gas introduction command signal, and introduces the reference gas into the main conduit 104.
  • step S8 a stop command signal for stopping the opening operation of the sub-conduit solenoid valve SV is output to the i-th remote control unit 124.
  • the i-th remote control unit 124 closes the opened sub-duct solenoid valve SV based on the input of the stop command signal. That is, the operation of sequentially opening the plurality of sub-conduit solenoid valves SV in the i-th remote control unit 124 is temporarily suspended, and all the sub-conduit solenoid valves SV are closed.
  • step S9 it is determined whether or not the exhaust is completed. This determination can be made based on whether or not a predetermined time for exhausting has elapsed, whether or not the variation in the detection value from the active material detection sensor 112 has become substantially constant, and the like.
  • a restart command signal for failure detection is output to the i-th remote control unit 124 and the failure module identification unit 116.
  • this restart command signal information (sampling count) of the sub-conduit solenoid valve SV stored in the exhaust request signal input in step S6 is stored.
  • the i-th remote control unit 124 restarts the opening operation of the sub-conduit solenoid valve SV based on the input of the restart command signal.
  • gas is sequentially introduced into the main conduit 104 from the sub-conduit 106 next to the sub-conduit 106 whose detected value is equal to or higher than the exhaust request setting value that requires exhaust.
  • the gas is introduced into the main conduit 104 sequentially from the sub-conduit 106 next to the sub-conduit 106 when the average value becomes + 1 ⁇ (standard deviation) or more.
  • step S11 it is determined whether or not there is an input from the i-th remote control unit 124 of a signal indicating that the opening operation of the sub-conduit solenoid valve SV has been completed (one-round completion signal Sb: see FIG. 7). If there is no input of the round-trip completion signal Sb, the processing from step S6 described above is repeated. When the round completion signal Sb is input, the process proceeds to the next step S12, and this time, a signal (sampling) indicating that sampling of the detection value for the i-th module row 18 from the failure module specifying unit 116 is completed. Wait for the completion signal. When the sampling completion signal is input, the process proceeds to the next step S13, and the value of the counter i is updated by +1.
  • step S14 it is determined whether or not a failure detection command signal has been output to all the remote control units 124. This determination is made based on whether the value of the counter i exceeds the number A of module rows. If the value of the counter i is less than or equal to the number A of module rows, the processing from step S5 onward is repeated. If the value of the counter i exceeds the number A of module rows, the process proceeds to the next step S15, and it is determined whether or not there is an end request (power cut, maintenance request, etc.) to the main control unit 120. If there is no termination request, the processing from step S1 onward is repeated. At the stage where there is a request for termination, the processing of the main control unit 120 ends.
  • step S101 of FIG. 9 input of a failure detection command signal Sa from the main control unit 120 is awaited.
  • the process proceeds to the next step S102, and the initial value “1” is stored in the counter j.
  • step S103 the corresponding main conduit solenoid valve MV is closed.
  • step S104 the j-th sub-conduit solenoid valve SV is opened, and the gas (atmosphere) of the module 16 corresponding to the j-th sub-conduit 106 is introduced into the main conduit 104.
  • step S105 the process waits for the period Tb (see FIG. 7) to elapse.
  • the process proceeds to step S106, and it is determined whether or not the value of the counter j is less than the number B of sub-conduit 106 (j ⁇ B).
  • step S107 the j + 1th sub-conduit solenoid valve SV is opened, and the gas (atmosphere) of the module 16 corresponding to the j + 1th subconduit 106 is sent to the main conduit 104.
  • step S106 when it is determined that the value of the counter j is the same as the number B of the sub-conduit 106, or when the processing in step S107 is completed, the process proceeds to the next step S108, Wait for the elapse of Tc (elapse of period Ta from the stage when the j-th sub-conduit solenoid valve SV is opened: see FIG. 7). When the period Tc has elapsed, the process proceeds to step S109, and the j-th sub-conduit solenoid valve SV is closed.
  • Tc elapse of period Ta from the stage when the j-th sub-conduit solenoid valve SV is opened: see FIG. 7
  • next step S110 it is determined whether or not a stop command signal is input from the main control unit 120. If it is input, the process proceeds to step S111, and the j + 1-th sub-conduit solenoid valve SV in the open state is closed. Thereafter, in step S112, input of a restart command signal from the main control unit 120 is awaited. When the restart command signal is input, the process proceeds to the next step S113, where it is determined whether or not the value of the counter j is less than the number B of sub-conduit 106 (j ⁇ B).
  • step S114 the information stored in the restart command signal (information on the sub-conduit whose detection value is equal to or greater than the specified value (sampling count)) is extracted.
  • the information stored in the restart command signal (information on the sub-conduit whose detection value is equal to or greater than the specified value (sampling count)) is extracted.
  • step S110 If it is determined in step S110 that a stop command signal is not input, or if it is determined in step S113 that the value of the counter j is the same as the number B, or the processing in step S114 described above Is completed, the process proceeds to the next step S115, and the value of the counter j is updated by +1.
  • step S116 it is determined whether or not the opening operation has been completed for all the sub-conduit solenoid valves SV managed by the remote control unit 124. This determination is made based on whether the value of the counter j exceeds the number B of the sub-conduit 106. If the value of the counter j is less than or equal to the number B, the processes after step S104 are repeated. If the value of the counter j exceeds the number B of the sub-conduit, the process proceeds to the next step S117, and the one-round completion signal Sb is output to the main control unit 120.
  • step S118 it is determined whether or not there is a termination request (power cut, maintenance request, etc.) to the remote control unit 124. If there is no termination request, the processing after step S101 is repeated. At the stage where there is an end request, the processing of the remote control unit 124 ends.
  • a termination request power cut, maintenance request, etc.
  • step S201 in FIG. 10 the value of the counter k is set to the initial value “1”. Thereafter, in step S202, input of a failure detection command signal Sa from the main control unit 120 is awaited. When there is an input, the process proceeds to the next step S203, and information on the time (delay time) until the gas from the kth valve station 122 reaches the active material detection sensor 112 is read from the information table.
  • step S204 the value of the counter m is set to the initial value “1”.
  • step S205 the read delay time is delayed.
  • step S206 the output from the active material detection sensor 112 is sampled to obtain a detected value of gas from the mth sub-conduit 106 in the kth module row 18, and is stored in order in a predetermined storage area of the memory. .
  • step S207 it is determined whether exhaust is necessary. Specifically, whether or not the detected value obtained by sampling this time is equal to or greater than the set value C that requires exhaust, or the average value obtained continuously from the past sampling (detected value) is + 1 ⁇ (standard deviation) ) It is determined whether it is above. If the detection value is equal to or greater than the set value C or the average value is equal to or greater than + 1 ⁇ (standard deviation), the high concentration SO 2 gas diffuses throughout the main conduit 104, and the subsequent detection accuracy of the active material detection sensor 112 is high. Since the deterioration occurs, an exhaust request signal is output to the main control unit 120 in step S208.
  • This exhaust request signal includes information on the sub-conduit 106 whose detected value is equal to or greater than the set value C (sampling count), or information on the sub-conduit solenoid valve SV when the average value is + 1 ⁇ (standard deviation) or greater ( The number of times of sampling) is stored.
  • step S209 input of a restart command signal from the main control unit 120 is awaited. That is, it waits until the exhaust process in the main conduit 104 is completed.
  • the process proceeds to the next step S210, and the value of the counter m is updated by +1. Thereafter, the processing after step S205 is repeated. This is because the gas is again introduced into the main conduit 104 through the (m + 1) th sub-conduit solenoid valve SV of the k-th valve station 122 due to the restart, so that it is necessary to delay again by a predetermined delay time in step S205. Because there is.
  • step S207 determines whether the detected value obtained by sampling this time is less than the set value C. If it is determined in step S207 described above that the detected value obtained by sampling this time is less than the set value C, the process proceeds to the next step S211 and the value of the counter m is updated by +1.
  • step S212 it is determined whether or not sampling has been completed for the gas from all the sub-conduit 106 in the k-th module row 18. This determination is made based on whether the value of the counter m exceeds the number B of the sub-conduit 106. If the value of the counter m is less than or equal to the number B, the processes after step S206 are repeated. If the value of the counter m exceeds the number B, the process proceeds to the next step S213, and the value of the counter k is updated by +1. Next, in step S214, a sampling completion signal is output to the main control unit 120.
  • step S215 it is determined whether or not sampling has been completed for all module rows 18 (that is, all modules 16). This determination is made based on whether the value of the counter k exceeds the number A of module rows. If the value of the counter k is less than or equal to the number A of module rows, the processing from step S202 described above is repeated. If the value of the counter m exceeds the number A of module rows, the process proceeds to the next step S216, and an operation for specifying the failed module 16 is performed based on the detection value stored in the memory.
  • the active material is leaking from the module 16 to which the sub-conduit 106 corresponding to the detection value equal to or greater than the preset specified value D among the detection values corresponding to all the sub-conducts 106 is attached. 16 is specified.
  • the deviation is calculated by comparing the extracted detection value with the other detection values, and the deviation is outside the setting range.
  • the process which specifies the module 16 to which the subconduit 106 corresponding to a high detected value among the detected values compared as the module 16 in which the active material is leaking is performed in order.
  • step S216 the process proceeds to the next step S217, and it is determined whether or not there is a failed module 16 (failed module 16). If there is a failure module 16, the process proceeds to the next step S218, and a warning indicating that the failure module 16 has been detected is output. Examples of the warning include displaying the number of the failure module 16 and a message for prompting preparation for the operation stop of the failure module 16 on the monitor of the remote monitoring device, outputting the sound, and the like.
  • step S219 it is determined whether or not there is a termination request (such as power-off or maintenance request) to the failed module identification unit 116. If there is no termination request, the processing after step S201 is repeated. At the stage where there is an end request, the processing of the faulty module specifying unit 116 ends.
  • a termination request such as power-off or maintenance request
  • the sequence control unit 118 (the main control unit 120 and the remote control unit 124) performs opening / closing operations of the plurality of sub-conduit solenoid valves SV according to a preset sequence.
  • casing 14 in the some module 16 is introduce
  • the gas introduced into the main conduit 104 is drawn into the monitoring unit 102 by the pump 110.
  • the failure module identification unit 116 identifies the module 16 in which the active material is leaked based on the output from the active material detection sensor 112. That is, the system according to the present embodiment detects the active material contained in the gas by extracting the gas (atmosphere) in the housing 14 from the plurality of modules 16 by a method different from the method for detecting the voltage change. By doing so, the module 16 in which the active material is leaking can be identified easily.
  • the failure detection system 100a has substantially the same configuration as the failure detection system 100 described above, but as shown in FIG. 11, measurement control of the control device 48 installed corresponding to each module row 18 is performed. The difference is that the block 50 has a block specifying unit 136 and that the resolution of the differential A / D converter 76 is 16 bits, as shown in FIG.
  • the block identification unit 136 detects the open circuit voltage value at the end of discharge of all the blocks 44 included in the corresponding module row 18 and identifies the failed block 44 based on the detected open circuit voltage value. For example, when one single battery 12 included in a certain block 44 causes an external short circuit or an internal short circuit, the load is applied to the other single battery 12 constituting the block 44 and the discharge end of each single battery 12 is released. The voltage value approaches the open circuit voltage value (for example, 1.82 V) which is the limit. As a result, the open-circuit voltage value at the end of discharge of the block 44 also decreases.
  • the open circuit voltage value for example, 1.82 V
  • the open circuit voltage value at the end of discharge of two or more normal blocks 44 is grasped in advance by experiments or the like, and among them, for example, an arbitrary voltage value between the lowest open circuit voltage value and the limit value is set as the specified voltage value.
  • the limit value include the voltage across the block 44 when the open-circuit voltage value (for example, 1.82 V) is set such that all the cells 12 included in the block 44 are limited.
  • the block specifying unit 136 specifies a block 44 corresponding to an open voltage value that is equal to or lower than a preset specified voltage value among the detected open voltage values as a failed block 44.
  • the deviation is calculated by comparing the extracted open-circuit voltage value with another open-circuit voltage value, and the deviation is outside the set range, Among the compared voltage values, the process of identifying the block 44 corresponding to the low voltage value as the failed block 44 is performed in order.
  • the setting range the open-circuit voltage value at the end of discharge of two or more normal blocks is grasped in advance by experiments or the like, and for example, the deviation between the highest open-circuit voltage value and the lowest open-circuit voltage value + 0.1V to deviation + 1.
  • An arbitrary value of 0V and the like can be mentioned.
  • the information (ID number, block number, etc.) of the block 44 specified by each block specifying unit 136 is transmitted to the monitoring unit 102 via the interface 64.
  • the failure module identification unit 116 of the monitoring unit 102 receives the block information transmitted from the block identification unit 136 of each control device 48, and identifies the failure module 16 with reference to a correspondence table stored in a memory (not shown). To do. Examples of the correspondence table include an ID number of the block 44 and a table in which information of the module 16 (ID number, module number, etc.) corresponding to the block number is stored.
  • the failure detection system 100a takes out the gas (atmosphere) in the housing 14 from each of the plurality of modules 16 and detects the active material contained in the gas, thereby leaking the active material.
  • gas atmosphere
  • the accuracy can be specified.
  • the secondary battery system and secondary battery failure detection system according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 二次電池システム及び二次電池故障検出システムに関し、監視部(102)と、主導管(104)と、複数の副導管(106)と、各副導管(106)に対応して設けられた複数の電磁弁(SV)とを有する。監視部(102)は、主導管(104)に導入されたガスを引き込むポンプ(110)と、ガスに含まれる活物質を検出する活物質検出センサ(112)と、活物質検出センサ(112)からの出力に基づいて故障モジュール(16)を特定する故障モジュール特定部(116)と、電磁弁(SV)の開閉動作を予め設定されたシーケンスに従って実行するシーケンス制御部(118)とを有する。

Description

二次電池システム及び二次電池故障検出システム
 本発明は、多数の二次電池が筐体に収容されてなる2以上のモジュールのうち、少なくとも活物質が漏洩しているモジュールを特定する二次電池システム及び二次電池故障検出システムに関する。
 一般に、電力系統の周波数調整、電力系統の需用電力と供給電力の調整は、系統内の複数の発電機や蓄電池等により実施される。また、自然エネルギー発電装置からの発電電力と計画出力電力との差の調整や、自然エネルギー発電装置からの発電電力の変動緩和も、複数の発電機や蓄電池等により実施される場合が多い。蓄電池は、一般的な発電機に比べて、高速に出力電力を変更することができ、電力系統の周波数調整、自然エネルギー発電装置からの発電電力と計画出力電力との差の調整、電力系統の需用電力と供給電力の調整に有効である。
 そして、電力系統に接続される高温動作型の蓄電池として、例えばナトリウム-硫黄電池(以下、NaS電池と記す)が挙げられる。このNaS電池は、活物質である金属ナトリウム及び硫黄が固体電解質管により隔離収納された構造の高温二次電池であり、約300℃の高温に加熱されると、溶融された両活物質の電気化学反応により、所定のエネルギーが発生する。そして、通常、NaS電池は、複数の単電池を立設集合し、相互に接続したモジュールの形で用いられている。すなわち、モジュールは、複数の単電池を直列に接続した回路(ストリング)を、並列に接続してブロックを構成し、さらに該ブロックを少なくとも2以上直列に接続した上で断熱容器に収容した構造を有する。
 このようなモジュールの故障を検出する方法としては、各ブロックの放電深度を比較することにより、電池の故障を検出する方法が開示されている(例えば特開平3-158781号公報参照)。この方法は、モジュールを構成するブロック毎に電池の故障の有無を判断するため、ブロックを構成する個々のNaS単電池毎に故障を検出する方法と比較して、装置が複雑化せず、また、製造コストも低減できる点において好適な故障検出方法である。
 ところで、単電池の故障ひいてはモジュールの故障の要因は、単電池の内部短絡又は外部短絡と考えられる。
 単電池の外部短絡は、単電池内の活物質の漏洩による外部短絡ループの形成が挙げられる。単電池の内部短絡はベータ管の破損等による短絡が挙げられる。
 これら単電池の外部短絡及び内部短絡は、上述したブロック毎の電圧変化を把握することで検出することができるが、短絡による電圧変化は、急激ではなく、比較的長い期間にわたって徐々に行われるため、検出精度が低いと、故障が発生した際の初動行為が遅延するというリスクがある。そこで、電圧変化の検出精度を高めることが考えられるが、電圧変化を検出する手法とは異なった手法での故障検出手法の提案が望まれている。
 本発明はこのような課題を考慮してなされたものであり、複数のモジュールからそれぞれ筐体内のガス(雰囲気)を取り出して、ガスに含まれる活物質を検出することで、活物質が漏洩しているモジュールを簡単に特定することができる二次電池システム及び二次電池故障検出システムを提供することを目的とする。
[1] 第1の本発明に係る二次電池システムは、多数の二次電池の単電池が筐体に収容されてなる2以上のモジュールと、2以上の前記モジュールのうち、少なくとも活物質が漏洩しているモジュールを特定する監視部と、2以上の前記モジュールと前記監視部との間に配管された主導管と、各前記モジュールに対応してそれぞれ少なくとも1つ取り付けられた複数の副導管と、各前記副導管に対応して設けられ、対応する副導管と前記主導管との連通を開閉する複数の電磁弁とを有し、前記監視部は、前記主導管に接続され、前記主導管に導入された副導管からのガスを前記監視部に引き込むポンプと、前記主導管を流れるガスに含まれる活物質を検出する活物質検出センサと、前記活物質検出センサからの出力に基づいて活物質が漏洩しているモジュールを特定する故障モジュール特定部と、複数の前記電磁弁の開閉動作を予め設定されたシーケンスに従って実行するシーケンス制御部とを有することを特徴とする。
 そして、シーケンス制御部は、予め設定されたシーケンスに従って、複数の前記電磁弁の開閉動作を行う。これにより、複数のモジュールにおける各筐体内のガス(雰囲気)が副導管及び電磁弁を通じて主導管に導入される。主導管に導入されたガスは、ポンプによって監視部に引き込まれる。活物質検出センサは、前記主導管を流れるガスに含まれる活物質を検出する。そして、故障モジュール特定部は、前記活物質検出センサからの出力に基づいて活物質が漏洩しているモジュールを特定する。
 すなわち、本発明に係るシステムにおいては、電圧変化を検出する手法とは異なる手法で、複数のモジュールからそれぞれ筐体内のガス(雰囲気)を取り出して、ガスに含まれる活物質を検出することで、活物質が漏洩しているモジュールを簡単に特定することができる。
[2] 第1の本発明において、前記シーケンス制御部は、複数の前記電磁弁を順番に開き、各前記電磁弁を開く時間を一定期間とすることで、前記主導管にそれぞれ異なる前記副導管からのガスを順番に導入し、前記故障モジュール特定部は、前記電磁弁の開動作の切替タイミングに基づいて、前記活物質検出センサからの出力をサンプリングすることで、前記副導管毎の検出値を得るようにしてもよい。
[3] この場合、前記シーケンス制御部は、前記故障モジュール特定部が、サンプリングした前記検出値が、排気を必要とする排気要求設定値以上であると検知した段階、又は過去のサンプリング(検出値)から連続的に平均値を求め、該平均値が+1σ(標準偏差)以上を検知した段階で、以下の動作を行うようにしてもよい。
 (1) 複数の前記電磁弁を順番に開く動作を一時中断して全ての前記電磁弁を閉じる。
 (2) 前記主導管に基準ガスを導入して前記主導管内のガスを排気する。
 (3) 前記電磁弁を順番に開く動作を再開する。
[4] また、前記故障モジュール特定部は、全ての前記副導管に対応する検出値のうち、予め設定された規定値以上の検出値に対応する副導管が取り付けられたモジュールを、活物質が漏洩しているモジュールとして特定するようにしてもよい。
[5] あるいは、前記故障モジュール特定部は、全ての前記副導管に対応する検出値のうち、1つの検出値を抽出し、抽出した検出値と、その他の検出値と比較して偏差を算出し、前記偏差が設定範囲外である場合に、比較した検出値のうち、高い検出値に対応する副導管が取り付けられたモジュールを、活物質が漏洩しているモジュールとして特定する処理を順番に行うようにしてもよい。
[6] また、前記一定期間内に、少なくとも2つの前記電磁弁が共に開いている期間が存在することが好ましい。
[7] 前記監視部は、前記主導管を流れるガスから少なくとも水分を除去するドレンタンクを有することが好ましい。
[8] 第1の本発明において、所定個数の前記モジュールが直列接続されて構成された2以上のモジュール列の各前記モジュール列に対応して設置され、それぞれ前記所定個数に対応する個数の前記電磁弁を有するバルブステーションを有し、前記シーケンス制御部は、前記監視部に設置されたメイン制御部と、各前記モジュール列に対応して設置され、前記メイン制御部からの指令信号に基づいて、対応する前記バルブステーションの前記電磁弁を制御するリモート制御部とを有するようにしてもよい。
[9] また、1つの前記モジュール当たりに、2つの前記副導管が取り付けられていてもよい。
[10] 前記モジュールの前記筐体は、多数の前記単電池を収納する箱体と、該箱体の上面開口を閉塞する蓋体とを有し、2つの前記副導管は、前記箱体の底部であって、且つ、収納された多数の前記単電池による電池構成体を間に挟むように互いに離間した位置を基点として外部に配管されていてもよい。
[11] 前記モジュールは、2以上のブロックが直列接続されて構成され、前記ブロックは、2以上の前記単電池が直列接続した2以上の回路が並列に接続されて構成されていてもよい。
[12] 第1の本発明において、各前記モジュールに対応して設置されたブロック特定部を有し、前記ブロック特定部は、対応する前記モジュールに含まれる全ブロックの放電末の開放電圧値を検出し、検出した前記開放電圧値に基づいて、故障したブロックを特定し、前記故障モジュール特定部は、複数の前記モジュールのうち、前記故障したブロックを含むモジュールを活物質が漏洩しているモジュールとして特定するようにしてもよい。
[13] あるいは、所定個数の前記モジュールが直列接続されて構成されたモジュール列を2以上と、各前記モジュール列に対応して設置されたブロック特定部とを有し、前記ブロック特定部は、対応する前記モジュール列に含まれる全ブロックの放電末の開放電圧値を検出し、検出した前記開放電圧値に基づいて、故障したブロックを特定し、前記故障モジュール特定部は、複数の前記モジュールのうち、前記故障したブロックを含むモジュールを活物質が漏洩しているモジュールとして特定するようにしてもよい。
[14] この場合、前記ブロック特定部は、検出した前記開放電圧値のうち、予め設定された規定電圧値以下の開放電圧値に対応するブロックを故障したブロックとして特定するようにしてもよい。
[15] あるいは、前記ブロック特定部は、検出した前記開放電圧値のうち、1つの開放電圧値を抽出し、抽出した開放電圧値と、その他の開放電圧値と比較して偏差を算出し、前記偏差が設定範囲外である場合に、比較した電圧値のうち、低い電圧値に対応するブロックを、故障したブロックとして特定する処理を順番に行うようにしてもよい。
[16] 第2の本発明に係る二次電池故障検出システムは、多数の二次電池の単電池が筐体に収容されてなる2以上のモジュールのうち、少なくとも活物質が漏洩しているモジュールを特定する監視部と、2以上の前記モジュールと前記監視部との間に配管された主導管と、各前記モジュールに対応してそれぞれ少なくとも1つ取り付けられた複数の副導管と、各前記副導管に対応して設けられ、対応する副導管と前記主導管との連通を開閉する複数の電磁弁とを有し、前記監視部は、前記主導管に接続され、前記主導管に導入された副導管からのガスを前記監視部に引き込むポンプと、前記主導管を流れるガスに含まれる活物質を検出する活物質検出センサと、前記活物質検出センサからの出力に基づいて活物質が漏洩しているモジュールを特定する故障モジュール特定部と、複数の前記電磁弁の開閉動作を予め設定されたシーケンスに従って実行するシーケンス制御部とを有することを特徴とする。
 以上説明したように、本発明に係る二次電池システム及び二次電池故障検出システムによれば、複数のモジュールからそれぞれ筐体内のガス(雰囲気)を取り出して、ガスに含まれる活物質を検出することで、活物質が漏洩しているモジュールを簡単に特定することができる。
本実施の形態に係る二次電池システム及び二次電池故障検出システムを示す構成図である。 図2Aはモジュールの構成を示す断面図であり、図2Bはモジュールの構成を一部破断して示す上面図である。 図2Aに示すモジュールの一部を拡大して示す断面図である。 モジュールに含まれる電池構成体を示す等価回路図である。 制御機器の構成を示すブロック図である。 制御機器の電圧計測部の構成を示す回路図である。 副導管電磁弁の切替動作(開閉動作)を示すタイムチャートである。 シーケンス制御部のメイン制御部の処理動作を示すフローチャートである。 シーケンス制御部のリモート制御部の処理動作、特に、副導管から主導管にガスを順番に導入する処理動作を示すフローチャートである。 故障モジュール特定部の処理動作、特に、サンプリング処理動作を示すフローチャートである。 変形例に係る故障検出システムの制御機器の構成を示すブロック図である。 変形例に係る故障検出システムの電圧計測部の構成を示すブロック図である。
 以下、本発明に係る二次電池システム及び二次電池故障検出システムを例えばNaS電池に適用した実施の形態例を図1~図12を参照しながら説明する。
 先ず、本実施の形態に係る二次電池システム10は、図1に示すように、多数の二次電池の単電池12(図2参照)が筐体14に収容されてなる2以上のモジュール16を有する。具体的には、本実施の形態では、所定個数(図1の例では4つ)のモジュール16が直列接続されて構成されたモジュール列18を2以上有する。各モジュール列18は、それぞれ対応する架台20に設置されている。
 ここで、モジュール16の構造、特に、筐体14の構造について図2A及び図2Bを参照しながら説明する。
 筐体14は、断熱容器であって、上面開口の箱体22と、下面開口の蓋体24とによって構成されている。
 箱体22は、例えばステンレスからなる板材によって構成し、それ自体が中空部を有する箱状に形成されている。中空部は、気密的に封止された密閉空間であり、図示されない真空バルブによって、中空部と外部空間とが連通し得る構造となっている。中空部には、ガラス繊維を接着剤で板状に固化させた多孔質の真空断熱ボード26を装填して、箱体22を真空断熱構造とした。
 蓋体24は、箱体22と同様に例えばステンレスからなる板材によって構成し、その内面側(下面側)に、必要最小限の断熱性を得るための断熱材層27(図3参照)を配置し、中空部28に少なくとも2以上の脱着可能な断熱板30を積層充填することにより、蓋体24(上面)のみを大気断熱構造にして、且つ、筐体14の上面からの放熱量を制御可能にした。
 なお、箱体22の内部底面には、図3に示すように、緩衝材32、ヒータ34、補強板36、電気絶縁用のマイカシート38を積層して敷設した。ヒータ34は箱体22の1つの側面にも設置される。
 筐体14には、箱体22と蓋体24とによって形成される内部空間40に、多数の単電池12によって形作られた1つの電池構成体42を立てた状態で収納した。単電池12の破損、異常加熱、あるいは活物質の漏洩等に対応できるように、図示しないが、消化砂として珪砂を箱体22と電池構成体42との間隙に充填した。
 電池構成体42は、図4に示すように、2以上のブロック44が直列接続されて構成され、各ブロック44は、2以上の単電池12が直列接続した2以上の回路(ストリング46)が並列に接続されて構成されている。例えば8つの単電池12を直列接続して1つのストリング46を構成し、12個のストリング46を並列に接続して、1つのブロック44を構成し、4つのブロック44を直列に接続して1つの電池構成体42を構成する等が挙げられる。
 また、図1に示すように、各モジュール列18に対応してそれぞれ制御機器48が設置されている。各制御機器48は、架台20内に設けられ、主に計測制御部50とヒータ駆動部52とを有する。計測制御部50は、図5に示すように、モジュール16毎に作動温度T及び作動電圧Vを計測する温度計測部54及び電圧計測部56と、複数のモジュール16が直列に接続されたモジュール列18の電流を、電流計測線58を介して計測する電流計測部60と、これら温度計測部54、電圧計測部56及び電流計測部60からの計測結果に基づいて、放電カットオフ電圧や充電カットオフ電圧等を求める演算部62と、外部との信号の送受を行うインターフェイス64とを有する。
 温度計測部54は、例えば、各モジュール16に設置された図示しない温度センサから温度計測線66を通じて送られてくる検出値に基づいて、モジュール16毎の作動温度Tを計測する。温度センサとしては、例えば熱電対によるもの、温度による電気抵抗変化を利用するもの等が挙げられる。温度計測部54は、モジュール16毎にヒータ34と対応した各部分を計測可能であることが好ましい。すなわち、モジュール16毎にヒータ34が底面用ヒータと側面用ヒータとからなるときには、各モジュール16の底面部分及び側面部分の温度を計測できることが好ましい。図1及び図5では、温度計測線66を各モジュール16に対応してそれぞれ1本ずつ配線した例を示してあるが、各モジュール16に複数の温度センサを設置するのであれば、各モジュール16に対して複数の温度計測線66が配線される。
 電圧計測部56は、モジュール16内の各ブロック44毎に電圧を計測できることが好ましい。精度よく計測が可能となり、過充電又は過放電を確実に避けることができるからである。
 電圧計測部56の回路構成としては、例えば1つのモジュールに対応した回路構成を示すと、図6に示すように、直列接続された4つのブロック44(第1ブロック44A~第4ブロック44D)の両端(一端及び他端)並びに各ブロック44間の接点に接続される5本の電圧計測線68と、各電圧計測線68に対応して直列接続されたヒューズ70と、電圧計測の際に連動してオンとされるリレー72と、ブロック単位に信号線を選択するスイッチ回路SW(第1スイッチ回路SW1~第5スイッチ回路SW5)と、ブロック単位に供給される信号を整流してほぼ直流の電圧信号に変換する整流器74と、整流器74からの電圧信号を例えば12ビットのデジタル信号(ブロック単位の電圧値)に変換する差動A/D変換器76と、所定の絶縁耐圧を確保しつつ差動A/D変換器76からのデジタル信号を演算部62へ伝送するデジタル信号用のフォトカプラアレイ78と、符号ビット用のフォトカプラ80と、リレー72及びスイッチ回路SWのオン/オフを制御し、スイッチ回路SWの切替タイミングに応じた信号を演算部62に出力するスイッチング制御回路82とを有する。各スイッチ回路SWは、例えばアバランシェ形ダイオードが逆並列で内蔵された電力用金属酸化半導体電界効果トランジスタにて構成することができる。
 例えば第1ブロック44A~第4ブロック44Dの各電圧値を順番に演算部62に送る場合は、先ず、リレー72をオンにし、続いて、第1スイッチ回路SW1及び第2スイッチ回路SW2を共にオンにする。この切替タイミングが演算部62に伝達され、演算部62からA/D変換器76に「正」の符号ビットを示す信号を、フォトカプラ80を介して伝達する。第1スイッチ回路SW1及び第2スイッチ回路SW2がオンになることによって、第1ブロック44Aの両端電圧が整流器74を介してA/D変換器76に供給され、そのままデジタル信号に変換されて、フォトカプラアレイ78を介して演算部62に送られる。
 その後、第2スイッチ回路SW2のオンを維持しながら、第1スイッチ回路SW1をオフにし、第3スイッチ回路SW3をオンにする。この切替タイミングが演算部62に伝達され、演算部62からA/D変換器76に今度は「負」の符号ビットを示す信号を、フォトカプラ80を介して伝達する。第2スイッチ回路SW2及び第3スイッチ回路SW3がオンであることから、今度は第2ブロック44Bの両端電圧が整流器74を介してA/D変換器76に供給され、デジタル信号に変換された後、符号が反転(正の電圧値に変換)されて、フォトカプラアレイ78を介して演算部62に送られる。以下同様にして、第3ブロック44C及び第4ブロック44Dの各両端電圧がそれぞれデジタル信号に変換されて演算部62に送られる。
 図6に示す回路構成は、説明を簡単にするために、1つのモジュール16に対応した回路構成を示したが、本実施の形態に示すように、2以上のモジュール16が直列接続された1つのモジュール列18に対応させる場合は、1つのモジュール列18に含まれるモジュール16の個数に1つのモジュール16に含まれるブロック44の個数を乗算した個数のヒューズ70、リレー72及びスイッチ回路SWをそれぞれ接続し、リレー72をモジュール単位にオン/オフ制御し、スイッチ回路SWをブロック単位にオン/オフ制御すればよい。
 なお、上述した温度計測部54においても、電圧計測部56と同様のA/D変換器76及びフォトカプラアレイ78等を接続することが好ましい。
 一方、ヒータ駆動部52は、図1及び図5に示すように、通常数kW程度であるヒータ34(負荷)に流れる電流に耐え得る容量の、例えば半導体素子からなるリレーを有し、そのリレーによって各ヒータ電源線84を接続/遮断し、各ヒータ34に供給されるヒータ電力を供給/停止することができるようになっている。ヒータ短絡時の機器、電線を保護するためリレーと直列にヒューズを設けることが好ましい。
 計測制御部50において、温度計測部54、電圧計測部56及び電流計測部60により計測された温度、電圧及び電流の各計測値(データ)は、演算部62に取り込まれると共に、インターフェイス64及び外部電線(ネットワークを含む)を通じて例えば遠隔の監視機器に送信される。
 演算部62は、放電時は、温度計測部54と電流計測部60により計測された作動温度T及び放電電流Idと、モジュール内部抵抗R、温度係数Kt(作動温度Tにより変動)から、放電カットオフ電圧VLを下記演算式(1)、
   VL=Vo×n-Id×R×Kt    …(1)
により求め、電圧計測部56により計測された作動電圧Vとの比較を行う。ここで、Voは陰極のナトリウムが欠乏する直前の単電池12の開路電圧を指し、概ね1.82Vであり、nは、ブロック44に含まれる単電池12の数である。
 そして、下記関係式(2)式が成立すると放電完了(放電末)と判断し、単電池12の放電を終了させる。
   VL>V             …(2)
 また、充電時は、電流計測部60で計測された充電電流Icとモジュール内部抵抗Rより、充電カットオフ電圧VHを次の演算式(3)、
   VH=(VI+α)×n-Ic×R  …(3)
により求め、電圧計測部56により計測された作動電圧Vとの比較を行う。ここで、VIは充電末の単電池12の開路電圧を指し、概ね2.075Vであり、nは、ブロック44に含まれる単電池12の数である。また、αは充電末に発生する分極抵抗分を示し、概ね0.05~0.15Vである。すなわち、充電カットオフ電圧VHは、NaS電池として理論上の充電末開路電圧に分極抵抗分を見込んだ電圧を示す。
 そして、下記関係式(4)式が成立すると、充電末と判断し、単電池12の充電を終了させる。
   VH<V             …(4)
 計測した温度、電圧及び電流の各計測値によっては、充電もしくは放電の禁止あるいは停止の判断等を行い、NaS電池をより安定に運転する。
 計測制御部50は、予め設定され、例えば演算部62に記憶されたタイムスケジュールに従い、ヒータ駆動部52へヒータ毎のヒータ制御信号を出力する。
 ヒータ駆動部52は、計測制御部50から受け取ったヒータ制御信号(例えば接点信号)に従い、ヒータ電源線84を介して各ヒータ34に供給されるヒータ電力を供給/停止することによって、各ヒータ34をオン/オフ制御する。本例においては、図示しないが、ヒータ34は、それぞれを独立して制御可能な底面用ヒータと側面用ヒータから構成され、モジュール16毎にそれぞれ配置される。
 各底面用ヒータ及び各側面用ヒータは、オン時間とオフ時間を同じくする周期を繰り返すと共に、1/6周期ずつ位相をずらして作動する。このヒータ制御によって、NaS電池の作動温度が所望の温度範囲に保たれ得ると共に、三相3線式交流電源の2線間の消費電力が概ね均衡する。
 各計測部により計測された作動温度、作動電圧、放流電流等の計測値、また、演算部62によって判断され得るNaS電池の状態(放電完了等)の信号、さらには、上記計測値が予め計測制御部50に入力された種々の設定値、あるいは固定値と演算部62によって比較された結果の信号、例えば「温度高」等の異常信号は、架台20に設けられた表示機器(図示しない)に表示されると共に、そのまま外部信号として遠隔の監視機器等に送信される。
 そして、本実施の形態に係る二次電池システム10は、上述した2以上のモジュール列18や2以上の制御機器48に加えて、以下に示す二次電池故障検出システム100を有する。
 故障検出システム100は、図1に示すように、二次電池システム10に設置された2以上のモジュール16のうち、少なくとも活物質が漏洩しているモジュール16を特定する監視部102と、2以上のモジュール16と監視部102との間に配管された主導管104と、各モジュール16に対応してそれぞれ少なくとも1つ取り付けられた複数の副導管106と、各副導管106に対応して設けられ、対応する副導管106と主導管104との連通を開閉する複数の副導管電磁弁SVとを有する。
 監視部102は、主導管104に接続され、主導管104に導入された副導管106からのガスを監視部102に引き込むポンプ110と、主導管104を流れるガスに含まれる活物質を検出する活物質検出センサ112(この例ではSO2センサ)と、活物質検出センサ112の上流側に設置され、主導管104を流れるガスから少なくとも水分を除去して、活物質検出センサ112での結露を防止するドレンタンク114と、活物質検出センサ112からの出力に基づいて活物質が漏洩しているモジュール16を特定する故障モジュール特定部116と、複数の副導管電磁弁SVの開閉動作を予め設定されたシーケンスに従って実行するシーケンス制御部118のメイン制御部120とを有する。
 本実施の形態では、1つのモジュール16当たりに、2つの副導管106が取り付けられている。複数のモジュール列18は、監視部102から最も遠いモジュール列が例えば第1モジュール列18(1)で、監視部102に向かって第2モジュール列18(2)・・・第nモジュール列18(n)(n=3、4・・・)となっている。もちろん、監視部102から最も近い順に、第1モジュール列18(1)、第2モジュール列18(2)・・・第nモジュール列18(n)としてもよい。
 各モジュール16に対して取り付けられる2つの副導管106は、図2Aに示すように、箱体22の底部であって、且つ、電池構成体42を間に挟むように互いに離間した位置を基点として外部に配管されている。活物質を含むガス(この例では、SO2ガス)は、空気(基準ガス)よりも重い。そのため、単電池12の活物質が漏洩していれば、活物質を含むガスは箱体22の底部に滞留することになる。従って、副導管106の基点(開口)を箱体22の底部に設置することで、活物質を含むガスを、確実に副導管106を通じて主導管104に導くことができる。
 また、本実施の形態では、各モジュール列18に対応してバルブステーション122とリモート制御部124とが設置されている。
 各バルブステーション122は、副導管106の本数と同じ個数の副導管電磁弁SVを有する。つまり、各副導管106は、それぞれ対応する副導管電磁弁SVを介して主導管104に接続されることになる。
 主導管104は、各バルブステーション122に対応して設置された複数の導管128(第1導管128(1)、第2導管128(2)・・・第n導管128(n))と、各導管128を連結する連結管130とを有する。また、各導管128の終端には、それぞれ主導管電磁弁MVが接続されている。そのうち、第1モジュール列18(1)に対応する第1導管128(1)の終端に接続された主導管電磁弁MV1は基準ガス(外部の空気)を導入するための電磁弁である。その他の導管128の終端に接続された主導管電磁弁MVは、それぞれ1つ前の導管128からのガスを導入するための電磁弁である。さらに、第n導管128(n)とドレンタンク114との間には、主導管104からのガスを監視部102に導入するための電磁弁HVが接続されている。
 各リモート制御部124は、メイン制御部120からの指令信号に基づいて、対応するバルブステーション122の複数の副導管電磁弁SV及び主導管電磁弁MVの開閉動作を制御する。なお、電磁弁HVの開閉動作は、第nモジュール列18(n)のリモート制御部124がメイン制御部120からの指令信号に基づいて制御する。
 各リモート制御部124は、対応するバルブステーション122の複数の副導管電磁弁SVを順番に開き、各副導管電磁弁SVを開く時間を一定時間とすることで、主導管104にそれぞれ異なる副導管106からのガスを順番に導入する。
 ここで、各リモート制御部124による副導管電磁弁SVの切替制御について図7のタイムチャートを参照しながら説明する。
 先ず、リモート制御部124は、メイン制御部120からの故障検出指令信号Saの入力に基づいて1番目の副導管電磁弁SV1を開き、1番目の副導管106に対応するモジュール16からのガスを主導管104に導入する。所定期間Taが経過した時点で2番目の副導管電磁弁SV2を開き、2番目の副導管106に対応するモジュール16からのガスを主導管104に導入する。1番目の副導管電磁弁SV1を開いた時点から一定期間Tb(Tb>Ta)が経過した時点で1番目の副導管電磁弁SV1を閉じる。従って、第2番目の副導管電磁弁SV2が開いてから第1番目の副導管電磁弁SV1が閉じるまで一定期間Tcにかけて、2つの副導管電磁弁SV1及びSV2が共に開いた状態になる。これは、1番目の副導管電磁弁SV1を閉じた後に、2番目の副導管電磁弁SV2を開くと、ポンプ110に過負荷がかかり、過電流が流れることになる。副導管電磁弁SVの切り替え回数が多いと、それだけ、ポンプ110に負担がかかり、故障の要因となる。そこで、一定期間Tcにわたって複数の副導管電磁弁SVを開きながら順次開閉を切り替えることで、ポンプ110への負荷が軽減されるため、好ましい。また、ある程度の時間差(所定期間Ta)を置いて副導管電磁弁SVを順番に開くことから、ポンプ110による引き込みとも相俟って主導管104には副導管電磁弁SVを開いた順番でガスが導入され、活物質検出センサ112に到達することになる。
 そして、2番目の副導管電磁弁SV2を開いた時点から所定期間Taが経過した時点で3番目の副導管電磁弁SV3を開き、3番目の副導管106に対応するモジュール16からのガスを主導管104に導入する。以下同様にして、バルブステーション122の複数の副導管電磁弁SVを順番に開き、各副導管電磁弁SVを開く時間を一定期間Tbとすることで、主導管104にそれぞれ異なる副導管106からのガスを順番に導入する。そして、8番目の副導管電磁弁SV8を閉じた段階で、一巡完了信号Sbを出力する。
 メイン制御部120は、リモート制御部124からの一巡完了信号Sbの入力に基づいて、今度は、次のリモート制御部124に故障検出指令信号Saを出力する。当該次のリモート制御部124は、メイン制御部120からの故障検出指令信号Saの入力に基づいて、上述と同様にして、バルブステーション122の複数の副導管電磁弁SVを順番に開き、各副導管電磁弁SVを開く時間を一定期間Tbとすることで、主導管104にそれぞれ異なる副導管106からのガスを順番に導入する。
 図7の例では、2つの副導管電磁弁SVを重複して開くようにしたが、3つ以上の副導管電磁弁SVを重複して開くようにしてもよい。
 一方、故障モジュール特定部116は、複数の副導管電磁弁SVの開動作の切替タイミングに基づいて、活物質検出センサ112からの出力をサンプリングすることで、副導管106毎の検出値を得る。実際には、複数のバルブステーション122が1つの主導管104に接続されていることから、各バルブステーション122から主導管104に導入されたガスが活物質検出センサ112に到達するまでの時間(遅延時間)は、各バルブステーション122毎に異なる。従って、故障モジュール特定部116は、各バルブステーション122毎の遅延時間を考慮して上述のサンプリングを行う。
 そして、故障モジュール特定部116は、全ての副導管106に対応する検出値のうち、予め設定された規定値以上の検出値に対応する副導管106が取り付けられたモジュール16を、活物質が漏洩しているモジュール16として特定する。
 あるいは、故障モジュール特定部116は、全ての副導管106に対応する検出値のうち、1つの検出値を抽出し、抽出した検出値と、その他の検出値と比較して偏差を算出し、偏差が設定範囲外である場合に、比較した検出値のうち、高い検出値に対応する副導管106が取り付けられたモジュール16を、活物質が漏洩しているモジュール16として特定する処理を順番に行う。
 次に、故障検出システム100の処理動作の一例について図8~図10を参照しながら説明する。
 最初に、シーケンス制御部118のメイン制御部120の処理動作について図8のフローチャートを参照しながら説明する。
 先ず、図8のステップS1~S3において初期動作を行う。すなわち、ステップS1において、全てのリモート制御部124に対して副導管電磁弁SVを閉じるための弁閉指令信号を出力する。全てのリモート制御部124は、該弁閉指令信号の入力に基づいて、副導管電磁弁SVを全て閉じる。ステップS2において、全てのリモート制御部124に対して主導管電磁弁MVを開くための指令信号を出力する。全てのリモート制御部124は、該指令信号の入力に基づいて、主導管電磁弁MVを全て開ける。ステップS3において、ポンプ110を始動する。これによって、外部の基準ガス(空気)が主導管電磁弁MVを通じて主導管104に導入され、ポンプ110にて排気される。
 次に、ステップS4において、カウンタiの値を初期値「1」にした後、ステップS5において、i番目のリモート制御部124と故障モジュール特定部116に故障検出のための指令信号(故障検出指令信号Sa:図7参照)を出力する。i番目のリモート制御部124は該故障検出指令信号Saの入力に基づいて、対応するバルブステーション122の複数の副導管電磁弁SVを順番に開き、各副導管電磁弁SVを開く時間を一定期間Ta(図7参照)とすることで、主導管104にそれぞれ異なる副導管106からのガスを順番に導入する。この詳細は後述する。故障モジュール特定部116は、故障検出指令信号Saの入力に基づいて、活物質検出センサ112からの検出値のサンプリングを開始する。この動作の詳細についても後述する。
 ステップS6において、故障モジュール特定部116から排気要求があるか否かが判別される。これは、あるモジュール16から活物質を含むガス(例えばSO2ガス)が主導管104に導入されて活物質検出センサ112にて検出された場合、SO2ガスの濃度が高いと主導管104全体に拡散し、その後のモジュール単位のSO2ガスの検出に支障を来たす。そこで、故障モジュール特定部116は、サンプリングした検出値が主導管104の排気を必要とする排気要求設定値以上であった場合、メイン制御部120に排気要求信号を出力した後、後述する再開指令信号の入力を待つ。排気要求信号には、検出値が排気要求設定値以上であった副導管電磁弁SVの情報(サンプリング回数)が格納される。副導管電磁弁SVの情報としては、例えばi番目のモジュール列18において今までサンプリングした回数(サンプリング回数)等が挙げられる。
 上述の排気要求の判別では、検出値と排気要求設定値とを比較するようにしたが、その他、過去のサンプリング(検出値)から連続的に平均値を求め、該平均値が+1σ(標準偏差)以上を検知したとき、排気要求信号を出力することが好ましい。つまり、計測誤差で過敏に排気処理をしないことが好ましいため、計測誤差は±1σの範疇に入るであろうから、それ以上のときに排気処理を行う。この場合、排気要求信号には、前記平均値が+1σ(標準偏差)以上となった時点の副導管電磁弁SVの情報(サンプリング回数)が格納される。
 ステップS6において、排気要求があると判別された場合は、次のステップS7に進み、外部からの基準ガスを導入可能な主導管電磁弁MVを制御するリモート制御部124(この例では、監視部102から最も遠いリモート制御部124)に、基準ガスの導入を指示する指令信号(基準ガス導入指令信号)を出力する。当該リモート制御部124は、基準ガス導入指令信号の入力に基づいて、対応する主導管電磁弁MVを開いて、主導管104に基準ガスを導入する。続いて、ステップS8において、i番目のリモート制御部124に、副導管電磁弁SVの開動作を停止するための停止指令信号を出力する。i番目のリモート制御部124は、該停止指令信号の入力に基づいて、開状態の副導管電磁弁SVを閉じる。すなわち、i番目のリモート制御部124における複数の副導管電磁弁SVを順番に開く動作を一時中断して、全ての副導管電磁弁SVを閉じる。
 ステップS9において、排気が完了したか否かを判別する。この判別は、排気にかかる所定時間が経過したかどうか、あるいは、活物質検出センサ112からの検出値の変動がほぼ一定になったかどうか等によって行うことができる。
 排気が完了した段階で、次のステップS10に進み、i番目のリモート制御部124と故障モジュール特定部116に故障検出のための再開指令信号を出力する。この再開指令信号には、ステップS6にて入力された排気要求信号に格納されていた副導管電磁弁SVの情報(サンプリング回数)を格納する。i番目のリモート制御部124は該再開指令信号の入力に基づいて、副導管電磁弁SVの開動作を再開する。このとき、検出値が排気を必要とする排気要求設定値以上であった副導管106の次の副導管106から順番にガスを主導管104に導入する。あるいは、前記平均値が+1σ(標準偏差)以上となった時点の副導管106の次の副導管106から順番にガスを主導管104に導入する。
 ステップS11において、i番目のリモート制御部124から副導管電磁弁SVの開動作が一巡したことを示す信号(一巡完了信号Sb:図7参照)の入力があるか否かを判別する。一巡完了信号Sbの入力がなければ、上述したステップS6以降の処理を繰り返す。一巡完了信号Sbの入力があった段階で、次のステップS12に進み、今度は、故障モジュール特定部116からのi番目のモジュール列18についての検出値のサンプリングが完了したことを示す信号(サンプリング完了信号)の入力を待つ。サンプリング完了信号の入力があった段階で、次のステップS13に進み、カウンタiの値を+1更新する。
 ステップS14において、全てのリモート制御部124に故障検出指令信号を出力したか否かを判別する。この判別は、カウンタiの値がモジュール列の数Aを超えたかどうかで行われる。カウンタiの値がモジュール列の数A以下であれば、上述のステップS5以降の処理を繰り返す。カウンタiの値がモジュール列の数Aを超えていれば、次のステップS15に進み、メイン制御部120に対する終了要求(電源断やメンテナンス要求等)があるか否かが判別される。終了要求がなければ上述のステップS1以降の処理を繰り返す。終了要求があった段階で、メイン制御部120の処理が終了する。
 次に、シーケンス制御部118のリモート制御部124の処理動作、特に、副導管106から主導管104にガスを順番に導入する処理動作について図9のフローチャートを参照しながら説明する。従って、メイン制御部120の初期動作に対応する処理動作についての説明は省略する。
 先ず、図9のステップS101において、メイン制御部120から故障検出指令信号Saの入力を待つ。故障検出指令信号Saの入力があった段階で、次のステップS102に進み、カウンタjに初期値「1」を格納する。その後、ステップS103において、対応する主導管電磁弁MVを閉じる。
 そして、ステップS104において、j番目の副導管電磁弁SVを開いて、j番目の副導管106に対応するモジュール16のガス(雰囲気)を主導管104に導入する。その後、ステップS105において、期間Tb(図7参照)の経過を待つ。期間Tbが経過した段階で、ステップS106に進み、カウンタjの値が副導管106の本数B未満(j<B)であるか否かを判別する。カウンタjの値が本数B未満であれば、ステップS107に進み、j+1番目の副導管電磁弁SVを開いて、j+1番目の副導管106に対応するモジュール16のガス(雰囲気)を主導管104に導入する。
 上述のステップS106において、カウンタjの値が副導管106の本数Bと同じであると判別された場合、あるいは、上述のステップS107での処理が終了した段階で、次のステップS108に進み、期間Tcの経過(j番目の副導管電磁弁SVを開いた段階から期間Taの経過:図7参照)を待つ。期間Tcが経過した段階で、ステップS109に進み、j番目の副導管電磁弁SVを閉じる。
 次のステップS110において、メイン制御部120から停止指令信号が入力されているか否かを判別する。入力されていれば、ステップS111に進み、開状態にあるj+1番目の副導管電磁弁SVを閉じる。その後、ステップS112において、メイン制御部120からの再開指令信号の入力を待つ。再開指令信号が入力された段階で、次のステップS113に進み、カウンタjの値が副導管106の本数B未満(j<B)であるか否かを判別する。カウンタjの値が本数B未満であれば、ステップS114に進み、再開指令信号に格納されている情報(検出値が規定値以上であった副導管の情報(サンプリング回数))を取り出して、カウンタjに格納する。
 上述のステップS110において停止指令信号が入力されていないと判別された場合、あるいは上述のステップS113においてカウンタjの値が本数Bと同じであると判別された場合、あるいは上述のステップS114での処理が終了した段階で、次のステップS115に進み、カウンタjの値を+1更新する。
 ステップS116において、当該リモート制御部124が管轄する全ての副導管電磁弁SVについて開動作を終えたか否かを判別する。この判別は、カウンタjの値が副導管106の本数Bを超えたかどうかで行われる。カウンタjの値が本数B以下であれば、上述のステップS104以降の処理を繰り返す。カウンタjの値が副導管の本数Bを超えていれば、次のステップS117に進み、一巡完了信号Sbをメイン制御部120に出力する。
 その後、ステップS118において、リモート制御部124に対する終了要求(電源断やメンテナンス要求等)があるか否かが判別される。終了要求がなければ上述のステップS101以降の処理を繰り返す。終了要求があった段階で、リモート制御部124の処理が終了する。
 次に、故障モジュール特定部116の処理動作、特に、サンプリング処理動作について図10のフローチャートを参照しながら説明する。
 先ず、図10のステップS201において、カウンタkの値を初期値「1」にする。その後、ステップS202において、メイン制御部120からの故障検出指令信号Saの入力を待つ。入力があった段階で、次のステップS203に進み、k番目のバルブステーション122からのガスが活物質検出センサ112に到達するまでの時間(遅延時間)の情報を情報テーブルから読み出す。
 ステップS204において、カウンタmの値を初期値「1」にする。次いで、ステップS205において、読み出した遅延時間だけ遅延する。そして、ステップS206において、活物質検出センサ112からの出力をサンプリングしてk番目のモジュール列18におけるm番目の副導管106からのガスの検出値とし、メモリの所定の記憶領域に順番に記憶する。
 ステップS207において、排気が必要か否かを判別する。具体的には、今回サンプリングして得た検出値が排気を必要とする設定値C以上であるか否か、あるいは過去のサンプリング(検出値)から連続的に求めた平均値が+1σ(標準偏差)以上であるかを判別する。検出値が設定値C以上あるいは前記平均値が+1σ(標準偏差)以上であれば、主導管104全体に濃度の高いSO2ガスが拡散して、その後の活物質検出センサ112での検出精度が劣化することから、ステップS208において、メイン制御部120に排気要求信号を出力する。この排気要求信号には、検出値が設定値C以上であった副導管106の情報(サンプリング回数)、あるいは平均値が+1σ(標準偏差)以上となった時点の副導管電磁弁SVの情報(サンプリング回数)が格納される。
 ステップS209において、メイン制御部120からの再開指令信号の入力を待つ。すなわち、主導管104内の排気処理が完了するまで待つ。再開指令信号の入力があった段階で、次のステップS210に進み、カウンタmの値を+1更新する。その後、ステップS205以降の処理を繰り返す。これは、再開によって、再びk番目のバルブステーション122のm+1番目の副導管電磁弁SVを介してガスが主導管104に導入されることから、再びステップS205において、所定の遅延時間だけ遅延させる必要があるからである。
 一方、上述のステップS207において、今回サンプリングして得た検出値が設定値C未満であると判別された場合は、次のステップS211に進み、カウンタmの値を+1更新する。
 ステップS212において、k番目のモジュール列18における全ての副導管106からのガスについてサンプリングを終えたか否かを判別する。この判別は、カウンタmの値が副導管106の本数Bを超えたかどうかで行われる。カウンタmの値が本数B以下であれば、上述のステップS206以降の処理を繰り返す。カウンタmの値が本数Bを超えていれば、次のステップS213に進み、カウンタkの値を+1更新する。次いで、ステップS214において、メイン制御部120にサンプリング完了信号を出力する。
 ステップS215において、全てのモジュール列18(すなわち、全てのモジュール16)についてサンプリングが終了したか否かを判別する。この判別は、カウンタkの値がモジュール列の数Aを超えたかどうかで行われる。カウンタkの値がモジュール列の数A以下であれば、上述のステップS202以降の処理を繰り返す。カウンタmの値がモジュール列の数Aを超えていれば、次のステップS216に進み、メモリに記憶した検出値に基づいて、故障しているモジュール16を特定するための演算を行う。
 この演算は、全ての副導管106に対応する検出値のうち、予め設定された規定値D以上の検出値に対応する副導管106が取り付けられたモジュール16を、活物質が漏洩しているモジュール16として特定する。
 あるいは、全ての副導管106に対応する検出値のうち、1つの検出値を抽出し、抽出した検出値と、その他の検出値と比較して偏差を算出し、偏差が設定範囲外である場合に、比較した検出値のうち、高い検出値に対応する副導管106が取り付けられたモジュール16を、活物質が漏洩しているモジュール16として特定する処理を順番に行う。
 ステップS216での演算が終了した段階で、次のステップS217に進み、故障しているモジュール16(故障モジュール16)があるか否かを判別する。故障モジュール16があれば、次のステップS218に進み、故障モジュール16が検出されたことを示す警告を出力する。警告は、故障モジュール16の番号や故障モジュール16の作動停止のための準備を促すメッセージ等を遠隔の監視機器のモニタに表示することや、音声出力する等が挙げられる。
 そして、ステップS219において、故障モジュール特定部116に対する終了要求(電源断やメンテナンス要求等)があるか否かが判別される。終了要求がなければ上述のステップS201以降の処理を繰り返す。終了要求があった段階で、故障モジュール特定部116の処理が終了する。
 このように、本実施の形態では、シーケンス制御部118(メイン制御部120及びリモート制御部124)は、予め設定されたシーケンスに従って、複数の副導管電磁弁SVの開閉動作を行う。これにより、複数のモジュール16における各筐体14内のガス(雰囲気)が副導管106及び副導管電磁弁SVを通じて主導管104に導入される。主導管104に導入されたガスは、ポンプ110によって監視部102に引き込まれる。活物質検出センサ112は、主導管104を流れるガスに含まれる活物質を検出する。そして、故障モジュール特定部116は、活物質検出センサ112からの出力に基づいて活物質が漏洩しているモジュール16を特定する。すなわち、本実施の形態に係るシステムは、電圧変化を検出する手法とは異なる手法で、複数のモジュール16からそれぞれ筐体14内のガス(雰囲気)を取り出して、ガスに含まれる活物質を検出することで、活物質が漏洩しているモジュール16を簡単に特定することができる。
 次に、故障検出システム100の変形例について図11及び図12を参照しながら説明する。この変形例に係る故障検出システム100aは、上述した故障検出システム100とほぼ同様の構成を有するが、図11に示すように、それぞれモジュール列18に対応して設置された制御機器48の計測制御部50に、ブロック特定部136を有する点と、図12に示すように、差動A/D変換器76の分解能を16ビットにして精度を高めた点で異なる。
 ブロック特定部136は、対応するモジュール列18に含まれる全てのブロック44の放電末の開放電圧値を検出し、検出した開放電圧値に基づいて、故障したブロック44を特定する。例えばあるブロック44に含まれる1つの単電池12が外部短絡又は内部短絡を起こした場合、その分、ブロック44を構成する他の単電池12に負荷がかかり、各単電池12の放電末の開放電圧値が限界とされる開放電圧値(例えば1.82V)に近づくこととなる。その結果、当該ブロック44の放電末の開放電圧値も低くなる。従って、正常な2以上のブロック44の放電末の開放電圧値を実験等で予め把握し、そのうち、例えば最も低い開放電圧値と限界値との間の任意の電圧値を、規定電圧値として設定する。限界値としては、例えばブロック44に含まれる単電池12が全て限界とされる開放電圧値(例えば1.82V)とした場合のブロック44の両端電圧等が挙げられる。
 そして、ブロック特定部136は、検出した開放電圧値のうち、予め設定された規定電圧値以下の開放電圧値に対応するブロック44を故障したブロック44として特定する。
 あるいは、検出した開放電圧値のうち、1つの開放電圧値を抽出し、抽出した開放電圧値と、その他の開放電圧値と比較して偏差を算出し、偏差が設定範囲外である場合に、比較した電圧値のうち、低い電圧値に対応するブロック44を、故障したブロック44として特定する処理を順番に行う。設定範囲としては、正常な2以上のブロックの放電末の開放電圧値を実験等で予め把握し、そのうち、例えば最も高い開放電圧値と最も低い開放電圧値との偏差+0.1V~偏差+1.0Vの任意の値等が挙げられる。
 各ブロック特定部136にて特定されたブロック44の情報(ID番号、ブロック番号等)は、それぞれインターフェイス64を介して監視部102に向けて送信される。
 監視部102の故障モジュール特定部116は、各制御機器48のブロック特定部136から送信されてきたブロックの情報を受け取り、図示しないメモリに記憶した対応テーブルを参照して、故障のモジュール16を特定する。対応テーブルとしては、例えばブロック44のID番号やブロック番号に対応するモジュール16の情報(ID番号、モジュール番号等)が格納されたテーブル等が挙げられる。
 この変形例に係る故障検出システム100aは、上述した複数のモジュール16からそれぞれ筐体14内のガス(雰囲気)を取り出して、ガスに含まれる活物質を検出することで、活物質が漏洩しているモジュールを簡単に特定する手法に加えて、ブロック単位の精度の高い電圧値から内部短絡あるいは外部短絡を起こしている単電池12を含むモジュール16を特定することができることから、故障モジュール16を高精度に特定することができる。
 なお、本発明に係る二次電池システム及び二次電池故障検出システムは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (16)

  1.  多数の二次電池の単電池(12)が筐体(14)に収容されてなる2以上のモジュール(16)と、
     2以上の前記モジュール(16)のうち、少なくとも活物質が漏洩しているモジュール(16)を特定する監視部(102)と、
     2以上の前記モジュール(16)と前記監視部(102)との間に配管された主導管(104)と、
     各前記モジュール(16)に対応してそれぞれ少なくとも1つ取り付けられた複数の副導管(106)と、
     各前記副導管(106)に対応して設けられ、対応する副導管(106)と前記主導管(104)との連通を開閉する複数の電磁弁(SV)とを有し、
     前記監視部(102)は、
     前記主導管(104)に接続され、前記主導管(104)に導入された副導管(106)からのガスを前記監視部(102)に引き込むポンプ(110)と、
     前記主導管(104)を流れるガスに含まれる活物質を検出する活物質検出センサ(112)と、
     前記活物質検出センサ(112)からの出力に基づいて活物質が漏洩しているモジュール(16)を特定する故障モジュール特定部(116)と、
     複数の前記電磁弁(SV)の開閉動作を予め設定されたシーケンスに従って実行するシーケンス制御部(118)とを有することを特徴とする二次電池システム。
  2.  請求項1記載の二次電池システムにおいて、
     前記シーケンス制御部(118)は、
     複数の前記電磁弁(SV)を順番に開き、各前記電磁弁(SV)を開く時間を一定期間とすることで、前記主導管(104)にそれぞれ異なる前記副導管(106)からのガスを順番に導入し、
     前記故障モジュール特定部(116)は、
     前記電磁弁(SV)の開動作の切替タイミングに基づいて、前記活物質検出センサ(112)からの出力をサンプリングすることで、前記副導管(106)毎の検出値を得ることを特徴とする二次電池システム。
  3.  請求項2記載の二次電池システムにおいて、
     前記シーケンス制御部(118)は、
     前記故障モジュール特定部(116)が、サンプリングした前記検出値が排気を必要とする排気要求設定値以上であると検知した段階、又は過去のサンプリング(検出値)から連続的に平均値を求め、該平均値が+1σ(標準偏差)以上を検知した段階で、以下の動作を行うことを特徴とする二次電池システム。
     (1) 複数の前記電磁弁(SV)を順番に開く動作を一時中断して全ての前記電磁弁(SV)を閉じる。
     (2) 前記主導管(104)に基準ガスを導入して前記主導管(104)内のガスを排気する。
     (3) 前記電磁弁(SV)を順番に開く動作を再開する。
  4.  請求項2又は3記載の二次電池システムにおいて、
     前記故障モジュール特定部(116)は、
     全ての前記副導管(106)に対応する検出値のうち、予め設定された規定値以上の検出値に対応する副導管(106)が取り付けられたモジュール(16)を、活物質が漏洩しているモジュール(16)として特定することを特徴とする二次電池システム。
  5.  請求項2又は3記載の二次電池システムにおいて、
     前記故障モジュール特定部(116)は、
     全ての前記副導管(106)に対応する検出値のうち、1つの検出値を抽出し、抽出した検出値と、その他の検出値と比較して偏差を算出し、前記偏差が設定範囲外である場合に、比較した検出値のうち、高い検出値に対応する副導管(106)が取り付けられたモジュール(16)を、活物質が漏洩しているモジュール(16)として特定する処理を順番に行うことを特徴とする二次電池システム。
  6.  請求項2~5のいずれか1項に記載の二次電池システムにおいて、
     前記一定期間内に、少なくとも2つの前記電磁弁(SV)が共に開いている期間が存在することを特徴とする二次電池システム。
  7.  請求項1~6のいずれか1項に記載の二次電池システムにおいて、
     前記監視部(102)は、
     前記主導管(104)を流れるガスから少なくとも水分を除去するドレンタンク(114)を有することを特徴とする二次電池システム。
  8.  請求項1~7のいずれか1項に記載の二次電池システムにおいて、
     所定個数の前記モジュール(16)が直列接続されて構成された2以上のモジュール列(18)の各前記モジュール列(18)に対応して設置され、それぞれ前記所定個数に対応する個数の前記電磁弁(SV)を有するバルブステーション(122)を有し、
     前記シーケンス制御部(118)は、
     前記監視部(102)に設置されたメイン制御部(120)と、
     各前記モジュール列(18)に対応して設置され、前記メイン制御部(120)からの指令信号に基づいて、対応する前記バルブステーション(122)の前記電磁弁(SV)を制御するリモート制御部(124)とを有することを特徴とする二次電池システム。
  9.  請求項1~8のいずれか1項に記載の二次電池システムにおいて、
     1つの前記モジュール(16)当たりに、2つの前記副導管(106)が取り付けられていることを特徴とする二次電池システム。
  10.  請求項9記載の二次電池システムにおいて、
     前記モジュール(16)の前記筐体(14)は、多数の前記単電池(12)を収納する箱体(22)と、該箱体(22)の上面開口を閉塞する蓋体(24)とを有し、
     2つの前記副導管(106)は、前記箱体(22)の底部であって、且つ、収納された多数の前記単電池(12)による電池構成体(42)を間に挟むように互いに離間した位置を基点として外部に配管されていることを特徴とする二次電池システム。
  11.  請求項1~10のいずれか1項に記載の二次電池システムにおいて、
     前記モジュール(16)は、2以上のブロック(44)が直列接続されて構成され、
     前記ブロック(44)は、2以上の前記単電池(12)が直列接続した2以上の回路が並列に接続されて構成されていることを特徴とする二次電池システム。
  12.  請求項1記載の二次電池システムにおいて、
     各前記モジュール(16)に対応して設置されたブロック特定部(136)を有し、
     前記ブロック特定部(136)は、対応する前記モジュール(16)に含まれる全ブロック(44)の放電末の開放電圧値を検出し、検出した前記開放電圧値に基づいて、故障したブロック(44)を特定し、
     前記故障モジュール特定部(116)は、
     複数の前記モジュール(16)のうち、前記故障したブロック(44)を含むモジュール(16)を活物質が漏洩しているモジュール(16)として特定することを特徴とする二次電池システム。
  13.  請求項1記載の二次電池システムにおいて、
     所定個数の前記モジュール(16)が直列接続されて構成されたモジュール列(18)を2以上と、
     各前記モジュール列(18)に対応して設置されたブロック特定部(136)とを有し、
     前記ブロック特定部(136)は、対応する前記モジュール列(18)に含まれる全ブロック(44)の放電末の開放電圧値を検出し、検出した前記開放電圧値に基づいて、故障したブロック(44)を特定し、
     前記故障モジュール特定部(116)は、
     複数の前記モジュール(16)のうち、前記故障したブロック(44)を含むモジュール(16)を活物質が漏洩しているモジュール(16)として特定することを特徴とする二次電池システム。
  14.  請求項12又は13記載の二次電池システムは、
     前記ブロック特定部(136)は、
     検出した前記開放電圧値のうち、予め設定された規定電圧値以下の開放電圧値に対応するブロック(44)を故障したブロック(44)として特定することを特徴とする二次電池システム。
  15.  請求項12又は13記載の二次電池システムは、
     前記ブロック特定部(136)は、
     検出した前記開放電圧値のうち、1つの開放電圧値を抽出し、抽出した開放電圧値と、その他の開放電圧値と比較して偏差を算出し、前記偏差が設定範囲外である場合に、比較した電圧値のうち、低い電圧値に対応するブロック(44)を、故障したブロック(44)として特定する処理を順番に行うことを特徴とする二次電池システム。
  16.  多数の二次電池の単電池(12)が筐体(14)に収容されてなる2以上のモジュール(16)のうち、少なくとも活物質が漏洩しているモジュール(16)を特定する監視部(102)と、
     2以上の前記モジュール(16)と前記監視部(102)との間に配管された主導管(104)と、
     各前記モジュール(16)に対応してそれぞれ少なくとも1つ取り付けられた複数の副導管(106)と、
     各前記副導管(106)に対応して設けられ、対応する副導管(106)と前記主導管(104)との連通を開閉する複数の電磁弁(SV)とを有し、
     前記監視部(102)は、
     前記主導管(104)に接続され、前記主導管(104)に導入された副導管(106)からのガスを前記監視部(102)に引き込むポンプ(110)と、
     前記主導管(104)を流れるガスに含まれる活物質を検出する活物質検出センサ(112)と、
     前記活物質検出センサ(112)からの出力に基づいて活物質が漏洩しているモジュール(16)を特定する故障モジュール特定部(116)と、
     複数の前記電磁弁(SV)の開閉動作を予め設定されたシーケンスに従って実行するシーケンス制御部(118)とを有することを特徴とする二次電池故障検出システム。
PCT/JP2013/056850 2012-06-15 2013-03-12 二次電池システム及び二次電池故障検出システム WO2013187095A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13803708.0A EP2863471B1 (en) 2012-06-15 2013-03-12 Secondary-battery system and secondary-battery-failure-detection system
JP2014520971A JP6144677B2 (ja) 2012-06-15 2013-03-12 二次電池システム及び二次電池故障検出システム
CN201380031264.7A CN104396084B (zh) 2012-06-15 2013-03-12 二次电池系统及二次电池故障检测系统
US14/564,473 US9595740B2 (en) 2012-06-15 2014-12-09 Secondary-battery system and secondary-battery-failure-detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136199 2012-06-15
JP2012136199 2012-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/564,473 Continuation US9595740B2 (en) 2012-06-15 2014-12-09 Secondary-battery system and secondary-battery-failure-detection system

Publications (1)

Publication Number Publication Date
WO2013187095A1 true WO2013187095A1 (ja) 2013-12-19

Family

ID=49757936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056850 WO2013187095A1 (ja) 2012-06-15 2013-03-12 二次電池システム及び二次電池故障検出システム

Country Status (5)

Country Link
US (1) US9595740B2 (ja)
EP (1) EP2863471B1 (ja)
JP (1) JP6144677B2 (ja)
CN (1) CN104396084B (ja)
WO (1) WO2013187095A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991779B1 (fr) * 2012-06-12 2014-07-11 Commissariat Energie Atomique Batterie d'accumulateurs protegee contre les courts-circuits externes
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
EP3058605B1 (en) 2013-10-16 2023-12-06 Ambri Inc. Seals for high temperature reactive material devices
WO2015058165A1 (en) * 2013-10-17 2015-04-23 Ambri Inc. Battery management systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
US20180212284A1 (en) * 2017-01-25 2018-07-26 Panasonic Intellectual Property Management Co., Ltd. Battery system
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
EP4069380A4 (en) * 2019-12-05 2023-12-27 Tyco Fire Products LP FIRE EXTINGUISHING SYSTEM FOR BATTERY ENCLOSURE
CN112909360B (zh) * 2021-01-28 2022-06-10 国网江苏省电力有限公司经济技术研究院 一种轮询抽取式集装箱储能热失控检测方法及消防装置
CN113479074B (zh) * 2021-06-22 2022-12-13 东风柳州汽车有限公司 电池包结构、检测系统及车辆
CA3140540A1 (fr) * 2021-11-26 2023-05-26 Stockage D'energie Evlo Inc. Unite de stockage d'energie avec systeme de ventilation active et methode associee
CN115602941A (zh) * 2022-11-15 2023-01-13 深圳海润新能源科技有限公司(Cn) 电池簇热失控联动处理系统、方法及存储介质
CN116190817B (zh) * 2023-01-30 2024-02-06 北京索科曼正卓智能电气有限公司 一种工业锂电池安全管理方法、装置、电子设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178240A (ja) * 1982-04-14 1983-10-19 Hitachi Ltd セレクタ−弁によるガスサンプリング方法
JPH03158781A (ja) 1989-11-15 1991-07-08 Hitachi Ltd ナトリウム―硫黄電池の残存容量推定方法
JPH06104007A (ja) * 1992-09-18 1994-04-15 Tokyo Electric Power Co Inc:The ナトリウム−硫黄電池における防災装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932739A (en) * 1954-01-28 1960-04-12 Dow Chemical Co Continuous automatic multiple sample analyzer
US3366456A (en) * 1962-03-23 1968-01-30 American Cyanamid Co Analysis employing a hydrogen flame ionization detector
US3714421A (en) * 1969-05-29 1973-01-30 Analog Tech Corp Gas detector and analyzer
US7314761B2 (en) * 2001-07-05 2008-01-01 Premium Power Corporation Leak sensor for flowing electrolyte batteries
EP1841002B1 (en) * 2006-03-31 2009-05-20 Sony Deutschland Gmbh Battery leakage detection system
US8427167B2 (en) * 2009-04-08 2013-04-23 Analog Devices, Inc. Architecture and method to determine leakage impedance and leakage voltage node
JP5684117B2 (ja) * 2009-05-20 2015-03-11 日本碍子株式会社 ナトリウム−硫黄電池の健全ストリング数算出方法、及びそれを用いた故障検出方法
KR20120103205A (ko) * 2011-03-10 2012-09-19 삼성에스디아이 주식회사 배터리의 누설전류 검출장치
JP2012242330A (ja) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd 漏電検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178240A (ja) * 1982-04-14 1983-10-19 Hitachi Ltd セレクタ−弁によるガスサンプリング方法
JPH03158781A (ja) 1989-11-15 1991-07-08 Hitachi Ltd ナトリウム―硫黄電池の残存容量推定方法
JPH06104007A (ja) * 1992-09-18 1994-04-15 Tokyo Electric Power Co Inc:The ナトリウム−硫黄電池における防災装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2863471A4

Also Published As

Publication number Publication date
CN104396084B (zh) 2017-03-01
US20150093614A1 (en) 2015-04-02
JPWO2013187095A1 (ja) 2016-02-04
CN104396084A (zh) 2015-03-04
EP2863471B1 (en) 2019-05-08
JP6144677B2 (ja) 2017-06-07
US9595740B2 (en) 2017-03-14
EP2863471A1 (en) 2015-04-22
EP2863471A4 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6144677B2 (ja) 二次電池システム及び二次電池故障検出システム
US11429123B2 (en) System and method for arc detection and intervention in solar energy systems
JP4030331B2 (ja) ナトリウム−硫黄電池の制御装置
US7479764B1 (en) Battery temperature management
CN100356656C (zh) 可充电电池监控及平衡电路
KR101732854B1 (ko) 축전지 장치 및 축전지 시스템
US9147909B2 (en) Battery management system and method for synchronizing voltage and current of battery
EP2645518A2 (en) Relay welding detector of battery system and battery system which uses the detector
JP2001289886A (ja) 電池電圧測定装置
EP3919924B1 (en) Energy storage system and insulation detection method therefor
CN109564266A (zh) 通过使用负极继电器来测量电池组的绝缘电阻的装置和方法
JP2018125977A (ja) 電池モジュールの制御装置
US20180069270A1 (en) Storage battery management device, method and computer program product
KR20060107473A (ko) 임피던스 측정 및 개별 자동 충·방전 기능을 가진 축전지관리장치
JP2023544370A (ja) バッテリー管理システム、バッテリーパック、電気車両及びバッテリー管理方法
Redondo-Iglesias et al. Influence of the non-conservation of SoC value during calendar ageing tests on modelling the capacity loss of batteries
CN114128079A (zh) 电池管理系统和电池组
WO2019171680A1 (ja) 電池監視装置、電池モジュール装置及び電池監視システム
JP2019158397A (ja) 蓄電池システム
CN107078360A (zh) 在能量系统中进行串级动态重新配置的方法和装置
JP2001028271A (ja) ナトリウム−硫黄電池からなるバッテリーの運転制御システム及び運転方法
Fedchenko et al. Static accuracy of the automated stand for lithiumion batteries testing
KR20180012566A (ko) 엘씨 공진을 이용한 배터리 셀 그룹 간 밸런싱 시스템 및 방법
JP2004222378A (ja) マルチチャンネル充電装置およびその製造方法
JP4136166B2 (ja) ナトリウム−硫黄電池の異常加熱検知方法及びそれを用いた破損防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013803708

Country of ref document: EP