WO2013187057A1 - 漏電検出装置 - Google Patents
漏電検出装置 Download PDFInfo
- Publication number
- WO2013187057A1 WO2013187057A1 PCT/JP2013/003677 JP2013003677W WO2013187057A1 WO 2013187057 A1 WO2013187057 A1 WO 2013187057A1 JP 2013003677 W JP2013003677 W JP 2013003677W WO 2013187057 A1 WO2013187057 A1 WO 2013187057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic element
- leakage
- magnetic
- power source
- pair
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/205—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/207—Constructional details independent of the type of device used
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/063—Magneto-impedance sensors; Nanocristallin sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H83/00—Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
- H01H83/02—Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/26—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
- H02H3/32—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
- H02H3/33—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
Definitions
- the present invention relates to a leakage detection device for detecting leakage.
- Leakage means that current flows in addition to the wires connected from the power source to the load. Actually, it is detected by the difference between the current flowing from the power source to the load and the current returning from the load to the power source.
- a conventional leakage detection device there has been proposed a device that detects changes in impedance of a magnetic body by passing two electric wires communicated from a power source to a load through a hole in a ring-shaped magnetic body (Patent Document 1).
- FIG. 24 illustrates an outline of the leakage detection device 100.
- the leakage detection device 100 includes a ring-shaped magnetic body 101, a magnetic impedance element 102 attached to the magnetic body 101, and a detector 103 that detects a change in impedance.
- the ring-shaped magnetic body 101 allows a pair of electric wires 110 and 111 (referred to as an electric wire A and an electric wire B) from the power source 115 to the load 116 to pass through the hole 104.
- the magneto-impedance element 102 uses a magneto-resistive element whose resistance changes with a magnetic field.
- the magnetoresistive element is disposed in a magnetic field generated by the ring-shaped magnetic body 101.
- a configuration in which a part of the ring-shaped magnetic body 101 is deleted, a gap is formed, and the gap is disposed in the gap can be exemplified.
- other methods may be used.
- the detector 103 only needs to be able to detect a change in resistance of the magnetoresistive element. After the resistance change is converted into a signal having a predetermined frequency, or after waveform shaping by a filter circuit and an amplifier circuit, the signal detection circuit To output the main signal.
- the leakage detection device 100 If there is no leakage, the current flowing through the electric wire A110 and the electric current flowing through the electric wire B111 are the same amount, and the directions are opposite. Magnetic flux is not generated. Therefore, the resistance of the magnetic impedance element 102 does not change at this time. On the other hand, if a leakage occurs, the current value flowing through the electric wire A110 and the current value flowing through the electric wire B111 are different, and a magnetic flux is generated in the ring-shaped magnetic body 101.
- the impedance of the magnetic impedance element 102 Since the impedance of the magnetic impedance element 102 is changed by the generated magnetic flux, it is detected by the detector 103 and the occurrence of leakage is detected.
- the leakage detection device of Patent Document 1 is simple and can be downsized to some extent. However, since a ring-shaped magnetic body is used, downsizing is necessarily limited. Moreover, since it is necessary to pass the electric wire A and the electric wire B from a power supply through the hole of a ring, when an electric wire becomes thick, the ring-shaped magnetic body 101 itself becomes large. Moreover, it is not easy to arrange the ring-shaped magnetic body 101 with respect to the already arranged electric wires. For example, like a clamp-type ammeter, a part of the ring-shaped magnetic body can be opened, an electric wire is inserted into the hole from the open part, and the ring-shaped magnetic body is returned again so as to form a magnetic flux closed circuit. It took time and effort.
- the power supply line pattern from the power supply must be surrounded by a magnetic material when two lines are jointed, so that it is extremely difficult to attach later.
- the leakage detection device of the present invention is: A leakage detection device installed in a pair of power lines connecting a power source and a load, A pair of holding means for holding each of the pair of power supply lines; Fixing means for fixing the pair of holding means at a predetermined interval; A pair of magnetic elements arranged in parallel to the power supply line in each holding means; Detecting means for detecting a difference in magnetoresistive effect between the pair of magnetic elements; And a driving means for supplying a driving current to the magnetic element.
- the leakage detection device is a circuit that has already been wired taking advantage of the magnetoresistive elements such as non-contact (principle), easy installation (ultra-small and thin), and energy saving (low energy consumption during measurement). Even if it exists, attachment is possible easily. Moreover, by fixing the arrangement position of the magnetoresistive element with respect to the electric wires A and B, the influence of the magnetic field from the adjacent electric wires can be suppressed sufficiently small, and stable leakage detection can be performed. Further, by providing a bias means for the magnetoresistive element, power measurement and current measurement can be performed.
- FIG. 14 is a leakage detection device of FIG. 13, showing a connection when driving means is obtained from a circuit to be detected (in the case of power supply parasitics).
- FIG. 19 is a diagram showing a connection in the case where the bias unit is added to the magnetic element in the leakage detection device of FIG. 18.
- FIG. 19 is a diagram showing a connection when the one end of the magnetic element is grounded in the leakage detection device of FIG. 18.
- FIG. 21 is a diagram showing a connection when the biasing means is added to the magnetic element in the leakage detection device of FIG. 20.
- FIG. 14 is a diagram showing a connection when the magnetic element to which the bias means is added is arranged linearly in the leakage detection device of FIG. 13.
- FIG. 23 is a diagram showing a connection in the case of obtaining the drive means from the circuit to be detected in the leakage detection device of FIG. 22 (in the case of power supply parasitics). It is a figure which shows the structure of the conventional electrical leakage detection apparatus.
- FIG. 1 is a diagram showing an appearance of a leakage detection device 1 according to the present embodiment.
- FIG. 1A shows an external view of a portion that holds an electric wire.
- FIG. 1B is a configuration diagram showing the connection relationship with the circuit to be detected.
- the detected circuit 90 includes a power supply 91 and a load 92, and a power supply line 93 that connects the power supply 91 and the load 92.
- the power supply line 93 includes an electric wire A93a and an electric wire B93b.
- the leakage detection device 1 includes a pair of holding means 11 that holds each of the pair of power supply lines 93, a fixing means 12 that fixes a distance between the holding means 11, and a magnetic element embedded in the holding means 11. 14 and a detecting means 20 for detecting a difference in magnetoresistive effect of the magnetic element 14.
- the detailed connection relationship between the magnetic element 14 and the detection means 20 will be described later.
- FIG. 1A shows the holding means 11, the fixing means 12, and the magnetic element 14, and the detection means 20 is omitted.
- the power supply line 93 is a pair of electric wires (electric wires A 93 a and B 93 b) that supply electric power from the power source 91 to the load 92.
- the power source 91 may be either AC or DC.
- the load 92 may be an impedance having no complex element, or may be a reactance (including a capacitance and an inductance) having a complex element.
- the holding means 11 fixes the individual electric wires (the electric wires A93a and B93b) of the power supply line 93 in a straight line over a predetermined length. Therefore, there are also a pair (11a, 11b) of holding means 11.
- FIG. 1 shows a cylindrical holding member in which a part of the cross section is missing.
- the holding means 11 fixes a part of the power supply line 93 to a predetermined length (L) linearly.
- a plate-like insertion part 13 is formed at the lower part of the holding means 11.
- a magnetic element 14 (A14a, B14b) is disposed in the fitting portion 13 in parallel with the electric wires (A93a, B93b) to be fixed. Therefore, when the electric wires (A93a, B93b) are held by the holding means 11, the magnetic element 14 is arranged in parallel to the length direction of the electric wires (A93a, B93b).
- the fixing means 12 fixes the interval between the holding means 11 to a predetermined length.
- the fixing means 12 can be formed by forming a rail-like groove 12b in the plate-like member 12a.
- the distance between the holding means 11 can be varied by fitting the fitting portion 13 provided on the lower surface of the holding means 11 into the groove 12b so as to be movable along the groove 12b.
- the holding means 11 can be fixed to the groove 12b.
- the fitting portion 13 and the fixing means 12 may be fastened with screws or the like.
- a portion for adjusting the interval of the holding means 11 in this way is called an interval adjusting means.
- the interval adjusting means is constituted by the groove 12b, the fitting portion 13, a screw, etc., but other methods may be used.
- the magnetic element 14 used in the present invention will be briefly described.
- the magnetic element 14 has a magnetic film 142 formed on a substrate 141 and element terminals (electrodes) 143 and 144 formed at both ends thereof.
- the shape is a strip shape, and the direction in which the element terminals 143 and 144 are formed is called a longitudinal direction.
- the magnetic film 142 preferably has an easy axis EA induced in the longitudinal direction.
- a current I 2 is supplied from the detector power source 21 to the magnetic element 14.
- Current I 2 flows in the middle magnetic layer 142 in the longitudinal direction.
- the electric resistance of the magnetic film 142 changes. This is called the magnetoresistance effect. It is considered that the magnetoresistive effect is caused by a change in the direction of magnetization in the magnetic film 142 and the current I 2 flowing in the magnetic film 142.
- FIG. 3A shows a plan view of the magnetic element 14 of FIG. 2, and FIG. 3B shows the relationship between the external magnetic field H applied to the magnetic element 14 and the resistance value Rmr of the magnetic film 142.
- the horizontal axis is the external magnetic field H applied to the magnetic film 142
- the vertical axis is the resistance value ( ⁇ ) of the magnetic film 142. Since the magnetoresistive effect is considered to be caused by a shift in the direction of the current I 2 and the magnetization M, the resistance value of the magnetic film has an even function characteristic with respect to the applied external magnetic field H.
- a bias magnetic field MF is applied in a direction perpendicular to the longitudinal direction.
- the operating point is moved by the bias magnetic field MF, and the resistance value Rmr increases or decreases depending on the direction of the external magnetic field H.
- the symbol MRC is a curve indicating the magnetoresistive effect.
- the bias magnetic field MF can be easily applied by the permanent magnet 149.
- an electromagnet may be used.
- Such a device that applies the bias magnetic field MF to the magnetic element 14 is referred to as bias means 145.
- the bias unit 145 may not directly generate a magnetic field.
- FIG. 4 shows a conductor 148 made of a highly conductive material formed on a magnetic film 142 in a striped stripe structure.
- the stripe structure is a structure in which the conductor 148 is formed in a strip shape and inclined with respect to the longitudinal direction of the magnetic film 142.
- a current I 2 flows between the conductors 148 in a direction perpendicular to the strip-shaped conductor 148.
- the easy axis EA is guided in the longitudinal direction of the magnetic element 14. Then, the directions of the magnetization M and the current I 2 are different even when the external magnetic field H is zero. That is, as far as the magnetoresistive effect is concerned, the same situation as when a bias magnetic field is applied can be obtained.
- the bias means 145 includes a device that exhibits substantially the same effect as when a bias magnetic field is applied even though no magnetic field is actually generated.
- the magnetic element 14 having the structure as shown in FIG. 4 is called a barber pole type.
- the magnetization easy axis EA of the magnetic film 142 may be tilted and guided from the longitudinal direction. This is also because the direction of current flow (longitudinal direction) and the direction of magnetization are inclined in this case as well.
- FIG. 5 shows the principle of a power measuring device using a barber pole type magnetic element 14.
- the magnetic element 14 and the measuring resistor 22 are connected in series, and this is connected in parallel with the load 92 connected to the power source 91 of the circuit 99 to be measured.
- the magnetic element 14 is disposed adjacent to and parallel to the electric wire A 93 a connecting the power source 91 and the load 92.
- the measurement resistor 22 is sufficiently larger than the resistance value Rmr of the magnetic element 14. Further, the resistance of the electric wire A93a is sufficiently small.
- a magnetic film 142 which is disposed close to the wire A93a current I 1 flows, has an electrical resistivity characteristics, such as (3).
- the voltage V mr between the element terminals 143 and 144 is expressed by the equation (4).
- I 2 (R m0 + ⁇ I 1 ) I 2 (4)
- the voltage Vmr between the element terminals 143 and 144 of the magnetic element 14 is expressed by the following equation (8).
- the relationship of R m0 ⁇ R 2 was used in the middle of the transformation of the formula (8).
- the K 1 is a proportionality constant. That is, a voltage proportional to the power I 1 V 1 consumed by the load 92 can be obtained between the element terminals 143 and 144 of the magnetic element 14.
- the final term shows the active power consumed by the load 92 as a direct current component. That is, the DC voltage obtained by passing the output between the element terminals 143 and 144 through the low-pass filter is proportional to the effective power consumed by the load 92.
- the magnetic element 14 not only the current flowing through the power supply line 93 but also the power consumption at the load 92 connected to the power supply 91 can be measured by the connection method.
- FIG. 6 shows a schematic diagram of a cross section when the magnetic element 14 is arranged along the electric wires A93a and B93b of the power supply line 93.
- FIG. The left side is an electric wire A93a
- the right side is an electric wire B93b.
- the magnetic element 14 disposed on the electric wire A93a is referred to as a magnetic element A14a
- the magnetic element 14 disposed on the electric wire B93b is referred to as a magnetic element B14b.
- the power supply line 93 is an electric wire connecting the power supply 91 and the load 92 (both see FIG. 1), the current is always in the opposite direction on the left and right. Therefore, it is assumed that a current flows from the back to the front of the left electric wire A93a and a current flows from the front to the back of the paper in the right electric wire B93b.
- a magnetic field is generated around the wire.
- the magnetic field of the electric wire A93a is counterclockwise (dotted line) toward the paper surface, and the magnetic field of the electric wire B93b is clockwise (two-dot chain line) toward the paper surface.
- a magnetic field Ha is applied to the magnetic element A 14a from left to right toward the paper surface
- a magnetic field Hb is applied to the magnetic element B 14b from right to left toward the paper surface.
- a magnetic field is applied from the outside of the magnetic film 142 in the in-plane direction of the magnetic film 142 of the magnetic element 14 and in a direction perpendicular to the longitudinal direction of the magnetic element 14.
- the two magnetic elements A14a and B14b are prepared so as to have the same magnetoresistance effect when the same magnetic field is applied.
- the magnetic element 14 having the same magnetoresistance effect can be manufactured by matching the dimensions such as the thickness, length, and width of the magnetic film 142 with the composition of the magnetic film 142 and the manufacturing conditions.
- the strength of the magnetic field applied to the magnetic element 14 at this time is inversely proportional to the square of the distance from the electric wires A93a and B93b to the magnetic elements A14a and B14b. Therefore, the two magnetic elements A14a and B14b have the same resistance value when they are arranged at positions where the distances from the electric wires A93a and B93b are equal and no leakage occurs. This is because the currents flowing through both electric wires A93a and B93b are the same.
- the electric wire A93a from the power supply 91 to the load 92 and the electric wire returning from the load 92 to the power supply 91 are displayed.
- the current flowing through B93b is different. Specifically, in FIG. 6, since the current flowing through the electric wire A93a and the current flowing through the electric wire B93b are not the same, the resistance value of the magnetic element A14a and the resistance value of the magnetic element B14b are different.
- the circuit is configured to output the difference between the resistance value of the magnetic element A14a and the resistance value of the magnetic element B14b as the leakage detection device, the difference between the resistance values of the magnetic elements A14a and B14b is zero.
- a difference value greater than or equal to a predetermined value it can be determined that a leakage has occurred.
- positioning of magnetic element A14a and magnetic element B14b will not be limited if the distance from the electric wire A93a and electric wire B93b which each adjoins each other is equal.
- the magnetic element A 14a and the magnetic element B 14b are arranged so as to be located in the same plane.
- FIG. 7 shows a connection diagram in which the leakage detection device 1 according to the present embodiment is installed in a detected circuit 90 including a power source 91 and a load 92.
- the power source 91 may be either AC or DC.
- the load 92 may be either an impedance having no complex element or a reactance having a complex element.
- the holding position is held as close to the power source 91 as possible.
- the leakage can be detected at any position of the electric wires A93a and B93b.
- DC if the leakage occurs near the power supply 91 than the detection position, it is detected. It is because there is a possibility that it cannot be done.
- FIG. 7 shows a portion held by the holding means 11 surrounded by a dotted line.
- the electric wire A93a and the magnetic element A14a are adjacent to each other, and the electric wire B93b and the magnetic element B14b are adjacent to each other.
- One element terminal 143a, 143b of magnetic element A14a and B14b is connected.
- one end of the measurement resistor A22a is connected in series to the other element terminal 144a of the magnetic element A14a
- one end of the measurement resistor B22b is connected in series to the other element terminal 144b of the magnetic element B14b.
- the other ends of the measurement resistors A22a and B22b are connected together.
- the magnetic elements A14a and B14b are connected to one electrode of the detector power supply 21, and the other ends of the measurement resistors A22a and B22b are connected to the other electrode of the detector power supply 21. Therefore, the magnetic element A14a, the measurement resistor A22a, the magnetic element B14b, and the measurement resistor B22b are connected in series to form a branch.
- the bridge circuit 30 is formed by connecting these two branches in parallel.
- the detector power supply 21 is a power supply for supplying a drive current to the magnetic elements A14a and B14b, and is a drive means.
- the detector power source 21 and the power source 91 of the circuit 90 to be detected are configured as separate circuits. It is said that each power supply is independent.
- the connection point between the magnetic element A 14a and the measurement resistor A 22a and the connection point between the magnetic element B 14b and the measurement resistor B 22b are defined as measurement terminals 23 (23a, 23b).
- the input of the amplifier 24 is connected to the measurement terminal 23 and a voltage between the measurement terminals 23 is amplified.
- a display means 26 is connected to the output of the amplifier 24.
- the display unit 26 is not particularly limited as long as the output of the amplifier 24 can be displayed. For example, the output of the amplifier 24 may be displayed as it is, or a threshold value is provided so that the noise level assumed in advance is rounded down. If the output of the amplifier 24 is higher than the threshold value, a display corresponding to the presence of electric leakage is performed. You may do it.
- the detection means 20 includes a detector power source 21, which is a drive means, measurement resistors 22a and 22b, an amplifier 24, and a display means 26. As will be described later, when the driving means is shared with the power supply 91 of the circuit 90 to be detected, the driving means is not included in the detection means.
- this leakage detection device 1 When there is no leakage, the currents flowing through the electric wires A93a and B93b are the same. At this time, the resistance values due to the magnetoresistance effect of the magnetic element A 14a and the magnetic element B 14b are the same. Therefore, the voltage between the measurement terminals 23a and 23b in the bridge circuit 30 formed by the magnetic element A14a, the measurement resistor A22a, the magnetic element B14b, and the measurement resistor B22b is equal. Therefore, the output of the amplifier 24 is zero.
- the detected circuit 90 including the power supply 91 and the load 92 if there is a leakage in the detected circuit 90 including the power supply 91 and the load 92, the currents flowing through the electric wires A93a and B93b are not the same. Then, the electric resistance values of the magnetic element A 14a and the magnetic element B 14b become different values. That is, a voltage difference corresponding to the difference in electric resistance value between the magnetic element A 14a and the magnetic element B 14b is generated between the measurement terminals 23a and 23b. This is amplified by the amplifier 24 and displayed on the display means 26.
- the output of the amplifier 24 is a direct current when the power supply 91 is a direct current, and the output of the amplifier 24 is also an alternating current when the power supply 91 is an alternating current. Therefore, when the power supply 91 is alternating current, a rectifier (not shown) may be disposed between the amplifier 24 and the display means 26.
- the detector power supply 21 is independent of the detected circuit 90. Therefore, the leakage detection device 1 can be installed simply by fixing the electric wire A93a and electric wire B93b of the circuit 90 to be detected already held by the holding means 11.
- the difference between the measurement terminals 23a and 23b is amplified by the amplifier 24, even if the voltage of the detector power supply 21 is stepped down, it is not possible to detect leakage.
- the output voltage of the amplifier 24 may decrease due to a decrease in the power supplied to the amplifier 24.
- the magnetic elements A14a and B14b do not have to have the bias unit 145 in particular. This is because it is only necessary to have a difference in the magnetoresistive effect between the magnetic elements A14a and B14b by looking at the voltage between the measurement terminals 23a and 23b of the bridge circuit 30.
- the magnetic elements A 14 a and B 14 b may be configured by the magnetic element 14 having the bias means 145. It may be said that leakage detecting apparatus 1 according to the present embodiment detects a difference between currents flowing through electric wire A93a and electric wire B93b.
- FIG. 8 shows a connection diagram when the leakage detection device 1b according to the present embodiment is installed in the circuit 90 to be detected.
- the holding with respect to the electric wires A93a and B93b is the same as in the case of FIG.
- a power source for the bridge circuit 30, that is, a detector power source is obtained from the power source 91 of the circuit to be detected 90.
- the bridge circuit 30 is formed by the magnetic element A14a, the measurement resistor A22a, the magnetic element B14b, and the measurement resistor B22b.
- the current supply to the bridge circuit 30 is supplied through a path in which one is connected to the electric wire A93a and the other is connected to the electric wire B93b. That is, the driving means is the power supply 91 of the circuit 90 to be detected.
- the detector power source is said to be parasitic on the circuit 90 to be detected.
- the magnetic element A14a and the measurement resistor A22a are connected in parallel with the load 92 with respect to the power supply 91 of the circuit to be detected 90. That is, the output between the element terminals 143a and 144a of the magnetic element A 14a is proportional to the power consumed by the load 92.
- the magnetic element B 14 b and the measurement resistor B 22 b are connected in parallel with the load 92 to the power source 91 of the circuit 90 to be detected. Therefore, an output proportional to the power consumption of the load 92 is also obtained for the voltage across the magnetic element B 14 b. That is, what is seen between the measurement terminals 23a and 23b is a difference between measured values when the power consumption of the load 92 is measured by the electric wires A93a and B93b.
- the power consumption of the load 92 as viewed from the power source 91 is the same when measured with the electric wire A93a and when measured with the electric wire B93b.
- the power consumption at the load 92 is different when measured with the electric wire A93a and when measured with the electric wire B93b, and the voltage difference between the measurement terminals 23a and 23b is not zero. Therefore, a voltage difference is generated between the measurement terminals 23a and 23b, and an output voltage proportional to the voltage between the measurement terminals 23a and 23b is obtained from the amplifier 24.
- the leakage detection device 1b in the present embodiment detects the power consumption at the load 92.
- the leakage detection device 1b obtains the driving means from the power source 91 of the circuit to be detected 90, it is desirable that the leakage detection apparatus 1b be incorporated in the circuit to be detected 90 in advance.
- the output of the amplifier 24 is DC when the power supply 91 is DC, and the output of the amplifier 24 is AC when the power supply 91 is AC.
- the display means 26 can receive a direct current output by disposing the low-pass filter 25 between the amplifier 24 and the display means 26.
- FIG. 9 shows a connection diagram when the leakage detecting device 1c according to the present embodiment is installed in the circuit 90 to be detected.
- the holding and fixing of the power supply line 93 is the same as in FIG.
- the installation method to the detected circuit 90 is the same as that in the second embodiment. That is, the driving means for the bridge circuit 30 is obtained from the power supply 91 of the circuit 90 to be detected.
- the difference between the present embodiment and the second embodiment is that a barber pole type is used for the magnetic element 14 and a power detection amplifier that outputs a voltage between the element terminals 143a and 144a of one magnetic element A 14a.
- 32 and one element terminal 143 b of the other magnetic element B 14 b are connected to the circuit to be detected 90 or the element terminal 143 b is made independent, and a constant current is provided separately from the power supply 91 of the circuit to be detected 90.
- This is a point having a switch 36 for switching the connection with the circuit 33 through which a current flows from the power source 35.
- a current detection amplifier 34 is connected to the circuit 33 in parallel with the constant current power source 35.
- the barber pole type is used for the magnetic element 14 by utilizing the structural bias means 145 included in the barber pole type and using the at least one magnetic element 14 as a current leakage detector. This is because the sensor and the power sensor are also used. Therefore, bias means 145 other than the barber pole may be used.
- the switch 36 when used as a leakage detection device, the switch 36 is switched so that the one ends 143a and 143b of the two magnetic elements A14a and B14b are connected to the circuit 90 to be detected.
- the voltage difference between the measurement terminals 23a and 23b of the bridge circuit 30 becomes zero, and when there is a leakage, a predetermined pressure is generated between the measurement terminals 23a and 23b. This is the same as in the second embodiment.
- the bias means 145 of each of the magnetic elements A14a and B14b is applied in the opposing direction. That is, the patterns of the conductors are arranged in different inclination directions. Specifically, a bias magnetic field is applied so as to be directed toward the middle 11c between the holding means 11a and 11b in FIG. 1 or from the middle between the holding means 11a and 11b toward both outer sides.
- the conductor 148 having a stripe structure which is the biasing means 145 of the magnetic elements A14a and B14b, is formed so as to be inclined toward the middle 11c of each other. This is because the electric wires A93a and B93b exhibit the same magnetoresistance effect when currents in opposite directions flow because the directions in which the currents I 1 a and I 1 b flow are reversed.
- the same magnetoresistance effect means that the magnetic elements A14a and B14b change in the same direction from the operating point on the curve MRC (see FIG. 3B) indicating the magnetoresistance effect.
- both the magnetic elements A14a and B14b change in a direction away from the direction of current flowing through the magnetic film due to the magnetic fields generated by the currents I 1 a and I 1 b.
- the leakage detection device 1c can be used not only as a leakage current as described above but also as a power sensor and a current sensor. Specifically, by measuring the voltage between the element terminals 143a and 144a of the magnetic element A 14a, a voltage proportional to the power consumed by the load 92 of the detected circuit 90 can be obtained from the power detection amplifier 32. When the current flowing through the circuit to be detected 90 is alternating current, the output of the power detection amplifier 32 can obtain a voltage output whose direct current component is proportional to the active power consumed by the load. In order to extract the DC component, for example, a low-pass filter 25 may be connected to the output of the amplifier 24.
- one terminal 143b of the magnetic element B 14b is connected to the external circuit 33 by switching the switch 36, and a current is supplied to the magnetic element B 14b from a constant current power source 35 different from the circuit 90 to be detected, so that the element terminal 143b , The voltage proportional to the current flowing through the circuit to be detected 90 can be detected.
- the power source 91 of the circuit 90 to be detected is AC
- the output of the current detection amplifier 34 is also AC.
- the leakage detection device 1c can also be used as a current sensor and a power sensor by using one of the pair of magnetic elements A14a and B14b.
- FIG. 10 (a) shows a perspective view of the holding means 11, the fitting portion 13, and the fixing means 16 of the leakage detecting device 2a according to the present embodiment.
- 10A is similar to the holding means 11, the fitting portion 13, and the fixing means 12 shown in FIG.
- the fixing means 16 has inclined surfaces 16a1 and 16a2 having a predetermined angle from the predetermined position 16c of the fixing means toward both ends. That is, it can be said that the inclined surface 16a1 and the inclined surface 16a2 are abutted at an angle 16 ⁇ .
- FIG. 11 shows a cross-sectional view of the power supply line 93.
- the magnetic elements A14a and B14b receive a magnetic field due to the magnetic field generated from the electric wires A93a and B93b, and the electrical resistance changes due to the magnetoresistive effect, as already described with reference to FIG.
- the magnetic field from the electric wire A93a (dotted line) also affects the magnetic element B14b disposed on the electric wire B93b.
- the magnetic field (two-dot chain line) from the electric wire B93b also affects the magnetic element A14a arranged in the electric wire A93a.
- FIG. 12 shows a cross-sectional view when a predetermined inclination is provided between the magnetic elements A14a and B14b as shown in FIG.
- the magnetic elements A14a and B14b are respectively inclined at a predetermined angle and disposed on the electric wires A93a and B93b
- the influence of the magnetic field on the magnetic elements A14a and B14b from both electric wires A93a and B93b is exerted on the magnetic films of the magnetic elements A14a and B14b. Only the vertical component can create a situation where it is applied.
- the magnetic element A14a is arranged along a tangent line from the center of the electric wire B93b to the electric wire A93a
- the magnetic element B14b is arranged along a tangent line from the center of the electric wire A93a to the electric wire B93b.
- the magnetic field from the adjacent electric wire acts only in the vertical direction with respect to the magnetic films of the magnetic elements A14a and B14b. Since the magnetic film in the magnetic element 14 is very thin compared to the width of the magnetic element, the magnetic field in the direction perpendicular to the magnetic film has very little influence on the activation of the magnetoresistive effect. Therefore, the magnetic elements A14a and B14b exhibit a magnetoresistive effect only by the magnetic field from the electric wires A93a and B93b disposed adjacent to each other without being greatly affected by the adjacent electric wires B93b and A93a.
- the angle 14 ⁇ between the magnetic elements A14a and B14b is expressed by the equation (13) from the diagram of FIG. Therefore, the angle formed by each of the magnetic elements A14a and B14b may be an angle 14 ⁇ obtained by the equation (13) or in the vicinity of this angle 14 ⁇ .
- a is the distance between the electric wires B93b and A93a
- r is the radius of the electric wire.
- the predetermined angle 16 ⁇ at which the inclined surfaces 16a1 and 16a2 of the fixing means 16 are in contact with each other is the predetermined angle 14 ⁇ shown in FIG. 12 or an angle obtained by correcting it. Inclined butted. It can also be said that the inclined surfaces 16a1 and 16a2 are inclined by a predetermined angle toward the intermediate 16c of the holding means 11.
- FIG. 10B shows a state in which the electric wires A93a and B93b of the detected circuit 90 are held by the holding means 11, the fitting portion 13, and the fixing means 16 shown in FIG. Except for the point that the fixing means 16 has the inclined surfaces 16a1 and 16a2, it is the same as the case of FIG. Therefore, the fixing means 16 shown in FIG. 10A can be used instead of the fixing means 12 described in the first to third embodiments.
- the fixing means 16 is formed with a groove 16b as in the fixing means 12 of FIG. 1, and the insertion portion 13 is movably inserted into the groove 16b as in the case of FIG.
- the leakage detecting device 2a is obtained by connecting the fixing means 16 in FIG. 10 (a) as shown in FIG. 10 (b). This corresponds to the first embodiment. Moreover, what connected the fixing means 16 of Fig.10 (a) like FIG. 8 is the earth-leakage detection apparatus 2b. This corresponds to the second embodiment. Moreover, what connected the fixing means 16 of Fig.10 (a) like FIG. 9 is the earth-leakage detection apparatus 2c. This corresponds to the third embodiment.
- FIG. 13 shows the holding means 11 and the like of the leakage detection device 3 according to the present embodiment.
- the magnetic element 14 is arranged only in one place. Even when a plurality of magnetic elements 14 are used, they are arranged in a straight line.
- the holding means 11 and the fixing means 17 are integrated.
- the interval between the holding means 11a and the holding means 11b is fixed. However, it may be variable.
- the magnetic element 14 is held between the holding means 11a and 11b.
- the holding direction is fixed in such a direction that the magnetic fields from the electric wires A93a and B93b held by the holding means 11a and 11b act on the surface of the magnetic element 14.
- the magnetic element 14 used for the fixing means 17 is denoted by 14s.
- FIG. 13B shows a connection diagram in the case of the leakage detection device 3a according to the present embodiment.
- the leakage detection device 3a either the electric wire A93a or the electric wire B93b is twisted once and then held by the holding means 11. That is, the electric wires A93a and B93b held by the pair of holding means 11a and 11b are configured such that the currents I 1 a and I 1 b flow in the same direction at the fixing means 17. It may be said that a loop is formed in the electric wire B93b before being held by the holding means 11.
- the magnetic field becomes zero at the position of the magnetic element 14s. This is because the magnetic fields created by the electric wires A93a and B93b cancel each other.
- the sum of the magnetic fields generated by the electric currents flowing through the electric wires A93a and B93b is the magnetic element at the position of the magnetic element 14s. 14 s. In such a case, it is impossible to distinguish whether the currents flowing through the electric wires A93a and B93b are both increased or decreased, or only the current flowing through any of the electric wires A93a and B93b is increased or decreased. If the currents I 1 a and I 1 b flow in the same direction at the point of the fixing means 17 as shown in FIG. 13 (b), only when there is a difference between the currents flowing through the two electric wires A93a and B93b. Can be detected.
- FIG. 14 is a connection diagram of FIG.
- the leakage detection device using the fixing means 17 in FIG. 13 and the connection in FIG. 14 is referred to as a leakage detection device 3a.
- the leakage detection device 3a includes a detector power supply 21, a magnetic element 14s, a measurement resistor 22, measurement terminals 23a and 23b, an amplifier 24, and a display means 26.
- the state in which the electric wires A93a and B93b are held by the holding means 17 is a portion surrounded by a dotted line.
- a circuit is formed by a detector power source 21 as a driving means, a magnetic element 14s, and a measuring resistor 22 connected in series to the magnetic element 14s.
- the detector power supply 21 is independent from the power supply 91 of the circuit 90 to be detected. Therefore, it is easy to install it later in the detected circuit 90 that already exists.
- the detector power supply 90 and the measuring resistor 22 are intended to cause a predetermined constant current to flow through the magnetic element 14s, and therefore a constant current power supply may be used instead.
- An amplifier 24 and a display means 26 are connected between the element terminals 143s and 144s of the magnetic element 14s. Therefore, in the leakage detection device 3a, the element terminals 143s and 144s and the measurement terminals 23a and 23b are at the same potential point.
- a power supply 91 and a load 92 are connected to the circuit 90 to be detected by a power supply line 93 (electric wires A93a and B93b).
- the currents I 1 a and I 1 b flowing through the electric wires A93a and B93b flow in the same direction at the fixing means 17. This is because the electric wire B93b returned from the load 92 to the power source 91 is twisted once in the middle.
- the magnetic element 14s arranged in the middle of the holding means 11a and 11b receives magnetic fields from the electric wires A93a and B93b, but these magnetic fields cancel each other. Therefore, if no leakage occurs, no voltage is generated between the element terminals 143s and 144s of the magnetic element 14s. On the other hand, when the electric leakage has occurred, the current flowing through the electric wire A93a and the electric wire B93b is different, so that an external magnetic field is applied to the position of the magnetic element 14s.
- the resistance value of the magnetic element 14s changes due to the magnetoresistive effect. Since a predetermined current is supplied to the magnetic element 14s by the detector power source 21, a voltage is generated between the element terminals 143s and 144s of the magnetic element 14s. This voltage is amplified by the amplifier 24 and displayed on the display means 26, so that it can be known that a leakage has occurred.
- the memory and comparing means 40 records the output of the amplifier 24 when there is no leakage as an initial value, compares the output of the amplifier 24 with the initial value after the detection is started, and if there is a change, the display means 26
- the configuration is not particularly limited as long as it has a function of sending a signal.
- the output of the amplifier 24 is a direct current
- the output of the amplifier 24 is also an alternating current.
- the value of the current flowing through the circuit to be detected 90 is detected by the magnetic element 14s. Therefore, when the power supply 91 is AC, the amplitude of the output of the amplifier 24 corresponds to a change in current to be detected. . For this reason, when the power source 91 is alternating current, it is preferable to insert a rectifier (not shown) between the amplifier 24 and the memory and comparison means 40 so that signals can be handled with direct current.
- FIG. 15 shows a connection diagram of the leakage detection device 3av when the bias means 145 is a barber pole type. Except that the magnetic element 14s is a barber pole type, it is the same as the leakage detecting device 3a of FIG.
- FIG. 16 is a connection diagram of the leakage detection device 3b according to the present embodiment with respect to the circuit 90 to be detected.
- the appearance of the fixing means 17 and the like is the same as in the case of FIG.
- the difference between the present embodiment and the fifth embodiment is that the other end 144s of the magnetic element 14s (the side connected to one end of the measurement resistor 22) is grounded, and the measurement terminal 23 is different from the magnetic element 14s. The point is that it is set between one end 143 s and the other end of the measuring resistor 22.
- the measurement resistor 22 is calibrated so as to match the resistance value of the magnetic element 14s. As described above, when the magnetic element 14s and the measurement resistor 22 are set to the same resistance value and the connection point is grounded, the outputs at both ends of the magnetic element 14s and the measurement resistor 22 can be zero when there is no leakage. Therefore, if a predetermined voltage is generated at the output of the amplifier 24, it can be detected that a leakage has occurred.
- the output of the amplifier 24 is DC, and when the power source 91 is AC, the output of the amplifier 24 is also AC. Therefore, when the power supply 91 is alternating current, it is preferable to arrange a rectifier between the amplifier 24 and the display means 26.
- FIG. 17 shows the connection of the leakage detecting device 3bv when the biasing means 145 is provided in the magnetic element 14s. 16 is the same as in FIG. 16 except for the magnetic element 14s. By providing the bias means 145, it is possible to know on which side of the electric wires A93a and B93b the electric leakage has occurred.
- FIG. 18 is a connection diagram of the leakage detection device 3c according to the present embodiment with respect to the circuit 90 to be detected.
- the appearance of the fixing means 17 and the like is the same as in the case of FIG.
- the magnetic element 14s and the measuring resistor 22 are connected in series, and are connected to the power source 91 of the circuit 90 to be detected in parallel with the load 92.
- the electric wire B93b is held after being twisted once with respect to the holding means 11c. This is because the currents I 1 a and I 1 b flow in the same direction at the fixing means 17.
- An amplifier 24 is connected to the element terminals 143s and 144s of the magnetic element 14s.
- a display means 26 is connected to the output of the amplifier 24.
- the leakage detection device 3c When there is no leakage, the magnetic field from the electric wire A93a and the magnetic field from the electric wire B93b applied to the magnetic element 14s cancel each other, and no magnetic field is applied to the magnetic element 14s. That is, it is observed that there is no difference when the power consumption of the load 92 as viewed from the power supply 91 side is measured on the electric wire A 93a side and the electric wire B 93b side.
- the current flowing through one electric wire 93 is less than the current flowing through the other electric wire 93, and an external magnetic field is applied to the magnetic element 14s.
- the magnetic element 14s generates a magnetoresistive effect by this magnetic field, and the voltage between the element terminals 143s and 144s changes. Then, the generated voltage is displayed on the amplifier 24 and the display means 26, so that it is possible to detect that a leakage has occurred.
- the memory and comparison means 40 between the amplifier 24 and the display means 26. This is because the leakage detection device 3c according to the present embodiment observes a change in the resistance value of the magnetic element 14s as a change in voltage.
- the DC component appearing at the output of the amplifier 24 can be extracted as a voltage proportional to the power consumption at the load 92. Therefore, if the low-pass filter 25 is installed at the output end of the amplifier 24, it is possible to detect a leakage even if the power source 91 is a direct current or an alternating current.
- FIG. 19 illustrates a leakage detection device 3cv having a biasing means 145 in the magnetic element 14s.
- the magnetic element 14s is the same as that shown in FIG. 18 except that the bias means 145 is provided. If the biasing means 145 is provided in the magnetic element 14s, it can be understood which of the electric wires A93a and B93b has the electric leakage.
- the method of the bias unit 145 is not limited to the barber pole as shown in FIG.
- FIG. 20 is a connection diagram of a leakage detection device 3d according to the present embodiment.
- the external appearance of the fixing means 17 etc. is the same as FIG.
- the magnetic element 14s connected in series and the measurement resistor 22 are grounded, and the magnetic element 14s and the measurement resistor 22 in a state where no external magnetic field is applied have the same resistance value.
- both ends of the magnetic element 14s and the measurement resistor 22 are set as measurement terminals 23a and 23b. By doing in this way, the voltage between the measurement terminals 23a and 23b can be made zero. Therefore, if there is no leakage, the output of the amplifier 24 is zero. Further, when the output of the amplifier 24 is generated, it can be detected that a leakage has occurred.
- the DC component appearing at the output of the amplifier 24 can be extracted as a voltage proportional to the power consumption at the load 92. Therefore, if the low-pass filter 25 is installed at the output end of the amplifier 24, it is possible to detect a leakage even if the power source 91 is a direct current or an alternating current.
- FIG. 21 illustrates a leakage detecting device 3dv provided with a bias means 145 in the magnetic element 14s. If the magnetic element 14 s is provided with the bias means 145, it can be determined on which side of the electric wire the electric leakage has occurred.
- the method of the bias unit 145 is not limited to the barber pole as shown in FIG.
- FIG. 22 is a connection diagram of the leakage detection device 3e according to this embodiment with respect to the circuit 90 to be detected.
- the appearance of the fixing means 17 and the like is the same as in the case of FIG.
- two magnetic elements 14 having bias means 145 are arranged.
- the electric wires A93a and B93b are held in a straight line at least at portions where the magnetic elements A14a and B14b are arranged in the same direction.
- a barber pole type magnetic element having a center tap 14c and a pair of measuring resistors 22a and 22b are connected to form a bridge circuit 30e.
- a pair of measuring resistors 22 and magnetic elements 14 coupled in series is prepared and connected in parallel. That is, a pair of barber pole type magnetic elements 14 may be prepared and arranged in a straight line.
- the respective biasing means 145 are formed or arranged in opposite directions.
- a current is supplied from the detector power source 21 between the coupling point 22j between the measurement resistors 22a and 22b and the coupling point 14c (center tap portion) between the magnetic elements A14a and B14b.
- the electric wires A93a and B93b are arranged in parallel with each of the pair of magnetic elements A14a and B14b arranged in the same direction. Of course, one electric wire B93b is held after being twisted once when being held by the holding means 11b.
- the connection points of the measurement resistors 22a and 22b and the magnetic element 14 are used as measurement terminals 23a and 23b.
- the amplifier 24 is connected here.
- a display means 26 is connected to the output of the amplifier 24.
- the magnetic element 14 has a bias unit 145, it has a bias unit 145 in the opposite direction to the magnetic field generated by the electric wires A93a and B93b.
- the current flowing through the magnetic film from the center tap 14 c of the magnetic element 14 to the element terminal 143 flows from the center of the magnetic element 14 toward the left side, and the current from the center tap 14 c to the element terminal 144 side is a magnetic element. It flows from the center of 14 toward the right side.
- the magnetic elements 14 each having the bias means 145 in the reverse direction are arranged linearly, so that the change in magnetization of the magnetic film is further amplified and output. Can increase sensitivity.
- the output of the amplifier 24 is also obtained by an alternating current.
- FIG. 23 is a connection diagram of the leakage detection device 3f according to the present embodiment with respect to the circuit 90 to be detected.
- the appearance of the fixing means 17 and the like is the same as in the case of FIG.
- a bridge circuit 30e having a combination of the magnetic element 14 and the measurement resistor 22 having the same configuration as that of the ninth embodiment is connected to the power source 91 of the circuit 90 to be detected in parallel with the load 92. More specifically, the portion 22j where the measurement resistors 22 of the bridge circuit 30e are coupled to each other is connected to one terminal of the power source 91, and the center tap 14c of the magnetic element 14 is connected to the other terminal.
- connection point between the magnetic element 14 and the measurement resistor 22 is the measurement terminals 23a and 23b, and the amplifier 24 is connected as in the ninth embodiment.
- the operation of the leakage detection device 3f of the present embodiment will be described.
- the magnetic field created by the electric wires A93a and B93b cancels out at the position of the magnetic element 14. That is, since there is no imbalance in the resistance value of the magnetic element 14, the output of the bridge circuit 30e is zero. That is, if the output of the amplifier 24 is zero, no leakage has occurred.
- the resistance value changes above and below the center tap 14c of the magnetic element 14, and a voltage difference occurs between the measurement terminals 23a and 23b due to an imbalance of currents flowing between the branches of the bridge circuit 30e.
- the amplifier 24 generates an output voltage. That is, if there is an output from the amplifier 24, it can be said that a leakage has occurred.
- the DC component of the output of the amplifier 24 detects the power consumption due to leakage. Therefore, if a low-pass filter is arranged at the output of the amplifier 24, when the power source 91 is alternating current, the effective power consumption is observed. Of course, when the power supply 91 of the detected circuit 90 is DC, the output of the amplifier 24 is also DC.
- the present invention can be widely used for detecting electric leakage in the fields of home electric products, automobiles, industrial equipment and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Breakers (AREA)
Abstract
リング状の磁性体を使用する漏電検出装置は小型化に限界があり、また電線が太くなった場合は、リング状の磁性体自体が大きくなる。さらに、すでに配置されている電線に対してリング状の磁性体を配置するのは、容易ではない。 電源と負荷を接続する一対の電源ラインに設置する漏電検出装置であって、前記一対の電源ラインのそれぞれを保持する一対の保持手段と、前記一対の保持手段同士を所定の間隔で固定する固定手段と、前記それぞれの保持手段に前記電源ラインと平行に配置された一対の磁性素子と、前記一対の磁性素子同士の磁気抵抗効果の差を検出する検出手段と、前記磁性素子に駆動電流を流す駆動手段とを有することを特徴とする漏電装置を提供する。
Description
本発明は漏電を検出する漏電検出装置に関するものである。
漏電とは、電源から負荷へ連結された電線以外に電流が流れることである。実際には、電源から負荷に流れる電流と、負荷から電源に帰ってくる電流が異なることで検出される。従来の漏電検出装置では、電源から負荷に連通された2本の電線をリング状の磁性体の孔を通し、磁性体のインピーダンスの変化を検出する装置が提案されている(特許文献1)。
図24には、この漏電検出装置100の概要を説明する。漏電検出装置100は、リング状の磁性体101と、磁性体101に貼り付けた磁気インピーダンス素子102と、インピーダンスの変化を検出する検出器103から構成される。リング状の磁性体101は、孔104の部分に電源115から負荷116に向かう一対の電線110、111(電線Aおよび電線Bとする)をともに通過させておく。
磁気インピーダンス素子102は、磁界によって抵抗が変化する磁気抵抗素子を用いる。磁気抵抗素子は、リング状の磁性体101が生成する磁界中に配置される。例えば、リング状の磁性体101の一部を削除し、ギャップを形成し、そのギャップ内に配置するという構成が例示できる。もちろん、これ以外の方法であってもよい。
検出器103は、磁気抵抗素子の抵抗の変化を検出できるものであればよく、抵抗変化を所定の周波数の信号に変換させたり、フィルタ回路および増幅回路によって波形整形を行った後、信号検出回路で出力し主力信号に変換する。
この漏電検出装置100の動作を説明すると、漏電がなければ、電線A110に流れる電流と電線B111に流れる電流は同じ量であり、また方向が逆であるから、リング状の磁性体101中には磁束は発生しない。したがって、この時に磁気インピーダンス素子102の抵抗は変化しない。一方、もし漏電が発生していれば、電線A110に流れる電流値と電線B111に流れる電流値が異なるので、リング状の磁性体101中に磁束が発生する。
この発生した磁束によって磁気インピーダンス素子102のインピーダンスが変化するので、検出器103によって、それが検出され、漏電の発生を検知する。
特許文献1の漏電検出装置は、簡便であり、またある程度の小型化も可能である。しかし、リング状の磁性体を使用するため、必然的にその小型化は制限される。また、電源からの電線Aおよび電線Bをリングの孔に通過させる必要があるので、電線が太くなった場合は、リング状の磁性体101自体が大きくなる。また、すでに配置されている電線に対してリング状の磁性体101を配置するのは、容易ではない。たとえば、クランプ型電流計のように、リング状磁性体の一部を開放できるようにし、開放部分から電線を孔の中に入れ、再びリング状磁性体が磁束の閉路を形成するように戻すといった手間が必要であった。
また、小型化のために回路基板自体が集積化される中で、電源からの電源ラインパターンを2線共同時に磁性体で囲わないとならないので、後からの取付は極めて困難である。
本発明は上記のような課題に鑑み想到されたものであり、すでに配線された回路であっても、後から容易に設置しやすく、また、小型化も可能である漏電検出装置である。より具体的に本発明の漏電検出装置は、
電源と負荷を接続する一対の電源ラインに設置する漏電検出装置であって、
前記一対の電源ラインのそれぞれを保持する一対の保持手段と、
前記一対の保持手段同士を所定の間隔で固定する固定手段と、
前記それぞれの保持手段に前記電源ラインと平行に配置された一対の磁性素子と、
前記一対の磁性素子同士の磁気抵抗効果の差を検出する検出手段と、
前記磁性素子に駆動電流を流す駆動手段と
を有することを特徴とする。
電源と負荷を接続する一対の電源ラインに設置する漏電検出装置であって、
前記一対の電源ラインのそれぞれを保持する一対の保持手段と、
前記一対の保持手段同士を所定の間隔で固定する固定手段と、
前記それぞれの保持手段に前記電源ラインと平行に配置された一対の磁性素子と、
前記一対の磁性素子同士の磁気抵抗効果の差を検出する検出手段と、
前記磁性素子に駆動電流を流す駆動手段と
を有することを特徴とする。
本発明による漏電検出装置は、非接触(原理)、設置が容易(超小型、薄型)、省エネ(計測時のエネルギー消費小)、といった磁気抵抗素子のメリットを生かし、すでに配線されている回路であっても、容易に取り付けが可能である。また、電線Aおよび電線Bに対する磁気抵抗素子の配置位置を固定することで、隣接する電線からの磁界の影響を十分に小さく抑えることができ、安定した漏電検出を行うことができる。また、磁気抵抗素子にバイアス手段を設けることで、電力測定や電流測定も可能となる。
以下本発明に係る漏電検出装置について図を参照しながら説明する。なお、以下の説明は本発明の一実施形態を例示するのであり、以下の実施形態に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施形態は変更することができる。
(実施の形態1)
図1は本実施の形態に係る漏電検出装置1の外観を示した図である。図1(a)には、電線を保持する部分の外観図を示す。また図1(b)には、被検出回路との連結関係を示す構成図を示す。図1(b)を参照して、被検出回路90は、電源91と負荷92と、電源91と負荷92を接続する電源ライン93を含む。電源ライン93は電線A93aと電線B93bからなる。
図1は本実施の形態に係る漏電検出装置1の外観を示した図である。図1(a)には、電線を保持する部分の外観図を示す。また図1(b)には、被検出回路との連結関係を示す構成図を示す。図1(b)を参照して、被検出回路90は、電源91と負荷92と、電源91と負荷92を接続する電源ライン93を含む。電源ライン93は電線A93aと電線B93bからなる。
本発明の漏電検出装置1は、一対の電源ライン93のそれぞれを保持する一対の保持手段11と、保持手段11の間の間隔を固定する固定手段12と、保持手段11に埋設された磁性素子14および磁性素子14の磁気抵抗効果の差を検出する検出手段20を含む。磁性素子14と検出手段20の詳細な接続関係は後述する。
図1(a)は、保持手段11と固定手段12と磁性素子14の部分を示し、検出手段20は省略した。
電源ライン93とは、電源91から負荷92に電力を供給する一対の電線(電線A93a、および電線B93b)である。また電源91は交流若しくは直流のどちらでもよい。また、負荷92は複素要素を持たないインピーダンスでもよいし、複素要素を有するリアクタンス(キャパシタンスおよびインダクタンスを含む)であってもよい。
図1(a)を参照して、保持手段11は、電源ライン93の個々の電線(電線A93a、および電線B93b)を所定長に渡って直線状に固定する。したがって保持手段11も一対(11a、11b)存在する。形状は特に限定されるものではないが、図1では断面の一部が欠けた円筒状の保持部材を示した。この保持手段11は図1(b)のように電源ライン93の一部を所定長さ(L)直線状に固定する。
保持手段11の下部には、板状の嵌入部13が形成される。嵌入部13には、固定される電線(A93a、B93b)と平行に、磁性素子14(A14a、B14b)が配設される。したがって、保持手段11で電線(A93a、B93b)を保持すると、電線(A93a、B93b)の長さ方向に対して平行に磁性素子14が配置されることになる。
固定手段12は、保持手段11同士の間隔を所定長に固定する。1つの例示として、固定手段12は、板状部材12aにレール状の溝12bを形成したものとすることができる。その溝12bに、保持手段11の下面に設けられた嵌入部13を、溝12bに沿って移動可能に嵌合することで、保持手段11間の距離を可変にできる。もちろん、保持手段11間が所望の距離になった際には、溝12bに対して保持手段11を固定できるようにしておく。
これは例えば、ネジなどで嵌入部13と固定手段12を締結してもよい。このように保持手段11の間隔を調整する部分は間隔調整手段と呼ぶ。本実施の形態で、間隔調整手段は、溝12bと嵌入部13、ネジ等で構成されるが、これ以外の方法であってもよい。
ここで、本発明に使用する磁性素子14について簡単に説明する。図2を参照して、磁性素子14は、基板141上に磁性膜142を形成し、その両端に素子端子(電極)143、144が形成されている。形状は短冊状で、素子端子143、144が形成された方向を長手方向と呼ぶ。磁性膜142は好ましくは長手方向に磁化容易軸EAが誘導されているのが好ましい。
この磁性素子14に、検出器電源21から電流I2を流す。電流I2は磁性膜142中を長手方向に流れる。この時、長手方向に直角な方向から磁界Hが印加されると、磁性膜142の電気抵抗が変化する。これを磁気抵抗効果と呼ぶ。磁気抵抗効果は、磁性膜142中を流れる電流I2と磁性膜142中の磁化の方向が変化することで生じると考えられる。
図3(a)には、図2の磁性素子14の平面図を示し、図3(b)には、磁性素子14に印加される外部磁界Hと磁性膜142の抵抗値Rmrの関係を示す。横軸は磁性膜142に印加される外部磁界Hで、縦軸は磁性膜142の抵抗値(Ω)である。磁気抵抗効果は、電流I2と磁化Mの方向がずれることで生じると考えられるので、印加される外部磁界Hに対して、磁性膜の抵抗値は偶関数の特性を有する。
しかし、外部磁界Hがゼロの状態から外部磁界Hを印加すると、外部磁界Hの方向を抵抗値の変化として識別できない。そこで、長手方向に対して直角方向にバイアス磁界MFをかける。このバイアス磁界MFによって動作点が移動し、外部磁界Hの方向によって、抵抗値Rmrが増減する。図3(b)では、動作点の抵抗値Rm0の時に、外部磁界Hが印加され、その結果+ΔRmrの抵抗変化が生じたことを示している。なお、符号MRCは、磁気抵抗効果を示す曲線である。
このバイアス磁界MFは、永久磁石149によって容易に付与することができる。もちろん、電磁石であってもよい。このように磁性素子14に対してバイアス磁界MFを付与するものをバイアス手段145と呼ぶ。このバイアス手段145は直接磁界を発生するものでなくてもよい。
図4には、磁性膜142上に良導電物質で形成した導体148を帯状のストライプ構造に形成したものを示す。ストライプ構造とは、導体148を帯状にし、且つ磁性膜142の長手方向に対して傾斜して形成した構造をいう。このような構造では、導体148間は、帯状の導体148に対して直角方向に電流I2が流れる。そして、磁性膜142には磁化容易軸EAを磁性素子14の長手方向に誘導しておく。すると、外部磁界Hがゼロの状態でも磁化Mと電流I2の方向が異なる。すなわち、磁気抵抗効果に関する限り、バイアス磁界が印加されたと同じ状況を得ることができる。
このような構造の磁性素子14に紙面上から下方向に外部磁界H(白矢印H)が印加されたとする。外部磁界Hがない状態の磁化M(黒色矢印)は電流I2と違う角度を向いていたが、外部磁界Hによって電流I2と同じ方向に回転する。これは図3(b)に示すように抵抗値が変化する。
本明細書では、このように、実際に磁界を発生してなくても、実質的にバイアス磁界が印加されたと同じ効果を示すものをバイアス手段145に含める。図4のような構造の磁性素子14をバーバーポール型と呼ぶ。また、他の例として、磁性膜142の磁化容易軸EAを長手方向から傾けて誘導しておいてもよい。この場合も予め電流が流れる方向(長手方向)と磁化の向きが傾いているからである。
図5には、バーバーポール型の磁性素子14を用いた電力測定器の原理を示す。磁性素子14と計測抵抗22を直列にし、被計測回路99の電源91に連結されている負荷92と並列にこれを連結する。そして、磁性素子14は、電源91と負荷92の間を接続している電線A93aに平行に隣接配置させる。ここで計測抵抗22は、磁性素子14の抵抗値Rmrに対して十分に大きいとしておく。また、電線A93aの抵抗は十分に小さい。
まず、電源91が直流の場合、電線A93a、電線B93bに流れる電流をI1とすると、磁性素子14に印加される外部磁界Hは、比例定数をαとして、(1)式のように表される。
H=αI1・・・・(1)
H=αI1・・・・(1)
図3(b)にも示すように、磁性素子14の電気抵抗の変化ΔRmrは、外部からの印加磁界Hに比例するので、比例定数をβとし、(1)式を考慮すると、(2)式のように表される。
ΔRmr=βH=β(αI1)・・・・(2)
ΔRmr=βH=β(αI1)・・・・(2)
磁性膜142に外部磁界Hが印加されていない時(動作点)の電気抵抗をRm0とすると、外部磁界Hが印加された時の磁性素子14全体の電気抵抗Rmは、(3)式のように表される。
Rm=Rm0+ΔRmr=Rm0+αβI1・・・・(3)
Rm=Rm0+ΔRmr=Rm0+αβI1・・・・(3)
つまり、電流I1が流れる電線A93aに近接配置された磁性膜142は、(3)式のような電気抵抗特性を有する。この磁性素子14の素子端子143、144間に電流I2が流れると、素子端子143、144間の電圧Vmrは(4)式のように表される。
Vmr=RmI2=(Rm0+ΔRm)I2=(Rm0+αβI1)I2・・・・(4)
Vmr=RmI2=(Rm0+ΔRm)I2=(Rm0+αβI1)I2・・・・(4)
次に電源91を直流としているので電圧VinをV1とすれば、(5)式のように表される。そして、電線A93a、電線B93bの抵抗は十分に小さく、また、磁性素子14の電気抵抗Rmも計測抵抗22(値はR2)よりも十分小さいとする。負荷92の抵抗をR1とすると、電線A93aを流れる電流I1と、磁性素子14を流れる電流I2は、それぞれ(6)式、(7)式のようになる。
そこで、磁性素子14の素子端子143、144間の電圧Vmrは(8)式のように表される。なお(8)式の式変形の途中でRm0<<R2の関係を使った。またK1は比例定数である。すなわち、磁性素子14の素子端子143、144間には負荷92で消費される電力I1V1に比例した電圧を得ることができる。
このような関係は、電源91が交流であっても成立する。電源91が交流で、負荷92がリアクタンスの場合について次に説明する。(1)式から(4)式の関係は上記の説明通りである。電源91が交流になるので、電圧Vinは、振幅V1、角周波数ωとすると、(9)式のように表される。また、被計測回路99で負荷92がリアクタンスなので、負荷92を流れる電流I1は、電源91電圧Vinとは位相のズレが生じる。この位相のズレをθとする。一方、磁性素子14は、通常の抵抗なので電源91電圧Vinと同位相である。したがって、電流I1およびI2は、(10)式、(11)式のように表される。
そこで、(4)式に(10)式および(11)式を代入すると(12)式のように変形される。
(12)式を見ると、最終項は、負荷92で消費する有効電力が直流成分として表れているのがわかる。すなわち、素子端子143、144間の出力をローパスフィルタを通過させて得た直流電圧は、負荷92で消費する有効電力に比例した電圧である。以上のように磁性素子14を使って、電源ライン93に流れる電流だけでなく、接続の方法によって電源91に接続している負荷92での消費電力も計測することができる。
さて、以上の準備の下で、図1の漏電検出装置1の説明を続ける。図6には、電源ライン93の電線A93a、B93bに沿って磁性素子14を配置した際の断面の模式図を示す。左側を電線A93aとし、右側を電線B93bとする。電線A93aに配置した磁性素子14を磁性素子A14aとし、電線B93bに配置した磁性素子14を磁性素子B14bとする。電源ライン93は、電源91と負荷92(共に図1参照)をつなぐ電線であるので、電流は必ず左右で逆方向である。そこで、左側の電線A93aは紙面に向かって裏から表に電流が流れることとし、右側の電線B93bは手前から紙面の裏側に電流が流れるとする。
この時、電線の周囲には、磁界が発生する。電線A93aの磁界は、紙面に向かって左回り(点線)であり、電線B93bの磁界は紙面に向かって右回り(二点鎖線)である。すると、磁性素子A14aには、紙面に向かって左から右へ磁界Haが印加され、磁性素子B14bには、紙面に向かって右から左へ磁界Hbが印加される。これは、磁性素子14の磁性膜142の面内方向であって、磁性素子14の長手方向に直角な方向に、磁性膜142の外部から磁界が印加されることを意味する。
なお、ここで、2つの磁性素子A14a、B14bは、同じ磁界が印加された際には、同じ磁気抵抗効果を有するように、作製しておくものとする。同じ磁気抵抗効果を有する磁性素子14は、磁性膜142の厚さ、長さ、幅といった寸法と、磁性膜142の組成、および製造条件を一致させることで、作製することができる。
また、この時磁性素子14に印加される磁界の強さは電線A93a、B93bから磁性素子A14a、B14bまでの距離の2乗に反比例する。したがって、電線A93a、B93bからの距離が等しい位置に配置し、漏電が発生していなければ、2つの磁性素子A14a、B14bは、同じ抵抗値を示す。両電線A93a、B93bに流れる電流は同じであるからである。
一方、電源91と負荷92とで形成される回路(被検出回路90)において、漏電が発生している場合は、電源91から負荷92に向かう電線A93aと負荷92から電源91に戻ってくる電線B93bに流れる電流が異なる。具体的には図6で、電線A93aに流れる電流と電線B93bに流れる電流とが同じにならないため、磁性素子A14aの抵抗値と磁性素子B14bの抵抗値は異なることとなる。
したがって、漏電検出装置として、磁性素子A14aの抵抗値と磁性素子B14bの抵抗値の差分を出力するように回路を構成しておけば、磁性素子A14aおよびB14bの抵抗値の差分がゼロであれば、漏電は発生しておらず、所定の値以上の差分値を検出した際は、漏電が発生していると判断することができる。
なお、磁性素子A14aと磁性素子B14bの配置は、それぞれが隣接配置される電線A93aと電線B93bからの距離が等しければ限定はされない。図6では、磁性素子A14aと磁性素子B14bは同一平面内に位置するように配置されている。
図7には、本実施の形態に係る漏電検出装置1を電源91および負荷92で構成する被検出回路90に設置した結線図を示す。電源91は交流若しくは直流のどちらでもよい。また負荷92も複素要素を持たないインピーダンス若しくは複素要素を有するリアクタンスのどちらでもよい。電源91からの電源ライン93は2本あり、電線A93aおよび電線B93bとする。これらの電線A93a、B93bは、一部を図1の保持手段11で保持される。
保持位置は、できるだけ電源91に近い部分で保持するのが望ましい。電源91が交流の場合は、電線A93a、B93bのどの位置でも漏電を検出することができるが、直流の場合は、検出位置よりも電源91に近い部分で漏電が発生していた場合は、検出できないおそれがあるからである。
図7では、保持手段11で保持した部分を点線で囲んで示した。この部分では、電線A93aおよび磁性素子A14aが隣接し、電線B93bと磁性素子B14bが隣接している。磁性素子A14aおよびB14bの一方の素子端子143a、143b同士は連結されている。また、磁性素子A14aの他方の素子端子144aには計測抵抗A22aの一方端が直列に接続され、磁性素子B14bの他方の素子端子144bには計測抵抗B22bの一方端が直列に接続されている。
計測抵抗A22aおよびB22bの他端はともに接続される。また、磁性素子A14aおよびB14bは、検出器電源21の一方の電極に接続され、計測抵抗A22a、B22bの他端は、検出器電源21の他方の電極に接続される。したがって、磁性素子A14a、計測抵抗A22aと磁性素子B14b、計測抵抗B22bは、それぞれ直列に接続され、枝を形成している。またこれら2本の枝を並列に接続することによって、ブリッジ回路30が形成されている。
検出器電源21は、磁性素子A14aおよびB14bに駆動電流を流す電源であり、駆動手段である。図7では、検出器電源21と被検出回路90の電源91はそれぞれ別回路として構成されている。これをそれぞれの電源は独立しているという。
磁性素子A14aおよび計測抵抗A22aの接続点と、磁性素子B14bおよび計測抵抗B22bの接続点を計測端子23(23a、23b)とする。計測端子23には、アンプ24の入力が接続され、計測端子23間の電圧を増幅する。アンプ24の出力には、表示手段26が接続される。表示手段26は、アンプ24の出力を表示できれば、特に限定されるものではない。たとえば、アンプ24の出力をそのまま表示してもよいし、予め想定されるノイズのレベルは切り捨てるように、閾値を設け、閾値よりアンプ24の出力が高い場合は、漏電有に相当する表示を行うようにしてもよい。
なお、検出手段20は、駆動手段である検出器電源21、計測抵抗22a、22b、アンプ24、表示手段26を含んで構成される。また、後述するように駆動手段を被検出回路90の電源91と共用する場合は、検出手段中には駆動手段は含まれない。
次にこの漏電検出装置1の動作について説明する。電源91と負荷92で構成される被検出回路90において、漏電が無い場合は、電線A93aおよび電線B93bに流れる電流は同じである。この時、磁性素子A14aおよび磁性素子B14bの磁気抵抗効果による抵抗値は同じである。したがって、磁性素子A14a、計測抵抗A22a、磁性素子B14b、計測抵抗B22bで形成されるブリッジ回路30における計測端子23a、23b間の電圧は等しい。したがって、アンプ24の出力はゼロである。
一方、電源91および負荷92で構成される被検出回路90に漏電があると、電線A93aおよび電線B93bに流れる電流が同じでなくなる。すると、磁性素子A14aと磁性素子B14bの電気抵抗値は異なる値となる。つまり、計測端子23a、23b間には磁性素子A14aおよび磁性素子B14bの電気抵抗値の差に応じた電圧差が生じる。これはアンプ24によって増幅され、表示手段26に表示される。
なお、漏電が発生した場合に、電源91が直流の場合は、アンプ24の出力は直流であり、電源91が交流の場合は、アンプ24の出力も交流となる。したがって、電源91が交流の場合は、アンプ24と表示手段26の間に整流器(図示せず)を配置してもよい。
本実施の形態に係る漏電検出装置1では、検出器電源21は被検出回路90とは独立している。したがって、すでに完成している被検出回路90の電線A93a、電線B93bを保持手段11で固定するだけで、漏電検出装置1を設置することができる。また、計測端子23a、23b間の差分をアンプ24で増幅しているので、検出器電源21の電圧が降圧してしまっても、漏電の検出ができなくなるということはない。ただし、アンプ24への供給電力が低下することにより、アンプ24の出力電圧が低下することはある。
なお、本実施の形態に係る漏電検出装置1では、磁性素子A14aおよびB14bは特にバイアス手段145を持たなくてもよい。ブリッジ回路30の計測端子23a、23b間の電圧を見ることで、磁性素子A14aおよびB14bの磁気抵抗効果に差がありさえすればよいからである。もちろん、磁性素子A14aおよびB14bは、バイアス手段145を有する磁性素子14で構成してもよい。本実施の形態に係る漏電検出装置1は、電線A93aと電線B93bに流れる電流の差を検出しているといってもよい。
(実施の形態2)
図8に本実施の形態に係る漏電検出装置1bを被検出回路90に設置した場合の結線図を示す。電線A93a、B93bに対する保持は図1の場合と同じである。本実施の形態ではブリッジ回路30への電源、すなわち検出器電源を、被検出回路90の電源91から得る。
図8に本実施の形態に係る漏電検出装置1bを被検出回路90に設置した場合の結線図を示す。電線A93a、B93bに対する保持は図1の場合と同じである。本実施の形態ではブリッジ回路30への電源、すなわち検出器電源を、被検出回路90の電源91から得る。
実施の形態1と同じように、磁性素子A14a、計測抵抗A22a、磁性素子B14b、計測抵抗B22bによってブリッジ回路30が形成されている。このブリッジ回路30への電流供給は、一方を電線A93aから他方を電線B93bへ接続した経路によって供給される。つまり、駆動手段は被検出回路90の電源91としていることになる。このような構成は検出器電源は被検出回路90に寄生しているという。
本実施の形態に係る漏電検出装置1bでは、磁性素子A14aと計測抵抗A22aは、被検出回路90の電源91に対して、負荷92と並列に連結されている。すなわち、磁性素子A14aの素子端子143a、144a間電圧は、負荷92で消費される電力に比例する出力が得られている。また、磁性素子B14bと計測抵抗B22bについても同じく被検出回路90の電源91に対して負荷92と並列に接続されている。したがって、磁性素子B14bの両端電圧も、負荷92の消費電力に比例する出力が得られている。つまり、計測端子23a、23b間で見ているのは、負荷92の消費電力を電線A93aと電線B93bとで計測した時の、それぞれの測定値の差である。
被検出回路90に漏電がない場合は、電源91から見た負荷92の消費電力は、電線A93aで計測した場合と電線B93bで計測した場合で同じである。しかし、被検出回路90に漏電があれば、電線A93aで計測した場合と電線B93bで計測した場合の負荷92での消費電力が異なり、計測端子23a、23b間の電圧差はゼロでなくなる。したがって、計測端子23a、23b間で電圧差が生じ、アンプ24からは計測端子23a、23b間電圧に比例した出力電圧が得られる。
結果、表示手段26によって漏電が生じていることが確認できる。このように本実施の形態における漏電検出装置1bは、負荷92での消費電力を検出している。なお、漏電検出装置1bは、駆動手段を被検出回路90の電源91から得ているので、予め被検出回路90に組み込まれるのが望ましい。
また、漏電を検出した場合は、電源91が直流の場合は、アンプ24の出力は直流となり、電源91が交流の場合は、アンプ24の出力は交流となる。ただし、電源91が交流の場合は、アンプ24の出力の内、直流成分だけを監視すればよい。したがって、電源91が交流の場合は、アンプ24と表示手段26の間にローパスフィルタ25を配置させれば、表示手段26は直流の出力を受けることができる。
(実施の形態3)
図9に本実施の形態に係る漏電検出装置1cを被検出回路90に設置した場合の結線図を示す。電源ライン93の保持および固定については、図1と同じである。また、被検出回路90への設置方法は、実施の形態2の場合と同じである。すなわち、ブリッジ回路30への駆動手段は、被検出回路90の電源91から得ている。
図9に本実施の形態に係る漏電検出装置1cを被検出回路90に設置した場合の結線図を示す。電源ライン93の保持および固定については、図1と同じである。また、被検出回路90への設置方法は、実施の形態2の場合と同じである。すなわち、ブリッジ回路30への駆動手段は、被検出回路90の電源91から得ている。
本実施の形態と実施の形態2との相違点は、磁性素子14にバーバーポールタイプを使用している点と、一方の磁性素子A14aの素子端子143a、144a間の電圧を出力する電力検出アンプ32が設けられている点と、他方の磁性素子B14bの一方の素子端子143bは、被検出回路90との接続若しくは、素子端子143bを独立させ、被検出回路90の電源91とは別に定電流電源35から電流が流される回路33との接続を切り替えるスイッチ36を有する点である。この回路33には、定電流電源35に並列に電流検出アンプ34が接続される。
磁性素子14にバーバーポールタイプを使用するのは、バーバーポールタイプが内包している構造的なバイアス手段145を利用して、漏電検出装置でありながら、少なくとも一方の磁性素子14を利用して電流センサおよび電力センサをも兼用するためである。したがって、バーバーポール以外のバイアス手段145を用いてもよい。
まず、漏電検出装置として利用する場合は、2つの磁性素子A14a、B14bの一方端143a、143bが被検出回路90へ接続されるようにスイッチ36を切り替える。漏電がない場合は、ブリッジ回路30の計測端子23a、23b間の電圧差がゼロになり、漏電があった場合は、計測端子23a、23b間に所定の圧力が発生する。この点は実施の形態2と同じである。
ここで、それぞれの磁性素子A14a、B14bのバイアス手段145は、それぞれ対向する方向に付与される。すなわち、互いの導体のパターンは異なる傾斜方向に配置されている。具体的には、図1の保持手段11a、11b同士の真ん中11cに向かう、若しくは保持手段11a、11b同士の真ん中から両外側に向かうようなバイアス磁界が付与されるように設けられる。図9のバーバーポールタイプでは、磁性素子A14a、B14bのバイアス手段145であるストライプ構造をした導体148は、互いの真ん中11cに向かって傾斜するように形成されている。電線A93aおよびB93bは、電流I1a、I1bの流れる方向が逆になるため、逆向きの電流が流れた時に同じ磁気抵抗効果を発揮するためである。
同じ磁気抵抗効果とは、磁性素子A14a、B14bが磁気抵抗効果を示す曲線MRC(図3(b)参照)上を動作点からそれぞれ同じ方向に変化することをいう。図9では、電流I1a、I1bによる磁界によって、磁性素子A14a、B14bともに、磁化が磁性膜に流れる電流方向から離れる方向に変化する。
このように設定すると、同じ値の電流I1a、I1bによって磁性素子A14a、B14bの抵抗値はともに動作点での抵抗値から低下する。しかも、磁性素子A14a、B14bが同じ磁気抵抗効果を示す曲線MRCを有するように作製されていれば、ともに同じ抵抗値となる。したがって、漏電がない場合は、ブリッジ回路30の計測端子23a、23b間には電圧が発生しない。
一方、漏電が発生した場合は、いずれかの磁性素子14の抵抗値が変化するので、ブリッジ回路30の計測端子23a、23bには、磁性素子A14a、B14bの抵抗値の差に応じた電圧が発生する。この電圧をアンプ24で増幅し、表示手段26に表示することで漏電の発生を検出することができる。
本実施の形態に係る漏電検出装置1cは、上記のように漏電を検出するだけでなく、電力センサおよび電流センサとしても利用できる。具体的には、磁性素子A14aの素子端子143a、144a間の電圧を計測することで、被検出回路90の負荷92で消費される電力に比例した電圧を電力検出アンプ32から得ることができる。なお、被検出回路90に流れる電流が交流の場合は、電力検出アンプ32の出力は、その直流成分が負荷で消費される有効電力に比例した電圧出力を得ることができる。直流成分を取り出すためには、例えばアンプ24の出力にローパスフィルタ25を接続すればよい。
また、磁性素子B14bの一方の端子143bをスイッチ36を切り替えることで、外部の回路33に接続し、磁性素子B14bに被検出回路90とは別の定電流電源35から電流を流し、素子端子143b、144b間の電圧を計測することで、被検出回路90に流れる電流に比例した電圧を検出することができる。被検出回路90の電源91が交流の場合は、電流検出アンプ34の出力も交流となる。
このように、本実施の形態に係る漏電検出装置1cは、一対の磁性素子A14a、B14bの一方を利用することで、電流センサおよび電力センサをも兼用することができる。
(実施の形態4)
図10(a)に本実施の形態に係る漏電検出装置2aの保持手段11、嵌入部13、固定手段16の部分の斜視図を示す。図10(a)の保持手段11、嵌入部13および固定手段16は、図1に示した保持手段11、嵌入部13、固定手段12と類似している。しかし、固定手段16が固定手段の所定位置16cから両端に向かって所定の角度を有する傾斜面16a1、16a2を有している。つまり、傾斜面16a1と傾斜面16a2は角度16θで突き合わされているといえる。
図10(a)に本実施の形態に係る漏電検出装置2aの保持手段11、嵌入部13、固定手段16の部分の斜視図を示す。図10(a)の保持手段11、嵌入部13および固定手段16は、図1に示した保持手段11、嵌入部13、固定手段12と類似している。しかし、固定手段16が固定手段の所定位置16cから両端に向かって所定の角度を有する傾斜面16a1、16a2を有している。つまり、傾斜面16a1と傾斜面16a2は角度16θで突き合わされているといえる。
図11には、電源ライン93の断面図を示す。電線A93aおよびB93bから発生した磁界によって、磁性素子A14a、B14bが磁界を受け、磁気抵抗効果により電気抵抗が変化するというのは、すでに図6で説明したとおりである。ここで、それぞれの電線A93a、B93bからより離れた磁界を見ると、電線A93aからの磁界(点線)は電線B93bに配置された磁性素子B14bに対しても影響を及ぼす。同様に、電線B93bからの磁界(二点鎖線)は電線A93aに配置された磁性素子A14aに対しても影響を及ぼす。
これらの磁界は、それぞれの磁性素子A14a、B14bが電線A93a、B93bから受ける磁界を減少させる方向に働く。これは磁性素子A14a、B14bによる漏電の検出感度を低下させることにつながる。
図12には、図10で示したように、磁性素子A14a、B14b同士に所定の傾斜を設けた場合の断面図を示す。磁性素子A14a、B14bをそれぞれ所定角度だけ傾けて電線A93a、B93bに配設すると、両電線A93a、B93bからの磁性素子A14a、B14bに対する磁界の影響は、磁性素子A14a、B14bの磁性膜に対して垂直な成分だけが、印加される状況を創出することができる。より具体的には、磁性素子A14aは、電線B93bの中心から電線A93aへの接線に沿って配置され、磁性素子B14bは、電線A93aの中心から電線B93bへの接線に沿って配置される。
このような配置では、隣接する電線からの磁界は、磁性素子A14a、B14bの磁性膜に対して垂直方向にだけ作用することになる。磁性素子14中の磁性膜は磁性素子の幅と比較して非常に薄いため、磁性膜に垂直な方向への磁界は、磁気抵抗効果の発動に対する影響は非常に少ない。したがって、磁性素子A14a、B14bは、隣接する電線B93b、A93aからの影響を大きく受けることなく自らが隣接配設された電線A93a、B93bからの磁界だけで磁気抵抗効果を発揮する。
したがって、誤差が少なく、動作も安定するという効果を得ることができる。なお、それぞれの磁性素子A14a、B14b間の角度14θは、図12の線図より(13)式によって表される。したがって、それぞれの磁性素子A14aおよびB14bのなす角度が(13)式によって得られる角度14θ若しくはこの角度14θの近傍であればよい。なお、aは電線B93b、A93a間の距離であり、rは電線の半径である。
図10(a)を再び参照して、固定手段16の傾斜面16a1、16a2同士が突き合わされている所定角度16θは、図12で示した所定の角度14θ分、若しくはそれを修正した角度分だけ傾斜して突き合わされている。また、傾斜面16a1と16a2は、保持手段11の中間16cに向かって所定角度だけ傾斜しているとも言える。
図10(b)には、図10(a)に示した保持手段11、嵌合部13、固定手段16に被検出回路90の電線A93a、B93bを保持した様子を示す。固定手段16が傾斜面16a1、16a2を有している点を除けば、図1の場合と同じである。したがって、上記の実施例1乃至3に記載された固定手段12の代わりに、図10(a)の固定手段16を使用することができる。なお、固定手段16には、図1の固定手段12同様溝16bが形成されており、嵌入部13がこの溝16bに移動可能に嵌入されている点は図1の場合と同様である。
より具体的には、図10(a)の固定手段16を図10(b)のように結線したものは、漏電検出装置2aである。これは実施の形態1に対応する。また図10(a)の固定手段16を図8のように結線したものは、漏電検出装置2bである。これは実施の形態2に対応する。また図10(a)の固定手段16を図9のように結線したものは、漏電検出装置2cである。これは実施の形態3に対応する。
(実施の形態5)
図13に本実施の形態に係る漏電検出装置3の保持手段11等を示す。本実施の形態に係る保持手段11は、磁性素子14を1か所にしか配置しない。複数の磁性素子14を用いても、それらは直線状に配置される。保持手段11および固定手段17は一体となっている。図13(a)では、保持手段11aと保持手段11bの間隔は固定されている。しかし、可変できるようにしてもよい。磁性素子14は、それぞれの保持手段11a、11bの中間に保持される。保持される方向は、互いの保持手段11a、11bに保持される電線A93a、B93bからの磁界が磁性素子14の面内に作用するような方向で固定される。なお、この固定手段17に用いられる磁性素子14を符号14sとする。
図13に本実施の形態に係る漏電検出装置3の保持手段11等を示す。本実施の形態に係る保持手段11は、磁性素子14を1か所にしか配置しない。複数の磁性素子14を用いても、それらは直線状に配置される。保持手段11および固定手段17は一体となっている。図13(a)では、保持手段11aと保持手段11bの間隔は固定されている。しかし、可変できるようにしてもよい。磁性素子14は、それぞれの保持手段11a、11bの中間に保持される。保持される方向は、互いの保持手段11a、11bに保持される電線A93a、B93bからの磁界が磁性素子14の面内に作用するような方向で固定される。なお、この固定手段17に用いられる磁性素子14を符号14sとする。
図13(b)には、本実施の形態に係る漏電検出装置3aの場合の結線図を示す。漏電検出装置3aでは、電線A93a若しくは電線B93bのどちらかを、一度ひねってから保持手段11で保持する。すなわち、一対の保持手段11a、11bで保持される電線A93a、B93bは固定手段17の地点では同一方向に電流I1a、I1bが流れるようにする。保持手段11で保持する前に、電線B93bにループを作っておくと言ってもよい。このようにすることで、漏電がなく、電線A93a、B93bに同じ量の電流が流れている場合は、磁性素子14sの位置では磁界はゼロとなる。それぞれの電線A93a、B93bの作る磁界が打ち消し合うからである。
もし、固定手段17の地点で電線A93aと電線B93bに流れる電流が逆方向になっていると、磁性素子14sの位置では、それぞれの電線A93a、B93bを流れる電流によって発生する磁界の和が磁性素子14sに印加される。このような場合は、互いの電線A93a、B93bに流れる電流が共に増減したのか、それともいずれかの電線A93a、B93bに流れる電流だけが増減したのかを区別することができない。図13(b)のように、固定手段17の地点で、電流I1aとI1bが同一方向に流れるようにしておけば、両電線A93a、B93bを流れる電流に違いがあった場合だけ検出することができる。
図14は、図13(b)の結線図である。図13の固定手段17と図14の結線を用いた漏電検出装置を漏電検出装置3aとする。漏電検出装置3aは、検出器電源21と、磁性素子14sと、計測抵抗22と、計測端子23a、23bとアンプ24と表示手段26を含む。保持手段17で電線A93a、B93bが保持されている様子は、点線で囲んだ部分である。
漏電検出装置3aは、駆動手段である検出器電源21と磁性素子14sと磁性素子14sに直列に接続された計測抵抗22によって回路が形成される。検出器電源21は被検出回路90の電源91とは独立している。したがって、すでに存在する被検出回路90に後から設置しやすい。また、検出器電源90と計測抵抗22は、磁性素子14sに所定の一定電流を流すのが目的であるので、これらの代わりに定電流電源を用いてもよい。磁性素子14sの素子端子143s、144s間にはアンプ24と表示手段26が接続されている。したがって、漏電検出装置3aでは、素子端子143s、144sと計測端子23a、23bは同電位点である。
本実施の形態に係る漏電検出装置3aの動作を説明する。被検出回路90には電源91と負荷92が電源ライン93(電線A93a、電線B93b)によって接続されている。それぞれの電線A93a、B93bを流れる電流I1a、I1bは固定手段17の地点では同一方向に流れる。負荷92から電源91に返る電線B93bは、途中で一度ひねってあるためである。
保持手段11aと11bの真ん中に配置された磁性素子14sは、それぞれの電線A93a、B93bからの磁界を受けるが、これらの磁界は打ち消し合う。したがって、漏電が発生していなければ、磁性素子14sの素子端子143s、144s間では電圧は生じない。一方、漏電が発生していた場合は、電線A93aと電線B93bに流れる電流が異なるため、磁性素子14sの位置には、外部磁界が印加されることとなる。
すなわち、磁性素子14sは磁気抵抗効果によって抵抗値が変化する。磁性素子14sには検出器電源21によって所定の電流が流されているので、磁性素子14sの素子端子143s、144s間には電圧が生じる。この電圧をアンプ24で増幅し、表示手段26で表示させることで漏電が発生したことを知ることができる。
なお、図14の漏電検出装置3aでは、漏電した際には、漏電していない時の磁性素子14sの抵抗値からの変化を検出する必要がある。したがって、漏電していない時のアンプ24の出力を記録しておき、その値とアンプ24の出力を逐次比較する必要がある。したがって、アンプ24の出力にはメモリおよび比較手段40を配置するのが望ましい。
メモリおよび比較手段40は、漏電がない場合のアンプ24の出力を初期値として記録し、検知が開始された後はアンプ24の出力を初期値と比較し、変化があった場合に表示手段26に信号を送る機能をすれば、構成は特に限定されるものではない。
また、電源91が直流であれば、アンプ24の出力は直流であり、電源91が交流であればアンプ24の出力も交流になる。この漏電検出装置3aでは、被検出回路90に流れる電流の値を磁性素子14sで検知しているので、電源91が交流の場合は、アンプ24の出力の振幅が検知したい電流の変化に相当する。そのため、電源91が交流の場合は、アンプ24とメモリおよび比較手段40の間に整流器(図示せず)を挿入し、直流で信号を取り扱えるようにしておくのが好適である。
なお、磁性素子14sがバイアス手段145を有している場合は、アンプ24での電圧変化の方向(正負の方向)によって、どちらの電線A93a、B93bから漏電が発生しているかもわかる。バイアス手段145をバーバーポール型とした場合の漏電検出装置3avの結線図を図15に示す。磁性素子14sがバーバーポール型である点以外は図14の漏電検出装置3aと同じである。
(実施の形態6)
図16に本実施の形態に係る漏電検出装置3bの、被検出回路90に対する結線図を示す。固定手段17等の外観は図13の場合と同じである。本実施の形態と実施の形態5との相違点は、磁性素子14sの他端144s(計測抵抗22の一方端との接続側)が接地されている点と、計測端子23が磁性素子14sの一方端143sと、計測抵抗22の他端の間に設定されている点にある。
図16に本実施の形態に係る漏電検出装置3bの、被検出回路90に対する結線図を示す。固定手段17等の外観は図13の場合と同じである。本実施の形態と実施の形態5との相違点は、磁性素子14sの他端144s(計測抵抗22の一方端との接続側)が接地されている点と、計測端子23が磁性素子14sの一方端143sと、計測抵抗22の他端の間に設定されている点にある。
また、計測抵抗22は、磁性素子14sの抵抗値と一致するように校正しておく。このように、磁性素子14sと計測抵抗22を同じ抵抗値にしておき、接続点を接地すると、磁性素子14sと計測抵抗22の両端の出力は、漏電がない場合にゼロにすることができる。したがって、アンプ24の出力に所定の電圧が発生すれば、漏電が生じたことを検知することができる。
なお、電源91が直流の場合は、アンプ24の出力は直流であり、電源91が交流の場合は、アンプ24の出力も交流となる。したがって、電源91が交流の場合は、整流器をアンプ24と表示手段26の間に配設するのが好ましい。
図17には、磁性素子14sにバイアス手段145を設けた場合の漏電検出装置3bvの結線を示す。図16の場合と磁性素子14s以外は同じである。バイアス手段145を設けたことで、電線A93a、B93bのどちら側で漏電が発生したかを知ることができる。
(実施の形態7)
図18に本実施の形態に係る漏電検出装置3cの、被検出回路90に対する結線図を示す。固定手段17等の外観は図13の場合と同じである。磁性素子14sと計測抵抗22は直列に接続され、被検出回路90の電源91に、負荷92と並列に連結される。電線B93bは、保持手段11cに対して1回ひねってから保持される。固定手段17の地点で電流I1aとI1bが同じ方向に流すためである。磁性素子14sの素子端子143s、144sにはアンプ24が接続されている。アンプ24の出力には表示手段26が接続されている。
図18に本実施の形態に係る漏電検出装置3cの、被検出回路90に対する結線図を示す。固定手段17等の外観は図13の場合と同じである。磁性素子14sと計測抵抗22は直列に接続され、被検出回路90の電源91に、負荷92と並列に連結される。電線B93bは、保持手段11cに対して1回ひねってから保持される。固定手段17の地点で電流I1aとI1bが同じ方向に流すためである。磁性素子14sの素子端子143s、144sにはアンプ24が接続されている。アンプ24の出力には表示手段26が接続されている。
本実施の形態に係る漏電検出装置3cの動作について説明する。漏電が発生していない場合は、磁性素子14sに印加される電線A93aからの磁界と電線B93bからの磁界は打ち消し合い、磁性素子14sには磁界は印加されない。つまり、電源91側から見た、負荷92の消費電力を電線A93a側と電線B93b側で測定した場合に差はないと観測される。
一方、漏電が発生すると、一方の電線93に流れる電流が、他方の電線93に流れる電流より少なく、磁性素子14sに外部磁界が印加されることになる。この磁界によって磁性素子14sは磁気抵抗効果を発生し、素子端子143s、144s間の電圧は変化する。するとこの発生した電圧をアンプ24および表示手段26で表示することで、漏電が発生したことを検出することができる。
なお、実施の形態5で説明した図14の場合同様、メモリおよび比較手段40をアンプ24と表示手段26の間に配設するのが好ましい。本実施の形態に係る漏電検出装置3cは、磁性素子14sの抵抗値の変化を電圧の変化として観測するからである。
なお、被検出回路90の電源91が交流の場合は、アンプ24の出力に現れる直流成分が、負荷92での消費電力に比例する電圧として取り出せる。したがって、アンプ24の出力端にローパスフィルタ25を設置しておけば、電源91が直流であっても交流であっても漏電を検出することができる。
図19には、磁性素子14sにバイアス手段145を備えた漏電検出装置3cvについて説明する。磁性素子14sにバイアス手段145が設けられている以外は、図18の場合と同様である。磁性素子14sにバイアス手段145を設ければ、どちらの電線A93a、B93b側で漏電が発生しているかがわかる。なお、バイアス手段145の方法は、図19のようなバーバーポールに限定されない。
(実施の形態8)
図20には、本実施の形態に係る漏電検出装置3dの結線図を示す。固定手段17等の外観は図13と同じである。漏電検出装置3dでは、直列に接続した磁性素子14sと計測抵抗22の間を接地し、外部磁界が印加されていない状態の磁性素子14sと計測抵抗22を同じ抵抗値とする。また、磁性素子14sと計測抵抗22の両端を計測端子23a、23bとする。このようにすることによって、計測端子23a、23b間の電圧をゼロとすることができる。したがって、漏電がなければ、アンプ24の出力はゼロである。また、アンプ24の出力が発生したら、漏電が発生したことを検知することができる。
図20には、本実施の形態に係る漏電検出装置3dの結線図を示す。固定手段17等の外観は図13と同じである。漏電検出装置3dでは、直列に接続した磁性素子14sと計測抵抗22の間を接地し、外部磁界が印加されていない状態の磁性素子14sと計測抵抗22を同じ抵抗値とする。また、磁性素子14sと計測抵抗22の両端を計測端子23a、23bとする。このようにすることによって、計測端子23a、23b間の電圧をゼロとすることができる。したがって、漏電がなければ、アンプ24の出力はゼロである。また、アンプ24の出力が発生したら、漏電が発生したことを検知することができる。
なお、被検出回路90の電源91が交流の場合は、アンプ24の出力に現れる直流成分が、負荷92での消費電力に比例する電圧として取り出せる。したがって、アンプ24の出力端にローパスフィルタ25を設置しておけば、電源91が直流であっても交流であっても漏電を検出することができる。
また、図21には、磁性素子14sにバイアス手段145を備えた漏電検出装置3dvについて説明する。磁性素子14sにバイアス手段145を設ければ、どちらの電線側で漏電が発生しているかがわかる。なお、バイアス手段145の方法は、図21のようなバーバーポールに限定されない。
(実施の形態9)
図22に本実施の形態に係る漏電検出装置3eの、被検出回路90に対する結線図を示す。固定手段17等の外観は図10の場合と同じである。磁性素子14sは、バイアス手段145を有する磁性素子14が2つ配置されている。そして、電線A93aおよびB93bは少なくとも、それぞれの磁性素子A14a、B14bが同方向に配置されている部分については、直線状に保持される。
図22に本実施の形態に係る漏電検出装置3eの、被検出回路90に対する結線図を示す。固定手段17等の外観は図10の場合と同じである。磁性素子14sは、バイアス手段145を有する磁性素子14が2つ配置されている。そして、電線A93aおよびB93bは少なくとも、それぞれの磁性素子A14a、B14bが同方向に配置されている部分については、直線状に保持される。
図22では、センタータップ14cを有するバーバーポール型の磁性素子と、一対の計測抵抗22a、22bが、ブリッジ回路30eを形成するように接続されている。これは、計測抵抗22と磁性素子14が直列結合したものを一対用意し、それぞれを並列に接続したものである。すなわち、バーバーポール型の磁性素子14を一対用意し、それぞれを直線状に配置してもよい。なお、この際それぞれのバイアス手段145は、逆向きに形成若しくは配置されている。計測抵抗22a、22b同士の結合点22jと磁性素子A14a、B14b同士の結合点14c(センタータップ部)との間に検出器電源21から電流が供給される。
電線A93aおよびB93bは、同じ方向に配置させた一対の磁性素子A14a、B14bのそれぞれに平行に配置される。もちろん、一方の電線B93bは、保持手段11bに保持される際に1回ひねってから保持される。また、ブリッジ回路30eにおいて、計測抵抗22a、22bと磁性素子14の結合点同士を計測端子23a、23bとする。ここにアンプ24が接続される。アンプ24の出力には表示手段26が連結される。
本実施の形態に係る漏電検出装置3eの動作について説明する。磁性素子14は、バイアス手段145を有するものの、電線A93a、B93bが発生する磁界に対しては、それぞれ逆方向のバイアス手段145を有する。例えば、図22では、磁性素子14のセンタータップ14cより素子端子143側は磁性膜に流れる電流が磁性素子14の中央から左側に向かって流れ、センタータップ14cより素子端子144側は電流が磁性素子14の中央から右側に向かって流れている。
漏電が発生していない場合は、電線A93aおよびB93bから発生する磁界は、磁性素子14の位置で打ち消し合うため、ブリッジ回路30eからの出力はゼロである。すなわち、アンプ24からの出力がゼロであれば、漏電は発生していない。
一方、漏電が発生すると、電線A93aおよびB93bに流れる電流量が異なるので、磁性素子14の位置で磁界が生じる。この磁界は磁性素子14の磁化を一方向に傾けるが、センタータップ14cの上下で電流の流れる方向が異なるため、一方では、磁性膜の磁化と電流方向が近くなり、他方では磁性膜の磁化と電流方向が離れる。すなわち、センタータップ14cの上下で逆の磁気抵抗効果が生じ、一方では抵抗値があがり、他方では抵抗値が下がる。したがって、ブリッジ回路30eには、それぞれのパスに流れる電流の不均衡によって電位差が生じ、それをアンプで取り出すことができる。
以上のように本実施の形態に係る漏電検出装置3eでは、それぞれ逆方向のバイアス手段145を有する磁性素子14を一対直線的に配置するので、磁性膜の磁化の変化をさらに増幅して出力することができ、感度が上がる。
なお、本実施の形態の漏電検出装置3eでは、被検出回路90の電源91が交流である場合は、アンプ24の出力も交流で得られる。
(実施の形態10)
図23に本実施の形態に係る漏電検出装置3fの、被検出回路90に対する結線図を示す。固定手段17等の外観は図13の場合と同じである。本実施の形態では、実施の形態9と同じ構成の磁性素子14および計測抵抗22の組み合わせのブリッジ回路30eを被検出回路90の電源91に負荷92と並列に接続する。より具体的には、ブリッジ回路30eの計測抵抗22同士が結合している部分22jを電源91の一方の端子に、また磁性素子14のセンタータップ14cを他方の端子に接続する。
図23に本実施の形態に係る漏電検出装置3fの、被検出回路90に対する結線図を示す。固定手段17等の外観は図13の場合と同じである。本実施の形態では、実施の形態9と同じ構成の磁性素子14および計測抵抗22の組み合わせのブリッジ回路30eを被検出回路90の電源91に負荷92と並列に接続する。より具体的には、ブリッジ回路30eの計測抵抗22同士が結合している部分22jを電源91の一方の端子に、また磁性素子14のセンタータップ14cを他方の端子に接続する。
磁性素子14と計測抵抗22の接続点を計測端子23a、23bとし、アンプ24が接続されているのは、実施の形態9と同じである。
次に本実施の形態の漏電検出装置3fの動作について説明する。漏電が発生していない場合は、電線A93aおよびB93bが作る磁界が磁性素子14の位置で打消しあっている。つまり、磁性素子14の抵抗値に不均衡が生じていないので、ブリッジ回路30eの出力はゼロである。すなわち、アンプ24の出力がゼロであれば、漏電は発生していない。
一方、漏電が生じると、磁性素子14のセンタータップ14cの上下で抵抗値が変化し、ブリッジ回路30eの支枝同士に流れる電流の不均衡によって計測端子23a、23b間には電圧差が生じ、アンプ24は出力電圧を発生する。つまり、アンプ24の出力があった場合は、漏電が発生していると言ってよい。
なお、本実施の形態については、被検出回路90の電源91が交流であると、アンプ24の出力の直流成分が漏電における消費電力を検出していることになる。よって、アンプ24の出力にローパスフィルタを配置しておけば、電源91が交流の場合は、有効消費電力を見ていることになる。もちろん、被検出回路90の電源91が直流の場合は、アンプ24の出力も直流となる。
本発明は、家庭電気製品分野、自動車分野、産業機器分野などの漏電検出に広く利用することができる。
1、1b、1c、2、3、3a、3b、3c、3d、3e、3f 漏電検出装置
11 保持手段
12、16、17 固定手段
13 嵌入部
14 磁性素子
20 検出手段
21 検出器電源
22 計測抵抗
23 計測端子
24 アンプ
25 ローパスフィルタ
26 表示手段
30 ブリッジ回路
32 電力検出アンプ
34 電流検出アンプ
35 定電流電源
36 スイッチ
40 メモリおよび比較手段
90 被検出回路
91 電源
92 負荷
93 電源ライン
93a 電線A
93b 電線B
141 基板
142 磁性膜
143、144 素子端子
145 バイアス手段
148 導体
149 永久磁石
11 保持手段
12、16、17 固定手段
13 嵌入部
14 磁性素子
20 検出手段
21 検出器電源
22 計測抵抗
23 計測端子
24 アンプ
25 ローパスフィルタ
26 表示手段
30 ブリッジ回路
32 電力検出アンプ
34 電流検出アンプ
35 定電流電源
36 スイッチ
40 メモリおよび比較手段
90 被検出回路
91 電源
92 負荷
93 電源ライン
93a 電線A
93b 電線B
141 基板
142 磁性膜
143、144 素子端子
145 バイアス手段
148 導体
149 永久磁石
Claims (15)
- 電源と負荷を接続する一対の電源ラインに設置する漏電検出装置であって、
前記一対の電源ラインのそれぞれを保持する一対の保持手段と、
前記一対の保持手段同士を所定の間隔で固定する固定手段と、
前記それぞれの保持手段に前記電源ラインと平行に配置された一対の磁性素子と、
前記一対の磁性素子同士の磁気抵抗効果の差を検出する検出手段と、
前記磁性素子に駆動電流を流す駆動手段と
を有することを特徴とする漏電検出装置。 - 前記固定手段は、前記一対の保持手段の間隔を可変的に調整する間隔調整手段を有する請求項1に記載された漏電検出装置。
- 前記それぞれの磁性素子は、前記一対の保持手段の中間に向かって所定角度傾斜することを特徴とする請求項1または2のいずれかに記載された漏電検出装置。
- 前記磁性素子には、磁化容易軸に対して傾斜した導体パターンが形成され、
前記一対の保持手段に対して、異なる傾斜方向を有することを特徴とした請求項1乃至3のいずれかの請求項に記載された漏電検出装置。 - 前記駆動手段は、前記電源であることを特徴とした請求項1乃至4のいずれかの請求項に記載された漏電検出装置。
- 前記磁性素子の少なくとも一方の磁性素子にはバイアス手段が設けられ、
前記一方の磁性素子の素子端子間電圧を検出する電力検知手段をさらに備えたことを特徴とした請求項5に記載された漏電検出装置。 - 前記駆動手段は、前記電源および前記負荷が構成する回路から独立した電源であることを特徴とした請求項1乃至4のいずれかの請求項に記載された漏電検出装置。
- 前記磁性素子の少なくとも一方の磁性素子は前記独立した電源で駆動され、前記一方の磁性素子の素子端子間電圧を検出する電流検出手段をさらに備えたことを特徴とした請求項7に記載された漏電検出装置。
- 電源と負荷を接続する一対の電源ラインに設置する漏電検出装置であって、
前記一対の電源ラインの一方に対して他方を前記一方の電源ラインに流れる電流と同方向に電流が流れるように保持する一対の保持手段と、
前記一対の保持手段同士を所定の間隔で固定する固定手段と、
前記それぞれの保持手段の間に前記電源ラインと平行に配置された磁性素子と、
前記磁性素子の磁気抵抗効果の変化を検出する検出手段と
を有することを特徴とする漏電検出装置。 - 前記駆動手段は、前記電源および前記負荷が構成する回路から独立した電源であることを特徴とした請求項9に記載された漏電検出装置。
- 前記駆動手段は、前記電源であり、
前記検出手段には、無漏電時における前記磁性素子からの電圧値である無漏電電圧値を保持するメモリと、
前記無漏電電圧値と現在の前記磁性素子からの電圧値を比較する比較手段を有することを特徴とした請求項9または10のいずれかの請求項に記載された漏電検出装置。 - 前記磁性素子は直列に接続されバイアス手段を有する少なくとも2つの磁性素子からなり、それぞれの前記磁性素子の電気抵抗の差を検出する検出手段と、
前記磁性素子に駆動電流を流す駆動手段とを有することを特徴とした請求項9乃至11のいずれかの請求項に記載された漏電検出装置。 - 前記駆動手段は、前記電源および前記負荷とは独立した電源であることを特徴とした請求項12に記載された漏電検出装置。
- 前記駆動手段は、前記電源であることを特徴とした請求項12に記載された漏電検出装置。
- 前記磁性素子には、磁化容易軸に対して傾斜した導体パターンが形成され、
前記保持手段に対して、異なる傾斜方向を有することを特徴とした請求項12乃至14のいずれかの請求項に記載された漏電検出装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13804351.8A EP2860537B1 (en) | 2012-06-12 | 2013-06-12 | Electrical leakage detection device |
CN201380030909.5A CN104412116B (zh) | 2012-06-12 | 2013-06-12 | 漏电检测装置及漏电检测方法 |
US14/406,690 US9903900B2 (en) | 2012-06-12 | 2013-06-12 | Electric leakage detecting apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012133312A JP5911065B2 (ja) | 2012-06-12 | 2012-06-12 | 漏電検出装置 |
JP2012-133312 | 2012-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013187057A1 true WO2013187057A1 (ja) | 2013-12-19 |
Family
ID=49757901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003677 WO2013187057A1 (ja) | 2012-06-12 | 2013-06-12 | 漏電検出装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9903900B2 (ja) |
EP (1) | EP2860537B1 (ja) |
JP (1) | JP5911065B2 (ja) |
CN (1) | CN104412116B (ja) |
WO (1) | WO2013187057A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141234A1 (ja) * | 2014-03-20 | 2015-09-24 | 公立大学法人大阪市立大学 | クランプ式電流計 |
CN112946519A (zh) * | 2021-02-03 | 2021-06-11 | 南京海岩商贸有限公司 | 一种防线头松动漏电的安全型通讯电线定位辅助架 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012012759A1 (de) * | 2012-06-27 | 2014-01-02 | Sensitec Gmbh | Anordnung zur Strommessung |
CN107407697A (zh) * | 2015-03-03 | 2017-11-28 | 麦格纳动力系有限两合公司 | 利用各向异性磁阻效应测量直流电路电流强度的电气组件 |
JP2017219457A (ja) | 2016-06-09 | 2017-12-14 | 愛知製鋼株式会社 | マグネトインピーダンスセンサ |
US11719772B2 (en) | 2020-04-01 | 2023-08-08 | Analog Devices International Unlimited Company | AMR (XMR) sensor with increased linear range |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210781A (ja) * | 1987-02-27 | 1988-09-01 | Fuji Electric Co Ltd | 電流検出装置 |
JPH03103710A (ja) * | 1989-09-19 | 1991-04-30 | Fujitsu Ltd | 漏洩磁界型ポジショナ |
JPH10232259A (ja) | 1997-02-21 | 1998-09-02 | Matsushita Electric Works Ltd | 漏電センサー |
JPH11281699A (ja) * | 1998-03-31 | 1999-10-15 | Matsushita Electric Works Ltd | 漏電検出方法およびこれを使用した漏電遮断器 |
JP2008298753A (ja) * | 2007-06-04 | 2008-12-11 | Kawamura Electric Inc | 漏電センサ及び電源プラグ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139672A (en) | 1981-02-23 | 1982-08-28 | Sumitomo Electric Ind Ltd | Detecting structure for leakage current |
JP3286446B2 (ja) | 1993-12-29 | 2002-05-27 | 住友特殊金属株式会社 | 直流電流センサー |
GB9422714D0 (en) * | 1994-11-10 | 1995-01-04 | Powerbreaker Plc | Current transducers |
EP0874244B1 (de) * | 1997-04-19 | 2002-01-30 | LUST ANTRIEBSTECHNIK GmbH | Verfahren zum Messen von elektrischen Strömen in n Leitern sowie Vorrichtung zur Durchführung des Verfahrens |
US6731105B1 (en) * | 2002-09-03 | 2004-05-04 | Lockheed Martin Corporation | Current sensor with correction for transverse installation misalignment |
CN2610342Y (zh) | 2003-04-04 | 2004-04-07 | 李立华 | 直流漏电指示器 |
US20060219436A1 (en) * | 2003-08-26 | 2006-10-05 | Taylor William P | Current sensor |
WO2005064356A2 (en) * | 2003-12-23 | 2005-07-14 | Koninklijke Philips Electronics N.V. | High sensitivity magnetic built-in current sensor |
JP4224483B2 (ja) * | 2005-10-14 | 2009-02-12 | Tdk株式会社 | 電流センサ |
US7768083B2 (en) * | 2006-01-20 | 2010-08-03 | Allegro Microsystems, Inc. | Arrangements for an integrated sensor |
US20070262779A1 (en) | 2006-05-11 | 2007-11-15 | Lucent Technologies Inc. | Detection of unbalanced power feed conditions |
US7684162B2 (en) * | 2007-03-21 | 2010-03-23 | Magnetic Metals Corporation | Leakage current protection device |
CN101615808A (zh) | 2008-06-25 | 2009-12-30 | 上海益而益电器制造有限公司 | 一种电故障检测保护装置 |
CN102004203A (zh) | 2009-08-31 | 2011-04-06 | 西门子公司 | 一种漏电流检测装置 |
-
2012
- 2012-06-12 JP JP2012133312A patent/JP5911065B2/ja active Active
-
2013
- 2013-06-12 US US14/406,690 patent/US9903900B2/en active Active
- 2013-06-12 WO PCT/JP2013/003677 patent/WO2013187057A1/ja active Application Filing
- 2013-06-12 CN CN201380030909.5A patent/CN104412116B/zh active Active
- 2013-06-12 EP EP13804351.8A patent/EP2860537B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210781A (ja) * | 1987-02-27 | 1988-09-01 | Fuji Electric Co Ltd | 電流検出装置 |
JPH03103710A (ja) * | 1989-09-19 | 1991-04-30 | Fujitsu Ltd | 漏洩磁界型ポジショナ |
JPH10232259A (ja) | 1997-02-21 | 1998-09-02 | Matsushita Electric Works Ltd | 漏電センサー |
JPH11281699A (ja) * | 1998-03-31 | 1999-10-15 | Matsushita Electric Works Ltd | 漏電検出方法およびこれを使用した漏電遮断器 |
JP2008298753A (ja) * | 2007-06-04 | 2008-12-11 | Kawamura Electric Inc | 漏電センサ及び電源プラグ |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015141234A1 (ja) * | 2014-03-20 | 2015-09-24 | 公立大学法人大阪市立大学 | クランプ式電流計 |
CN106133532A (zh) * | 2014-03-20 | 2016-11-16 | 公立大学法人大阪市立大学 | 钳形电流表 |
JPWO2015141234A1 (ja) * | 2014-03-20 | 2017-04-06 | 公立大学法人大阪市立大学 | クランプ式電流計 |
US10126330B2 (en) | 2014-03-20 | 2018-11-13 | Osaka City University | Clamp-type ammeter |
CN112946519A (zh) * | 2021-02-03 | 2021-06-11 | 南京海岩商贸有限公司 | 一种防线头松动漏电的安全型通讯电线定位辅助架 |
Also Published As
Publication number | Publication date |
---|---|
US9903900B2 (en) | 2018-02-27 |
US20150153401A1 (en) | 2015-06-04 |
EP2860537B1 (en) | 2019-10-02 |
JP5911065B2 (ja) | 2016-04-27 |
JP2013257213A (ja) | 2013-12-26 |
CN104412116B (zh) | 2017-10-10 |
EP2860537A1 (en) | 2015-04-15 |
EP2860537A4 (en) | 2016-06-08 |
CN104412116A (zh) | 2015-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5911065B2 (ja) | 漏電検出装置 | |
EP2284555B1 (en) | Magnetic sensor including a bridge circuit | |
KR100800279B1 (ko) | 스핀 밸브형 거대 자기 저항 효과 소자를 가진 방위계 | |
US20120217961A1 (en) | Magnetic sensor | |
JP5899012B2 (ja) | 磁気センサ | |
US7834619B2 (en) | Magnetic detection device | |
KR100846078B1 (ko) | 방위계 | |
US10006945B2 (en) | Electric current sensor | |
KR20140032373A (ko) | 전력계측장치 | |
WO2017169156A1 (ja) | 平衡式磁界検知装置 | |
JPWO2014181382A1 (ja) | 磁気電流センサおよび電流測定方法 | |
US20160041209A1 (en) | Sensor element with temperature compensating function, and magnetic sensor and electric power measuring device which use same | |
JP2009162499A (ja) | 磁気センサ | |
JP6083690B2 (ja) | 力率計測装置 | |
JP2023084140A (ja) | 磁気センサ装置、インバータ装置、バッテリ装置、電動モータおよび車両 | |
JP2000055997A (ja) | 磁気センサ装置および電流センサ装置 | |
JP6464342B2 (ja) | 電力計測装置 | |
JP3764834B2 (ja) | 電流センサー及び電流検出装置 | |
CN110837066B (zh) | 磁场感测装置 | |
JP2016223825A (ja) | 磁界検出装置 | |
CN117572303B (zh) | 一种磁传感器、电流检测装置及电流检测方法 | |
TWI703338B (zh) | 電流感測器 | |
JP4512709B2 (ja) | 磁界検出素子 | |
JP2010156543A (ja) | 磁気検出装置 | |
TWI714107B (zh) | 電流感測器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13804351 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14406690 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |