WO2013186021A2 - Verfahren zum betrieb einer batterie für ein fahrzeug sowie entsprechende batteriean-ordnung und fahrzeug - Google Patents

Verfahren zum betrieb einer batterie für ein fahrzeug sowie entsprechende batteriean-ordnung und fahrzeug Download PDF

Info

Publication number
WO2013186021A2
WO2013186021A2 PCT/EP2013/060451 EP2013060451W WO2013186021A2 WO 2013186021 A2 WO2013186021 A2 WO 2013186021A2 EP 2013060451 W EP2013060451 W EP 2013060451W WO 2013186021 A2 WO2013186021 A2 WO 2013186021A2
Authority
WO
WIPO (PCT)
Prior art keywords
charge
cell
battery
cells
amount
Prior art date
Application number
PCT/EP2013/060451
Other languages
English (en)
French (fr)
Other versions
WO2013186021A3 (de
Inventor
Sascha DRENKELFORTH
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to CN201380031358.4A priority Critical patent/CN104604075B/zh
Publication of WO2013186021A2 publication Critical patent/WO2013186021A2/de
Publication of WO2013186021A3 publication Critical patent/WO2013186021A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for operating a battery for a vehicle, wherein the charge states of the cells of the battery are adjusted, as well as a correspondingly configured battery assembly and a suitably ausgestaltetes vehicle.
  • WO 201 1/072295 A2 discloses a method for estimating the condition of a multi-cell battery.
  • US 201 1 / 0241622A A1 describes a method for balancing a plurality of battery cells, wherein energy is transferred from one cell to another cell. The need for compensation is determined by the voltage levels of the cells.
  • Balancing the charge states of the cells which is also known as cell balancing, is used to balance or balance the charge states of the individual series-connected cells of a battery system, with the aim that each cell is connected to the same
  • Charge amount can be charged so that after charging the battery each cell is almost completely charged.
  • Such balancing is necessary from time to time because even battery cells of the same capacity and even of the same type have a certain self-discharge rate due to various chemical processes, which is slightly different from cell to cell.
  • This self-discharge rate depends on the one hand on the temperature and the state of charge of the respective cell and on the other hand is influenced by production variations and the age of each cell.
  • the state of charge of a cell is understood to mean the percentage ratio between the current charge quantity of the cell and the maximum possible charge quantity of the cell.
  • Discharge limit Due to the series connection of the cells then the current drain from the battery must be stopped altogether, even if the other cells could be further discharged.
  • prior art batteries are symmetrized from time to time with multiple series-connected cells. After symmetrization according to the prior art, all cells have substantially the same voltage level or the same state of charge. Since the voltage or voltage of the cell corresponds to the state of charge of the cell, so-called voltage-based
  • Symmetrization method virtually identical to state of charge-based symmetrization method.
  • the cell with the lowest voltage is detected. All other cells are then discharged until their voltages correspond to this lowest voltage.
  • the known methods for balancing have disadvantages when the cells to be balanced have different capacities. Therefore, the present invention has the object to perform an equalization or symmetrization of cells of a battery such that subsequently when charging the battery all cells can be fully charged, even if the cells have different capacities.
  • a method for operating a battery for a vehicle comprises a plurality of cells, in particular connected in series.
  • the equalization or the symmetrization of the cells is carried out depending on charge quantities.
  • each of these charge quantities corresponds to a respective charge quantity which, in the current state of the battery, can be inverted into a respective one of the cells.
  • the amount of charge that can still be invited into this cell is determined for each cell.
  • the chargeable amount of charge of a cell corresponds to the difference of the maximum charge amount of that cell (ie, the amount of charge that the cell has when the cell is fully charged) less the amount of charge currently in the cell.
  • the maximum amount of charge for determining the amount of charge that can be charged can also correspond to a certain percentage (eg 95%) of the actual maximum amount of charge.
  • the present invention also takes into account (at least indirectly) the capacity of each cell. Therefore, according to an alignment or symmetrization according to the invention, the cells of the battery can be fully charged, even if the cells have different capacities.
  • the alignment according to the invention is carried out in such a way that after balancing each cell has the same amount of charge that can be charged.
  • the battery can be fully charged only if the same amount of charge can be loaded into each cell before charging, so that each cell after entering it the same amount of charge has been invited, then fully charged.
  • the amount of charge that can be charged into this cell is determined. That It is determined for each cell, which amount of charge can be loaded in each cell until the cell is fully charged. Subsequently, the maximum of these chargeable charge quantities is determined. Each cell whose charge amount is smaller than this maximum is discharged until after discharging then the loadable into the respective cell
  • Amount of charge corresponds to the certain maximum. This alignment or symmetrization of the cells advantageously ensures that each cell has the same amount of charge that can be charged after balancing. Thus every cell after balancing requires the same amount of charge to be fully charged.
  • a cell is created for each cell
  • Target charge state which is smaller by a predetermined percentage than the full charge state of the cell.
  • the target state of charge may correspond to 95% of the full state of charge of the cell.
  • the chargeable amount of charge is determined in the current state of the battery for each cell.
  • a so-called deliverable amount of charge is determined in the current state of the battery for each cell, which is defined such that the respective cell reaches the target charge state, when it is supplied in the current state, the feedable amount of charge.
  • the maximum of the deliverable charge quantities is determined.
  • Each cell whose charge-able charge quantity is smaller than this specific maximum is discharged until its charge-able charge quantity corresponds at least to the maximum of the chargeable charge quantities. It can also be a
  • the second embodiment pursues the goal that after balancing each cell has the same amount of charge that can be supplied.
  • the chargeable amount of charge of a cell is that amount of charge that the cell lacks to be fully charged
  • the amount of charge that a cell can deliver is that amount of charge that the cell lacks to reach the target charge state (e.g., 95% of the charge) full charge state). Therefore, the deliverable amount of charge of a cell is smaller than its charge amount of charge.
  • the second embodiment operates quasi with a safety buffer (of eg 5%) compared to the first embodiment, in that the cells, after being balanced by the charging of the battery, reach at least the target charge state around the safety buffer is less than the full charge state, can be charged.
  • a cell is not discharged during the alignment or balancing if one of the following conditions is met:
  • the predetermined minimum amount of charge may be dependent on the capacity of the respective cell.
  • the present invention can be implemented with the voltage-based or state-of-charge-based approximation known from the prior art
  • Symmetrization of the cells are combined. With new batteries, in which all cells have almost identical capacities, the algorithm can be made simpler, whereby calculation-conserving methods can be used. However, the scattering of the capacities of the cells exceeds a predetermined limit or
  • Threshold the charge quantity-based or inventive method is performed.
  • the battery assembly comprises a battery having a plurality of cells, control means and detection means.
  • the detection means detect charge quantities as a value and forward these values to the control means.
  • the control means perform symmetrization or equalization of the cells depending on the detected charge amount values. Each amount of charge corresponds to that amount of charge which can be loaded in the current state of the battery in the corresponding cell.
  • the advantages of the battery arrangement according to the invention essentially correspond to the advantages of the method according to the invention, which are carried out in advance in detail, so that a repetition is dispensed with here.
  • a vehicle which comprises a battery arrangement according to the invention.
  • the present invention is based on charge quantities actually stored in the cells and therefore shows very good results even with greatly different cell capacities. As will be shown below with reference to embodiments with reference to the figures, the balancing according to the invention is seldom carried out, as a result of which
  • Symmetrization is a reduced voltage of the battery due to unnecessary discharge of individual cells prevented. This maximizes the energy content of the battery, thereby increasing the range of vehicles using this battery to power their drive.
  • the present invention is particularly suitable for electric vehicles and hybrid vehicles. Of course, the present invention is not limited to these
  • Aircraft and track-bound or track-guided vehicles can be used.
  • even the use is detached from movement, for example to
  • a state of charge-based balancing is shown schematically.
  • a charge quantity-based balancing is shown schematically.
  • a cycle including balancing, discharging and charging is schematically illustrated for state of charge based balancing.
  • a cycle involving balancing, discharging and charging is shown schematically for a charge quantity based balancing.
  • FIG. 5 shows a vehicle according to the invention with a battery arrangement according to the invention.
  • Embodiment ensures even with unequal cell capacities, which may occur, for example, by aging or by the replacement of individual cells or modules, that after aligning (balancing) is ensured that the charge in the cell X charge amount Q_Max_Charge_Cell_X (ie the amount of charge, which Cell X) is greater than the maximum deliverable amount of charge Q_Target_Charge_Cell_X of any cell.
  • the deliverable charge quantity Q_Target_Charge_Cell_X of a cell X defines that charge quantity of the cell X which can be supplied to the cell X from the current charge quantity Q_Charge_Cell_X of the cell, so that the cell X, after having been charged with this deliverable charge amount, becomes a target charge state
  • the charge-able charge quantity Q_Max_Charge_Cell_X of a cell X is less than or equal to the sum of the maximum deliverable charge amount of all cells plus a safety threshold Q_Safty_Margin and if, in addition, the charge quantity
  • Q_C h a rg e_C e I l_X of the cell X is greater than a predetermined first minimum value Q_Min_Charge or the state of charge Cell_SOC_X of the cell X greater than a second minimum value
  • Min_SOC_Sym is. the corresponding cell X is discharged. The cell X is discharged until the chargeable charge quantity Q_Max_Charge_CelLX is greater than a sum of the maximum deliverable charge amount of all cells plus the safety threshold Q_Safty_Margin.
  • the chargeable charge quantity Q_Max_Charge_Cell_X of a particular cell can be determined by the following equation (1).
  • Capacity_Cell_X corresponds to the capacity of cell X.
  • the cells are not set to 100%, but e.g. 95% charged in order to avoid increased aging and to ensure a distance between the controlled variable (eg state of charge) and a switch-off threshold. As soon as the detected controlled variable exceeds the switch-off threshold, the charging of the battery is terminated.
  • the controlled variable eg state of charge
  • FIG. 1 by way of example, four cells Z1-Z4, which are arranged in series in a battery, are shown in a state before the balancing A and in a state after the balancing B. All four cells have the same capacity of 50 Ah. While cell Z1 has a charge state of 85%, which corresponds to a charge amount of 42.5 Ah, cell Z2 has a charge state of 75%, cell Z3 has a charge state of 90% and cell Z4 has a charge state of 70%, which corresponds to a charge amount of 37.5 Ah or 45 Ah or 35 Ah.
  • Fig. 2 the inventive method for balancing or approximation is shown, in which the balancing is done depending on the loadable amount of charge of the cells.
  • the four cells Z1-Z4 have different capacities, from 50 Ah to 80 Ah.
  • the method according to the invention determines from each cell the chargeable charge quantity Q_Max_Charge_Cell_X, which results from the difference between the capacity of the respective cell minus the charge quantity Q_Charge_Cell_X currently stored in the respective cell.
  • Charge quantities determined which is 21 Ah in the example of FIG. 2.
  • those cells Z1 -Z3 whose charge-able charge quantity in state A is smaller than this maximum chargeable charge quantity of 21 AH (cell Z4) are discharged until their chargeable charge quantity also corresponds to 21 Ah.
  • the four cells Z1-Z4 all have the same chargeable charge quantity of 21 Ah, but have different states of charge, since the cells have different capacities. Despite these different capacities, the battery can now be fully charged as each cell is charged to 100% after 21 Ah charging.
  • the cells in FIG. 2 were balanced by means of a state of charge-based method, they would reach a state in which they would all have the same state of charge of 70%. In this state, however, they would not be fully loadable, since the cells have different amounts of charge that can be charged.
  • a cycle which includes balancing, charging and discharging.
  • the two cells Z1 and Z2, on which this cycle is exemplified, have different capacities. While the cell Z1 has a capacity of 50 Ah, the cell Z2 has a larger capacity of 80 Ah. In the state shown on the left in FIG. 3, the cell Z1 has a charge amount of 42.5 Ah, so that its charge amount of charge is 8.5 Ah and its state of charge is 85%. The capacity of the larger cell Z2 currently has a charge amount of 60 Ah, so that their invitable
  • the cell Z1 In a state of charge-based symmetrization S, the cell Z1 is discharged with the larger state of charge until the state of charge of the cell Z1 corresponds to the smaller state of charge of 75% of the cell Z2. It can be seen that after the symmetrization, although the charge states are each 75%, but the loadable charge quantities are unequal due to the different capacities.
  • the cell Z1 is taken from a charge of 1.5 Ah, so that both cells have the same charge amount of 20 Ah. After a discharge process E, in which both cells the same amount of charge of 20 Ah has been removed, therefore, both cells still have the same charge amount of 40 Ah on. Therefore, no further symmetrization is necessary before the charging process L, so that the state of the two cells after the discharge process E is the same as the state of the two cells before the charging process L.
  • both cells Z1, Z2 have the same amount of charge that can be charged before charging L, both cells can be charged to 100% in the charging process L, so that the cell Z1 after charging L a charge amount of 50 Ah and the cell Z 2 a
  • each cell Z1 Z2 after the first balancing (left in FIG. 3) only 12.5 Ah can be loaded into each cell, so that the cell Z2 only has a charge amount of 72.5 Ah (60 + 12.5) having.
  • FIG. 5 which comprises a battery assembly 20 according to the invention.
  • the battery assembly 20 according to the invention in turn comprises a battery 1 with four cells Z1-Z4, control means 2 and detection means 3.
  • the detection means detect from each cell Z1-Z4, respectively, the charge of charge and divide the value of these chargeable charge amounts to the control means 2.
  • Control means 2 determine the maximum of these charges of charge and, in the case of equalization or symmetrization, control those cells which have a smaller amount of charge that can be charged, so that these cells are discharged until their charge of charge also corresponds to the largest amount of charge that can be charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Zum Betrieb einer Batterie (1) mit mehreren Zellen (Z1-Z4) für ein Fahrzeug wird eine Symmetrierung (S) der Zellen (Z1-Z4) abhängig von Ladungsmengen (Q_Max_Charge_Cell_X) durchgeführt. Dabei entspricht jede der Ladungsmengen einer Ladungsmenge, welche im aktuellen Zustand der Batterie (1) in jeweils eine der Zellen (Z1-Z4) einladbar ist.

Description

Beschreibung
Verfahren zum Betrieb einer Batterie für ein Fahrzeug sowie entsprechende Batterieanordnung und Fahrzeug
Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Batterie für ein Fahrzeug, wobei die Ladezustände der Zellen der Batterie angeglichen werden, sowie eine entsprechend ausgestaltete Batterieanordnung und ein entsprechend ausgestaltetes Fahrzeug.
Die WO 201 1/072295 A2 offenbart ein Verfahren, um den Zustand einer Batterie mit mehreren Zellen abzuschätzen.
Die US 201 1/0241622A A1 beschreibt ein Verfahren zum Ausgleichen mehrerer Batteriezellen, wobei dazu Energie von einer Zelle zu einer anderen Zelle übertragen wird. Die Notwendigkeit des Ausgleichs wird dabei über die Spannungslagen der Zellen ermittelt.
Das Angleichen der Ladezustände der Zellen, was auch als Zellsymmetrierung bekannt ist, dient der Symmetrierung bzw. dem Angleichen der Ladezustände der einzelnen in Serie geschalteten Zellen eines Batteriesystems mit dem Ziel, dass jede Zelle mit derselben
Ladungsmenge geladen werden kann, so dass nach dem Laden der Batterie jede Zelle nahezu vollständig geladen ist. Eine solche Symmetrierung ist von Zeit zu Zeit notwendig, da auch Batteriezellen derselben Kapazität und sogar desselben Typs aufgrund verschiedener chemischer Prozesse eine gewisse Selbstentladungsrate aufweisen, welche von Zelle zu Zelle leicht unterschiedlich ist. Diese Selbstentladungsrate hängt zum einen von der Temperatur und dem Ladezustand der jeweiligen Zelle ab und wird zum anderen von Produktionsstreuungen und dem Alter der jeweiligen Zelle beeinflusst. Unter dem Ladezustand einer Zelle wird dabei das prozentuale Verhältnis zwischen der aktuellen Ladungsmenge der Zelle zu der maximal möglichen Ladungsmenge der Zelle verstanden.
Aufgrund der verschiedenen Selbstentladungen der einzelnen Zellen weist ein Batteriesystem nach einer gewissen Zeit Zellen mit unterschiedlichen Ladezuständen auf, auch wenn alle Zellen zumindest zu Beginn dieselbe Kapazität besitzen. Unterschiedliche Ladezustände führen jedoch nachteiligerweise dazu, dass das Batteriesystem nicht mehr vollständig geladen werden kann. Wenn ein Batteriesystem, deren Zellen dieselbe Kapazität und unterschiedliche
Ladungszustände aufweisen, geladen wird, erreicht diejenige Zelle, welche zum Beginn des Ladens den größten Ladezustand aufwies, als erste ihre Ladeobergrenze. Sobald allerdings eine der Zellen ihre Ladeobergrenze erreicht hat, können die in Serie geschalteten anderen Zellen nicht mehr weiter geladen werden.
Auch bei der Stromentnahme weist ein Batteriesystem mit Zellen derselben Kapazität, aber unterschiedlichen Ladezuständen folgenden Nachteil auf. Diejenige Zelle, welche zu Beginn der Stromentnahme den geringsten Ladezustand aufwies, erreicht als erste die untere
Entladegrenze. Aufgrund der Serienschaltung der Zellen muss dann die Stromentnahme aus der Batterie insgesamt beendet werden, auch wenn die anderen Zellen noch weiter entladen werden könnten.
Um den oben beschriebenen Problemen zu begegnen, werden Batterien mit mehreren in Serie geschalteten Zellen nach dem Stand der Technik von Zeit zu Zeit symmetriert. Nach einer Symmetrierung nach dem Stand der Technik besitzen alle Zellen im Wesentlichen dieselbe Spannungslage oder denselben Ladezustand. Da die Spannungslage bzw. Spannung der Zelle mit dem Ladezustand der Zelle korrespondiert, sind so genannte Spannungs-basierte
Symmetrierungs-Verfahren quasi zu Ladezustands-basierten Symmetrierungs-Verfahren identisch.
Man unterscheidet zwischen einer aktiven Symmetrierung, bei welcher überschüssige Energie bestimmter Zellen in Zellen mit einem niedrigen Ladezustand übertragen wird, und einer passiven Symmetrierung, bei welcher die überschüssige Energie vernichtet wird.
Gemäß einem bekannten Verfahren zur passiven Symmetrierung wird beispielsweise diejenige Zelle mit der niedrigsten Spannung erfasst. Alle anderen Zellen werden anschließend so lange entladen, bis auch ihre Spannungen dieser niedrigsten Spannung entsprechen.
Die bekannten Verfahren zur Symmetrierung weisen jedoch Nachteile auf, wenn die zu symmetrierenden Zellen unterschiedliche Kapazitäten aufweisen. Daher stellt sich die vorliegende Erfindung die Aufgabe, eine Angleichung bzw. Symmetrierung von Zellen einer Batterie derart durchzuführen, dass anschließend beim Laden der Batterie alle Zellen vollständig geladen werden können, auch wenn die Zellen unterschiedliche Kapazitäten aufweisen.
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zum Betrieb einer Batterie nach Anspruch 1 , durch eine Batterieanordnung nach Anspruch 6 und durch ein Fahrzeug nach Anspruch 8 gelöst. Die abhängigen Ansprüche definieren bevorzugte und vorteilhafte
Ausführungsformen der vorliegenden Erfindung. Im Rahmen der vorliegenden Erfindung wird ein Verfahren zum Betrieb einer Batterie für ein Fahrzeug bereitgestellt. Dabei umfasst die Batterie mehrere insbesondere in Serie geschaltete Zellen. Das Angleichen oder die Symmetrierung der Zellen wird abhängig von Ladungsmengen durchgeführt. Dabei entspricht jede dieser Ladungsmengen einer jeweiligen Ladungsmenge, welche im aktuellen Zustand der Batterie in jeweils eine entsprechende der Zellen einladbar ist. Mit anderen Worten wird für jede Zelle diejenige Ladungsmenge ermittelt, welche noch in diese Zelle eingeladen werden kann. Die einladbare Ladungsmenge einer Zelle entspricht der Differenz der maximalen Ladungsmenge dieser Zelle (d.h. derjenigen Ladungsmenge, welche die Zelle aufweist, wenn die Zelle vollständig geladen ist) abzüglich der aktuell in der Zelle befindlichen Ladungsmenge. Dabei kann die maximale Ladungsmenge zur Bestimmung der einladbaren Ladungsmenge auch einem bestimmten Prozentsatz (z.B. 95 %) der tatsächlichen maximalen Ladungsmenge entsprechen.
Da erfindungsgemäß nicht die Spannung oder der Ladezustand einer Zelle, sondern die in die Zelle einladbare Ladungsmenge bestimmt wird und die Angleichung abhängig von diesen einladbaren Ladungsmengen durchgeführt wird, berücksichtigt die vorliegende Erfindung (zumindest indirekt) jeweils auch die Kapazität der jeweiligen Zelle. Daher können nach einer erfindungsgemäß durchgeführten Angleichung bzw. Symmetrierung die Zellen der Batterie vollständig geladen werden, auch wenn die Zellen unterschiedliche Kapazitäten aufweisen.
Insbesondere wird die erfindungsgemäße Angleichung derart durchgeführt, dass nach der Symmetrierung jede Zelle dieselbe einladbare Ladungsmenge aufweist.
Da bei einem Ladevorgang der Batterie in jede der in Serie angeordneten Zellen nur dieselbe Ladungsmenge geladen werden kann, kann die Batterie nur dann voll geladen werden, wenn vor dem Ladevorgang in jede Zelle dieselbe Ladungsmenge eingeladen werden kann, so dass jede Zelle, nachdem in sie dieselbe Ladungsmenge eingeladen worden ist, anschließend voll geladen ist.
Gemäß einer ersten erfindungsgemäßen Ausführungsform wird im aktuellen Zustand der Batterie für jede Zelle die in diese Zelle einladbare Ladungsmenge bestimmt. D.h. es wird für jede Zelle bestimmt, welche Ladungsmenge in die jeweilige Zelle geladen werden kann, bis die Zelle voll geladen ist. Anschließend wird das Maximum dieser einladbaren Ladungsmengen bestimmt. Jede Zelle, deren einladbare Ladungsmenge kleiner als dieses Maximum ist, wird so lange entladen, bis nach dem Entladen dann die in die jeweilige Zelle einladbare
Ladungsmenge dem bestimmten Maximum entspricht. Durch diese Angleichung oder Symmetrierung der Zellen wird vorteilhafterweise dafür gesorgt, dass jede Zelle nach der Symmetrierung dieselbe einladbare Ladungsmenge aufweist. Damit benötigt jede Zelle nach der Symmetrierung dieselbe Ladungsmenge, um voll geladen zu sein.
Gemäß einer zweiten erfindungsgemäßen Ausführungsform wird für jede Zelle ein
Zielladungszustand bestimmt, welcher um einen vorbestimmten Prozentsatz kleiner als der Vollladungszustand der Zelle ist. Beispielsweise kann der Zielladungszustand 95 % des vollen Ladezustands der Zelle entsprechen. Wiederum wird im aktuellen Zustand der Batterie für jede Zelle die einladbare Ladungsmenge bestimmt. Zusätzlich wird im aktuellen Zustand der Batterie für jede Zelle eine so genannte zuführbare Ladungsmenge bestimmt, welche derart definiert ist, dass die jeweilige Zelle den Zielladungszustand erreicht, wenn ihr im aktuellen Zustand die zuführbare Ladungsmenge zugeführt wird. Anschließend wird das Maximum der zuführbaren Ladungsmengen bestimmt. Jede Zelle, deren einladbare Ladungsmenge kleiner als dieses bestimmte Maximum ist, wird so lange entladen, bis ihre einladbare Ladungsmenge zumindest dem Maximum der zuführbaren Ladungsmengen entspricht. Dabei kann auch ein
Sicherheitspuffer berücksichtigt werden, so dass das bestimmte Maximum um diesen
Sicherheitspuffer erhöht wird.
Während die erste erfindungsgemäße Ausführungsform das Ziel verfolgt, dass nach der Symmetrierung jede Zelle dieselbe einladbare Ladungsmenge aufweist, verfolgt die zweite Ausführungsform das Ziel, dass nach der Symmetrierung jede Zelle dieselbe zuführbare Ladungsmenge aufweist. Während die einladbare Ladungsmenge einer Zelle diejenige Ladungsmenge ist, welche der Zelle fehlt, um vollständig geladen zu sein, handelt es sich bei der zuführbaren Ladungsmenge einer Zelle um diejenige Ladungsmenge, welche der Zelle fehlt, um den Zielladungszustand (z. B. 95 % des vollen Ladezustands) zu erreichen. Daher ist die zuführbare Ladungsmenge einer Zelle kleiner als ihre einladbare Ladungsmenge. Die zweite Ausführungsform arbeitet im Vergleich zur ersten Ausführungsform quasi mit einem Sicherheitspuffer (von z. B. 5 %), indem die zweite Ausführungsform dafür sorgt, dass die Zellen nach der Symmetrierung durch den Ladevorgang der Batterie auf zumindest den Zielladezustand, welcher um den Sicherheitspuffer kleiner als der volle Ladungszustand ist, aufgeladen werden können.
Erfindungsgemäß wird eine Zelle im Rahmen der Angleichung oder Symmetrierung nicht entladen, wenn eine von folgenden Bedingungen erfüllt ist:
• Die aktuelle Ladungsmenge der Zelle ist kleiner als eine vorgegebene minimale
Ladungsmenge.
• Der aktuelle Ladungszustand der Zelle ist kleiner als ein vorgegebener minimaler
Ladungszustand. Dadurch wird vorteilhafterweise vermieden, dass die jeweilige Zelle zu stark entladen wird. Dabei kann insbesondere die vorgegebene minimale Ladungsmenge von der Kapazität der jeweiligen Zelle abhängig sein.
Vorteilhafterweise kann die vorliegende Erfindung mit der nach dem Stand der Technik bekannten Spannungs-basierten oder Ladezustands-basierten Angleichung oder
Symmetrierung der Zellen kombiniert werden. Bei neuen Batterien, in denen sämtliche Zellen nahezu identische Kapazitäten aufweisen, kann so der Algorithmus einfacher gestaltet werden, wobei Rechenzeit schonende Verfahren angewendet werden können. Überschreitet die Streuung der Kapazitäten der Zellen allerdings einen vorbestimmten Grenzwert bzw.
Schwellenwert, wird das Ladungsmengen-basierte bzw. erfindungsgemäße Verfahren durchgeführt.
Im Rahmen der vorliegenden Erfindung wird auch eine Batterieanordnung für ein Fahrzeug bereitgestellt. Dabei umfasst die Batterieanordnung eine Batterie mit mehreren Zellen, Steuermittel und Erfassungsmittel. Die Erfassungsmittel erfassen Ladungsmengen als Wert und leiten diese Werte an die Steuermittel weiter. Die Steuermittel führen eine Symmetrierung oder Angleichung der Zellen abhängig von den erfassten Ladungsmengenwerten durch. Dabei entspricht jede Ladungsmenge derjenigen Ladungsmenge, welche im aktuellen Zustand der Batterie in die entsprechende Zelle eingeladen werden kann.
Die Vorteile der erfindungsgemäßen Batterieanordnung entsprechen im Wesentlichen den Vorteilen des erfindungsgemäßen Verfahrens, welche vorab im Detail ausgeführt sind, so dass hier auf eine Wiederholung verzichtet wird.
Schließlich wird im Rahmen der vorliegenden Erfindung ein Fahrzeug bereitgestellt, welches eine erfindungsgemäße Batterieanordnung umfasst.
Die vorliegende Erfindung basiert auf tatsächlich in den Zellen gespeicherten Ladungsmengen und zeigt daher auch bei stark unterschiedlichen Zellkapazitäten sehr gute Ergebnisse. Wie anhand von Ausführungsformen mit Bezug zu den Figuren im Folgenden noch gezeigt wird, wird die erfindungsgemäße Symmetrierung selten durchgeführt, wodurch sich der
Energieverbrauch verringert. Durch die Verwendung der Ladungsmengen-basierten
Symmetrierung wird eine erniedrigte Spannung der Batterie aufgrund unnötiger Entladung einzelner Zellen verhindert. Dadurch wird der Energieinhalt der Batterie maximiert und damit die Reichweite von Fahrzeugen, welche diese Batterie zur Versorgung ihres Antriebs einsetzen, vergrößert. Die vorliegende Erfindung ist insbesondere für Elektrofahrzeuge und Hybridfahrzeuge geeignet. Selbstverständlich ist die vorliegende Erfindung nicht auf diesen bevorzugten
Anwendungsbereich eingeschränkt, da die vorliegende Erfindung auch bei Schiffen,
Flugzeugen sowie gleisgebundenen oder spurgeführten Fahrzeugen einsetzbar ist. Darüber hinaus ist selbst der Einsatz losgelöst von Bewegungsmitteln, beispielsweise zur
Symmetrierung einer stationären Batterie (z.B. zum Einsatz in Energienetzen), denkbar.
Im Folgenden wird die vorliegende Erfindung anhand bevorzugter erfindungsgemäßer
Ausführungsformen mit Bezug zu den Figuren im Detail beschrieben.
In Fig. 1 ist eine Ladezustands-basierte Symmetrierung schematisch dargestellt.
In Fig. 2 ist eine Ladungsmengen-basierte Symmetrierung schematisch dargestellt.
In Fig. 3 ist ein Zyklus, welcher Symmetrieren, Entladen und Laden umfasst, schematisch für eine Ladezustands-basierte Symmetrierung dargestellt.
In Fig. 4 ist ein Zyklus, welcher Symmetrieren, Entladen und Laden umfasst, schematisch für eine Ladungsmengen-basierte Symmetrierung dargestellt.
In Fig. 5 ist ein erfindungsgemäßes Fahrzeug mit einer erfindungsgemäßen Batterieanordnung dargestellt.
Im Folgenden wird eine erfindungsgemäße Ausführungsform beschrieben. Diese
Ausführungsform sorgt auch bei ungleichen Zellkapazitäten, was beispielsweise durch Alterung oder durch den Austausch einzelner Zellen oder Module auftreten kann, dafür, dass nach dem Angleichen (Symmetrieren) sichergestellt ist, dass die in die Zelle X einladbare Ladungsmenge Q_Max_Charge_Cell_X (d.h. die Ladungsmenge, welche die Zelle X akzeptieren kann) größer ist, als die maximale zuführbare Ladungsmenge Q_Target_Charge_Cell_X irgendeiner Zelle. Dabei definiert die zuführbare Ladungsmenge Q_Target_Charge_Cell_X einer Zelle X diejenige Ladungsmenge der Zelle X, welche der Zelle X ausgehend von der aktuellen Ladungsmenge Q_Charge_Cell_X der Zelle zugeführt werden kann, so dass die Zelle X, nachdem sie mit dieser zuführbaren Ladungsmenge geladen worden ist, einen Zielladezustand
Upper_Limit_SOC_Operating_Range (z.B. 95%) erreicht. Dabei wird vorausgesetzt, dass die Ladungsmenge Q_Charge_Cell_X, welche die Zelle X enthält, und der Ladezustand der Zelle X ausreichen, damit eine entsprechende Ladungsmenge aus der Zelle X entnommen werden kann, um obiges Ziel zu erreichen. Obiges Vorgehen zum Angleichen einer Zelle ist im Folgenden in Form eines Pseudo-Codes dargestellt.
WENN
Q_Max_Charge_Cell_X < Q_Safty_Margin + Max(Q_Target_Charge_Cell_1
Q_Target_Charge_Cell_N)
UND
(Q_Charge_Cell_X > Q_Min_Charge ODER Cell_SOC_X > Min_SOC_Sym)
DANN
wird Zelle X so lange entladen, bis Folgendes gilt:
Q_Max_Charge_Cell_X > Q_Safty_Margin + Max(Q_Target_Charge_Cell_1 ...
Q_Target_Charge_Cell_N)
Wenn also die einladbare Ladungsmenge Q_Max_Charge_Cell_X einer Zelle X kleiner oder gleich der Summe aus der maximalen zuführbaren Ladungsmenge aller Zellen zuzüglich einer Sicherheitsschwelle Q_Safty_Margin ist und wenn zusätzlich die Ladungsmenge
Q_C h a rg e_C e I l_X der Zelle X größer als ein vorgegebener erster Minimalwert Q_Min_Charge oder der Ladezustand Cell_SOC_X der Zelle X größer als ein zweiter Minimalwert
Min_SOC_Sym ist. wird die entsprechende Zelle X entladen. Die Zelle X wird so lange entladen, bis die einladbare Ladungsmenge Q_Max_Charge_CelLX größer als eine Summe aus der maximalen zuführbaren Ladungsmenge aller Zellen zuzüglich der Sicherheitsschwelle Q_Safty_Margin ist.
Die einladbare Ladungsmenge Q_Max_Charge_Cell_X einer bestimmten Zelle kann über folgende Gleichung (1 ) bestimmt werden.
Q_Max_Charge_Cell_X = Capacity_Cell_X * (Upper_Limit_SOC_Operating_Range
- SOC_Cell_X) / 100% (1 ).
Dabei entspricht Capacity_Cell_X der Kapazität der Zelle X.
Darüber hinaus kann eine für jede Zelle individuelle Ladungsmengensicherheitsschwelle Q_Safty_Ma rg i n_X existieren, welche sicherstellt, dass keine Zelle mit einem höheren Ladezustand als der Differenz aus 100 % abzüglich einer Ladezustandssicherheitsschwelle SOC_Deviation_Safty_Margin geladen wird. Die Sicherheitsschwelle Q_S af ty_ M a rg i n_X kann über folgende Gleichung (2) bestimmt werden. Q_Safty_Margin_X = (SOC_Deviation_Safty_ argin/100%) * Capacity_Cell_X (2).
Gemäß der in Form des Pseudo-Codes dargestellten Ausführungsform werden die Zellen nicht auf 100 %, sondern z.B. 95 % aufgeladen, um eine verstärkte Alterung zu vermeiden und um einen Abstand zwischen der Regelgröße (z. B. Ladezustand) und einer Abschaltschwelle sicherzustellen. Sobald die erfasste Regelgröße die Abschaltschwelle überschreitet, wird das Laden der Batterie beendet.
In Fig. 1 sind exemplarisch vier Zellen Z1 -Z4, welche in Serie in einer Batterie angeordnet sind, in einem Zustand vor der Symmetrierung A und in einem Zustand nach der Symmetrierung B dargestellt. Dabei weisen alle vier Zellen dieselbe Kapazität von 50 Ah auf. Während die Zelle Z1 einen Ladezustand von 85 % aufweist, was einer Ladungsmenge von 42,5 Ah entspricht, weist die Zelle Z2 einen Ladezustand von 75 %, die Zelle Z3 einen Ladezustand von 90 % und die Zelle Z4 einen Ladezustand von 70 % auf, was einer Ladungsmenge von 37,5 Ah bzw. 45 Ah bzw. 35 Ah entspricht.
Nach einer Ladezustands-basierten Symmetrierung weisen alle vier Zellen Z1 -Z4 im Zustand nach der Symmetrierung B denselben Ladezustand von 70 % auf, welcher dem kleinsten Ladezustand vor der Symmetrierung A entspricht. Bei einer passiven Symmetrierung wird dieser Symmetrierung der Zustand B dadurch erreicht, dass aus den Zellen Z1 -Z3 eine entsprechende Ladungsmenge entnommen wird. Da die Zellen Z1 -Z4 dieselbe Kapazität aufweisen, weisen nach der Symmetrierung B alle Zellen auch dieselbe einladbare
Ladungsmenge von 15 Ah (50 Ah - 35 Ah) auf.
In Fig. 2 ist das erfindungsgemäße Verfahren zur Symmetrierung oder Angleichung dargestellt, bei welchem die Symmetrierung abhängig von der einladbaren Ladungsmenge der Zellen erfolgt. Im Unterschied zu den vier Zellen Z1 -Z4 der Fig. 1 weisen die vier Zellen Z1 -Z4 unterschiedliche Kapazitäten, von 50 Ah bis 80 Ah auf. Das erfindungsgemäße Verfahren ermittelt von jeder Zelle die einladbare Ladungsmenge Q_Max_Charge_Cell_X, welche sich aus der Differenz aus der Kapazität der jeweiligen Zelle abzüglich der aktuell in der jeweiligen Zelle gespeicherten Ladungsmenge Q_Charge_Cell_X ergibt.
Bei der erfindungsgemäßen Symmetrierung wird das Maximum dieser einladbaren
Ladungsmengen bestimmt, welches im Beispiel der Fig. 2 21 Ah beträgt. Im Rahmen der erfindungsgemäßen Symmetrierung S werden diejenigen Zellen Z1 -Z3, deren einladbare Ladungsmenge im Zustand A kleiner als diese maximale einladbare Ladungsmenge von 21 AH (der Zelle Z4) ist, so lange entladen, bis auch ihre einladbare Ladungsmenge 21 Ah entspricht. Im erfindungsgemäß symmetrierten Zustand B weisen die vier Zellen Z1 -Z4 zwar alle dieselbe einladbare Ladungsmenge von 21 Ah auf, besitzen aber unterschiedliche Ladezustände, da die Zellen unterschiedliche Kapazitäten aufweisen. Trotz dieser unterschiedlichen Kapazitäten kann die Batterie nun vollständig geladen werden, da jede Zelle nach einem Einladen von 21 Ah zu 100 % geladen ist. Würden die Zellen in Fig. 2 hingegen mittels eines Ladezustands-basierten Verfahrens symmetriert, würden sie einen Zustand erreichen, in welchem sie alle denselben Ladezustand von 70 % aufweisen würden. In diesem Zustand wären sie aber nicht voll ladbar, da die Zellen unterschiedliche einladbare Ladungsmengen aufweisen.
In Fig. 3 ist ein Zyklus dargestellt, welcher ein Symmetrieren, Laden und Entladen umfasst. Die beiden Zellen Z1 und Z2, an welchen dieser Zyklus beispielhaft dargestellt wird, weisen unterschiedliche Kapazitäten auf. Während die Zelle Z1 eine Kapazität von 50 Ah aufweist, besitzt die Zelle Z2 eine größere Kapazität von 80 Ah. Bei dem in Fig. 3 links dargestellten Zustand weist die Zelle Z1 eine Ladungsmenge von 42.5 Ah auf, so dass ihre einladbare Ladungsmenge 8,5 Ah und ihr Ladezustand 85 % beträgt. Die von der Kapazität her größere Zelle Z2 weist aktuell eine Ladungsmenge von 60 Ah auf, so dass ihre einladbare
Ladungsmenge 20 Ah und ihre Ladezustand 75 % beträgt.
Bei einer Ladezustands-basierten Symmetrierung S wird die Zelle Z1 mit dem größeren Ladezustand so lange entladen, bis der Ladezustand der Zelle Z1 dem kleineren Ladezustand von 75 % der Zelle Z2 entspricht. Man erkennt, dass nach der Symmetrierung zwar die Ladezustände jeweils 75 % betragen, aber die einladbaren Ladungsmengen aufgrund der unterschiedlichen Kapazitäten ungleich sind.
Nach einem Entladevorgang E, bei welchem jeder Zelle Z1 bzw. Z2 jeweils eine Ladungsmenge von 27,5 Ah entnommen worden ist, weist die Zelle Z 1 noch einen Ladezustand von 20 % auf, während die Zelle Z2 noch einen Ladezustand von etwas über 40 % besitzt. Aufgrund dieser deutlichen Unterschiede hinsichtlich der Ladezustände wird beim Ladezustands-basierten Verfahren eine weitere Symmetrierung S erfolgen, welche dazu führt, dass der Zelle Z2 eine Ladungsmenge von 16,5 Ah entnommen wird, so dass die Zelle Z2 nach der Symmetrierung ebenfalls einen Ladezustand von 20 % aufweist.
Da auch bei dem folgenden Ladevorgang L (in ähnlicher Weise wie bei dem Entladevorgang E) aufgrund der Serienanordnung der beiden Zellen Z1 , Z2 immer nur dieselbe Ladungsmenge in die Zellen Z1 , Z2 geladen werden kann, weisen die beiden Zellen nach dem Ladevorgang wieder unterschiedliche Ladezustände auf, was wiederum eine erneute Symmetrierung zur Folge hat. Insbesondere wird aus Fig. 3 ersichtlich, dass die Zelle Z2 und damit die gesamte Batterie nicht voll geladen werden kann. In Fig. 4 ist links derselbe Ausgangszustand in Fig. 3 dargestellt. Da das erfindungsgemäße Verfahren nicht die Ladezustände, sondern die einladbare Ladungsmenge
Q_Max_Charge_Cell_X angleicht, werden der Zelle Z1 eine Ladungsmenge von 1 1.5 Ah entnommen, damit beide Zellen dieselbe einladbare Ladungsmenge von 20 Ah aufweisen. Nach einem Entladevorgang E, bei welchem beiden Zellen dieselbe Ladungsmenge von 20 Ah entnommen worden ist, weisen demnach beide Zellen nach wie vor dieselbe einladbare Ladungsmenge von 40 Ah auf. Daher ist vor dem Ladevorgang L keine weitere Symmetrierung notwendig, so dass der Zustand der beiden Zellen nach dem Entladevorgang E gleicht dem Zustand der beiden Zellen vor dem Ladevorgang L ist.
Da beide Zellen Z1 , Z2 vor dem Ladevorgang L dieselbe einladbare Ladungsmenge aufweisen, können beide Zellen bei dem Ladevorgang L zu 100 % geladen werden, so dass die Zelle Z1 nach dem Ladevorgang L eine Ladungsmenge von 50 Ah und die Zelle Z 2 eine
Ladungsmenge von 80 Ah aufweist. Es sei darauf hingewiesen, dass dies bei der nach dem Stand der Technik bekannten Ladezustands-basierten Symmetrierung nicht möglich ist.
Beispielsweise kann in jede Zelle Z1 , Z2 nach der ersten Symmetrierung (links in Fig. 3) in jede Zelle nur 12,5 Ah geladen werden, so dass die Zelle Z2 nur eine Ladungsmenge von 72,5 Ah (60 +12,5) aufweist.
Schließlich ist in Fig. 5 ein erfindungsgemäßes Fahrzeug 10 dargestellt, welches eine erfindungsgemäße Batterieanordnung 20 umfasst. Die erfindungsgemäße Batterieanordnung 20 umfasst ihrerseits eine Batterie 1 mit vier Zellen Z1-Z4, Steuermittel 2 und Erfassungsmittel 3. Die Erfassungsmittel erfassen von jeder Zelle Z1-Z4 jeweils die einladbare Ladungsmenge und teilen den Wert dieser einladbaren Ladungsmengen den Steuermitteln 2 mit. Die
Steuermittel 2 ermitteln das Maximum dieser einladbaren Ladungsmengen und steuern bei einem Angleichen oder Symmetrieren diejenigen Zellen, welche eine kleinere einladbare Ladungsmenge aufweisen, derart an, dass diese Zellen so lange entladen werden, bis auch ihre einladbare Ladungsmenge der größten einladbaren Ladungsmenge entspricht.
Es sei explizit darauf hingewiesen, dass die vorliegende Erfindung für eine beliebige Anzahl von Zellen durchgeführt werden kann, obwohl in den Figuren nur zwei bzw. vier Zellen Z1-Z4 dargestellt sind.

Claims

Ansprüche
1. Verfahren zum Betrieb einer Batterie (1 ) für ein Fahrzeug (10),
wobei die Batterie (1 ) mehrere Zellen (Z1-Z4) umfasst,
wobei eine Angleichung (S) der Zellen (Z1-Z4) abhängig von Ladungsmengen
(Q_Max_Charge_Cell_X) durchgeführt wird, und
wobei jede der Ladungsmengen einer Ladungsmenge entspricht, welche im aktuellen Zustand der Batterie (1 ) in jeweils eine der Zellen (Z1-Z4) einladbar ist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass nach der Angleichung (S) in jede der Zellen dieselbe Ladungsmenge (Q_Max_Charge_Cell_X) einladbar ist.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass im aktuellen Zustand der Batterie (1 ) für jede Zelle (Z1-Z4) eine einladbare
Ladungsmenge (Q_Max_Charge_Cell_X) bestimmt wird,
dass das Maximum der einladbaren Ladungsmengen bestimmt wird, und
dass jede Zelle (Z1-Z4), deren einladbare Ladungsmenge kleiner als das Maximum ist, zur
Angleichung so lange entladen wird, bis die einladbare Ladungsmenge jeder Zelle (Z1-Z4) dem Maximum entspricht.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass für jede Zelle ein Zielladungszustand bestimmt wird, welcher um einen vorbestimmten
Prozentsatz kleiner als der Vollladungszustand der Zelle ist,
dass im aktuellen Zustand der Batterie (1 ) für jede Zelle (Z1-Z4) eine einladbare
Ladungsmenge (Q_Max_Charge_Cell_X) bestimmt wird,
dass im aktuellen Zustand der Batterie (1 ) für jede Zelle (Z1-Z4) eine zuführbare
Ladungsmenge bestimmt wird, wobei die jeweilige Zelle (Z1 -Z4), wenn ihr die zuführbare
Ladungsmenge eingeladen wird, den Zielladungszustand erreicht,
dass das Maximum der zuführbaren Ladungsmengen bestimmt wird, und
dass jede Zelle (Z1-Z4), deren einladbare Ladungsmenge kleiner als das Maximum der zuführbaren Ladungsmengen ist, zur Angleichung so lange entladen wird, bis die einladbare Ladungsmenge jeder Zelle (Z1-Z4) zumindest dem Maximum entspricht. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Zelle (Z1 -Z4) nicht zur Angleichung entladen wird, wenn die aktuelle
Ladungsmenge (Q_Charge_Cell_X) der Zelle (Z1-Z4) kleiner als eine vorgegebene minimale Ladungsmenge ist oder wenn der aktuelle Ladungszustand (SOC_Cell_X) kleiner als ein vorgegebener minimaler Ladungszustand ist.
Batterieanordnung für ein Fahrzeug (10),
wobei die Batterieanordnung (20) eine Batterie (1 ) mit mehreren Zellen (Z1-Z4),
Steuermittel (2) und Erfassungsmittel (3) umfasst,
wobei die Erfassungsmittel (3) ausgestaltet sind, um Ladungsmengen
(Q_Max_Charge_Cell_X) als Wert zu erfassen und diese Werte an die Steuermittel (2) zu leiten,
wobei die Steuermittel (2) ausgestaltet sind, um eine Angleichung der Zellen (Z1-Z4) abhängig von den Ladungsmengen durchzuführen, und
wobei jede der Ladungsmengen einer Ladungsmenge entspricht, welche im aktuellen Zustand der Batterie (1 ) in jeweils eine der Zellen (Z1-Z4) einladbar ist.
Batterieanordnung nach Anspruch 6, dadurch gekennzeichnet, dass die Batterieanordnung (20) zur Durchführung des Verfahrens nach einem der Ansprüche 1 -8 ausgestaltet ist.
Fahrzeug mit einer Batterieanordnung (20) nach Anspruch 6 oder 7.
PCT/EP2013/060451 2012-06-12 2013-05-22 Verfahren zum betrieb einer batterie für ein fahrzeug sowie entsprechende batteriean-ordnung und fahrzeug WO2013186021A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380031358.4A CN104604075B (zh) 2012-06-12 2013-05-22 用于操作车辆电池的方法和相应的电池布置和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012011604A DE102012011604A1 (de) 2012-06-12 2012-06-12 Verfahren zum Betrieb einer Batterie für ein Fahrzeug sowie entsprechende Batterieanordnung und Fahrzeug
DE102012011604.7 2012-06-12

Publications (2)

Publication Number Publication Date
WO2013186021A2 true WO2013186021A2 (de) 2013-12-19
WO2013186021A3 WO2013186021A3 (de) 2014-05-08

Family

ID=48464017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/060451 WO2013186021A2 (de) 2012-06-12 2013-05-22 Verfahren zum betrieb einer batterie für ein fahrzeug sowie entsprechende batteriean-ordnung und fahrzeug

Country Status (3)

Country Link
CN (1) CN104604075B (de)
DE (1) DE102012011604A1 (de)
WO (1) WO2013186021A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199178A1 (ja) * 2014-06-25 2015-12-30 Evtd株式会社 バランス補正制御装置、バランス補正システム及び蓄電システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026750A1 (de) * 2014-11-28 2016-06-01 Siemens Aktiengesellschaft Verfahren zum Symmetrieren eines Energiespeichersystems
CN110574252B (zh) * 2016-11-07 2023-11-24 康福斯能源公司 平衡多单元电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072295A2 (en) 2009-12-11 2011-06-16 A123 Systems, Inc. System and method for estimating a state of a battery pack
US20110241622A1 (en) 2009-09-29 2011-10-06 O2Micro, Inc. Systems and methods for cell balancing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525285B2 (en) * 2004-11-11 2009-04-28 Lg Chem, Ltd. Method and system for cell equalization using state of charge
DE102010002326A1 (de) * 2010-02-25 2011-08-25 SB LiMotive Company Ltd., Kyonggi Verfahren zum Ausbalancieren von Ladezuständen einer Batterie mit mehreren Batteriezellen sowie ein entsprechendes Batteriemanagementsystem und eine Batterie
DE102010039913A1 (de) * 2010-08-30 2012-03-01 Sb Limotive Company Ltd. Verfahren zum Ausbalancieren von Ladezuständen einer Batterie mit mehreren Batteriezellen sowie ein entsprechendes Batteriemanagementsystem und eine Batterie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110241622A1 (en) 2009-09-29 2011-10-06 O2Micro, Inc. Systems and methods for cell balancing
WO2011072295A2 (en) 2009-12-11 2011-06-16 A123 Systems, Inc. System and method for estimating a state of a battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199178A1 (ja) * 2014-06-25 2015-12-30 Evtd株式会社 バランス補正制御装置、バランス補正システム及び蓄電システム
JP2016010272A (ja) * 2014-06-25 2016-01-18 Evtd株式会社 バランス補正制御装置、バランス補正システム及び蓄電システム

Also Published As

Publication number Publication date
WO2013186021A3 (de) 2014-05-08
CN104604075A (zh) 2015-05-06
CN104604075B (zh) 2018-04-27
DE102012011604A1 (de) 2013-12-12

Similar Documents

Publication Publication Date Title
EP2539957B1 (de) Verfahren zum ausbalancieren von ladezuständen einer batterie mit mehreren batteriezellen sowie ein entsprechendes batteriemanagementsystem und eine batterie
EP2611646B1 (de) Verfahren zum ausbalancieren von ladezuständen einer batterie mit mehreren batteriezellen sowie ein entsprechendes batteriemanagementsystem und eine batterie
EP3092150A1 (de) Elektrochemischer energiespeicher und verfahren zum balancing
WO2017194263A1 (de) Verfahren und vorrichtung zum betrieb einer energiespeicherzelle, batteriemodul und fahrzeug
DE102013204885A1 (de) Verfahren zur Reduzierung des Gesamtladungsverlusts von Batterien
EP3475713B1 (de) Verfahren zur bestimmung des alters eines elektrochemischen energiespeichers
EP2617115B1 (de) Verfahren zum laden einer batterie eines kraftwagens
WO2014131765A2 (de) Verfahren und vorrichtung zum erhöhen der verfügbaren kapazität in einem batteriestrang durch angleichen der zell-ladungsmengen, batteriemanagementsystem, batterie und batterieladegerät
WO2018141638A1 (de) Verfahren zum betrieb eines energiespeichersystems und energiespeichersystem
WO2013186021A2 (de) Verfahren zum betrieb einer batterie für ein fahrzeug sowie entsprechende batteriean-ordnung und fahrzeug
DE102020121612A1 (de) Verfahren zur Bestimmung eines Ladezustands einer Batterie, Batterie und Fahrzeug
DE102017122061A1 (de) Method, Apparatus and Vehicle for Equalizing Power Battery
EP3676933B1 (de) Vorrichtung zum elektropolieren eines zumindest eine lithium-ionen-zelle aufweisenden energiespeichers, ladegerät, verfahren zum betreiben des ladegeräts
DE102018214085A1 (de) Energieversorgungsanordnung zur Energieversorgung einer elektrischen Antriebseinheit eines Kraftfahrzeugs, Kraftfahrzeug und Verfahren zur Energieversorgung
EP3673553A1 (de) Akkumulatoranordnung mit verbesserter symmetrierung
DE102014220008A1 (de) Verfahren zum Ausgleichen der Ladezustände einer Mehrzahl von Batteriezellen und Batteriesystem zum Durchführen eines derartigen Verfahrens
WO2022033750A1 (de) Redox-flow-batterie-system und betriebsverfahren
EP2548281B1 (de) Verfahren zum ladungsausgleich in einem batteriesystem und batteriesystem mit einer ladungsausgleichsschaltung
DE102020206520A1 (de) Verfahren zum Betreiben eines Batteriesystems
DE102013215410A1 (de) Verfahren und Schaltungsanordnung zum Cell-Balancing eines elektrischen Energiespeichers
DE102013213269A1 (de) Verfahren zur Lebensdauererweiterung von Batterien
DE102018206822A1 (de) Elektrische Energiespeichervorrichtung, Verfahren und System zum Betreiben einer elektrischen Energiespeichervorrichtung sowie Fahrzeug
DE102015006254A1 (de) Verfahren zum Laden einer Batterie
DE102013011100A1 (de) Verfahren zum Angleichen des Innenwiderstands/der Zellspannung von in einer Lithium-Batterie vorhandenen Lithium-Batteriezellen sowie System hierfür
WO2024089213A1 (de) Verfahren zum ermitteln von ladezuständen von batteriezellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13723522

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13723522

Country of ref document: EP

Kind code of ref document: A2