WO2013185621A1 - 内毒素检测系统及其检测方法 - Google Patents

内毒素检测系统及其检测方法 Download PDF

Info

Publication number
WO2013185621A1
WO2013185621A1 PCT/CN2013/077191 CN2013077191W WO2013185621A1 WO 2013185621 A1 WO2013185621 A1 WO 2013185621A1 CN 2013077191 W CN2013077191 W CN 2013077191W WO 2013185621 A1 WO2013185621 A1 WO 2013185621A1
Authority
WO
WIPO (PCT)
Prior art keywords
endotoxin
detection
concentration
particle size
quantitative
Prior art date
Application number
PCT/CN2013/077191
Other languages
English (en)
French (fr)
Inventor
彭国平
Original Assignee
南京拓鉒医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210196596.8A external-priority patent/CN102692396B/zh
Priority claimed from CN201310228888.XA external-priority patent/CN103278476B/zh
Application filed by 南京拓鉒医药科技有限公司 filed Critical 南京拓鉒医药科技有限公司
Priority to US14/408,016 priority Critical patent/US9958431B2/en
Priority to JP2015516431A priority patent/JP6093854B2/ja
Priority to EP13803561.3A priority patent/EP2863206A4/en
Publication of WO2013185621A1 publication Critical patent/WO2013185621A1/zh
Priority to US15/877,627 priority patent/US20180224426A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/019Biological contaminants; Fouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the invention relates to an endotoxin detection system based on laser particle size detection and a corresponding detection method thereof, and belongs to the field of bacterial endotoxin detection. Background technique
  • Bacterial endotoxin is a lipopolysaccharide, also known as liposome, which is a component of the outer wall of Gram-negative bacteria. It is widely found in nature. It enters human blood and causes fever, commonly known as pyrogen reaction. Since such substances may cause serious adverse reactions, strict control is required in pharmaceutical injections.
  • the laser particle size detector has not been applied to the detection of endotoxin.
  • the laser particle size detector performs particle size analysis on multi-point astigmatism signals of two or more points depending on the astigmatism signal of the particles at different angles, but the particle concentration cannot be detected.
  • Bacterial endotoxin testing can be divided into qualitative and quantitative testing.
  • the conventional detection method is the rabbit method, and the test article is intravenously injected into the rabbit body, and the change in body temperature is observed within a prescribed time.
  • This method is subject to many interference factors and poor sensitivity. In particular, there may be false negatives for antipyretic drugs or heat-clearing and detoxifying injections.
  • the endotoxin test in the Pharmacopoeia uses the sputum reagent method, which takes a long time to prepare, is time consuming to detect, is costly, and does not allow rapid, continuous, and on-line detection. Summary of the invention
  • the present invention addresses the deficiencies of the prior art, and proposes two endotoxin detection systems and corresponding detection methods thereof to reduce the detection cost and improve the detection speed.
  • the first endotoxin detection system includes a laser source, a short-focus lens, a grating, a telephoto lens, a detection cell, a scattered light receiver, a photoelectric converter, a signal amplifier, a signal processor, a data collector, a quantitative operator, and a data display.
  • the output light of the laser source passes through the short-focus lens, the grating and the telephoto lens, and then enters the detection pool, and the light emitted by the detection pool is received by the scattered light receiver and then enters the photoelectric converter, and the output signal of the photoelectric converter passes through
  • the signal amplifier, signal processor and data collector enter the quantitative operator for endotoxin concentration calculation, and the output of the quantitative operator is connected to the data display.
  • the detection method based on the first endotoxin detection system is as follows:
  • I is the intensity of the scattered light signal
  • K is the proportional constant
  • C is the endotoxin concentration
  • /(D) is the particle size parameter function
  • /(E) is the scattering spectrum function
  • S is the astigmatism
  • S is obtained by the I linearization data of I
  • the second endotoxin detection system includes a laser source, a light source intensity adjuster, a scan mode adjuster, a short focus lens, a grating, a telephoto lens, a detection cell, a scattered light receiver, a photoelectric converter, a signal amplifier, a signal processor, The data collector, the semi-quantitative operator and the data display, wherein: the output light of the laser source sequentially passes through the short-focus lens, the grating and the telephoto lens, and then enters the detection pool, and the light emitted by the detection pool is received by the scattered light receiver and enters the photoelectric
  • the output signal of the converter, the photoelectric converter sequentially passes through the signal amplifier, the signal processor and the data collector, and then enters the semi-quantitative operator for endotoxin limit detection, the output of the signal amplifier, the signal processor, the data collector and the semi-quantitative operator
  • the end is connected to the laser source through a light source intensity adjuster, and the output of the semi-quantitative
  • the detection method based on the second endotoxin detection system is divided into a particle size multi-distribution detection and a particle size single distribution detection, wherein:
  • the particle size multi-distribution detection includes the following steps:
  • Step 1-1 Adjust the intensity of the laser source
  • Step 1-2 Adjust the scan mode adjuster to set the laser source to the segment scan mode
  • Step 1-3 Prepare a series of concentrations of endotoxin standard solution, and perform multi-distribution detection on the concentration of the endotoxin standard solution;
  • Step 1-4 The concentration limit of the endotoxin standard solution of each concentration is detected by setting the detection parameter in the semi-quantitative operator;
  • Step 1-5 According to the sample, the detection parameter in the semi-quantitative operator is set accordingly, and the sample is subjected to particle size multi-distribution detection. When there is no endotoxin particle size distribution peak in the range of 20 ⁇ 300 nm in the detection result, The endotoxin concentration of the sample is lower than the corresponding concentration limit, and conversely, the endotoxin concentration of the sample is higher than the corresponding concentration limit;
  • the particle size single distribution detection includes the following steps:
  • Step 2-1 Adjust the intensity of the laser source
  • Step 2-2 Adjust the scan mode adjuster to set the laser source to the full-distribution scan mode
  • Step 2-3 Prepare a series of endotoxin standard solutions, and perform a single particle size distribution test on each concentration of the endotoxin standard solution;
  • Step 2-4 The concentration limit of the endotoxin standard solution of each concentration is detected by setting the detection parameter in the semi-quantitative operator;
  • Step 2-5 According to the sample, the detection parameters in the semi-quantitative operator are set accordingly, and the sample is subjected to particle size single distribution detection.
  • the sample endotoxin concentration is lower than The corresponding concentration limit, otherwise the sample endotoxin concentration is higher than the corresponding concentration limit.
  • the optical path system is integrated to improve the detection sensitivity and detect endotoxin solution above 0.5 EU/ml.
  • the detection mode is divided into online detection and offline detection.
  • the application is flexible and practical.
  • the time for endotoxin detection is greatly shortened, and the purpose of rapid detection is achieved. It can be used for rapid detection and determination of endotoxin limits in water for injection, semi-finished injections and finished products.
  • Figure 1 is a block diagram showing the structure of a first endotoxin detecting system of the present invention.
  • Figure 2 is a schematic diagram of the principle of quantitative calculation of endotoxin.
  • 3 is a flow chart of detection and early warning of the first endotoxin detection system of the present invention.
  • FIG. 4 is a structural block diagram of a second endotoxin detecting system of the present invention.
  • Fig. 5 is a graph showing the results of endotoxin detection using a concentration of 5.0 EU/ml detection parameter in the particle size multi-distribution detection example.
  • Fig. 6 is a diagram showing the results of endotoxin detection using a concentration of 2.0 EU/ml detection parameter in the particle size multi-distribution detection example.
  • Fig. 7 is a diagram showing the results of endotoxin detection using a concentration of 10.0 EU/ml detection parameter in the particle size single distribution detection example.
  • Fig. 8 is a graph showing the results of endotoxin detection using a concentration of 7.0 EU/ml detection parameter in the particle size single distribution detection example.
  • the structure of the first endotoxin detecting system of the present invention is as shown in FIG. 1, and includes a laser source 1, a short focal lens 2, a grating 3, a telephoto lens 4, a detecting cell 5, a scattered light receiver 6, a photoelectric converter 7, a signal amplifier 8, a signal processor 9, a data collector 10, a quantitative operator 11 and a data display 13, wherein: the output light of the laser source 1 sequentially passes through the short focal lens 2, the grating 3 and the telephoto lens 4, and then enters the detection cell 5 The light emitted from the detecting cell 5 is received by the scattered light receiver 6 and then enters the photoelectric converter 7. The output signal of the photoelectric converter 7 sequentially passes through the signal amplifier 8, the signal processor 9, and the data collector 10, and then enters the quantitative computing device 11 The endotoxin concentration calculation is performed, and the output of the quantitative computing unit 11 is connected to the data display 13.
  • the above endotoxin detection system integrates the optical path system based on a conventional laser particle size detector, preferably about 90 degrees of scattered light path detection.
  • the laser source 1 uses the FLS-2600B dual-beam laser source from Canada's EXFO Corporation; the short-focus lens 2 uses an ultra-low dispersion lens; the grating 3 uses a fiber-coupler type fiber grating; and the telephoto lens 4 uses a low-power NV-202m lens.
  • the detection pool 5 is made of optical glass, including an online detection pool and an offline detection pool. The upper and lower ends of the online detection pool are provided with a liquid outlet and a liquid inlet, and the online detection pool is connected through the liquid outlet and the liquid inlet.
  • Electromagnetic valves are arranged on the liquid outlet and the liquid inlet, and an ultrasonic probe is also arranged at the liquid inlet to eliminate air bubble interference;
  • the pool is a semi-sealed detachable detection tank, and a liquid inlet is provided at the top of the detection tank for manual replacement of the solution.
  • the scattered light receiver 6 adopts API's Picometrix LLC high-speed multi-point wide-angle scattered light receiver module, which is arranged in a multi-point interval logarithm;
  • the photoelectric converter 7 adopts HESMC photoelectric converter of American Hengqi Electronics Co., Ltd.;
  • signal amplifier 8 It consists of an amplifying circuit and a filter circuit.
  • the amplifying circuit is connected to a differential amplifying circuit by three ICL7650 amplifiers.
  • the filter is a commonly used RC network.
  • the signal processor 9 uses the CONVERTER-VLC.602 programmable signal of Italy VAL.CO. Processor; data collector 10 uses Maxim's A/D converter Maxl32.
  • the calculation principle of the quantitative operator 11 is as shown in Fig.
  • the concentration of the endotoxin standard solution can be used to obtain a constant K value.
  • the data display 13 uses a Gold Xingdao 128 X 64 dot matrix display terminal for displaying the detected endotoxin concentration value.
  • the system also has an early warning device 14 connected to the quantitative computing device 11.
  • the early warning device 14 adopts an integrated achievement electronic CMS7000-500 alarm monitoring software and a piezoelectric early warning system, and the detection and early warning process of the system is as follows. As shown in Fig. 3, the endotoxin concentration limit can be preset in the warning software, and the alarm is alarmed when the endotoxin concentration in the detected solution exceeds the limit.
  • the use procedure of the first endotoxin detection system of the present invention for online detection is as follows: According to the production requirement, the endotoxin concentration limit value and the coefficient/and parameter g are preset in the quantitative computing device, and the production line is opened to make the solution enter the online detection pool.
  • Endotoxin concentration (EU/ml) astigmatism
  • Detection method a in the detection time The system of the invention 23.3 EU/ml 3min
  • the structure of the second endotoxin detecting system of the present invention is as shown in FIG. 4, and includes a laser source 1, a short focal lens 2, a grating 3, a telephoto lens 4, a detecting cell 5, a scattered light receiver 6, a photoelectric converter 7, a signal amplifier 8, a signal processor 9, a data collector 10, a semi-quantitative operator 12, a data display 13, a light source intensity adjuster 15, and a scan mode adjuster 16, wherein: the output light of the laser source 1 passes through the short focal lens 2 in sequence After the grating 3 and the telephoto lens 4 enter the detection cell 5, the light emitted by the detection cell 5 is received by the scattered light receiver 6 and then enters the photoelectric converter 7, and the output signal of the photoelectric converter 7 is sequentially passed through the signal amplifier 8, and signal processing.
  • the device 9 and the data collector 10 then enter the semi-quantitative operator 12 for endotoxin limit detection, and the outputs of the signal amplifier 8, the signal processor 9, the data collector 10 and the semi-quantitative operator 12 are connected by the light source intensity adjuster 15.
  • the output of the laser source 1, semi-quantitative operator 12 is also scanned
  • the mode adjuster 16 is connected to the laser source 1, and the data display 13 is connected to the output of the semi-quantitative operator 12.
  • the endotoxin detection system described above is also preferably about 90 degrees of scattered light path detection.
  • the laser source 1 can be a single-beam or dual-beam laser source.
  • the FLS-2600B dual-beam laser source from Canada's EXFO is also used here.
  • the light source intensity adjuster 15 uses the AVR-8A energy conditioner from Bocom, which is used to adjust the laser.
  • the intensity of the source 1; the scan mode adjuster 16 is used to control the scanning range of the particle size, and the mode includes a segmented scan mode and a full-distribution scan mode, and the scan range of the segment scan mode is 1 to 10 nm (preferably 1 to 5 nm), 5 to 500 nm (preferably 5 to 200 nm), 100 to 1000 nm (preferably 200 to 1000 nm), the scanning range of the full-distribution scanning mode is 1 to 1000 nm; the semi-quantitative arithmetic unit 13 stores the detection sensitivity of different endotoxin concentrations (concentration limit)
  • the detection parameters of the value including the detection parameters of the natural number (EU/ml) concentration limit between 0.5 EU/ml and 1 to 10, can be selected according to the limits of endotoxin content in different samples.
  • the detection parameters include amplification factor, channel number, delay coefficient, and speed coefficient.
  • the second endotoxin detection system is also provided with an early warning device 14, which is connected to the output of the semi-quantitative operator 13, and the early warning device 14 is also in the form of the first endotoxin. The same in the detection system.
  • the detection method of the second endotoxin detection system of the invention is divided into particle size multi-distribution detection and particle size single distribution detection, and the towel thereof:
  • the particle size multi-distribution detection includes the following steps:
  • Step 1-1 Adjust the intensity of the laser source
  • Step 1-2 Adjust the scan mode adjuster to set the laser source to the segment scan mode
  • Step 1-3 Prepare a series of concentrations of endotoxin standard solution, and perform multi-distribution detection on the concentration of the endotoxin standard solution;
  • Step 1-4 The concentration limit of the endotoxin standard solution of each concentration is detected by setting the detection parameter in the semi-quantitative operator;
  • Step 1-5 According to the limits of the endotoxin content of the sample, the detection parameters in the semi-quantitative operator are set accordingly (ie, the detection sensitivity is selected), and the sample is subjected to particle size multi-distribution detection, and the detection result is in the range of 20 to 300 nm.
  • the detection parameters in the semi-quantitative operator are set accordingly (ie, the detection sensitivity is selected), and the sample is subjected to particle size multi-distribution detection, and the detection result is in the range of 20 to 300 nm.
  • the sample endotoxin concentration is lower than the corresponding concentration limit, that is, qualified, otherwise the sample endotoxin concentration is higher than the corresponding concentration limit, that is, unqualified.
  • Step 2-1 Adjust the intensity of the laser source;
  • Step 2-2 Adjust the scan mode adjuster to set the laser source to the full-distribution scan mode
  • Step 2-3 Prepare a series of endotoxin standard solutions, and perform a single particle size distribution test on each concentration of the endotoxin standard solution;
  • Step 2-4 The concentration limit of the endotoxin standard solution of each concentration is detected by setting the detection parameter in the semi-quantitative operator;
  • Step 2-5 According to the limits of the endotoxin content of the sample, the detection parameters in the semi-quantitative operator are set accordingly (ie, the detection sensitivity is selected), and the sample is subjected to particle size distribution detection, and the endotoxin particle size distribution is detected in the detection result.
  • the peak is less than 20 nm
  • the endotoxin concentration of the sample is lower than the corresponding concentration limit, that is, qualified
  • the endotoxin concentration of the sample is higher than the corresponding concentration limit, that is, it is unqualified.
  • the detection embodiment of the second endotoxin detection system is described below.
  • Equipment materials a, CN-11 endotoxin solution nanometer particle size analyzer; b, bacterial endotoxin working standard (batch number: 150601-201176, specifications: 100 EUAmp- China National Institute for the Control of Pharmaceutical and Biological Products); c, bacteria Toxin inspection water (batch number: 100130, Zhanjiang Bokang Marine Biological Co., Ltd.).
  • the results show that the method uses the 2.0 EU/ml limit detection parameter to detect the failure, but the 5.0 EU/ml limit detection parameter is qualified, indicating that the sample endotoxin concentration is less than 5.0 EU/ml and greater than 2.0 EU/ Ml, consistent with the results measured by the turbidity reagent turbidity method, verified the reliability of the method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

公开了两种内毒素检测系统及其相应的检测方法。两种系统均是在常规激光粒径检测仪的基础上对光路检测系统进行集成,通过激光散射检测水溶液中内毒素胶粒的粒径分布特征,其中一种是通过定量运算器根据内毒素粒子在三个以上不同角度的散射强度差异,拟合散光度与内毒素浓度的相关性,计算出内毒素浓度,另一种是通过激光源强度调节、扫描模式调节以及检测参数调节,测试出系列浓度内毒素标准溶液浓度限值的检测参数,然后选择相应检测参数对样品进行检测,根据检测结果中粒径分布峰出现范围判定样品是否合格。检测速度快,检测成本低,可靠性高,可实现内毒素的定量以及限度的单次、连续或在线检测。

Description

内毒素检测系统及其检测方法
技术领域
本发明涉及基于激光粒径检测的内毒素检测系统及其相应的检测方法, 属于细菌内 毒素检测领域。 背景技术
细菌内毒素为脂多糖, 也被称为脂质体, 其是革兰氏阴性菌细胞外壁的成分, 广泛 存在于自然界中, 该物质进入人体血液会引起发热, 俗称热原反应。 由于此类物质可能 致人产生严重的不良反应, 因此在药物注射剂中需要严格控制。
目前激光粒径检测仪尚未应用于内毒素的检测,我们对灵敏度较高的马尔文 Nano ZS ZEW3600型激光粒径分析仪进行分析,其可检测出内毒素浓度在 10EU/ml以上的溶液中 粒子, 这无法满足注射剂中内毒素的检测需要。 激光粒径检测仪是根据颗粒在不同角度 的散光信号不同, 对两点以上的多点散光信号进行粒径分析, 但还不能对粒子浓度进行 检测。
细菌内毒素检测可以分为定性检测和定量检测两类。 常规的检测方法为家兔法, 将 供试品静脉注入家兔体内, 在规定的时间内观察体温的变化情况。 该方法受干扰因素多, 灵敏度差, 特别是对退热作用的药物或清热解毒类的注射剂可能还会出现假阴性。 药典 中的内毒素检测均采用鲎试剂法, 该方法准备时间长, 检测耗时, 成本较高, 且不能实 现快速、 连续和在线检测。 发明内容
本发明针对现有技术存在的不足,而提出两种内毒素检测系统及其相应的检测方法, 以降低检测成本并提高检测速度。
第一种内毒素检测系统包括激光源、 短焦透镜、 光栅、 长焦透镜、 检测池、 散射光 接收器、 光电转换器、 信号放大器、 信号处理器、 数据采集器、 定量运算器和数据显示 器, 其中: 激光源的输出光依次通过短焦透镜、 光栅和长焦透镜后进入检测池, 检测池 的透出光由散射光接收器接收后进入光电转换器, 光电转换器的输出信号依次通过信号 放大器、 信号处理器和数据采集器后进入定量运算器进行内毒素浓度计算, 定量运算器 的输出端连接数据显示器。 基于第一种内毒素检测系统的检测方法内容如下:
在三个以上不同角度检测溶液中内毒素粒子的散射光信号强度, 根据光散射公式 1 = K C /(D) /(E), 由其中任意两个角度的散射光信号计算出 /(D)和 /(E), 将光散射公式化 简为 S =/_ C + g, 再用其余角度的散射光信号计算出溶液的内毒素浓度, 实现定量检测; 以上公式中: I为散射光信号强度; K为比例常数; C为内毒素浓度; /(D)为粒子粒 径参数函数; /(E)为散射光谱函数; S为散光度, S是由 I的 In线性化数据处理得到; 相 关系数/= 1 /(0) _/(^); g为修正参数。
第二种内毒素检测系统包括激光源、 光源强度调节器、 扫描模式调节器、 短焦透镜、 光栅、 长焦透镜、 检测池、 散射光接收器、 光电转换器、 信号放大器、 信号处理器、 数 据采集器、 半定量运算器和数据显示器, 其中: 激光源的输出光依次通过短焦透镜、 光 栅和长焦透镜后进入检测池, 检测池的透出光由散射光接收器接收后进入光电转换器, 光电转换器的输出信号依次通过信号放大器、 信号处理器和数据采集器后进入半定量运 算器进行内毒素限度检测, 信号放大器、 信号处理器、 数据采集器和半定量运算器的输 出端均通过光源强度调节器连接激光源, 半定量运算器的输出端还通过扫描模式调节器 连接激光源, 数据显示器与半定量运算器的输出端相连。
基于第二种内毒素检测系统的检测方法分为粒径多分布检测和粒径单分布检测, 其 中:
粒径多分布检测包括如下步骤:
步骤 1-1 : 调节激光源的强度;
步骤 1-2: 调节扫描模式调节器, 设定激光源为分段扫描模式;
步骤 1-3: 制备系列浓度的内毒素标准溶液, 对各浓度内毒素标准溶液进行粒径多分 布检测;
步骤 1-4: 通过设置半定量运算器中的检测参数, 检测出各浓度内毒素标准溶液的浓 度限值;
步骤 1-5: 根据样品对半定量运算器中的检测参数进行相应设置, 对样品进行粒径多 分布检测, 当检测结果中在 20〜300nm范围内无内毒素粒径分布峰出现时, 则样品内毒 素浓度低于相应的浓度限值, 反之则样品内毒素浓度高于相应的浓度限值;
粒径单分布检测包括如下步骤:
步骤 2-1 : 调节激光源强度; 步骤 2-2: 调节扫描模式调节器, 设定激光源为全分布扫描模式;
步骤 2-3: 制备系列浓度的内毒素标准溶液, 对各浓度内毒素标准溶液进行粒径单分 布检测;
步骤 2-4: 通过设置半定量运算器中的检测参数, 检测出各浓度内毒素标准溶液的浓 度限值;
步骤 2-5: 根据样品对半定量运算器中的检测参数进行相应设置, 对样品进行粒径单 分布检测, 当检测结果中内毒素粒径分布峰小于 20nm 时, 则样品内毒素浓度低于相应 的浓度限值, 反之则样品内毒素浓度高于相应的浓度限值。
技术效果:
1、 检测无需消耗试剂 (鲎试剂), 可大幅降低内毒素检测的成本。
2、 对光路系统进行了集成, 提高了检测灵敏度, 可检测 0.5 EU/ml以上的内毒素溶 液。
3、 检测模式分为在线检测和离线检测两种, 应用灵活、 实用性好。
4、 大大縮短了内毒素检测的时间, 达到了快速检测的目的, 可用于注射用水、 注射 剂半成品及成品中内毒素限值的快速检测判断。
5、 增设了预警系统, 可在溶液的内毒素浓度超标时触发预警, 实现在线监控, 可靠 性高。 附图说明
图 1为本发明第一种内毒素检测系统的结构框图。
图 2为内毒素定量计算原理示意图。
图 3为本发明第一种内毒素检测系统的检测预警流程图。
图 4为本发明第二种内毒素检测系统的结构框图。
图 5为粒径多分布检测实例中选用浓度 5.0 EU/ml检测参数的内毒素检测结果图。 图 6为粒径多分布检测实例中选用浓度 2.0 EU/ml检测参数的内毒素检测结果图。 图 7为粒径单分布检测实例中选用浓度 10.0 EU/ml检测参数的内毒素检测结果图。 图 8为粒径单分布检测实例中选用浓度 7.0 EU/ml检测参数的内毒素检测结果图。 图 1、 图 4中的标号名称: 1、 激光源; 2、 短焦透镜; 3、 光栅; 4、 长焦透镜; 5、 检测池; 6、 散射光接收器; 7、 光电转换器; 8、 信号放大器; 9、 信号处理器; 10、 数 据采集器; 11、 定量运算器; 12、 半定量运算器; 13、 数据显示器; 14、 预警装置; 15、 光源强度调节器; 16、 扫描模式调节器。 具体实施方式
(一) 第一种内毒素检测系统
本发明第一种内毒素检测系统的结构如图 1所示, 包括激光源 1、 短焦透镜 2、 光栅 3、 长焦透镜 4、 检测池 5、 散射光接收器 6、 光电转换器 7、 信号放大器 8、 信号处理器 9、 数据采集器 10、 定量运算器 11和数据显示器 13, 其中: 激光源 1的输出光依次通过 短焦透镜 2、 光栅 3和长焦透镜 4后进入检测池 5, 检测池 5的透出光由散射光接收器 6 接收后进入光电转换器 7, 光电转换器 7的输出信号依次通过信号放大器 8、信号处理器 9和数据采集器 10后进入定量运算器 11进行内毒素浓度计算, 定量运算器 11的输出端 连接数据显示器 13。
上述内毒素检测系统是在常规激光粒径检测仪的基础上对光路系统进行集成, 优选 为 90度左右的散射光路检测。 激光源 1采用加拿大 EXFO公司的 FLS-2600B双光束激 光源; 短焦透镜 2采用超低色散透镜; 光栅 3采用光纤耦合器型光纤光栅; 长焦透镜 4 采用低耗 NV-202m透镜。检测池 5由光学玻璃制成,包括在线检测池和离线检测池两种: 在线检测池的上下两端设有出液口和进液口, 在线检测池通过出液口和进液口连接在注 射剂生产线管路中并形成回路, 以实现药液的连续检测, 在出液口和进液口上均设有电 磁阀门, 在进液口处还设有超声探头, 用于排除气泡干扰; 离线检测池为半密封可拆卸 式检测池, 该检测池顶部设有加液口, 用于手动更换溶液。 散射光接收器 6采用 API公 司的 Picometrix LLC高速多点宽角度散射光接收器模块, 呈多点间隔对数排列; 光电转 换器 7采用美国恒启电子有限公司的 HESMC光电转换器; 信号放大器 8由放大电路和 滤波电路组成, 其中放大电路由三个 ICL7650放大器接成差动放大电路形式, 滤波器为 常用的 RC网络; 信号处理器 9采用意大利 VAL.CO的 CONVERTER-VLC.602可编程信 号处理器; 数据采集器 10采用美信公司的 A/D转换器 Maxl32。 定量运算器 11的计算 原理如图 2所示, 根据光散射公式1 = 1^〔_ /(0) _ ^) _/(八 ), 式中: I为散射光信号 强度, K为比例常数, b为待测溶液厚度, C为内毒素浓度 (单位: EU/ml), /(D)为粒子 粒径参数函数, /(E)为散射光谱函数, /(Δλ)为波长函数, 待测溶液厚度 (比色池) 固定, 波长固定, 所以 b和/ (Δλ)为常数, 光散射公式可以简化为 Ι = Κ ·〔· /(ϋ) · /(Ε)。 用不同 浓度的内毒素标准溶液检测可得出常数 K值, 系统在三个以上不同角度检测溶液中内毒 素粒子的散射光信号强度, 根据 I = K _ C _/(D) _/(E), 由其中任意两个角度的散射光信号 计算出 /(D)和 ΛΕ), 将光散射公式简化为 S =/_ C + g, 式中: S为散光度, S是由 I的 In 线性化数据处理得到, 相关系数/= _ /(0) _ /(£), g为修正参数, 再用其余角度的散射 光信号计算出溶液中内毒素含量, 实现定量检测。 数据显示器 13采用金创导公司的 128 X 64点阵显示终端, 用于显示检测出的内毒素浓度值。 为了使系统具备报警功能, 本系 统还设有与定量运算器 11 相连的预警装置 14, 预警装置 14 采用集成成就电子 CMS7000-500报警监控软件和压电式预警系统, 本系统的检测预警流程如图 3所示, 在 预警软件中可预先设定内毒素浓度限值, 当检测的溶液中内毒素浓度超过限值时警示器 进行报警。
本发明第一种内毒素检测系统在线检测时的使用流程为: 依据生产需要, 在定量运 算器中预先设定内毒素浓度限值以及系数/和参数 g, 开启生产线, 使溶液进入在线检测 池, 根据 S =/_ C + g计算出内毒素浓度, 当该浓度小于限值时系统保持运行, 当该浓度 高于限值时预警系统报警。
本发明第一种内毒素检测系统离线检测时的操作步骤为: 在定量运算器中预先设定 系数/和参数 g, 取出离线检测池, 用纯净水清洗干净, 用待测溶液荡洗 2〜3次后加入待 测溶液, 将检测池置于本系统中, 根据 S =/_ C + g计算出内毒素浓度。
下面针对第一种内毒素检测系统, 提供丹参滴注液的内毒素离线定量检测实例: 更换离线检测池, 取工作标准内毒素, 使用检查用水配制成浓度为 100 EU/ml的内 毒素标准溶液, 再使用检查用水逐步稀释成系列浓度的内毒素标准溶液, 配制成的系列 浓度分别为 0.5、 1、 5、 10、 50 EU/ml, 将溶液置于检测池中进行检测, 通过定量运算器 进行数据回归计算, 线性方程为: S = 0.056C+0.165, R2 = 0.997, 计算结果见表 1。 表 1
内毒素浓度 (EU/ml) 散光度
0.5 0.107
1 0.217
5 0.523
10 0.761
50 2.988 取丹参滴注液中间体(上海华源安徽锦辉制药有限公司提供, 批号: 05110209), 分 别采用本系统和鲎试剂浊度法计算内毒素含量, 结果见表 2。
表 2
检测方法 a里 检测时间 本发明系统 23.3 EU/ml 3min
鲎试剂浊度法 22.8 EU/ml 35min
结果显示, 本系统测得的内毒素含量与鲎试剂浊度法较为接近。 目前鲎试剂浊度法 已为中国药典收载方法, 测定结果较为准确, 本系统测得的结果与之相近, 这也说明了 本系统的可靠性。
下面针对第一种内毒素检测系统, 提供丹参滴注液的内毒素在线定量检测实例: 取两份丹参滴注液, 一份为正常药液(上海华源安徽锦辉制药有限公司提供, 批号:
10011605 ), 另一份为污染后的药液, 对两份药液分别进行在线检测。 设置检测参数: f 为 0.056, g为 0.165, 内毒素限值为 l EU/mL, 开启生产线进行检测, 通过回归方程 S = 0.056C+0.165计算内毒素浓度, 结果见表 3。
表 3
丹参滴注液样品 内毒素浓度 (EU/ml) 系统状态
正常药液 小于限值 正常 污染药液 50.2 报警 结果表明, 当内毒素污染超过限值时, 本系统可进行报警, 能够实现注射剂生产中 的内毒素污染状况的定量监控。
(二) 第二种内毒素检测系统
本发明第二种内毒素检测系统的结构如图 4所示, 包括激光源 1、 短焦透镜 2、 光栅 3、 长焦透镜 4、 检测池 5、 散射光接收器 6、 光电转换器 7、 信号放大器 8、 信号处理器 9、数据采集器 10、 半定量运算器 12、数据显示器 13、光源强度调节器 15和扫描模式调 节器 16, 其中: 激光源 1的输出光依次通过短焦透镜 2、 光栅 3和长焦透镜 4后进入检 测池 5, 检测池 5的透出光由散射光接收器 6接收后进入光电转换器 7, 光电转换器 7的 输出信号依次通过信号放大器 8、信号处理器 9和数据采集器 10后进入半定量运算器 12 进行内毒素限度检测, 信号放大器 8、 信号处理器 9、 数据采集器 10和半定量运算器 12 的输出端均通过光源强度调节器 15连接激光源 1,半定量运算器 12的输出端还通过扫描 模式调节器 16连接激光源 1, 数据显示器 13与半定量运算器 12的输出端相连。
上述内毒素检测系统同样优选为 90度左右的散射光路检测。激光源 1可采用单光束 或双光束激光源, 这里也采用加拿大 EXFO公司的 FLS-2600B双光束激光源; 光源强度 调节器 15采用美国博康公司的 AVR-8A型能源调节器, 用于调节激光源 1的强度; 扫描 模式调节器 16用于控制粒径的扫描范围, 其模式包括分段扫描模式和全分布扫描模式, 分段扫描模式的扫描范围为 l〜10nm (优选 l〜5nm )、 5〜500nm (优选 5〜200nm)、 100〜1000nm (优选 200〜1000nm), 全分布扫描模式的扫描范围为 l〜1000nm; 半定量运 算器 13中集成储存了不同内毒素浓度检测灵敏度(浓度限值)的检测参数,这里包括 0.5 EU/ml和 1〜10之间自然数 (EU/ml) 浓度限值的检测参数, 可根据不同样品中内毒素含 量的限度要求进行不同检测限量的选择, 所述检测参数包括放大倍数、 通道数、 延迟系 数和速度系数。 短焦透镜 2、 光栅 3、 长焦透镜 4、 检测池 5、 散射光接收器 6、 光电转换 器 7、 信号放大器 8、 信号处理器 9、 数据采集器 10和数据显示器 13所采用的器件形式 均与第一种内毒素检测系统中相同。 为了使系统具备报警功能, 第二种内毒素检测系统 也同样设有预警装置 14, 预警装置 14与半定量运算器 13 的输出端相连, 预警装置 14 所采用的形式也与第一种内毒素检测系统中相同。
本发明第二种内毒素检测系统的检测方法分为粒径多分布检测和粒径单分布检测, 其巾:
粒径多分布检测包括如下步骤:
步骤 1-1 : 调节激光源的强度;
步骤 1-2: 调节扫描模式调节器, 设定激光源为分段扫描模式;
步骤 1-3 : 制备系列浓度的内毒素标准溶液, 对各浓度内毒素标准溶液进行粒径多分 布检测;
步骤 1-4: 通过设置半定量运算器中的检测参数, 检测出各浓度内毒素标准溶液的浓 度限值;
步骤 1-5 :根据样品内毒素含量的限度要求对半定量运算器中的检测参数进行相应设 置 (即选择检测灵敏度), 对样品进行粒径多分布检测, 当检测结果中在 20〜300nm范围 内无内毒素粒径分布峰出现时, 则样品内毒素浓度低于相应的浓度限值, 即合格, 反之 则样品内毒素浓度高于相应的浓度限值, 即不合格。 步骤 2-1 : 调节激光源强度;
步骤 2-2: 调节扫描模式调节器, 设定激光源为全分布扫描模式;
步骤 2-3: 制备系列浓度的内毒素标准溶液, 对各浓度内毒素标准溶液进行粒径单分 布检测;
步骤 2-4: 通过设置半定量运算器中的检测参数, 检测出各浓度内毒素标准溶液的浓 度限值;
步骤 2-5:根据样品内毒素含量的限度要求对半定量运算器中的检测参数进行相应设 置(即选择检测灵敏度), 对样品进行粒径单分布检测, 当检测结果中内毒素粒径分布峰 小于 20nm 时, 则样品内毒素浓度低于相应的浓度限值, 即合格, 反之则样品内毒素浓 度高于相应的浓度限值, 即不合格。
下面介绍第二种内毒素检测系统的检测实施例。
半定量运算器的参数采集:
设备材料: a、 CN-11型内毒素溶液纳米粒径分析仪; b、 细菌内毒素工作标准品(批 号: 150601-201176, 规格: 100 EUAmp- 中国药品生物制品检定所); c、 细菌内毒素 检查用水 (批号: 100130, 湛江博康海洋生物有限公司)。
方法: 取工作标准内毒素, 使用检查用水配制成浓度为 100 EU/ml的内毒素标准溶 液,再使用检查用水逐步稀释成系列浓度的内毒素标准溶液,这里的系列浓度分别为 10.0 EU/mK 5.0 EU/ml、 2.0 EU/ml、 1.0 EU/ml禾口 0.5 EU/ml。
启动 CN-11型内毒素溶液纳米粒径分析仪, 预热 30min以上, 将系列标准溶液按低 浓度到高浓度依次加入到检测池中进行检测, 设置检测参数 (放大倍数、 通道数、 延迟 系数、速度系数),调节纳米粒径分析仪的检测灵敏度,优选的检测参数结果如表 4所示, 将表 4中的各内毒素浓度检测参数储存于半定量运算器中。
表 4 内毒素浓度 激光源强度 放大倍数 通道数 延迟系数 速度系数
0.5 EU/ml 100 500 400 50 30
1.0 EU/ml 90 400 350 60 40
2.0 EU/ml 80 300 300 60 45
5.0 EU/ml 65 200 300 70 35 10.0 EU/ml 50 200 200 90 60
I、 用粒径多分布检测和动态浊度法分别测定丹参注射液中间体的内毒素含量 设备材料: a、 CN-11型内毒素溶液纳米粒径分析仪; b、 BET-16M细菌内毒素测定 仪; c、 动态浊度法鲎试剂 (批号: 1303270, λ= 0.03 EU-mL"1, 规格: 0.6 mLAmp- 湛 江博康海洋生物有限公司); d、 细菌内毒素工作标准品 (150601-201176, 规格: 100 EU-Amp"1, 中国药品生物制品检定所); e、 细菌内毒素检查用水 (批号: 070130, 规格: SmL-Amp 1, 湛江博康海洋生物有限公司); f、 细菌内毒素指示剂(批号: 071114, 规格: 3000 EU-Amp 1,湛江博康海洋生物有限公司); g、丹参滴注液中间体(批号: 201302191, 上海华源安徽锦辉制药有限公司)。
方法: 取丹参滴注液中间体, 根据丹参滴注液中间体内毒素的限量要求, 以分段扫 描模式进行多分布检测, 选择 5.0 EU/ml限值检测参数、 2.0 EU/ml限值检测参数以及鲎 试剂浊度法检测内毒素含量, 结果如图 5、 图 6、 表 5所示。
表 5
检测方法 内毒素含量
鲎试剂浊度法 2.8 EU/ml
结果表明, 本方法采用 2.0 EU/ml限值检测参数检出为不合格, 而采用 5.0 EU/ml限 值检测参数检出为合格, 说明样品内毒素浓度小于 5.0 EU/ml并大于 2.0 EU/ml, 与鲎试 剂浊度法测得的结果相符, 验证了本方法的可靠性。
II、 用粒径单分布检测和动态浊度法分别测定消癌平注射液中间体的内毒素含量 取消癌平注射液中间体, 根据消癌平注射液中间体内毒素的限量要求, 以全分布扫 描模式进行单分布检测, 选择 10.0 EU/ml限值检测参数进行内毒素含量扫描, 结果如图 7所示, 在大于 20nm的范围内无粒径分布峰出现。 通过外加内毒素标准品, 经鲎试剂动 态浊度法检测其内毒素含量为 8.0 EU/ml, 进而选用 7.0 EU/ml限值检测参数进行检测, 结果如图 8所示,粒径分布峰偏移至在 270nm,证明样品内毒素浓度超过 7.0 EU/ml的限 值, 与鲎试剂浊度法测得的结果相符, 再次验证了本方法的可靠性。

Claims

权利要求书
1、 一种内毒素检测系统, 其特征在于: 包括激光源、 短焦透镜、 光栅、 长焦透镜、 检测池、 散射光接收器、 光电转换器、 信号放大器、 信号处理器、 数据采集器、 定量运 算器和数据显示器, 其中: 激光源的输出光依次通过短焦透镜、 光栅和长焦透镜后进入 检测池, 检测池的透出光由散射光接收器接收后进入光电转换器, 光电转换器的输出信 号依次通过信号放大器、 信号处理器和数据采集器后进入定量运算器进行内毒素浓度计 算, 定量运算器的输出端连接数据显示器。
2、 根据权利要求 1 所述的内毒素检测系统, 其特征在于: 还包括预警装置, 所述预 警装置与定量运算器的输出端相连。
3、 一种基于权利要求 1 所述的内毒素检测系统的检测方法, 其特征在于: 该方法的 内容如下:
在三个以上不同角度检测溶液中内毒素粒子的散射光信号强度, 根据光散射公式 I = K - C - /(D) - /(E), 由其中任意两个角度的散射光信号计算出 /(D)和 /(E), 将光散射公式化 简为 S = / · C + g, 再用其余角度的散射光信号计算出溶液的内毒素浓度, 实现定量检 以上公式中: I 为散射光信号强度; K 为比例常数; C 为内毒素浓度; /(D)为粒子粒 径参数函数; /(E)为散射光谱函数; S为散光度, S是由 I的 In线性化数据处理得到; 相 关系数 /= Κ ·/(ϋ) ·/(Ε); g为修正参数。
4、 一种内毒素检测系统, 其特征在于: 包括激光源、 光源强度调节器、 扫描模式调 节器、 短焦透镜、 光栅、 长焦透镜、 检测池、 散射光接收器、 光电转换器、 信号放大 器、 信号处理器、 数据采集器、 半定量运算器和数据显示器, 其中: 激光源的输出光依 次通过短焦透镜、 光栅和长焦透镜后进入检测池, 检测池的透出光由散射光接收器接收 后进入光电转换器, 光电转换器的输出信号依次通过信号放大器、 信号处理器和数据采 集器后进入半定量运算器进行内毒素限度检测, 信号放大器、 信号处理器、 数据采集器 和半定量运算器的输出端均通过光源强度调节器连接激光源, 半定量运算器的输出端还 通过扫描模式调节器连接激光源, 数据显示器与半定量运算器的输出端相连。
5、 根据权利要求 4所述的内毒素检测系统, 其特征在于: 还包括预警装置, 所述预 警装置与半定量运算器的输出端相连。
6、 根据权利要求 4所述的内毒素检测系统, 其特征在于: 所述扫描模式调节器的模 式包括分段扫描模式和全分布扫描模式, 其中分段扫描模式的扫描范围为 l~10nm、 5~500nm、 100~1000nm, 全分布扫描模式的扫描范围为 l~1000nm。
7、 根据权利要求 1或 4所述的内毒素检测系统, 其特征在于: 所述检测池是由光学 玻璃制成, 检测池包括在线检测池和离线检测池。
8、 一种基于权利要求 4所述的内毒素检测系统的检测方法, 其特征在于: 该方法分 为粒径多分布检测和粒径单分布检测, 其中:
粒径多分布检测包括如下步骤:
步骤 1-1 : 调节激光源的强度;
步骤 1-2: 调节扫描模式调节器, 设定激光源为分段扫描模式;
步骤 1-3 : 制备系列浓度的内毒素标准溶液, 对各浓度内毒素标准溶液进行粒径多分 布检测;
步骤 1-4: 通过设置半定量运算器中的检测参数, 检测出各浓度内毒素标准溶液的浓 度限值;
步骤 1-5 : 根据样品对半定量运算器中的检测参数进行相应设置, 对样品进行粒径多 分布检测, 当检测结果中在 20~300nm范围内无内毒素粒径分布峰出现时, 则样品内毒素 浓度低于相应的浓度限值, 反之则样品内毒素浓度高于相应的浓度限值;
粒径单分布检测包括如下步骤:
步骤 2-1 : 调节激光源强度;
步骤 2-2: 调节扫描模式调节器, 设定激光源为全分布扫描模式;
步骤 2-3 : 制备系列浓度的内毒素标准溶液, 对各浓度内毒素标准溶液进行粒径单分 布检测;
步骤 2-4: 通过设置半定量运算器中的检测参数, 检测出各浓度内毒素标准溶液的浓 度限值;
步骤 2-5 : 根据样品对半定量运算器中的检测参数进行相应设置, 对样品进行粒径单 分布检测, 当检测结果中内毒素粒径分布峰小于 20nm时, 则样品内毒素浓度低于相应的 浓度限值, 反之则样品内毒素浓度高于相应的浓度限值。
9、 根据权利要求 8 所述的内毒素检测系统的检测方法, 其特征在于: 所述半定量运 算器中的检测参数包括放大倍数、 通道数、 延迟系数和速度系数。
PCT/CN2013/077191 2012-05-14 2013-06-13 内毒素检测系统及其检测方法 WO2013185621A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/408,016 US9958431B2 (en) 2012-05-14 2013-06-13 Endotoxin detection systems and detection methods thereof
JP2015516431A JP6093854B2 (ja) 2012-06-14 2013-06-13 エンドトキシン検出システムに基づく検出方法
EP13803561.3A EP2863206A4 (en) 2012-06-14 2013-06-13 SYSTEMS FOR ENDOTOXIN DETECTION AND DETECTION METHOD THEREFOR
US15/877,627 US20180224426A1 (en) 2012-06-14 2018-01-23 Endotoxin detection systems and detection methods thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210196596.8 2012-06-14
CN201210196596.8A CN102692396B (zh) 2012-06-14 2012-06-14 一种内毒素检测系统及其定量检测方法
CN201310228888.X 2013-06-08
CN201310228888.XA CN103278476B (zh) 2013-06-08 2013-06-08 一种内毒素检测系统及其限度检测方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/408,016 A-371-Of-International US9958431B2 (en) 2012-05-14 2013-06-13 Endotoxin detection systems and detection methods thereof
US15/877,627 Division US20180224426A1 (en) 2012-06-14 2018-01-23 Endotoxin detection systems and detection methods thereof

Publications (1)

Publication Number Publication Date
WO2013185621A1 true WO2013185621A1 (zh) 2013-12-19

Family

ID=49757542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077191 WO2013185621A1 (zh) 2012-05-14 2013-06-13 内毒素检测系统及其检测方法

Country Status (4)

Country Link
US (2) US9958431B2 (zh)
EP (1) EP2863206A4 (zh)
JP (1) JP6093854B2 (zh)
WO (1) WO2013185621A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504922A (zh) * 2020-10-20 2021-03-16 华南师范大学 一种大气颗粒物粒径分布的在线测量系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6896459B2 (ja) * 2017-03-07 2021-06-30 株式会社日立ハイテク 自動分析装置及び自動分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735802A (zh) * 2002-11-11 2006-02-15 阿特艾得凡科技研究公司 用于动物体部分生物组织的时间分辨光学成像方法和设备
CN101520414A (zh) * 2008-02-29 2009-09-02 怀亚特技术公司 通过注射到流动溶剂中测定溶液中分子的平均性质的方法
US20110066382A1 (en) * 2005-09-19 2011-03-17 Jmar Llc Systems and methods for detecting normal levels of bacteria in water using a multiple angle light scattering (mals) instrument
CN102112866A (zh) * 2008-07-30 2011-06-29 兴和株式会社 用于测定来自生物体的生理活性物质的方法和测定装置
CN102692396A (zh) * 2012-06-14 2012-09-26 南京中医药大学 一种内毒素检测系统及其定量检测方法
CN202649117U (zh) * 2012-06-14 2013-01-02 南京中医药大学 一种内毒素检测系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782828A (en) * 1972-03-09 1974-01-01 Gte Laboratories Inc Picosecond spectrometer using picosecond continuum
US4784486A (en) * 1987-10-06 1988-11-15 Albion Instruments Multi-channel molecular gas analysis by laser-activated Raman light scattering
NO894680L (no) * 1989-11-24 1991-05-27 Flowtech A S V Harald Steen Pulsmodulasjon av eksitasjonslyskilden i vaeskestroemcytofotometere.
US5453814A (en) * 1994-04-13 1995-09-26 Nikon Precision Inc. Illumination source and method for microlithography
US5872627A (en) * 1996-07-30 1999-02-16 Bayer Corporation Method and apparatus for detecting scattered light in an analytical instrument
JP3566840B2 (ja) * 1997-10-04 2004-09-15 株式会社堀場製作所 濃度測定装置
DE19846928A1 (de) * 1998-10-12 2000-04-13 Zeiss Carl Fa Abbildungssystem mit einem Zylinderlinsenarray
US6646742B1 (en) * 2000-02-19 2003-11-11 Mwi, Inc. Optical device and method for multi-angle laser light scatter
JP3913132B2 (ja) * 2002-07-29 2007-05-09 東亜ディーケーケー株式会社 エンドトキシン測定方法及び装置、並びにエンドトキシン計測システム
US6992762B2 (en) * 2002-11-11 2006-01-31 Art Advanced Research Technologies Inc. Method and apparatus for time resolved optical imaging of biological tissues as part of animals
US20080218738A1 (en) * 2004-04-10 2008-09-11 Michael Trainer Methods and apparatus for determining particle characteristics by measuring scattered light
DE102006016855A1 (de) * 2006-04-07 2007-10-11 Emerson Process Management Gmbh & Co. Ohg Verfahren und Vorrichtung zur Messung der optischen Absorption von Proben
KR101285643B1 (ko) * 2006-09-25 2013-07-12 토루 오바타 겔화 측정 장치 및 시료 셀
US8184298B2 (en) * 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
JP4564566B2 (ja) * 2009-02-13 2010-10-20 三井造船株式会社 蛍光検出装置及び蛍光検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735802A (zh) * 2002-11-11 2006-02-15 阿特艾得凡科技研究公司 用于动物体部分生物组织的时间分辨光学成像方法和设备
US20110066382A1 (en) * 2005-09-19 2011-03-17 Jmar Llc Systems and methods for detecting normal levels of bacteria in water using a multiple angle light scattering (mals) instrument
CN101520414A (zh) * 2008-02-29 2009-09-02 怀亚特技术公司 通过注射到流动溶剂中测定溶液中分子的平均性质的方法
CN102112866A (zh) * 2008-07-30 2011-06-29 兴和株式会社 用于测定来自生物体的生理活性物质的方法和测定装置
CN102692396A (zh) * 2012-06-14 2012-09-26 南京中医药大学 一种内毒素检测系统及其定量检测方法
CN202649117U (zh) * 2012-06-14 2013-01-02 南京中医药大学 一种内毒素检测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSUMOTO, K. ET AL.: "Novel Endotoxin Assay by Laser Light-Scattering Particle-Counting Method", JOURNAL OF CLINICAL LABORATORY ANALYSIS, 31 December 2009 (2009-12-31), XP055054173 *
See also references of EP2863206A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504922A (zh) * 2020-10-20 2021-03-16 华南师范大学 一种大气颗粒物粒径分布的在线测量系统及方法
CN112504922B (zh) * 2020-10-20 2022-09-02 华南师范大学 一种大气颗粒物粒径分布的在线测量系统及方法

Also Published As

Publication number Publication date
EP2863206A4 (en) 2016-05-11
JP2015519576A (ja) 2015-07-09
US20150106030A1 (en) 2015-04-16
EP2863206A1 (en) 2015-04-22
JP6093854B2 (ja) 2017-03-08
US9958431B2 (en) 2018-05-01
US20180224426A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US8462340B2 (en) Gel particle measuring apparatus
CN112504922B (zh) 一种大气颗粒物粒径分布的在线测量系统及方法
CN111164418B (zh) 用于在制造过程中表征和控制生物聚合物和合成聚合物的装置和方法
US10753843B2 (en) Method and apparatus for measuring gel particle
US6632679B1 (en) Method to determine the speed of sedimentation of blood and other parameters correlated thereto, and relative apparatus
CN105527397B (zh) 基于智能凝胶的Pb2+微流控检测芯片及水样中Pb2+的检测方法
CN101122555A (zh) 基于后向光子相关光谱的高浓度超细颗粒测量装置及方法
US8697351B2 (en) Method for measurement of physiologically active substance derived from organism and measurement apparatus
CN102692396B (zh) 一种内毒素检测系统及其定量检测方法
CN203337507U (zh) 一种滤膜完整性的检测装置
CN204142624U (zh) 一种基于复合光谱测量的在线水质监测装置
WO2013185621A1 (zh) 内毒素检测系统及其检测方法
CN104020119A (zh) 生产环境微纳米气溶胶湿式紫外吸收法在线检测方法
CN105372204A (zh) 一种硫酸依替米星柱分离过程的近红外光谱在线检测方法
CN103278432B (zh) 一种滤膜完整性的检测装置及其检测方法
CN202649117U (zh) 一种内毒素检测系统
CN100383528C (zh) 一种通过测定浊度值来进行细菌内毒素检查的方法
CN103278476B (zh) 一种内毒素检测系统及其限度检测方法
CN203337543U (zh) 一种内毒素检测系统
CN207636537U (zh) 一种基于质谱的空气污染物检测装置
CN210604583U (zh) 一种稀释法测量三氯化硼中水分的装置
CN105136693A (zh) 一种水质成份吸收系数和散射系数的测量方法
CN216816439U (zh) 一种基于非分散红外法的co2在线监测装置
CN115753532B (zh) 基于光强时域特性的变压器油颗粒度在线分析方法及系统
CN207832619U (zh) 镀液锡泥含量在线检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013803561

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015516431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14408016

Country of ref document: US