WO2013185461A1 - 一种真空绝热板及其制备方法 - Google Patents

一种真空绝热板及其制备方法 Download PDF

Info

Publication number
WO2013185461A1
WO2013185461A1 PCT/CN2012/087511 CN2012087511W WO2013185461A1 WO 2013185461 A1 WO2013185461 A1 WO 2013185461A1 CN 2012087511 W CN2012087511 W CN 2012087511W WO 2013185461 A1 WO2013185461 A1 WO 2013185461A1
Authority
WO
WIPO (PCT)
Prior art keywords
wrapping material
core material
outer wrapping
vacuum insulation
mpet12
Prior art date
Application number
PCT/CN2012/087511
Other languages
English (en)
French (fr)
Inventor
张奎
王丽燕
朱小兵
张晶晶
Original Assignee
海尔集团公司
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 青岛海尔股份有限公司 filed Critical 海尔集团公司
Priority to US14/382,218 priority Critical patent/US20150030801A1/en
Priority to EP12878730.6A priority patent/EP2824377B1/en
Priority to ES12878730.6T priority patent/ES2645750T3/es
Publication of WO2013185461A1 publication Critical patent/WO2013185461A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/142Laminating of sheets, panels or inserts, e.g. stiffeners, by wrapping in at least one outer layer, or inserting into a preformed pocket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/124Insulation with respect to heat using an insulating packing material of fibrous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum

Definitions

  • the invention belongs to the technical field of thermal insulation profiles, in particular to a vacuum insulation panel which can be used in thermal insulation and thermal insulation products and a preparation method thereof.
  • Outer wrapping materials At present, composite materials containing aluminum foil layers are generally used for packaging materials, which will inevitably generate heat. The thermal bridge effect of the outer packaging material directly transmitted to the other side, resulting in poor thermal insulation effect of the vacuum insulation board (as shown in Figure 1); 2.
  • Core material the content is commonly known as the core material, mainly made by the traditional wet method, the core The glass fiber is disorderly arranged, and many erected fibers act as a medium for heat transfer, which cannot effectively prevent the transmission of heat insulation (as shown in Figure 2).
  • the vacuum insulation panel consists of three parts, the inner core material (usually a glass fiber aggregate), the outer wrapping material (generally a composite material with low gas and water vapor transmission rate), and the getter placed inside ( Generally, it is water-absorbing calcium oxide, etc.), and the vacuum degree of the vacuum plate directly leads to the heat preservation effect.
  • the influence of the vacuum degree is the core material of the internal glass fiber assembly.
  • the domestic use is generally a wet core material. According to the analysis of the thermal resistance during the heat transfer process, the wet core produced by the prior art is used.
  • the fiber arrangement is disorderly and disorderly, and the hollow and erected fibers are prone to occur.
  • the heat In the heat conduction process of the existing vacuum insulation panel, when the heat is transferred from one end of the vacuum insulation panel to the other end, the heat is arranged in a plurality of vertical directions. It is easy to transfer from the voids of the fiber distribution and through the erected fibers.
  • the vacuum insulation panel can not effectively block the heat transfer, the heat leakage is relatively large, and the thermal conductivity is high, which leads to the reduction of the insulation effect of the vacuum plate and the inability to achieve effective heat preservation. .
  • the outer wrapping material is made of a composite material containing aluminum foil, which is prone to thermal bridge effect, so that heat is not directly transmitted from the surface of the vacuum insulation panel through the vacuum insulation panel, resulting in poor overall insulation effect.
  • the invention provides a vacuum insulation board, which can solve the problem of poor heat preservation effect existing in the prior art, and also provides a preparation method of the above vacuum insulation board.
  • a vacuum insulation panel comprising an outer wrapping material and a core material, wherein the core material is provided with a getter, wherein the outer wrapping material is composited by a single-sided or double-sided wrapping material without aluminum foil.
  • the core material is a glass fiber assembly of a uniform laminated structure in which the glass fibers have a diameter of from 1 to 3 ⁇ m.
  • the getter uses calcium oxide.
  • the outer wrapping material is a wrapping material containing no aluminum foil on one side
  • one side adopts NY15/MPET12/MEVOH15/PE50
  • the other side adopts NY15/MPET12/Al7/PE50
  • one side adopts PET12/NY25/ Al6/HDPE50, NY25/MPET12/MEVOH12/HDPE50 on the other side, where the numbers represent the thickness of each material in microns.
  • both sides are NY15/MPET12/MEVOH15/PE50, or both sides are NY25/MPET12/MEVOH12/HDPE50, wherein the numbers represent the thickness of each material.
  • the unit is micron.
  • a method for preparing a vacuum insulation panel comprising the following steps:
  • a vacuum insulation panel is formed by vacuuming the core material sealed in the step 2) by the outer wrapping material.
  • the weight percentage content of the glass melt is as follows: silica 60%-80%, alumina 3-5%, magnesium oxide 3-5%, calcium oxide 5-10%, boron oxide 5-10 %, other oxides 4-20%.
  • the other oxides may be sodium oxide.
  • the suction device comprises, in order from top to bottom, an evacuation pump, an aluminum plate, an outer casing iron plate, and a gas permeable tape, wherein the aluminum plate and the outer casing iron plate are respectively provided with holes at a central position, and the evacuation pump is disposed on the aluminum plate.
  • the upper part of the hole, the outer shell iron plate is wrapped under the aluminum plate, the lower part of the hole of the outer shell iron plate is pasted with the gas permeable tape, and the air permeable tape and the outer shell iron plate are pasted by double-sided tape fixed.
  • the outer wrapping material adopts a wrapping material containing no aluminum foil on one side, one side adopts NY15/MPET12/MEVOH15/PE50, the other side adopts NY15/MPET12/Al7/PE50; or one side adopts PET12/NY25/Al6 /HDPE50, NY25/MPET12/MEVOH12/HDPE50 on the other side, where the numbers represent the thickness of each material in microns.
  • the outer wrapping material is a double-sided aluminum foil-free wrapping material, both sides are NY15/MPET12/MEVOH15/PE50, or both sides are NY25/MPET12/MEVOH12/HDPE50, wherein the numbers represent each material. Thickness in microns.
  • NY stands for nylon
  • MPET stands for modified polyethylene terephthalate
  • MEVOH stands for modified ethylene-vinyl alcohol copolymer
  • PE Polyethylene Polyethylene
  • HDPE high density polyethylene
  • PET polyethylene terephthalate PET polyethylene terephthalate.
  • NY15 refers to 15 micron thick nylon material, and so on.
  • the invention improves the two parts by the core material of the outer wrapping material
  • core material the use of a new process to produce fiberglass dense, layered distribution of glass fiber aggregates, can effectively block the transmission of heat.
  • Core material preparation process high temperature glass melt flows into a high-speed rotating centrifugal head, and the fiber filaments are taken out.
  • the bottom aspirator is formed into a uniform laminated structure and then packaged.
  • the main components of glass melt silica, alumina, magnesia, calcium oxide.
  • the heat is effectively blocked by the transverse fibers during the conduction process, and cannot be quickly transferred from one side of the plate to the other side.
  • the vacuum insulation plate can effectively block the heat transfer.
  • the core glass fiber is uniformly distributed in layers
  • the core glass fiber diameter is below 3 microns
  • the outer wrapping material adopts a new composite material, no metal layer or no metal layer on one side, avoiding the thermal bridge effect.
  • the invention has the following advantages and positive effects:
  • the heat is transferred from the outside of the refrigerator to the refrigerator.
  • the vacuum inside the vacuum insulation panel is high, and the heat is transferred by the layer of glass fiber in the core material during the transfer process, thereby greatly reducing the heat transfer.
  • the speed has a good thermal insulation effect, and the wrapping material has no aluminum foil layer to eliminate the edge effect, so the vacuum insulation board will have a good thermal insulation effect.
  • the thermal insulation coefficient of the vacuum insulation board produced by the invention is generally below 0.002 W/m.K, which can greatly improve the insulation performance and reduce the energy consumption of the refrigerator by more than 5%.
  • FIG. 1 is a schematic diagram of heat transfer of a vacuum insulation panel of a conventional aluminum foil-containing outer wrapping material
  • FIG. 2 is a schematic view showing heat conduction of a conventional glass fiber aggregate core material
  • FIG. 3 is a schematic diagram of heat transfer of a vacuum insulation panel of a single-sided aluminum foil-free outer wrapping material according to the present invention
  • Figure 4 is a schematic view showing the heat conduction of the core material of the glass fiber assembly of the uniform laminated structure according to the present invention
  • FIG. 5 is a schematic flow chart of a method for preparing a core material of a vacuum insulation panel of the present invention
  • Figure 6 is a schematic view of the structure of the aspirator.
  • the existing vacuum insulation board adopts a composite material containing aluminum foil as an outer wrapping material, and heat is directly transmitted to the other side along the material during the transfer process, which is called a thermal bridge effect, resulting in no heat insulation effect. it is good;
  • the inner core material of the existing vacuum insulation board has disordered glass fibers, and a plurality of erected fibers act as a medium for heat transfer, and the heat is directly transmitted through the fibers itself, and the heat transfer amount cannot be effectively prevented. The result is that the insulation is not good.
  • the invention proposes a novel vacuum insulation board, which can solve the above two problems at the same time.
  • the utility model relates to a vacuum insulation board, which comprises an outer wrapping material and a core material, wherein a core material is provided with a gettering agent, and the outer wrapping material is compounded by a single-sided or double-sided aluminum foil-free wrapping material, and the core material is a uniform laminated glass.
  • the getter uses calcium oxide.
  • the utility model relates to a vacuum insulation board, which comprises an outer wrapping material and a core material, wherein a calcium oxide getter is arranged in the core material, and the outer wrapping material adopts a wrapping material which is single-sided without aluminum foil, and one side adopts NY15/MPET12/MEVOH15/PE50 ( In order, it is 15 micron nylon, modified polyethylene terephthalate 12 micron, modified ethylene-vinyl alcohol copolymer 15 micron, polyethylene 50 micron), and the other side is NY15/MPET12/Al7/PE50 (in order, nylon 15) Micron, modified polyethylene terephthalate 12 microns, aluminum 17 microns, polyethylene 50 microns).
  • the utility model relates to a vacuum insulation board, which comprises an outer wrapping material and a core material, wherein the core material is provided with a calcium oxide getter, and the outer wrapping material adopts a wrapping material with one side without aluminum foil, wherein one side adopts PET12/NY25/Al6/HDPE50, The other side uses NY25/MPET12/MEVOH12/HDPE50.
  • the utility model relates to a vacuum insulation board, which comprises an outer wrapping material and a core material, wherein a calcium oxide getter is arranged in the core material, and the outer wrapping material adopts a double-sided wrapping material without aluminum foil, and both sides are NY15/MPET12/MEVOH15/PE50.
  • the number in it represents the thickness in microns.
  • a vacuum insulation board comprising an outer wrapping material and a core material, wherein the core material is provided with a calcium oxide getter, and when the outer wrapping material is a double-sided aluminum foil-free wrapping material, both sides are NY25/MPET12/MEVOH12/HDPE50 .
  • the outer wrapping material adopts a composite material containing no aluminum foil on one side, the thermal bridge effect is not formed, and the heat insulation effect is good; of course, when When the double-sided composite is made of aluminum-free foil, there is no thermal bridge effect.
  • the glass fiber of the core material of the present invention forms a uniform laminated structure, and the heat is effectively blocked by the transverse fiber during the conduction process, and cannot be quickly transferred from one side of the board to the other side. Effectively block the transmission of heat insulation, and the heat insulation effect is better.
  • the thermal insulation performance of the vacuum insulation panel of the present invention is greatly improved, and the thermal conductivity is below 0.002 W/m.K.
  • the method for preparing the vacuum insulation panel of the above embodiments 1-4 includes the following steps:
  • a vacuum insulation panel is formed by vacuuming the core material sealed in the step 2) by the outer wrapping material.
  • the flow chart of the preparation process of the core material of the present invention the high temperature glass melt flows into the centrifugal head 1, the centrifugal head 1 rotates at a high speed, the rotation speed is 2000-2500 rpm, the fiber filament is pulled out, and the fiber is twisted.
  • the resulting filaments pass through the aspirator 2 and form a uniform laminated structure, which is then packaged. Since the fiber filament is sucked into a uniform layered structure by the suction device, the heat is blocked by the laminated fiber filament layer during the heat transfer process, thereby greatly reducing the heat transfer speed and providing a good heat preservation effect.
  • the aspirator 2 includes, in order from top to bottom, an evacuation pump 21, an aluminum plate 22, an outer casing iron plate 23, a gas permeable tape 24, an aluminum plate 22 and a casing iron plate 23 correspondingly provided with holes at the center, and an evacuation pump 21 is fixed to the upper portion of the hole of the aluminum plate 22 by screws, the outer casing iron plate 23 is covered under the aluminum plate 22, the lower portion of the hole of the outer casing iron plate 23 is affixed with the air permeable tape 24, and the air permeable tape 24 and the outer casing iron plate 23 are passed through the double The face glue 25 is pasted and fixed.
  • the weight percentage of the glass melt in the preparation method is as follows: silica 70%, alumina 4%, magnesium oxide 4%, calcium oxide 5%, boron oxide 5%, and sodium oxide 12%.
  • the outer wrapping material is a wrapping material containing no aluminum foil on one side
  • one side adopts NY15/MPET12/MEVOH15/PE50
  • the other side adopts NY15/MPET12/Al7/PE50
  • one side adopts PET12/NY25/Al6/HDPE50
  • the other side uses NY25/MPET12/MEVOH12/HDPE50, where the numbers represent the thickness of each material in microns.
  • both sides are NY15/MPET12/MEVOH15/PE50, or both sides are NY25/MPET12/MEVOH12/HDPE50, and the figures represent the thickness of each material. For micrometers.

Abstract

一种真空绝热板,包括外包裹材料和芯材,芯材内设有吸气剂,外包裹材料采用单面或者双面不含铝箔的包裹材料复合而成,芯材为均匀层叠结构的玻璃纤维集合体,其中玻璃纤维的直径为1-3微米。还公开了一种真空绝热板的制备方法。由于真空绝热板内部真空度很高,从而降低了热量传递的速度。并且,包裹材料没有铝箔层,消除了边缘热桥效应,起到了很好的保温效果。

Description

一种真空绝热板及其制备方法
本申请要求了申请日为2012年06月13日,申请号为201210193303.0,发明名称为“一种真空绝热板及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明属于绝热型材技术领域,具体地说,涉及一种可用于保温、绝热产品中的真空绝热板及其制备方法。
【背景技术】
热量传递过程中,保温材料的导热系数较高,导致冰箱热量损失较为严重。目前各冰箱企业为保证产品保温效果批量使用的真空绝热板主要存在两个问题:1.外包裹材料:目前一般采用含铝箔层的复合材料来进行外包装材料,不可避免的会产生热量顺着外包装材料直接传递到另一面的热桥效应,导致真空绝热板的绝热效果不好(如图1所示);2.芯材:内容物俗称芯材,主要用传统湿法制成,芯材玻璃纤维排列无序,有很多竖起的纤维充当了热量传递的媒介,无法有效的阻隔热量的传递(如图2所示)。
真空绝热板有3个部分组成,内部的芯材(一般是玻璃纤维集合体),外部的包裹材料(一般是气体和水汽透过率小的复合材料),还有内部放置的吸气剂(一般是吸水的氧化钙等),真空板的真空度大小直接导致保温效果的好坏。而对于真空板的真空度影响比较大的就是内部玻璃纤维集合体的芯材,目前国内用的一般是湿法芯材,根据对热量传递过程中热阻的分析,现有技术生产的湿式芯材纤维排布错乱无序,容易出现空洞和竖起的纤维,现有的真空绝热板在热传导过程中,热量在从真空绝热板一端传递到另一端时,由于纤维很多竖向排布,热量极易从纤维分布的空洞和通过竖起的纤维中进行传递,真空绝热板无法有效阻隔热量传递,漏热量比较大,导热系数较高,导致真空板的保温效果降低,无法达到有效的保温作用。
另外外包裹材料用含铝箔的复合材料制成,容易存在热桥效应,导致热量不通过真空绝热板直接从真空绝热板表面传递,导致整体保温效果不好。
如何解决上述技术问题,则是本发明所面临的课题。
【发明内容】
本发明提供了一种真空绝热板,可以解决现有技术存在的保温效果不好的问题,还提供了一种上述真空绝热板的制备方法。
为了解决上述技术问题,本发明的技术方案是,
一种真空绝热板,包括外包裹材料和芯材,所述芯材内设有吸气剂,其特征在于:所述外包裹材料采用单面或者双面不含铝箔的包裹材料复合而成,所述芯材为均匀层叠结构的玻璃纤维集合体,其中玻璃纤维的直径为1-3微米。所述吸气剂采用氧化钙。
其中,当所述外包裹材料采用单面为不含铝箔的包裹材料时,其中一面采用NY15/MPET12/MEVOH15/PE50,另一面采用NY15/MPET12/Al7/PE50;或者其中一面采用PET12/NY25/Al6/HDPE50,另一面采用NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
当所述外包裹材料采用双面为不含铝箔的包裹材料时,两面均为NY15/MPET12/MEVOH15/PE50,或者两面均为NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
一种真空绝热板的制备方法,包括如下步骤:
1)制备芯材:1100℃-1300℃的高温玻璃熔液流入高速旋转的离心头里,离心头的转速2000-2500转/分,甩出纤维丝,然后通过底部吸引器成均匀层叠结构,纤维丝的直径1-3微米;
2)包覆外包裹材料:在芯材内放入氧化钙吸气剂,采用单面或者双面不含铝箔的复合包裹材料将芯材包覆,然后将外包裹材料热压封口;
3)对步骤2)中被外包裹材料封口的芯材抽真空后形成真空绝热板。
其中,所述玻璃熔液的重量百分含量配方如下:二氧化硅60%-80%,氧化铝3-5%,氧化镁3-5%,氧化钙5-10%,氧化硼5-10%,其他氧化物4-20%。
所述其他氧化物可以采用氧化钠。
其中,所述吸引器由上至下依次包括抽空泵,铝板,外壳铁板,透气胶带,所述铝板和外壳铁板相对应的中央位置均设有孔,所述抽空泵设置在所述铝板的孔的上部,所述外壳铁板包覆在所述铝板的下面,所述外壳铁板的孔的下部粘贴所述透气胶带,所述透气胶带和外壳铁板之间通过双面胶粘贴固定。
其中,所述外包裹材料采用单面为不含铝箔的包裹材料时,其中一面采用NY15/MPET12/MEVOH15/PE50,另一面采用NY15/MPET12/Al7/PE50;或者其中一面采用PET12/NY25/Al6/HDPE50,另一面采用NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
其中,所述外包裹材料采用双面为不含铝箔的包裹材料时,两面均为NY15/MPET12/MEVOH15/PE50,或者两面均为NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
NY代表尼龙, MPET代表改性聚乙烯对苯二酸盐,MEVOH代表改性乙烯-乙烯醇共聚物),PE 聚乙烯;HDPE 高密度聚乙烯;PET聚对苯二甲酸乙二醇酯。NY15是指15微米厚的尼龙材料,其他以此类推。
本发明通过对外包裹材料芯材做了两方面的改进,
1、外包裹材料:采用单面或者双面不含铝箔的包裹材料,避免了热桥效应的问题出现;
2、芯材:采用全新工艺生产出纤维细密,层状分布均匀的玻璃纤维集合体,可以有效的阻隔热量传递。
芯材制备工艺:高温玻璃熔液流入高速旋转的离心头里,甩出纤维丝。通过底部吸引器成均匀层叠结构,后封装成型。
玻璃熔液主要成分:二氧化硅,氧化铝,氧化镁,氧化钙。热量在传导的过程中被横向纤维有效阻隔,无法很快的从板的一侧传递到另一侧,真空绝热板可有效的阻隔热量传递。
本发明所述真空绝热板具有以下优点:
1.芯材玻璃纤维成层状均匀分布;
2.芯材玻璃纤维径在3微米以下;
3.外包裹材料采用新型复合材料,无金属层或单面没有金属层,避免热桥效应。
本发明与现有技术相比具有以下优点和积极效果:
热量从冰箱外要传递到冰箱内,通过箱体的保温层时,由于真空绝热板内部真空度很高,热量在传递过程中受到芯材内玻璃纤维的层层阻隔,从而大大降低了热量传递的速度,起到了很好的保温效果,同时包裹材料没有铝箔层消除了边缘效应,所以真空绝热板会起到很好的保温效果。
本发明生产的真空绝热板导热系数一般在0.002W/m.K以下,可以很大的提高保温性能,降低冰箱能耗5%以上。
【附图说明】
图1是现有含铝箔外包裹材料的真空绝热板的热量传递示意图;
图2是现有玻璃纤维集合体芯材的热传导示意图;
图3是本发明所述单面不含铝箔的外包裹材料的真空绝热板的热量传递示意图;
图4是本发明所述均匀层叠结构的玻璃纤维集合体的芯材热传导示意图;
图5是本发明真空绝热板的芯材制备方法流程示意图;
图6是吸引器结构示意图。
图中的符号及其说明:
1、离心头;2、吸引器;21、抽空泵;22、铝板;23、外壳铁板;24、透气胶带;25、双面胶;3、纤维丝。
【具体实施方式】
下面结合附图和实施例对本发明作进一步详细的说明。
如图1所示,现有的真空绝热板采用含铝箔的复合材料作为外包裹材料,热量在进行传递过程中,会顺着材料直接传递到另一面,称为热桥效应,导致绝热效果不好;
如图2所示的现有真空绝热板的内部芯材,其玻璃纤维排列无序,有很多竖起的纤维充当了热量传递的媒介,热量直接通过纤维本身传导,无法有效阻隔热量的传递,导致绝热效果不好。
本发明提出一种新型的真空绝热板,可以同时解决上述两方面的问题。
一种真空绝热板,包括外包裹材料和芯材,芯材内设有吸气剂,外包裹材料采用单面或者双面不含铝箔的包裹材料复合而成,芯材为均匀层叠结构的玻璃纤维集合体,其中玻璃纤维的直径为1-3微米。吸气剂采用氧化钙。
实施例1
一种真空绝热板,包括外包裹材料和芯材,芯材内设有氧化钙吸气剂,外包裹材料采用单面为不含铝箔的包裹材料,其中一面采用NY15/MPET12/MEVOH15/PE50(依次为尼龙15微米,改性聚乙烯对苯二酸盐12微米,改性乙烯-乙烯醇共聚物15微米,聚乙烯50微米),另一面采用NY15/MPET12/Al7/PE50(依次为尼龙15微米,改性聚乙烯对苯二酸盐12微米,铝17微米,聚乙烯50微米)。
实施例2
一种真空绝热板,包括外包裹材料和芯材,芯材内设有氧化钙吸气剂,外包裹材料采用单面为不含铝箔的包裹材料,其中一面采用PET12/NY25/Al6/HDPE50,另一面采用NY25/MPET12/MEVOH12/HDPE50。
实施例3
一种真空绝热板,包括外包裹材料和芯材,芯材内设有氧化钙吸气剂,外包裹材料采用双面为不含铝箔的包裹材料,两面均为NY15/MPET12/MEVOH15/PE50。其中的数字代表厚度,单位为微米。
实施例4
一种真空绝热板,包括外包裹材料和芯材,芯材内设有氧化钙吸气剂,外包裹材料采用双面为不含铝箔的包裹材料时,两面均为NY25/MPET12/MEVOH12/HDPE50。
如图3所示,本发明所述的真空绝热板在热量传递过程中,由于外包裹材料采用单面不含铝箔的复合材料,所以不会形成热桥效应,绝热效果较好;当然,当双面均采用不含铝箔的复合材料时,更不会产生热桥效应。
如图4所示,本发明所述的芯材的玻璃纤维形成均匀层叠结构,热量在传导的过程中,被横向纤维有效阻隔,无法很快的从板的一侧传递到另一侧,可有效地阻隔热量传递,绝热效果较好,
结合以上外包裹材料和芯材,本发明所述的真空绝热板的保温性能大大提高,导热系数在0.002W/m.K以下。
上述实施例1-4中的真空绝热板的制备方法,包括如下步骤:
1)制备芯材:1100℃-1300℃的高温玻璃熔液流入高速旋转的离心头里,离心头的转速2000-2500转/分,甩出纤维丝,然后通过底部吸引器成均匀层叠结构,纤维丝的直径1-3微米;
2)包覆外包裹材料:在芯材内放入氧化钙吸气剂,采用单面或者双面不含铝箔的复合包裹材料将芯材包覆,然后将外包裹材料热压封口;
3)对步骤2)中被外包裹材料封口的芯材抽真空后形成真空绝热板。
如图5所示,本发明所述芯材的制备工艺流程图:高温玻璃熔液流入离心头1内,离心头1高速旋转,转速在2000-2500转/分,甩出纤维丝,被甩出的纤维丝通过吸引器2后成均匀层叠结构,而后再封装成型。由于纤维丝被吸引器吸成均匀的层状结构,在热传递过程中,热量就被层叠的纤维丝层层阻隔,从而大大降低了热量传递的速度,起到很好的保温效果。
如图6所示,吸引器2由上至下依次包括抽空泵21,铝板22,外壳铁板23,透气胶带24,铝板22和外壳铁板23相对应的中央位置均设有孔,抽空泵21通过螺钉固定设置在铝板22的孔的上部,外壳铁板23包覆在铝板22的下面,外壳铁板23的孔的下部粘贴透气胶带24,透气胶带24和外壳铁板23之间通过双面胶25粘贴固定。
其中,制备方法中的玻璃熔液的重量百分含量配方如下:二氧化硅70%,氧化铝4%,氧化镁4%,氧化钙5%,氧化硼5%,氧化钠12%。
其中,外包裹材料采用单面为不含铝箔的包裹材料时,其中一面采用NY15/MPET12/MEVOH15/PE50,另一面采用NY15/MPET12/Al7/PE50;或者其中一面采用PET12/NY25/Al6/HDPE50,另一面采用NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
或者外包裹材料采用双面为不含铝箔的包裹材料时,两面均为NY15/MPET12/MEVOH15/PE50,或者两面均为NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (5)

  1. 一种真空绝热板,包括外包裹材料和芯材,所述芯材内设有吸气剂,其特征在于:所述外包裹材料采用单面或者双面不含铝箔的包裹材料复合而成,所述芯材为均匀层叠结构的玻璃纤维集合体,其中玻璃纤维的直径为1-3微米。
  2. 根据权利要求1所述的真空绝热板,其特征在于:所述外包裹材料采用单面为不含铝箔的包裹材料时,其中一面采用NY15/MPET12/MEVOH15/PE50,另一面采用NY15/MPET12/Al7/PE50;或者其中一面采用PET12/NY25/Al6/HDPE50,另一面采用NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
  3. 根据权利要求1所述的真空绝热板,其特征在于:所述外包裹材料采用双面为不含铝箔的包裹材料时,两面均为NY15/MPET12/MEVOH15/PE50,或者两面均为NY25/MPET12/MEVOH12/HDPE50,其中的数字代表每种材料的厚度,单位为微米。
  4. 一种真空绝热板的制备方法,其特征在于包括如下步骤:
    1)制备芯材:1100℃-1300℃的高温玻璃熔液流入高速旋转的离心头里,离心头的转速2000-2500转/分,甩出纤维丝,然后通过底部吸引器成均匀层叠结构,纤维丝的直径1-3微米;
    2)包覆外包裹材料:在芯材内放入氧化钙吸气剂,采用单面或者双面不含铝箔的复合包裹材料将芯材包覆,然后将外包裹材料热压封口;
    3)对步骤2)中被外包裹材料封口的芯材抽真空后形成真空绝热板。
  5. 根据权利要求4所述的真空绝热板的制备方法,其特征在于:所述玻璃熔液的重量百分含量配方如下:二氧化硅60%-80%,氧化铝3-5%,氧化镁3-5%,氧化钙5-10%,氧化硼5-10%,其他氧化物4-20%。
PCT/CN2012/087511 2012-06-13 2012-12-26 一种真空绝热板及其制备方法 WO2013185461A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/382,218 US20150030801A1 (en) 2012-06-13 2012-12-26 Vacuum heat insulating panel and method for manufacturing same
EP12878730.6A EP2824377B1 (en) 2012-06-13 2012-12-26 Vacuum heat insulating panel and method for manufacturing same
ES12878730.6T ES2645750T3 (es) 2012-06-13 2012-12-26 Panel de aislamiento térmico por vacío y procedimiento para su fabricación

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210193303.0 2012-06-13
CN201210193303.0A CN102720923B (zh) 2012-06-13 2012-06-13 一种真空绝热板的制备方法

Publications (1)

Publication Number Publication Date
WO2013185461A1 true WO2013185461A1 (zh) 2013-12-19

Family

ID=46946756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087511 WO2013185461A1 (zh) 2012-06-13 2012-12-26 一种真空绝热板及其制备方法

Country Status (5)

Country Link
US (1) US20150030801A1 (zh)
EP (1) EP2824377B1 (zh)
CN (1) CN102720923B (zh)
ES (1) ES2645750T3 (zh)
WO (1) WO2013185461A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720923B (zh) * 2012-06-13 2016-06-08 海尔集团公司 一种真空绝热板的制备方法
CN104176940A (zh) * 2013-05-23 2014-12-03 苏州维艾普新材料股份有限公司 一种真空绝热板玻璃纤维芯材
CN103274603B (zh) * 2013-05-31 2015-06-03 重庆再升科技股份有限公司 一种新型玻璃纤维和基于该玻璃纤维的真空绝热板芯材及制备方法
CN103244793B (zh) * 2013-05-31 2015-12-09 重庆再升科技股份有限公司 一种新型玻璃纤维真空绝热板芯材及制备方法
CN103759097B (zh) * 2014-01-08 2017-01-25 嘉兴环亚包装有限公司 低边缘热桥效应的真空绝热板
CN105274728B (zh) * 2014-05-28 2018-10-16 福建赛特新材股份有限公司 一种生物可溶解纤维毡及其制备方法和使用该毡的真空绝热板
CN104329540B (zh) * 2014-09-01 2016-08-24 李载润 一种高阻隔袋不包边的真空绝热板
CN104494235B (zh) * 2015-01-06 2016-09-07 青岛科瑞新型环保材料有限公司 一种真空绝热板及其制造方法
CN105987256A (zh) * 2015-02-11 2016-10-05 福建赛特新材股份有限公司 一种低边缘热桥效应长寿命的真空绝热板及其制造方法
CN105402554A (zh) * 2015-09-22 2016-03-16 苏州维艾普新材料股份有限公司 一种低热桥、长寿命、低导热系数新型结构真空绝热板
CN106926529A (zh) * 2015-12-30 2017-07-07 福建赛特新材股份有限公司 一种真空绝热板使用的芯材及其生产方法以及真空绝热板
CN106764253A (zh) * 2016-11-28 2017-05-31 王郁倩 一种无折边真空绝热材料及制备方法
CN111613746B (zh) * 2020-05-25 2023-09-26 重庆金康动力新能源有限公司 带喷淋系统的电池包用隔离件
EP3916885A1 (en) 2020-05-25 2021-12-01 Chongqing Jinkang Power New Energy Co., Ltd. Battery pack
CN114347614A (zh) * 2022-01-14 2022-04-15 南京工业大学 一种隔热抗菌多功能一体化真空绝热板及其应用
DE102022003196A1 (de) 2022-09-01 2024-03-07 Kay Itzigehl Vakuumisolationspaneel VIP

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175809A1 (en) * 2002-05-31 2005-08-11 Matsushita Refrigeration Co. Vacuum thermal insulating material, process for producing the same and refrigerator including the same
CN101526165B (zh) * 2009-03-27 2011-11-16 上海海事大学 Pu真空绝热板及其制备方法
CN202074190U (zh) * 2011-05-06 2011-12-14 滁州金科机械模具制造有限公司 一种真空隔热板
JP2012082954A (ja) * 2010-09-14 2012-04-26 Hitachi Appliances Inc 真空断熱材及びこれを用いた冷蔵庫
CN102720923A (zh) * 2012-06-13 2012-10-10 海尔集团公司 一种真空绝热板及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2229601A (en) * 2000-04-21 2001-11-07 Matsushita Refrigeration Heat insulation box, and vacuum heat insulation material used therefor
FR2883865B1 (fr) * 2005-04-01 2007-05-18 Saint Gobain Isover Sa Laine minerale, produit isolant et procede de fabrication
EP2472164A4 (en) * 2009-10-19 2014-01-29 Mitsubishi Electric Corp VACUUM INSULATION MATERIAL, THERMAL INSULATION BOX, REFRIGERATOR, FREEZING / AIR CONDITIONING DEVICE, HOT WATER SUPPLY DEVICE, APPARATUS, AND METHOD FOR MANUFACTURING VACUUM ISOLATION MATERIAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050175809A1 (en) * 2002-05-31 2005-08-11 Matsushita Refrigeration Co. Vacuum thermal insulating material, process for producing the same and refrigerator including the same
CN101526165B (zh) * 2009-03-27 2011-11-16 上海海事大学 Pu真空绝热板及其制备方法
JP2012082954A (ja) * 2010-09-14 2012-04-26 Hitachi Appliances Inc 真空断熱材及びこれを用いた冷蔵庫
CN202074190U (zh) * 2011-05-06 2011-12-14 滁州金科机械模具制造有限公司 一种真空隔热板
CN102720923A (zh) * 2012-06-13 2012-10-10 海尔集团公司 一种真空绝热板及其制备方法

Also Published As

Publication number Publication date
US20150030801A1 (en) 2015-01-29
EP2824377A4 (en) 2015-10-28
CN102720923A (zh) 2012-10-10
EP2824377A1 (en) 2015-01-14
EP2824377B1 (en) 2017-08-02
CN102720923B (zh) 2016-06-08
ES2645750T3 (es) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2013185461A1 (zh) 一种真空绝热板及其制备方法
US20160312942A1 (en) Packaging material for vacuum insulator, vacuum insulator, and insulating container
WO2015046778A1 (ko) 진공단열재 및 그 제조방법
CN103474929B (zh) 密集型绝缘母线槽
CN107460962A (zh) 一种增强型外墙用防火保温环保板
CN111098567A (zh) 一种复合陶瓷云母耐热绝缘板及其加工工艺
CN208855158U (zh) 一种玻璃纤维薄膜增强合成云母带
CN208962618U (zh) 一种耐高温金属箔真空绝热材料
CN202809008U (zh) 一种具有不同密度层的套筒式单晶炉保温筒
CN205310989U (zh) 抗变形多层保温复合材料
CN207565075U (zh) 一种新型隔热复合棉毡
CN206889971U (zh) 一种应用于高温设备与管道保温的多反射复合保温结构
CN104329540A (zh) 一种高阻隔袋不包边的真空绝热板
CN112877768B (zh) 用于半导体晶棒生长的导流筒、生长装置及生长方法
CN204249490U (zh) 一种冰箱用中空vip绝热板阻隔复合膜
CN205447111U (zh) 一种高效绝热板
CN209322711U (zh) 一种盖板玻璃池炉底部绝缘结构
CN203074359U (zh) 一种节能电加热炉
CN206191172U (zh) 一种隔热板
CN207834035U (zh) 一种承重型耐磨绝缘膜
CN212910531U (zh) 一种表面绝缘处理的石墨片
CN202187442U (zh) 一种防火真空保温板包装袋
CN206931400U (zh) 一种高性能架空绝缘电缆
CN206287595U (zh) 一种新型防紫外线型保温材料
CN216814325U (zh) 绝缘保温层及包括该绝缘保温层的高频电磁采暖炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878730

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012878730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14382218

Country of ref document: US

Ref document number: 2012878730

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE