WO2013183411A1 - Driving force distribution device - Google Patents
Driving force distribution device Download PDFInfo
- Publication number
- WO2013183411A1 WO2013183411A1 PCT/JP2013/063515 JP2013063515W WO2013183411A1 WO 2013183411 A1 WO2013183411 A1 WO 2013183411A1 JP 2013063515 W JP2013063515 W JP 2013063515W WO 2013183411 A1 WO2013183411 A1 WO 2013183411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller
- driving force
- force distribution
- distribution device
- traction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/664—Friction gearings
- F16H61/6649—Friction gearings characterised by the means for controlling the torque transmitting capability of the gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H13/00—Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
- F16H13/02—Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H59/72—Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
- F16H59/72—Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
- F16H2059/725—Sensing or calculating temperature of friction devices, e.g. clutches to prevent overheating of friction linings
Definitions
- the present invention relates to a driving force distribution device, and more particularly to a driving force distribution device used as a transfer for a four-wheel drive vehicle.
- the driving force distribution device described in this document includes a first roller mechanically coupled to the transmission system of the main driving wheel and a second roller mechanically coupled to the driving system of the driven wheel. By bringing the first roller and the second roller into contact with each other on the outer peripheral surfaces of them, a part of the torque to the main driving wheel can be distributed to the driven wheel and output.
- Patent Document 1 discloses that the second roller is displaced in the radial direction relative to the first roller by turning the rotation shaft of the second roller around an eccentric axis with a motor or the like.
- a configuration has been proposed in which the radial pressing force between the first roller and the second roller, that is, the distribution of the driving force between the main driving wheel and the sub driving wheel can be controlled.
- Patent Document 1 does not mention anything about the arrangement of the oil temperature sensor.
- the temperature distribution of the internal hydraulic fluid varies widely, and depending on the location of the oil temperature sensor, the hydraulic fluid temperature detected by this cannot represent the temperature of the essential contact surface between the rollers.
- Control responses such as fail-safe control and traction force compensation control are deteriorated, resulting in a problem that the control accuracy is lowered and the desired control effect cannot be obtained.
- the driving force distribution device that does not make any contrivance regarding the arrangement of the oil temperature sensor as in the prior art represented by Patent Document 1, the occurrence of the problem is unavoidable.
- the driving force distribution device of the above type it is important to know the temperature of the mutual contact surface between the rollers, and the roller is scraped from between the rollers immediately after the roller rotation direction of the mutual contact surface of the roller outer peripheral surface. Based on the recognition that the temperature of the hydraulic oil is close to the temperature of the contact surface between the rollers, a driving force that can solve the above problem by arranging an oil temperature sensor to detect the temperature of the hydraulic oil here The purpose is to propose a distribution device.
- the driving force distribution device is configured as follows. First, the driving force distribution device as a premise will be described. This includes a first roller that rotates together with the main drive wheel transmission system, and a second roller that rotates together with the driven wheel transmission system. The first roller and the second roller are brought into contact with each other on their outer peripheral surfaces so that power can be transmitted, and the driving force is distributed to the driven wheels, and the radial pressing force between the first roller and the second roller is adjusted. As a result, the driving force distribution control between the main driving wheel and the sub driving wheel is possible, and at least the temperature of the hydraulic oil is used as a control factor of the driving force distribution control.
- the present invention provides an oil temperature sensor for detecting the temperature of the hydraulic oil in the driving force distribution device, wherein the first roller and the second roller are in mutual contact with each other in the rotation direction of the first roller and the second roller. Characterized by the configuration placed behind the location.
- the oil temperature sensor for detecting the temperature of the hydraulic oil is arranged such that the outer peripheral surface mutual contact portions of the first roller and the second roller in the rotation direction of the first roller and the second roller. Since the hydraulic oil temperature detected by the oil temperature sensor is close to the temperature at the contact point between the outer surfaces of the first roller and the second roller, control responses such as the fail-safe control and the traction force compensation control described above are performed. The control effect can be achieved as intended by improving the control accuracy.
- FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle including a driving force distribution device according to a first embodiment of the present invention as viewed from above the vehicle.
- FIG. 2 is a longitudinal side view showing the driving force distribution device in FIG. 1 in an exploded manner.
- FIG. 3 is a longitudinal front view of a crankshaft used in the driving force distribution device shown in FIG.
- FIG. 3 is an operation explanatory diagram of the driving force distribution device shown in FIG.
- FIG. 2 is a schematic front view of the driving force distribution device showing the location of the oil temperature sensor with respect to the driving force distribution device of FIG.
- FIG. 2 is a flowchart showing an overheating fail-safe control program of the driving force distribution device executed by the transfer controller in FIG. 1.
- FIG. 7 is a flowchart showing a traction force compensation control program for a driving force distribution device according to a second embodiment of the present invention.
- FIG. 3 is a characteristic diagram illustrating a temperature change characteristic of a traction coefficient between a first roller and a second roller in the driving force distribution device shown in FIG. 7 is a flowchart showing a control program related to overheat fail-safe control and traction force compensation control of a driving force distribution device according to a third embodiment of the present invention.
- FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle provided with a driving force distribution device 1 according to a first embodiment of the present invention as a transfer as viewed from above the vehicle.
- the four-wheel drive vehicle in FIG. 1 is a rear-wheel drive vehicle in which rotation from the engine 2 is transmitted to the left and right rear wheels 6L and 6R through the rear propeller shaft 4 and the rear final drive unit 5 after being shifted by the transmission 3.
- As a base vehicle Part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R is transmitted to the left and right front wheels (secondary drive wheels) 7L and 7R through the front propeller shaft 7 and the front final drive unit 8 sequentially by the driving force distribution device 1. By doing so, the vehicle can be driven by four-wheel drive.
- the driving force distribution device 1 distributes and outputs a part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 7L and 7R. (Main drive wheels) 6L, 6R and left and right front wheels (secondary drive wheels) 9L, 9R to determine the drive force distribution ratio.
- this drive force distribution device 1 is as shown in FIG. Constitute.
- reference numeral 11 denotes a housing of the driving force distribution device 1, and the input shaft 12 and the output shaft 13 are arranged in the housing 11 so that the respective rotation axes O 1 and O 2 are parallel to each other.
- the input shaft 12 is rotatably supported with respect to the housing 11 by ball bearings 14 and 15 at both ends thereof. Both ends of the input shaft 12 are protruded from the housing 11 under liquid-tight sealing by seal rings 25 and 26, respectively. 2, the left end of the input shaft 12 is drivingly coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end is drivingly coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
- a pair of bearing supports 16, 17 are installed between the input / output shafts 12, 13, and the bearing supports 16, 17 are arranged in the middle of each bolt. (Not shown) is attached to the axially opposed inner wall of the housing 11. Roller bearings 21 and 22 are interposed between the bearing supports 16 and 17 and the input shaft 12 so that the input shaft 12 can be rotated with respect to the bearing supports 16 and 17. However, the input shaft 12 is rotatably supported in the housing 11.
- a first roller 31 is coaxially and integrally formed at a position in the axial direction of the input shaft 12 between the bearing supports 16 and 17 (between the roller bearings 21 and 22).
- the second roller 32 is coaxially formed integrally with the first roller 31 so as to be in contact with the first oil roller 31 so that power can be transmitted through the hydraulic oil. Due to the parallel arrangement of the input shaft 12 and the output shaft 13, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are cylindrical surfaces that can come into line contact with each other.
- the output shaft 13 is pivotally supported with respect to the bearing supports 16 and 17 in the vicinity of both ends thereof, so that the output shaft 13 is rotatably supported in the housing 11 via the bearing supports 16 and 17.
- the following eccentric support structure is used.
- a hollow outer shaft type crankshaft 51L, 51R is loosely fitted between the output shaft 13 and the bearing supports 16, 17 through which the output shaft 13 passes.
- the crankshaft 51L and the output shaft 13 protrude from the housing 11 at the left end in FIG. 2, respectively, and the seal ring 27 is interposed between the housing 11 and the crankshaft 51L at the protruding portion, and the seal between the crankshaft 51L and the output shaft 13 is sealed.
- the crankshaft 51L protruding from the housing 11 and the protruding portion of the output shaft 13 are liquid-tightly sealed with the ring 28 interposed.
- the left end of the output shaft 13 discharged from the housing 11 is drivingly coupled to the left and right front wheels 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8.
- Roller bearings 52L and 52R are interposed between the hollow holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R and the corresponding ends of the output shaft 13, respectively, so that the output shaft 13 is hollow in the crankshafts 51L and 51R.
- the hollow holes 51La and 51Ra (center axis O 2 ) of the crankshafts 51L and 51R are eccentric hollow holes eccentric to the outer peripheral portions 51Lb and 51Rb (center axis O 3 and radius Ro).
- the central axis O 2 of the eccentric hollow holes 51La and 51Ra is offset from the central axis O 3 of the outer peripheral portions 51Lb and 51Rb by the eccentricity ⁇ between them.
- the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in the bearing supports 16 and 17 on the corresponding side via roller bearings 53L and 53R, respectively. At this time, the crankshafts 51L and 51R, together with the second roller 32, are positioned in the axial direction by the thrust bearings 54L and 54R.
- Ring gears 51Lc and 51Rc of the same specification are integrally provided at adjacent ends of the crankshafts 51L and 51R facing each other.
- a common crankshaft drive pinion 55 is engaged with each of the ring gears 51Lc and 51Rc, and the crankshaft drive pinion 55 is coupled to the pinion shaft 56.
- crankshaft drive pinion 55 when the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc, the rotational positions where the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are aligned in the circumferential direction and in phase with each other. In this state, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc.
- Both ends of the pinion shaft 56 are rotatably supported with respect to the housing 11 by bearings 56a and 56b.
- An output shaft 35a of an inter-roller pressing force control motor 35 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
- the second roller 32 is rotated by the rotation axis O 2 (second roller 32) along the locus circle ⁇ in FIG. 3, but the first roller 31 will be described in detail later, as shown in FIGS. 4 (a) to 4 (c).
- the rotation angle ⁇ of the crankshafts 51L and 51R increases, the radius L1 between the first roller 31 and the second roller 32 increases. It can be made smaller than the sum of the radius. Due to such a decrease in the distance L1 between the roller shafts, the radial pressing force of the second roller 32 against the first roller 31 (the transmission torque capacity between the rollers: traction transmission capacity) increases, and according to the degree of decrease in the distance L1 between the roller axes.
- the inter-roller radial pressing force (inter-roller transmission torque capacity: traction transmission capacity), that is, the driving force distribution ratio can be arbitrarily controlled.
- the second roller rotation axis O 2 is located immediately below the crankshaft rotation axis O 3 and the inter-axis distance L1 between the first roller 31 and the second roller 32 is
- the distance L1 between the roller axes at the maximum bottom dead center is made larger than the sum of the radius of the first roller 31 and the radius of the second roller 32.
- the transfer 1 controls the rotational position of the crankshafts 51L and 51R via the pinion 55 and the ring gears 51Lc and 51Rc by the motor 35, and the distance L1 between the roller axes (see FIG. 4) is set to the first roller 31 and the second roller 32. Since the rollers 31, 32 have a torque transfer capacity between the rollers according to the radial mutual pressing force, the left and right rear wheels 6L, 6R (main A part of the torque to the drive wheels) is directed from the first roller 31 to the output shaft 13 via the second roller 32, and the left and right front wheels 9L and 9R (secondary drive wheels) can also be driven.
- the vehicle is capable of four-wheel drive running by driving all of the left and right rear wheels 6L and 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 9L and 9R.
- the radial pressing reaction force between the first roller 31 and the second roller 32 during the transmission is received by the bearing supports 16 and 17 which are rotation support plates common to them, and does not reach the housing 11.
- the radial pressing reaction force is 0 when the crankshaft rotation angle ⁇ is 0 ° to 90 °, and increases as ⁇ increases while the crankshaft rotation angle ⁇ is 90 ° to 180 °.
- the maximum value is obtained when the crankshaft rotation angle ⁇ is 180 °.
- the rotation angle ⁇ of the crankshafts 51L and 51R is 90 ° of the reference position as shown in FIG. 4 (b), and the first roller 31 and the second roller 32 are mutually connected.
- Power is transmitted to the left and right front wheels (sub driven wheels) 9L and 9R with a traction transmission capacity corresponding to the offset amount OS between these rollers.
- the distance L1 between the roller shafts further decreases, and the mutual overlap amount OL of the first roller 31 and the second roller 32 increases.
- the first roller 31 and the second roller 32 increase the radial mutual pressing force.
- the traction transmission capacity between these rollers can be increased.
- the maximum overlap amount OL is the sum of the eccentric amount ⁇ between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG. 4B.
- ⁇ increases, the traction transmission capacity between rollers can be continuously changed from 0 to the maximum value.
- the capacity can be continuously changed from the maximum value to 0, and the traction transmission capacity between the rollers can be freely controlled by rotating the crankshafts 51L and 51R.
- the transfer 1 distributes a part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R to the left and right front wheels (secondary drive wheels) 9L and 9R as described above during the four-wheel drive driving described above.
- the left and right front wheels (slave drive wheels) can determine the traction transmission capacity between the first roller 31 and the second roller 32 from the driving force of the left and right rear wheels 6L, 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio. It is necessary to correspond to the target front wheel drive force to be distributed to 9L and 9R.
- a transfer controller 111 is provided as shown in FIG. 1, thereby controlling the rotational position of the motor 35 (control of the crankshaft rotational angle ⁇ ). To do.
- the transfer controller 111 has A signal from an accelerator opening sensor 112 that detects an accelerator pedal depression amount (accelerator opening) APO that adjusts the output of the engine 2; A signal from the rear wheel speed sensor 113 that detects the rotational peripheral speed Vwr of the left and right rear wheels 6L, 6R (main drive wheels); A signal from the yaw rate sensor 114 for detecting the yaw rate ⁇ around the vertical axis passing through the center of gravity of the vehicle; A signal from the crankshaft rotation angle sensor 115 for detecting the rotation angle ⁇ of the crankshafts 51L and 51R; A signal from an oil temperature sensor 116 that detects the temperature TEMP of the hydraulic oil in the transfer 1 (housing 11) is input.
- an accelerator opening sensor 112 that detects an accelerator pedal depression amount (accelerator opening) APO that adjusts the output of the engine 2
- a signal from the rear wheel speed sensor 113 that detects the rotational peripheral speed Vwr of the left and right rear wheels 6L, 6R
- the oil temperature sensor 116 is used in the rotational directions of the first roller 31 and the second roller 32 (respectively indicated by arrows in FIG. 5).
- the oil temperature detection end portion 116a of the oil temperature sensor 116 is positioned behind the location where the outer peripheral surfaces of the first roller 31 and the second roller 32 are in mutual contact (location where torque is transmitted via the hydraulic oil).
- the oil temperature sensor 116 has its oil temperature detection end portion 116a immersed in the hydraulic oil 61 in the driving force distribution device 1 (housing 11), and the outer peripheral surfaces of the first roller 31 and the second roller 32. Between the mutual contact point and the common contact surface M that contacts the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 at the rear of the outer peripheral surface mutual contact point, that is, in the roller rotational direction.
- the first roller 31 and the second roller 32 are preferably arranged so as to be located immediately after the contact point between the outer peripheral surfaces.
- the transfer controller 111 performs traction transmission capacity control of the transfer 1 (front and rear wheel driving force distribution control of a four-wheel drive vehicle) based on the detection information of the sensors 112 to 116 as described below. That is, first, the transfer controller 111 first knows the driving force of the left and right rear wheels 6L and 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio based on the accelerator opening APO, the rear wheel speed Vwr, and the yaw rate ⁇ . Ask for.
- the transfer controller 111 determines the target front wheel drive force to be distributed to the left and right front wheels (secondary drive wheels) 9L and 9R from the drive force of the left and right rear wheels 6L and 6R (main drive wheels) and the front and rear wheel target drive force distribution ratio. Ask for.
- the transfer controller 111 determines the radial pressing force between the rollers required for the first roller 31 and the second roller 32 to transmit the target front wheel driving force (the traction transmission capacity between the first roller 31 and the second roller 32).
- the crankshafts 51L and 51R (see Figs. 2 and 3) required to achieve the radial pressure between the rollers (the traction transmission capacity between the first roller 31 and the second roller 32).
- the rotation angle target value t ⁇ that is, the target turning position of the second roller axis O 2 is calculated.
- the transfer controller 111 changes the crankshaft rotation angle ⁇ to the crankshaft rotation angle target value t ⁇ in accordance with the crankshaft rotation angle deviation between the crankshaft rotation angle ⁇ detected by the sensor 115 and the crankshaft rotation angle target value t ⁇ .
- the roller pressing force control motor 35 is driven and controlled so as to match.
- the rotation angle ⁇ of the crankshafts 51L and 51R matches the target value t ⁇ by the drive control of the motor 35, so that the first roller 31 and the second roller 32 can mutually transmit the target front wheel driving force. It is possible to control the traction transmission capacity between the first roller 31 and the second roller 32 to be the front / rear wheel target driving force distribution ratio by being pressed and contacted in the radial direction.
- step S11 it is checked whether or not four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R. If four-wheel drive (4WD) is not requested but two-wheel drive (2WD) is required, control proceeds to step S12, and the driving force is distributed to the left and right front wheels (secondary drive wheels) 9L and 9R.
- step S13 it is determined in step S13 whether the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs for overheat determination.
- the set oil temperature TEMPs for overheat determination is a lower limit value of a high temperature region (overheat temperature region) where the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 cause surface separation at the mutual contact locations. .
- step S13 When it is determined in step S13 that the hydraulic oil temperature TEMP is lower than the set oil temperature TEMPs, that is, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are not superheated so as not to cause surface separation at the mutual contact locations.
- step S14 When it is determined that the vehicle is in a state, fail-safe control for overheating countermeasures is not required, so control proceeds to step S14, and the above-described normal four-wheel drive (4WD) traction transmission capacity control (front and rear wheel drive force distribution) Control).
- 4WD normal four-wheel drive
- step S13 When it is determined in step S13 that the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs, that is, an overheat state in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 may cause surface peeling at the mutual contact locations. In the case where it is determined that this is, fail-safe control for countermeasure against overheating is necessary. Therefore, the control proceeds to step S15, and the following fail-safe control during overheating is performed.
- step S15 the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are mutually connected according to the hydraulic oil temperature TEMP, that is, to what extent the set oil temperature TEMPs is exceeded.
- the radial pressing force between the first roller 31 and the second roller 32 is reduced (including 0) to such an extent that surface peeling does not occur at the contact location. Therefore, step S13 and step S15 are used as the roller radial pressing force correcting means (fail safe means) in this embodiment.
- the oil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the above-described overheat fail-safe control is described above with reference to FIG. Since it is arranged on the street, the following effects can be obtained.
- the oil temperature sensor 116 is in contact with the outer peripheral surfaces of the first roller 31 and the second roller 32 in the rotational directions of the first roller 31 and the second roller 32 (respectively indicated by arrows in FIG. 5). Since the oil temperature detection end 116a is positioned behind the location (immediately in FIG. 5), the hydraulic oil temperature TEMP detected by the oil temperature sensor 116 is the location where the first and second rollers 31 and 32 contact each other on the outer peripheral surface.
- FIG. 6 the control response of the fail-safe control described above with reference to FIG.
- FIG. 7 shows a traction force compensation control program for the driving force distribution device according to the second embodiment of the present invention. Also in this embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the oil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
- the transfer controller 111 in FIG. 1 executes the traction force compensation control program in FIG. 7 based on the hydraulic oil temperature TEMP detected by the oil temperature sensor 116 in the arrangement in FIG. 5, and is illustrated in FIG.
- the traction force between the first roller 31 and the second roller 32 can correspond to the target front wheel driving force.
- the radial pressing force between the first roller 31 and the second roller 32 is corrected according to the change in the oil temperature TEMP.
- the change characteristics of the traction coefficient ⁇ between the rollers with respect to the oil temperature illustrated in FIG. 8 will be described.
- the traction coefficient ⁇ between the rollers becomes the maximum when the oil temperature TEMP is a certain value, and the radial pressing force between the rollers and the like. If the conditions are the same, the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is maximized. As the oil temperature TEMP decreases and increases away from the certain value, the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 greatly decreases from the above maximum value.
- the oil temperature TEMP is exemplified as TEMPb (traction coefficient ⁇ b ) in FIG.
- TEMPb traction coefficient ⁇ b
- the target value for the radial pressing force between the first roller 31 and the second roller 32 capable of transmitting the target front wheel driving force is determined to contribute to the turning position control of the second roller 32.
- step S21 it is checked whether or not four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R. If two-wheel drive (2WD) is requested instead of requesting four-wheel drive (4WD), control proceeds to step S22, and the driving force is distributed to left and right front wheels (secondary drive wheels) 9L and 9R.
- the normal two-wheel drive (2WD) traction transmission capacity is controlled so as not to be performed.
- step S23 the hydraulic oil temperature TEMP deviates from the normal temperature TEMPb described above with reference to FIG. 8 within the range of ( ⁇ 1) to (+ ⁇ 2).
- the traction coefficient ⁇ changes with the deviation from the normal temperature TEMPb, and the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is ignored with respect to the target front wheel drive force.
- Check whether or not the traction force compensation control is necessary because the traction transmission capacity control (front and rear wheel drive force distribution control) for four-wheel drive (4WD) can be performed as intended. .
- step S23 If it is determined in step S23 that traction force compensation control is not required, control proceeds to step S24, and the above-described normal four-wheel drive (4WD) traction transmission capacity control (front and rear wheel drive force distribution control) is performed. To do.
- 4WD normal four-wheel drive
- step S23 When it is determined in step S23 that the hydraulic oil temperature TEMP has changed beyond the range of ( ⁇ 1) or (+ ⁇ 2) than the normal temperature TEMPb, that is, the change in the traction coefficient ⁇ accompanying the deviation from the normal temperature TEMPb is large.
- the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is in excess or deficiency so that it cannot be ignored relative to the target front wheel drive force, and traction transmission capacity control for four-wheel drive (4WD) (front and rear wheel drive) Force distribution control) cannot be performed as intended and it is determined that traction force compensation control is necessary, the control proceeds to step S25, and the traction force change due to the deviation of the hydraulic oil temperature TEMP from the normal temperature TEMPb.
- Step S23 and Step S25 correspond to the inter-roller radial pressing force correcting means (traction force compensating means) in the present invention.
- the oil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the traction force compensation control is the same as that described above with reference to FIG.
- the operating oil temperature TEMP at the location where the oil temperature sensor 116 is installed is close to the temperature of the contact surface between the outer peripheral surfaces of the first roller 31 and the second roller 32.
- FIG. 9 shows an overheat fail-safe control and traction force compensation control program of the driving force distribution device according to the third embodiment of the present invention. Also in this embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the oil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
- the transfer controller 111 in FIG. 1 executes the overheat fail-safe control and traction force compensation control program in FIG. 9 based on the hydraulic oil temperature TEMP detected by the oil temperature sensor 116 arranged in FIG.
- the overheat fail-safe control of the first embodiment described above with reference to FIG. 6 is performed, and the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed.
- Steps S11 to S13 and Step S15 in FIG. 9 perform the same processing as the steps indicated by the same reference numerals in FIG. 6, and Steps S23 to S25 perform the same processing as the steps indicated by the same reference numerals in FIG. Shall. If it is determined in step S11 that two-wheel drive (2WD) is required, in step S12, normal two-wheel drive that prevents the transfer force from being distributed to the left and right front wheels (secondary drive wheels) 9L and 9R in step S12 ( 2WD) for traction transmission capacity 0 control.
- 2WD two-wheel drive
- step S11 it is determined that a four-wheel drive (4WD) is being requested, and in step S13, the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs illustrated in FIG. 8 (the outer peripheral surfaces of the first roller 31 and the second roller 32).
- step S15 the hydraulic oil temperature TEMP is set in accordance with the hydraulic oil temperature TEMP.
- the distance between the first roller 31 and the second roller 32 is such that the outer peripheral surfaces 31a, 32a of the first roller 31 and the second roller 32 do not cause surface separation at the mutual contact points. Is reduced (including 0), and the overheat fail-safe control of the first embodiment described above with reference to FIG. 6 is performed.
- step S13 When it is determined in step S13 that the hydraulic oil temperature TEMP is lower than the set oil temperature TEMPs, that is, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are not superheated so as not to cause surface separation at the mutual contact locations.
- the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed in steps S23 to S25.
- step S23 when it is determined in step S23 that the hydraulic oil temperature TEMP is only deviated from the normal temperature TEMPb described above with reference to FIG. 8 within the range of ( ⁇ 1) to (+ ⁇ 2), that is, accompanying the deviation from the normal temperature TEMPb.
- the change in the traction coefficient ⁇ is slight, and the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is negligible with respect to the target front wheel drive force.
- Traction transmission capacity control front and rear wheel drive force distribution control
- normal traction drive capacity control for four-wheel drive (4WD) in step S24 (Front and rear wheel driving force distribution control) is performed.
- step S23 when it is determined in step S23 that the hydraulic oil temperature TEMP has changed beyond the range of ( ⁇ 1) or (+ ⁇ 2) from the normal temperature TEMPb, that is, the change in the traction coefficient ⁇ accompanying the deviation from the normal temperature TEMPb is large.
- the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is too much or insufficient to ignore the target front wheel driving force, and the traction transmission capacity control for four-wheel drive (4WD) (front and rear wheels)
- step S25 traction traction.
- step S11 to step S13 and step S15 The control response of the overheat fail-safe control (step S11 to step S13 and step S15) and traction force compensation control (step S23 to step S25) described above with reference to FIG. can do.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
When positioning an oil temperature sensor (116), the oil temperature sensor (116) is positioned such that an oil temperature sensing end (116a) is positioned behind an outer peripheral surface mutual contact point on a first roller (31) and a second roller (32) in the direction of rotation (indicated by arrows) of the first roller (31) and the second roller (32). The oil temperature sensor (116) is preferably positioned such that the oil temperature sensing end (116a) is immersed in hydraulic fluid (61) inside a driving force distribution device (1) (a housing (11)), and is positioned between the outer peripheral surface mutual contact point on the first roller (31) and the second roller (32), and a common contact plane (M) that touches the outer peripheral surfaces (31a, 32a) of the first roller (31) and the second roller (32) further behind in the direction of rotation of the rollers than the outer peripheral surface mutual contact point, in other words, the oil temperature sensing end (116a) is positioned just behind the outer peripheral surface mutual contact point on the first roller (31) and the second roller (32) in the direction of rotation of the rollers.
Description
本発明は、駆動力分配装置、特に四輪駆動車のトランスファーとして用いる駆動力配分装置に関するものである。
The present invention relates to a driving force distribution device, and more particularly to a driving force distribution device used as a transfer for a four-wheel drive vehicle.
従来の駆動力配分装置としては、例えば特許文献1に記載のようなものが知られている。
この文献に記載の駆動力配分装置は、主駆動輪の伝動系に機械的に結合された第1ローラと、従駆動輪の駆動系に機械的に結合された第2ローラとを具え、これら第1ローラおよび第2ローラを両者の外周面において相互に接触させることにより、主駆動輪へのトルクの一部を従駆動輪へ分配して出力させ得るようになしたものである。 As a conventional driving force distribution device, for example, a device as described inPatent Document 1 is known.
The driving force distribution device described in this document includes a first roller mechanically coupled to the transmission system of the main driving wheel and a second roller mechanically coupled to the driving system of the driven wheel. By bringing the first roller and the second roller into contact with each other on the outer peripheral surfaces of them, a part of the torque to the main driving wheel can be distributed to the driven wheel and output.
この文献に記載の駆動力配分装置は、主駆動輪の伝動系に機械的に結合された第1ローラと、従駆動輪の駆動系に機械的に結合された第2ローラとを具え、これら第1ローラおよび第2ローラを両者の外周面において相互に接触させることにより、主駆動輪へのトルクの一部を従駆動輪へ分配して出力させ得るようになしたものである。 As a conventional driving force distribution device, for example, a device as described in
The driving force distribution device described in this document includes a first roller mechanically coupled to the transmission system of the main driving wheel and a second roller mechanically coupled to the driving system of the driven wheel. By bringing the first roller and the second roller into contact with each other on the outer peripheral surfaces of them, a part of the torque to the main driving wheel can be distributed to the driven wheel and output.
かかる駆動力配分装置にあっては、第1ローラおよび第2ローラ間における径方向押し付け力を加減することにより、これらローラ間のトルク伝達容量、従って主駆動輪および従駆動輪間の駆動力配分を制御することができる。
In such a driving force distribution device, by adjusting the radial pressing force between the first roller and the second roller, the torque transmission capacity between these rollers, and accordingly, the driving force distribution between the main driving wheel and the sub driving wheel Can be controlled.
この駆動力配分制御を行うための機構として特許文献1には、第2ローラの回転軸をモータ等で偏心軸線周りに旋回させることにより第2ローラを第1ローラに対し径方向へ相対変位させ、これにより第1ローラおよび第2ローラ間の径方向押し付け力、つまり主駆動輪および従駆動輪間の駆動力配分を制御し得るようにした構成が提案されている。
As a mechanism for performing this driving force distribution control, Patent Document 1 discloses that the second roller is displaced in the radial direction relative to the first roller by turning the rotation shaft of the second roller around an eccentric axis with a motor or the like. Thus, a configuration has been proposed in which the radial pressing force between the first roller and the second roller, that is, the distribution of the driving force between the main driving wheel and the sub driving wheel can be controlled.
上記した第1ローラおよび第2ローラ間の径方向押し付け力制御(主駆動輪および従駆動輪間の駆動力配分制御)に当たっては、過熱時におけるローラ外周面の剥離を防止するフェールセーフ制御や、温度によるローラ間トラクション伝動特性の変化(トラクション力変化)を補償するトラクション力補償制御などのために、駆動力配分装置内における作動油(トラクションオイル)の温度を検出する油温センサが必要である。
In the above-described radial pressing force control between the first roller and the second roller (drive force distribution control between the main drive wheel and the slave drive wheel), fail-safe control for preventing the outer peripheral surface of the roller from peeling off at the time of overheating, An oil temperature sensor that detects the temperature of hydraulic oil (traction oil) in the driving force distribution device is required for traction force compensation control that compensates for changes in traction transmission characteristics between rollers (change in traction force) due to temperature. .
ところで特許文献1には、油温センサの配置に関して何ら言及していない。
しかし、内部作動油は温度分布が千差万別であり、油温センサの設置箇所によっては、これにより検出した作動油温が、肝心なローラ間相互接触面の温度を代表し得ず、上記したフェールセーフ制御やトラクション力補償制御などの制御応答が悪くなり、制御精度が低下して狙い通りの制御効果を得られないという問題を生ずる。
特許文献1に代表される従来技術のように、油温センサの配置に関して何ら工夫をしない駆動力配分装置では、当該問題の発生が不可避である。 Incidentally,Patent Document 1 does not mention anything about the arrangement of the oil temperature sensor.
However, the temperature distribution of the internal hydraulic fluid varies widely, and depending on the location of the oil temperature sensor, the hydraulic fluid temperature detected by this cannot represent the temperature of the essential contact surface between the rollers. Control responses such as fail-safe control and traction force compensation control are deteriorated, resulting in a problem that the control accuracy is lowered and the desired control effect cannot be obtained.
In the driving force distribution device that does not make any contrivance regarding the arrangement of the oil temperature sensor as in the prior art represented byPatent Document 1, the occurrence of the problem is unavoidable.
しかし、内部作動油は温度分布が千差万別であり、油温センサの設置箇所によっては、これにより検出した作動油温が、肝心なローラ間相互接触面の温度を代表し得ず、上記したフェールセーフ制御やトラクション力補償制御などの制御応答が悪くなり、制御精度が低下して狙い通りの制御効果を得られないという問題を生ずる。
特許文献1に代表される従来技術のように、油温センサの配置に関して何ら工夫をしない駆動力配分装置では、当該問題の発生が不可避である。 Incidentally,
However, the temperature distribution of the internal hydraulic fluid varies widely, and depending on the location of the oil temperature sensor, the hydraulic fluid temperature detected by this cannot represent the temperature of the essential contact surface between the rollers. Control responses such as fail-safe control and traction force compensation control are deteriorated, resulting in a problem that the control accuracy is lowered and the desired control effect cannot be obtained.
In the driving force distribution device that does not make any contrivance regarding the arrangement of the oil temperature sensor as in the prior art represented by
本発明は、上記型式の駆動力配分装置にあってはローラ間相互接触面の温度を知るのが肝要であり、またローラ外周面相互接触箇所のローラ回転方向直後にローラ間から掻き出された作動油の温度が当該ローラ間相互接触面の温度に近いとの認識に基づき、ここにおける作動油の温度を検出するよう油温センサを配置して上記の問題を解消し得るようにした駆動力配分装置を提案することを目的とする。
According to the present invention, in the driving force distribution device of the above type, it is important to know the temperature of the mutual contact surface between the rollers, and the roller is scraped from between the rollers immediately after the roller rotation direction of the mutual contact surface of the roller outer peripheral surface. Based on the recognition that the temperature of the hydraulic oil is close to the temperature of the contact surface between the rollers, a driving force that can solve the above problem by arranging an oil temperature sensor to detect the temperature of the hydraulic oil here The purpose is to propose a distribution device.
この目的のため本発明による駆動力配分装置は、これを以下のように構成する。
先ず前提となる駆動力配分装置を説明するに、これは、主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
これら第1ローラおよび第2ローラを両者の外周面において動力伝達可能に接触させることにより従駆動輪への駆動力配分を行うと共に、該第1ローラおよび第2ローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分制御が可能で、該駆動力配分制御の制御因子として少なくとも作動油の温度を用いるようにしたものである。 For this purpose, the driving force distribution device according to the present invention is configured as follows.
First, the driving force distribution device as a premise will be described. This includes a first roller that rotates together with the main drive wheel transmission system, and a second roller that rotates together with the driven wheel transmission system.
The first roller and the second roller are brought into contact with each other on their outer peripheral surfaces so that power can be transmitted, and the driving force is distributed to the driven wheels, and the radial pressing force between the first roller and the second roller is adjusted. As a result, the driving force distribution control between the main driving wheel and the sub driving wheel is possible, and at least the temperature of the hydraulic oil is used as a control factor of the driving force distribution control.
先ず前提となる駆動力配分装置を説明するに、これは、主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
これら第1ローラおよび第2ローラを両者の外周面において動力伝達可能に接触させることにより従駆動輪への駆動力配分を行うと共に、該第1ローラおよび第2ローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分制御が可能で、該駆動力配分制御の制御因子として少なくとも作動油の温度を用いるようにしたものである。 For this purpose, the driving force distribution device according to the present invention is configured as follows.
First, the driving force distribution device as a premise will be described. This includes a first roller that rotates together with the main drive wheel transmission system, and a second roller that rotates together with the driven wheel transmission system.
The first roller and the second roller are brought into contact with each other on their outer peripheral surfaces so that power can be transmitted, and the driving force is distributed to the driven wheels, and the radial pressing force between the first roller and the second roller is adjusted. As a result, the driving force distribution control between the main driving wheel and the sub driving wheel is possible, and at least the temperature of the hydraulic oil is used as a control factor of the driving force distribution control.
本発明は、かかる駆動力配分装置内における前記作動油の温度を検出する油温センサを、前記第1ローラおよび第2ローラの回転方向において、これら第1ローラおよび第2ローラの外周面相互接触箇所の後方に配置した構成に特徴づけられる。
The present invention provides an oil temperature sensor for detecting the temperature of the hydraulic oil in the driving force distribution device, wherein the first roller and the second roller are in mutual contact with each other in the rotation direction of the first roller and the second roller. Characterized by the configuration placed behind the location.
かかる本発明の駆動力配分装置によれば、作動油の温度を検出する油温センサを、第1ローラおよび第2ローラの回転方向において、これら第1ローラおよび第2ローラの外周面相互接触箇所の後方に配置したため、当該油温センサで検出した作動油温が第1ローラおよび第2ローラの外周面相互接触箇所における温度に近く、前記したフェールセーフ制御やトラクション力補償制御などの制御応答を高めることができ、制御精度の向上により狙い通りの制御効果を奏し得る。
According to such a driving force distribution device of the present invention, the oil temperature sensor for detecting the temperature of the hydraulic oil is arranged such that the outer peripheral surface mutual contact portions of the first roller and the second roller in the rotation direction of the first roller and the second roller. Since the hydraulic oil temperature detected by the oil temperature sensor is close to the temperature at the contact point between the outer surfaces of the first roller and the second roller, control responses such as the fail-safe control and the traction force compensation control described above are performed. The control effect can be achieved as intended by improving the control accuracy.
1 駆動力配分装置(トランスファー)
2 エンジン
3 変速機
4 リヤプロペラシャフト
5 リヤファイナルドライブユニット
6L,6R 左右後輪(主駆動輪)
7 フロントプロペラシャフト
8 フロントファイナルドライブユニット
9L,9R 左右前輪(従駆動輪)
11 ハウジング
12 入力軸
13 出力軸
16,17 ベアリングサポート
31 第1ローラ
32 第2ローラ
35 ローラ間押し付け力制御モータ
51L,51R クランクシャフト
51La,51Ra 中空孔
51Lb,51Rb 外周部
51Lc,51Rc リングギヤ
55 クランクシャフト駆動ピニオン
56 ピニオンシャフト
111 トランスファーコントローラ
112 アクセル開度センサ
113 後輪速センサ
114 ヨーレートセンサ
115 クランクシャフト回転角センサ
116 油温センサ
116a 油温検知端部 1 Driving force distribution device (transfer)
2Engine 3 Transmission 4 Rear propeller shaft 5 Rear final drive unit 6L, 6R Left and right rear wheels (main drive wheels)
7Front propeller shaft 8 Front final drive unit 9L, 9R Left and right front wheels (slave drive wheels)
11Housing 12 Input shaft 13 Output shaft 16,17 Bearing support 31 1st roller 32 2nd roller 35 Roller pressing force control motor 51L, 51R Crankshaft 51La, 51Ra Hollow hole 51Lb, 51Rb Outer part 51Lc, 51Rc Ring gear 55 Crankshaft Drive pinion 56 Pinion shaft 111 Transfer controller 112 Accelerator position sensor 113 Rear wheel speed sensor 114 Yaw rate sensor 115 Crankshaft rotation angle sensor 116 Oil temperature sensor 116a Oil temperature detection end
2 エンジン
3 変速機
4 リヤプロペラシャフト
5 リヤファイナルドライブユニット
6L,6R 左右後輪(主駆動輪)
7 フロントプロペラシャフト
8 フロントファイナルドライブユニット
9L,9R 左右前輪(従駆動輪)
11 ハウジング
12 入力軸
13 出力軸
16,17 ベアリングサポート
31 第1ローラ
32 第2ローラ
35 ローラ間押し付け力制御モータ
51L,51R クランクシャフト
51La,51Ra 中空孔
51Lb,51Rb 外周部
51Lc,51Rc リングギヤ
55 クランクシャフト駆動ピニオン
56 ピニオンシャフト
111 トランスファーコントローラ
112 アクセル開度センサ
113 後輪速センサ
114 ヨーレートセンサ
115 クランクシャフト回転角センサ
116 油温センサ
116a 油温検知端部 1 Driving force distribution device (transfer)
2
7
11
以下、この発明の実施例を添付の図面に基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<構成>
図1は、本発明の第1実施例になる駆動力配分装置1をトランスファーとして具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。 <Configuration>
FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle provided with a drivingforce distribution device 1 according to a first embodiment of the present invention as a transfer as viewed from above the vehicle.
図1は、本発明の第1実施例になる駆動力配分装置1をトランスファーとして具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。 <Configuration>
FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle provided with a driving
図1の四輪駆動車両は、エンジン2からの回転を変速機3による変速後、リヤプロペラシャフト4およびリヤファイナルドライブユニット5を順次経て左右後輪6L,6Rに伝達するようにした後輪駆動車をベース車両とし、
左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1により、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を順次経て左右前輪(従駆動輪)7L,7Rへ伝達することにより、四輪駆動走行が可能となるようにした車両である。 The four-wheel drive vehicle in FIG. 1 is a rear-wheel drive vehicle in which rotation from theengine 2 is transmitted to the left and right rear wheels 6L and 6R through the rear propeller shaft 4 and the rear final drive unit 5 after being shifted by the transmission 3. As a base vehicle,
Part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R is transmitted to the left and right front wheels (secondary drive wheels) 7L and 7R through thefront propeller shaft 7 and the front final drive unit 8 sequentially by the driving force distribution device 1. By doing so, the vehicle can be driven by four-wheel drive.
左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1により、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を順次経て左右前輪(従駆動輪)7L,7Rへ伝達することにより、四輪駆動走行が可能となるようにした車両である。 The four-wheel drive vehicle in FIG. 1 is a rear-wheel drive vehicle in which rotation from the
Part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R is transmitted to the left and right front wheels (secondary drive wheels) 7L and 7R through the
駆動力配分装置1は、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)7L,7Rへ分配して出力することにより、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分比を決定するもので、本実施例においては、この駆動力配分装置1を図2に示すように構成する。
As described above, the driving force distribution device 1 distributes and outputs a part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 7L and 7R. (Main drive wheels) 6L, 6R and left and right front wheels (secondary drive wheels) 9L, 9R to determine the drive force distribution ratio. In this embodiment, this drive force distribution device 1 is as shown in FIG. Constitute.
図2において11は、駆動力配分装置1のハウジングを示し、このハウジング11内に入力軸12および出力軸13を、それぞれの回転軸線O1およびO2が相互に平行になるよう配して横架する。
入力軸12は、その両端におけるボールベアリング14,15によりハウジング11に対し回転自在に支承する。
入力軸12の両端をそれぞれ、シールリング25,26による液密封止下でハウジング11から突出させる。
図2において入力軸12の左端を変速機3(図1参照)の出力軸に駆動結合し、右端はリヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に駆動結合する。 In FIG. 2,reference numeral 11 denotes a housing of the driving force distribution device 1, and the input shaft 12 and the output shaft 13 are arranged in the housing 11 so that the respective rotation axes O 1 and O 2 are parallel to each other. Mount.
Theinput shaft 12 is rotatably supported with respect to the housing 11 by ball bearings 14 and 15 at both ends thereof.
Both ends of theinput shaft 12 are protruded from the housing 11 under liquid-tight sealing by seal rings 25 and 26, respectively.
2, the left end of theinput shaft 12 is drivingly coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end is drivingly coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
入力軸12は、その両端におけるボールベアリング14,15によりハウジング11に対し回転自在に支承する。
入力軸12の両端をそれぞれ、シールリング25,26による液密封止下でハウジング11から突出させる。
図2において入力軸12の左端を変速機3(図1参照)の出力軸に駆動結合し、右端はリヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に駆動結合する。 In FIG. 2,
The
Both ends of the
2, the left end of the
入力軸12および出力軸13の両端近くにそれぞれ配して、これら入出力軸12,13間に一対のベアリングサポート16,17を架設し、これらベアリングサポート16,17をそれぞれの中程で、ボルト(図示せず)によりハウジング11の軸線方向対向内壁に取着する。
ベアリングサポート16,17と入力軸12との間にはローラベアリング21,22を介在させ、これにより入力軸12をベアリングサポート16,17に対し回転自在となすことで、ベアリングサポート16,17を介しても入力軸12をハウジング11内に回転自在に支持する。 Arranged near the both ends of theinput shaft 12 and the output shaft 13, respectively, a pair of bearing supports 16, 17 are installed between the input / output shafts 12, 13, and the bearing supports 16, 17 are arranged in the middle of each bolt. (Not shown) is attached to the axially opposed inner wall of the housing 11.
Roller bearings 21 and 22 are interposed between the bearing supports 16 and 17 and the input shaft 12 so that the input shaft 12 can be rotated with respect to the bearing supports 16 and 17. However, the input shaft 12 is rotatably supported in the housing 11.
ベアリングサポート16,17と入力軸12との間にはローラベアリング21,22を介在させ、これにより入力軸12をベアリングサポート16,17に対し回転自在となすことで、ベアリングサポート16,17を介しても入力軸12をハウジング11内に回転自在に支持する。 Arranged near the both ends of the
ベアリングサポート16,17間(ローラベアリング21,22間)における入力軸12の軸線方向中程位置に第1ローラ31を同軸に一体成形する。
この第1ローラ31に作動油を介し動力伝達可能に接触し得るよう配して、出力軸13の軸線方向中程位置に第2ローラ32を同軸に一体成形する。
これら第1ローラ31および第2ローラ32の外周面31a,32aは、入力軸12および出力軸13の平行配置に起因して、相互に線接触し得るような円筒面とする。 Afirst roller 31 is coaxially and integrally formed at a position in the axial direction of the input shaft 12 between the bearing supports 16 and 17 (between the roller bearings 21 and 22).
Thesecond roller 32 is coaxially formed integrally with the first roller 31 so as to be in contact with the first oil roller 31 so that power can be transmitted through the hydraulic oil.
Due to the parallel arrangement of theinput shaft 12 and the output shaft 13, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are cylindrical surfaces that can come into line contact with each other.
この第1ローラ31に作動油を介し動力伝達可能に接触し得るよう配して、出力軸13の軸線方向中程位置に第2ローラ32を同軸に一体成形する。
これら第1ローラ31および第2ローラ32の外周面31a,32aは、入力軸12および出力軸13の平行配置に起因して、相互に線接触し得るような円筒面とする。 A
The
Due to the parallel arrangement of the
出力軸13は、その両端近くにおける前記のベアリングサポート16,17に対し旋回可能に支承することで、これらベアリングサポート16,17を介してハウジング11内に旋回可能に支持する。
かように出力軸13をベアリングサポート16,17に対し旋回可能に支承するに当たっては、以下のような偏心支承構造を用いる。 Theoutput shaft 13 is pivotally supported with respect to the bearing supports 16 and 17 in the vicinity of both ends thereof, so that the output shaft 13 is rotatably supported in the housing 11 via the bearing supports 16 and 17.
Thus, when theoutput shaft 13 is pivotally supported with respect to the bearing supports 16 and 17, the following eccentric support structure is used.
かように出力軸13をベアリングサポート16,17に対し旋回可能に支承するに当たっては、以下のような偏心支承構造を用いる。 The
Thus, when the
出力軸13と、これが貫通するベアリングサポート16,17との間にそれぞれ、中空アウターシャフト型式のクランクシャフト51L,51Rを遊嵌する。
クランクシャフト51Lおよび出力軸13をそれぞれ図2の左端においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング27を介在させると共に、クランクシャフト51L および出力軸13間にシールリング28を介在させて、ハウジング11から突出するクランクシャフト51Lおよび出力軸13の突出部をそれぞれ液密封止する。 A hollow outer shaft type crankshaft 51L, 51R is loosely fitted between the output shaft 13 and the bearing supports 16, 17 through which the output shaft 13 passes.
Thecrankshaft 51L and the output shaft 13 protrude from the housing 11 at the left end in FIG. 2, respectively, and the seal ring 27 is interposed between the housing 11 and the crankshaft 51L at the protruding portion, and the seal between the crankshaft 51L and the output shaft 13 is sealed. The crankshaft 51L protruding from the housing 11 and the protruding portion of the output shaft 13 are liquid-tightly sealed with the ring 28 interposed.
クランクシャフト51Lおよび出力軸13をそれぞれ図2の左端においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング27を介在させると共に、クランクシャフト51L および出力軸13間にシールリング28を介在させて、ハウジング11から突出するクランクシャフト51Lおよび出力軸13の突出部をそれぞれ液密封止する。 A hollow outer
The
図2においてハウジング11から吐出する出力軸13の左端は、フロントプロペラシャフト7(図1参照)およびフロントファイナルドライブユニット8を介して左右前輪9L,9Rに駆動結合する。
2, the left end of the output shaft 13 discharged from the housing 11 is drivingly coupled to the left and right front wheels 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8.
クランクシャフト51L,51Rの中空孔51La,51Ra(半径Ri)と、出力軸13の対応端部との間にそれぞれローラベアリング52L,52Rを介在させて、出力軸13をクランクシャフト51L,51Rの中空孔51La,51Ra内で、これらの中心軸線O2の周りに自由に回転し得るよう支持する。
Roller bearings 52L and 52R are interposed between the hollow holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R and the corresponding ends of the output shaft 13, respectively, so that the output shaft 13 is hollow in the crankshafts 51L and 51R. holes 51La, within 51Ra, supports that can freely rotate around these central axis O 2.
クランクシャフト51L,51Rの中空孔51La,51Ra(中心軸線O2)は図3に明示するごとく、外周部51Lb,51Rb(中心軸線O3、半径Ro)に対し偏心させた偏心中空孔とし、これら偏心中空孔51La,51Raの中心軸線O2は外周部51Lb,51Rbの中心軸線O3から、両者間の偏心分εだけオフセットしている。
クランクシャフト51L,51Rの外周部51Lb,51Rbはそれぞれ、ローラベアリング53L,53Rを介して対応する側におけるベアリングサポート16,17内に回転自在に支持する。
この際、クランクシャフト51L,51Rをそれぞれ、第2ローラ32と共に、スラストベアリング54L,54Rで軸線方向に位置決めする。 As clearly shown in FIG. 3, the hollow holes 51La and 51Ra (center axis O 2 ) of the crankshafts 51L and 51R are eccentric hollow holes eccentric to the outer peripheral portions 51Lb and 51Rb (center axis O 3 and radius Ro). The central axis O 2 of the eccentric hollow holes 51La and 51Ra is offset from the central axis O 3 of the outer peripheral portions 51Lb and 51Rb by the eccentricity ε between them.
The outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in the bearing supports 16 and 17 on the corresponding side via roller bearings 53L and 53R, respectively.
At this time, the crankshafts 51L and 51R, together with the second roller 32, are positioned in the axial direction by the thrust bearings 54L and 54R.
クランクシャフト51L,51Rの外周部51Lb,51Rbはそれぞれ、ローラベアリング53L,53Rを介して対応する側におけるベアリングサポート16,17内に回転自在に支持する。
この際、クランクシャフト51L,51Rをそれぞれ、第2ローラ32と共に、スラストベアリング54L,54Rで軸線方向に位置決めする。 As clearly shown in FIG. 3, the hollow holes 51La and 51Ra (center axis O 2 ) of the
The outer peripheral portions 51Lb and 51Rb of the
At this time, the
クランクシャフト51L,51Rの相互に向き合う隣接端にそれぞれ、同仕様のリングギヤ51Lc,51Rcを一体に設け、
これらリングギヤ51Lc,51Rcにそれぞれ、共通なクランクシャフト駆動ピニオン55を噛合させ、これらクランクシャフト駆動ピニオン55をピニオンシャフト56に結合する。 Ring gears 51Lc and 51Rc of the same specification are integrally provided at adjacent ends of the crankshafts 51L and 51R facing each other.
A commoncrankshaft drive pinion 55 is engaged with each of the ring gears 51Lc and 51Rc, and the crankshaft drive pinion 55 is coupled to the pinion shaft 56.
これらリングギヤ51Lc,51Rcにそれぞれ、共通なクランクシャフト駆動ピニオン55を噛合させ、これらクランクシャフト駆動ピニオン55をピニオンシャフト56に結合する。 Ring gears 51Lc and 51Rc of the same specification are integrally provided at adjacent ends of the
A common
なお、上記のごとくリングギヤ51Lc,51Rcにクランクシャフト駆動ピニオン55を噛合させるに当たっては、クランクシャフト51L,51Rを両者の外周部51Lb,51Rbが円周方向において相互に整列して同位相となる回転位置にした状態で、当該リングギヤ51Lc,51Rcに対するクランクシャフト駆動ピニオン55の噛合を行わせる。
As described above, when the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc, the rotational positions where the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are aligned in the circumferential direction and in phase with each other. In this state, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc.
ピニオンシャフト56は、その両端を軸受56a,56bによりハウジング11に対し回転自在に支持する。
図2の右側におけるピニオンシャフト56の右端をハウジング11に貫通してこれから露出させ、
該ピニオンシャフト56の露出端面には、ハウジング11に取着して設けたローラ間押し付け力制御モータ35の出力軸35aをセレーション嵌合などにより駆動結合する。 Both ends of thepinion shaft 56 are rotatably supported with respect to the housing 11 by bearings 56a and 56b.
The right end of thepinion shaft 56 on the right side of FIG.
Anoutput shaft 35a of an inter-roller pressing force control motor 35 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
図2の右側におけるピニオンシャフト56の右端をハウジング11に貫通してこれから露出させ、
該ピニオンシャフト56の露出端面には、ハウジング11に取着して設けたローラ間押し付け力制御モータ35の出力軸35aをセレーション嵌合などにより駆動結合する。 Both ends of the
The right end of the
An
よって、ローラ間径方向押し付け力制御モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御するとき、
出力軸13および第2ローラ32の回転軸線O2が、図3に破線で示す軌跡円αに沿って中心軸線O3の周りに旋回する。 Therefore, when the rotational position of the crankshafts 51L, 51R is controlled by the inter-roller radial pressing force control motor 35 via the pinion 55 and the ring gears 51Lc, 51Rc,
The rotation axis O 2 of theoutput shaft 13 and the second roller 32 turns around the central axis O 3 along a locus circle α indicated by a broken line in FIG.
出力軸13および第2ローラ32の回転軸線O2が、図3に破線で示す軌跡円αに沿って中心軸線O3の周りに旋回する。 Therefore, when the rotational position of the
The rotation axis O 2 of the
図3の軌跡円αに沿った回転軸線O2(第2ローラ32)の旋回により第2ローラ32は、後で詳述するが図4(a)~(c)に示すごとく第1ローラ31に対し径方向へ接近し、これら第1ローラ31および第2ローラ32のローラ軸間距離L1をクランクシャフト51L,51Rの回転角θの増大につれ、第1ローラ31の半径と第2ローラ32の半径との和値よりも小さくすることができる。
かかるローラ軸間距離L1の低下により、第1ローラ31に対する第2ローラ32の径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)が大きくなり、ローラ軸間距離L1の低下度合いに応じてローラ間径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)、つまり駆動力配分比を任意に制御することができる。 Thesecond roller 32 is rotated by the rotation axis O 2 (second roller 32) along the locus circle α in FIG. 3, but the first roller 31 will be described in detail later, as shown in FIGS. 4 (a) to 4 (c). As the rotation angle θ of the crankshafts 51L and 51R increases, the radius L1 between the first roller 31 and the second roller 32 increases. It can be made smaller than the sum of the radius.
Due to such a decrease in the distance L1 between the roller shafts, the radial pressing force of thesecond roller 32 against the first roller 31 (the transmission torque capacity between the rollers: traction transmission capacity) increases, and according to the degree of decrease in the distance L1 between the roller axes. The inter-roller radial pressing force (inter-roller transmission torque capacity: traction transmission capacity), that is, the driving force distribution ratio can be arbitrarily controlled.
かかるローラ軸間距離L1の低下により、第1ローラ31に対する第2ローラ32の径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)が大きくなり、ローラ軸間距離L1の低下度合いに応じてローラ間径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)、つまり駆動力配分比を任意に制御することができる。 The
Due to such a decrease in the distance L1 between the roller shafts, the radial pressing force of the
なお図4(a)に示すように本実施例では、第2ローラ回転軸線O2がクランクシャフト回転軸線O3の直下に位置し、第1ローラ31および第2ローラ32の軸間距離L1が最大となる下死点でのローラ軸間距離L1を、第1ローラ31の半径と第2ローラ32の半径との和値よりも大きくする。
これにより当該クランクシャフト回転角θ=0°の下死点においては、第1ローラ31および第2ローラ32が相互に径方向へ押し付けられることがなく、ローラ31,32間でトラクション伝動が行われないトラクション伝動容量=0の状態を得ることができ、
トラクション伝動容量を下死点での0と、図4(c)に示す上死点(θ=180°)で得られる最大値との間で任意に制御することができる。 As shown in FIG. 4 (a), in this embodiment, the second roller rotation axis O 2 is located immediately below the crankshaft rotation axis O 3 and the inter-axis distance L1 between thefirst roller 31 and the second roller 32 is The distance L1 between the roller axes at the maximum bottom dead center is made larger than the sum of the radius of the first roller 31 and the radius of the second roller 32.
Thus, at the bottom dead center of the crankshaft rotation angle θ = 0 °, thefirst roller 31 and the second roller 32 are not pressed against each other in the radial direction, and traction transmission is performed between the rollers 31 and 32. No traction transmission capacity = 0 can be obtained,
The traction transmission capacity can be arbitrarily controlled between 0 at the bottom dead center and the maximum value obtained at the top dead center (θ = 180 °) shown in FIG.
これにより当該クランクシャフト回転角θ=0°の下死点においては、第1ローラ31および第2ローラ32が相互に径方向へ押し付けられることがなく、ローラ31,32間でトラクション伝動が行われないトラクション伝動容量=0の状態を得ることができ、
トラクション伝動容量を下死点での0と、図4(c)に示す上死点(θ=180°)で得られる最大値との間で任意に制御することができる。 As shown in FIG. 4 (a), in this embodiment, the second roller rotation axis O 2 is located immediately below the crankshaft rotation axis O 3 and the inter-axis distance L1 between the
Thus, at the bottom dead center of the crankshaft rotation angle θ = 0 °, the
The traction transmission capacity can be arbitrarily controlled between 0 at the bottom dead center and the maximum value obtained at the top dead center (θ = 180 °) shown in FIG.
なお本実施例では、クランクシャフト51L,51Rの回転角基準点をクランクシャフト回転角θ=0°の下死点であることとして説明を展開する。
In this embodiment, the description will be made assuming that the rotation angle reference point of the crankshafts 51L and 51R is the bottom dead center of the crankshaft rotation angle θ = 0 °.
<駆動力配分作用>
図1~4につき上述したトランスファー1の駆動力配分作用を以下に説明する。
変速機3(図1参照)からトランスファー1の入力軸12に達したトルクは、一方でこの入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5(ともに図1参照)を経て左右後輪6L,6R(主駆動輪)へ伝達される。 <Driving force distribution action>
The drive force distribution action of thetransfer 1 described above with reference to FIGS. 1 to 4 will be described below.
On the other hand, the torque that has reached theinput shaft 12 of the transfer 1 from the transmission 3 (see FIG. 1) passes directly from the input shaft 12 through the rear propeller shaft 4 and the rear final drive unit 5 (both see FIG. 1) to the left and right rear wheels 6L. , 6R (main drive wheel).
図1~4につき上述したトランスファー1の駆動力配分作用を以下に説明する。
変速機3(図1参照)からトランスファー1の入力軸12に達したトルクは、一方でこの入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5(ともに図1参照)を経て左右後輪6L,6R(主駆動輪)へ伝達される。 <Driving force distribution action>
The drive force distribution action of the
On the other hand, the torque that has reached the
他方でトランスファー1は、モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御して、ローラ軸間距離L1(図4参照)を第1ローラ31および第2ローラ32の半径の和値よりも小さくするとき、これらローラ31,32が径方向相互押圧力に応じたローラ間伝達トルク容量を持つことから、このトルク容量に応じて、左右後輪6L,6R(主駆動輪)へのトルクの一部を、第1ローラ31から第2ローラ32を経て出力軸13に向かわせ、左右前輪9L,9R(従駆動輪)をも駆動することができる。
かくして車両は、左右後輪6L,6R(主駆動輪)および左右前輪(従駆動輪)9L,9Rの全てを駆動しての四輪駆動走行が可能である。 On the other hand, thetransfer 1 controls the rotational position of the crankshafts 51L and 51R via the pinion 55 and the ring gears 51Lc and 51Rc by the motor 35, and the distance L1 between the roller axes (see FIG. 4) is set to the first roller 31 and the second roller 32. Since the rollers 31, 32 have a torque transfer capacity between the rollers according to the radial mutual pressing force, the left and right rear wheels 6L, 6R (main A part of the torque to the drive wheels) is directed from the first roller 31 to the output shaft 13 via the second roller 32, and the left and right front wheels 9L and 9R (secondary drive wheels) can also be driven.
Thus, the vehicle is capable of four-wheel drive running by driving all of the left and right rear wheels 6L and 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 9L and 9R.
かくして車両は、左右後輪6L,6R(主駆動輪)および左右前輪(従駆動輪)9L,9Rの全てを駆動しての四輪駆動走行が可能である。 On the other hand, the
Thus, the vehicle is capable of four-wheel drive running by driving all of the left and right
なお、この伝動中における第1ローラ31および第2ローラ32間の径方向押圧反力は、これらに共通な回転支持板であるベアリングサポート16,17で受け止められ、ハウジング11に達することがない。
そして径方向押圧反力は、クランクシャフト回転角θが0°~90°である間は0となり、クランクシャフト回転角θが90°~180°である間、θの増大に応じて増加し、クランクシャフト回転角θが180°になるとき最大値となる。 Note that the radial pressing reaction force between thefirst roller 31 and the second roller 32 during the transmission is received by the bearing supports 16 and 17 which are rotation support plates common to them, and does not reach the housing 11.
The radial pressing reaction force is 0 when the crankshaft rotation angle θ is 0 ° to 90 °, and increases as θ increases while the crankshaft rotation angle θ is 90 ° to 180 °. The maximum value is obtained when the crankshaft rotation angle θ is 180 °.
そして径方向押圧反力は、クランクシャフト回転角θが0°~90°である間は0となり、クランクシャフト回転角θが90°~180°である間、θの増大に応じて増加し、クランクシャフト回転角θが180°になるとき最大値となる。 Note that the radial pressing reaction force between the
The radial pressing reaction force is 0 when the crankshaft rotation angle θ is 0 ° to 90 °, and increases as θ increases while the crankshaft rotation angle θ is 90 ° to 180 °. The maximum value is obtained when the crankshaft rotation angle θ is 180 °.
かような四輪駆動走行中、クランクシャフト51L,51Rの回転角θが図4(b)に示すごとく基準位置の90°であって、第1ローラ31および第2ローラ32が相互に、この時のオフセット量OSに対応した径方向押圧力で押し付けられ、作動油を介して動力伝達可能に接触している場合、
これらローラ間のオフセット量OSに対応したトラクション伝動容量で左右前輪(従駆動輪)9L,9Rへの動力伝達が行われる。 During such four-wheel drive traveling, the rotation angle θ of the crankshafts 51L and 51R is 90 ° of the reference position as shown in FIG. 4 (b), and the first roller 31 and the second roller 32 are mutually connected. When it is pressed with a radial pressing force corresponding to the offset amount OS at the time and is in contact so that power can be transmitted via hydraulic oil,
Power is transmitted to the left and right front wheels (sub driven wheels) 9L and 9R with a traction transmission capacity corresponding to the offset amount OS between these rollers.
これらローラ間のオフセット量OSに対応したトラクション伝動容量で左右前輪(従駆動輪)9L,9Rへの動力伝達が行われる。 During such four-wheel drive traveling, the rotation angle θ of the
Power is transmitted to the left and right front wheels (sub driven wheels) 9L and 9R with a traction transmission capacity corresponding to the offset amount OS between these rollers.
そして、クランクシャフト51L,51Rを図4(b)の基準位置から、図4(c)に示すクランクシャフト回転角θ=180°の上死点に向け回転操作してクランクシャフト回転角θを増大させるにつれ、ローラ軸間距離L1が更に減少して第1ローラ31および第2ローラ32の相互オーバーラップ量OLが増大する結果、第1ローラ31および第2ローラ32は径方向相互押圧力を増大され、これらローラ間のトラクション伝動容量を増大させることができる。
Then, the crankshafts 51L and 51R are rotated from the reference position in FIG. 4 (b) toward the top dead center of the crankshaft rotation angle θ = 180 ° shown in FIG. 4 (c) to increase the crankshaft rotation angle θ. As a result, the distance L1 between the roller shafts further decreases, and the mutual overlap amount OL of the first roller 31 and the second roller 32 increases. As a result, the first roller 31 and the second roller 32 increase the radial mutual pressing force. Thus, the traction transmission capacity between these rollers can be increased.
クランクシャフト51L,51Rが図4(c)の上死点位置に達すると、第1ローラ31および第2ローラ32は相互に、最大のオーバーラップ量OLに対応した径方向最大押圧力で径方向へ押し付けられて、これらの間のトラクション伝動容量を最大にすることができる。
なお最大のオーバーラップ量OLは、第2ローラ回転軸線O2およびクランクシャフト回転軸線O3間の偏心量εと、図4(b)につき上記したオフセット量OSとの和値である。 When the crankshafts 51L and 51R reach the top dead center position in FIG. 4 (c), the first roller 31 and the second roller 32 are in the radial direction with a maximum radial pressing force corresponding to the maximum overlap amount OL. The traction transmission capacity between them can be maximized.
The maximum overlap amount OL is the sum of the eccentric amount ε between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG. 4B.
なお最大のオーバーラップ量OLは、第2ローラ回転軸線O2およびクランクシャフト回転軸線O3間の偏心量εと、図4(b)につき上記したオフセット量OSとの和値である。 When the
The maximum overlap amount OL is the sum of the eccentric amount ε between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG. 4B.
以上の説明から明らかなように、クランクシャフト51L,51Rをクランクシャフト回転角θ=0°の回転位置から、クランクシャフト回転角θ=180°の回転位置まで回転操作することにより、クランクシャフト回転角θの増大につれ、ローラ間トラクション伝動容量を0から最大値まで連続変化させることができる。
また逆に、クランクシャフト51L,51Rをクランクシャフト回転角θ=180°の回転位置から、θ=0°の回転位置まで回転操作することにより、クランクシャフト回転角θの低下につれ、ローラ間トラクション伝動容量を最大値から0まで連続変化させることができ、ローラ間トラクション伝動容量をクランクシャフト51L,51Rの回転操作により自在に制御し得る。 As is apparent from the above description, the crankshaft rotation angle is controlled by rotating the crankshafts 51L and 51R from the rotation position of the crankshaft rotation angle θ = 0 ° to the rotation position of the crankshaft rotation angle θ = 180 °. As θ increases, the traction transmission capacity between rollers can be continuously changed from 0 to the maximum value.
Conversely, by rotating the crankshaft 51L, 51R from the rotation position of the crankshaft rotation angle θ = 180 ° to the rotation position of θ = 0 °, the traction transmission between the rollers is reduced as the crankshaft rotation angle θ decreases. The capacity can be continuously changed from the maximum value to 0, and the traction transmission capacity between the rollers can be freely controlled by rotating the crankshafts 51L and 51R.
また逆に、クランクシャフト51L,51Rをクランクシャフト回転角θ=180°の回転位置から、θ=0°の回転位置まで回転操作することにより、クランクシャフト回転角θの低下につれ、ローラ間トラクション伝動容量を最大値から0まで連続変化させることができ、ローラ間トラクション伝動容量をクランクシャフト51L,51Rの回転操作により自在に制御し得る。 As is apparent from the above description, the crankshaft rotation angle is controlled by rotating the
Conversely, by rotating the
<トラクション伝動容量制御>
上記した四輪駆動走行中はトランスファー1が、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)9L,9Rへ分配して出力するため、第1ローラ31および第2ローラ32間のトラクション伝動容量を、左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から求め得る、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力に対応させる必要がある。 <Traction transmission capacity control>
Because thetransfer 1 distributes a part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R to the left and right front wheels (secondary drive wheels) 9L and 9R as described above during the four-wheel drive driving described above. The left and right front wheels (slave drive wheels) can determine the traction transmission capacity between the first roller 31 and the second roller 32 from the driving force of the left and right rear wheels 6L, 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio. It is necessary to correspond to the target front wheel drive force to be distributed to 9L and 9R.
上記した四輪駆動走行中はトランスファー1が、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)9L,9Rへ分配して出力するため、第1ローラ31および第2ローラ32間のトラクション伝動容量を、左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から求め得る、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力に対応させる必要がある。 <Traction transmission capacity control>
Because the
この要求にかなうトラクション伝動容量制御のために本実施例においては、図1に示すようにトランスファーコントローラ111を設け、これによりモータ35の回転位置制御(クランクシャフト回転角θの制御)を行うものとする。
In the present embodiment, in order to control the traction transmission capacity that meets this requirement, a transfer controller 111 is provided as shown in FIG. 1, thereby controlling the rotational position of the motor 35 (control of the crankshaft rotational angle θ). To do.
そのためトランスファーコントローラ111には、
エンジン2の出力を加減するアクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ112からの信号と、
左右後輪6L,6R(主駆動輪)の回転周速Vwrを検出する後輪速センサ113からの信号と、
車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ114からの信号と、
クランクシャフト51L,51Rの回転角θを検出するクランクシャフト回転角センサ115からの信号と、
トランスファー1(ハウジング11)内における作動油の温度TEMPを検出する油温センサ116からの信号を入力する。 Therefore, thetransfer controller 111 has
A signal from anaccelerator opening sensor 112 that detects an accelerator pedal depression amount (accelerator opening) APO that adjusts the output of the engine 2;
A signal from the rearwheel speed sensor 113 that detects the rotational peripheral speed Vwr of the left and right rear wheels 6L, 6R (main drive wheels);
A signal from theyaw rate sensor 114 for detecting the yaw rate φ around the vertical axis passing through the center of gravity of the vehicle;
A signal from the crankshaftrotation angle sensor 115 for detecting the rotation angle θ of the crankshafts 51L and 51R;
A signal from anoil temperature sensor 116 that detects the temperature TEMP of the hydraulic oil in the transfer 1 (housing 11) is input.
エンジン2の出力を加減するアクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ112からの信号と、
左右後輪6L,6R(主駆動輪)の回転周速Vwrを検出する後輪速センサ113からの信号と、
車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ114からの信号と、
クランクシャフト51L,51Rの回転角θを検出するクランクシャフト回転角センサ115からの信号と、
トランスファー1(ハウジング11)内における作動油の温度TEMPを検出する油温センサ116からの信号を入力する。 Therefore, the
A signal from an
A signal from the rear
A signal from the
A signal from the crankshaft
A signal from an
なお油温センサ116は、駆動力配分装置1に係わる図5の概略正面図に示すように、第1ローラ31および第2ローラ32の回転方向(それぞれ図5に矢印で示した)において、これら第1ローラ31および第2ローラ32の外周面相互接触箇所(作動油を介してトルクが伝達される箇所)の後方に油温センサ116の油温検知端部116aを位置させて配置する。
As shown in the schematic front view of FIG. 5 relating to the driving force distribution device 1, the oil temperature sensor 116 is used in the rotational directions of the first roller 31 and the second roller 32 (respectively indicated by arrows in FIG. 5). The oil temperature detection end portion 116a of the oil temperature sensor 116 is positioned behind the location where the outer peripheral surfaces of the first roller 31 and the second roller 32 are in mutual contact (location where torque is transmitted via the hydraulic oil).
このとき油温センサ116は、その油温検知端部116aが、駆動力配分装置1(ハウジング11)内の作動油61中に浸漬するよう、且つ第1ローラ31および第2ローラ32の外周面相互接触箇所と、この外周面相互接触箇所よりもローラ回転方向後方において第1ローラ31および第2ローラ32の外周面31a,32aに接する共通な接触面Mとの間、つまりローラ回転方向において第1ローラ31および第2ローラ32の外周面相互接触箇所の直後に位置するよう配置するのが良い。
At this time, the oil temperature sensor 116 has its oil temperature detection end portion 116a immersed in the hydraulic oil 61 in the driving force distribution device 1 (housing 11), and the outer peripheral surfaces of the first roller 31 and the second roller 32. Between the mutual contact point and the common contact surface M that contacts the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 at the rear of the outer peripheral surface mutual contact point, that is, in the roller rotational direction. The first roller 31 and the second roller 32 are preferably arranged so as to be located immediately after the contact point between the outer peripheral surfaces.
トランスファーコントローラ111は、上記した各センサ112~116の検出情報を基に、トランスファー1のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)を概略以下のように行う。
つまり先ずトランスファーコントローラ111は、アクセル開度APO、後輪速Vwr、およびヨーレートφに基づき、先ず左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比を周知の要領で求める。
次にトランスファーコントローラ111は、これら左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力を求める。 Thetransfer controller 111 performs traction transmission capacity control of the transfer 1 (front and rear wheel driving force distribution control of a four-wheel drive vehicle) based on the detection information of the sensors 112 to 116 as described below.
That is, first, thetransfer controller 111 first knows the driving force of the left and right rear wheels 6L and 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio based on the accelerator opening APO, the rear wheel speed Vwr, and the yaw rate φ. Ask for.
Next, thetransfer controller 111 determines the target front wheel drive force to be distributed to the left and right front wheels (secondary drive wheels) 9L and 9R from the drive force of the left and right rear wheels 6L and 6R (main drive wheels) and the front and rear wheel target drive force distribution ratio. Ask for.
つまり先ずトランスファーコントローラ111は、アクセル開度APO、後輪速Vwr、およびヨーレートφに基づき、先ず左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比を周知の要領で求める。
次にトランスファーコントローラ111は、これら左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力を求める。 The
That is, first, the
Next, the
更にトランスファーコントローラ111は、第1ローラ31および第2ローラ32がこの目標前輪駆動力を伝達するのに必要なローラ間径方向押圧力(第1ローラ31および第2ローラ32間のトラクション伝動容量)をマップ検索などにより求め、このローラ間径方向押圧力(第1ローラ31および第2ローラ32間のトラクション伝動容量)を実現するのに必要なクランクシャフト51L,51R(図2,3参照)の回転角目標値tθ、つまり第2ローラ軸線O2の目標旋回位置を演算する。
Further, the transfer controller 111 determines the radial pressing force between the rollers required for the first roller 31 and the second roller 32 to transmit the target front wheel driving force (the traction transmission capacity between the first roller 31 and the second roller 32). Of the crankshafts 51L and 51R (see Figs. 2 and 3) required to achieve the radial pressure between the rollers (the traction transmission capacity between the first roller 31 and the second roller 32). The rotation angle target value tθ, that is, the target turning position of the second roller axis O 2 is calculated.
そしてトランスファーコントローラ111は、センサ115で検出したクランクシャフト回転角θおよび上記のクランクシャフト回転角目標値tθ間におけるクランクシャフト回転角偏差に応じ、クランクシャフト回転角θがクランクシャフト回転角目標値tθに一致するよう、ローラ間押し付け力制御モータ35を駆動制御する。
当該モータ35の駆動制御によりクランクシャフト51L,51Rの回転角θが目標値tθに一致することで、第1ローラ31および第2ローラ32は上記の目標前輪駆動力を伝達可能な程度だけ相互に径方向に押圧接触され、第1ローラ31および第2ローラ32間のトラクション伝動容量を前後輪目標駆動力配分比となるよう制御することができる。 Then, thetransfer controller 111 changes the crankshaft rotation angle θ to the crankshaft rotation angle target value tθ in accordance with the crankshaft rotation angle deviation between the crankshaft rotation angle θ detected by the sensor 115 and the crankshaft rotation angle target value tθ. The roller pressing force control motor 35 is driven and controlled so as to match.
The rotation angle θ of the crankshafts 51L and 51R matches the target value tθ by the drive control of the motor 35, so that the first roller 31 and the second roller 32 can mutually transmit the target front wheel driving force. It is possible to control the traction transmission capacity between the first roller 31 and the second roller 32 to be the front / rear wheel target driving force distribution ratio by being pressed and contacted in the radial direction.
当該モータ35の駆動制御によりクランクシャフト51L,51Rの回転角θが目標値tθに一致することで、第1ローラ31および第2ローラ32は上記の目標前輪駆動力を伝達可能な程度だけ相互に径方向に押圧接触され、第1ローラ31および第2ローラ32間のトラクション伝動容量を前後輪目標駆動力配分比となるよう制御することができる。 Then, the
The rotation angle θ of the
<ローラ過熱時フェールセーフ制御>
トランスファーコントローラ111は、上記した通常のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)の他に、図6の制御プログラムを実行して以下のようなローラ過熱時フェールセーフ制御を遂行する。 <Fail safe control when the roller overheats>
In addition to the above normal traction transmission capacity control (front and rear wheel drive force distribution control of a four-wheel drive vehicle), thetransfer controller 111 executes the control program shown in FIG. Carry out.
トランスファーコントローラ111は、上記した通常のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)の他に、図6の制御プログラムを実行して以下のようなローラ過熱時フェールセーフ制御を遂行する。 <Fail safe control when the roller overheats>
In addition to the above normal traction transmission capacity control (front and rear wheel drive force distribution control of a four-wheel drive vehicle), the
ステップS11においては、左右前輪(従駆動輪)9L,9Rへ駆動力を配分する四輪駆動(4WD)が要求されているか否かをチェックする。
四輪駆動(4WD)要求中でなく、二輪駆動(2WD)が要求されている場合は、制御をステップS12に進めて、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常のトラクション伝動容量0制御を遂行する。
このトラクション伝動容量0制御は、図4(b)に示すクランクシャフト回転角θ=90°の位置にできるだけ近いが、第1ローラ31および第2ローラ32間に若干の隙間が存在する所定のクランクシャフト回転角位置にクランクシャフト51L,51R(図2,3参照)を保持する制御である。 In step S11, it is checked whether or not four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R.
If four-wheel drive (4WD) is not requested but two-wheel drive (2WD) is required, control proceeds to step S12, and the driving force is distributed to the left and right front wheels (secondary drive wheels) 9L and 9R. The normal traction transmission capacity 0 control is performed so as not to be performed.
This traction transmission capacity 0 control is as close as possible to the position of the crankshaft rotation angle θ = 90 ° shown in FIG. 4 (b), but a predetermined crank having a slight gap between thefirst roller 31 and the second roller 32. In this control, the crankshafts 51L and 51R (see FIGS. 2 and 3) are held at the shaft rotation angle position.
四輪駆動(4WD)要求中でなく、二輪駆動(2WD)が要求されている場合は、制御をステップS12に進めて、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常のトラクション伝動容量0制御を遂行する。
このトラクション伝動容量0制御は、図4(b)に示すクランクシャフト回転角θ=90°の位置にできるだけ近いが、第1ローラ31および第2ローラ32間に若干の隙間が存在する所定のクランクシャフト回転角位置にクランクシャフト51L,51R(図2,3参照)を保持する制御である。 In step S11, it is checked whether or not four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R.
If four-wheel drive (4WD) is not requested but two-wheel drive (2WD) is required, control proceeds to step S12, and the driving force is distributed to the left and right front wheels (secondary drive wheels) 9L and 9R. The normal traction transmission capacity 0 control is performed so as not to be performed.
This traction transmission capacity 0 control is as close as possible to the position of the crankshaft rotation angle θ = 90 ° shown in FIG. 4 (b), but a predetermined crank having a slight gap between the
ステップS11で四輪駆動(4WD)要求中と判定する場合は、ステップS13において作動油温TEMPが過熱判定用の設定油温TEMPs以上か否かを判定する。
ここで過熱判定用の設定油温TEMPsは、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずるような高温領域(過熱温度域)の下限値とする。 If it is determined in step S11 that four-wheel drive (4WD) is being requested, it is determined in step S13 whether the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs for overheat determination.
Here, the set oil temperature TEMPs for overheat determination is a lower limit value of a high temperature region (overheat temperature region) where the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 cause surface separation at the mutual contact locations. .
ここで過熱判定用の設定油温TEMPsは、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずるような高温領域(過熱温度域)の下限値とする。 If it is determined in step S11 that four-wheel drive (4WD) is being requested, it is determined in step S13 whether the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs for overheat determination.
Here, the set oil temperature TEMPs for overheat determination is a lower limit value of a high temperature region (overheat temperature region) where the outer
ステップS13で作動油温TEMPが設定油温TEMPs未満であると判定する場合、つまり第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない非過熱状態であると判定する場合、過熱対策用のフェールセーフ制御が不要であるから、制御をステップS14に進めて、前記した通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。
When it is determined in step S13 that the hydraulic oil temperature TEMP is lower than the set oil temperature TEMPs, that is, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are not superheated so as not to cause surface separation at the mutual contact locations. When it is determined that the vehicle is in a state, fail-safe control for overheating countermeasures is not required, so control proceeds to step S14, and the above-described normal four-wheel drive (4WD) traction transmission capacity control (front and rear wheel drive force distribution) Control).
ステップS13で作動油温TEMPが設定油温TEMPs以上であると判定する場合、つまり第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずる虞のある過熱状態であると判定する場合、過熱対策用のフェールセーフ制御が必要であるから、制御をステップS15に進めて、以下のような過熱時フェールセーフ制御を遂行する。
When it is determined in step S13 that the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs, that is, an overheat state in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 may cause surface peeling at the mutual contact locations. In the case where it is determined that this is, fail-safe control for countermeasure against overheating is necessary. Therefore, the control proceeds to step S15, and the following fail-safe control during overheating is performed.
ステップS15での過熱時フェールセーフ制御に際しては、作動油温TEMPに応じ、つまり設定油温TEMPsをどの程度超えているかに応じ、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない程度まで、第1ローラ31および第2ローラ32間の径方向押し付け力を低下(0も含む)させる。
従ってステップS13およびステップS15を、本実施例においてローラ間径方向押し付け力補正手段(フェールセーフ手段)とする。 In the overheat fail-safe control in step S15, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are mutually connected according to the hydraulic oil temperature TEMP, that is, to what extent the set oil temperature TEMPs is exceeded. The radial pressing force between the first roller 31 and the second roller 32 is reduced (including 0) to such an extent that surface peeling does not occur at the contact location.
Therefore, step S13 and step S15 are used as the roller radial pressing force correcting means (fail safe means) in this embodiment.
従ってステップS13およびステップS15を、本実施例においてローラ間径方向押し付け力補正手段(フェールセーフ手段)とする。 In the overheat fail-safe control in step S15, the outer
Therefore, step S13 and step S15 are used as the roller radial pressing force correcting means (fail safe means) in this embodiment.
<効果>
上記した第1実施例になるトランスファー(駆動力配分装置)1によれば、上記の過熱時フェールセーフ制御に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した通りに配置するため、以下の効果が得られる。
つまり本実施例では油温センサ116を、第1ローラ31および第2ローラ32の回転方向(それぞれ図5に矢印で示した)において、これら第1ローラ31および第2ローラ32の外周面相互接触箇所の後方(図5では直後)に油温検知端部116aが位置するよう配置したため、油温センサ116で検出した作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触箇所における温度に近く、図6につき上記したフェールセーフ制御の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。 <Effect>
According to the transfer (driving force distribution device) 1 according to the first embodiment described above, theoil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the above-described overheat fail-safe control is described above with reference to FIG. Since it is arranged on the street, the following effects can be obtained.
In other words, in this embodiment, theoil temperature sensor 116 is in contact with the outer peripheral surfaces of the first roller 31 and the second roller 32 in the rotational directions of the first roller 31 and the second roller 32 (respectively indicated by arrows in FIG. 5). Since the oil temperature detection end 116a is positioned behind the location (immediately in FIG. 5), the hydraulic oil temperature TEMP detected by the oil temperature sensor 116 is the location where the first and second rollers 31 and 32 contact each other on the outer peripheral surface. As shown in FIG. 6, the control response of the fail-safe control described above with reference to FIG.
上記した第1実施例になるトランスファー(駆動力配分装置)1によれば、上記の過熱時フェールセーフ制御に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した通りに配置するため、以下の効果が得られる。
つまり本実施例では油温センサ116を、第1ローラ31および第2ローラ32の回転方向(それぞれ図5に矢印で示した)において、これら第1ローラ31および第2ローラ32の外周面相互接触箇所の後方(図5では直後)に油温検知端部116aが位置するよう配置したため、油温センサ116で検出した作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触箇所における温度に近く、図6につき上記したフェールセーフ制御の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。 <Effect>
According to the transfer (driving force distribution device) 1 according to the first embodiment described above, the
In other words, in this embodiment, the
<構成>
図7は、本発明の第2実施例になる駆動力配分装置のトラクション力補償制御プログラムを示す。
本実施例においても、油温センサ116の配置を含む駆動力配分装置(トランスファー)1の構成、およびその制御システムは図1~5につき前述したと同様なものとする。 <Configuration>
FIG. 7 shows a traction force compensation control program for the driving force distribution device according to the second embodiment of the present invention.
Also in this embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of theoil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
図7は、本発明の第2実施例になる駆動力配分装置のトラクション力補償制御プログラムを示す。
本実施例においても、油温センサ116の配置を含む駆動力配分装置(トランスファー)1の構成、およびその制御システムは図1~5につき前述したと同様なものとする。 <Configuration>
FIG. 7 shows a traction force compensation control program for the driving force distribution device according to the second embodiment of the present invention.
Also in this embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the
本実施例においては図1におけるトランスファーコントローラ111が、図5の配置になる油温センサ116が検出した作動油の温度TEMPに基づき図7のトラクション力補償制御プログラムを実行して、図8に例示した油温TEMPによるローラ(31,32)間トラクション係数μの変化特性にも係わらず、第1ローラ31および第2ローラ32間のトラクション力を前記の目標前輪駆動力に対応したものとなし得るよう、第1ローラ31および第2ローラ32間の径方向押し付け力を油温TEMPの変化に応じて補正するものとする。
In the present embodiment, the transfer controller 111 in FIG. 1 executes the traction force compensation control program in FIG. 7 based on the hydraulic oil temperature TEMP detected by the oil temperature sensor 116 in the arrangement in FIG. 5, and is illustrated in FIG. Regardless of the change characteristics of the traction coefficient μ between the rollers (31, 32) due to the oil temperature TEMP, the traction force between the first roller 31 and the second roller 32 can correspond to the target front wheel driving force. As described above, the radial pressing force between the first roller 31 and the second roller 32 is corrected according to the change in the oil temperature TEMP.
図8に例示した油温に対するローラ間トラクション係数μの変化特性を説明するに、ローラ間トラクション係数μは油温TEMPが或る値のとき最大値となって、ローラ間径方向押し付け力などの諸条件が同じであれば第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が最大となる。
そして油温TEMPが当該或る値から離れて低下、上昇するにつれ、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)は上記の最大値から大きく低下する。 The change characteristics of the traction coefficient μ between the rollers with respect to the oil temperature illustrated in FIG. 8 will be described. The traction coefficient μ between the rollers becomes the maximum when the oil temperature TEMP is a certain value, and the radial pressing force between the rollers and the like. If the conditions are the same, the traction force (traction transmission capacity) between thefirst roller 31 and the second roller 32 is maximized.
As the oil temperature TEMP decreases and increases away from the certain value, the traction force (traction transmission capacity) between thefirst roller 31 and the second roller 32 greatly decreases from the above maximum value.
そして油温TEMPが当該或る値から離れて低下、上昇するにつれ、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)は上記の最大値から大きく低下する。 The change characteristics of the traction coefficient μ between the rollers with respect to the oil temperature illustrated in FIG. 8 will be described. The traction coefficient μ between the rollers becomes the maximum when the oil temperature TEMP is a certain value, and the radial pressing force between the rollers and the like. If the conditions are the same, the traction force (traction transmission capacity) between the
As the oil temperature TEMP decreases and increases away from the certain value, the traction force (traction transmission capacity) between the
前記第1実施例につき前述した通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)に当たっては、油温TEMPが図8にTEMPb(トラクション係数μb)として例示した常用温度であることを前提とし、前記の目標前輪駆動力を伝達可能な第1ローラ31および第2ローラ32間の径方向押し付け力目標値を決定して第2ローラ32の前記旋回位置制御に資する。
In the normal four-wheel drive (4WD) traction transmission capacity control (front and rear wheel drive force distribution control) described above for the first embodiment, the oil temperature TEMP is exemplified as TEMPb (traction coefficient μ b ) in FIG. Assuming that the temperature is a temperature, the target value for the radial pressing force between the first roller 31 and the second roller 32 capable of transmitting the target front wheel driving force is determined to contribute to the turning position control of the second roller 32. .
このため、油温TEMPが常用温度TEMPbよりも例えば図8に(-δ1)で示す範囲を超えて低下したり、同図に(+δ2)で示す範囲を超えて高くなると、これに伴うトラクション係数μの変化が第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)を、目標前輪駆動力に対し無視できないほどの過不足状態になし、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を前記した狙い通りに遂行し得なくなる。
For this reason, if the oil temperature TEMP falls below the normal temperature TEMPb, for example, exceeding the range indicated by (−δ1) in FIG. 8 or becomes higher than the range indicated by (+ δ2) in FIG. Changes in μ make the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 in an excessive or insufficient state that cannot be ignored relative to the target front wheel drive force, and the traction transmission capacity for four-wheel drive (4WD). Control (front / rear wheel driving force distribution control) cannot be performed as described above.
そこで本実施例においては、図1のトランスファーコントローラ111により図7のトラクション力補償制御プログラムを実行し、以下のようにして上記の問題を解消することとする。
先ずステップS21においては、左右前輪(従駆動輪)9L,9Rへ駆動力を配分する四輪駆動(4WD)が要求されているか否かをチェックする。
四輪駆動(4WD)要求中でなく、二輪駆動(2WD)が要求されている場合は、制御をステップS22に進めて、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。 Therefore, in this embodiment, the traction force compensation control program of FIG. 7 is executed by thetransfer controller 111 of FIG. 1, and the above problem is solved as follows.
First, in step S21, it is checked whether or not four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R.
If two-wheel drive (2WD) is requested instead of requesting four-wheel drive (4WD), control proceeds to step S22, and the driving force is distributed to left and right front wheels (secondary drive wheels) 9L and 9R. The normal two-wheel drive (2WD) traction transmission capacity is controlled so as not to be performed.
先ずステップS21においては、左右前輪(従駆動輪)9L,9Rへ駆動力を配分する四輪駆動(4WD)が要求されているか否かをチェックする。
四輪駆動(4WD)要求中でなく、二輪駆動(2WD)が要求されている場合は、制御をステップS22に進めて、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。 Therefore, in this embodiment, the traction force compensation control program of FIG. 7 is executed by the
First, in step S21, it is checked whether or not four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R.
If two-wheel drive (2WD) is requested instead of requesting four-wheel drive (4WD), control proceeds to step S22, and the driving force is distributed to left and right front wheels (secondary drive wheels) 9L and 9R. The normal two-wheel drive (2WD) traction transmission capacity is controlled so as not to be performed.
ステップS21で四輪駆動(4WD)要求中と判定する場合はステップS23において、作動油温TEMPが図8につき前述した常用温度TEMPbから(-δ1)~(+δ2)の範囲内で乖離しているのみか否かを、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が僅かで、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できる程度しか過不足しておらず、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得て、トラクション力補償制御が不要か否かをチェックする。
If it is determined in step S21 that four-wheel drive (4WD) is being requested, in step S23, the hydraulic oil temperature TEMP deviates from the normal temperature TEMPb described above with reference to FIG. 8 within the range of (−δ1) to (+ δ2). The traction coefficient μ changes with the deviation from the normal temperature TEMPb, and the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is ignored with respect to the target front wheel drive force. Check whether or not the traction force compensation control is necessary because the traction transmission capacity control (front and rear wheel drive force distribution control) for four-wheel drive (4WD) can be performed as intended. .
ステップS23においてトラクション力補償制御が不要であると判定する場合は、制御をステップS24に進めて、前記した通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。
If it is determined in step S23 that traction force compensation control is not required, control proceeds to step S24, and the above-described normal four-wheel drive (4WD) traction transmission capacity control (front and rear wheel drive force distribution control) is performed. To do.
ステップS23において作動油温TEMPが常用温度TEMPbよりも(-δ1)または(+δ2)の範囲を超えて変化したと判定する場合、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が大きく、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できないほどの過不足状態であり、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得なくて、トラクション力補償制御が必要であると判定する場合は、制御をステップS25に進め、作動油温TEMPの常用温度TEMPbからの乖離によるトラクション力変化が無くなるよう(トラクション力を補償するよう)、通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)で求めたローラ間径方向押し付け力を補正する。
従ってステップS23およびステップS25は、本発明におけるローラ間径方向押し付け力補正手段(トラクション力補償手段)に相当する。 When it is determined in step S23 that the hydraulic oil temperature TEMP has changed beyond the range of (−δ1) or (+ δ2) than the normal temperature TEMPb, that is, the change in the traction coefficient μ accompanying the deviation from the normal temperature TEMPb is large. The traction force (traction transmission capacity) between thefirst roller 31 and the second roller 32 is in excess or deficiency so that it cannot be ignored relative to the target front wheel drive force, and traction transmission capacity control for four-wheel drive (4WD) (front and rear wheel drive) Force distribution control) cannot be performed as intended and it is determined that traction force compensation control is necessary, the control proceeds to step S25, and the traction force change due to the deviation of the hydraulic oil temperature TEMP from the normal temperature TEMPb. Between the rollers determined by normal four-wheel drive (4WD) traction transmission capacity control (front and rear wheel drive force distribution control) Correcting the direction pressing force.
Therefore, Step S23 and Step S25 correspond to the inter-roller radial pressing force correcting means (traction force compensating means) in the present invention.
従ってステップS23およびステップS25は、本発明におけるローラ間径方向押し付け力補正手段(トラクション力補償手段)に相当する。 When it is determined in step S23 that the hydraulic oil temperature TEMP has changed beyond the range of (−δ1) or (+ δ2) than the normal temperature TEMPb, that is, the change in the traction coefficient μ accompanying the deviation from the normal temperature TEMPb is large. The traction force (traction transmission capacity) between the
Therefore, Step S23 and Step S25 correspond to the inter-roller radial pressing force correcting means (traction force compensating means) in the present invention.
<効果>
上記した第2実施例になるトランスファー(駆動力配分装置)1によれば、上記のトラクション力補償制御に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した第1実施例と同様に配置するため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触面の温度に近いため、
図7につき上記したトラクション力補償制御の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。 <Effect>
According to the transfer (driving force distribution device) 1 according to the second embodiment described above, theoil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the traction force compensation control is the same as that described above with reference to FIG. In order to arrange in the same manner as in the first embodiment, and because the operating oil temperature TEMP at the location where the oil temperature sensor 116 is installed is close to the temperature of the contact surface between the outer peripheral surfaces of the first roller 31 and the second roller 32,
By increasing the control response of the traction force compensation control described above with reference to FIG. 7 and improving the control accuracy, the desired control effect can be exhibited.
上記した第2実施例になるトランスファー(駆動力配分装置)1によれば、上記のトラクション力補償制御に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した第1実施例と同様に配置するため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触面の温度に近いため、
図7につき上記したトラクション力補償制御の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。 <Effect>
According to the transfer (driving force distribution device) 1 according to the second embodiment described above, the
By increasing the control response of the traction force compensation control described above with reference to FIG. 7 and improving the control accuracy, the desired control effect can be exhibited.
<構成>
図9は、本発明の第3実施例になる駆動力配分装置の過熱時フェールセーフ制御およびトラクション力補償制御プログラムを示す。
本実施例においても、油温センサ116の配置を含む駆動力配分装置(トランスファー)1の構成、およびその制御システムは図1~5につき前述したと同様なものとする。 <Configuration>
FIG. 9 shows an overheat fail-safe control and traction force compensation control program of the driving force distribution device according to the third embodiment of the present invention.
Also in this embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of theoil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
図9は、本発明の第3実施例になる駆動力配分装置の過熱時フェールセーフ制御およびトラクション力補償制御プログラムを示す。
本実施例においても、油温センサ116の配置を含む駆動力配分装置(トランスファー)1の構成、およびその制御システムは図1~5につき前述したと同様なものとする。 <Configuration>
FIG. 9 shows an overheat fail-safe control and traction force compensation control program of the driving force distribution device according to the third embodiment of the present invention.
Also in this embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the
本実施例においては図1におけるトランスファーコントローラ111が、図5の配置になる油温センサ116が検出した作動油の温度TEMPに基づき図9の過熱時フェールセーフ制御およびトラクション力補償制御プログラムを実行して、図6につき前述した第1実施例の過熱時フェールセーフ制御を行うと共に、図7につき前述した第2実施例のトラクション力補償制御を行うものとする。
In this embodiment, the transfer controller 111 in FIG. 1 executes the overheat fail-safe control and traction force compensation control program in FIG. 9 based on the hydraulic oil temperature TEMP detected by the oil temperature sensor 116 arranged in FIG. Thus, the overheat fail-safe control of the first embodiment described above with reference to FIG. 6 is performed, and the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed.
図9におけるステップS11~ステップS13およびステップS15は、図6における同符号で示すステップと同様な処理を行うものとし、ステップS23~ステップS25は図7における同符号で示すステップと同様な処理を行うものとする。
ステップS11で二輪駆動(2WD)が要求されていると判定する場合は、ステップS12において、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。 Steps S11 to S13 and Step S15 in FIG. 9 perform the same processing as the steps indicated by the same reference numerals in FIG. 6, and Steps S23 to S25 perform the same processing as the steps indicated by the same reference numerals in FIG. Shall.
If it is determined in step S11 that two-wheel drive (2WD) is required, in step S12, normal two-wheel drive that prevents the transfer force from being distributed to the left and right front wheels (secondary drive wheels) 9L and 9R in step S12 ( 2WD) for traction transmission capacity 0 control.
ステップS11で二輪駆動(2WD)が要求されていると判定する場合は、ステップS12において、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。 Steps S11 to S13 and Step S15 in FIG. 9 perform the same processing as the steps indicated by the same reference numerals in FIG. 6, and Steps S23 to S25 perform the same processing as the steps indicated by the same reference numerals in FIG. Shall.
If it is determined in step S11 that two-wheel drive (2WD) is required, in step S12, normal two-wheel drive that prevents the transfer force from being distributed to the left and right front wheels (secondary drive wheels) 9L and 9R in step S12 ( 2WD) for traction transmission capacity 0 control.
ステップS11で四輪駆動(4WD)要求中と判定し、ステップS13で作動油温TEMPが図8に例示した過熱判定用の設定油温TEMPs以上(第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずるような高温領域)と判定する場合は、過熱対策用のフェールセーフ制御が必要であるからステップS15において、作動油温TEMPに応じ、つまり設定油温TEMPsをどの程度超えているかに応じ、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない程度まで、第1ローラ31および第2ローラ32間の径方向押し付け力を低下(0も含む)させ、図6につき前述した第1実施例の過熱時フェールセーフ制御を行う。
In step S11, it is determined that a four-wheel drive (4WD) is being requested, and in step S13, the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs illustrated in FIG. 8 (the outer peripheral surfaces of the first roller 31 and the second roller 32). When it is determined that 31a and 32a are in a high temperature region where surface peeling occurs at the mutual contact location), fail-safe control for overheating countermeasures is required, so in step S15, the hydraulic oil temperature TEMP is set in accordance with the hydraulic oil temperature TEMP. Depending on how much TEMPs are exceeded, the distance between the first roller 31 and the second roller 32 is such that the outer peripheral surfaces 31a, 32a of the first roller 31 and the second roller 32 do not cause surface separation at the mutual contact points. Is reduced (including 0), and the overheat fail-safe control of the first embodiment described above with reference to FIG. 6 is performed.
ステップS13で作動油温TEMPが設定油温TEMPs未満であると判定する場合、つまり第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない非過熱状態であって、過熱対策用のフェールセーフ制御が不要である場合は、ステップS23~ステップS25において、図7につき前述した第2実施例のトラクション力補償制御を行う。
When it is determined in step S13 that the hydraulic oil temperature TEMP is lower than the set oil temperature TEMPs, that is, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are not superheated so as not to cause surface separation at the mutual contact locations. In the case where the fail-safe control for overheating countermeasure is unnecessary, the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed in steps S23 to S25.
つまりステップS23において、作動油温TEMPが図8につき前述した常用温度TEMPbから(-δ1)~(+δ2)の範囲内で乖離しているのみと判定する場合、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が僅かで、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できる程度しか過不足しておらず、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得て、トラクション力補償制御が不要である場合は、ステップS24で通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。
That is, when it is determined in step S23 that the hydraulic oil temperature TEMP is only deviated from the normal temperature TEMPb described above with reference to FIG. 8 within the range of (−δ1) to (+ δ2), that is, accompanying the deviation from the normal temperature TEMPb. The change in the traction coefficient μ is slight, and the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is negligible with respect to the target front wheel drive force. ) Traction transmission capacity control (front and rear wheel drive force distribution control) can be performed as intended, and if traction force compensation control is not required, normal traction drive capacity control for four-wheel drive (4WD) in step S24 (Front and rear wheel driving force distribution control) is performed.
しかしステップS23で作動油温TEMPが常用温度TEMPbよりも(-δ1)または(+δ2)の範囲を超えて変化したと判定する場合、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が大きく、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できないほどの過不足状態であり、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得なくて、トラクション力補償制御が必要である場合は、ステップS25において、作動油温TEMPの常用温度TEMPbからの乖離によるトラクション力変化が無くなるよう(トラクション力を補償するよう)、通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)で求めたローラ間径方向押し付け力を補正し、図7につき前述した第2実施例のトラクション力補償制御を行う。
However, when it is determined in step S23 that the hydraulic oil temperature TEMP has changed beyond the range of (−δ1) or (+ δ2) from the normal temperature TEMPb, that is, the change in the traction coefficient μ accompanying the deviation from the normal temperature TEMPb is large. The traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is too much or insufficient to ignore the target front wheel driving force, and the traction transmission capacity control for four-wheel drive (4WD) (front and rear wheels) If the traction force compensation control is necessary and the traction force compensation control is necessary, the traction force change due to the deviation of the hydraulic oil temperature TEMP from the normal temperature TEMPb is eliminated in step S25 (traction traction). To compensate for the force), the radial squeezing between rollers determined by the normal traction drive capacity control for 4WD (4WD) (front and rear wheel drive force distribution control) Correcting the power, perform traction force compensation control in the second embodiment described above per FIG.
<効果>
上記した第3実施例になるトランスファー(駆動力配分装置)1によれば、上記の過熱時フェールセーフ制御(ステップS11~ステップS13およびステップS15)およびトラクション力補償制御(ステップS23~ステップS25)に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した第1実施例と同様に配置するため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触面の温度に近いため、
図9につき上記した過熱時フェールセーフ制御(ステップS11~ステップS13およびステップS15)およびトラクション力補償制御(ステップS23~ステップS25)の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。 <Effect>
According to the transfer (driving force distribution device) 1 according to the third embodiment described above, in the above-described fail-safe control during overheating (steps S11 to S13 and step S15) and traction force compensation control (steps S23 to S25) Theoil temperature sensor 116 for detecting the required hydraulic oil temperature TEMP is arranged in the same manner as in the first embodiment described above with reference to FIG. 5, and the hydraulic oil temperature TEMP at the installation location of the oil temperature sensor 116 is the first. Because it is close to the temperature of the contact surface between the outer peripheral surfaces of the roller 31 and the second roller 32,
The control response of the overheat fail-safe control (step S11 to step S13 and step S15) and traction force compensation control (step S23 to step S25) described above with reference to FIG. can do.
上記した第3実施例になるトランスファー(駆動力配分装置)1によれば、上記の過熱時フェールセーフ制御(ステップS11~ステップS13およびステップS15)およびトラクション力補償制御(ステップS23~ステップS25)に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した第1実施例と同様に配置するため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触面の温度に近いため、
図9につき上記した過熱時フェールセーフ制御(ステップS11~ステップS13およびステップS15)およびトラクション力補償制御(ステップS23~ステップS25)の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。 <Effect>
According to the transfer (driving force distribution device) 1 according to the third embodiment described above, in the above-described fail-safe control during overheating (steps S11 to S13 and step S15) and traction force compensation control (steps S23 to S25) The
The control response of the overheat fail-safe control (step S11 to step S13 and step S15) and traction force compensation control (step S23 to step S25) described above with reference to FIG. can do.
Claims (6)
- 主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
これら第1ローラおよび第2ローラを両者の外周面において相互に動力伝達可能に接触させることにより従駆動輪への駆動力配分を行うと共に、該第1ローラおよび第2ローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分制御が可能で、該駆動力配分制御の制御因子として少なくとも作動油の温度を用いる駆動力配分装置において、
前記作動油の温度を検出する油温センサを、前記第1ローラおよび第2ローラの回転方向において、これら第1ローラおよび第2ローラの外周面相互接触箇所の後方に配置したことを特徴とする駆動力配分装置。 A first roller that rotates with the main drive wheel transmission system and a second roller that rotates with the driven wheel transmission system;
The first roller and the second roller are brought into contact with each other on their outer peripheral surfaces so as to be able to transmit power to each other, thereby distributing the driving force to the driven wheels and the radial pressing force between the first roller and the second roller. In the driving force distribution device using at least the temperature of the hydraulic oil as a control factor of the driving force distribution control, the driving force distribution control between the main driving wheel and the slave driving wheel is possible by adjusting
An oil temperature sensor for detecting the temperature of the hydraulic oil is arranged behind the mutual contact portion of the outer peripheral surfaces of the first roller and the second roller in the rotation direction of the first roller and the second roller. Driving force distribution device. - 請求項1に記載の駆動力配分装置において、
前記油温センサは、該油温センサの油温検知部が前記作動油に浸漬するよう、且つ前記第1ローラおよび第2ローラの外周面相互接触箇所と、この外周面相互接触箇所よりもローラ回転方向後方において該第1ローラおよび第2ローラの外周に接する共通な接触面との間に位置するよう配置したものであることを特徴とする駆動力配分装置。 In the driving force distribution device according to claim 1,
The oil temperature sensor has an oil temperature detecting portion of the oil temperature sensor soaked in the hydraulic oil, and the outer peripheral surface mutual contact location of the first roller and the second roller, and the outer peripheral surface mutual contact location is a roller. A driving force distribution device, wherein the driving force distribution device is disposed so as to be positioned between a common contact surface in contact with the outer periphery of the first roller and the second roller at the rear in the rotation direction. - 請求項1または2に記載の駆動力配分装置において、
前記油温センサで検出した作動油の温度に応じ、前記第1ローラおよび第2ローラ間の径方向押し付け力を補正するローラ間径方向押し付け力補正手段を設けたことを特徴とする駆動力配分装置。 In the driving force distribution device according to claim 1 or 2,
Driving force distribution, characterized in that there is provided an inter-roller radial pressing force correcting means for correcting the radial pressing force between the first roller and the second roller according to the temperature of the hydraulic oil detected by the oil temperature sensor. apparatus. - 請求項3に記載の駆動力配分装置において、
前記ローラ間径方向押し付け力補正手段は、前記油温センサで検出した作動油の温度から前記第1ローラおよび第2ローラの異常な外周面温度上昇を判定し、この異常判定時に前記第1ローラおよび第2ローラ間の径方向押し付け力を減ずるフェールセーフ手段であることを特徴とする駆動力配分装置。 In the driving force distribution device according to claim 3,
The inter-roller radial direction pressing force correcting means determines an abnormal increase in the outer peripheral surface temperature of the first roller and the second roller from the temperature of the hydraulic oil detected by the oil temperature sensor, and when the abnormality is determined, the first roller And a driving force distribution device that is fail-safe means for reducing the radial pressing force between the second rollers. - 請求項3に記載の駆動力配分装置において、
前記ローラ間径方向押し付け力補正手段は、前記油温センサで検出した作動油の温度から前記第1ローラおよび第2ローラ間のトラクション伝動特性変化を判定し、このトラクション伝動特性変化によるトラクション力への影響がなくなるよう前記第1ローラおよび第2ローラ間の径方向押し付け力を補正するトラクション力補償手段であることを特徴とする駆動力配分装置。 In the driving force distribution device according to claim 3,
The roller-to-roller radial direction pressing force correction means determines a traction transmission characteristic change between the first roller and the second roller from the temperature of the hydraulic oil detected by the oil temperature sensor, and converts the traction transmission characteristic to a traction force due to the traction transmission characteristic change. A driving force distribution device that is a traction force compensation unit that corrects a radial pressing force between the first roller and the second roller so as to eliminate the influence of. - 請求項3に記載の駆動力配分装置において、
前記ローラ間径方向押し付け力補正手段は、前記油温センサで検出した作動油の温度から前記第1ローラおよび第2ローラの異常な外周面温度上昇を判定し、この異常判定時に前記第1ローラおよび第2ローラ間の径方向押し付け力を減ずるフェールセーフ手段として機能し、前記検出した作動油の温度が前記第1ローラおよび第2ローラの異常な外周面温度上昇を示さない間、該作動油の温度から前記第1ローラおよび第2ローラ間のトラクション伝動特性変化を判定し、このトラクション伝動特性変化によるトラクション力への影響がなくなるよう前記第1ローラおよび第2ローラ間の径方向押し付け力を補正するトラクション力補償手段として機能するものであることを特徴とする駆動力配分装置。 In the driving force distribution device according to claim 3,
The inter-roller radial direction pressing force correcting means determines an abnormal increase in the outer peripheral surface temperature of the first roller and the second roller from the temperature of the hydraulic oil detected by the oil temperature sensor, and when the abnormality is determined, the first roller And function as a fail-safe means for reducing the radial pressing force between the second rollers, while the detected temperature of the hydraulic oil does not show an abnormal increase in the outer peripheral surface temperature of the first roller and the second roller. The traction transmission characteristic change between the first roller and the second roller is determined from the temperature of the first roller, and the radial pressing force between the first roller and the second roller is removed so that the traction force change due to the traction transmission characteristic change is eliminated. A driving force distribution device which functions as a traction force compensation means for correcting.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012126785 | 2012-06-04 | ||
JP2012-126785 | 2012-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013183411A1 true WO2013183411A1 (en) | 2013-12-12 |
Family
ID=49711811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063515 WO2013183411A1 (en) | 2012-06-04 | 2013-05-15 | Driving force distribution device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013183411A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0233956U (en) * | 1988-08-29 | 1990-03-05 | ||
JPH08277896A (en) * | 1995-04-06 | 1996-10-22 | Mitsubishi Heavy Ind Ltd | Traction drive unit |
JP2004218711A (en) * | 2003-01-14 | 2004-08-05 | Hitachi Ltd | Power transmission device and power transmission method |
JP2005188701A (en) * | 2003-12-26 | 2005-07-14 | Nissan Motor Co Ltd | Friction gearing |
JP2008215559A (en) * | 2007-03-07 | 2008-09-18 | Nissan Motor Co Ltd | Friction transmission gearbox unit |
WO2009081876A1 (en) * | 2007-12-26 | 2009-07-02 | Nissan Motor Co., Ltd. | Driving force distribution device |
WO2009107543A1 (en) * | 2008-02-26 | 2009-09-03 | 日産自動車株式会社 | Friction type transmission device and pressing force control method for friction type transmission device |
JP2010091061A (en) * | 2008-10-10 | 2010-04-22 | Nissan Motor Co Ltd | Tranction transmission capacity control device of drive force distribution device |
WO2011001743A1 (en) * | 2009-06-30 | 2011-01-06 | 日産自動車株式会社 | Traction transmission capacity control device used in drive force distribution device |
WO2012086312A1 (en) * | 2010-12-24 | 2012-06-28 | 日産自動車株式会社 | Traction transmission capacity control device |
-
2013
- 2013-05-15 WO PCT/JP2013/063515 patent/WO2013183411A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0233956U (en) * | 1988-08-29 | 1990-03-05 | ||
JPH08277896A (en) * | 1995-04-06 | 1996-10-22 | Mitsubishi Heavy Ind Ltd | Traction drive unit |
JP2004218711A (en) * | 2003-01-14 | 2004-08-05 | Hitachi Ltd | Power transmission device and power transmission method |
JP2005188701A (en) * | 2003-12-26 | 2005-07-14 | Nissan Motor Co Ltd | Friction gearing |
JP2008215559A (en) * | 2007-03-07 | 2008-09-18 | Nissan Motor Co Ltd | Friction transmission gearbox unit |
WO2009081876A1 (en) * | 2007-12-26 | 2009-07-02 | Nissan Motor Co., Ltd. | Driving force distribution device |
WO2009107543A1 (en) * | 2008-02-26 | 2009-09-03 | 日産自動車株式会社 | Friction type transmission device and pressing force control method for friction type transmission device |
JP2010091061A (en) * | 2008-10-10 | 2010-04-22 | Nissan Motor Co Ltd | Tranction transmission capacity control device of drive force distribution device |
WO2011001743A1 (en) * | 2009-06-30 | 2011-01-06 | 日産自動車株式会社 | Traction transmission capacity control device used in drive force distribution device |
WO2012086312A1 (en) * | 2010-12-24 | 2012-06-28 | 日産自動車株式会社 | Traction transmission capacity control device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5262588B2 (en) | Driving force distribution device | |
JP5131384B2 (en) | Two-wheel / four-wheel drive switching control device and control method for traction transmission type part-time four-wheel drive vehicle | |
EP2450218B1 (en) | Drive force distribution device with traction transmission capacity control device | |
US8903613B2 (en) | Traction transmission capacity control device | |
JP2014019169A (en) | Drive power distribution device | |
WO2010103907A1 (en) | Friction gearing | |
WO2013183411A1 (en) | Driving force distribution device | |
JP5040885B2 (en) | Traction transmission capacity controller for driving force distribution device | |
WO2013183503A1 (en) | Driving force distribution device | |
JP5176977B2 (en) | Driving force distribution device | |
JP4691600B2 (en) | Moment distribution system | |
JP5958255B2 (en) | Driving force distribution device | |
WO2013183447A1 (en) | Driving force distribution device | |
JP6212917B2 (en) | Driving force distribution device | |
JP2013151246A (en) | Lock-off control device of irreversible rotation transmission system | |
JP2014024496A (en) | Vehicular control device | |
JP2014024495A (en) | Driving force distribution device | |
JP2014019168A (en) | Drive power distribution device | |
JP2014019170A (en) | Drive force control device for four-wheel drive vehicle | |
JP6028451B2 (en) | Driving force distribution device | |
JP2014015141A (en) | Driving force distribution system | |
JP2010196793A (en) | Friction transmission device and driving force distribution device using the same | |
JP2013253629A (en) | Transmission capacity control apparatus for traction transmission mechanism | |
JP2014037168A (en) | Driving force distribution device | |
JP5782798B2 (en) | Lock-on control device for irreversible rotation transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13801341 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13801341 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |