WO2013183447A1 - Driving force distribution device - Google Patents

Driving force distribution device Download PDF

Info

Publication number
WO2013183447A1
WO2013183447A1 PCT/JP2013/064165 JP2013064165W WO2013183447A1 WO 2013183447 A1 WO2013183447 A1 WO 2013183447A1 JP 2013064165 W JP2013064165 W JP 2013064165W WO 2013183447 A1 WO2013183447 A1 WO 2013183447A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
driving force
force distribution
distribution device
warm
Prior art date
Application number
PCT/JP2013/064165
Other languages
French (fr)
Japanese (ja)
Inventor
哲 高石
淳弘 森
三石 俊一
永悟 坂上
勝義 小川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013183447A1 publication Critical patent/WO2013183447A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • F16H13/14Means for influencing the pressure between the members for automatically varying the pressure mechanically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle

Definitions

  • the present invention relates to a driving force distribution device useful as a transfer for a four-wheel drive vehicle.
  • the driving force distribution device described in this document includes a first roller mechanically coupled to the transmission system of the main driving wheel and a second roller mechanically coupled to the driving system of the driven wheel. A part of the torque to the main driving wheel can be distributed and output to the driven wheel by bringing the first roller and the second roller into radial contact with each other on their outer peripheral surfaces. is there.
  • Patent Document 1 discloses that the second roller is displaced in the radial direction relative to the first roller by turning the rotation shaft of the second roller around an eccentric axis with a motor or the like.
  • a configuration has been proposed in which the radial pressing force between the first roller and the second roller, that is, the distribution of the driving force between the main driving wheel and the sub driving wheel can be controlled.
  • the traction transmission capacity between the first roller and the second roller depends on the viscosity of the internal hydraulic oil. It has been found that the device itself cannot be designed as intended, and the deterioration of control accuracy over a long period of time cannot be denied.
  • an object of the present invention is to propose a driving force distribution device that can promote warm-up as described above.
  • the driving force distribution device is configured as follows. First of all, to explain the premise driving force distribution device, A first roller that rotates with the main drive wheel transmission system and a second roller that rotates with the driven wheel transmission system; The first roller and the second roller are pressed against each other in the radial direction on the outer peripheral surface of each of them, so that the driving force can be distributed to the driven wheels, and one of the first roller and the second roller is turned. The distribution of the driving force between the main driving wheel and the sub driving wheel is controlled by adjusting the radial pressing force between these rollers.
  • the present invention is characterized by a configuration in which the following warm-up promoting means is provided for such a driving force distribution device.
  • This warm-up promoting means is configured to reciprocally rotate a roller turning drive member for turning one of the first roller and the second roller within a range in which the first roller and the second roller do not contact each other.
  • the operating oil is stirred to increase the temperature.
  • the roller rotation drive member for rotating one of the first roller and the second roller to reciprocate the radial pressing force between the rollers is reciprocated within a range where the first roller and the second roller do not contact each other.
  • the temperature of the internal hydraulic oil can be quickly raised, and warm-up can be promoted.
  • FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle including a driving force distribution device according to an embodiment of the present invention when viewed from above the vehicle.
  • FIG. 2 is a longitudinal side view of the driving force distribution device in FIG.
  • FIG. 3 is a longitudinal front view showing a crankshaft used in the driving force distribution device shown in FIG.
  • FIG. 3 is an operation explanatory diagram of the driving force distribution device shown in FIG.
  • FIG. 2 is a flowchart showing a warm-up promotion control program for a driving force distribution device executed by a transfer controller in FIG. 1.
  • FIG. 1 is an operation explanatory diagram showing a separated state of the first roller and the second roller at a position where the crankshaft rotation angle is 0 ° of the reference point; b) is an operation explanatory diagram showing the contact state of the first roller and the second roller when the crankshaft rotation angle is 90 °, and (c) is the first roller when the crankshaft rotation angle is 180 °.
  • FIG. 6 is an operation explanatory view showing a contact state of the second roller.
  • FIG. 3 is a characteristic diagram showing a change characteristic of crankshaft drive reaction torque (load torque) with respect to the crankshaft rotation angle of the drive force distribution device shown in FIG.
  • FIG. 2 is a flowchart showing a warm-up promotion control program for a driving force distribution device executed by a transfer controller in FIG. 1.
  • FIG. 1 is an operation explanatory diagram showing a
  • Driving force distribution device (transfer) 2 Engine 3 Transmission 4 Rear propeller shaft 5 Rear final drive unit 6L, 6R Left and right rear wheels (main drive wheels) 7 Front propeller shaft 8 Front final drive unit 9L, 9R Left and right front wheels (slave drive wheels) 11 Housing 12 Input shaft 13 Output shaft 16,17 Bearing support 31 1st roller 32 2nd roller 35 Roller radial pressing force control motor 51L, 51R Crankshaft 51La, 51Ra Hollow hole 51Lb, 51Rb Outer part 51Lc, 51Rc Ring gear ( Roller rotation drive member) 55 Crankshaft drive pinion 56 Pinion shaft 111 Transfer controller 112 Accelerator position sensor 113 Rear wheel speed sensor 114 Yaw rate sensor 115 Crankshaft rotation angle sensor 116 Oil temperature sensor
  • FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle provided with a driving force distribution device 1 according to an embodiment of the present invention as a transfer as viewed from above the vehicle.
  • the four-wheel drive vehicle in FIG. 1 is a rear-wheel drive vehicle in which rotation from the engine 2 is transmitted to the left and right rear wheels 6L and 6R through the rear propeller shaft 4 and the rear final drive unit 5 after being shifted by the transmission 3.
  • a part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R is transmitted to the left and right front wheels (slave drive wheels) 9L, 9R through the front propeller shaft 7 and the front final drive unit 8 sequentially by the driving force distribution device 1.
  • the vehicle can be driven by four-wheel drive.
  • the driving force distribution device 1 distributes and outputs a part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 9L and 9R. (Main drive wheels) 6L, 6R and left and right front wheels (secondary drive wheels) 9L, 9R to determine the drive force distribution ratio.
  • this drive force distribution device 1 is as shown in FIG. Constitute.
  • reference numeral 11 denotes a housing of the driving force distribution device 1, and the input shaft 12 and the output shaft 13 are horizontally inclined in the housing 11 so that the respective rotation axes O 1 and O 2 intersect with each other.
  • the input shaft 12 is rotatably supported with respect to the housing 11 by ball bearings 14 and 15 at both ends thereof. Both ends of the input shaft 12 are protruded from the housing 11 under liquid-tight sealing by seal rings 25 and 26, respectively. 2, the left end of the input shaft 12 is drivingly coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end is drivingly coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
  • a pair of bearing supports 16, 17 are installed between the input / output shafts 12, 13, and the bearing supports 16, 17 are arranged in the middle of each bolt. (Not shown) is attached to the axially opposed inner wall of the housing 11. Roller bearings 21 and 22 are interposed between the bearing supports 16 and 17 and the input shaft 12 so that the input shaft 12 can be rotated with respect to the bearing supports 16 and 17. However, the input shaft 12 is rotatably supported in the housing 11.
  • the first roller 31 is integrally formed coaxially at the axial center position of the input shaft 12 between the bearing supports 16, 17 (between the roller bearings 21, 22), and the second roller 32 is positioned at the axial center position of the output shaft 13.
  • the first roller 31 and the second roller 32 are disposed in substantially the same axis-perpendicular surface so that the outer peripheral surfaces 31a and 32a of both the rollers can be pressed against each other in the radial direction.
  • the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are conical tapered surfaces that can be in line contact with each other even when the input shaft 12 and the output shaft 13 are inclined as described above.
  • first roller 31 and the second roller 32 “contact” with each other (in the outer peripheral surfaces 31a and 32a) when the first roller 31 and the second roller 32 are in direct contact with each other. It is not limited, and includes cases where they are indirectly contacted through an oil film of internal hydraulic oil, and cases where direct contact and indirect contact are mixed.
  • the output shaft 13 is pivotally supported with respect to the bearing supports 16 and 17 in the vicinity of both ends thereof, so that the output shaft 13 is rotatably supported in the housing 11 via the bearing supports 16 and 17.
  • the following eccentric support structure is used.
  • a hollow outer shaft type crankshaft 51L, 51R is loosely fitted between the output shaft 13 and the bearing supports 16, 17 through which the output shaft 13 passes.
  • the crankshaft 51L and the output shaft 13 protrude from the housing 11 at the left end in FIG. 2, respectively, and the seal ring 27 is interposed between the housing 11 and the crankshaft 51L at the protruding portion, and the seal between the crankshaft 51L and the output shaft 13 is sealed.
  • the crankshaft 51L protruding from the housing 11 and the protruding portion of the output shaft 13 are liquid-tightly sealed with the ring 28 interposed.
  • the left end of the output shaft 13 discharged from the housing 11 is drivingly coupled to the left and right front wheels 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8.
  • Roller bearings 52L and 52R are interposed between the hollow holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R and the corresponding ends of the output shaft 13, respectively, so that the output shaft 13 is hollow in the crankshafts 51L and 51R.
  • the hollow holes 51La and 51Ra (center axis O 2 ) of the crankshafts 51L and 51R are eccentric hollow holes eccentric to the outer peripheral portions 51Lb and 51Rb (center axis O 3 and radius Ro).
  • the central axis O 2 of the eccentric hollow holes 51La and 51Ra is offset from the central axis O 3 of the outer peripheral portions 51Lb and 51Rb by the eccentricity ⁇ between them.
  • the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in bearing supports 16 and 17 on the corresponding side via roller bearings 53L and 53R, respectively. At this time, the crankshafts 51L and 51R, together with the second roller 32, are positioned in the axial direction by the thrust bearings 54L and 54R.
  • Ring gears 51Lc and 51Rc having the same specifications are integrally provided at adjacent ends of the crankshafts 51L and 51R facing each other, and these ring gears 51Lc and 51Rc are used as roller turning drive members in the present invention.
  • a common crankshaft drive pinion 55 is engaged with each of the ring gears 51Lc and 51Rc, and the crankshaft drive pinion 55 is coupled to the pinion shaft 56.
  • crankshaft drive pinion 55 when the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc, the rotational positions where the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are aligned in the circumferential direction and in phase with each other. In this state, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc.
  • Both ends of the pinion shaft 56 are rotatably supported with respect to the housing 11 by bearings 56a and 56b.
  • An output shaft 35a of an inter-roller pressing force control motor 35 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
  • the second roller 32 is rotated by the rotation axis O 2 (second roller 32) along the locus circle ⁇ in FIG. 3, but the first roller 31 will be described in detail later, as shown in FIGS. 4 (a) to 4 (c).
  • the rotation angle ⁇ of the crankshafts 51L and 51R increases, the radius L1 between the first roller 31 and the second roller 32 increases. It can be made smaller than the sum of the radius. Due to such a decrease in the distance L1 between the roller shafts, the radial pressing force of the second roller 32 against the first roller 31 (the transmission torque capacity between the rollers: traction transmission capacity) increases, and according to the degree of decrease in the distance L1 between the roller axes.
  • the inter-roller radial pressing force (inter-roller transmission torque capacity: traction transmission capacity), that is, the driving force distribution ratio can be arbitrarily controlled.
  • the second roller rotation axis O 2 is located immediately below the crankshaft rotation axis O 3 and the inter-axis distance L1 between the first roller 31 and the second roller 32 is
  • the distance L1 between the roller axes at the maximum bottom dead center is made larger than the sum of the radius of the first roller 31 and the radius of the second roller 32.
  • a driving reaction force torque (load torque) Tcr acts on the crankshafts 51L and 51R according to the crankshaft rotation angle ⁇ , as will be described in detail later.
  • the transfer 1 controls the rotational position of the crankshafts 51L and 51R via the pinion 55 and the ring gears 51Lc and 51Rc by the motor 35, and the distance L1 between the roller axes (see FIG. 4) is set to the first roller 31 and the second roller 32. Since the rollers 31, 32 have a torque transfer capacity between the rollers according to the radial mutual pressing force, the left and right rear wheels 6L, 6R (main A part of the torque to the drive wheels) is directed from the first roller 31 to the output shaft 13 via the second roller 32, and the left and right front wheels 9L and 9R (secondary drive wheels) can also be driven.
  • the vehicle is capable of four-wheel drive running by driving all of the left and right rear wheels 6L and 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 9L and 9R.
  • the radial pressing reaction force Ft between the first roller 31 and the second roller 32 during this transmission is received by the bearing supports 16 and 17 which are rotation support plates common to these, and does not reach the housing 11. .
  • the radial pressing reaction force Ft is 0 when the crankshaft rotation angle ⁇ is 0 ° to 90 °, and increases as ⁇ increases while the crankshaft rotation angle ⁇ is 90 ° to 180 °. When the crankshaft rotation angle ⁇ is 180 °, the maximum value is obtained.
  • the crankshaft driving reaction torque (load torque) Tcr exhibits a non-linear characteristic as shown in FIG. 5 with respect to the crankshaft rotation angle ⁇ , as is apparent from the above equation.
  • the rotation angle ⁇ of the crankshafts 51L and 51R is 90 ° of the reference position as shown in FIG. 4 (b), and the first roller 31 and the second roller 32 are mutually connected.
  • Power is transmitted to the left and right front wheels (sub driven wheels) 9L and 9R with a traction transmission capacity corresponding to the offset amount OS between these rollers.
  • the distance L1 between the roller shafts further decreases, and the mutual overlap amount OL of the first roller 31 and the second roller 32 increases.
  • the first roller 31 and the second roller 32 increase the radial mutual pressing force.
  • the traction transmission capacity between these rollers can be increased.
  • the maximum overlap amount OL is the sum of the eccentric amount ⁇ between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG. 4B.
  • increases, the traction transmission capacity between rollers can be continuously changed from 0 to the maximum value.
  • the capacity can be continuously changed from the maximum value to 0, and the traction transmission capacity between the rollers can be freely controlled by rotating the crankshafts 51L and 51R.
  • the transfer 1 distributes a part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R to the left and right front wheels (secondary drive wheels) 9L and 9R as described above during the four-wheel drive driving described above.
  • the left and right front wheels (slave drive wheels) can determine the traction transmission capacity between the first roller 31 and the second roller 32 from the driving force of the left and right rear wheels 6L, 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio. It is necessary to correspond to the target front wheel drive force to be distributed to 9L and 9R.
  • a transfer controller 111 is provided as shown in FIG. 1, thereby controlling the rotational position of the motor 35 (control of the crankshaft rotational angle ⁇ ). To do.
  • the transfer controller 111 has A signal from an accelerator opening sensor 112 that detects an accelerator pedal depression amount (accelerator opening) APO that adjusts the output of the engine 2; A signal from the rear wheel speed sensor 113 that detects the rotational peripheral speed Vwr of the left and right rear wheels 6L, 6R (main drive wheels); A signal from the yaw rate sensor 114 for detecting the yaw rate ⁇ around the vertical axis passing through the center of gravity of the vehicle; A signal from the crankshaft rotation angle sensor 115 for detecting the rotation angle ⁇ of the crankshafts 51L and 51R; A signal from an oil temperature sensor 116 that detects the temperature TEMP of the hydraulic oil in the transfer 1 (housing 11) is input.
  • an accelerator opening sensor 112 that detects an accelerator pedal depression amount (accelerator opening) APO that adjusts the output of the engine 2
  • a signal from the rear wheel speed sensor 113 that detects the rotational peripheral speed Vwr of the left and right rear wheels 6L, 6R
  • the transfer controller 111 performs the traction transmission capacity control of the transfer 1 (front and rear wheel driving force distribution control of a four-wheel drive vehicle) based on the input information as follows. That is, first, the transfer controller 111 first knows the driving force of the left and right rear wheels 6L and 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio based on the accelerator opening APO, the rear wheel speed Vwr, and the yaw rate ⁇ . Ask for. Next, the transfer controller 111 determines the target front wheel drive force to be distributed to the left and right front wheels (secondary drive wheels) 9L and 9R from the drive force of the left and right rear wheels 6L and 6R (main drive wheels) and the front and rear wheel target drive force distribution ratio. Ask for.
  • the transfer controller 111 determines the radial pressing force between the rollers required for the first roller 31 and the second roller 32 to transmit the target front wheel driving force (the traction transmission capacity between the first roller 31 and the second roller 32).
  • the crankshafts 51L and 51R (see Figs. 2 and 3) required to achieve the radial pressure between the rollers (the traction transmission capacity between the first roller 31 and the second roller 32).
  • the rotation angle target value t ⁇ that is, the target turning position of the second roller axis O 2 is calculated.
  • the transfer controller 111 changes the crankshaft rotation angle ⁇ to the crankshaft rotation angle target value t ⁇ in accordance with the crankshaft rotation angle deviation between the crankshaft rotation angle ⁇ detected by the sensor 115 and the crankshaft rotation angle target value t ⁇ .
  • the roller pressing force control motor 35 is driven and controlled so as to match.
  • the first roller 31 and the second roller 32 can transmit the target front wheel driving force to each other in the radial direction.
  • the traction transmission capacity between the first roller 31 and the second roller 32 can be controlled so as to become the front and rear wheel target driving force distribution ratio.
  • the transfer controller 111 executes the following warm-up promotion control by executing the control program shown in FIG. 6 in addition to the above-described normal traction transmission capacity control (front and rear wheel driving force distribution control of a four-wheel drive vehicle). .
  • step S11 it is checked whether four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R, and four-wheel drive (4WD) is requested. In the case of determination, the control proceeds to step S12, and the above-described normal traction transmission capacity control (front and rear wheel driving force distribution control) is performed.
  • 4WD four-wheel drive
  • step S11 If it is determined in step S11 that four-wheel drive (4WD) is not requested, control proceeds to step S13, and the internal hydraulic oil temperature TEMP of transfer 1 is less than the warm-up request determination temperature TEMPs (warm-up is requested). Whether the oil temperature TEMP is equal to or higher than the warm-up request determination temperature TEMPs (a state where warm-up is not requested).
  • step S13 If it is determined in step S13 that TEMP ⁇ TEMPs (a state where warm-up is not required), the control proceeds to step S14 so that the driving force is not distributed to the left and right front wheels (secondary driving wheels) 9L, 9R.
  • step S15 the crankshaft rotation angle reference point (crankshaft absolute angle) is estimated as follows. . That is, when the crankshafts 51L and 51R (see FIGS. 2 and 3) are rotated in one direction and the first roller 31 and the second roller 32 start to contact each other, the crankshaft rotation position and the crankshafts 51L and 51R The crankshaft rotation angle ⁇ when the crankshafts 51L and 51R are rotated in the middle of the crankshaft rotation position when the first roller 31 and the second roller 32 start to contact each other.
  • the shaft rotation angle reference point (crankshaft absolute angle) is used.
  • crankshaft rotation angle ⁇ at the bottom dead center shown in FIG. 4A is the rotation angle reference point (crankshaft absolute angle) of the crankshafts 51L and 51R.
  • step S16 in response to the 2WD request determination in step S11, in order to keep the driving force from being distributed to the left and right front wheels (secondary driving wheels) 9L, 9R at the crankshaft rotation angle reference point,
  • the crankshaft rotation angle ⁇ is 0 °
  • is an angle smaller than 90 ° by an amount corresponding to the offset amount OS described above with reference to FIG.
  • the state where the viscosity of the transfer hydraulic fluid is high at a low temperature can be quickly resolved, and the responsiveness of the traction transmission capacity control via the radial pressing force control between the first roller 31 and the second roller 32 can be quickly achieved. It can be made original, and the problem related to the responsiveness of the traction transmission capacity control can be solved. In addition, such warm-up promotion can also solve the problem that the traction transmission capacity control itself does not become as designed at the time of design for a long time.
  • the ring gear 51Lc, 51Rc are rotatably supported by the housing 11 of the transfer 1, the ring gear 51Lc, and rotatably supported to the second roller 32 at a position O 2 which is eccentric by the eccentricity ⁇ from the rotation center O 3 of 51Rc Because it is configured to cause the second roller 32 to turn by the rotation of the ring gears 51Lc, 51Rc,
  • the warm air promoting means can be configured simply, and as a result, an increase in weight and cost of the driving force distribution device can be suppressed to a minimum.
  • step S11 When four-wheel drive (4WD) is being requested (step S11), the ring gears 51Lc and 51Rc (roller swivel drive) are used even in the low temperature (TEMP ⁇ TEMPs) state (step S13) where the transfer 1 is required to warm up.
  • the above-mentioned reciprocating rotation of the member) is not performed, and the four-wheel drive (4WD) request is not realized.

Abstract

If a determination is made that four-wheel drive (4WD) is being requested in S11, normal traction transmission capacity control (i.e., front and rear wheel driving force distribution control) is carried out in S12. If a determination is made that two-wheel drive (2WD) is being requested in S11, a determination is made in S13 as to whether a hydraulic oil temperature (TEMP) is low when said temperature is less than a warm-up request determination temperature (TEMPs) (i.e., warm-up is being requested), or that warm-up has occurred when TEMP ≥ TEMPs. If it is determined that warm-up has occurred, that is, TEMP ≥ TEMPs, control is carried out with the normal traction transmission capacity at zero in S14, and if it is determined that warm-up is being requested, that is, TEMP < TEMPs, ring gears (i.e., rotating roller driving members) are made to reciprocally rotate within an angle range in which a first roller and a second roller do not come into contact with each other in S15, thereby agitating internal hydraulic oil so as to promote the warming of a driving force distribution device.

Description

駆動力配分装置Driving force distribution device
 本発明は、四輪駆動車のトランスファーとして有用な駆動力配分装置に関するものである。 The present invention relates to a driving force distribution device useful as a transfer for a four-wheel drive vehicle.
 駆動力配分装置としては従来から種々のものが提案されているが、例えば特許文献1に記載のようなものが知られている。
 この文献に記載の駆動力配分装置は、主駆動輪の伝動系に機械的に結合された第1ローラと、従駆動輪の駆動系に機械的に結合された第2ローラとを具え、これら第1ローラおよび第2ローラを両者の外周面において相互に径方向に押圧接触させることにより、主駆動輪へのトルクの一部を従駆動輪へ分配して出力させ得るようになしたものである。
Various types of driving force distribution devices have been proposed in the past. For example, a device as described in Patent Document 1 is known.
The driving force distribution device described in this document includes a first roller mechanically coupled to the transmission system of the main driving wheel and a second roller mechanically coupled to the driving system of the driven wheel. A part of the torque to the main driving wheel can be distributed and output to the driven wheel by bringing the first roller and the second roller into radial contact with each other on their outer peripheral surfaces. is there.
 かかる駆動力配分装置にあっては、第1ローラおよび第2ローラ間における径方向押し付け力を加減することにより、これらローラ間のトルク伝達容量、従って主駆動輪および従駆動輪間の駆動力配分を制御することができる。 In such a driving force distribution device, by adjusting the radial pressing force between the first roller and the second roller, the torque transmission capacity between these rollers, and accordingly, the driving force distribution between the main driving wheel and the sub driving wheel Can be controlled.
 この駆動力配分制御を行うための機構として特許文献1には、第2ローラの回転軸をモータ等で偏心軸線周りに旋回させることにより第2ローラを第1ローラに対し径方向へ相対変位させ、これにより第1ローラおよび第2ローラ間の径方向押し付け力、つまり主駆動輪および従駆動輪間の駆動力配分を制御し得るようにした構成が提案されている。 As a mechanism for performing this driving force distribution control, Patent Document 1 discloses that the second roller is displaced in the radial direction relative to the first roller by turning the rotation shaft of the second roller around an eccentric axis with a motor or the like. Thus, a configuration has been proposed in which the radial pressing force between the first roller and the second roller, that is, the distribution of the driving force between the main driving wheel and the sub driving wheel can be controlled.
特開2009-173261号公報(図5)JP 2009-173261 A (FIG. 5)
 しかし特許文献1の駆動力配分装置にあっては、内部作動油が低温である時間が長くなる傾向にあり、この間、内部作動油の粘度が高くて第1ローラおよび第2ローラ間の径方向押し付け力制御を介したトラクション伝動容量制御の応答性が悪くなるという問題を生ずる懸念のあることが判明した。 However, in the driving force distribution device of Patent Document 1, the time during which the internal hydraulic oil is at a low temperature tends to be long, and during this time, the viscosity of the internal hydraulic oil is high and the radial direction between the first roller and the second roller It has been found that there is a concern that the responsiveness of the traction transmission capacity control via the pressing force control becomes poor.
 また、かように内部作動油が低温である時間が長くなると、第1ローラおよび第2ローラ間のトラクション伝動容量が内部作動油の粘度に依存することから、長時間に亘ってトラクション伝動容量制御自身も設計時の狙い通りのものになり得ず、長時間に亘る制御精度の低下も否めないことが判ってきた。 In addition, if the time during which the internal hydraulic oil is at a low temperature becomes longer, the traction transmission capacity between the first roller and the second roller depends on the viscosity of the internal hydraulic oil. It has been found that the device itself cannot be designed as intended, and the deterioration of control accuracy over a long period of time cannot be denied.
 本発明者らは、上記した型式の駆動力配分装置にあっては、前記したローラの旋回を行うためのローラ旋回メンバが存在し、しかも当該メンバは第1ローラおよび第2ローラを接触させることのない、つまりトラクション伝動容量が0の回転領域を持つとの事実を発見した。
 そしてこの回転領域でローラ旋回メンバを往復回転させることにより内部作動油を攪拌してその温度上昇を促すことで、駆動力配分装置の暖機促進を図って上記の問題を解消可能にした。
 即ち本発明は、上記により暖機を促進することができるようにした駆動力配分装置を提案することを目的とする。
In the driving force distribution device of the above-described type, the present inventors have a roller turning member for turning the above-described roller, and the member contacts the first roller and the second roller. I found the fact that there is no rotation area, that is, the traction transmission capacity is zero.
Then, by reciprocating the roller turning member in this rotation region, the internal hydraulic oil is stirred and the temperature rise is promoted, so that the warming-up of the driving force distribution device is promoted and the above problem can be solved.
That is, an object of the present invention is to propose a driving force distribution device that can promote warm-up as described above.
 この目的のため本発明による駆動力配分装置は、これを以下のように構成する。
 先ず前提となる駆動力配分装置を説明するに、これは、
 主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
 これら第1ローラおよび第2ローラを両者の外周面において相互に径方向に押圧接触させることにより従駆動輪への駆動力配分が可能であると共に、該第1ローラおよび第2ローラの一方を旋回させて、これらローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分を制御するようにしたものである。
For this purpose, the driving force distribution device according to the present invention is configured as follows.
First of all, to explain the premise driving force distribution device,
A first roller that rotates with the main drive wheel transmission system and a second roller that rotates with the driven wheel transmission system;
The first roller and the second roller are pressed against each other in the radial direction on the outer peripheral surface of each of them, so that the driving force can be distributed to the driven wheels, and one of the first roller and the second roller is turned. The distribution of the driving force between the main driving wheel and the sub driving wheel is controlled by adjusting the radial pressing force between these rollers.
 本発明は、かかる駆動力配分装置に対し以下の暖機促進手段を設けた構成に特徴づけられる。
 この暖機促進手段は、上記第1ローラおよび第2ローラの一方を旋回させるためのローラ旋回駆動メンバを、第1ローラおよび第2ローラが相互に接触しない範囲内で往復回転させることにより、内部作動油を攪拌して温度上昇を図るものである。
The present invention is characterized by a configuration in which the following warm-up promoting means is provided for such a driving force distribution device.
This warm-up promoting means is configured to reciprocally rotate a roller turning drive member for turning one of the first roller and the second roller within a range in which the first roller and the second roller do not contact each other. The operating oil is stirred to increase the temperature.
 かかる本発明の駆動力配分装置によれば、以下の作用効果が奏し得られる。
 つまり、ローラ間の径方向押し付け力を加減すべく第1ローラおよび第2ローラの一方を旋回させるためのローラ旋回駆動メンバを、第1ローラおよび第2ローラが相互に接触しない範囲内で往復回転させることにより、内部作動油を攪拌して温度上昇を図るため、
 第1ローラおよび第2ローラ間のトラクション伝動容量が0の状態を保って、内部作動油を速やかに温度上昇させ、暖機を促進することができる。
According to the driving force distribution device of the present invention, the following effects can be obtained.
That is, the roller rotation drive member for rotating one of the first roller and the second roller to reciprocate the radial pressing force between the rollers is reciprocated within a range where the first roller and the second roller do not contact each other. In order to increase the temperature by stirring the internal hydraulic oil,
Maintaining a state where the traction transmission capacity between the first roller and the second roller is 0, the temperature of the internal hydraulic oil can be quickly raised, and warm-up can be promoted.
 よって、低温で内部作動油の粘度が高い状態を速やかに解消することができ、第1ローラおよび第2ローラ間の径方向押し付け力制御を介したトラクション伝動容量制御の応答性を速やかに本来のものにすることができ、前記した応答性に関する問題を回避し得る。
 またかかる暖機促進により、長時間に亘ってトラクション伝動容量制御自身が設計時の狙い通りのものにならないという問題も解消することができる。
Therefore, the state where the viscosity of the internal hydraulic fluid is high at a low temperature can be quickly resolved, and the responsiveness of the traction transmission capacity control via the radial pressing force control between the first roller and the second roller can be quickly achieved. And can avoid the aforementioned responsiveness problems.
In addition, such warm-up promotion can also solve the problem that the traction transmission capacity control itself does not become as designed at the time of design for a long time.
本発明の一実施例になる駆動力配分装置を具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。1 is a schematic plan view showing a power train of a four-wheel drive vehicle including a driving force distribution device according to an embodiment of the present invention when viewed from above the vehicle. 図1における駆動力配分装置の縦断側面図である。FIG. 2 is a longitudinal side view of the driving force distribution device in FIG. 図2に示す駆動力配分装置で用いたクランクシャフトを示す縦断正面図である。FIG. 3 is a longitudinal front view showing a crankshaft used in the driving force distribution device shown in FIG. 図2に示す駆動力配分装置の動作説明図で、 (a)は、クランクシャフト回転角が基準点の0°である位置における第1ローラおよび第2ローラの離間状態を示す動作説明図、 (b)は、クランクシャフト回転角が90°である時における第1ローラおよび第2ローラの接触状態を示す動作説明図、 (c)は、クランクシャフト回転角が180°である時における第1ローラおよび第2ローラの接触状態を示す動作説明図である。FIG. 3 is an operation explanatory diagram of the driving force distribution device shown in FIG. 2, (a) is an operation explanatory diagram showing a separated state of the first roller and the second roller at a position where the crankshaft rotation angle is 0 ° of the reference point; b) is an operation explanatory diagram showing the contact state of the first roller and the second roller when the crankshaft rotation angle is 90 °, and (c) is the first roller when the crankshaft rotation angle is 180 °. FIG. 6 is an operation explanatory view showing a contact state of the second roller. 図2に示す駆動力配分装置のクランクシャフト回転角に対するクランクシャフト駆動反力トルク(負荷トルク)の変化特性を示す特性線図である。FIG. 3 is a characteristic diagram showing a change characteristic of crankshaft drive reaction torque (load torque) with respect to the crankshaft rotation angle of the drive force distribution device shown in FIG. 図1におけるトランスファーコントローラが実行する駆動力配分装置の暖機促進制御プログラムを示すフローチャートである。FIG. 2 is a flowchart showing a warm-up promotion control program for a driving force distribution device executed by a transfer controller in FIG. 1. FIG.
 1 駆動力配分装置(トランスファー)
 2 エンジン
 3 変速機
 4 リヤプロペラシャフト
 5 リヤファイナルドライブユニット
 6L,6R 左右後輪(主駆動輪)
 7 フロントプロペラシャフト
 8 フロントファイナルドライブユニット
 9L,9R 左右前輪(従駆動輪)
  11 ハウジング
 12 入力軸
 13 出力軸
 16,17 ベアリングサポート
 31 第1ローラ
 32 第2ローラ
 35 ローラ間径方向押し付け力制御モータ
 51L,51R クランクシャフト
 51La,51Ra 中空孔
 51Lb,51Rb 外周部
 51Lc,51Rc リングギヤ(ローラ旋回駆動メンバ)
 55 クランクシャフト駆動ピニオン
 56 ピニオンシャフト
 111 トランスファーコントローラ
 112 アクセル開度センサ
 113 後輪速センサ
 114 ヨーレートセンサ
 115 クランクシャフト回転角センサ
 116 油温センサ
1 Driving force distribution device (transfer)
2 Engine 3 Transmission 4 Rear propeller shaft 5 Rear final drive unit 6L, 6R Left and right rear wheels (main drive wheels)
7 Front propeller shaft 8 Front final drive unit 9L, 9R Left and right front wheels (slave drive wheels)
11 Housing 12 Input shaft 13 Output shaft 16,17 Bearing support 31 1st roller 32 2nd roller 35 Roller radial pressing force control motor 51L, 51R Crankshaft 51La, 51Ra Hollow hole 51Lb, 51Rb Outer part 51Lc, 51Rc Ring gear ( Roller rotation drive member)
55 Crankshaft drive pinion 56 Pinion shaft 111 Transfer controller 112 Accelerator position sensor 113 Rear wheel speed sensor 114 Yaw rate sensor 115 Crankshaft rotation angle sensor 116 Oil temperature sensor
 以下、この発明の実施例を添付の図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<構成>
 図1は、本発明の一実施例になる駆動力配分装置1をトランスファーとして具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。
<Configuration>
FIG. 1 is a schematic plan view showing a power train of a four-wheel drive vehicle provided with a driving force distribution device 1 according to an embodiment of the present invention as a transfer as viewed from above the vehicle.
 図1の四輪駆動車両は、エンジン2からの回転を変速機3による変速後、リヤプロペラシャフト4およびリヤファイナルドライブユニット5を順次経て左右後輪6L,6Rに伝達するようにした後輪駆動車をベース車両とし、
 左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1により、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を順次経て左右前輪(従駆動輪)9L,9Rへ伝達することにより、四輪駆動走行が可能となるようにした車両である。
The four-wheel drive vehicle in FIG. 1 is a rear-wheel drive vehicle in which rotation from the engine 2 is transmitted to the left and right rear wheels 6L and 6R through the rear propeller shaft 4 and the rear final drive unit 5 after being shifted by the transmission 3. As a base vehicle,
A part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R is transmitted to the left and right front wheels (slave drive wheels) 9L, 9R through the front propeller shaft 7 and the front final drive unit 8 sequentially by the driving force distribution device 1. By doing so, the vehicle can be driven by four-wheel drive.
 駆動力配分装置1は、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)9L,9Rへ分配して出力することにより、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分比を決定するもので、本実施例においては、この駆動力配分装置1を図2に示すように構成する。 As described above, the driving force distribution device 1 distributes and outputs a part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 9L and 9R. (Main drive wheels) 6L, 6R and left and right front wheels (secondary drive wheels) 9L, 9R to determine the drive force distribution ratio. In this embodiment, this drive force distribution device 1 is as shown in FIG. Constitute.
 図2において11は、駆動力配分装置1のハウジングを示し、このハウジング11内に入力軸12および出力軸13を、それぞれの回転軸線O1およびO2が交差するよう相互に傾斜させて横架する。
 入力軸12は、その両端におけるボールベアリング14,15によりハウジング11に対し回転自在に支承する。
 入力軸12の両端をそれぞれ、シールリング25,26による液密封止下でハウジング11から突出させる。
 図2において入力軸12の左端を変速機3(図1参照)の出力軸に駆動結合し、右端はリヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に駆動結合する。
In FIG. 2, reference numeral 11 denotes a housing of the driving force distribution device 1, and the input shaft 12 and the output shaft 13 are horizontally inclined in the housing 11 so that the respective rotation axes O 1 and O 2 intersect with each other. To do.
The input shaft 12 is rotatably supported with respect to the housing 11 by ball bearings 14 and 15 at both ends thereof.
Both ends of the input shaft 12 are protruded from the housing 11 under liquid-tight sealing by seal rings 25 and 26, respectively.
2, the left end of the input shaft 12 is drivingly coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end is drivingly coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
 入力軸12および出力軸13の両端近くにそれぞれ配して、これら入出力軸12,13間に一対のベアリングサポート16,17を架設し、これらベアリングサポート16,17をそれぞれの中程で、ボルト(図示せず)によりハウジング11の軸線方向対向内壁に取着する。
 ベアリングサポート16,17と入力軸12との間にはローラベアリング21,22を介在させ、これにより入力軸12をベアリングサポート16,17に対し回転自在となすことで、ベアリングサポート16,17を介しても入力軸12をハウジング11内に回転自在に支持する。
Arranged near the both ends of the input shaft 12 and the output shaft 13, respectively, a pair of bearing supports 16, 17 are installed between the input / output shafts 12, 13, and the bearing supports 16, 17 are arranged in the middle of each bolt. (Not shown) is attached to the axially opposed inner wall of the housing 11.
Roller bearings 21 and 22 are interposed between the bearing supports 16 and 17 and the input shaft 12 so that the input shaft 12 can be rotated with respect to the bearing supports 16 and 17. However, the input shaft 12 is rotatably supported in the housing 11.
 ベアリングサポート16,17間(ローラベアリング21,22間)における入力軸12の軸線方向中程位置に第1ローラ31を同軸に一体成形し、出力軸13の軸線方向中程位置に第2ローラ32を同軸に一体成形する。
 これら第1ローラ31および第2ローラ32は、両者の外周面31a,32aにおいて相互に径方向に押圧接触し得るよう、略同じ軸直角面内に配置する。
 そして第1ローラ31および第2ローラ32の外周面31a,32aは、入力軸12および出力軸13の前記した傾斜によっても、相互に線接触し得るような円錐テーパ面とする。
The first roller 31 is integrally formed coaxially at the axial center position of the input shaft 12 between the bearing supports 16, 17 (between the roller bearings 21, 22), and the second roller 32 is positioned at the axial center position of the output shaft 13. Are integrally formed coaxially.
The first roller 31 and the second roller 32 are disposed in substantially the same axis-perpendicular surface so that the outer peripheral surfaces 31a and 32a of both the rollers can be pressed against each other in the radial direction.
The outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 are conical tapered surfaces that can be in line contact with each other even when the input shaft 12 and the output shaft 13 are inclined as described above.
 なお、本明細書において第1ローラ31と第2ローラ32とが(外周面31a,32aにおいて)相互に「接触する」とは、第1ローラ31と第2ローラ32とが直接接触する場合に限定されず、これらが内部作動油の油膜を介して間接的に接触する場合や、直接接触・間接的な接触が混在する場合をも含むものとする。 In this specification, the first roller 31 and the second roller 32 “contact” with each other (in the outer peripheral surfaces 31a and 32a) when the first roller 31 and the second roller 32 are in direct contact with each other. It is not limited, and includes cases where they are indirectly contacted through an oil film of internal hydraulic oil, and cases where direct contact and indirect contact are mixed.
 出力軸13は、その両端近くにおける前記のベアリングサポート16,17に対し旋回可能に支承することで、これらベアリングサポート16,17を介してハウジング11内に旋回可能に支持する。
 かように出力軸13をベアリングサポート16,17に対し旋回可能に支承するに当たっては、以下のような偏心支承構造を用いる。
The output shaft 13 is pivotally supported with respect to the bearing supports 16 and 17 in the vicinity of both ends thereof, so that the output shaft 13 is rotatably supported in the housing 11 via the bearing supports 16 and 17.
Thus, when the output shaft 13 is pivotally supported with respect to the bearing supports 16 and 17, the following eccentric support structure is used.
 出力軸13と、これが貫通するベアリングサポート16,17との間にそれぞれ、中空アウターシャフト型式のクランクシャフト51L,51Rを遊嵌する。
 クランクシャフト51Lおよび出力軸13をそれぞれ図2の左端においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング27を介在させると共に、クランクシャフト51L および出力軸13間にシールリング28を介在させて、ハウジング11から突出するクランクシャフト51Lおよび出力軸13の突出部をそれぞれ液密封止する。
A hollow outer shaft type crankshaft 51L, 51R is loosely fitted between the output shaft 13 and the bearing supports 16, 17 through which the output shaft 13 passes.
The crankshaft 51L and the output shaft 13 protrude from the housing 11 at the left end in FIG. 2, respectively, and the seal ring 27 is interposed between the housing 11 and the crankshaft 51L at the protruding portion, and the seal between the crankshaft 51L and the output shaft 13 is sealed. The crankshaft 51L protruding from the housing 11 and the protruding portion of the output shaft 13 are liquid-tightly sealed with the ring 28 interposed.
 図2においてハウジング11から吐出する出力軸13の左端は、フロントプロペラシャフト7(図1参照)およびフロントファイナルドライブユニット8を介して左右前輪9L,9Rに駆動結合する。 2, the left end of the output shaft 13 discharged from the housing 11 is drivingly coupled to the left and right front wheels 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8.
 クランクシャフト51L,51Rの中空孔51La,51Ra(半径Ri)と、出力軸13の対応端部との間にそれぞれローラベアリング52L,52Rを介在させて、出力軸13をクランクシャフト51L,51Rの中空孔51La,51Ra内で、これらの中心軸線O2の周りに自由に回転し得るよう支持する。 Roller bearings 52L and 52R are interposed between the hollow holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R and the corresponding ends of the output shaft 13, respectively, so that the output shaft 13 is hollow in the crankshafts 51L and 51R. holes 51La, within 51Ra, supports that can freely rotate around these central axis O 2.
 クランクシャフト51L,51Rの中空孔51La,51Ra(中心軸線O2)は図3に明示するごとく、外周部51Lb,51Rb(中心軸線O3、半径Ro)に対し偏心させた偏心中空孔とし、これら偏心中空孔51La,51Raの中心軸線O2は外周部51Lb,51Rbの中心軸線O3から、両者間の偏心分εだけオフセットしている。
 クランクシャフト51L,51Rの外周部51Lb,51Rbはそれぞれ、ローラベアリング53L,53Rを介して対応する側におけるベアリングサポート16,17内に回転自在に支持し、
 この際、クランクシャフト51L,51Rをそれぞれ、第2ローラ32と共に、スラストベアリング54L,54Rで軸線方向に位置決めする。
As clearly shown in FIG. 3, the hollow holes 51La and 51Ra (center axis O 2 ) of the crankshafts 51L and 51R are eccentric hollow holes eccentric to the outer peripheral portions 51Lb and 51Rb (center axis O 3 and radius Ro). The central axis O 2 of the eccentric hollow holes 51La and 51Ra is offset from the central axis O 3 of the outer peripheral portions 51Lb and 51Rb by the eccentricity ε between them.
The outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in bearing supports 16 and 17 on the corresponding side via roller bearings 53L and 53R, respectively.
At this time, the crankshafts 51L and 51R, together with the second roller 32, are positioned in the axial direction by the thrust bearings 54L and 54R.
 クランクシャフト51L,51Rの相互に向き合う隣接端にそれぞれ、同仕様のリングギヤ51Lc,51Rcを一体に設け、これらリングギヤ51Lc,51Rcを本発明におけるローラ旋回駆動メンバとして用いる。
 これらリングギヤ51Lc,51Rcにそれぞれ、共通なクランクシャフト駆動ピニオン55を噛合させ、これらクランクシャフト駆動ピニオン55をピニオンシャフト56に結合する。
Ring gears 51Lc and 51Rc having the same specifications are integrally provided at adjacent ends of the crankshafts 51L and 51R facing each other, and these ring gears 51Lc and 51Rc are used as roller turning drive members in the present invention.
A common crankshaft drive pinion 55 is engaged with each of the ring gears 51Lc and 51Rc, and the crankshaft drive pinion 55 is coupled to the pinion shaft 56.
 なお、上記のごとくリングギヤ51Lc,51Rcにクランクシャフト駆動ピニオン55を噛合させるに当たっては、クランクシャフト51L,51Rを両者の外周部51Lb,51Rbが円周方向において相互に整列して同位相となる回転位置にした状態で、当該リングギヤ51Lc,51Rcに対するクランクシャフト駆動ピニオン55の噛合を行わせる。 As described above, when the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc, the rotational positions where the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are aligned in the circumferential direction and in phase with each other. In this state, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc.
 ピニオンシャフト56は、その両端を軸受56a,56bによりハウジング11に対し回転自在に支持する。
 図2の右側におけるピニオンシャフト56の右端をハウジング11に貫通してこれから露出させ、
 該ピニオンシャフト56の露出端面には、ハウジング11に取着して設けたローラ間押し付け力制御モータ35の出力軸35aをセレーション嵌合などにより駆動結合する。
Both ends of the pinion shaft 56 are rotatably supported with respect to the housing 11 by bearings 56a and 56b.
The right end of the pinion shaft 56 on the right side of FIG.
An output shaft 35a of an inter-roller pressing force control motor 35 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
 よって、ローラ間径方向押し付け力制御モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御するとき、
 出力軸13および第2ローラ32の回転軸線O2が、図3に破線で示す軌跡円αに沿って中心軸線Oの周りに旋回する。
Therefore, when the rotational position of the crankshafts 51L, 51R is controlled by the inter-roller radial pressing force control motor 35 via the pinion 55 and the ring gears 51Lc, 51Rc,
The rotation axis O 2 of the output shaft 13 and the second roller 32 turns around the central axis O 3 along a locus circle α indicated by a broken line in FIG.
 図3の軌跡円αに沿った回転軸線O2(第2ローラ32)の旋回により第2ローラ32は、後で詳述するが図4(a)~(c)に示すごとく第1ローラ31に対し径方向へ接近し、これら第1ローラ31および第2ローラ32のローラ軸間距離L1をクランクシャフト51L,51Rの回転角θの増大につれ、第1ローラ31の半径と第2ローラ32の半径との和値よりも小さくすることができる。
 かかるローラ軸間距離L1の低下により、第1ローラ31に対する第2ローラ32の径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)が大きくなり、ローラ軸間距離L1の低下度合いに応じてローラ間径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)、つまり駆動力配分比を任意に制御することができる。
The second roller 32 is rotated by the rotation axis O 2 (second roller 32) along the locus circle α in FIG. 3, but the first roller 31 will be described in detail later, as shown in FIGS. 4 (a) to 4 (c). As the rotation angle θ of the crankshafts 51L and 51R increases, the radius L1 between the first roller 31 and the second roller 32 increases. It can be made smaller than the sum of the radius.
Due to such a decrease in the distance L1 between the roller shafts, the radial pressing force of the second roller 32 against the first roller 31 (the transmission torque capacity between the rollers: traction transmission capacity) increases, and according to the degree of decrease in the distance L1 between the roller axes. The inter-roller radial pressing force (inter-roller transmission torque capacity: traction transmission capacity), that is, the driving force distribution ratio can be arbitrarily controlled.
 なお図4(a)に示すように本実施例では、第2ローラ回転軸線O2がクランクシャフト回転軸線O3の直下に位置し、第1ローラ31および第2ローラ32の軸間距離L1が最大となる下死点でのローラ軸間距離L1を、第1ローラ31の半径と第2ローラ32の半径との和値よりも大きくする。
 これにより当該クランクシャフト回転角θ=0°の下死点においては、第1ローラ31および第2ローラ32が相互に径方向へ押し付けられることがなく、ローラ31,32間でトラクション伝動が行われないトラクション伝動容量=0の状態を得ることができ、
 トラクション伝動容量を下死点での0と、図4(c)に示す上死点(θ=180°)で得られる最大値との間で任意に制御することができる。
As shown in FIG. 4 (a), in this embodiment, the second roller rotation axis O 2 is located immediately below the crankshaft rotation axis O 3 and the inter-axis distance L1 between the first roller 31 and the second roller 32 is The distance L1 between the roller axes at the maximum bottom dead center is made larger than the sum of the radius of the first roller 31 and the radius of the second roller 32.
Thus, at the bottom dead center of the crankshaft rotation angle θ = 0 °, the first roller 31 and the second roller 32 are not pressed against each other in the radial direction, and traction transmission is performed between the rollers 31 and 32. No traction transmission capacity = 0 can be obtained,
The traction transmission capacity can be arbitrarily controlled between 0 at the bottom dead center and the maximum value obtained at the top dead center (θ = 180 °) shown in FIG.
 なお本実施例では、クランクシャフト51L,51Rの回転角基準点をクランクシャフト回転角θ=0°の下死点であることとして説明を展開する。 In this embodiment, the description will be made assuming that the rotation angle reference point of the crankshafts 51L and 51R is the bottom dead center of the crankshaft rotation angle θ = 0 °.
 また本実施例では、上記のごとく第2ローラ32の回転軸線O2をモータ35により軸線O3の周りに旋回させつつ、第1ローラ31に対する第2ローラ32の径方向押し付け力を加減する構成のため、
 クランクシャフト回転角θに応じクランクシャフト51L,51Rには、後で詳述するが図5に示すような駆動反力トルク(負荷トルク)Tcrが作用する。
In this embodiment also, configured to moderate rotation while turning around the axis O 3 by the axis O 2 of the motor 35, the radial pressing force of second roller 32 relative to the first roller 31 of the second roller 32 as described above for,
A driving reaction force torque (load torque) Tcr as shown in FIG. 5 acts on the crankshafts 51L and 51R according to the crankshaft rotation angle θ, as will be described in detail later.
<駆動力配分作用>
 図1~4につき上述したトランスファー1の駆動力配分作用を以下に説明する。
 変速機3(図1参照)からトランスファー1の入力軸12に達したトルクは、一方でこの入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5(ともに図1参照)を経て左右後輪6L,6R(主駆動輪)へ伝達される。
<Driving force distribution action>
The drive force distribution action of the transfer 1 described above with reference to FIGS. 1 to 4 will be described below.
On the other hand, the torque that has reached the input shaft 12 of the transfer 1 from the transmission 3 (see FIG. 1) passes directly from the input shaft 12 through the rear propeller shaft 4 and the rear final drive unit 5 (both see FIG. 1) to the left and right rear wheels 6L. , 6R (main drive wheel).
 他方でトランスファー1は、モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御して、ローラ軸間距離L1(図4参照)を第1ローラ31および第2ローラ32の半径の和値よりも小さくするとき、これらローラ31,32が径方向相互押圧力に応じたローラ間伝達トルク容量を持つことから、このトルク容量に応じて、左右後輪6L,6R(主駆動輪)へのトルクの一部を、第1ローラ31から第2ローラ32を経て出力軸13に向かわせ、左右前輪9L,9R(従駆動輪)をも駆動することができる。
 かくして車両は、左右後輪6L,6R(主駆動輪)および左右前輪(従駆動輪)9L,9Rの全てを駆動しての四輪駆動走行が可能である。
On the other hand, the transfer 1 controls the rotational position of the crankshafts 51L and 51R via the pinion 55 and the ring gears 51Lc and 51Rc by the motor 35, and the distance L1 between the roller axes (see FIG. 4) is set to the first roller 31 and the second roller 32. Since the rollers 31, 32 have a torque transfer capacity between the rollers according to the radial mutual pressing force, the left and right rear wheels 6L, 6R (main A part of the torque to the drive wheels) is directed from the first roller 31 to the output shaft 13 via the second roller 32, and the left and right front wheels 9L and 9R (secondary drive wheels) can also be driven.
Thus, the vehicle is capable of four-wheel drive running by driving all of the left and right rear wheels 6L and 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 9L and 9R.
 なお、この伝動中における第1ローラ31および第2ローラ32間の径方向押圧反力Ftは、これらに共通な回転支持板であるベアリングサポート16,17で受け止められ、ハウジング11に達することがない。
 そして径方向押圧反力Ftは、クランクシャフト回転角θが0°~90°である間は0となり、クランクシャフト回転角θが90°~180°である間、θの増大に応じて増加し、クランクシャフト回転角θが180°になるとき最大値となる。
Note that the radial pressing reaction force Ft between the first roller 31 and the second roller 32 during this transmission is received by the bearing supports 16 and 17 which are rotation support plates common to these, and does not reach the housing 11. .
The radial pressing reaction force Ft is 0 when the crankshaft rotation angle θ is 0 ° to 90 °, and increases as θ increases while the crankshaft rotation angle θ is 90 ° to 180 °. When the crankshaft rotation angle θ is 180 °, the maximum value is obtained.
 かかる径方向押圧反力Ftに起因して、クランクシャフト51L,51Rには、次式によって表されるクランクシャフト駆動反力トルク(負荷トルク)Tcrが作用し、
 Tcr=Ft×Ro×sinθ
 このクランクシャフト駆動反力トルク(負荷トルク)Tcrは、上式から明らかなように、クランクシャフト回転角θに対し図5に示すごとき非線形な特性を呈する。
Due to the radial pressing reaction force Ft, the crankshaft drive reaction torque (load torque) Tcr expressed by the following equation acts on the crankshafts 51L and 51R,
Tcr = Ft × Ro × sinθ
The crankshaft driving reaction torque (load torque) Tcr exhibits a non-linear characteristic as shown in FIG. 5 with respect to the crankshaft rotation angle θ, as is apparent from the above equation.
 かような四輪駆動走行中、クランクシャフト51L,51Rの回転角θが図4(b)に示すごとく基準位置の90°であって、第1ローラ31および第2ローラ32が相互に、この時のオフセット量OSに対応した径方向押圧力で押し付けられて押圧接触している場合、
 これらローラ間のオフセット量OSに対応したトラクション伝動容量で左右前輪(従駆動輪)9L,9Rへの動力伝達が行われる。
During such four-wheel drive traveling, the rotation angle θ of the crankshafts 51L and 51R is 90 ° of the reference position as shown in FIG. 4 (b), and the first roller 31 and the second roller 32 are mutually connected. When pressing and contacting with a radial pressing force corresponding to the offset amount OS at the time,
Power is transmitted to the left and right front wheels (sub driven wheels) 9L and 9R with a traction transmission capacity corresponding to the offset amount OS between these rollers.
 そして、クランクシャフト51L,51Rを図4(b)の基準位置から、図4(c)に示すクランクシャフト回転角θ=180°の上死点に向け回転操作してクランクシャフト回転角θを増大させるにつれ、ローラ軸間距離L1が更に減少して第1ローラ31および第2ローラ32の相互オーバーラップ量OLが増大する結果、第1ローラ31および第2ローラ32は径方向相互押圧力を増大され、これらローラ間のトラクション伝動容量を増大させることができる。 Then, the crankshafts 51L and 51R are rotated from the reference position in FIG. 4 (b) toward the top dead center of the crankshaft rotation angle θ = 180 ° shown in FIG. 4 (c) to increase the crankshaft rotation angle θ. As a result, the distance L1 between the roller shafts further decreases, and the mutual overlap amount OL of the first roller 31 and the second roller 32 increases. As a result, the first roller 31 and the second roller 32 increase the radial mutual pressing force. Thus, the traction transmission capacity between these rollers can be increased.
 クランクシャフト51L,51Rが図4(c)の上死点位置に達すると、第1ローラ31および第2ローラ32は相互に、最大のオーバーラップ量OLに対応した径方向最大押圧力で径方向へ押し付けられて、これらの間のトラクション伝動容量を最大にすることができる。
 なお最大のオーバーラップ量OLは、第2ローラ回転軸線O2およびクランクシャフト回転軸線O3間の偏心量εと、図4(b)につき上記したオフセット量OSとの和値である。
When the crankshafts 51L and 51R reach the top dead center position in FIG. 4 (c), the first roller 31 and the second roller 32 are in the radial direction with a maximum radial pressing force corresponding to the maximum overlap amount OL. The traction transmission capacity between them can be maximized.
The maximum overlap amount OL is the sum of the eccentric amount ε between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG. 4B.
 以上の説明から明らかなように、クランクシャフト51L,51Rをクランクシャフト回転角θ=0°の回転位置から、クランクシャフト回転角θ=180°の回転位置まで回転操作することにより、クランクシャフト回転角θの増大につれ、ローラ間トラクション伝動容量を0から最大値まで連続変化させることができる。
 また逆に、クランクシャフト51L,51Rをクランクシャフト回転角θ=180°の回転位置から、θ=0°の回転位置まで回転操作することにより、クランクシャフト回転角θの低下につれ、ローラ間トラクション伝動容量を最大値から0まで連続変化させることができ、ローラ間トラクション伝動容量をクランクシャフト51L,51Rの回転操作により自在に制御し得る。
As is apparent from the above description, the crankshaft rotation angle is controlled by rotating the crankshafts 51L and 51R from the rotation position of the crankshaft rotation angle θ = 0 ° to the rotation position of the crankshaft rotation angle θ = 180 °. As θ increases, the traction transmission capacity between rollers can be continuously changed from 0 to the maximum value.
Conversely, by rotating the crankshaft 51L, 51R from the rotation position of the crankshaft rotation angle θ = 180 ° to the rotation position of θ = 0 °, the traction transmission between the rollers is reduced as the crankshaft rotation angle θ decreases. The capacity can be continuously changed from the maximum value to 0, and the traction transmission capacity between the rollers can be freely controlled by rotating the crankshafts 51L and 51R.
<トラクション伝動容量制御>
 上記した四輪駆動走行中はトランスファー1が、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)9L,9Rへ分配して出力するため、第1ローラ31および第2ローラ32間のトラクション伝動容量を、左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から求め得る、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力に対応させる必要がある。
<Traction transmission capacity control>
Because the transfer 1 distributes a part of the torque to the left and right rear wheels (main drive wheels) 6L and 6R to the left and right front wheels (secondary drive wheels) 9L and 9R as described above during the four-wheel drive driving described above. The left and right front wheels (slave drive wheels) can determine the traction transmission capacity between the first roller 31 and the second roller 32 from the driving force of the left and right rear wheels 6L, 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio. It is necessary to correspond to the target front wheel drive force to be distributed to 9L and 9R.
 この要求にかなうトラクション伝動容量制御のために本実施例においては、図1に示すようにトランスファーコントローラ111を設け、これによりモータ35の回転位置制御(クランクシャフト回転角θの制御)を行うものとする。 In the present embodiment, in order to control the traction transmission capacity that meets this requirement, a transfer controller 111 is provided as shown in FIG. 1, thereby controlling the rotational position of the motor 35 (control of the crankshaft rotational angle θ). To do.
 そのためトランスファーコントローラ111には、
 エンジン2の出力を加減するアクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ112からの信号と、
 左右後輪6L,6R(主駆動輪)の回転周速Vwrを検出する後輪速センサ113からの信号と、
 車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ114からの信号と、
 クランクシャフト51L,51Rの回転角θを検出するクランクシャフト回転角センサ115からの信号と、
 トランスファー1(ハウジング11)内における作動油の温度TEMPを検出する油温センサ116からの信号を入力する。
Therefore, the transfer controller 111 has
A signal from an accelerator opening sensor 112 that detects an accelerator pedal depression amount (accelerator opening) APO that adjusts the output of the engine 2;
A signal from the rear wheel speed sensor 113 that detects the rotational peripheral speed Vwr of the left and right rear wheels 6L, 6R (main drive wheels);
A signal from the yaw rate sensor 114 for detecting the yaw rate φ around the vertical axis passing through the center of gravity of the vehicle;
A signal from the crankshaft rotation angle sensor 115 for detecting the rotation angle θ of the crankshafts 51L and 51R;
A signal from an oil temperature sensor 116 that detects the temperature TEMP of the hydraulic oil in the transfer 1 (housing 11) is input.
 トランスファーコントローラ111は、これら入力情報を基に、トランスファー1のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)を概略以下のように行う。
 つまり先ずトランスファーコントローラ111は、アクセル開度APO、後輪速Vwr、およびヨーレートφに基づき、先ず左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比を周知の要領で求める。
 次にトランスファーコントローラ111は、これら左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力を求める。
The transfer controller 111 performs the traction transmission capacity control of the transfer 1 (front and rear wheel driving force distribution control of a four-wheel drive vehicle) based on the input information as follows.
That is, first, the transfer controller 111 first knows the driving force of the left and right rear wheels 6L and 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio based on the accelerator opening APO, the rear wheel speed Vwr, and the yaw rate φ. Ask for.
Next, the transfer controller 111 determines the target front wheel drive force to be distributed to the left and right front wheels (secondary drive wheels) 9L and 9R from the drive force of the left and right rear wheels 6L and 6R (main drive wheels) and the front and rear wheel target drive force distribution ratio. Ask for.
 更にトランスファーコントローラ111は、第1ローラ31および第2ローラ32がこの目標前輪駆動力を伝達するのに必要なローラ間径方向押圧力(第1ローラ31および第2ローラ32間のトラクション伝動容量)をマップ検索などにより求め、このローラ間径方向押圧力(第1ローラ31および第2ローラ32間のトラクション伝動容量)を実現するのに必要なクランクシャフト51L,51R(図2,3参照)の回転角目標値tθ、つまり第2ローラ軸線O2の目標旋回位置を演算する。 Further, the transfer controller 111 determines the radial pressing force between the rollers required for the first roller 31 and the second roller 32 to transmit the target front wheel driving force (the traction transmission capacity between the first roller 31 and the second roller 32). Of the crankshafts 51L and 51R (see Figs. 2 and 3) required to achieve the radial pressure between the rollers (the traction transmission capacity between the first roller 31 and the second roller 32). The rotation angle target value tθ, that is, the target turning position of the second roller axis O 2 is calculated.
 そしてトランスファーコントローラ111は、センサ115で検出したクランクシャフト回転角θおよび上記のクランクシャフト回転角目標値tθ間におけるクランクシャフト回転角偏差に応じ、クランクシャフト回転角θがクランクシャフト回転角目標値tθに一致するよう、ローラ間押し付け力制御モータ35を駆動制御する。
 当該モータ35の駆動制御によりクランクシャフト51L,51Rの回転角θが目標値tθに一致することで、第1ローラ31および第2ローラ32は上記の目標前輪駆動力を伝達可能な相互に径方向に押圧接触され、第1ローラ31および第2ローラ32間のトラクション伝動容量を前後輪目標駆動力配分比となるよう制御することができる。
Then, the transfer controller 111 changes the crankshaft rotation angle θ to the crankshaft rotation angle target value tθ in accordance with the crankshaft rotation angle deviation between the crankshaft rotation angle θ detected by the sensor 115 and the crankshaft rotation angle target value tθ. The roller pressing force control motor 35 is driven and controlled so as to match.
When the rotation angle θ of the crankshafts 51L and 51R matches the target value tθ by the drive control of the motor 35, the first roller 31 and the second roller 32 can transmit the target front wheel driving force to each other in the radial direction. The traction transmission capacity between the first roller 31 and the second roller 32 can be controlled so as to become the front and rear wheel target driving force distribution ratio.
<トランスファーの暖機促進制御>
 トランスファーコントローラ111は、上記した通常のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)の他に、図6の制御プログラムを実行して以下のような暖機促進制御を遂行する。
<Transfer warm-up acceleration control>
The transfer controller 111 executes the following warm-up promotion control by executing the control program shown in FIG. 6 in addition to the above-described normal traction transmission capacity control (front and rear wheel driving force distribution control of a four-wheel drive vehicle). .
 ステップS11においては、左右前輪(従駆動輪)9L,9Rへ駆動力を配分する四輪駆動(4WD)が要求されているか否かをチェックし、四輪駆動(4WD)が要求されていると判定する場合は制御をステップS12へ進めて、上記した通常のトラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。 In step S11, it is checked whether four-wheel drive (4WD) is required to distribute the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R, and four-wheel drive (4WD) is requested. In the case of determination, the control proceeds to step S12, and the above-described normal traction transmission capacity control (front and rear wheel driving force distribution control) is performed.
 ステップS11で四輪駆動(4WD)が要求されていないと判定する場合は、制御をステップS13に進め、トランスファー1の内部作動油温TEMPが暖機要求判定温度TEMPs未満(暖機が要求されている状態)であるか、油温TEMPが暖機要求判定温度TEMPs以上(暖機が要求されていない状態)であるかを判定する。 If it is determined in step S11 that four-wheel drive (4WD) is not requested, control proceeds to step S13, and the internal hydraulic oil temperature TEMP of transfer 1 is less than the warm-up request determination temperature TEMPs (warm-up is requested). Whether the oil temperature TEMP is equal to or higher than the warm-up request determination temperature TEMPs (a state where warm-up is not requested).
 ステップS13でTEMP≧TEMPs(暖機が要求されていない状態)と判定する場合は、制御をステップS14に進め、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常のトラクション伝動容量0制御を遂行する。
 このトラクション伝動容量0制御は、図4(b)に示すクランクシャフト回転角θ=90°の位置にできるだけ近いが、第1ローラ31および第2ローラ32間に若干の隙間が存在する所定のクランクシャフト回転角位置にクランクシャフト51L,51R(図2,3参照)を保持する制御である。
If it is determined in step S13 that TEMP ≧ TEMPs (a state where warm-up is not required), the control proceeds to step S14 so that the driving force is not distributed to the left and right front wheels (secondary driving wheels) 9L, 9R. Perform normal traction transmission capacity 0 control.
This traction transmission capacity 0 control is as close as possible to the position of the crankshaft rotation angle θ = 90 ° shown in FIG. 4 (b), but a predetermined crank having a slight gap between the first roller 31 and the second roller 32. In this control, the crankshafts 51L and 51R (see FIGS. 2 and 3) are held at the shaft rotation angle position.
 ステップS13でTEMP<TEMPs(暖機が要求されている状態)と判定する場合は、制御をステップS15に進め、ここでクランクシャフト回転角基準点(クランクシャフト絶対角)を以下のように推定する。
 つまり、クランクシャフト51L,51R(図2,3参照)を一方向に回転させて第1ローラ31および第2ローラ32が相互に接触を開始した時におけるクランクシャフト回転位置と、クランクシャフト51L,51Rを逆方向に回転させて第1ローラ31および第2ローラ32が相互に接触を開始した時におけるクランクシャフト回転位置との中間にクランクシャフト51L,51Rが回転した時のクランクシャフト回転角θをクランクシャフト回転角基準点(クランクシャフト絶対角)とする。
 なお本実施例の場合、図4につき前述した通り、同図(a)に示す下死点におけるクランクシャフト回転角θがクランクシャフト51L,51Rの回転角基準点(クランクシャフト絶対角)であり、ここでのクランクシャフト回転角θをθ=0°とする。
If it is determined in step S13 that TEMP <TEMPs (a state where warm-up is required), the control proceeds to step S15, where the crankshaft rotation angle reference point (crankshaft absolute angle) is estimated as follows. .
That is, when the crankshafts 51L and 51R (see FIGS. 2 and 3) are rotated in one direction and the first roller 31 and the second roller 32 start to contact each other, the crankshaft rotation position and the crankshafts 51L and 51R The crankshaft rotation angle θ when the crankshafts 51L and 51R are rotated in the middle of the crankshaft rotation position when the first roller 31 and the second roller 32 start to contact each other. The shaft rotation angle reference point (crankshaft absolute angle) is used.
In the case of this embodiment, as described above with reference to FIG. 4, the crankshaft rotation angle θ at the bottom dead center shown in FIG. 4A is the rotation angle reference point (crankshaft absolute angle) of the crankshafts 51L and 51R. The crankshaft rotation angle θ here is assumed to be θ = 0 °.
 次のステップS16においては、トランスファー1をステップS11での2WD要求判定に呼応して、左右前輪(従駆動輪)9L,9Rへ駆動力が配分されない状態に保つべく、クランクシャフト回転角基準点でのクランクシャフト回転角θを0°とし、クランクシャフト51L,51Rを、これに一体のリングギヤ51Lc,51Rc(ローラ旋回駆動メンバ)と共に、第1ローラ31および第2ローラ32が相互に接触しないθ=-β~+βの角度範囲内で往復回転させる。
 なおβは、図4(b)につき前述したオフセット量OSに相当する分だけ90°よりも小さい角度であること、勿論である。
In the next step S16, in response to the 2WD request determination in step S11, in order to keep the driving force from being distributed to the left and right front wheels (secondary driving wheels) 9L, 9R at the crankshaft rotation angle reference point, The crankshaft rotation angle θ is 0 °, and the crankshafts 51L and 51R, together with the ring gears 51Lc and 51Rc (roller turning drive members) integral therewith, the first roller 31 and the second roller 32 do not contact each other θ = Reciprocate within the angle range of -β to + β.
Note that β is an angle smaller than 90 ° by an amount corresponding to the offset amount OS described above with reference to FIG.
 かかるリングギヤ51Lc,51Rc(ローラ旋回駆動メンバ)の、第1ローラ31および第2ローラ32が相互に接触しない角度範囲(θ=-β~+β)内での往復回転は、ステップS11での判定結果に基づく二輪駆動(2WD)状態を保ってトランスファー1(ハウジング11)の内部作動油を攪拌し、その温度上昇を促してトランスファー1の暖機を促進させることができる。
 従ってステップS16は、本発明における暖機促進手段に相当する。
The reciprocating rotation of the ring gears 51Lc and 51Rc (roller turning drive members) within the angular range (θ = −β to + β) in which the first roller 31 and the second roller 32 do not contact each other is determined in step S11. While maintaining the two-wheel drive (2WD) state based on the result, the internal hydraulic fluid of the transfer 1 (housing 11) is agitated, and the temperature rise can be promoted to promote the warm-up of the transfer 1.
Accordingly, step S16 corresponds to warm-up promoting means in the present invention.
<効果>
 図6につき上述した本実施例になるトランスファー1の暖機促進制御によれば、
 四輪駆動(4WD)が要求されていない状態であって(ステップS11)、トランスファー1の暖機促進が要求される低温(TEMP<TEMPs)状態(ステップS13)である場合、
 第1ローラ31および第2ローラ32間の径方向押し付け力を加減すべく第2ローラ32を旋回させるためのリングギヤ51Lc,51Rc(ローラ旋回駆動メンバ)を、第1ローラ31および第2ローラ32が相互に接触しないクランクシャフト回転角θ=-β~+βの範囲内で往復回転させることにより、トランスファー1の内部作動油を攪拌(ステップS16)して温度上昇を図るため、
 第1ローラ31および第2ローラ32間のトラクション伝動容量が0の状態を保って、内部作動油を速やかに温度上昇させ、暖機を促進することができる。
<Effect>
According to the warm-up promotion control of the transfer 1 according to the present embodiment described above with reference to FIG.
When the four-wheel drive (4WD) is not required (step S11) and the low temperature (TEMP <TEMPs) state (step S13) is required to promote warm-up of the transfer 1,
Ring gears 51Lc and 51Rc (roller turning drive members) for turning the second roller 32 to adjust the radial pressing force between the first roller 31 and the second roller 32 are provided by the first roller 31 and the second roller 32. In order to increase the temperature by agitating the internal hydraulic fluid of the transfer 1 (step S16) by reciprocating rotation within the range of crankshaft rotation angles θ = −β to + β that do not contact each other,
While the traction transmission capacity between the first roller 31 and the second roller 32 is maintained at 0, the temperature of the internal hydraulic oil can be quickly raised to promote warm-up.
 よって、低温でトランスファー作動油の粘度が高い状態を速やかに解消することができ、第1ローラ31および第2ローラ32間の径方向押し付け力制御を介したトラクション伝動容量制御の応答性を速やかに本来のものにすることができ、トラクション伝動容量制御の応答性に関する問題を解消し得る。
 またかかる暖機促進により、長時間に亘ってトラクション伝動容量制御自身が設計時の狙い通りのものにならないという問題も解消することができる。
Therefore, the state where the viscosity of the transfer hydraulic fluid is high at a low temperature can be quickly resolved, and the responsiveness of the traction transmission capacity control via the radial pressing force control between the first roller 31 and the second roller 32 can be quickly achieved. It can be made original, and the problem related to the responsiveness of the traction transmission capacity control can be solved.
In addition, such warm-up promotion can also solve the problem that the traction transmission capacity control itself does not become as designed at the time of design for a long time.
 また、リングギヤ51Lc,51Rcは、トランスファー1のハウジング11に回転自在に支持され、リングギヤ51Lc,51Rcの回転中心O3から偏心量εだけ偏心した箇所O2に第2ローラ32を回転自在に支承したものであり、リングギヤ51Lc,51Rcの回転により第2ローラ32の旋回を生起させるよう構成したため、
 暖気促進手段を簡潔に構成することができ、ひいては駆動力配分装置の重量やコストの増大を最小限に抑制することができる。
Further, the ring gear 51Lc, 51Rc are rotatably supported by the housing 11 of the transfer 1, the ring gear 51Lc, and rotatably supported to the second roller 32 at a position O 2 which is eccentric by the eccentricity ε from the rotation center O 3 of 51Rc Because it is configured to cause the second roller 32 to turn by the rotation of the ring gears 51Lc, 51Rc,
The warm air promoting means can be configured simply, and as a result, an increase in weight and cost of the driving force distribution device can be suppressed to a minimum.
 更に、四輪駆動(4WD)が要求されていない状態であって(ステップS11)、トランスファー1の暖機が要求される低温(TEMP<TEMPs)状態(ステップS13)である場合に、リングギヤ51Lc,51Rc(ローラ旋回駆動メンバ)を、第1ローラ31および第2ローラ32が相互に接触しない角度範囲(θ=-β~+β)内で往復回転させて上記の作用効果が得られるようにしたため、
 四輪駆動(4WD)要求中である場合は(ステップS11)、トランスファー1の暖機が要求される低温(TEMP<TEMPs)状態(ステップS13)であっても、リングギヤ51Lc,51Rc(ローラ旋回駆動メンバ)の上記往復回転が行われることがなく、四輪駆動(4WD)要求が実現不能になることがない。
Furthermore, when the four-wheel drive (4WD) is not required (step S11) and the low temperature (TEMP <TEMPs) state (step S13) is required to warm up the transfer 1, the ring gear 51Lc, The 51Rc (roller turning drive member) is reciprocally rotated within the angle range (θ = −β to + β) in which the first roller 31 and the second roller 32 do not contact each other so that the above-described effects can be obtained. ,
When four-wheel drive (4WD) is being requested (step S11), the ring gears 51Lc and 51Rc (roller swivel drive) are used even in the low temperature (TEMP <TEMPs) state (step S13) where the transfer 1 is required to warm up. The above-mentioned reciprocating rotation of the member) is not performed, and the four-wheel drive (4WD) request is not realized.

Claims (3)

  1.  主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
     これら第1ローラおよび第2ローラを両者の外周面において相互に径方向に押圧接触させることにより従駆動輪への駆動力配分が可能であると共に、該第1ローラおよび第2ローラの一方を旋回させて、これらローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分を制御するようにした駆動力配分装置において、
     前記第1ローラおよび第2ローラの一方を旋回させるためのローラ旋回駆動メンバを、第1ローラおよび第2ローラが相互に接触しない範囲内で往復回転させることにより、内部作動油を攪拌して温度上昇を図る暖機促進手段を設けたことを特徴とする駆動力配分装置。
    A first roller that rotates with the main drive wheel transmission system and a second roller that rotates with the driven wheel transmission system;
    The first roller and the second roller are pressed against each other in the radial direction on the outer peripheral surface of each of them, so that the driving force can be distributed to the driven wheels, and one of the first roller and the second roller is turned. Then, in the driving force distribution device that controls the driving force distribution between the main driving wheel and the sub driving wheel by adjusting the radial pressing force between these rollers,
    By rotating the roller turning drive member for turning one of the first roller and the second roller in a range where the first roller and the second roller do not contact each other, the internal hydraulic oil is stirred and the temperature is increased. A driving force distribution device provided with warming-up promotion means for increasing the temperature.
  2.  請求項1に記載の駆動力配分装置において、
     前記ローラ旋回駆動メンバは、前記駆動力配分装置のハウジングに回転自在に支持され、該ローラ旋回駆動メンバの回転中心から偏心した箇所に、前記旋回される一方のローラを回転自在に支承したものであり、
     前記ローラ旋回駆動メンバの回転により前記一方のローラの前記旋回を生起させるよう構成したことを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 1,
    The roller turning drive member is rotatably supported by the housing of the driving force distribution device, and rotatably supports one of the turned rollers at a position eccentric from the rotation center of the roller turning drive member. Yes,
    A driving force distribution device configured to cause the one roller to turn by the rotation of the roller turning drive member.
  3.  請求項1または2に記載の駆動力配分装置において、
     前記暖機促進手段は、前記従駆動輪への駆動力配分が不要な場合であって、且つ前記内部作動油が設定温度未満である場合に、前記ローラ旋回駆動メンバを、第1ローラおよび第2ローラが相互に接触しない範囲内で往復回転させるものであることを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 1 or 2,
    The warming-up promoting means moves the roller turning drive member to the first roller and the first roller when it is not necessary to distribute driving force to the driven wheels and the internal hydraulic oil is lower than a set temperature. A driving force distribution device characterized in that the two rollers are reciprocally rotated within a range where they do not contact each other.
PCT/JP2013/064165 2012-06-05 2013-05-22 Driving force distribution device WO2013183447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012127695 2012-06-05
JP2012-127695 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013183447A1 true WO2013183447A1 (en) 2013-12-12

Family

ID=49711845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064165 WO2013183447A1 (en) 2012-06-05 2013-05-22 Driving force distribution device

Country Status (1)

Country Link
WO (1) WO2013183447A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233956U (en) * 1988-08-29 1990-03-05
JPH04297335A (en) * 1991-01-11 1992-10-21 Nissan Motor Co Ltd Driving force distribution controller for four-wheel-drive vehicle
JP2004306948A (en) * 2003-04-07 2004-11-04 Zahnradfab Friedrichshafen Ag All-wheel drive type toroidal transmission for automobile
JP2010091059A (en) * 2008-10-10 2010-04-22 Nissan Motor Co Ltd Friction transmitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233956U (en) * 1988-08-29 1990-03-05
JPH04297335A (en) * 1991-01-11 1992-10-21 Nissan Motor Co Ltd Driving force distribution controller for four-wheel-drive vehicle
JP2004306948A (en) * 2003-04-07 2004-11-04 Zahnradfab Friedrichshafen Ag All-wheel drive type toroidal transmission for automobile
JP2010091059A (en) * 2008-10-10 2010-04-22 Nissan Motor Co Ltd Friction transmitting device

Similar Documents

Publication Publication Date Title
JP5131384B2 (en) Two-wheel / four-wheel drive switching control device and control method for traction transmission type part-time four-wheel drive vehicle
JP5262588B2 (en) Driving force distribution device
WO2011001743A1 (en) Traction transmission capacity control device used in drive force distribution device
EP2657571B1 (en) Traction transmission capacity control device
JP2014019169A (en) Drive power distribution device
WO2013183447A1 (en) Driving force distribution device
EP2390531B1 (en) Torque distributor
JP2010209953A (en) Friction gearing
JP5910406B2 (en) Driving force distribution device
JP2010091061A (en) Tranction transmission capacity control device of drive force distribution device
JP5958255B2 (en) Driving force distribution device
JP2013151246A (en) Lock-off control device of irreversible rotation transmission system
JP6212917B2 (en) Driving force distribution device
WO2013183411A1 (en) Driving force distribution device
WO2013183503A1 (en) Driving force distribution device
JP2014024495A (en) Driving force distribution device
JP2014019168A (en) Drive power distribution device
WO2013183412A1 (en) Driving force distribution device
JP6028451B2 (en) Driving force distribution device
JP6011132B2 (en) Driving force distribution device
WO2013183413A1 (en) Driving force distribution device
JP5782798B2 (en) Lock-on control device for irreversible rotation transmission system
JP2014037168A (en) Driving force distribution device
JP2014015141A (en) Driving force distribution system
JP2013152002A (en) Lock-off control device in irreversible rotation transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP