WO2013183503A1 - Driving force distribution device - Google Patents

Driving force distribution device Download PDF

Info

Publication number
WO2013183503A1
WO2013183503A1 PCT/JP2013/064834 JP2013064834W WO2013183503A1 WO 2013183503 A1 WO2013183503 A1 WO 2013183503A1 JP 2013064834 W JP2013064834 W JP 2013064834W WO 2013183503 A1 WO2013183503 A1 WO 2013183503A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
driving force
traction
oil temperature
distribution device
Prior art date
Application number
PCT/JP2013/064834
Other languages
French (fr)
Japanese (ja)
Inventor
哲 高石
淳弘 森
三石 俊一
永悟 坂上
勝義 小川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013183503A1 publication Critical patent/WO2013183503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • F16H13/14Means for influencing the pressure between the members for automatically varying the pressure mechanically

Definitions

  • the present invention relates to a driving force distribution device, and more particularly to a driving force distribution device used as a transfer of a four-wheel drive vehicle.
  • the drive power distribution device described in this document comprises a first roller mechanically coupled to the transmission system of the main drive wheel, and a second roller mechanically coupled to the drive system of the secondary drive wheel.
  • the second roller is displaced relative to the first roller in a radial direction with respect to the first roller by rotating the rotation axis of the second roller around an eccentric axis by a motor or the like.
  • the radial pressing force between the first roller and the second roller that is, the distribution of the driving force between the main driving wheel and the secondary driving wheel can be controlled.
  • An oil temperature sensor is required to detect the temperature of the hydraulic oil (traction oil) in the drive power distribution device, for example, for traction force compensation control that compensates for changes in traction power transmission characteristics between rollers due to temperature (changes in traction force).
  • Patent Document 1 does not refer at all to the arrangement of the oil temperature sensor.
  • the temperature distribution of the internal hydraulic oil varies, and depending on the location of the oil temperature sensor, the hydraulic oil temperature detected thereby can not represent the temperature of the key roller-to-roller mutual contact surface.
  • the control response of the above-described fail-safe control or traction force compensation control is deteriorated, and the control accuracy is lowered to cause a problem that the control effect as intended can not be obtained.
  • the driving force distribution device which does not devise at all regarding the arrangement of the oil temperature sensor as in the prior art represented by PTL 1, the occurrence of the problem is inevitable.
  • the driving force distribution apparatus of the above type it is important to know the temperature of the inter-roller mutual contact surface, and the hydraulic oil which is caught between the rollers just before the roller rotation direction of the roller outer surface mutual contact location.
  • the oil temperature sensor is arranged to detect the temperature of the hydraulic fluid here based on the recognition that the temperature of the roller greatly affects the temperature of the roller contact surface and is close to the temperature of the roller contact surface. It is an object of the present invention to propose a driving force distribution device which can solve the problem of
  • the drive power distribution device is configured as follows.
  • this comprises a first roller that rotates with the main drive wheel transmission system, and a second roller that rotates with the secondary drive wheel transmission system,
  • the drive force is distributed to the sub-drive wheels by bringing the first roller and the second roller into contact in a power transmittable manner on the outer peripheral surfaces of the two, and the radial pressing force between the first roller and the second roller is adjusted.
  • drive power distribution control between the main drive wheel and the secondary drive wheel is possible, and at least the temperature of the hydraulic fluid is used as a control factor of the drive power distribution control.
  • the present invention relates to an oil temperature sensor for detecting the temperature of the hydraulic fluid in the driving force distribution device, in which the first roller and the second roller contact each other in the rotational direction of the first roller and the second roller. It is characterized by the configuration placed in front of the place.
  • the oil temperature sensor for detecting the temperature of the hydraulic oil is a contact point between the outer peripheral surface of the first roller and the second roller in the rotational direction of the first roller and the second roller. Because the operating oil temperature in front of the roller outer peripheral surface mutual contact point detected by the oil temperature sensor largely affects the temperature of the inter-roller mutual contact surface and is close to the temperature of the inter-roller mutual contact surface The control response of the fail-safe control or the traction force compensation control can be enhanced, and the control accuracy can be improved to achieve the target control effect.
  • FIG. 1 is a schematic plan view showing a powertrain of a four-wheel drive vehicle provided with a driving force distribution device according to a first embodiment of the present invention as viewed from above the vehicle. It is a longitudinal side view which unfolds and shows the driving force distribution apparatus in FIG. It is a longitudinal cross-sectional front view of the crankshaft used with the driving force distribution apparatus shown in FIG.
  • 3A is an operation explanatory view showing a separated state of the first roller and the second roller at a position where the crankshaft rotation angle is 0 ° of the reference point
  • b) is an operation explanatory view showing the contact state of the first roller and the second roller when the crankshaft rotation angle is 90 °
  • (c) is the first roller when the crankshaft rotation angle is 180 °
  • movement explanatory drawing which shows the contact state of and the 2nd roller.
  • FIG. 1 executes. It is a flowchart which shows the traction force compensation control program of the driving force distribution apparatus which becomes 2nd Example of this invention.
  • FIG. 6 is a characteristic diagram illustrating temperature change characteristics of a traction coefficient between the first roller and the second roller in the driving force distribution device shown in FIG. 2. It is a flow chart which shows a control program concerning fail-safe control and traction force compensation control at the time of overheating of a driving force distribution device which becomes a 3rd example of the present invention.
  • Driving force distribution device (transfer) 2 engine 3 transmission 4 rear propeller shaft 5 rear final drive unit 6L, 6R left and right rear wheels (main drive wheels) 7 Front propeller shaft 8 Front final drive unit 9L, 9R Left and right front wheels (secondary drive wheels) 11 housing 12 input shaft 13 output shaft 16, 17 bearing support 31 first roller 32 second roller 35 inter-roller pressing force control motor 51L, 51R crankshaft 51La, 51Ra hollow hole 51Lb, 51Rb outer peripheral portion 51Lc, 51Rc ring gear 55 crankshaft Drive pinion 56 Pinion shaft 111 Transfer controller 112 Accelerator opening sensor 113 Rear wheel speed sensor 114 Yaw rate sensor 115 Crankshaft rotation angle sensor 116 Oil temperature sensor 116a Oil temperature detection end
  • FIG. 1 is a schematic plan view showing a powertrain of a four-wheel drive vehicle provided with a driving force distribution device 1 according to a first embodiment of the present invention as a transfer, as viewed from above the vehicle.
  • the four-wheel drive vehicle shown in FIG. 1 is a rear wheel drive vehicle in which the rotation from the engine 2 is transmitted to the left and right rear wheels 6L and 6R through the rear propeller shaft 4 and the rear final drive unit 5 sequentially after shifting by the transmission 3.
  • a base vehicle Transmitting a part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R to the left and right front wheels (secondary drive wheels) 7L, 7R sequentially through the front propeller shaft 7 and the front final drive unit 8 by the drive force distribution device 1.
  • This is a vehicle that enables four-wheel drive travel.
  • the driving force distribution device 1 distributes part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 7L and 7R as described above, thereby outputting the left and right rear wheels
  • the driving force distribution ratio between the (main driving wheels) 6L, 6R and the left and right front wheels (secondary driving wheels) 9L, 9R is determined.
  • the driving force distribution device 1 is shown in FIG. Configure.
  • reference numeral 11 denotes a housing of the driving force distribution device 1, in which the input shaft 12 and the output shaft 13 are arranged horizontally with their rotational axes O 1 and O 2 parallel to each other. Set up.
  • the input shaft 12 is rotatably supported on the housing 11 by ball bearings 14 and 15 at both ends thereof. Both ends of the input shaft 12 project from the housing 11 under fluid tight sealing with the seal rings 25 and 26 respectively.
  • the left end of the input shaft 12 is drivably coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end is drivably coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
  • a pair of bearing supports 16 and 17 are provided between the input and output shafts 12 and 13 respectively disposed near both ends of the input shaft 12 and the output shaft 13, and these bearing supports 16 and 17 are bolted in the middle It is attached to the axially opposite inner wall of the housing 11 by means of (not shown). Roller bearings 21 and 22 are interposed between the bearing supports 16 and 17 and the input shaft 12 so that the input shaft 12 can be rotated relative to the bearing supports 16 and 17 via the bearing supports 16 and 17. Even in this case, the input shaft 12 is rotatably supported in the housing 11.
  • the first roller 31 is integrally formed coaxially at a middle position in the axial direction of the input shaft 12 between the bearing supports 16 and 17 (between the roller bearings 21 and 22).
  • the second roller 32 is integrally formed coaxially integrally with the first roller 31 so as to be in contact with the first roller 31 so as to be able to transmit power through hydraulic fluid.
  • the outer peripheral surfaces 31 a and 32 a of the first roller 31 and the second roller 32 are cylindrical surfaces that can be in line contact with each other due to the parallel arrangement of the input shaft 12 and the output shaft 13.
  • the output shaft 13 is rotatably supported within the housing 11 via the bearing supports 16 and 17 by being pivotally supported on the bearing supports 16 and 17 near the both ends thereof.
  • the following eccentric support structure is used.
  • crankshafts 51L and 51R are loosely fitted between the output shaft 13 and the bearing supports 16 and 17 through which the output shaft 13 passes.
  • the crankshaft 51L and the output shaft 13 project from the housing 11 at the left end of FIG. 2 respectively, and the seal ring 27 is interposed between the housing 11 and the crankshaft 51L at the projecting portion, and the seal is formed between the crankshaft 51L and the output shaft 13
  • the ring 28 intervenes, and the projections of the crankshaft 51L and the output shaft 13 protruding from the housing 11 are fluid-tightly sealed.
  • the left end of the output shaft 13 discharged from the housing 11 in FIG. 2 is drivably coupled to the left and right front wheels 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8.
  • Roller bearings 52L and 52R intervene between the hollow holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R and corresponding ends of the output shaft 13, respectively, so that the output shaft 13 is hollow of the crankshafts 51L and 51R.
  • the hollow holes 51La, 51Ra (central axis O 2 ) of the crankshafts 51L, 51R are eccentric hollow holes eccentric to the outer peripheral portions 51Lb, 51Rb (central axis O 3 , radius Ro) as shown in FIG. eccentric hollow hole 51La, the central axis O 2 of 51Ra outer peripheral portion 51Lb, from the central axis O 3 of 51Rb, are offset by eccentricity ⁇ between them.
  • the outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in corresponding bearing supports 16 and 17 via roller bearings 53L and 53R, respectively. At this time, the crankshafts 51L and 51R are positioned with the second roller 32 in the axial direction by the thrust bearings 54L and 54R.
  • Ring gears 51Lc and 51Rc of the same specification are integrally provided on adjacent ends of the crankshafts 51L and 51R facing each other, A common crankshaft drive pinion 55 is engaged with each of the ring gears 51Lc and 51Rc, and the crankshaft drive pinion 55 is coupled to the pinion shaft 56.
  • crankshaft drive pinion 55 When the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc as described above, the rotational positions of the crankshafts 51L and 51R are aligned such that their outer peripheral portions 51Lb and 51Rb align with each other in the circumferential direction. In this state, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc, 51Rc.
  • the pinion shaft 56 is rotatably supported at its both ends by the bearings 56 a and 56 b with respect to the housing 11.
  • An output shaft 35a of an inter-roller pressing force control motor 35 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
  • inter-roller transmission torque capacity traction transmission capacity
  • the inter-roller radial pressing force (inter-roller transmission torque capacity: traction transmission capacity), that is, the driving force distribution ratio can be arbitrarily controlled.
  • the second roller rotation axis O 2 is positioned directly below the crankshaft rotation axis O 3, the center distance L1 between first roller 31 and second roller 32
  • the distance L1 between the roller axes at the bottom dead center which is the maximum is made larger than the sum of the radius of the first roller 31 and the radius of the second roller 32.
  • the transfer 1 controls the rotational position of the crankshafts 51L and 51R by the motor 35 via the pinion 55 and the ring gears 51Lc and 51Rc, and the distance L1 between the roller shafts (see FIG. 4) becomes the first roller 31 and the second roller 32.
  • the rollers 31, 32 have an inter-roller transmission torque capacity corresponding to the radial mutual pressing force when they are smaller than the sum of the radii of the left and right rear wheels 6L, 6R (main
  • the left and right front wheels 9L and 9R (secondary drive wheels) can also be driven by directing a part of the torque to the drive wheels) from the first roller 31 to the output shaft 13 via the second roller 32.
  • the vehicle is capable of four-wheel drive travel by driving all of the left and right rear wheels 6L, 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 9L, 9R.
  • the radial pressing reaction force between the first roller 31 and the second roller 32 during this transmission is received by the bearing supports 16 and 17 which is a common rotation support plate, and does not reach the housing 11.
  • the radial pressing reaction force is 0 while the crankshaft rotation angle ⁇ is 0 ° to 90 °, and increases with an increase in ⁇ while the crankshaft rotation angle ⁇ is 90 ° to 180 °, The maximum value is obtained when the crankshaft rotation angle ⁇ becomes 180 °.
  • the rotation angle ⁇ of the crankshafts 51L and 51R is 90 ° of the reference position as shown in FIG. 4 (b), and the first roller 31 and the second roller 32 mutually
  • Power transmission to the left and right front wheels (secondary drive wheels) 9L and 9R is performed with a traction transmission capacity corresponding to the offset amount OS between the rollers.
  • the distance L1 between the roller axes is further reduced as it is increased, the overlap amount OL between the first roller 31 and the second roller 32 is increased.
  • the first roller 31 and the second roller 32 increase the radial mutual pressing force.
  • the traction transmission capacity between the rollers can be increased.
  • the maximum overlap amount OL is the sum of the eccentricity amount ⁇ between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG.
  • the inter-roller traction transmission capacity can be continuously changed from 0 to the maximum value.
  • the capacity can be continuously changed from the maximum value to 0, and the inter-roller traction transmission capacity can be freely controlled by the rotation operation of the crankshafts 51L and 51R.
  • the transfer 1 distributes part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R to the left and right front wheels (sub drive wheels) 9L, 9R as described above.
  • Left and right front wheels (following drive wheels) which can be determined from the driving force of the left and right rear wheels 6L and 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio between the first roller 31 and the second roller 32 It is necessary to correspond to the target front wheel driving force to be distributed to 9L and 9R.
  • a transfer controller 111 is provided to control the rotational position of the motor 35 (control of the crankshaft rotational angle ⁇ ) in order to control the traction transmission capacity to meet this requirement. Do.
  • the transfer controller 111 A signal from an accelerator opening sensor 112 for detecting an accelerator pedal depression amount (accelerator opening) APO for adjusting the output of the engine 2; A signal from a rear wheel speed sensor 113 for detecting a peripheral rotational speed Vwr of the left and right rear wheels 6L, 6R (main drive wheels), A signal from a yaw rate sensor 114 that detects a yaw rate ⁇ around a vertical axis passing through the center of gravity of the vehicle; A signal from a crankshaft rotation angle sensor 115 that detects a rotation angle ⁇ of the crankshaft 51L, 51R; A signal from an oil temperature sensor 116 for detecting the temperature TEMP of the hydraulic oil in the transfer 1 (housing 11) is input.
  • an accelerator opening sensor 112 for detecting an accelerator pedal depression amount (accelerator opening) APO for adjusting the output of the engine 2
  • a signal from a rear wheel speed sensor 113 for detecting a peripheral rotational speed Vwr of the left and right
  • the oil temperature sensor 116 is, as shown in the schematic front view of FIG. 5 related to the driving force distribution device 1, in the rotational directions of the first roller 31 and the second roller 32 (shown by arrows in FIG. 5).
  • the oil temperature detection end portion 116a of the oil temperature sensor 116 is positioned forward of the contact point between the outer peripheral surface of the first roller 31 and the second roller 32 (the point where the torque is transmitted through the hydraulic oil).
  • the oil temperature sensor 116 has an outer peripheral surface of the first roller 31 and the second roller 32 so that the oil temperature detection end portion 116a is immersed in the hydraulic oil 61 in the driving force distribution device 1 (housing 11). Between the mutual contact point and the common contact surface M in contact with the outer peripheral faces 31a and 32a of the first roller 31 and the second roller 32 ahead of the outer peripheral face mutual contact point in the roller rotation direction, that is, It is good to arrange so that it may be located immediately before the outer peripheral surface mutual contact point of the 1st roller 31 and the 2nd roller 32.
  • the transfer controller 111 performs traction transmission capacity control (front and rear wheel driving force distribution control of the four-wheel drive vehicle) of the transfer 1 on the basis of the detection information of each of the sensors 112 to 116 as described below. That is, first, the transfer controller 111 first makes known the driving force and the front and rear wheel target driving force distribution ratio of the left and right rear wheels 6L and 6R (main driving wheels) based on the accelerator opening APO, the rear wheel speed Vwr and the yaw rate ⁇ . Ask for.
  • the transfer controller 111 calculates the target front wheel driving force to be distributed to the left and right front wheels (secondary driving wheels) 9L and 9R from the driving force and the front and rear wheel target driving force distribution ratio of the left and right rear wheels 6L and 6R (main driving wheels).
  • the transfer controller 111 further requires the inter-roller radial pressing force (the traction transmission capacity between the first roller 31 and the second roller 32) required for the first roller 31 and the second roller 32 to transmit the target front wheel driving force.
  • the crankshafts 51L and 51R (see FIGS. 2 and 3) required to realize this inter-roller radial pressing force (traction transmission capacity between the first roller 31 and the second roller 32).
  • the rotation angle target value t ⁇ that is, the target turning position of the second roller axis O 2 is calculated.
  • the transfer controller 111 sets the crankshaft rotation angle ⁇ to the crankshaft rotation angle target value t ⁇ according to the crankshaft rotation angle deviation between the crankshaft rotation angle ⁇ detected by the sensor 115 and the crankshaft rotation angle target value t ⁇ .
  • the inter-roller pressing force control motor 35 is driven and controlled so as to coincide with each other.
  • the first roller 31 and the second roller 32 mutually exchange the target front wheel driving force to the extent that they can transmit the target front wheel driving force.
  • the traction transmission capacity between the first roller 31 and the second roller 32 can be controlled so as to be the front and rear wheel target driving force distribution ratio while being radially pressed and in contact.
  • the transfer controller 111 executes the control program of FIG. 6 in addition to the above-described normal traction transmission capacity control (front and rear wheel driving force distribution control of a four-wheel drive vehicle) to execute the following failsafe control at roller overheat. Carry out.
  • step S11 it is checked whether four-wheel drive (4WD) for distributing the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R is required. If four-wheel drive (4WD) is not required but two-wheel drive (2WD) is required, the control proceeds to step S12 to distribute the drive force to the left and right front wheels (secondary drive wheels) 9L and 9R.
  • step S13 When it is determined in step S11 that four wheel drive (4WD) request is in progress, it is determined in step S13 whether or not the hydraulic fluid temperature TEMP is equal to or higher than the set fluid temperature TEMPs for overheat determination.
  • the set oil temperature TEMPs for overheat determination is set to the lower limit value of the high temperature region (overheat temperature region) where surface peeling occurs at the mutual contact location of the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32. .
  • step S13 When it is determined in step S13 that the hydraulic fluid temperature TEMP is less than the set fluid temperature TEMPs, that is, non-overheating in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 do not cause surface peeling at mutual contact points If it is determined that the vehicle is in the state, since the failsafe control for the overheat countermeasure is not necessary, the control proceeds to step S14 to perform the above-described traction transmission capacity control for the four-wheel drive (4WD) Control).
  • step S13 If it is determined in step S13 that the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs, that is, an overheated state in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 may cause surface peeling at mutual contact points If it is determined that it is, it is necessary to perform the overheat countermeasure failsafe control, so the control proceeds to step S15 to execute the following overheat failsafe control.
  • step S15 the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 mutually correspond to each other according to the hydraulic fluid temperature TEMP, that is, to what extent the set fluid temperature TEMPs is exceeded.
  • the radial pressing force between the first roller 31 and the second roller 32 is reduced (including zero) to such an extent that surface peeling does not occur at the contact point. Therefore, step S13 and step S15 are referred to as inter-roller radial direction pressing force correction means (fail-safe means) in this embodiment.
  • the oil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the failsafe control at the time of overheat is described above with reference to FIG.
  • the following effects can be obtained because of the arrangement in the street. That is, in the present embodiment, the oil temperature sensor 116 contacts the outer peripheral surfaces of the first roller 31 and the second roller 32 in the rotational direction of the first roller 31 and the second roller 32 (respectively indicated by arrows in FIG. 5). Since the oil temperature detection end portion 116a is disposed in front of the portion (immediately in FIG.
  • the hydraulic oil temperature TEMP at the installation portion of the oil temperature sensor 116 is the outer peripheral surface of the first roller 31 and the second roller 32. Since the control response of the failsafe control described above with reference to FIG. 6 is enhanced and the control accuracy is improved, the target control effect is exhibited by largely affecting the temperature of the mutual contact point and being close to the temperature of the mutual contact surface between the rollers. Can.
  • FIG. 7 shows a traction force compensation control program of a driving force distribution device according to a second embodiment of the present invention. Also in the present embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the oil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
  • the transfer controller 111 shown in FIG. 1 executes the traction force compensation control program shown in FIG. 7 based on the temperature TEMP of the hydraulic oil detected by the oil temperature sensor 116 arranged as shown in FIG.
  • the traction force between the first roller 31 and the second roller 32 can be made to correspond to the target front wheel driving force regardless of the change characteristic of the traction coefficient ⁇ between the rollers (31, 32) due to the oil temperature TEMP
  • the radial pressing force between the first roller 31 and the second roller 32 is corrected according to the change of the oil temperature TEMP.
  • the inter-roller traction coefficient ⁇ becomes the maximum value when the oil temperature TEMP has a certain value, and the inter-roller radial direction pressing force If the conditions are the same, the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 becomes maximum. Then, as the oil temperature TEMP decreases and rises away from the certain value, the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 largely decreases from the above-mentioned maximum value.
  • the oil temperature TEMP is illustrated in FIG. 8 as TEMPb (traction coefficient ⁇ b )
  • TEMPb traction coefficient ⁇ b
  • the traction transmission capacity for four-wheel drive (4WD) is such that the change in ⁇ is not in an excessive and insufficient state with respect to the target front wheel driving power with respect to the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 It becomes impossible to perform control (front and rear wheel driving force distribution control) as described above.
  • the traction force compensation control program of FIG. 7 is executed by the transfer controller 111 of FIG. 1, and the above problem is solved as follows.
  • step S21 it is checked whether four-wheel drive (4WD) for distributing the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R is required.
  • step S22 the control proceeds to step S22, and the drive 1 is distributed to the left and right front wheels (secondary drive wheels) 9L and 9R.
  • step S21 When it is determined in step S21 that four wheel drive (4WD) request is in progress, the hydraulic oil temperature TEMP deviates from the normal temperature TEMPb described above with reference to FIG. 8 within the range of (-.delta.1) to (+ .delta.2) in step S23.
  • the change in the traction coefficient ⁇ accompanying the deviation from the normal temperature TEMPb is slight, and the traction force (traction power transfer capacity) between the first roller 31 and the second roller 32 is negligible with respect to the target front wheel driving force.
  • step S23 If it is determined in step S23 that the traction force compensation control is not necessary, the control proceeds to step S24 to execute the above-described traction transmission capacity control (front and rear wheel driving force distribution control) for four wheel drive (4WD). Do.
  • the traction transmission capacity control for four-wheel drive (4WD) front and rear wheel drive is a state in which the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 can not be ignored with respect to the target front wheel driving force.
  • step S25 the control proceeds to step S25, and the traction force change due to the deviation of the hydraulic oil temperature TEMP from the regular temperature TEMPb between the rollers determined by the traction transmission capacity control (front and rear wheel driving force distribution control) for normal four-wheel drive (4WD) so that Correcting the direction pressing force. Therefore, step S23 and step S25 correspond to inter-roller radial direction pressing force correction means (traction force compensation means) in the present invention.
  • the oil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the above-described traction force compensation control is the same as that described with reference to FIG.
  • the hydraulic oil temperature TEMP at the installation position of the oil temperature sensor 116 largely affects the temperature of the outer peripheral surface mutual contact portion of the first roller 31 and the second roller 32 in order to arrange as in the first embodiment. Because it is close to the temperature of the mutual contact surface
  • the control response of the traction force compensation control described above with reference to FIG. 7 is enhanced to improve the control accuracy, thereby achieving the target control effect.
  • FIG. 9 shows an overheat failsafe control and traction force compensation control program of the driving force distribution system according to the third embodiment of the present invention. Also in the present embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the oil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
  • the transfer controller 111 in FIG. 1 executes the overheat failsafe control and traction force compensation control program of FIG. 9 based on the temperature TEMP of the hydraulic oil detected by the oil temperature sensor 116 arranged as shown in FIG.
  • the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed.
  • Steps S11 to S13 and S15 in FIG. 9 perform the same processing as the steps indicated by the same reference numerals in FIG. 6, and steps S23 to S25 perform the same processing as the steps indicated by the same characters in FIG. It shall be. If it is determined in step S11 that two-wheel drive (2WD) is required, normal two-wheel drive (in step S12) prevents the transfer force from being distributed to the left and right front wheels (secondary drive wheels) 9L and 9R. 2) Traction transmission capacity 0 control is performed.
  • step S11 it is determined that four wheel drive (4 WD) is requested, and in step S13, the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs for overheat determination illustrated in FIG. 8 (the outer peripheral surface of the first roller 31 and the second roller 32 If it is determined that 31a and 32a are high temperature regions that cause surface peeling at mutual contact points, failsafe control for overheat measures is necessary, and in step S15, according to the hydraulic oil temperature TEMP, that is, the set oil temperature Depending on the extent to which TEMPs is exceeded, the distance between the first roller 31 and the second roller 32 is such that the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 do not cause surface peeling at mutual contact points. The radial direction pressing force is reduced (including zero), and the overheat fail safe control of the first embodiment described above with reference to FIG. 6 is performed.
  • step S13 When it is determined in step S13 that the hydraulic fluid temperature TEMP is less than the set fluid temperature TEMPs, that is, non-overheating in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 do not cause surface peeling at mutual contact points If it is in the state and the overheat countermeasure failsafe control is not necessary, the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed in steps S23 to S25.
  • step S23 when it is determined that the hydraulic oil temperature TEMP only deviates from the normal temperature TEMPb described above with reference to FIG. 8 within the range of (-.delta.1) to (+ .delta.2), that is, along with the deviation from the normal temperature TEMPb.
  • traction coefficient ⁇ is slight, and the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is only negligible to the target front wheel driving force, so four-wheel drive (4WD) ) If traction force compensation control (front and rear wheel driving force distribution control) can be performed as intended and traction force compensation control is not required, then in step S24, traction transmission capacitance control for ordinary four-wheel drive (4WD) Perform (front and rear wheel driving force distribution control).
  • step S23 if it is determined in step S23 that the hydraulic oil temperature TEMP has changed by more than the normal temperature TEMPb by more than (-.delta.1) or (+ .delta.2), that is, the change in traction coefficient .mu. Accompanying the deviation from the normal temperature TEMPb is large.
  • the traction transmission capacity control for the four-wheel drive (4WD) (front and rear wheels) is a state in which the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 can not be ignored with respect to the target front wheel driving force.
  • step S25 traction Between rollers in order to compensate for the force
  • traction transmission capacity control front and rear wheel driving force distribution control
  • the overheat failsafe control (steps S11 to S13 and S15) and the traction force compensation control (steps S23 to S25) are performed.
  • the hydraulic oil temperature TEMP at the installation point of the oil temperature sensor 116 is the first.
  • step S11 to S13 and step S15 The control response of the overheat failsafe control (steps S11 to S13 and step S15) and the traction force compensation control (steps S23 to S25) described above is enhanced to improve the control accuracy and achieve the target control effect. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

When positioning an oil temperature sensor (116), the oil temperature sensor (116) is positioned such that an oil temperature sensing end (116a) is positioned in front of an outer peripheral surface mutual contact point on a first roller (31) and a second roller (32) in the direction of rotation (indicated by arrows) of the first roller (31) and the second roller (32). The oil temperature sensor (116) is preferably positioned such that the oil temperature sensing end (116a) is immersed in hydraulic fluid (61) inside a driving force distribution device (1) (a housing (11)), and is positioned between the outer peripheral surface mutual contact point on the first roller (31) and the second roller (32), and a common contact plane (M) that touches the outer peripheral surfaces (31a, 32a) of the first roller (31) and the second roller (32) further forward in the direction of rotation of the rollers than the outer peripheral surface mutual contact point, in other words, the oil temperature sensing end (116a) is positioned just in front of the outer peripheral surface mutual contact point on the first roller (31) and the second roller (32) in the direction of rotation of the rollers.

Description

駆動力配分装置Driving force distribution device
 本発明は、駆動力分配装置、特に四輪駆動車のトランスファーとして用いる駆動力配分装置に関するものである。 The present invention relates to a driving force distribution device, and more particularly to a driving force distribution device used as a transfer of a four-wheel drive vehicle.
 従来の駆動力配分装置としては、例えば特許文献1に記載のようなものが知られている。
 この文献に記載の駆動力配分装置は、主駆動輪の伝動系に機械的に結合された第1ローラと、従駆動輪の駆動系に機械的に結合された第2ローラとを具え、これら第1ローラおよび第2ローラを両者の外周面において相互に動力伝達可能に接触させることにより、主駆動輪へのトルクの一部を従駆動輪へ分配して出力させ得るようになしたものである。
As a conventional driving force distribution device, for example, a device as described in Patent Document 1 is known.
The drive power distribution device described in this document comprises a first roller mechanically coupled to the transmission system of the main drive wheel, and a second roller mechanically coupled to the drive system of the secondary drive wheel. By bringing the first roller and the second roller into contact with each other on the outer peripheral surfaces of the both for power transmission, a part of the torque to the main drive wheel can be distributed to the sub drive wheel and output. is there.
 かかる駆動力配分装置にあっては、第1ローラおよび第2ローラ間における径方向押し付け力を加減することにより、これらローラ間のトルク伝達容量、従って主駆動輪および従駆動輪間の駆動力配分を制御することができる。 In such a driving force distribution device, by adjusting the radial pressing force between the first roller and the second roller, the torque transmission capacity between these rollers, and thus the driving force distribution between the main driving wheel and the secondary driving wheel Can be controlled.
 この駆動力配分制御を行うための機構として特許文献1には、第2ローラの回転軸をモータ等で偏心軸線周りに旋回させることにより第2ローラを第1ローラに対し径方向へ相対変位させ、これにより第1ローラおよび第2ローラ間の径方向押し付け力、つまり主駆動輪および従駆動輪間の駆動力配分を制御し得るようにした構成が提案されている。 As a mechanism for performing this driving force distribution control, according to Patent Document 1, the second roller is displaced relative to the first roller in a radial direction with respect to the first roller by rotating the rotation axis of the second roller around an eccentric axis by a motor or the like. Thus, there has been proposed a configuration in which the radial pressing force between the first roller and the second roller, that is, the distribution of the driving force between the main driving wheel and the secondary driving wheel can be controlled.
特開2009-173261号公報(図5)JP, 2009-173261, A (Drawing 5)
 上記した第1ローラおよび第2ローラ間の径方向押し付け力制御(主駆動輪および従駆動輪間の駆動力配分制御)に当たっては、過熱時におけるローラ外周面の剥離を防止するフェールセーフ制御や、温度によるローラ間トラクション伝動特性の変化(トラクション力変化)を補償するトラクション力補償制御などのために、駆動力配分装置内における作動油(トラクションオイル)の温度を検出する油温センサが必要である。 In the above-described radial pressing force control between the first roller and the second roller (control of driving force distribution between the main driving wheel and the secondary driving wheel), failsafe control for preventing separation of the roller outer peripheral surface at the time of overheating, An oil temperature sensor is required to detect the temperature of the hydraulic oil (traction oil) in the drive power distribution device, for example, for traction force compensation control that compensates for changes in traction power transmission characteristics between rollers due to temperature (changes in traction force). .
 ところで特許文献1には、油温センサの配置に関して何ら言及していない。
 しかし、内部作動油は温度分布が千差万別であり、油温センサの設置箇所によっては、これにより検出した作動油温が、肝心なローラ間相互接触面の温度を代表し得ない。
 この場合、上記したフェールセーフ制御やトラクション力補償制御などの制御応答が悪くなり、制御精度が低下して狙い通りの制御効果を得られないという問題を生ずる。
 特許文献1に代表される従来技術のように、油温センサの配置に関して何ら工夫をしない駆動力配分装置では、当該問題の発生が不可避である。
Patent Document 1 does not refer at all to the arrangement of the oil temperature sensor.
However, the temperature distribution of the internal hydraulic oil varies, and depending on the location of the oil temperature sensor, the hydraulic oil temperature detected thereby can not represent the temperature of the key roller-to-roller mutual contact surface.
In this case, the control response of the above-described fail-safe control or traction force compensation control is deteriorated, and the control accuracy is lowered to cause a problem that the control effect as intended can not be obtained.
In the driving force distribution device which does not devise at all regarding the arrangement of the oil temperature sensor as in the prior art represented by PTL 1, the occurrence of the problem is inevitable.
 本発明は、上記型式の駆動力配分装置にあってはローラ間相互接触面の温度を知るのが肝要であり、またローラ外周面相互接触箇所のローラ回転方向直前でローラ間に巻き込まれる作動油の温度が当該ローラ間相互接触面の温度に大きく影響して当該ローラ間相互接触面の温度に近いとの認識に基づき、ここにおける作動油の温度を検出するよう油温センサを配置して上記の問題を解消し得るようにした駆動力配分装置を提案することを目的とする。 In the present invention, in the driving force distribution apparatus of the above type, it is important to know the temperature of the inter-roller mutual contact surface, and the hydraulic oil which is caught between the rollers just before the roller rotation direction of the roller outer surface mutual contact location. The oil temperature sensor is arranged to detect the temperature of the hydraulic fluid here based on the recognition that the temperature of the roller greatly affects the temperature of the roller contact surface and is close to the temperature of the roller contact surface. It is an object of the present invention to propose a driving force distribution device which can solve the problem of
 この目的のため本発明による駆動力配分装置は、これを以下のように構成する。
 先ず前提となる駆動力配分装置を説明するに、これは、主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
 これら第1ローラおよび第2ローラを両者の外周面において動力伝達可能に接触させることにより従駆動輪への駆動力配分を行うと共に、該第1ローラおよび第2ローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分制御が可能で、該駆動力配分制御の制御因子として少なくとも作動油の温度を用いるようにしたものである。
For this purpose, the drive power distribution device according to the invention is configured as follows.
First, to explain the driving force distribution device as a premise, this comprises a first roller that rotates with the main drive wheel transmission system, and a second roller that rotates with the secondary drive wheel transmission system,
The drive force is distributed to the sub-drive wheels by bringing the first roller and the second roller into contact in a power transmittable manner on the outer peripheral surfaces of the two, and the radial pressing force between the first roller and the second roller is adjusted. By doing this, drive power distribution control between the main drive wheel and the secondary drive wheel is possible, and at least the temperature of the hydraulic fluid is used as a control factor of the drive power distribution control.
 本発明は、かかる駆動力配分装置内における前記作動油の温度を検出する油温センサを、前記第1ローラおよび第2ローラの回転方向において、これら第1ローラおよび第2ローラの外周面相互接触箇所の前方に配置した構成に特徴づけられる。 The present invention relates to an oil temperature sensor for detecting the temperature of the hydraulic fluid in the driving force distribution device, in which the first roller and the second roller contact each other in the rotational direction of the first roller and the second roller. It is characterized by the configuration placed in front of the place.
 かかる本発明の駆動力配分装置によれば、作動油の温度を検出する油温センサを、第1ローラおよび第2ローラの回転方向において、これら第1ローラおよび第2ローラの外周面相互接触箇所の前方に配置したため、そして油温センサで検出したローラ外周面相互接触箇所の前方における作動油温が当該ローラ間相互接触面の温度に大きく影響して当該ローラ間相互接触面の温度に近いため、前記したフェールセーフ制御やトラクション力補償制御などの制御応答を高めることができ、制御精度の向上により狙い通りの制御効果を奏し得る。 According to the driving force distribution device of the present invention, the oil temperature sensor for detecting the temperature of the hydraulic oil is a contact point between the outer peripheral surface of the first roller and the second roller in the rotational direction of the first roller and the second roller. Because the operating oil temperature in front of the roller outer peripheral surface mutual contact point detected by the oil temperature sensor largely affects the temperature of the inter-roller mutual contact surface and is close to the temperature of the inter-roller mutual contact surface The control response of the fail-safe control or the traction force compensation control can be enhanced, and the control accuracy can be improved to achieve the target control effect.
本発明の第1実施例になる駆動力配分装置を具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。FIG. 1 is a schematic plan view showing a powertrain of a four-wheel drive vehicle provided with a driving force distribution device according to a first embodiment of the present invention as viewed from above the vehicle. 図1における駆動力配分装置を展開して示す縦断側面図である。It is a longitudinal side view which unfolds and shows the driving force distribution apparatus in FIG. 図2に示す駆動力配分装置で用いたクランクシャフトの縦断正面図である。It is a longitudinal cross-sectional front view of the crankshaft used with the driving force distribution apparatus shown in FIG. 図2に示す駆動力配分装置の動作説明図で、 (a)は、クランクシャフト回転角が基準点の0°である位置における第1ローラおよび第2ローラの離間状態を示す動作説明図、 (b)は、クランクシャフト回転角が90°である時における第1ローラおよび第2ローラの接触状態を示す動作説明図、 (c)は、クランクシャフト回転角が180°である時における第1ローラおよび第2ローラの接触状態を示す動作説明図である。3A is an operation explanatory view showing a separated state of the first roller and the second roller at a position where the crankshaft rotation angle is 0 ° of the reference point, b) is an operation explanatory view showing the contact state of the first roller and the second roller when the crankshaft rotation angle is 90 °, and (c) is the first roller when the crankshaft rotation angle is 180 ° It is operation | movement explanatory drawing which shows the contact state of and the 2nd roller. 図2の駆動力配分装置に対する油温センサの配置箇所を示す、駆動力配分装置の概略正面図である。It is a schematic front view of a driving force distribution apparatus which shows the arrangement | positioning place of the oil temperature sensor with respect to the driving force distribution apparatus of FIG. 図1におけるトランスファーコントローラが実行する駆動力配分装置の過熱時フェールセーフ制御プログラムを示すフローチャートである。It is a flowchart which shows the fail-safe control program at the time of the overheating of the driving force distribution apparatus which the transfer controller in FIG. 1 executes. 本発明の第2実施例になる駆動力配分装置のトラクション力補償制御プログラムを示すフローチャートである。It is a flowchart which shows the traction force compensation control program of the driving force distribution apparatus which becomes 2nd Example of this invention. 図2に示す駆動力配分装置内の第1ローラおよび第2ローラ間におけるトラクション係数の温度変化特性を例示する特性線図である。FIG. 6 is a characteristic diagram illustrating temperature change characteristics of a traction coefficient between the first roller and the second roller in the driving force distribution device shown in FIG. 2. 本発明の第3実施例になる駆動力配分装置の過熱時フェールセーフ制御およびトラクション力補償制御に係わる制御プログラムを示すフローチャートである。It is a flow chart which shows a control program concerning fail-safe control and traction force compensation control at the time of overheating of a driving force distribution device which becomes a 3rd example of the present invention.
 1 駆動力配分装置(トランスファー)
 2 エンジン
 3 変速機
 4 リヤプロペラシャフト
 5 リヤファイナルドライブユニット
 6L,6R 左右後輪(主駆動輪)
 7 フロントプロペラシャフト
 8 フロントファイナルドライブユニット
 9L,9R 左右前輪(従駆動輪)
  11 ハウジング
 12 入力軸
 13 出力軸
 16,17 ベアリングサポート
 31 第1ローラ
 32 第2ローラ
 35 ローラ間押し付け力制御モータ
 51L,51R クランクシャフト
 51La,51Ra 中空孔
 51Lb,51Rb 外周部
 51Lc,51Rc リングギヤ
 55 クランクシャフト駆動ピニオン
 56 ピニオンシャフト
 111 トランスファーコントローラ
 112 アクセル開度センサ
 113 後輪速センサ
 114 ヨーレートセンサ
 115 クランクシャフト回転角センサ
 116 油温センサ
 116a 油温検知端部
1 Driving force distribution device (transfer)
2 engine 3 transmission 4 rear propeller shaft 5 rear final drive unit 6L, 6R left and right rear wheels (main drive wheels)
7 Front propeller shaft 8 Front final drive unit 9L, 9R Left and right front wheels (secondary drive wheels)
11 housing 12 input shaft 13 output shaft 16, 17 bearing support 31 first roller 32 second roller 35 inter-roller pressing force control motor 51L, 51R crankshaft 51La, 51Ra hollow hole 51Lb, 51Rb outer peripheral portion 51Lc, 51Rc ring gear 55 crankshaft Drive pinion 56 Pinion shaft 111 Transfer controller 112 Accelerator opening sensor 113 Rear wheel speed sensor 114 Yaw rate sensor 115 Crankshaft rotation angle sensor 116 Oil temperature sensor 116a Oil temperature detection end
 以下、この発明の実施例を添付の図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
<構成>
 図1は、本発明の第1実施例になる駆動力配分装置1をトランスファーとして具えた四輪駆動車両のパワートレーンを、車両上方から見て示す概略平面図である。
<Configuration>
FIG. 1 is a schematic plan view showing a powertrain of a four-wheel drive vehicle provided with a driving force distribution device 1 according to a first embodiment of the present invention as a transfer, as viewed from above the vehicle.
 図1の四輪駆動車両は、エンジン2からの回転を変速機3による変速後、リヤプロペラシャフト4およびリヤファイナルドライブユニット5を順次経て左右後輪6L,6Rに伝達するようにした後輪駆動車をベース車両とし、
 左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1により、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を順次経て左右前輪(従駆動輪)7L,7Rへ伝達することにより、四輪駆動走行が可能となるようにした車両である。
The four-wheel drive vehicle shown in FIG. 1 is a rear wheel drive vehicle in which the rotation from the engine 2 is transmitted to the left and right rear wheels 6L and 6R through the rear propeller shaft 4 and the rear final drive unit 5 sequentially after shifting by the transmission 3. As a base vehicle,
Transmitting a part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R to the left and right front wheels (secondary drive wheels) 7L, 7R sequentially through the front propeller shaft 7 and the front final drive unit 8 by the drive force distribution device 1. This is a vehicle that enables four-wheel drive travel.
 駆動力配分装置1は、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)7L,7Rへ分配して出力することにより、左右後輪(主駆動輪)6L,6Rおよび左右前輪(従駆動輪)9L,9R間の駆動力配分比を決定するもので、本実施例においては、この駆動力配分装置1を図2に示すように構成する。 The driving force distribution device 1 distributes part of the torque to the left and right rear wheels (main driving wheels) 6L and 6R to the left and right front wheels (secondary driving wheels) 7L and 7R as described above, thereby outputting the left and right rear wheels The driving force distribution ratio between the (main driving wheels) 6L, 6R and the left and right front wheels (secondary driving wheels) 9L, 9R is determined. In this embodiment, the driving force distribution device 1 is shown in FIG. Configure.
 図2において11は、駆動力配分装置1のハウジングを示し、このハウジング11内に入力軸12および出力軸13を、それぞれの回転軸線O1およびO2が相互に平行になるよう配して横架する。
 入力軸12は、その両端におけるボールベアリング14,15によりハウジング11に対し回転自在に支承する。
 入力軸12の両端をそれぞれ、シールリング25,26による液密封止下でハウジング11から突出させる。
 図2において入力軸12の左端を変速機3(図1参照)の出力軸に駆動結合し、右端はリヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に駆動結合する。
In FIG. 2, reference numeral 11 denotes a housing of the driving force distribution device 1, in which the input shaft 12 and the output shaft 13 are arranged horizontally with their rotational axes O 1 and O 2 parallel to each other. Set up.
The input shaft 12 is rotatably supported on the housing 11 by ball bearings 14 and 15 at both ends thereof.
Both ends of the input shaft 12 project from the housing 11 under fluid tight sealing with the seal rings 25 and 26 respectively.
In FIG. 2, the left end of the input shaft 12 is drivably coupled to the output shaft of the transmission 3 (see FIG. 1), and the right end is drivably coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).
 入力軸12および出力軸13の両端近くにそれぞれ配して、これら入出力軸12,13間に一対のベアリングサポート16,17を架設し、これらベアリングサポート16,17をそれぞれの中程で、ボルト(図示せず)によりハウジング11の軸線方向対向内壁に取着する。
 ベアリングサポート16,17と入力軸12との間にはローラベアリング21,22を介在させ、これにより入力軸12をベアリングサポート16,17に対し回転自在となすことで、ベアリングサポート16,17を介しても入力軸12をハウジング11内に回転自在に支持する。
A pair of bearing supports 16 and 17 are provided between the input and output shafts 12 and 13 respectively disposed near both ends of the input shaft 12 and the output shaft 13, and these bearing supports 16 and 17 are bolted in the middle It is attached to the axially opposite inner wall of the housing 11 by means of (not shown).
Roller bearings 21 and 22 are interposed between the bearing supports 16 and 17 and the input shaft 12 so that the input shaft 12 can be rotated relative to the bearing supports 16 and 17 via the bearing supports 16 and 17. Even in this case, the input shaft 12 is rotatably supported in the housing 11.
 ベアリングサポート16,17間(ローラベアリング21,22間)における入力軸12の軸線方向中程位置に第1ローラ31を同軸に一体成形する。
 この第1ローラ31に作動油を介し動力伝達可能に接触し得るよう配して出力軸13の軸線方向中程位置に第2ローラ32を同軸に一体成形する。
 これら第1ローラ31および第2ローラ32の外周面31a,32aは、入力軸12および出力軸13の平行配置に起因して、相互に線接触し得るような円筒面とする。
The first roller 31 is integrally formed coaxially at a middle position in the axial direction of the input shaft 12 between the bearing supports 16 and 17 (between the roller bearings 21 and 22).
The second roller 32 is integrally formed coaxially integrally with the first roller 31 so as to be in contact with the first roller 31 so as to be able to transmit power through hydraulic fluid.
The outer peripheral surfaces 31 a and 32 a of the first roller 31 and the second roller 32 are cylindrical surfaces that can be in line contact with each other due to the parallel arrangement of the input shaft 12 and the output shaft 13.
 出力軸13は、その両端近くにおける前記のベアリングサポート16,17に対し旋回可能に支承することで、これらベアリングサポート16,17を介してハウジング11内に旋回可能に支持する。
 かように出力軸13をベアリングサポート16,17に対し旋回可能に支承するに当たっては、以下のような偏心支承構造を用いる。
The output shaft 13 is rotatably supported within the housing 11 via the bearing supports 16 and 17 by being pivotally supported on the bearing supports 16 and 17 near the both ends thereof.
In order to pivotally support the output shaft 13 with respect to the bearing supports 16, 17, the following eccentric support structure is used.
 出力軸13と、これが貫通するベアリングサポート16,17との間にそれぞれ、中空アウターシャフト型式のクランクシャフト51L,51Rを遊嵌する。
 クランクシャフト51Lおよび出力軸13をそれぞれ図2の左端においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング27を介在させると共に、クランクシャフト51L および出力軸13間にシールリング28を介在させて、ハウジング11から突出するクランクシャフト51Lおよび出力軸13の突出部をそれぞれ液密封止する。
Hollow outer shaft type crankshafts 51L and 51R are loosely fitted between the output shaft 13 and the bearing supports 16 and 17 through which the output shaft 13 passes.
The crankshaft 51L and the output shaft 13 project from the housing 11 at the left end of FIG. 2 respectively, and the seal ring 27 is interposed between the housing 11 and the crankshaft 51L at the projecting portion, and the seal is formed between the crankshaft 51L and the output shaft 13 The ring 28 intervenes, and the projections of the crankshaft 51L and the output shaft 13 protruding from the housing 11 are fluid-tightly sealed.
 図2においてハウジング11から吐出する出力軸13の左端は、フロントプロペラシャフト7(図1参照)およびフロントファイナルドライブユニット8を介して左右前輪9L,9Rに駆動結合する。 The left end of the output shaft 13 discharged from the housing 11 in FIG. 2 is drivably coupled to the left and right front wheels 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8.
 クランクシャフト51L,51Rの中空孔51La,51Ra(半径Ri)と、出力軸13の対応端部との間にそれぞれローラベアリング52L,52Rを介在させて、出力軸13をクランクシャフト51L,51Rの中空孔51La,51Ra内で、これらの中心軸線O2の周りに自由に回転し得るよう支持する。 Roller bearings 52L and 52R intervene between the hollow holes 51La and 51Ra (radius Ri) of the crankshafts 51L and 51R and corresponding ends of the output shaft 13, respectively, so that the output shaft 13 is hollow of the crankshafts 51L and 51R. holes 51La, within 51Ra, supports that can freely rotate around these central axis O 2.
 クランクシャフト51L,51Rの中空孔51La,51Ra(中心軸線O2)は図3に明示するごとく、外周部51Lb,51Rb(中心軸線O3、半径Ro)に対し偏心させた偏心中空孔とし、これら偏心中空孔51La,51Raの中心軸線O2は外周部51Lb,51Rbの中心軸線O3から、両者間の偏心分εだけオフセットしている。
 クランクシャフト51L,51Rの外周部51Lb,51Rbはそれぞれ、ローラベアリング53L,53Rを介して対応する側におけるベアリングサポート16,17内に回転自在に支持する。
 この際、クランクシャフト51L,51Rをそれぞれ、第2ローラ32と共に、スラストベアリング54L,54Rで軸線方向に位置決めする。
The hollow holes 51La, 51Ra (central axis O 2 ) of the crankshafts 51L, 51R are eccentric hollow holes eccentric to the outer peripheral portions 51Lb, 51Rb (central axis O 3 , radius Ro) as shown in FIG. eccentric hollow hole 51La, the central axis O 2 of 51Ra outer peripheral portion 51Lb, from the central axis O 3 of 51Rb, are offset by eccentricity ε between them.
The outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in corresponding bearing supports 16 and 17 via roller bearings 53L and 53R, respectively.
At this time, the crankshafts 51L and 51R are positioned with the second roller 32 in the axial direction by the thrust bearings 54L and 54R.
 クランクシャフト51L,51Rの相互に向き合う隣接端にそれぞれ、同仕様のリングギヤ51Lc,51Rcを一体に設け、
 これらリングギヤ51Lc,51Rcにそれぞれ、共通なクランクシャフト駆動ピニオン55を噛合させ、これらクランクシャフト駆動ピニオン55をピニオンシャフト56に結合する。
Ring gears 51Lc and 51Rc of the same specification are integrally provided on adjacent ends of the crankshafts 51L and 51R facing each other,
A common crankshaft drive pinion 55 is engaged with each of the ring gears 51Lc and 51Rc, and the crankshaft drive pinion 55 is coupled to the pinion shaft 56.
 なお、上記のごとくリングギヤ51Lc,51Rcにクランクシャフト駆動ピニオン55を噛合させるに当たっては、クランクシャフト51L,51Rを両者の外周部51Lb,51Rbが円周方向において相互に整列して同位相となる回転位置にした状態で、当該リングギヤ51Lc,51Rcに対するクランクシャフト駆動ピニオン55の噛合を行わせる。 When the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc as described above, the rotational positions of the crankshafts 51L and 51R are aligned such that their outer peripheral portions 51Lb and 51Rb align with each other in the circumferential direction. In this state, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc, 51Rc.
 ピニオンシャフト56は、その両端を軸受56a,56bによりハウジング11に対し回転自在に支持する。
 図2の右側におけるピニオンシャフト56の右端をハウジング11に貫通してこれから露出させ、
 該ピニオンシャフト56の露出端面には、ハウジング11に取着して設けたローラ間押し付け力制御モータ35の出力軸35aをセレーション嵌合などにより駆動結合する。
The pinion shaft 56 is rotatably supported at its both ends by the bearings 56 a and 56 b with respect to the housing 11.
The right end of the pinion shaft 56 on the right side of FIG.
An output shaft 35a of an inter-roller pressing force control motor 35 attached to the housing 11 is drivingly coupled to the exposed end surface of the pinion shaft 56 by serration fitting or the like.
 よって、ローラ間径方向押し付け力制御モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御するとき、
 出力軸13および第2ローラ32の回転軸線O2が、図3に破線で示す軌跡円αに沿って中心軸線Oの周りに旋回する。
Therefore, when controlling the rotational position of the crankshafts 51L and 51R by the inter-roller radial direction pressing force control motor 35 via the pinion 55 and the ring gears 51Lc and 51Rc,
Rotation axis O 2 of output shaft 13 and the second roller 32, pivots about the central axis O 3 along the circular path α indicated by a broken line in FIG. 3.
 図3の軌跡円αに沿った回転軸線O2(第2ローラ32)の旋回により第2ローラ32は、後で詳述するが図4(a)~(c)に示すごとく第1ローラ31に対し径方向へ接近し、これら第1ローラ31および第2ローラ32のローラ軸間距離L1をクランクシャフト51L,51Rの回転角θの増大につれ、第1ローラ31の半径と第2ローラ32の半径との和値よりも小さくすることができる。
 かかるローラ軸間距離L1の低下により、第1ローラ31に対する第2ローラ32の径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)が大きくなり、ローラ軸間距離L1の低下度合いに応じてローラ間径方向押圧力(ローラ間伝達トルク容量:トラクション伝動容量)、つまり駆動力配分比を任意に制御することができる。
By the turning of the rotation axis O 2 (second roller 32) along the locus circle α in FIG. 3, the second roller 32 will be described in detail later, but as shown in FIGS. 4 (a) to 4 (c) The distance L1 between the roller axes of the first roller 31 and the second roller 32 is increased as the rotation angle θ of the crankshafts 51L and 51R increases. It can be smaller than the sum value with the radius.
Due to the reduction of the inter-roller distance L1, the radial pressing force of the second roller 32 against the first roller 31 (inter-roller transmission torque capacity: traction transmission capacity) increases, and the degree of reduction of the inter-roller distance L1 The inter-roller radial pressing force (inter-roller transmission torque capacity: traction transmission capacity), that is, the driving force distribution ratio can be arbitrarily controlled.
 なお図4(a)に示すように本実施例では、第2ローラ回転軸線O2がクランクシャフト回転軸線O3の直下に位置し、第1ローラ31および第2ローラ32の軸間距離L1が最大となる下死点でのローラ軸間距離L1を、第1ローラ31の半径と第2ローラ32の半径との和値よりも大きくする。
 これにより当該クランクシャフト回転角θ=0°の下死点においては、第1ローラ31および第2ローラ32が相互に径方向へ押し付けられることがなく、ローラ31,32間でトラクション伝動が行われないトラクション伝動容量=0の状態を得ることができ、
 トラクション伝動容量を下死点での0と、図4(c)に示す上死点(θ=180°)で得られる最大値との間で任意に制御することができる。
In the present embodiment, as shown in FIG. 4 (a), the second roller rotation axis O 2 is positioned directly below the crankshaft rotation axis O 3, the center distance L1 between first roller 31 and second roller 32 The distance L1 between the roller axes at the bottom dead center which is the maximum is made larger than the sum of the radius of the first roller 31 and the radius of the second roller 32.
As a result, at the bottom dead center of the crankshaft rotation angle θ = 0 °, the traction transmission is performed between the rollers 31 and 32 without the first roller 31 and the second roller 32 being mutually pressed in the radial direction. No traction transmission capacity = 0 can be obtained,
The traction transmission capacity can be arbitrarily controlled between 0 at the bottom dead center and the maximum value obtained at the top dead center (θ = 180 °) shown in FIG. 4 (c).
 なお本実施例では、クランクシャフト51L,51Rの回転角基準点をクランクシャフト回転角θ=0°の下死点であることとして説明を展開する。 In the present embodiment, the description will be expanded on the assumption that the rotation angle reference point of the crankshafts 51L and 51R is the bottom dead center of the crankshaft rotation angle θ = 0 °.
<駆動力配分作用>
 図1~4につき上述したトランスファー1の駆動力配分作用を以下に説明する。
 変速機3(図1参照)からトランスファー1の入力軸12に達したトルクは、一方でこの入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5(ともに図1参照)を経て左右後輪6L,6R(主駆動輪)へ伝達される。
<Drive force distribution action>
The driving force distribution operation of the transfer 1 described above with reference to FIGS. 1 to 4 will be described below.
The torque that reaches the input shaft 12 of the transfer 1 from the transmission 3 (see FIG. 1) passes through the rear propeller shaft 4 and the rear final drive unit 5 (both see FIG. 1) from the input shaft 12 as it is. , 6R (main drive wheels).
 他方でトランスファー1は、モータ35によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御して、ローラ軸間距離L1(図4参照)を第1ローラ31および第2ローラ32の半径の和値よりも小さくするとき、これらローラ31,32が径方向相互押圧力に応じたローラ間伝達トルク容量を持つことから、このトルク容量に応じて、左右後輪6L,6R(主駆動輪)へのトルクの一部を、第1ローラ31から第2ローラ32を経て出力軸13に向かわせ、左右前輪9L,9R(従駆動輪)をも駆動することができる。
 かくして車両は、左右後輪6L,6R(主駆動輪)および左右前輪(従駆動輪)9L,9Rの全てを駆動しての四輪駆動走行が可能である。
On the other hand, the transfer 1 controls the rotational position of the crankshafts 51L and 51R by the motor 35 via the pinion 55 and the ring gears 51Lc and 51Rc, and the distance L1 between the roller shafts (see FIG. 4) becomes the first roller 31 and the second roller 32. Since the rollers 31, 32 have an inter-roller transmission torque capacity corresponding to the radial mutual pressing force when they are smaller than the sum of the radii of the left and right rear wheels 6L, 6R (main The left and right front wheels 9L and 9R (secondary drive wheels) can also be driven by directing a part of the torque to the drive wheels) from the first roller 31 to the output shaft 13 via the second roller 32.
Thus, the vehicle is capable of four-wheel drive travel by driving all of the left and right rear wheels 6L, 6R (main drive wheels) and the left and right front wheels (secondary drive wheels) 9L, 9R.
 なお、この伝動中における第1ローラ31および第2ローラ32間の径方向押圧反力は、これらに共通な回転支持板であるベアリングサポート16,17で受け止められ、ハウジング11に達することがない。
 そして径方向押圧反力は、クランクシャフト回転角θが0°~90°である間は0となり、クランクシャフト回転角θが90°~180°である間、θの増大に応じて増加し、クランクシャフト回転角θが180°になるとき最大値となる。
The radial pressing reaction force between the first roller 31 and the second roller 32 during this transmission is received by the bearing supports 16 and 17 which is a common rotation support plate, and does not reach the housing 11.
The radial pressing reaction force is 0 while the crankshaft rotation angle θ is 0 ° to 90 °, and increases with an increase in θ while the crankshaft rotation angle θ is 90 ° to 180 °, The maximum value is obtained when the crankshaft rotation angle θ becomes 180 °.
 かような四輪駆動走行中、クランクシャフト51L,51Rの回転角θが図4(b)に示すごとく基準位置の90°であって、第1ローラ31および第2ローラ32が相互に、この時のオフセット量OSに対応した径方向押圧力で押し付けられて動力伝達可能に接触している場合、
 これらローラ間のオフセット量OSに対応したトラクション伝動容量で左右前輪(従駆動輪)9L,9Rへの動力伝達が行われる。
During such four-wheel drive travel, the rotation angle θ of the crankshafts 51L and 51R is 90 ° of the reference position as shown in FIG. 4 (b), and the first roller 31 and the second roller 32 mutually When pressing with radial pressing force corresponding to the offset amount OS at the time of contact so that power transmission is possible,
Power transmission to the left and right front wheels (secondary drive wheels) 9L and 9R is performed with a traction transmission capacity corresponding to the offset amount OS between the rollers.
 そして、クランクシャフト51L,51Rを図4(b)の基準位置から、図4(c)に示すクランクシャフト回転角θ=180°の上死点に向け回転操作してクランクシャフト回転角θを増大させるにつれ、ローラ軸間距離L1が更に減少して第1ローラ31および第2ローラ32の相互オーバーラップ量OLが増大する結果、第1ローラ31および第2ローラ32は径方向相互押圧力を増大され、これらローラ間のトラクション伝動容量を増大させることができる。 Then, the crankshafts 51L and 51R are rotated from the reference position in FIG. 4B toward the top dead center of the crankshaft rotation angle θ = 180 ° shown in FIG. 4C to increase the crankshaft rotation angle θ As the distance L1 between the roller axes is further reduced as it is increased, the overlap amount OL between the first roller 31 and the second roller 32 is increased. As a result, the first roller 31 and the second roller 32 increase the radial mutual pressing force. And the traction transmission capacity between the rollers can be increased.
 クランクシャフト51L,51Rが図4(c)の上死点位置に達すると、第1ローラ31および第2ローラ32は相互に、最大のオーバーラップ量OLに対応した径方向最大押圧力で径方向へ押し付けられて、これらの間のトラクション伝動容量を最大にすることができる。
 なお最大のオーバーラップ量OLは、第2ローラ回転軸線O2およびクランクシャフト回転軸線O3間の偏心量εと、図4(b)につき上記したオフセット量OSとの和値である。
When the crankshafts 51L and 51R reach the top dead center position in FIG. 4 (c), the first roller 31 and the second roller 32 mutually move in the radial direction with the maximum radial pressing force corresponding to the maximum overlap amount OL. The traction transmission capacity between them can be maximized by being pushed on.
The maximum overlap amount OL is the sum of the eccentricity amount ε between the second roller rotation axis O 2 and the crankshaft rotation axis O 3 and the offset amount OS described above with reference to FIG.
 以上の説明から明らかなように、クランクシャフト51L,51Rをクランクシャフト回転角θ=0°の回転位置から、クランクシャフト回転角θ=180°の回転位置まで回転操作することにより、クランクシャフト回転角θの増大につれ、ローラ間トラクション伝動容量を0から最大値まで連続変化させることができる。
 また逆に、クランクシャフト51L,51Rをクランクシャフト回転角θ=180°の回転位置から、θ=0°の回転位置まで回転操作することにより、クランクシャフト回転角θの低下につれ、ローラ間トラクション伝動容量を最大値から0まで連続変化させることができ、ローラ間トラクション伝動容量をクランクシャフト51L,51Rの回転操作により自在に制御し得る。
As apparent from the above description, the crankshaft rotation angle is achieved by rotating the crankshafts 51L and 51R from the rotation position of the crankshaft rotation angle θ = 0 ° to the rotation position of the crankshaft rotation angle θ = 180 °. As the angle θ increases, the inter-roller traction transmission capacity can be continuously changed from 0 to the maximum value.
Conversely, by rotating the crankshafts 51L and 51R from the rotational position of the crankshaft rotation angle θ = 180 ° to the rotational position of θ = 0 °, the traction transmission between the rollers is reduced as the crankshaft rotation angle θ decreases. The capacity can be continuously changed from the maximum value to 0, and the inter-roller traction transmission capacity can be freely controlled by the rotation operation of the crankshafts 51L and 51R.
<トラクション伝動容量制御>
 上記した四輪駆動走行中はトランスファー1が、上記のごとく左右後輪(主駆動輪)6L,6Rへのトルクの一部を左右前輪(従駆動輪)9L,9Rへ分配して出力するため、第1ローラ31および第2ローラ32間のトラクション伝動容量を、左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から求め得る、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力に対応させる必要がある。
<Traction transmission capacity control>
During the four-wheel drive, the transfer 1 distributes part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R to the left and right front wheels (sub drive wheels) 9L, 9R as described above. Left and right front wheels (following drive wheels) which can be determined from the driving force of the left and right rear wheels 6L and 6R (main driving wheels) and the front and rear wheel target driving force distribution ratio between the first roller 31 and the second roller 32 It is necessary to correspond to the target front wheel driving force to be distributed to 9L and 9R.
 この要求にかなうトラクション伝動容量制御のために本実施例においては、図1に示すようにトランスファーコントローラ111を設け、これによりモータ35の回転位置制御(クランクシャフト回転角θの制御)を行うものとする。 In this embodiment, as shown in FIG. 1, a transfer controller 111 is provided to control the rotational position of the motor 35 (control of the crankshaft rotational angle θ) in order to control the traction transmission capacity to meet this requirement. Do.
 そのためトランスファーコントローラ111には、
 エンジン2の出力を加減するアクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ112からの信号と、
 左右後輪6L,6R(主駆動輪)の回転周速Vwrを検出する後輪速センサ113からの信号と、
 車両の重心を通る鉛直軸線周りにおけるヨーレートφを検出するヨーレートセンサ114からの信号と、
 クランクシャフト51L,51Rの回転角θを検出するクランクシャフト回転角センサ115からの信号と、
 トランスファー1(ハウジング11)内における作動油の温度TEMPを検出する油温センサ116からの信号を入力する。
Therefore, the transfer controller 111
A signal from an accelerator opening sensor 112 for detecting an accelerator pedal depression amount (accelerator opening) APO for adjusting the output of the engine 2;
A signal from a rear wheel speed sensor 113 for detecting a peripheral rotational speed Vwr of the left and right rear wheels 6L, 6R (main drive wheels),
A signal from a yaw rate sensor 114 that detects a yaw rate φ around a vertical axis passing through the center of gravity of the vehicle;
A signal from a crankshaft rotation angle sensor 115 that detects a rotation angle θ of the crankshaft 51L, 51R;
A signal from an oil temperature sensor 116 for detecting the temperature TEMP of the hydraulic oil in the transfer 1 (housing 11) is input.
 なお油温センサ116は、駆動力配分装置1に係わる図5の概略正面図に示すように、第1ローラ31および第2ローラ32の回転方向(それぞれ図5に矢印で示した)において、これら第1ローラ31および第2ローラ32の外周面相互接触箇所(作動油を介してトルクが伝達される箇所)の前方に油温センサ116の油温検知端部116aを位置させて配置する。 The oil temperature sensor 116 is, as shown in the schematic front view of FIG. 5 related to the driving force distribution device 1, in the rotational directions of the first roller 31 and the second roller 32 (shown by arrows in FIG. 5). The oil temperature detection end portion 116a of the oil temperature sensor 116 is positioned forward of the contact point between the outer peripheral surface of the first roller 31 and the second roller 32 (the point where the torque is transmitted through the hydraulic oil).
 このとき油温センサ116は、その油温検知端部116aが、駆動力配分装置1(ハウジング11)内の作動油61中に浸漬するよう、且つ第1ローラ31および第2ローラ32の外周面相互接触箇所と、この外周面相互接触箇所よりもローラ回転方向前方において第1ローラ31および第2ローラ32の外周面31a,32aに接する共通な接触面Mとの間、つまりローラ回転方向において第1ローラ31および第2ローラ32の外周面相互接触箇所の直前に位置するよう配置するのが良い。 At this time, the oil temperature sensor 116 has an outer peripheral surface of the first roller 31 and the second roller 32 so that the oil temperature detection end portion 116a is immersed in the hydraulic oil 61 in the driving force distribution device 1 (housing 11). Between the mutual contact point and the common contact surface M in contact with the outer peripheral faces 31a and 32a of the first roller 31 and the second roller 32 ahead of the outer peripheral face mutual contact point in the roller rotation direction, that is, It is good to arrange so that it may be located immediately before the outer peripheral surface mutual contact point of the 1st roller 31 and the 2nd roller 32.
 トランスファーコントローラ111は、上記した各センサ112~116の検出情報を基に、トランスファー1のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)を概略以下のように行う。
 つまり先ずトランスファーコントローラ111は、アクセル開度APO、後輪速Vwr、およびヨーレートφに基づき、先ず左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比を周知の要領で求める。
 次にトランスファーコントローラ111は、これら左右後輪6L,6R(主駆動輪)の駆動力および前後輪目標駆動力配分比から、左右前輪(従駆動輪)9L,9Rへ分配すべき目標前輪駆動力を求める。
The transfer controller 111 performs traction transmission capacity control (front and rear wheel driving force distribution control of the four-wheel drive vehicle) of the transfer 1 on the basis of the detection information of each of the sensors 112 to 116 as described below.
That is, first, the transfer controller 111 first makes known the driving force and the front and rear wheel target driving force distribution ratio of the left and right rear wheels 6L and 6R (main driving wheels) based on the accelerator opening APO, the rear wheel speed Vwr and the yaw rate φ. Ask for.
Next, the transfer controller 111 calculates the target front wheel driving force to be distributed to the left and right front wheels (secondary driving wheels) 9L and 9R from the driving force and the front and rear wheel target driving force distribution ratio of the left and right rear wheels 6L and 6R (main driving wheels). Ask for
 更にトランスファーコントローラ111は、第1ローラ31および第2ローラ32がこの目標前輪駆動力を伝達するのに必要なローラ間径方向押圧力(第1ローラ31および第2ローラ32間のトラクション伝動容量)をマップ検索などにより求め、このローラ間径方向押圧力(第1ローラ31および第2ローラ32間のトラクション伝動容量)を実現するのに必要なクランクシャフト51L,51R(図2,3参照)の回転角目標値tθ、つまり第2ローラ軸線O2の目標旋回位置を演算する。 Furthermore, the transfer controller 111 further requires the inter-roller radial pressing force (the traction transmission capacity between the first roller 31 and the second roller 32) required for the first roller 31 and the second roller 32 to transmit the target front wheel driving force. Of the crankshafts 51L and 51R (see FIGS. 2 and 3) required to realize this inter-roller radial pressing force (traction transmission capacity between the first roller 31 and the second roller 32). The rotation angle target value tθ, that is, the target turning position of the second roller axis O 2 is calculated.
 そしてトランスファーコントローラ111は、センサ115で検出したクランクシャフト回転角θおよび上記のクランクシャフト回転角目標値tθ間におけるクランクシャフト回転角偏差に応じ、クランクシャフト回転角θがクランクシャフト回転角目標値tθに一致するよう、ローラ間押し付け力制御モータ35を駆動制御する。
 当該モータ35の駆動制御によりクランクシャフト51L,51Rの回転角θが目標値tθに一致することで、第1ローラ31および第2ローラ32は上記の目標前輪駆動力を伝達可能な程度だけ相互に径方向に押圧接触され、第1ローラ31および第2ローラ32間のトラクション伝動容量を前後輪目標駆動力配分比となるよう制御することができる。
The transfer controller 111 sets the crankshaft rotation angle θ to the crankshaft rotation angle target value tθ according to the crankshaft rotation angle deviation between the crankshaft rotation angle θ detected by the sensor 115 and the crankshaft rotation angle target value tθ. The inter-roller pressing force control motor 35 is driven and controlled so as to coincide with each other.
Of the crankshafts 51L and 51R match the target value tθ by the drive control of the motor 35, the first roller 31 and the second roller 32 mutually exchange the target front wheel driving force to the extent that they can transmit the target front wheel driving force. The traction transmission capacity between the first roller 31 and the second roller 32 can be controlled so as to be the front and rear wheel target driving force distribution ratio while being radially pressed and in contact.
<ローラ過熱時フェールセーフ制御>
 トランスファーコントローラ111は、上記した通常のトラクション伝動容量制御(四輪駆動車両の前後輪駆動力配分制御)の他に、図6の制御プログラムを実行して以下のようなローラ過熱時フェールセーフ制御を遂行する。
<Fail-safe control at roller overheat>
The transfer controller 111 executes the control program of FIG. 6 in addition to the above-described normal traction transmission capacity control (front and rear wheel driving force distribution control of a four-wheel drive vehicle) to execute the following failsafe control at roller overheat. Carry out.
 ステップS11においては、左右前輪(従駆動輪)9L,9Rへ駆動力を配分する四輪駆動(4WD)が要求されているか否かをチェックする。
 四輪駆動(4WD)要求中でなく、二輪駆動(2WD)が要求されている場合は、制御をステップS12に進めて、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。
 このトラクション伝動容量0制御は、図4(b)に示すクランクシャフト回転角θ=90°の位置にできるだけ近いが、第1ローラ31および第2ローラ32間に若干の隙間が存在する所定のクランクシャフト回転角位置にクランクシャフト51L,51R(図2,3参照)を保持する制御である。
In step S11, it is checked whether four-wheel drive (4WD) for distributing the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R is required.
If four-wheel drive (4WD) is not required but two-wheel drive (2WD) is required, the control proceeds to step S12 to distribute the drive force to the left and right front wheels (secondary drive wheels) 9L and 9R. Carries out a traction transmission capacity 0 control for normal two-wheel drive (2WD) to prevent it from being
This traction transmission capacity 0 control is as close as possible to the position of the crankshaft rotation angle θ = 90 ° shown in FIG. 4B, but a predetermined crank having a slight gap between the first roller 31 and the second roller 32 Control is performed to hold the crankshafts 51L and 51R (see FIGS. 2 and 3) at shaft rotational angle positions.
 ステップS11で四輪駆動(4WD)要求中と判定する場合は、ステップS13において作動油温TEMPが過熱判定用の設定油温TEMPs以上か否かを判定する。
 ここで過熱判定用の設定油温TEMPsは、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずるような高温領域(過熱温度域)の下限値とする。
When it is determined in step S11 that four wheel drive (4WD) request is in progress, it is determined in step S13 whether or not the hydraulic fluid temperature TEMP is equal to or higher than the set fluid temperature TEMPs for overheat determination.
Here, the set oil temperature TEMPs for overheat determination is set to the lower limit value of the high temperature region (overheat temperature region) where surface peeling occurs at the mutual contact location of the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32. .
 ステップS13で作動油温TEMPが設定油温TEMPs未満であると判定する場合、つまり第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない非過熱状態であると判定する場合、過熱対策用のフェールセーフ制御が不要であるから、制御をステップS14に進めて、前記した通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。 When it is determined in step S13 that the hydraulic fluid temperature TEMP is less than the set fluid temperature TEMPs, that is, non-overheating in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 do not cause surface peeling at mutual contact points If it is determined that the vehicle is in the state, since the failsafe control for the overheat countermeasure is not necessary, the control proceeds to step S14 to perform the above-described traction transmission capacity control for the four-wheel drive (4WD) Control).
 ステップS13で作動油温TEMPが設定油温TEMPs以上であると判定する場合、つまり第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずる虞のある過熱状態であると判定する場合、過熱対策用のフェールセーフ制御が必要であるから、制御をステップS15に進めて、以下のような過熱時フェールセーフ制御を遂行する。 If it is determined in step S13 that the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs, that is, an overheated state in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 may cause surface peeling at mutual contact points If it is determined that it is, it is necessary to perform the overheat countermeasure failsafe control, so the control proceeds to step S15 to execute the following overheat failsafe control.
 ステップS15での過熱時フェールセーフ制御に際しては、作動油温TEMPに応じ、つまり設定油温TEMPsをどの程度超えているかに応じ、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない程度まで、第1ローラ31および第2ローラ32間の径方向押し付け力を低下(0も含む)させる。
 従ってステップS13およびステップS15を、本実施例においてローラ間径方向押し付け力補正手段(フェールセーフ手段)とする。
At the time of overheat fail safe control in step S15, the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 mutually correspond to each other according to the hydraulic fluid temperature TEMP, that is, to what extent the set fluid temperature TEMPs is exceeded. The radial pressing force between the first roller 31 and the second roller 32 is reduced (including zero) to such an extent that surface peeling does not occur at the contact point.
Therefore, step S13 and step S15 are referred to as inter-roller radial direction pressing force correction means (fail-safe means) in this embodiment.
<効果>
 上記した第1実施例になるトランスファー(駆動力配分装置)1によれば、上記の過熱時フェールセーフ制御に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した通りに配置するため、以下の効果が得られる。
 つまり本実施例では油温センサ116を、第1ローラ31および第2ローラ32の回転方向(それぞれ図5に矢印で示した)において、これら第1ローラ31および第2ローラ32の外周面相互接触箇所の前方(図5では直前)に油温検知端部116aが位置するよう配置したため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触箇所の温度に大きく影響して当該ローラ間相互接触面の温度に近いため、図6につき上記したフェールセーフ制御の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。
<Effect>
According to the transfer (driving force distribution device) 1 according to the first embodiment described above, the oil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the failsafe control at the time of overheat is described above with reference to FIG. The following effects can be obtained because of the arrangement in the street.
That is, in the present embodiment, the oil temperature sensor 116 contacts the outer peripheral surfaces of the first roller 31 and the second roller 32 in the rotational direction of the first roller 31 and the second roller 32 (respectively indicated by arrows in FIG. 5). Since the oil temperature detection end portion 116a is disposed in front of the portion (immediately in FIG. 5), the hydraulic oil temperature TEMP at the installation portion of the oil temperature sensor 116 is the outer peripheral surface of the first roller 31 and the second roller 32. Since the control response of the failsafe control described above with reference to FIG. 6 is enhanced and the control accuracy is improved, the target control effect is exhibited by largely affecting the temperature of the mutual contact point and being close to the temperature of the mutual contact surface between the rollers. Can.
<構成>
 図7は、本発明の第2実施例になる駆動力配分装置のトラクション力補償制御プログラムを示す。
 本実施例においても、油温センサ116の配置を含む駆動力配分装置(トランスファー)1の構成、およびその制御システムは図1~5につき前述したと同様なものとする。
<Configuration>
FIG. 7 shows a traction force compensation control program of a driving force distribution device according to a second embodiment of the present invention.
Also in the present embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the oil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
 本実施例においては図1におけるトランスファーコントローラ111が、図5の配置になる油温センサ116が検出した作動油の温度TEMPに基づき図7のトラクション力補償制御プログラムを実行して、図8に例示した油温TEMPによるローラ(31,32)間トラクション係数μの変化特性にも係わらず、第1ローラ31および第2ローラ32間のトラクション力を前記の目標前輪駆動力に対応したものとなし得るよう、第1ローラ31および第2ローラ32間の径方向押し付け力を油温TEMPの変化に応じて補正するものとする。 In this embodiment, the transfer controller 111 shown in FIG. 1 executes the traction force compensation control program shown in FIG. 7 based on the temperature TEMP of the hydraulic oil detected by the oil temperature sensor 116 arranged as shown in FIG. The traction force between the first roller 31 and the second roller 32 can be made to correspond to the target front wheel driving force regardless of the change characteristic of the traction coefficient μ between the rollers (31, 32) due to the oil temperature TEMP Thus, the radial pressing force between the first roller 31 and the second roller 32 is corrected according to the change of the oil temperature TEMP.
 図8に例示した油温に対するローラ間トラクション係数μの変化特性を説明するに、ローラ間トラクション係数μは油温TEMPが或る値のとき最大値となって、ローラ間径方向押し付け力などの諸条件が同じであれば第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が最大となる。
 そして油温TEMPが当該或る値から離れて低下、上昇するにつれ、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)は上記の最大値から大きく低下する。
To explain the change characteristics of the inter-roller traction coefficient μ with respect to the oil temperature illustrated in FIG. 8, the inter-roller traction coefficient μ becomes the maximum value when the oil temperature TEMP has a certain value, and the inter-roller radial direction pressing force If the conditions are the same, the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 becomes maximum.
Then, as the oil temperature TEMP decreases and rises away from the certain value, the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 largely decreases from the above-mentioned maximum value.
 前記第1実施例につき前述した通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)に当たっては、油温TEMPが図8にTEMPb(トラクション係数μb)として例示した常用温度であることを前提とし、前記の目標前輪駆動力を伝達可能な第1ローラ31および第2ローラ32間の径方向押し付け力目標値を決定して第2ローラ32の前記旋回位置制御に資する。 In the traction transmission capacity control (front and rear wheel driving force distribution control) for the normal four-wheel drive (4WD) described above in the first embodiment, the oil temperature TEMP is illustrated in FIG. 8 as TEMPb (traction coefficient μ b ) Based on the premise that the temperature is set, a radial direction pressing force target value between the first roller 31 and the second roller 32 capable of transmitting the target front wheel driving force is determined to contribute to the turning position control of the second roller 32. .
 このため、油温TEMPが常用温度TEMPbよりも例えば図8に(-δ1)で示す範囲を超えて低下したり、同図に(+δ2)で示す範囲を超えて高くなると、これに伴うトラクション係数μの変化が第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)を、目標前輪駆動力に対し無視できないほどの過不足状態になし、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を前記した狙い通りに遂行し得なくなる。 For this reason, if the oil temperature TEMP falls below the range shown by (-.delta.1) in FIG. 8, for example, or becomes higher than the range shown by (+ .delta.2) in FIG. The traction transmission capacity for four-wheel drive (4WD) is such that the change in μ is not in an excessive and insufficient state with respect to the target front wheel driving power with respect to the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 It becomes impossible to perform control (front and rear wheel driving force distribution control) as described above.
 そこで本実施例においては、図1のトランスファーコントローラ111により図7のトラクション力補償制御プログラムを実行し、以下のようにして上記の問題を解消することとする。
 先ずステップS21においては、左右前輪(従駆動輪)9L,9Rへ駆動力を配分する四輪駆動(4WD)が要求されているか否かをチェックする。
 四輪駆動(4WD)要求中でなく、二輪駆動(2WD)が要求されている場合は、制御をステップS22に進めて、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。
Therefore, in the present embodiment, the traction force compensation control program of FIG. 7 is executed by the transfer controller 111 of FIG. 1, and the above problem is solved as follows.
First, in step S21, it is checked whether four-wheel drive (4WD) for distributing the driving force to the left and right front wheels (secondary drive wheels) 9L, 9R is required.
When four-wheel drive (4WD) is not required but two-wheel drive (2WD) is required, the control proceeds to step S22, and the drive 1 is distributed to the left and right front wheels (secondary drive wheels) 9L and 9R. Carries out a traction transmission capacity 0 control for normal two-wheel drive (2WD) to prevent it from being
 ステップS21で四輪駆動(4WD)要求中と判定する場合はステップS23において、作動油温TEMPが図8につき前述した常用温度TEMPbから(-δ1)~(+δ2)の範囲内で乖離しているのみか否かを、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が僅かで、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できる程度しか過不足しておらず、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得て、トラクション力補償制御が不要か否かをチェックする。 When it is determined in step S21 that four wheel drive (4WD) request is in progress, the hydraulic oil temperature TEMP deviates from the normal temperature TEMPb described above with reference to FIG. 8 within the range of (-.delta.1) to (+ .delta.2) in step S23. In other words, the change in the traction coefficient μ accompanying the deviation from the normal temperature TEMPb is slight, and the traction force (traction power transfer capacity) between the first roller 31 and the second roller 32 is negligible with respect to the target front wheel driving force. It is possible to execute the traction transmission capacity control (front and rear wheel driving power distribution control) for four-wheel drive (4WD) as intended and check whether the traction force compensation control is unnecessary or not. .
 ステップS23においてトラクション力補償制御が不要であると判定する場合は、制御をステップS24に進めて、前記した通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。 If it is determined in step S23 that the traction force compensation control is not necessary, the control proceeds to step S24 to execute the above-described traction transmission capacity control (front and rear wheel driving force distribution control) for four wheel drive (4WD). Do.
 ステップS23において作動油温TEMPが常用温度TEMPbよりも(-δ1)または(+δ2)の範囲を超えて変化したと判定する場合、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が大きく、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できないほどの過不足状態であり、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得なくて、トラクション力補償制御が必要であると判定する場合は、制御をステップS25に進め、作動油温TEMPの常用温度TEMPbからの乖離によるトラクション力変化が無くなるよう(トラクション力を補償するよう)、通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)で求めたローラ間径方向押し付け力を補正する。
 従ってステップS23およびステップS25は、本発明におけるローラ間径方向押し付け力補正手段(トラクション力補償手段)に相当する。
When it is determined in step S23 that the hydraulic oil temperature TEMP has changed by more than the normal temperature TEMPb by more than the range of (-.delta.1) or (+ .delta.2), that is, the change of the traction coefficient .mu. Accompanying the deviation from the normal temperature TEMPb is large, The traction transmission capacity control for four-wheel drive (4WD) (front and rear wheel drive) is a state in which the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 can not be ignored with respect to the target front wheel driving force. If it is determined that the traction force compensation control is necessary because the force distribution control can not be performed as intended, the control proceeds to step S25, and the traction force change due to the deviation of the hydraulic oil temperature TEMP from the regular temperature TEMPb Between the rollers determined by the traction transmission capacity control (front and rear wheel driving force distribution control) for normal four-wheel drive (4WD) so that Correcting the direction pressing force.
Therefore, step S23 and step S25 correspond to inter-roller radial direction pressing force correction means (traction force compensation means) in the present invention.
<効果>
 上記した第2実施例になるトランスファー(駆動力配分装置)1によれば、上記のトラクション力補償制御に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した第1実施例と同様に配置するため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触箇所の温度に大きく影響して当該ローラ間相互接触面の温度に近いため、
 図7につき上記したトラクション力補償制御の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。
<Effect>
According to the transfer (driving force distribution device) 1 according to the second embodiment described above, the oil temperature sensor 116 for detecting the hydraulic oil temperature TEMP necessary for the above-described traction force compensation control is the same as that described with reference to FIG. Between the rollers, the hydraulic oil temperature TEMP at the installation position of the oil temperature sensor 116 largely affects the temperature of the outer peripheral surface mutual contact portion of the first roller 31 and the second roller 32 in order to arrange as in the first embodiment. Because it is close to the temperature of the mutual contact surface
The control response of the traction force compensation control described above with reference to FIG. 7 is enhanced to improve the control accuracy, thereby achieving the target control effect.
<構成>
 図9は、本発明の第3実施例になる駆動力配分装置の過熱時フェールセーフ制御およびトラクション力補償制御プログラムを示す。
 本実施例においても、油温センサ116の配置を含む駆動力配分装置(トランスファー)1の構成、およびその制御システムは図1~5につき前述したと同様なものとする。
<Configuration>
FIG. 9 shows an overheat failsafe control and traction force compensation control program of the driving force distribution system according to the third embodiment of the present invention.
Also in the present embodiment, the configuration of the driving force distribution device (transfer) 1 including the arrangement of the oil temperature sensor 116 and the control system thereof are the same as those described above with reference to FIGS.
 本実施例においては図1におけるトランスファーコントローラ111が、図5の配置になる油温センサ116が検出した作動油の温度TEMPに基づき図9の過熱時フェールセーフ制御およびトラクション力補償制御プログラムを実行して、図6につき前述した第1実施例の過熱時フェールセーフ制御を行うと共に、図7につき前述した第2実施例のトラクション力補償制御を行うものとする。 In this embodiment, the transfer controller 111 in FIG. 1 executes the overheat failsafe control and traction force compensation control program of FIG. 9 based on the temperature TEMP of the hydraulic oil detected by the oil temperature sensor 116 arranged as shown in FIG. In addition to performing the failsafe control during overheat of the first embodiment described above with reference to FIG. 6, the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed.
 図9におけるステップS11~ステップS13およびステップS15は、図6における同符号で示すステップと同様な処理を行うものとし、ステップS23~ステップS25は図7における同符号で示すステップと同様な処理を行うものとする。
 ステップS11で二輪駆動(2WD)が要求されていると判定する場合は、ステップS12において、トランスファー1を左右前輪(従駆動輪)9L,9Rへ駆動力が配分されないようにする通常の二輪駆動(2WD)用トラクション伝動容量0制御を遂行する。
Steps S11 to S13 and S15 in FIG. 9 perform the same processing as the steps indicated by the same reference numerals in FIG. 6, and steps S23 to S25 perform the same processing as the steps indicated by the same characters in FIG. It shall be.
If it is determined in step S11 that two-wheel drive (2WD) is required, normal two-wheel drive (in step S12) prevents the transfer force from being distributed to the left and right front wheels (secondary drive wheels) 9L and 9R. 2) Traction transmission capacity 0 control is performed.
 ステップS11で四輪駆動(4WD)要求中と判定し、ステップS13で作動油温TEMPが図8に例示した過熱判定用の設定油温TEMPs以上(第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずるような高温領域)と判定する場合は、過熱対策用のフェールセーフ制御が必要であるからステップS15において、作動油温TEMPに応じ、つまり設定油温TEMPsをどの程度超えているかに応じ、第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない程度まで、第1ローラ31および第2ローラ32間の径方向押し付け力を低下(0も含む)させ、図6につき前述した第1実施例の過熱時フェールセーフ制御を行う。 In step S11, it is determined that four wheel drive (4 WD) is requested, and in step S13, the hydraulic oil temperature TEMP is equal to or higher than the set oil temperature TEMPs for overheat determination illustrated in FIG. 8 (the outer peripheral surface of the first roller 31 and the second roller 32 If it is determined that 31a and 32a are high temperature regions that cause surface peeling at mutual contact points, failsafe control for overheat measures is necessary, and in step S15, according to the hydraulic oil temperature TEMP, that is, the set oil temperature Depending on the extent to which TEMPs is exceeded, the distance between the first roller 31 and the second roller 32 is such that the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 do not cause surface peeling at mutual contact points. The radial direction pressing force is reduced (including zero), and the overheat fail safe control of the first embodiment described above with reference to FIG. 6 is performed.
 ステップS13で作動油温TEMPが設定油温TEMPs未満であると判定する場合、つまり第1ローラ31および第2ローラ32の外周面31a,32aが相互接触箇所において表面剥離を生ずることのない非過熱状態であって、過熱対策用のフェールセーフ制御が不要である場合は、ステップS23~ステップS25において、図7につき前述した第2実施例のトラクション力補償制御を行う。 When it is determined in step S13 that the hydraulic fluid temperature TEMP is less than the set fluid temperature TEMPs, that is, non-overheating in which the outer peripheral surfaces 31a and 32a of the first roller 31 and the second roller 32 do not cause surface peeling at mutual contact points If it is in the state and the overheat countermeasure failsafe control is not necessary, the traction force compensation control of the second embodiment described above with reference to FIG. 7 is performed in steps S23 to S25.
 つまりステップS23において、作動油温TEMPが図8につき前述した常用温度TEMPbから(-δ1)~(+δ2)の範囲内で乖離しているのみと判定する場合、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が僅かで、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できる程度しか過不足しておらず、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得て、トラクション力補償制御が不要である場合は、ステップS24で通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を遂行する。 That is, in step S23, when it is determined that the hydraulic oil temperature TEMP only deviates from the normal temperature TEMPb described above with reference to FIG. 8 within the range of (-.delta.1) to (+ .delta.2), that is, along with the deviation from the normal temperature TEMPb. The variation of the traction coefficient μ is slight, and the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 is only negligible to the target front wheel driving force, so four-wheel drive (4WD) ) If traction force compensation control (front and rear wheel driving force distribution control) can be performed as intended and traction force compensation control is not required, then in step S24, traction transmission capacitance control for ordinary four-wheel drive (4WD) Perform (front and rear wheel driving force distribution control).
 しかしステップS23で作動油温TEMPが常用温度TEMPbよりも(-δ1)または(+δ2)の範囲を超えて変化したと判定する場合、つまり常用温度TEMPbからの乖離に伴うトラクション係数μの変化が大きく、第1ローラ31および第2ローラ32間のトラクション力(トラクション伝動容量)が目標前輪駆動力に対し無視できないほどの過不足状態であり、四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)を狙い通りに遂行し得なくて、トラクション力補償制御が必要である場合は、ステップS25において、作動油温TEMPの常用温度TEMPbからの乖離によるトラクション力変化が無くなるよう(トラクション力を補償するよう)、通常の四輪駆動(4WD)用トラクション伝動容量制御(前後輪駆動力配分制御)で求めたローラ間径方向押し付け力を補正し、図7につき前述した第2実施例のトラクション力補償制御を行う。 However, if it is determined in step S23 that the hydraulic oil temperature TEMP has changed by more than the normal temperature TEMPb by more than (-.delta.1) or (+ .delta.2), that is, the change in traction coefficient .mu. Accompanying the deviation from the normal temperature TEMPb is large. The traction transmission capacity control for the four-wheel drive (4WD) (front and rear wheels) is a state in which the traction force (traction transmission capacity) between the first roller 31 and the second roller 32 can not be ignored with respect to the target front wheel driving force. If the driving force distribution control can not be performed as intended, and traction force compensation control is required, the traction force change due to the deviation of the hydraulic oil temperature TEMP from the normal temperature TEMPb is eliminated in step S25 (traction Between rollers in order to compensate for the force) and traction transmission capacity control (front and rear wheel driving force distribution control) for ordinary four-wheel drive (4WD) Correcting the power, perform traction force compensation control in the second embodiment described above per FIG.
<効果>
 上記した第3実施例になるトランスファー(駆動力配分装置)1によれば、上記の過熱時フェールセーフ制御(ステップS11~ステップS13およびステップS15)およびトラクション力補償制御(ステップS23~ステップS25)に際して必要な作動油温TEMPを検出するための油温センサ116を、図5につき前述した第1実施例と同様に配置するため、そして当該油温センサ116の設置箇所における作動油温TEMPが第1ローラ31および第2ローラ32の外周面相互接触箇所の温度に大きく影響して当該ローラ間相互接触面の温度に近いため、
 図9につき上記した過熱時フェールセーフ制御(ステップS11~ステップS13およびステップS15)およびトラクション力補償制御(ステップS23~ステップS25)の制御応答を高めて制御精度の向上により狙い通りの制御効果を発揮することができる。
<Effect>
According to the transfer (driving force distribution device) 1 according to the third embodiment described above, the overheat failsafe control (steps S11 to S13 and S15) and the traction force compensation control (steps S23 to S25) are performed. In order to arrange the oil temperature sensor 116 for detecting the necessary hydraulic oil temperature TEMP in the same manner as the first embodiment described above with reference to FIG. 5, the hydraulic oil temperature TEMP at the installation point of the oil temperature sensor 116 is the first. Because the temperature of the peripheral contact surface of the roller 31 and the second roller 32 largely affects the temperature of the contact surface between the rollers,
The control response of the overheat failsafe control (steps S11 to S13 and step S15) and the traction force compensation control (steps S23 to S25) described above is enhanced to improve the control accuracy and achieve the target control effect. can do.

Claims (6)

  1.  主駆動輪伝動系と共に回転する第1ローラと、従駆動輪伝動系と共に回転する第2ローラとを具え、
     これら第1ローラおよび第2ローラを両者の外周面において動力伝達可能に接触させることにより従駆動輪への駆動力配分を行うと共に、該第1ローラおよび第2ローラ間の径方向押し付け力を加減することにより前記主駆動輪および従駆動輪間の駆動力配分制御が可能で、該駆動力配分制御の制御因子として少なくとも作動油の温度を用いる駆動力配分装置において、
     前記作動油の温度を検出する油温センサを、前記第1ローラおよび第2ローラの回転方向において、これら第1ローラおよび第2ローラの外周面相互接触箇所の前方に配置したことを特徴とする駆動力配分装置。
    A first roller that rotates with the main drive wheel transmission system, and a second roller that rotates with the secondary drive wheel transmission system;
    The drive force is distributed to the sub-drive wheels by bringing the first roller and the second roller into contact in a power transmittable manner on the outer peripheral surfaces of the two, and the radial pressing force between the first roller and the second roller is adjusted. Driving force distribution control between the main driving wheel and the sub-driving wheel, and using at least the temperature of the hydraulic oil as a control factor of the driving force distribution control,
    An oil temperature sensor for detecting the temperature of the hydraulic oil is disposed in front of the outer peripheral surface mutual contact point of the first roller and the second roller in the rotational direction of the first roller and the second roller. Drive power distribution device.
  2.  請求項1に記載の駆動力配分装置において、
     前記油温センサは、該油温センサの油温検知部が前記作動油に浸漬するよう、且つ前記第1ローラおよび第2ローラの外周面相互接触箇所と、この外周面相互接触箇所よりもローラ回転方向前方において該第1ローラおよび第2ローラの外周に接する共通な接触面との間に位置するよう配置したものであることを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 1,
    The oil temperature sensor is configured such that the oil temperature detection unit of the oil temperature sensor is immersed in the hydraulic oil, and a roller contact point between the outer peripheral surface of the first roller and the second roller and a roller than the outer surface peripheral contact portion A driving force distribution device characterized in that it is disposed between a common contact surface in contact with the outer periphery of the first roller and the second roller in the forward direction of rotation.
  3.  請求項1または2に記載の駆動力配分装置において、
     前記油温センサで検出した作動油の温度に応じ、前記第1ローラおよび第2ローラ間の径方向押し付け力を補正するローラ間径方向押し付け力補正手段を設けたことを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 1 or 2,
    An inter-roller radial pressing force correction means is provided for correcting the radial pressing force between the first roller and the second roller according to the temperature of the hydraulic oil detected by the oil temperature sensor. apparatus.
  4.  請求項3に記載の駆動力配分装置において、
     前記ローラ間径方向押し付け力補正手段は、前記油温センサで検出した作動油の温度から前記第1ローラおよび第2ローラの異常な外周面温度上昇を判定し、この異常判定時に前記第1ローラおよび第2ローラ間の径方向押し付け力を減ずるフェールセーフ手段であることを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 3,
    The inter-roller radial direction pressing force correction means determines an abnormal increase in outer peripheral surface temperature of the first roller and the second roller from the temperature of the hydraulic oil detected by the oil temperature sensor, and determines the first roller at the time of this abnormality determination. And a fail-safe means for reducing a radial pressing force between the second roller and the second roller.
  5.  請求項3に記載の駆動力配分装置において、
     前記ローラ間径方向押し付け力補正手段は、前記油温センサで検出した作動油の温度から前記第1ローラおよび第2ローラ間のトラクション伝動特性変化を判定し、このトラクション伝動特性変化によるトラクション力への影響がなくなるよう前記第1ローラおよび第2ローラ間の径方向押し付け力を補正するトラクション力補償手段であることを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 3,
    The inter-roller radial direction pressing force correction means determines a change in traction transmission characteristics between the first roller and the second roller from the temperature of the hydraulic oil detected by the oil temperature sensor, and makes the traction force due to the change in traction transmission characteristics And a traction force compensation unit configured to compensate a radial pressing force between the first roller and the second roller so as to eliminate the influence of the above.
  6.  請求項3に記載の駆動力配分装置において、
     前記ローラ間径方向押し付け力補正手段は、前記油温センサで検出した作動油の温度から前記第1ローラおよび第2ローラの異常な外周面温度上昇を判定し、この異常判定時に前記第1ローラおよび第2ローラ間の径方向押し付け力を減ずるフェールセーフ手段として機能し、前記検出した作動油の温度が前記第1ローラおよび第2ローラの異常な外周面温度上昇を示さない間、該作動油の温度から前記第1ローラおよび第2ローラ間のトラクション伝動特性変化を判定し、このトラクション伝動特性変化によるトラクション力への影響がなくなるよう前記第1ローラおよび第2ローラ間の径方向押し付け力を補正するトラクション力補償手段として機能するものであることを特徴とする駆動力配分装置。
    In the driving force distribution device according to claim 3,
    The inter-roller radial direction pressing force correction means determines an abnormal increase in outer peripheral surface temperature of the first roller and the second roller from the temperature of the hydraulic oil detected by the oil temperature sensor, and determines the first roller at the time of this abnormality determination. Function as a fail-safe means for reducing the radial pressing force between the second roller and the second roller, and while the detected temperature of the hydraulic fluid does not show an abnormal increase in outer peripheral surface temperature of the first roller and the second roller, the hydraulic fluid The change in traction transmission characteristics between the first roller and the second roller is determined from the temperature of the first roller, and the radial pressing force between the first roller and the second roller is set to eliminate the influence on the traction force due to the change in traction transmission characteristics. A driving force distribution device characterized in that it functions as a traction force compensating means for correcting.
PCT/JP2013/064834 2012-06-04 2013-05-29 Driving force distribution device WO2013183503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-126787 2012-06-04
JP2012126787 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183503A1 true WO2013183503A1 (en) 2013-12-12

Family

ID=49711896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064834 WO2013183503A1 (en) 2012-06-04 2013-05-29 Driving force distribution device

Country Status (1)

Country Link
WO (1) WO2013183503A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157439A (en) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd Drive power distribution control device in four wheel-drive vehicle
JPH09229152A (en) * 1996-02-22 1997-09-02 Jatco Corp Control device of continuously variable transmission of troidal type
JP2002195372A (en) * 2000-12-28 2002-07-10 Toyota Motor Corp Toroidal type continuously variable transmission
JP2007107626A (en) * 2005-10-14 2007-04-26 Nsk Ltd Toroidal type continuously variable transmission
JP2007276575A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Controller of vehicle
JP2009173261A (en) * 2007-12-26 2009-08-06 Nissan Motor Co Ltd Driving force distribution device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157439A (en) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd Drive power distribution control device in four wheel-drive vehicle
JPH09229152A (en) * 1996-02-22 1997-09-02 Jatco Corp Control device of continuously variable transmission of troidal type
JP2002195372A (en) * 2000-12-28 2002-07-10 Toyota Motor Corp Toroidal type continuously variable transmission
JP2007107626A (en) * 2005-10-14 2007-04-26 Nsk Ltd Toroidal type continuously variable transmission
JP2007276575A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Controller of vehicle
JP2009173261A (en) * 2007-12-26 2009-08-06 Nissan Motor Co Ltd Driving force distribution device

Similar Documents

Publication Publication Date Title
JP5131384B2 (en) Two-wheel / four-wheel drive switching control device and control method for traction transmission type part-time four-wheel drive vehicle
JP5262588B2 (en) Driving force distribution device
JP5533344B2 (en) Driving force distribution device
EP2657571B1 (en) Traction transmission capacity control device
CN103453135A (en) Containment control for a continuously variable transmission
JP2014019169A (en) Drive power distribution device
WO2013183503A1 (en) Driving force distribution device
WO2010103907A1 (en) Friction gearing
JP5533682B2 (en) Fail-safe device
JP5040885B2 (en) Traction transmission capacity controller for driving force distribution device
JP5910406B2 (en) Driving force distribution device
WO2013183411A1 (en) Driving force distribution device
JP4691600B2 (en) Moment distribution system
JP5151294B2 (en) Torque detection device and vehicle driving force control device using the same
WO2010084667A1 (en) Torque distributor
JP2013151246A (en) Lock-off control device of irreversible rotation transmission system
JP5958255B2 (en) Driving force distribution device
WO2013183447A1 (en) Driving force distribution device
US9206889B2 (en) Drive force distributing apparatus
JP6212917B2 (en) Driving force distribution device
JP2014019170A (en) Drive force control device for four-wheel drive vehicle
JP6028451B2 (en) Driving force distribution device
WO2013183412A1 (en) Driving force distribution device
JP5782798B2 (en) Lock-on control device for irreversible rotation transmission system
JP2013152002A (en) Lock-off control device in irreversible rotation transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP