JP2010196793A - Friction transmission device and driving force distribution device using the same - Google Patents

Friction transmission device and driving force distribution device using the same Download PDF

Info

Publication number
JP2010196793A
JP2010196793A JP2009042322A JP2009042322A JP2010196793A JP 2010196793 A JP2010196793 A JP 2010196793A JP 2009042322 A JP2009042322 A JP 2009042322A JP 2009042322 A JP2009042322 A JP 2009042322A JP 2010196793 A JP2010196793 A JP 2010196793A
Authority
JP
Japan
Prior art keywords
roller
bearings
output shaft
driving force
crankshafts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009042322A
Other languages
Japanese (ja)
Other versions
JP5163537B2 (en
Inventor
Tooru Takaishi
哲 高石
Atsuhiro Mori
淳弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009042322A priority Critical patent/JP5163537B2/en
Publication of JP2010196793A publication Critical patent/JP2010196793A/en
Application granted granted Critical
Publication of JP5163537B2 publication Critical patent/JP5163537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction transmission device and a driving force distribution device using the same, capable of restraining reduction in durability of a roller friction surface, by minimizing deformation of a contact surface with a first roller of a second roller. <P>SOLUTION: This friction transmission device includes the first roller 31 and the second roller 32, bearing supports 23 and 25 for receiving reaction generated by pressing contact in the radial direction between the rollers, crankshafts 51L and 51R having a rotary shaft offset to an output shaft 13 being a rotary shaft of the second roller 32, a pair of bearings 52L and 52R for supporting the output shaft 13 by the crankshafts 51L and 51R, a pair of bearings 53L and 53R for supporting eccentric outer peripheral parts 51Lb and 51Rb being the rotary shaft of the crankshafts 51L and 51R by the bearing supports 23 and 25, and an inter-roller pressing force control motor 45 for changing a pressing contact state in the radial direction between the rollers by rotating the crankshafts 51L and 51R. The length W1 in the axial direction of the bearings 52L and 52R is set longer than the length W2 in the axial direction of the bearings 53L and 53R. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、摩擦伝動装置およびそれを用いた駆動力配分装置に関する。   The present invention relates to a friction transmission device and a driving force distribution device using the same.

従来、摩擦伝動装置では、第1ローラおよび第2ローラの間接的な径方向押圧接触により、ローラ間径方向押圧接触状態に応じたトルク容量で動力伝達を行う。両ローラは共通な支持板により支持してハウジング内に収納し、ローラ間径方向押圧接触により発生する反力のハウジングへの伝達を防止している。上記記載に関係する技術の一例は、特許文献1に記載されている。   Conventionally, in a friction transmission device, power is transmitted with a torque capacity corresponding to the radial pressing contact state between the rollers by indirect radial pressing contact between the first roller and the second roller. Both rollers are supported by a common support plate and accommodated in the housing to prevent the reaction force generated by the radial pressing contact between the rollers from being transmitted to the housing. An example of a technique related to the above description is described in Patent Document 1.

この種の摩擦伝動装置において、伝達トルク容量を可変とするためには、ローラ間径方向押圧力を変更する構成が必要である。例えば、第2ローラを偏心部材に支承し、偏心部材を回転させることで、第2ローラを第1ローラに対し径方向相対変位可能となり、ローラ間径方向押圧力を変更できる。   In this type of friction transmission device, in order to make the transmission torque capacity variable, it is necessary to change the radial pressing force between the rollers. For example, by supporting the second roller on the eccentric member and rotating the eccentric member, the second roller can be displaced in the radial direction relative to the first roller, and the radial pressing force between the rollers can be changed.

特開2002−349653号公報JP 2002-349653 A

上記構成を採用した場合、第2ローラは内側軸受により偏心部材に支承され、偏心部材は外側軸受により支持板に支承される。つまり、第2ローラの回転軸は径方向二重の軸受により支持板に支持された状態となる。このため、軸受は回転軸の撓みに対する支持剛性が低いことから、二重の軸受により回転軸の撓みが大きくなり、第2ローラの第1ローラ接触面において軸方向端部が第1ローラ側へ大きく変形し、ローラ間径方向押圧力がローラ接触面の一部に偏ることで、ローラ摩擦面の耐久性低下を伴うという問題があった。   When the above configuration is adopted, the second roller is supported on the eccentric member by the inner bearing, and the eccentric member is supported on the support plate by the outer bearing. That is, the rotating shaft of the second roller is supported by the support plate by the radial double bearing. For this reason, since the bearing has low support rigidity with respect to the bending of the rotating shaft, the double shaft increases the bending of the rotating shaft, and the axial end of the second roller contact surface of the second roller toward the first roller side. There is a problem in that the roller friction surface is deteriorated in durability due to the large deformation and the radial pressing force between the rollers being biased to a part of the roller contact surface.

本発明の目的は、第2ローラの第1ローラとの接触面の変形を小さく抑え、ローラ摩擦面の耐久性低下を抑制できる摩擦伝動装置およびそれを用いた駆動力配分装置を提供することにある。   An object of the present invention is to provide a friction transmission device that can suppress deformation of the contact surface of the second roller with the first roller and reduce the durability of the roller friction surface, and a driving force distribution device using the friction transmission device. is there.

本発明では、第2ローラの回転軸を偏心部材に支承する内側軸受の軸方向長さを、偏心部材の回転軸を回転支持板に支承する外側軸受の軸方向長さよりも長く設定した。   In the present invention, the axial length of the inner bearing that supports the rotating shaft of the second roller on the eccentric member is set longer than the axial length of the outer bearing that supports the rotating shaft of the eccentric member on the rotation support plate.

よって、本発明にあっては、内側軸受の軸方向長さを長くすることで、回転軸の撓みに対する内側軸受の支持剛性が高まるため、第2ローラの第1ローラとの接触面の変形を小さく抑え、ローラ摩擦面の耐久性低下を抑制できる。   Therefore, in the present invention, by increasing the axial length of the inner bearing, the support rigidity of the inner bearing with respect to the deflection of the rotating shaft is increased. Therefore, the contact surface of the second roller with the first roller is deformed. It is possible to reduce the durability of the roller friction surface.

本発明の駆動力配分装置を適用した実施例1の四輪駆動車両のパワートレーンの概略を示す平面図である。It is a top view which shows the outline of the power train of the four-wheel drive vehicle of Example 1 to which the driving force distribution apparatus of this invention is applied. 実施例1の駆動力配分装置1の縦断面図である。1 is a longitudinal sectional view of a driving force distribution device 1 according to Embodiment 1. FIG. 実施例1の駆動力配分装置1の側面図である。1 is a side view of a driving force distribution device 1 according to Embodiment 1. FIG. 実施例1の駆動力配分装置1の要部拡大図である。1 is an enlarged view of a main part of a driving force distribution device 1 according to a first embodiment. 実施例2の駆動力配分装置1の要部拡大図である。FIG. 6 is an enlarged view of a main part of a driving force distribution device 1 according to a second embodiment.

以下、本発明の実施の形態を、図面に示す実施例に基づき説明する。   Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.

まず、構成を説明する。
(パワートレーンの構成)
図1は、本発明の駆動力配分装置(摩擦伝動装置)を適用した実施例1の四輪駆動車両のパワートレーンの概略を示す平面図である。図1の四輪駆動車両は、エンジン2からの回転を変速機3による変速後、リヤプロペラシャフト4およびリヤファイナルドライブユニット5を経て左右後輪6L,6Rに伝達される後輪駆動車をベース車両とし、左右後輪(主駆動輪)6L,6Rへのトルクの一部を、駆動力配分装置1より、フロントプロペラシャフト7およびフロントファイナルドライブユニット8を経て左右前輪(従駆動輪)9L,9Rへ伝達することにより、四輪駆動走行を可能とする。
First, the configuration will be described.
(Configuration of power train)
FIG. 1 is a plan view schematically showing a power train of a four-wheel drive vehicle according to a first embodiment to which a driving force distribution device (friction transmission device) of the present invention is applied. The four-wheel drive vehicle of FIG. 1 is a base vehicle based on a rear-wheel drive vehicle in which rotation from the engine 2 is changed by the transmission 3 and then transmitted to the left and right rear wheels 6L and 6R via the rear propeller shaft 4 and the rear final drive unit 5. A part of the torque to the left and right rear wheels (main drive wheels) 6L, 6R is transferred from the drive force distribution device 1 to the left and right front wheels (secondary drive wheels) 9L, 9R via the front propeller shaft 7 and the front final drive unit 8. By transmitting, four-wheel drive traveling is enabled.

駆動力配分装置1は、左右後輪6L,6Rへのトルクの一部を左右前輪9L,9Rへ分配して出力することにより、左右後輪6L,6Rおよび左右前輪9L,9R間のトルク配分を決定するもので、実施例1では、この駆動力配分装置1を図2に示すように構成する。   The driving force distribution device 1 distributes a part of the torque to the left and right rear wheels 6L, 6R to the left and right front wheels 9L, 9R, and outputs it, thereby distributing the torque between the left and right rear wheels 6L, 6R and the left and right front wheels 9L, 9R. In the first embodiment, the driving force distribution device 1 is configured as shown in FIG.

(駆動力配分装置の構成)
図2において、11はハウジングを示し、このハウジング11内に入力軸12および出力軸13を相互に平行に配して横架する。
入力軸12は、その両端におけるボールベアリング14,15によりハウジング11に対し回転自在に支持し、入力軸12はさらに、ハウジング11内に配したローラベアリング18,19によってもハウジング11に対し回転自在に支持する。
(Configuration of driving force distribution device)
In FIG. 2, reference numeral 11 denotes a housing, and an input shaft 12 and an output shaft 13 are arranged in parallel with each other in the housing 11.
The input shaft 12 is rotatably supported with respect to the housing 11 by ball bearings 14 and 15 at both ends thereof, and the input shaft 12 is further rotatable with respect to the housing 11 by roller bearings 18 and 19 disposed in the housing 11. To support.

ローラベアリング18,19はそれぞれ、ベアリングサポート(回転支持板)23,25内に抱持し、これらベアリングサポート23,25を、図示しないボルト等の任意の手段でハウジング11の対応する内側面に取着する。
入力軸12の両端をそれぞれ、シールリング27,28による液密封止下でハウジング11から突出させ、この入力軸12の図中左端を変速機3(図1参照)の出力軸に結合し、図中右端を、リヤプロペラシャフト4(図1参照)を介してリヤファイナルドライブユニット5に結合する。
The roller bearings 18 and 19 are respectively held in bearing supports (rotary support plates) 23 and 25, and these bearing supports 23 and 25 are attached to corresponding inner side surfaces of the housing 11 by any means such as bolts (not shown). To wear.
Both ends of the input shaft 12 protrude from the housing 11 under liquid-tight sealing by seal rings 27 and 28, and the left end of the input shaft 12 in the figure is coupled to the output shaft of the transmission 3 (see FIG. 1). The middle right end is coupled to the rear final drive unit 5 via the rear propeller shaft 4 (see FIG. 1).

入力軸12の軸線方向中程には、第1ローラ31を同心に一体成形して設け、出力軸13の軸線方向中程には、第2ローラ32を同心に一体成形して設け、これら第1ローラ31および第2ローラ32を共通な軸直角面内に配置する。
出力軸13は、以下のような構成によりハウジング11に対し間接的に回転自在に支持する。
つまり、出力軸13の軸線方向中程に一体成形した第2ローラ32の軸線方向両側に配置して、出力軸13の両端部に中空のクランクシャフト(偏心部材)51L,51Rを遊嵌する。
In the middle of the input shaft 12 in the axial direction, the first roller 31 is concentrically and integrally formed. In the middle of the output shaft 13 in the axial direction, the second roller 32 is concentrically and integrally formed. The first roller 31 and the second roller 32 are disposed in a common axis perpendicular plane.
The output shaft 13 is supported rotatably relative to the housing 11 by the following configuration.
That is, the crankshafts (eccentric members) 51L and 51R that are hollow on both ends of the output shaft 13 are loosely fitted on both sides in the axial direction of the second roller 32 integrally formed in the middle of the output shaft 13 in the axial direction.

これらクランクシャフト51L,51Rの中心孔51La,51Ra(半径をRiで図示した)と、出力軸13の両端部との遊嵌部に軸受(内側軸受)52L,52Rを介在させて出力軸13をクランクシャフト51L,51Rの中心孔51La,51Ra内で、これらの中心軸線O2の周りに自由に回転し得るよう支持する。 The output shaft 13 is inserted through bearings (inner bearings) 52L and 52R in the loose fitting portions between the center holes 51La and 51Ra (radius is shown by Ri) of the crankshafts 51L and 51R and both ends of the output shaft 13. crankshafts 51L, the center hole 51La of 51R, in 51Ra, supports that can freely rotate around these central axis O 2.

クランクシャフト51L,51Rには図3に示すように、中心孔51La,51Ra(中心軸線O2)に対し偏心した偏心外周部51Lb,51Rb(半径をRoで図示した)を設定し、これら偏心外周部51Lb,51Rbの中心軸線O3は中心孔51La,51Raの軸線O2(第2ローラ32の回転軸線)から、両者間の偏心分εだけオフセットしている。 As shown in FIG. 3, the crankshafts 51L and 51R are provided with eccentric outer peripheral portions 51Lb and 51Rb (radius is indicated by Ro) that are eccentric with respect to the center holes 51La and 51Ra (the central axis O 2 ). The center axis O 3 of the parts 51Lb and 51Rb is offset from the axis O 2 of the center holes 51La and 51Ra (the rotation axis of the second roller 32) by an eccentricity ε between them.

クランクシャフト51L,51Rの偏心外周部51Lb,51Rbは、軸受(外側軸受)53L,53Rを介して対応する側におけるベアリングサポート23,25内に回転自在に支持し、この際、クランクシャフト51L,51Rをそれぞれ、第2ローラ32と共に、スラストベアリング54L,54Rで軸線方向に位置決めする。   The eccentric outer peripheral portions 51Lb and 51Rb of the crankshafts 51L and 51R are rotatably supported in bearing supports 23 and 25 on the corresponding side via bearings (outer bearings) 53L and 53R. At this time, the crankshafts 51L and 51R Are positioned in the axial direction by thrust bearings 54L and 54R together with the second roller 32.

図4に示すように、実施例1では、軸受52L,52Rの軸方向長さW1を、軸受53L,53Rの軸方向長さW2よりも長く設定する。また、実施例1では、軸受52L,52Rの軸受支持スパンS1を、軸受53L,53Rの軸受支持スパンS2よりも短く設定する。ここで、軸受支持スパンとは、一対の軸受の軸方向中心間距離をいう。   As shown in FIG. 4, in the first embodiment, the axial length W1 of the bearings 52L and 52R is set longer than the axial length W2 of the bearings 53L and 53R. In the first embodiment, the bearing support span S1 of the bearings 52L and 52R is set shorter than the bearing support span S2 of the bearings 53L and 53R. Here, the bearing support span refers to the distance between the axial centers of a pair of bearings.

クランクシャフト51L,51Rの相互に向き合う隣接端にそれぞれ、偏心外周部51Lb,51Rbと同心で、同仕様のリングギヤ51Lc,51Rcを一体に設け、これらリングギヤ51Lc,51Rcに、共通なクランクシャフト駆動ピニオン55を噛合させる。なお、この噛合に当たっては、クランクシャフト51L,51Rを両者の偏心外周部51Lb,51Rbが円周方向において相互に整列する回転位置にした状態で、リングギヤ51Lc,51Rcにクランクシャフト駆動ピニオン55を噛合させる。
クランクシャフト駆動ピニオン55はピニオンシャフト56に結合し、ピニオンシャフト56の両端を軸受56a,56bによりハウジング11に回転自在に支持する。
Ring gears 51Lc and 51Rc of the same specification are provided integrally with the eccentric outer peripheral portions 51Lb and 51Rb at the adjacent ends of the crankshafts 51L and 51R that face each other. Mesh. In this engagement, the crankshaft drive pinion 55 is engaged with the ring gears 51Lc and 51Rc in a state where the crankshafts 51L and 51R are in a rotational position where the eccentric outer peripheral portions 51Lb and 51Rb are aligned with each other in the circumferential direction. .
The crankshaft drive pinion 55 is coupled to the pinion shaft 56, and both ends of the pinion shaft 56 are rotatably supported on the housing 11 by bearings 56a and 56b.

図2の右側におけるピニオンシャフト56の右端をハウジング11の外に露出させ、このピニオンシャフト56の露出端面には、ハウジング11に取着して設けたローラ間押し付け力制御モータ(伝達トルク容量変更手段)45の出力軸45aをセレーション嵌合などにより駆動結合する。
よって、ローラ間押し付け力制御モータ45によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御するとき、出力軸13および第2ローラ32の回転軸線O2が図3に破線で示す軌跡円αに沿って旋回する。
The right end of the pinion shaft 56 on the right side of FIG. 2 is exposed to the outside of the housing 11, and the exposed end surface of the pinion shaft 56 is a pressing force control motor between rollers (attached to the housing 11). ) Drive-couple 45 output shafts 45a by serration fitting or the like.
Therefore, when the rotational position of the crankshafts 51L and 51R is controlled by the inter-roller pressing force control motor 45 via the pinion 55 and the ring gears 51Lc and 51Rc, the rotational axis O 2 of the output shaft 13 and the second roller 32 is indicated by a broken line in FIG. It turns along the locus circle α shown.

この回転軸線O2の旋回により、第1ローラ31および第2ローラ32のローラ軸間距離L1(図2参照)が変更され、第1ローラ31に対する第2ローラ32の径方向押圧力(ローラ間ローラ伝達トルク容量)を、0から最大値までの間で任意に制御することができる。
従って、ローラ間押し付け力制御モータ45、ピニオン55およびクランクシャフト51L,51Rは、ベアリングサポート23,25と共に、本発明における第2ローラ旋回手段を構成する。
The rotation of the rotational axis O 2 changes the distance L1 between the roller axes of the first roller 31 and the second roller 32 (see FIG. 2), and the radial pressing force of the second roller 32 against the first roller 31 (between the rollers) The roller transmission torque capacity) can be arbitrarily controlled between 0 and the maximum value.
Accordingly, the inter-roller pressing force control motor 45, the pinion 55, and the crankshafts 51L and 51R together with the bearing supports 23 and 25 constitute the second roller turning means in the present invention.

クランクシャフト51Lおよび出力軸13をそれぞれ図2の左側においてハウジング11から突出させ、該突出部においてハウジング11およびクランクシャフト51L間にシールリング57を介在させると共に、クランクシャフト51Lおよび出力軸13間にシールリング58を介在させ、これらシールリング57,58により、ハウジング11から突出するクランクシャフト51Lおよび出力軸13の突出部をそれぞれ液密封止する。   The crankshaft 51L and the output shaft 13 protrude from the housing 11 on the left side of FIG. 2, respectively, and a seal ring 57 is interposed between the housing 11 and the crankshaft 51L at the protruding portion, and a seal is provided between the crankshaft 51L and the output shaft 13. The ring 58 is interposed, and the seal rings 57 and 58 are used to liquid-tightly seal the crankshaft 51L protruding from the housing 11 and the protruding portion of the output shaft 13, respectively.

なお、シールリング57,58の介在に際しては、これらシールリング57,58を位置させるクランクシャフト51Lの端部においてその内径と外径の中心を、出力軸13の支持位置と同様に偏心させる。このようなシール構造とすることで、出力軸13および第2ローラ32の上記旋回によりその回転軸線O2が旋回変位するにもかかわらず、出力軸13をハウジング11から突出する箇所において良好にシールし続けることができる。 When the seal rings 57 and 58 are interposed, the centers of the inner and outer diameters are decentered in the same manner as the support position of the output shaft 13 at the end of the crankshaft 51L where the seal rings 57 and 58 are located. With such a seal structure, the output shaft 13 can be satisfactorily sealed at a location where the output shaft 13 protrudes from the housing 11 even though the rotation axis O 2 is swung and displaced due to the above-described swiveling of the output shaft 13 and the second roller 32. Can continue.

(トルク配分制御)
次に、実施例1の駆動力配分制御について説明する。
変速機3(図1参照)から入力軸12へのトルクは、一方でこの入力軸12からそのままリヤプロペラシャフト4およびリヤファイナルドライブユニット5(ともに図1参照)を経て左右後輪6L,6Rに伝達される。
(Torque distribution control)
Next, driving force distribution control according to the first embodiment will be described.
On the other hand, torque from the transmission 3 (see FIG. 1) to the input shaft 12 is directly transmitted from the input shaft 12 to the left and right rear wheels 6L and 6R via the rear propeller shaft 4 and the rear final drive unit 5 (both see FIG. 1). Is done.

他方で実施例1の駆動力配分装置1は、ローラ間押し付け力制御モータ45によりピニオン55およびリングギヤ51Lc,51Rcを介しクランクシャフト51L,51Rを回転位置制御して、ローラ軸間距離L1を第1ローラ31および第2ローラ32の半径の和値よりも小さくした場合、これらローラ31,32が径方向相互押圧力に応じたローラ伝達トルク容量を持つことから、このトルク容量に応じて左右後輪6L,6Rへのトルクの一部を、第1ローラ31から第2ローラ32を経て出力軸13に向かわせることができる。   On the other hand, the driving force distribution device 1 according to the first embodiment controls the rotational position of the crankshafts 51L and 51R via the pinion 55 and the ring gears 51Lc and 51Rc by the inter-roller pressing force control motor 45, and sets the roller shaft distance L1 to the first. When the roller 31 and the second roller 32 are smaller than the sum of the radii, the rollers 31 and 32 have a roller transmission torque capacity corresponding to the radial mutual pressing force. Part of the torque to 6L and 6R can be directed from the first roller 31 to the output shaft 13 via the second roller 32.

その後、このトルクは、出力軸13の図2中左端から、フロントプロペラシャフト7(図1参照)およびフロントファイナルドライブユニット8(図1参照)を経て左右前輪(従駆動輪)9L,9Rへ伝達される。これにより、左右後輪6L,6Rおよび左右前輪9L,9Rを共に駆動する四輪駆動走行が可能となる。   Thereafter, this torque is transmitted from the left end of the output shaft 13 in FIG. 2 to the left and right front wheels (slave drive wheels) 9L and 9R via the front propeller shaft 7 (see FIG. 1) and the front final drive unit 8 (see FIG. 1). The This enables four-wheel drive running in which both the left and right rear wheels 6L and 6R and the left and right front wheels 9L and 9R are driven.

なお、ローラ間押し付け力制御モータ45によるローラ間径方向相互押圧力制御(ローラローラ伝達トルク容量制御)中、出力軸13および第2ローラ32(その回転軸線O2)は偏心軸線O3周りに旋回変位する。ところが、出力軸13および第2ローラ32(その回転軸線O2)の旋回変位は、出力軸13およびフロントプロペラシャフト7間を結合する自在継手により吸収され得て、偏心継手なしでも、上記左右前輪(従駆動輪)9L,9Rへのトルク伝達が阻害されることはない。 In addition, during the inter-roller radial direction mutual pressure control (roller roller transmission torque capacity control) by the inter-roller pressing force control motor 45, the output shaft 13 and the second roller 32 (its rotation axis O 2 ) are moved around the eccentric axis O 3 . Rotating displacement. However, the turning displacement of the output shaft 13 and the second roller 32 (its rotation axis O 2 ) can be absorbed by the universal joint connecting the output shaft 13 and the front propeller shaft 7, and the above left and right front wheels can be obtained without an eccentric joint. (Slave drive wheel) Torque transmission to 9L, 9R is not hindered.

次に、実施例1の作用を説明する。
[出力軸の撓みに伴うローラ摩擦面の耐久性悪化について]
駆動力配分装置1において、第2ローラ32の回転軸部である出力軸13は、第1ローラ31の回転軸部である入力軸12と比較して伝達トルクが小さいため、軽量化および経済性の観点から、入力軸12に対して外径を細くすることが可能である。
Next, the operation of the first embodiment will be described.
[Deterioration of durability of roller friction surface due to deflection of output shaft]
In the driving force distribution device 1, the output shaft 13 that is the rotating shaft portion of the second roller 32 has a smaller transmission torque than the input shaft 12 that is the rotating shaft portion of the first roller 31. From this point of view, it is possible to reduce the outer diameter with respect to the input shaft 12.

このとき、出力軸13を細くするほど、出力軸13の撓み量が大きくなり、ローラ摩擦面の耐久性悪化を招く。詳述すると、図4に示すように、出力軸13が撓むことで、第2ローラ32の第1ローラ31との接触面において軸方向端部が第1ローラ31側へ変形する。これにより、ローラ間の径方向押圧力がローラ接触面の一部に集中することで、ローラ摩擦面が激しく摩耗する。   At this time, as the output shaft 13 is made thinner, the amount of deflection of the output shaft 13 increases and the durability of the roller friction surface deteriorates. More specifically, as shown in FIG. 4, the output shaft 13 is bent, so that the axial end of the second roller 32 on the contact surface with the first roller 31 is deformed toward the first roller 31. As a result, the radial pressing force between the rollers concentrates on a part of the roller contact surface, so that the roller friction surface is worn severely.

ここで、一般的に、軸受はインナレースとアウタレースとが転動体により点接触(または線接触)した状態であるため、ブッシュ等の支持部品と比較して、回転軸の撓みに対する支持剛性が低い。さらに、実施例1の駆動力配分装置1では、ローラ間の伝達トルク容量を可変とするために、出力軸13を軸受52L,52Rによりクランクシャフト51L,51Rに支持し、さらにクランクシャフト51L,51Rを軸受53L,53Rによりベアリングサポート23,25に支持している。つまり、出力軸13を径方向二重の軸受を介してベアリングサポート23,25に支持した構造であるため、出力軸13の撓みが顕著となる。   Here, in general, the bearing is in a state in which the inner race and the outer race are in point contact (or line contact) with the rolling elements, and therefore, the support rigidity against the bending of the rotating shaft is lower than that of the support component such as the bush. . Further, in the driving force distribution device 1 of the first embodiment, in order to make the transmission torque capacity between the rollers variable, the output shaft 13 is supported on the crankshafts 51L and 51R by bearings 52L and 52R, and further the crankshafts 51L and 51R. Are supported on bearing supports 23 and 25 by bearings 53L and 53R. That is, since the output shaft 13 is supported by the bearing supports 23 and 25 via the radial double bearings, the deflection of the output shaft 13 becomes remarkable.

[ローラ接触面の変形抑制作用]
これに対し、実施例1の駆動力配分装置1では、軸受52L,52Rの軸方向長さW1を、軸受53L,53Rの軸方向長さW2よりも長く設定したため、出力軸13の撓みに対する支持剛性を高めることができ、図4の二点鎖線で示すように、出力軸13の撓みを抑制できる。ここで、軸受53L,53Rの軸方向長さW2は軸受52L,52Rの軸方向長さW1よりも短くしているのは、軸受53L,53Rを支持するベアリングサポート23,25による制約を受けるからである。以下、その理由を説明する。
[Roller contact surface deformation suppression action]
On the other hand, in the driving force distribution device 1 according to the first embodiment, the axial length W1 of the bearings 52L and 52R is set longer than the axial length W2 of the bearings 53L and 53R. The rigidity can be increased, and the deflection of the output shaft 13 can be suppressed as shown by the two-dot chain line in FIG. Here, the reason why the axial length W2 of the bearings 53L and 53R is shorter than the axial length W1 of the bearings 52L and 52R is that the bearing supports 23 and 25 that support the bearings 53L and 53R are restricted. It is. The reason will be described below.

軸受53L,53Rの軸方向長さW2を長くするためには、ベアリングサポート23,25の軸方向長さを長くする必要がある。ところが、ベアリングサポート23,25は両ローラの反力を受け止める部材であって、ハウジング11や両ローラ31,32と比較してより高強度で比重の大きな材料を用いているため、ベアリングサポート23,25の形状を大型化することは、軽量化および経済性の観点から好ましくない。   In order to increase the axial length W2 of the bearings 53L and 53R, it is necessary to increase the axial length of the bearing supports 23 and 25. However, the bearing supports 23 and 25 are members that receive the reaction force of both rollers, and are made of a material having higher strength and higher specific gravity than the housing 11 and both rollers 31 and 32. Increasing the size of 25 is not preferable from the viewpoint of weight reduction and economy.

一方、軸受52L,52Rは、出力軸13とクランクシャフト51L,51Rの中心孔51La,51Raとの間に嵌挿している。ここで、出力軸13は長尺な棒状部材であるため、軸受52L,52Rの軸方向長さW2を長くした場合であっても、形状変更は不要であり、重量増やコストアップは生じない。つまり、軸受52L,52Rの軸方向長さW1を、軸受53L,53Rの軸方向長さW2よりも長くすることにより、重量増やコストアップを抑制しつつ、出力軸13の撓みを抑制できる。   On the other hand, the bearings 52L and 52R are inserted between the output shaft 13 and the center holes 51La and 51Ra of the crankshafts 51L and 51R. Here, since the output shaft 13 is a long rod-like member, even if the axial length W2 of the bearings 52L, 52R is increased, no shape change is required, and no increase in weight or cost is caused. . That is, by making the axial length W1 of the bearings 52L and 52R longer than the axial length W2 of the bearings 53L and 53R, it is possible to suppress the deflection of the output shaft 13 while suppressing an increase in weight and cost.

また、第2ローラ32の第1ローラ31とのローラ接触面における軸方向端部の第1ローラ31側への変形量が抑制されるため、ローラ間の接触面圧を高めることができ、トルク伝達効率が向上する。   In addition, since the amount of deformation of the axial end of the second roller 32 on the roller contact surface with the first roller 31 toward the first roller 31 is suppressed, the contact surface pressure between the rollers can be increased, and torque can be increased. Transmission efficiency is improved.

さらに、出力軸13の撓みが抑えられることで、クランクシャフト51L,51Rの隣接端にそれぞれ設けたリングギヤ51Lc,51Rcの倒れが抑制されるため、第2ローラ32とクランクシャフト51L,51Rとの間に介装したスラストベアリング54L,54Rへの入力が小さくなり、フリクション低減を図ることができる。   Further, since the bending of the output shaft 13 is suppressed, the falling of the ring gears 51Lc and 51Rc provided at the adjacent ends of the crankshafts 51L and 51R is suppressed, so that the second roller 32 and the crankshafts 51L and 51R Therefore, the input to the thrust bearings 54L and 54R interposed between the two is reduced, and the friction can be reduced.

また、実施例1の駆動力配分装置1では、軸受52L,52Rの軸受支持スパンS1を軸受53L,53Rの軸受支持スパンS2よりも短く設定した。出力軸13の撓み量は、出力軸13の径方向振動の最大振幅で決まり、この最大振幅は、軸受52L,52Rの軸受支持スパンS1を短くするほど小さくなる。すなわち、出力軸13の最大撓み量を小さくでき、撓みを効果的に抑制できる。   In the driving force distribution device 1 according to the first embodiment, the bearing support span S1 of the bearings 52L and 52R is set shorter than the bearing support span S2 of the bearings 53L and 53R. The amount of deflection of the output shaft 13 is determined by the maximum amplitude of radial vibration of the output shaft 13, and this maximum amplitude decreases as the bearing support span S1 of the bearings 52L and 52R is shortened. That is, the maximum deflection amount of the output shaft 13 can be reduced, and the deflection can be effectively suppressed.

次に、効果を説明する。
実施例1の駆動力配分装置1では、以下に列挙する効果を奏する。
(1) 第1ローラ31および第2ローラ32と、ローラ間径方向押圧接触により発生する反力を受けるベアリングサポート23,25と、第2ローラ32の回転軸である出力軸13に対してオフセットした回転軸を有するクランクシャフト51L,51Rと、出力軸13をクランクシャフト51L,51Rに支承する一対の軸受52L,52Rと、クランクシャフト51L,51Rの回転軸である偏心外周部51Lb,51Rbをベアリングサポート23,25に支承する一対の軸受53L,53Rと、クランクシャフト51L,51Rを回転させローラ間径方向押圧接触状態を変更するローラ間押し付け力制御モータ45と、を備え、軸受52L,52Rの軸方向長さW1を、軸受53L,53Rの軸方向長さW2よりも長く設定した。
これにより、第2ローラ32の第1ローラ31との接触面の変形を小さく抑え、ローラ摩擦面の耐久性低下を抑制できる。また、ローラ間の接触面圧が高くなると共に、クランクシャフト51L,51Rの倒れを抑制できるため、トルク伝達効率の向上を図ることができる。
さらに、軸受53L,53Rの軸方向長さW2を短くできるため、軸受53L,53Rを取り付けるベアリングサポート23,25の大型化を回避して重量増およびコストアップを抑制できる。
Next, the effect will be described.
The driving force distribution device 1 according to the first embodiment has the following effects.
(1) Offset with respect to the first roller 31 and the second roller 32, bearing supports 23 and 25 that receive a reaction force generated by the radial pressing contact between the rollers, and the output shaft 13 that is the rotation shaft of the second roller 32 Crankshafts 51L, 51R having a rotating shaft, a pair of bearings 52L, 52R for supporting the output shaft 13 on the crankshafts 51L, 51R, and eccentric outer peripheral portions 51Lb, 51Rb which are rotating shafts of the crankshafts 51L, 51R A pair of bearings 53L and 53R supported on the supports 23 and 25, and an inter-roller pressing force control motor 45 that rotates the crankshafts 51L and 51R to change the radial pressing contact state between the rollers. The axial length W1 was set longer than the axial length W2 of the bearings 53L and 53R.
Thereby, the deformation of the contact surface of the second roller 32 with the first roller 31 can be suppressed to be small, and the durability of the roller friction surface can be prevented from being lowered. Further, the contact surface pressure between the rollers is increased, and the crankshafts 51L and 51R can be prevented from falling, so that the torque transmission efficiency can be improved.
Further, since the axial length W2 of the bearings 53L and 53R can be shortened, the bearing supports 23 and 25 to which the bearings 53L and 53R are attached can be prevented from being enlarged, and an increase in weight and cost can be suppressed.

(2) 軸受52L,52Rの軸受支持スパンS1を、軸受53L,53Rの軸受支持スパンS2よりも短く設定したため、出力軸13の最大撓み量を小さくでき、撓みを効果的に抑制できる。   (2) Since the bearing support span S1 of the bearings 52L and 52R is set shorter than the bearing support span S2 of the bearings 53L and 53R, the maximum deflection amount of the output shaft 13 can be reduced, and the deflection can be effectively suppressed.

(3) 左右後輪6L,6Rへのトルクの一部を左右前輪9L,9Rへ分配して出力することにより、前後輪間のトルク配分を決定するようにした駆動力配分装置として、駆動力配分装置1を用い、第1ローラ31を左右後輪6L,6Rへのトルク伝達経路を成す入力部材12と連結し、第2ローラ32を左右前輪9L,9Rへのトルク伝達経路を成す出力軸13と連結した。これにより、出力軸13の大径化による重量増を抑制しつつ、四輪駆動走行時における左右後輪9L,9Rへのトルク伝達効率の向上を図ることができる。   (3) As a driving force distribution device that determines the torque distribution between the front and rear wheels by distributing a part of the torque to the left and right rear wheels 6L, 6R to the left and right front wheels 9L, 9R, the driving force Using the distribution device 1, the first roller 31 is connected to the input member 12 that forms the torque transmission path to the left and right rear wheels 6L, 6R, and the second roller 32 is the output shaft that forms the torque transmission path to the left and right front wheels 9L, 9R. Concatenated with 13. Accordingly, it is possible to improve the torque transmission efficiency to the left and right rear wheels 9L and 9R during four-wheel drive traveling while suppressing an increase in weight due to the increase in the diameter of the output shaft 13.

図5は、実施例2の駆動力配分装置1の要部拡大図である。なお、実施例1と共通する部位については、同一呼称、同一符号で表す。
実施例2の駆動力配分装置1では、図5に示すように、軸受52L,52Rの軸受支持スパンS1を、軸受53L,53Rの軸受支持スパンS2と同一長さに設定した。
実施例2の駆動力配分装置1では、上記構成としたため、出力軸13の撓みを抑制できる。よって、実施例1の効果(1),(3)と同様の効果を奏する。
FIG. 5 is an enlarged view of a main part of the driving force distribution device 1 according to the second embodiment. In addition, about the site | part which is common in Example 1, it represents with the same name and the same code | symbol.
In the driving force distribution device 1 of Example 2, as shown in FIG. 5, the bearing support span S1 of the bearings 52L and 52R is set to the same length as the bearing support span S2 of the bearings 53L and 53R.
Since the driving force distribution device 1 according to the second embodiment has the above configuration, the output shaft 13 can be prevented from being bent. Therefore, the same effects as the effects (1) and (3) of the first embodiment are obtained.

6L,6R 左右後輪(主駆動輪)
9L,9R 左右前輪(従駆動輪)
23,25 ベアリングサポート(回転支持板)
31 第1ローラ
32 第2ローラ
45 (伝達トルク容量変更手段)
51L,51R クランクシャフト(偏心部材)
52L,52R 軸受(内側軸受)
53L,53R 軸受(外側軸受)
6L, 6R Left and right rear wheels (main drive wheels)
9L, 9R Left and right front wheels (sub driven wheels)
23,25 Bearing support (rotating support plate)
31 1st roller
32 Second roller
45 (Transmission torque capacity changing means)
51L, 51R Crankshaft (eccentric member)
52L, 52R bearing (inner bearing)
53L, 53R bearing (outer bearing)

Claims (3)

第1ローラおよび第2ローラと、
ローラ間径方向押圧接触により発生する反力を受ける回転支持板と、
前記第2ローラの回転軸に対してオフセットした回転軸を有する偏心部材と、
前記第2ローラの回転軸を前記偏心部材に支承する一対の内側軸受と、
前記偏心部材の回転軸を前記回転支持板に支承する一対の外側軸受と、
前記偏心部材を回転させローラ間径方向押圧接触状態を変更する伝達トルク容量変更手段と、
を備え、
前記内側軸受の軸方向長さを、前記外側軸受の軸方向長さよりも長く設定したことを特徴とする摩擦伝動装置。
A first roller and a second roller;
A rotating support plate that receives a reaction force generated by a radial pressing contact between the rollers;
An eccentric member having a rotation axis offset with respect to the rotation axis of the second roller;
A pair of inner bearings for supporting the rotating shaft of the second roller on the eccentric member;
A pair of outer bearings for supporting the rotation shaft of the eccentric member on the rotation support plate;
A transmission torque capacity changing means for rotating the eccentric member to change the radial pressing contact state between the rollers;
With
The friction transmission device according to claim 1, wherein an axial length of the inner bearing is set longer than an axial length of the outer bearing.
請求項1に記載の摩擦伝動装置において、
前記一対の内側軸受の軸方向中心間距離を、前記一対の外側軸受の軸方向中心間距離よりも短く設定したことを特徴とする摩擦伝動装置。
The friction transmission device according to claim 1,
The friction transmission apparatus characterized in that an axial center distance between the pair of inner bearings is set shorter than an axial center distance between the pair of outer bearings.
主駆動輪へのトルクの一部を従駆動輪へ分配して出力することにより、主従駆動輪間のトルク配分を決定するようにした駆動力配分装置として、請求項1または請求項2に記載の摩擦伝動装置を適用し、
前記第1ローラを主駆動輪へのトルク伝達経路を成す回転部材と連結し、
前記第2ローラを従駆動輪へのトルク伝達経路を成す回転部材と連結したことを特徴とする駆動力配分装置。
The driving force distribution device according to claim 1 or 2, wherein a part of the torque to the main drive wheels is distributed to the slave drive wheels and output to determine the torque distribution between the main and slave drive wheels. Apply friction transmission device,
Connecting the first roller to a rotating member forming a torque transmission path to the main drive wheel;
A driving force distribution device, wherein the second roller is connected to a rotating member that forms a torque transmission path to the driven wheel.
JP2009042322A 2009-02-25 2009-02-25 Driving force distribution device Expired - Fee Related JP5163537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042322A JP5163537B2 (en) 2009-02-25 2009-02-25 Driving force distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042322A JP5163537B2 (en) 2009-02-25 2009-02-25 Driving force distribution device

Publications (2)

Publication Number Publication Date
JP2010196793A true JP2010196793A (en) 2010-09-09
JP5163537B2 JP5163537B2 (en) 2013-03-13

Family

ID=42821716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042322A Expired - Fee Related JP5163537B2 (en) 2009-02-25 2009-02-25 Driving force distribution device

Country Status (1)

Country Link
JP (1) JP5163537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183412A1 (en) * 2012-06-04 2013-12-12 日産自動車株式会社 Driving force distribution device
WO2014024540A1 (en) * 2012-08-09 2014-02-13 日産自動車株式会社 Driving force distribution device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233956U (en) * 1988-08-29 1990-03-05
JPH0375346U (en) * 1989-11-27 1991-07-29
JPH0979335A (en) * 1995-09-08 1997-03-25 Mitsubishi Heavy Ind Ltd Direct driven type conversion device
JP2002349653A (en) * 2001-05-28 2002-12-04 Nsk Ltd Frictional roller system of transmission
JP2005188701A (en) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd Friction gearing
JP2008215559A (en) * 2007-03-07 2008-09-18 Nissan Motor Co Ltd Friction transmission gearbox unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233956U (en) * 1988-08-29 1990-03-05
JPH0375346U (en) * 1989-11-27 1991-07-29
JPH0979335A (en) * 1995-09-08 1997-03-25 Mitsubishi Heavy Ind Ltd Direct driven type conversion device
JP2002349653A (en) * 2001-05-28 2002-12-04 Nsk Ltd Frictional roller system of transmission
JP2005188701A (en) * 2003-12-26 2005-07-14 Nissan Motor Co Ltd Friction gearing
JP2008215559A (en) * 2007-03-07 2008-09-18 Nissan Motor Co Ltd Friction transmission gearbox unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183412A1 (en) * 2012-06-04 2013-12-12 日産自動車株式会社 Driving force distribution device
WO2014024540A1 (en) * 2012-08-09 2014-02-13 日産自動車株式会社 Driving force distribution device

Also Published As

Publication number Publication date
JP5163537B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US9490679B2 (en) Wheel driving device
JP5262588B2 (en) Driving force distribution device
US8734283B2 (en) Speed reduction mechanism, and motor torque transmission device including the same
JP5263173B2 (en) Friction roller transmission
JP2017190782A (en) Differential apparatus
JP5644455B2 (en) Roller friction transmission unit
JP5024391B2 (en) Friction roller transmission
JP5326676B2 (en) Friction transmission
JP5163537B2 (en) Driving force distribution device
JP2010169171A (en) Driving force distribution device
JP2014019168A (en) Drive power distribution device
JP2015206372A (en) Drive force distribution device
JP2014020379A (en) Drive force distribution device
WO2017082208A1 (en) Power transmitting device
JP2017053378A (en) Transmission device and differential device
US20180291993A1 (en) Transmission device
JP2014040892A (en) Frictional roller type transmission
WO2013183413A1 (en) Driving force distribution device
WO2013183412A1 (en) Driving force distribution device
JP6011132B2 (en) Driving force distribution device
JP6361614B2 (en) Transfer device
JP2015205521A (en) driving force distribution device
WO2014024540A1 (en) Driving force distribution device
WO2018179788A1 (en) Planetary transmission device and differential device
JP4941279B2 (en) Friction roller support structure of friction transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees