JP2017053378A - Transmission device and differential device - Google Patents

Transmission device and differential device Download PDF

Info

Publication number
JP2017053378A
JP2017053378A JP2015175932A JP2015175932A JP2017053378A JP 2017053378 A JP2017053378 A JP 2017053378A JP 2015175932 A JP2015175932 A JP 2015175932A JP 2015175932 A JP2015175932 A JP 2015175932A JP 2017053378 A JP2017053378 A JP 2017053378A
Authority
JP
Japan
Prior art keywords
transmission
axis
transmission member
eccentric
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015175932A
Other languages
Japanese (ja)
Inventor
利基 加藤
Toshiki Kato
利基 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to JP2015175932A priority Critical patent/JP2017053378A/en
Publication of JP2017053378A publication Critical patent/JP2017053378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a compact-sized and light-weight transmission device comprising an eccentric rotating member in which a main shaft part rotatably supported around a first axis line and an eccentric shaft part positioned on a second axis line eccentric from the first axis line are integrally connected to each other at a casing having integrally a first transmission member; a second transmission member arranged to be adjacent to the first transmission member and rotatably supported at the eccentric shaft part; a third transmission member arranged to be adjacent to the second transmission member and rotatably supported around the first axis line at the casing; a first speed change mechanism between the first and second transmission members; and a second speed change mechanism between the second and third transmission members even if there is provided a balance weight for reducing a rotational unbalanced state in respect to an eccentric rotating system including the eccentric shaft part and the eccentric rotating member.SOLUTION: A transmission device D includes a balance weight W arranged outside in a radial direction of a second transmission member 8 and a synchronous rotation mechanism I for performing a synchronous rotation with an eccentric rotating member 6 while holding it at a position of inverse phase to that of an eccentric shaft part 6e.SELECTED DRAWING: Figure 1

Description

本発明は、伝動装置、特に第1軸線を中心軸線とする第1伝動部材を一体に有するケーシングと、そのケーシングに第1軸線回りに回転自在に支持される主軸部、および第1軸線から偏心した第2軸線上に位置する偏心軸部を互いに一体に連結してなる偏心回転部材と、第1伝動部材に隣接配置されて偏心軸部に回転自在に支持される第2伝動部材と、その第2伝動部材に隣接配置されてケーシングに第1軸線回りに回転自在に支持される第3伝動部材と、第1及び第2伝動部材間で変速しつつトルク伝達可能な第1変速機構と、第2及び第3伝動部材間で変速しつつトルク伝達可能な第2変速機構とを備えた伝動装置、並びにその伝動装置を利用した差動装置に関する。   The present invention relates to a transmission device, in particular, a casing integrally including a first transmission member having a first axis as a central axis, a main shaft portion rotatably supported around the first axis, and an eccentricity from the first axis. An eccentric rotating member formed by integrally connecting the eccentric shaft portions positioned on the second axis, a second transmission member disposed adjacent to the first transmission member and rotatably supported by the eccentric shaft portion, and A third transmission member disposed adjacent to the second transmission member and rotatably supported on the casing around the first axis; a first transmission mechanism capable of transmitting torque while shifting between the first and second transmission members; The present invention relates to a transmission device including a second transmission mechanism capable of transmitting torque while shifting between second and third transmission members, and a differential device using the transmission device.

上記伝動装置は、例えば特許文献1に示されるように従来公知であり、このものでは、偏心回転部材の偏心軸部及び第2伝動部材を含む偏心回転系の重心位置が、第1軸線から第2軸線の方向に離間した位置に偏在する。そのため、偏心回転部材の第1軸線回りの回転に伴い第2伝動部材が、偏心回転部材の偏心軸部に対し第2軸線回りに自転しつつ主軸部に対し第1軸線回りに公転するときに、上記偏心回転系の遠心力が第1軸線に関して特定方向(即ち第2軸線のオフセット側)に偏って大きく作用することから、その偏心回転系の回転がアンバランスな状態となり、これが装置の振動発生要因となる。   The transmission device is conventionally known as disclosed in, for example, Patent Document 1. In this device, the position of the center of gravity of the eccentric rotation system including the eccentric shaft portion of the eccentric rotation member and the second transmission member is changed from the first axis. It is unevenly distributed at positions separated in the direction of the two axes. Therefore, when the second transmission member revolves around the first axis with respect to the main shaft portion while rotating around the second axis with respect to the eccentric shaft portion of the eccentric rotation member as the eccentric rotation member rotates about the first axis. Since the centrifugal force of the eccentric rotation system acts largely in a specific direction with respect to the first axis (that is, the offset side of the second axis), the rotation of the eccentric rotation system becomes an unbalanced state, which is the vibration of the device. It becomes a generation factor.

そこで上記特許文献1の伝動装置では、上記偏心回転系に、それの回転のアンバランス状態を軽減するためのバランスウェイトを設けている。   Therefore, in the transmission device of Patent Document 1, a balance weight for reducing the unbalanced state of the rotation is provided in the eccentric rotation system.

特許第4814351号公報Japanese Patent No. 4814351

ところが特許文献1の伝動装置では、偏心回転部材(偏心部12d)を一体に有する回転軸(偏心軸12)に、その偏心回転部材12dに対し軸方向にずらした位置で上記バランスウェイト12cを一体に設けている。そのため、このバランスウェイト12cを設ける分だけ回転軸12が軸方向に長大化してしまう。またこのバランスウェイト12cは、それの中心部が第1軸線上に位置することから、そのウェイト12cによるバランサ効果を高めようとすると、ウェイト12cを第1軸線上から径方向外方に長く延ばす必要があり、それだけウェイト重量の増大要因となる。   However, in the transmission device of Patent Document 1, the balance weight 12c is integrated with a rotating shaft (eccentric shaft 12) integrally including an eccentric rotating member (eccentric portion 12d) at a position shifted in the axial direction with respect to the eccentric rotating member 12d. Provided. For this reason, the rotation shaft 12 is elongated in the axial direction by the provision of the balance weight 12c. Since the balance weight 12c is located on the first axis, the balance weight 12c requires the weight 12c to extend radially outward from the first axis in order to enhance the balancer effect of the weight 12c. There is an increase in weight weight.

更にそのバランスウェイト12cと偏心回転部材12dとが軸方向にずれて配設される関係で、その両者の重心に作用する逆向きの遠心力が、回転軸12に対し偶力を少なからず発生させるため、その偶力が振動発生要因となる。   Further, since the balance weight 12c and the eccentric rotating member 12d are disposed so as to be shifted in the axial direction, the centrifugal force in the reverse direction acting on the center of gravity of the both generates a couple of forces on the rotating shaft 12. Therefore, the couple becomes a cause of vibration.

また、ケーシング内において、第2伝動部材(偏心板4)の周囲には、これの偏心回転を許容するためにデッドスペースが生じているが、特許文献1のものでは、このデッドスペースを他の機能部品の設置スペースとして有効活用する工夫が特になされていない。   In the casing, a dead space is generated around the second transmission member (eccentric plate 4) to allow the eccentric rotation of the second transmission member (eccentric plate 4). There is no particular contrivance to effectively use it as an installation space for functional parts.

本発明は、かかる事情に鑑みてなされたものであって、上記問題を一挙に解決することができる構造簡単且つコンパクトな伝動装置及び差動装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a transmission device and a differential device that have a simple structure and can solve the above problems at once.

上記目的を達成するために、本発明は、第1軸線を中心軸線とする第1伝動部材を一体に有するケーシングと、そのケーシングに前記第1軸線回りに回転自在に支持される主軸部、および前記第1軸線から偏心した第2軸線上に位置する偏心軸部を互いに一体に連結してなる偏心回転部材と、前記第1伝動部材に隣接配置されて前記偏心軸部に回転自在に支持される第2伝動部材と、その第2伝動部材に隣接配置されて前記ケーシングに前記第1軸線回りに回転自在に支持される第3伝動部材と、前記第1及び第2伝動部材間で変速しつつトルク伝達可能な第1変速機構と、前記第2及び第3伝動部材間で変速しつつトルク伝達可能な第2変速機構とを備えた伝動装置において、前記第2伝動部材の径方向外方に配置されるバランスウェイトと、このバランスウェイトを、前記第1軸線に関して前記偏心軸部とは逆位相の位置に保持しつつ前記偏心回転部材と同期回転させる同期回転機構とを備えることを第1の特徴とする。   In order to achieve the above object, the present invention provides a casing integrally including a first transmission member having a first axis as a central axis, a main shaft portion rotatably supported by the casing around the first axis, and An eccentric rotating member formed by integrally connecting eccentric shaft portions positioned on a second axis that is eccentric from the first axis, and adjacent to the first transmission member, and rotatably supported by the eccentric shaft portion. A second transmission member, a third transmission member disposed adjacent to the second transmission member and supported by the casing so as to be rotatable around the first axis, and a speed change between the first and second transmission members. And a second transmission mechanism capable of transmitting torque while shifting between the second transmission member and the third transmission member, wherein the second transmission member is radially outward. Balance weight placed on , The balance weight, the first; and a synchronous rotating mechanism for the rotating eccentric rotating member and synchronously while maintaining the position of the opposite phase from that of the eccentric shaft portion with respect to said first axis.

また本発明は、第1の特徴に加えて、前記同期回転機構は、前記第2伝動部材の外周に前記第2軸線回りに回転自在に支持される第1支持部と、前記ケーシング又は前記第3伝動部材に前記第1軸線回りに回転自在に支持される第2支持部と、それら第1及び第2支持部間を一体的に連結する連結部とを有していて、該第1支持部又は連結部に前記バランスウェイトを前記逆位相の位置で保持することを第2の特徴とする。   According to the present invention, in addition to the first feature, the synchronous rotation mechanism includes a first support portion rotatably supported around the second axis on the outer periphery of the second transmission member, and the casing or the first 3 a second support portion that is rotatably supported by the transmission member around the first axis, and a connecting portion that integrally connects the first and second support portions; A second feature is that the balance weight is held at the position of the opposite phase in the portion or the connecting portion.

また本発明は、前記第1又は第2の特徴に加えて、前記第1変速機構は、第1伝動部材の、第2伝動部材との対向面に第1軸線を中心として形成される波形環状の第1伝動溝と、第2伝動部材の、第1伝動部材との対向面に第2軸線を中心として形成される波形環状で波数が第1伝動溝とは異なる第2伝動溝と、第1及び第2伝動溝の複数の重なり部に介装され、第1及び第2伝動溝を転動しながら第1及び第2伝動部材間の変速伝動を行う複数の第1転動体とで構成され、また前記第2変速機構は、第2伝動部材の、第3伝動部材との対向面に第2軸線を中心として形成される波形環状の第3伝動溝と、第3伝動部材の、第2伝動部材との対向面に第1軸線を中心として形成される波形環状で波数が第3伝動溝とは異なる第4伝動溝と、第3及び第4伝動溝の複数の重なり部に介装され、第3及び第4伝動溝を転動しながら第2及び第3伝動部材間の変速伝動を行う複数の第2転動体とで構成されることを第3の特徴とする。   Further, according to the present invention, in addition to the first or second feature, the first speed change mechanism is a corrugated ring formed around a first axis on a surface of the first transmission member facing the second transmission member. A first transmission groove and a second transmission groove of the second transmission member, the second transmission groove having a wave number different from the first transmission groove and having a wave number formed around the second axis on the surface facing the first transmission member, A plurality of first rolling elements that are interposed in a plurality of overlapping portions of the first and second transmission grooves and that perform variable speed transmission between the first and second transmission members while rolling the first and second transmission grooves; The second transmission mechanism includes a wavy annular third transmission groove formed around the second axis on a surface of the second transmission member facing the third transmission member, and a third transmission member, A fourth transmission groove having a wave shape and a wave number different from the third transmission groove formed on the surface facing the two transmission members around the first axis; And a plurality of second rolling elements interposed between a plurality of overlapping portions of the fourth transmission groove and performing transmission transmission between the second and third transmission members while rolling on the third and fourth transmission grooves. This is the third feature.

また本発明は、前記第3の特徴を有する伝動装置を利用した差動装置であって、
前記ケーシングは、第1伝動部材を一体的に有していて動力を入力されるデフケースであり、このデフケースには、主軸部に接続される第1ドライブ軸と、第3伝動部材に接続される第2ドライブ軸とが回転可能に支持され、第1伝動溝の波数をZ1、第2伝動溝の波数をZ2、第3伝動溝の波数をZ3、第4伝動溝の波数をZ4としたとき、次式
(Z1/Z2)×(Z3/Z4)=2 が成立することを第4の特徴とする。
Further, the present invention is a differential device using the transmission device having the third feature,
The casing is a differential case that integrally has a first transmission member and receives power. The differential case is connected to a first drive shaft connected to the main shaft portion and a third transmission member. When the second drive shaft is rotatably supported, the wave number of the first transmission groove is Z1, the wave number of the second transmission groove is Z2, the wave number of the third transmission groove is Z3, and the wave number of the fourth transmission groove is Z4. The fourth feature is that the following expression (Z1 / Z2) × (Z3 / Z4) = 2 holds.

本発明の第1の特徴によれば、第2伝動部材の径方向外方に配置されるバランスウェイトと、このバランスウェイトを、第1軸線に関して偏心回転部材の偏心軸部とは逆位相の位置に保持しつつ偏心回転部材と同期回転させる同期回転機構とを備えるので、偏心回転部材の偏心軸部及び第2伝動部材を含む偏心回転系の重心位置が、第1軸線から第2軸線の方向に離間した位置に偏在しても、偏心回転部材の第1軸線回りの回転に伴い第2伝動部材が第2軸線回りに自転しつつ第1軸線回りに公転するときには、上記偏心回転系の遠心力と、バランスウェイト及び回転同期機構を含むバランサ回転系の遠心力とを極力バランスさせることができる。これにより、その前者の遠心力の偏りに起因した回転のアンバランス状態を解消又は軽減できるから、その回転のアンバランス状態に因る装置の振動発生を効果的に防止できる。   According to the first feature of the present invention, the balance weight disposed radially outward of the second transmission member, and the balance weight is positioned in a phase opposite to the eccentric shaft portion of the eccentric rotation member with respect to the first axis. The center of gravity of the eccentric rotating system including the eccentric shaft portion of the eccentric rotating member and the second transmission member is in the direction from the first axis to the second axis. If the second transmission member revolves around the first axis while rotating around the second axis along with the rotation of the eccentric rotation member around the first axis, the eccentric rotation system is centrifugally The force can be balanced as much as possible with the centrifugal force of the balancer rotation system including the balance weight and the rotation synchronization mechanism. Thereby, since the unbalanced state of rotation due to the former bias of the centrifugal force can be eliminated or reduced, it is possible to effectively prevent the occurrence of vibration of the device due to the unbalanced state of rotation.

特に上記バランスウェイトは、第2伝動部材の径方向外方に配置されるので、バランスウェイト設置のために装置が軸方向に長大化する虞れはなくなり、装置の軸方向小型化を図る上で有利となる。またこのバランスウェイトを含むバランサ回転系の重心の回転半径を、上記偏心回転系の重心の回転半径よりも十分大きく設定可能となるから、バランスウェイトの軽量化、延いては装置の軽量化に寄与することができる。しかもその両重心の軸方向のずれ量をゼロ又は僅少に設定可能であるため、その両重心に作用する遠心力に因る偶力の発生を効果的に抑制でき、その偶力発生に起因した装置の振動発生も効果的に防止できる。その上、第2伝動部材の偏心回転を許容するために第2伝動部材の周囲に生じるデッドスペースを、上記バランスウェイトの設置スペースとして有効活用できるから、それだけ装置の小型化に寄与することができる。   In particular, since the balance weight is disposed radially outward of the second transmission member, there is no possibility that the apparatus will be lengthened in the axial direction due to the installation of the balance weight, so that the apparatus can be reduced in the axial direction. It will be advantageous. In addition, since the rotation radius of the center of gravity of the balancer rotation system including this balance weight can be set sufficiently larger than the rotation radius of the center of gravity of the eccentric rotation system, it contributes to the weight reduction of the balance weight and hence the weight of the device. can do. Moreover, since the axial shift amount of both centroids can be set to zero or slightly, generation of couples due to centrifugal force acting on both centroids can be effectively suppressed. It is possible to effectively prevent the vibration of the apparatus. In addition, since the dead space generated around the second transmission member in order to allow the eccentric transmission of the second transmission member can be effectively utilized as the installation space for the balance weight, it can contribute to the downsizing of the device as much. .

また本発明の第2の特徴によれば、同期回転機構は、第2伝動部材の外周に第2軸線回りに回転自在に支持される第1支持部と、ケーシング又は第3伝動部材に第1軸線回りに回転自在に支持される第2支持部と、それら第1及び第2支持部間を一体的に連結する連結部とを有していて、第1支持部又は連結部にバランスウェイトを逆位相の位置で保持するので、第2伝動部材の外周と、ケーシング又は第3伝動部材とに跨がる構造簡単な同期回転機構により、バランスウェイトを、第1軸線に関して偏心回転部材の偏心軸部とは逆位相の位置に保持しつつ偏心回転部材と確実に同期回転させることができ、これにより、装置の構造簡素化、延いてはコスト節減に寄与することができる。   Further, according to the second feature of the present invention, the synchronous rotation mechanism includes a first support portion that is rotatably supported around the second axis on the outer periphery of the second transmission member, and the casing or the third transmission member. A second support portion rotatably supported about the axis, and a connecting portion that integrally connects the first and second support portions, and a balance weight is provided to the first support portion or the connecting portion. Since it is held at the position of the opposite phase, the balance weight is made eccentric with respect to the first axis by the simple synchronous rotation mechanism straddling the outer periphery of the second transmission member and the casing or the third transmission member. It can be reliably rotated synchronously with the eccentric rotating member while being held at a position opposite to the position of the unit, thereby contributing to simplification of the structure of the device and further cost reduction.

また本発明の第3の特徴によれば、第1及び第2伝動部材間では、波数が異なる波形環状の第1及び第2伝動溝相互の複数の重なり部に介在する複数の第1転動体を介して(即ち周方向で複数箇所に分散して)トルク伝達が行われ、また、第2及び第3伝動部材間では、波数が異なる波形環状の第3及び第4伝動溝相互の複数の重なり部に介在する複数の第2転動体を介して(即ち周方向で複数箇所に分散して)トルク伝達が行われるため、その各々の伝動要素の荷重負担が軽減されて強度増及び軽量化を図ることができ、高性能の伝動装置を提供することができる。   Further, according to the third feature of the present invention, a plurality of first rolling elements interposed between a plurality of overlapping portions of corrugated annular first and second transmission grooves having different wave numbers between the first and second transmission members. (Ie, distributed in a plurality of locations in the circumferential direction) to transmit torque, and between the second and third transmission members, a plurality of wave-shaped annular third and fourth transmission grooves having different wave numbers Torque is transmitted via a plurality of second rolling elements interposed in the overlapping portion (that is, distributed in a plurality of locations in the circumferential direction), so that the load burden on each transmission element is reduced and the strength is increased and the weight is reduced. Therefore, a high-performance transmission device can be provided.

また本発明の第4の特徴によれば、上記伝動装置を差動装置として利用可能となる。   According to the fourth aspect of the present invention, the transmission can be used as a differential device.

本発明の第1実施形態に係る差動装置の縦断正面図1 is a longitudinal front view of a differential gear according to a first embodiment of the present invention. 前記差動装置の要部の分解斜視図The exploded perspective view of the principal part of the differential 図1の3−3矢視断面図3-3 arrow sectional view of FIG. 図1の4−4矢視断面図4-4 cross-sectional view of FIG. 図1の5−5矢視断面図Sectional view along arrow 5-5 in FIG. 本発明の第2実施形態に係る差動装置の縦断正面図(図1対応図)Longitudinal front view of the differential according to the second embodiment of the present invention (corresponding to FIG. 1) 図6の7−7矢視断面図7-7 sectional view of FIG. 本発明の第3実施形態に係る差動装置の縦断正面図(図1、図6対応図)A longitudinal front view of a differential gear according to a third embodiment of the present invention (corresponding to FIGS. 1 and 6).

本発明の実施形態を添付図面に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1〜図5に示す本発明の第1実施形態の説明より始める。図1において、自動車のミッションケース1内には変速装置と共に差動装置Dが収容され、この差動装置Dが本発明の伝動装置を構成する。   First, the description starts with the description of the first embodiment of the present invention shown in FIGS. In FIG. 1, a differential device D is housed in a transmission case 1 of an automobile together with a transmission, and this differential device D constitutes a transmission device of the present invention.

この差動装置Dは、前記変速装置の出力側に連動回転する斜歯ギヤよりなるドリブンギヤ3の回転を、差動装置Dの中心軸線即ち第1軸線X1上に相対回転可能に並ぶ左右の駆動車軸S1、S2に対して、両駆動車軸S1、S2相互の差動回転を許容しつつ分配する。   This differential device D is a left-right drive in which the rotation of the driven gear 3 composed of an inclined gear that rotates in conjunction with the output side of the transmission is arranged on the central axis of the differential device D, that is, the first axis X1 so as to be relatively rotatable. Distributing the axles S1 and S2 while allowing differential rotation between the drive axles S1 and S2.

図1に明示したように、差動装置Dは、第1軸線X1上で第1及び第2軸受11,12を介してミッションケース1に回転可能に支持されるデフケースCを備える。このデフケースCは、第1ケース半体C1と、この第1ケース半体C1に溶接又はボルト止めされる第2ケース半体C2とで構成される。   As clearly shown in FIG. 1, the differential device D includes a differential case C that is rotatably supported by the transmission case 1 via the first and second bearings 11 and 12 on the first axis X1. The differential case C includes a first case half C1 and a second case half C2 welded or bolted to the first case half C1.

第2ケース半体C2は、椀状に形成されており、それの小径端部の中央ボス部が第2軸受12を介してミッションケース1に回転自在に支持される。一方、第1ケース半体C1は、第2ケース半体C2の大径端面を塞ぐように扁平に形成されて外周端部が第2ケース半体C2の開放端部に溶接又はボルト止めされ、またその第1ケース半体C1の中央ボス部が第1軸受11を介してミッションケース1に回転自在に支持される。而して、デフケースCは本発明のケーシングを、また第1ケース半体C1は本発明の第1伝動部材をそれぞれ構成する。   The second case half C2 is formed in a bowl shape, and the central boss portion of the small diameter end portion thereof is rotatably supported by the transmission case 1 via the second bearing 12. On the other hand, the first case half C1 is formed flat so as to close the large-diameter end face of the second case half C2, and the outer peripheral end is welded or bolted to the open end of the second case half C2. The central boss portion of the first case half C1 is rotatably supported by the transmission case 1 via the first bearing 11. Thus, the differential case C constitutes the casing of the present invention, and the first case half C1 constitutes the first transmission member of the present invention.

第1ケース半体C1には、差動装置Dの、デフケースC内に配置した第1出力軸6が第1軸線X1上の第3軸受13を介して回転可能に支持され、この第1出力軸6に右方の駆動車軸S1がスプライン結合される。また第2ケース半体C2には、差動装置Dの、デフケースC内に配置した第2出力軸7が第1軸線X1上の第4軸受14を介して回転可能に支持され、この第2出力軸7に左方の駆動車軸S2がスプライン結合される。而して、右方の駆動車軸S1が第1ドライブ軸を、また左方の駆動車軸S2が第2ドライブ軸を構成する。   A first output shaft 6 disposed in the differential case C of the differential device D is rotatably supported by the first case half body C1 via a third bearing 13 on the first axis X1, and this first output The right driving axle S1 is splined to the shaft 6. The second case half C2 is rotatably supported by a second output shaft 7 of the differential device D disposed in the differential case C via a fourth bearing 14 on the first axis X1. The left drive axle S2 is splined to the output shaft 7. Thus, the right drive axle S1 constitutes the first drive shaft, and the left drive axle S2 constitutes the second drive shaft.

第1出力軸6は、第1軸線X1上の第3軸受13を介して回転可能に支持され且つ右方の駆動車軸S1がスプライン結合される主軸部6jと、第1軸線X1から一定距離eだけ偏心した第2軸線X2上に配置される偏心軸部6eとを結合一体化して成るものであって、本発明の偏心回転部材を構成する。   The first output shaft 6 is rotatably supported via a third bearing 13 on the first axis X1, and a main shaft portion 6j to which the right drive axle S1 is splined, and a fixed distance e from the first axis X1. An eccentric shaft member 6e disposed on the second axis line X2 that is eccentric as much as possible is combined and integrated, and constitutes an eccentric rotating member of the present invention.

その第1出力軸6の偏心軸部6eには、デフケースC(特に第2ケース半体C2)内に配置されて第2軸線X2を中心軸線とする円環状に形成される第2伝動部材8が、第2軸線X2上の第5軸受15を介して回転自在に嵌合支持される。これにより、その第2伝動部材8は、第1出力軸6の第1軸線X1回りの回転に伴い、第1出力軸6の偏心軸部6eに対し第2軸線X2回りに自転しつつ、主軸部6jに対し第1軸線X1回りに公転可能である。   The eccentric shaft portion 6e of the first output shaft 6 is disposed in the differential case C (particularly, the second case half C2) and is formed in an annular shape having the second axis X2 as the central axis. Is fitted and supported rotatably via the fifth bearing 15 on the second axis X2. As a result, the second transmission member 8 rotates around the second axis X2 with respect to the eccentric shaft portion 6e of the first output shaft 6 while rotating around the first axis X1 of the first output shaft 6 while rotating the main shaft The part 6j can revolve around the first axis X1.

第2出力軸7は、第1軸線X1上の第4軸受14を介して回転可能に支持され且つ左方の駆動車軸S2がスプライン結合される主軸部7jと、その主軸部7jの内端部に同軸状に連設される円板部7cとを結合一体化して成るものであって、本発明の第3伝動部材を構成する。   The second output shaft 7 is rotatably supported via a fourth bearing 14 on the first axis X1, and a main shaft portion 7j to which the left drive axle S2 is spline-coupled, and an inner end portion of the main shaft portion 7j And a disk portion 7c that is coaxially connected to each other, and constitutes a third transmission member of the present invention.

尚、第1ケース半体C1の内側面と第1出力軸6(偏心軸部6e)との間、及び第2ケース半体C2の内側面と第2出力軸7(円板部7c)との間には、第1スラストワッシャ29及び第2スラストワッシャ30がそれぞれ相対回転自在に介装される。   The inner surface of the first case half C1 and the first output shaft 6 (eccentric shaft portion 6e), and the inner surface of the second case half C2 and the second output shaft 7 (disc portion 7c) A first thrust washer 29 and a second thrust washer 30 are interposed between the first thrust washer 29 and the second thrust washer 30, respectively.

ところで第2伝動部材8は、本実施形態では、互いに軸方向に隣接し且つ一体的に結合される一対の伝動部材半体8a,8bより分割構成され、その両伝動部材半体8a,8bの相互間は、適当な固着手段(例えば溶接、ボルト止め等)を以て一体的に結合される。そして、この第2伝動部材8の一側(即ち一方の伝動部材半体8a)が、第1伝動部材としての第1ケース半体C1の内側面に隣接、対向し、またその第2伝動部材8の他側(即ち他方の伝動部材半体8b)が、第3伝動部材としての第2出力軸7の前記円板部7dの内側面に隣接、対向する。   Incidentally, in the present embodiment, the second transmission member 8 is divided into a pair of transmission member halves 8a and 8b that are adjacent to each other in the axial direction and are integrally coupled, and the two transmission member halves 8a and 8b are divided. The two are integrally connected with each other by appropriate fixing means (for example, welding, bolting, etc.). And one side (namely, one transmission member half body 8a) of this 2nd transmission member 8 adjoins and opposes the inner surface of the 1st case half body C1 as a 1st transmission member, and the 2nd transmission member The other side of 8 (that is, the other transmission member half 8b) is adjacent to and faces the inner surface of the disk portion 7d of the second output shaft 7 as the third transmission member.

図1、図2及び図5に示すように、第1伝動部材としての第1ケース半体C1の、第2伝動部材8の一側面(即ち一方の伝動部材半体8a)に対向する内側面には、第1軸線X1を中心とした波形環状の第1伝動溝21が形成され、この第1伝動溝21は、図示例では第1軸線X1を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第2伝動部材8の、第1ケース半体C1に対向する一側面には、第2軸線X2を中心とした波形環状の第2伝動溝22が形成される。この第2伝動溝22は、図示例では第2軸線X2を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、上記第1伝動溝21の波数よりも少ない波数を有して第1伝動溝21と複数箇所で重なる。これら第1伝動溝21及び第2伝動溝22の重なり部に第1転動体としての複数の第1伝動ボール23が介装されており、各々の第1伝動ボール23は、それら第1及び第2伝動溝21,22の内側面を転動自在である。尚、複数の第1伝動ボール23は、円環状の第1レース板27により同一円周上の略等間隔位置に保持される。   As shown in FIGS. 1, 2, and 5, the inner surface of the first case half C <b> 1 as the first transmission member that faces one side surface of the second transmission member 8 (that is, one transmission member half body 8 a). Is formed with a wave-shaped annular first transmission groove 21 centered on the first axis X1, and in the illustrated example, the first transmission groove 21 is a hypo circle based on a virtual circle centered on the first axis X1. It extends in the circumferential direction along the trochoid curve. On the other hand, a corrugated annular second transmission groove 22 centering on the second axis X2 is formed on one side surface of the second transmission member 8 facing the first case half C1. In the illustrated example, the second transmission groove 22 extends in the circumferential direction along an epitrochoid curve having a virtual circle centered on the second axis X2 as a base circle, and is smaller than the wave number of the first transmission groove 21. It has a wave number and overlaps the first transmission groove 21 at a plurality of locations. A plurality of first transmission balls 23 as first rolling elements are interposed in the overlapping portion of the first transmission groove 21 and the second transmission groove 22, and each of the first transmission balls 23 includes the first and second transmission balls 23. 2 The inner surfaces of the transmission grooves 21 and 22 can roll freely. The plurality of first transmission balls 23 are held at substantially equal intervals on the same circumference by an annular first race plate 27.

また、図1〜図4に示すように、第2伝動部材8の他側面(即ち他方の伝動部材半体8b)には、第2軸線X2を中心とした波形環状の第3伝動溝24が形成され、この第3伝動溝24は、図示例では第2軸線X2を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第3伝動部材としての第2出力軸7の、第2伝動部材8との対向面すなわち円板部7cの内側面には、第1軸線X1を中心とした波形環状の第4伝動溝25が形成される。この第4伝動溝25は、図示例では第1軸線X1を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、上記第3伝動溝24の波数よりも少ない波数を有して第3伝動溝24と複数箇所で重なる。これら第3伝動溝24及び第4伝動溝25の重なり部に第2転動体としての複数の第2伝動ボール26が介装されており、各々の第2伝動ボール26は、それら第3及び第4伝動溝24,25の内側面を転動自在である。尚、複数の第2伝動ボール26は、円環状の第2レース板28により同一円周上の略等間隔位置に保持される。   As shown in FIGS. 1 to 4, the other side surface of the second transmission member 8 (that is, the other transmission member half body 8 b) has a wavy annular third transmission groove 24 centered on the second axis X <b> 2. The third transmission groove 24 is formed and extends in the circumferential direction along a hypotrochoidal curve having a virtual circle centered on the second axis X2 as a base circle in the illustrated example. On the other hand, on the surface facing the second transmission member 8 of the second output shaft 7 as the third transmission member, that is, on the inner surface of the disc portion 7c, a wavy annular fourth transmission groove centered on the first axis X1. 25 is formed. In the illustrated example, the fourth transmission groove 25 extends in the circumferential direction along an epitrochoidal curve having a virtual circle centered on the first axis X1 as a base circle, and is smaller than the wave number of the third transmission groove 24. It has a wave number and overlaps with the third transmission groove 24 at a plurality of locations. A plurality of second transmission balls 26 as second rolling elements are interposed in the overlapping portion of the third transmission groove 24 and the fourth transmission groove 25, and each of the second transmission balls 26 includes the third and the third transmission balls 26. 4 The inner surfaces of the transmission grooves 24 and 25 can roll freely. The plurality of second transmission balls 26 are held at substantially equal intervals on the same circumference by the annular second race plate 28.

以上において、第1伝動溝21の波数をZ1、第2伝動溝22の波数をZ2、第3伝動溝24の波数をZ3、第4伝動溝25の波数をZ4としたとき、下記式が成立するように、第1〜第4伝動溝21,22,24,25は形成される。
(Z1/Z2)×(Z3/Z4)=2
望ましくは、図示例のように、Z1=8、Z2=6、Z3=6、Z4=4とするか、又はZ1=6、Z2=4、Z3=8、Z4=6とするとよい。
In the above, when the wave number of the first transmission groove 21 is Z1, the wave number of the second transmission groove 22 is Z2, the wave number of the third transmission groove 24 is Z3, and the wave number of the fourth transmission groove 25 is Z4, the following equation is established. Thus, the first to fourth transmission grooves 21, 22, 24, 25 are formed.
(Z1 / Z2) × (Z3 / Z4) = 2
Desirably, Z1 = 8, Z2 = 6, Z3 = 6, Z4 = 4, or Z1 = 6, Z2 = 4, Z3 = 8, and Z4 = 6 as shown in the illustrated example.

尚、図示例では、8波の第1伝動溝21と6波の第2伝動溝22とが7箇所で重なり、この7箇所の重なり部に7個の第1伝動ボール23が介装され、また6波の第3伝動溝24と4波の第4伝動溝25とが5箇所で重なり、この5箇所の重なり部に5個の第2伝動ボール26が介装される。   In the illustrated example, the eight-wave first transmission groove 21 and the six-wave second transmission groove 22 overlap at seven locations, and seven first transmission balls 23 are interposed in the seven overlapping portions, Further, the six-wave third transmission groove 24 and the four-wave fourth transmission groove 25 overlap at five locations, and five second transmission balls 26 are interposed at the five overlapping portions.

而して、第1伝動溝21、第2伝動溝22及び第1伝動ボール23は互いに協働して、第1ケース半体C1(第1伝動部材)及び第2伝動部材8間で変速しつつトルク伝達可能な第1変速機構T1を構成し、また第3伝動溝24、第4伝動溝25及び第2伝動ボール26は互いに協働して、第2伝動部材8及び第2出力軸7(第3伝動部材)間で変速しつつトルク伝達可能な第2変速機構T2を構成する。   Thus, the first transmission groove 21, the second transmission groove 22, and the first transmission ball 23 cooperate with each other to shift between the first case half C1 (first transmission member) and the second transmission member 8. The first transmission mechanism T1 capable of transmitting torque while constituting the third transmission groove 24, the fourth transmission groove 25, and the second transmission ball 26 cooperate with each other to form the second transmission member 8 and the second output shaft 7. A second transmission mechanism T2 capable of transmitting torque while shifting between the (third transmission members) is configured.

ところで本実施形態では、偏心回転部材としての第1出力軸6の偏心軸部6e及び第2伝動部材8を含む偏心回転系の重心Geの位置が、第1軸線X1から第2軸線X2の方向に離間した位置に偏在する。このため、第1出力軸6の第1軸線X1回りの回転に伴い第2伝動部材8が、偏心軸部6eに対し第2軸線X2回りに自転しつつ主軸部6jに対し第1軸線X1回りに公転するときに、上記偏心回転系の遠心力が第1軸線X1に関して特定方向(即ち第2軸線X2の側)に偏って作用することから、その偏心回転系の回転がアンバランスな状態となり、これが差動装置Dの振動発生要因となる。   By the way, in this embodiment, the position of the gravity center Ge of the eccentric rotation system including the eccentric shaft portion 6e of the first output shaft 6 as the eccentric rotation member and the second transmission member 8 is the direction from the first axis X1 to the second axis X2. Are unevenly distributed at positions separated from each other. Therefore, as the first output shaft 6 rotates about the first axis X1, the second transmission member 8 rotates about the second axis X2 relative to the eccentric shaft 6e and rotates about the first axis X1 relative to the main axis 6j. Since the centrifugal force of the eccentric rotation system is biased in a specific direction (that is, the second axis X2 side) with respect to the first axis X1, the rotation of the eccentric rotation system becomes unbalanced. This is a cause of vibration of the differential device D.

そこで第1実施形態の差動装置Dでは、上記偏心回転系の回転のアンバランス状態を解消又は軽減するためのバランスウェイトWを、第2伝動部材8の径方向外方に特別に配設し、更にこのバランスウェイトWを第1軸線X1に関して偏心軸部6eとは逆位相の位置に保持しつつ偏心回転部材6と同期回転させる同期回転機構Iを設けている。   Therefore, in the differential device D of the first embodiment, a balance weight W for eliminating or reducing the rotation unbalanced state of the eccentric rotation system is specially disposed on the radially outer side of the second transmission member 8. Further, a synchronous rotation mechanism I is provided that rotates the balance weight W in synchronization with the eccentric rotation member 6 while maintaining the balance weight W at a position opposite to the eccentric shaft portion 6e with respect to the first axis X1.

特に第1実施形態の同期回転機構Iは、第2伝動部材8の外周に第6軸受16を介して第2軸線X2回りに回転自在に支持される大径円筒状の第1支持部31と、第3伝動部材としての第2出力軸7に第7軸受17を介して第1軸線X回りに回転自在に支持される小径円筒状の第2支持部32と、それら第1及び第2支持部31,32間を一体的に連結する連結部としての環状の連結筒部33とを有する。そして、第1支持部31の外周部にバランスウェイトWが、第1軸線X1に関して偏心軸部6eとは逆位相の位置において保持される。   In particular, the synchronous rotation mechanism I of the first embodiment includes a large-diameter cylindrical first support portion 31 that is supported on the outer periphery of the second transmission member 8 via the sixth bearing 16 so as to be rotatable about the second axis X2. The second output shaft 7 as the third transmission member is supported by the second output shaft 7 via the seventh bearing 17 so as to be rotatable about the first axis X, and the second support portion 32 having a small diameter cylindrical shape, and the first and second supports. It has the cyclic | annular connection cylinder part 33 as a connection part which connects between the parts 31 and 32 integrally. And the balance weight W is hold | maintained in the outer-phase part of the 1st support part 31 in the position of an antiphase with respect to the eccentric shaft part 6e regarding the 1st axis line X1.

このバランスウェイトWは、本実施形態では、第1軸線X1と直交する投影面で見て第1軸線X1を中心とする円弧状の外周縁部Woと、その外周縁部Woの両端間を結ぶ弦状の内周縁部Wiとを有して弓状に形成される。その内周縁部Wiが第1支持部31の外周に、その周方向に延びる連結板部34を介して固着される。この連結板部34は、バランスウェイトWの内周縁部Wiの、第1軸線X1に沿う方向で中央部に結合される。そのため、この連結板部34によりバランスウェイトWを軸方向(図1左右方向)に倒れを起こすことなくバランスよく支持可能となり、連結板部34の荷重負担が軽減され、バランスウェイトWに対する支持剛性が高められる。尚、上記外周縁部Woは、デフケースC(第2ケース半体C2)の内周面に沿う円弧形状であるため、その内周面に近接させても干渉しないようになっている。   In the present embodiment, the balance weight W connects an arc-shaped outer peripheral edge Wo centered on the first axis X1 as viewed from the projection plane orthogonal to the first axis X1 and both ends of the outer peripheral edge Wo. It has a string-like inner peripheral edge Wi and is formed in an arcuate shape. The inner peripheral edge portion Wi is fixed to the outer periphery of the first support portion 31 via a connecting plate portion 34 extending in the circumferential direction. The connecting plate part 34 is coupled to the central part of the inner peripheral edge Wi of the balance weight W in the direction along the first axis X1. For this reason, the connecting plate portion 34 can support the balance weight W in a well-balanced manner without falling in the axial direction (left and right direction in FIG. 1), the load on the connecting plate portion 34 is reduced, and the support rigidity to the balance weight W is increased. Enhanced. Since the outer peripheral edge Wo has an arc shape along the inner peripheral surface of the differential case C (second case half C2), it does not interfere even if it is close to the inner peripheral surface.

前記第6,第7軸受16,17は、図示例ではそれの外周及び内周とも第1,第2支持部31,32及びその相手部材(第2伝動部材8及び第2出力軸7)に対し圧入固定しているが、その固定手法は、図示例に限定されず、適宜選定可能である。例えば、第6,第7軸受16,17の内周側のみ第2伝動部材8及び第2出力軸7にそれぞれ圧入し、第6,第7軸受16,17の外周側は第1,第2支持部31,32にそれぞれ嵌め合い(軽圧入)として、別途ストッパ手段により第1,第2支持部31,32から抜け止めするようにしてもよい。   In the illustrated example, the sixth and seventh bearings 16 and 17 are connected to the first and second support portions 31 and 32 and their mating members (the second transmission member 8 and the second output shaft 7) on both the outer and inner circumferences. Although it is press-fitted and fixed, the fixing method is not limited to the illustrated example, and can be appropriately selected. For example, only the inner peripheral sides of the sixth and seventh bearings 16 and 17 are press-fitted into the second transmission member 8 and the second output shaft 7 respectively, and the outer peripheral sides of the sixth and seventh bearings 16 and 17 are first and second. The support portions 31 and 32 may be fitted (light press fit), respectively, and may be prevented from being detached from the first and second support portions 31 and 32 by separate stopper means.

次に、第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

いま、例えば右方の駆動車軸S1を固定することで、第1出力軸6(従って偏心軸部6e)を固定した状態において、エンジンからの動力でドリブンギヤ3が駆動され、デフケースC、従って第1ケース半体C1を第1軸線X1周りに回転させると、第1ケース半体C1の8波の第1伝動溝21が第2伝動部材8の6波の第2伝動溝22を第1伝動ボール23を介して駆動するので、第1ケース半体C1が8/6の増速比をもって偏心回転部材としての第2伝動部材8を駆動することになる。そして、この第2伝動部材8の回転によれば、第2伝動部材8の6波の第3伝動溝24が第2出力軸7の円板部7cの4波の第4伝動溝25を第2伝動ボール26を介して駆動するので、第2伝動部材8が6/4の増速比をもって第2出力軸7を駆動することになる。   Now, for example, by fixing the right drive axle S1, the driven gear 3 is driven by the power from the engine in the state where the first output shaft 6 (and hence the eccentric shaft portion 6e) is fixed, and the differential case C and accordingly the first When the case half C1 is rotated around the first axis X1, the first transmission groove 21 of the first case half C1 moves the second transmission groove 22 of the six waves of the second transmission member 8 to the first transmission ball. 23, the first case half C1 drives the second transmission member 8 serving as the eccentric rotation member with a speed increasing ratio of 8/6. Then, according to the rotation of the second transmission member 8, the six-wave third transmission groove 24 of the second transmission member 8 replaces the four-wave fourth transmission groove 25 of the disk portion 7 c of the second output shaft 7. Since the second transmission ball 26 is driven via the second transmission ball 26, the second transmission member 8 drives the second output shaft 7 with a speed increasing ratio of 6/4.

結局、第1ケース半体C1は、
(Z1/Z2)×(Z3/Z4)=(8/6)×(6/4)=2
の増速比をもって第2出力軸7を駆動することになる。
After all, the first case half C1 is
(Z1 / Z2) × (Z3 / Z4) = (8/6) × (6/4) = 2
The second output shaft 7 is driven with the speed increasing ratio.

また左方の駆動車軸S2を固定することで、第2出力軸7(従って円板部7c)を固定した状態において、第1ケース半体C1を回転させると、第1ケース半体C1の回転駆動力と、第2伝動部材8の、不動の第2出力軸7に対する駆動反力とにより、第2伝動部材8は、第1出力軸6の偏心軸部6e回りに自転しながら第1軸線X1周りに公転して、偏心軸部6eを第1軸線X1周りに駆動する。その結果、第1ケース半体C1は,2倍の増速比をもって第1出力軸6を駆動することになる。   Further, by fixing the left driving axle S2, when the first case half C1 is rotated in a state where the second output shaft 7 (and hence the disc portion 7c) is fixed, the rotation of the first case half C1 is performed. Due to the driving force and the driving reaction force of the second transmission member 8 against the stationary second output shaft 7, the second transmission member 8 rotates about the eccentric shaft portion 6 e of the first output shaft 6 while rotating around the first axis. Revolving around X1, the eccentric shaft portion 6e is driven around the first axis X1. As a result, the first case half C1 drives the first output shaft 6 with a double speed increasing ratio.

而して、第1及び第2出力軸6、7の負荷がバランスしたり、相互に変化したりすると、第2伝動部材8の自転量及び公転量が無段階に変化し、両出力軸6、7の回転数の平均値が第1ケース半体C1の回転数と等しくなる。こうして、第1ケース半体C1の回転は、第1及び第2出力軸7に分配され、したがってドリブンギヤ3からデフケースCに伝達された回転力を左右の駆動車軸S1、S2に分配することができる。   Thus, when the loads of the first and second output shafts 6 and 7 are balanced or changed with each other, the amount of rotation and the amount of revolution of the second transmission member 8 change steplessly. , 7 is equal to the rotation speed of the first case half C1. Thus, the rotation of the first case half C1 is distributed to the first and second output shafts 7, so that the rotational force transmitted from the driven gear 3 to the differential case C can be distributed to the left and right drive axles S1, S2. .

その際、Z1=8、Z2=6、Z3=6、Z4=4とするか、又はZ1=6、Z2=4、Z3=8、Z4=6とすることにより、必要最少限度の波数をもって、差動機能を確保しつゝ構造の簡素化を図ることができる。   At that time, by setting Z1 = 8, Z2 = 6, Z3 = 6, Z4 = 4, or by setting Z1 = 6, Z2 = 4, Z3 = 8, Z4 = 6, the necessary minimum wave number is obtained. It is possible to simplify the eaves structure while ensuring the differential function.

ところで、この差動装置Dにおいて、第1ケース半体C1の回転トルクは、第1伝動溝21、複数の第1伝動ボール23及び第2伝動溝22を介して第2伝動部材8に、また第2伝動部材8の回転トルクは、第3伝動溝24、複数の第2伝動ボール26及び第4伝動溝25を介して第2出力軸7にそれぞれ伝達されるので、第1ケース半体C1と第2伝動部材8、第2伝動部材8と第2出力軸7の各間では、トルク伝達が第1及び第2伝動ボール23,26が存在する複数箇所に分散して行われることになり、第1ケース半体C1(第1伝動部材)、第2伝動部材8、第2出力軸7(第3伝動部材)及び第1、第2伝動ボール23,26等の伝動部材の強度増及び軽量化を図ることができる。   By the way, in this differential device D, the rotational torque of the first case half C1 is applied to the second transmission member 8 via the first transmission groove 21, the plurality of first transmission balls 23, and the second transmission groove 22, and Since the rotational torque of the second transmission member 8 is transmitted to the second output shaft 7 through the third transmission groove 24, the plurality of second transmission balls 26, and the fourth transmission groove 25, respectively, the first case half C1. Torque transmission between the second transmission member 8 and the second transmission member 8 and the second output shaft 7 is distributed to a plurality of locations where the first and second transmission balls 23 and 26 exist. The strength of the first case half C1 (first transmission member), the second transmission member 8, the second output shaft 7 (third transmission member), and the transmission members such as the first and second transmission balls 23 and 26; Weight reduction can be achieved.

ところで本実施形態では、偏心回転部材としての第1出力軸6の偏心軸部6e、及び第2伝動部材8を含む偏心回転系の重心Geの位置が、第1軸線X1から第2軸線X2の方向に離間した位置に偏在する。そのため、前述のように第2伝動部材8が第2軸線X2回りに自転しつつ第1軸線X1回りに公転するときに、その偏心回転系の遠心力が第1軸線X1に関して特定方向(第2軸線X1のオフセット側)に偏って作用することから、その偏心回転系の回転がアンバランスな状態となるが、その回転のアンバランス状態を解消又は軽減するためのバランスウェイトWが第2伝動部材8の径方向外方に配置され且つそのウェイトWを第1軸線X1に関して偏心軸部6eとは逆位相の位置に保持しつつ偏心回転部材6と同期回転させる同期回転機構Iが設けられている。これにより、上記偏心回転系の遠心力と、バランスウェイトW及び回転同期機構Iを含むバランサ回転系の遠心力とを極力バランスさせることができるので、その前者の遠心力の偏りに起因した回転のアンバランス状態を解消又は軽減できて、その回転のアンバランス状態に因る差動装置Dの振動発生が効果的に抑制可能となる。   By the way, in the present embodiment, the position of the center of gravity Ge of the eccentric rotation system including the eccentric shaft portion 6e of the first output shaft 6 as the eccentric rotation member and the second transmission member 8 is changed from the first axis X1 to the second axis X2. It is unevenly distributed at positions separated in the direction. Therefore, as described above, when the second transmission member 8 revolves around the first axis X1 while rotating around the second axis X2, the centrifugal force of the eccentric rotation system is in a specific direction (second direction with respect to the first axis X1). Since the rotation of the eccentric rotation system is in an unbalanced state, the balance weight W for eliminating or reducing the unbalanced state of the rotation is the second transmission member. 8, a synchronous rotation mechanism I is provided that rotates in synchronization with the eccentric rotation member 6 while holding the weight W at a position opposite to the eccentric shaft portion 6e with respect to the first axis X1. . As a result, the centrifugal force of the eccentric rotation system and the centrifugal force of the balancer rotation system including the balance weight W and the rotation synchronization mechanism I can be balanced as much as possible. The unbalanced state can be eliminated or reduced, and the occurrence of vibration of the differential device D due to the rotation unbalanced state can be effectively suppressed.

この場合、特にバランスウェイトWは、第2伝動部材8の径方向外方に配置されるので、バランスウェイト設置のために差動装置Dが軸方向に長大化する虞れはなくなり、差動装置Dの軸方向小型化を図る上で有利となる。またこのバランスウェイトW及び回転同期機構Iを含むバランサ回転系の重心Gwの回転半径を、前記偏心回転系の重心Geの回転半径よりも十分大きく設定可能となるから、バランスウェイトWの軽量化、延いては差動装置Dの軽量化が達成される。しかもその両重心Gw,Geの軸方向のずれ量をゼロ又は僅少に設定可能であるため、その両重心Gw,Geに作用する逆向きの遠心力に因る偶力の発生を効果的に抑制でき、その偶力発生に起因した差動装置Dの振動発生も効果的に防止できる。その上、デフケースC内で第2伝動部材8の偏心回転を許容するために第2伝動部材8の周囲に生じるデッドスペースを、バランスウェイトWの設置スペースとして有効活用できるから、それだけ差動装置Dの小型化が図られる。   In this case, in particular, the balance weight W is disposed radially outward of the second transmission member 8, so that there is no possibility that the differential device D is lengthened in the axial direction for the installation of the balance weight. This is advantageous in reducing the axial size of D. Further, since the rotation radius of the center of gravity Gw of the balancer rotation system including the balance weight W and the rotation synchronization mechanism I can be set sufficiently larger than the rotation radius of the center of gravity Ge of the eccentric rotation system, the weight of the balance weight W can be reduced. As a result, weight reduction of the differential device D is achieved. Moreover, since the axial shift amount of both the center of gravity Gw and Ge can be set to zero or slightly, the generation of the couple due to the reverse centrifugal force acting on both the center of gravity Gw and Ge is effectively suppressed. In addition, the vibration of the differential device D due to the generation of the couple can be effectively prevented. In addition, since the dead space generated around the second transmission member 8 to allow the eccentric rotation of the second transmission member 8 in the differential case C can be effectively used as the installation space for the balance weight W, the differential device D is accordingly increased. Can be reduced in size.

また特に第1実施形態の同期回転機構Iは、第2伝動部材8の外周に第6軸受16を介して第2軸線X2回りに回転自在に支持される大径円筒状の第1支持部31と、第3伝動部材としての第2出力軸7に第7軸受17を介して第1軸線X回りに回転自在に支持される小径円筒状の第2支持部32と、それら第1及び第2支持部31,32間を一体的に連結する連結部としての環状の連結筒部33とを有しているため、第2伝動部材8の外周と、第2出力軸7(円板部7c)外周とに跨がる構造簡単な同期回転機構Iにより、バランスウェイトWを、第1軸線X1に関して第1出力軸6の偏心軸部6eとは逆位相の位置に保持しつつ第1出力軸6(偏心回転部材)と確実に同期回転させることができる。   In particular, the synchronous rotation mechanism I of the first embodiment has a large-diameter cylindrical first support portion 31 that is supported on the outer periphery of the second transmission member 8 via the sixth bearing 16 so as to be rotatable about the second axis X2. A second support portion 32 having a small diameter cylindrical shape that is supported by the second output shaft 7 as the third transmission member via the seventh bearing 17 so as to be rotatable about the first axis X, and the first and second Since it has the cyclic | annular connection cylinder part 33 as a connection part which connects between the support parts 31 and 32 integrally, the outer periphery of the 2nd transmission member 8, and the 2nd output shaft 7 (disk part 7c). The first output shaft 6 is held by a simple synchronous rotation mechanism I straddling the outer periphery while maintaining the balance weight W at a position opposite in phase to the eccentric shaft portion 6e of the first output shaft 6 with respect to the first axis X1. (Eccentric rotating member) can be reliably rotated synchronously.

次に、図6,7に示す本発明の第2実施形態について説明する。   Next, a second embodiment of the present invention shown in FIGS.

この第2実施形態の同期回転機構Iは、第2伝動部材8の外周に第6軸受16を介して第2軸線X2回りに回転自在に支持される円筒状の第1支持部31と、デフケースC(特に第2ケース半体C2)の内周に第7軸受17を介して第1軸線X回りに回転自在に支持される円筒状の第2支持部32と、それら第1及び第2支持部31,32間を一体的に連結する連結部としての環状の連結板部33とを有する。   The synchronous rotation mechanism I of the second embodiment includes a cylindrical first support portion 31 supported on the outer periphery of the second transmission member 8 via a sixth bearing 16 so as to be rotatable about the second axis X2, and a differential case. A cylindrical second support portion 32 rotatably supported around the first axis X via a seventh bearing 17 on the inner periphery of C (particularly the second case half C2), and the first and second supports; It has the cyclic | annular connection board part 33 as a connection part which connects between the parts 31 and 32 integrally.

そして、その連結板部33の外周部にバランスウェイトWが、第1軸線X1に関して偏心軸部6eとは逆位相の位置において保持される。このバランスウェイトWは、第1実施形態と同様、第1軸線X1と直交する投影面で見て第1軸線X1を中心とする円弧状の外周縁部Woと、その外周縁部Woの両端間を結ぶ弦状の内周縁部Wiとを有して弓状に形成される。その内周縁部Wiが連結板部33の外周部に、また外周縁部Woが第2支持部32の内周部にそれぞれ固着される。   And the balance weight W is hold | maintained in the position of an antiphase with respect to the eccentric shaft part 6e regarding the 1st axis line X1 at the outer peripheral part of the connection board part 33. FIG. As in the first embodiment, the balance weight W is formed between an arcuate outer peripheral edge Wo centered on the first axis X1 as viewed from the projection plane orthogonal to the first axis X1 and both ends of the outer peripheral edge Wo. And has a string-like inner peripheral edge Wi. The inner peripheral edge Wi is fixed to the outer peripheral part of the connecting plate part 33, and the outer peripheral edge Wo is fixed to the inner peripheral part of the second support part 32.

その他の構成は、第1実施形態と同様であるので、図6,7中、第1実施形態と対応する部分には同一の参照符号を付して、重複する説明を省略する。   Since the other configuration is the same as that of the first embodiment, the portions corresponding to those of the first embodiment are denoted by the same reference numerals in FIGS.

この第2実施形態によれば、同期回転機構Iの第2支持部32がケーシングとしてのデフケースC(特に第2ケース半体C2)の内周に第1軸線X1回りに回転自在に支持される点を除いて、第1実施形態の前記した作用効果と同様の作用効果が達成される。   According to the second embodiment, the second support portion 32 of the synchronous rotation mechanism I is supported on the inner periphery of the differential case C (particularly, the second case half C2) as a casing so as to be rotatable about the first axis X1. Except for this point, the same operational effects as the above-described operational effects of the first embodiment are achieved.

次に、図8に示す本発明の第3実施形態について説明する。   Next, a third embodiment of the present invention shown in FIG. 8 will be described.

この第3実施形態では、デフケースCの第1,第2ケース半体C1,C2の外周端部が軸方向に離間しており、その両ケース半体C1,C2の外周端部の相互間をドリブンギヤ3で一体的に接続して、ドリブンギヤ3が実質的にデフケースCの一部を構成するようにしている。そして、同期回転機構Iは、第2伝動部材8の外周に第6軸受16を介して第2軸線X2回りに回転自在に支持される円筒状の第1支持部31と、ドリブンギヤ3の内周に第7軸受17を介して第1軸線X回りに回転自在に支持される円筒状の第2支持部32と、それら第1及び第2支持部31,32間を一体的に連結する連結部としての環状の連結板部33とを有する。   In the third embodiment, the outer peripheral ends of the first and second case halves C1 and C2 of the differential case C are spaced apart in the axial direction, and the outer peripheral ends of the two case halves C1 and C2 are spaced from each other. The driven gear 3 is integrally connected so that the driven gear 3 substantially constitutes a part of the differential case C. The synchronous rotation mechanism I includes a cylindrical first support portion 31 that is supported on the outer periphery of the second transmission member 8 via the sixth bearing 16 so as to be rotatable about the second axis X2, and the inner periphery of the driven gear 3. A cylindrical second support portion 32 that is rotatably supported around the first axis X via the seventh bearing 17 and a connecting portion that integrally connects the first and second support portions 31 and 32. And an annular connecting plate portion 33.

その連結板部33の外周部にはバランスウェイトWが、第1軸線X1に関して偏心軸部6eとは逆位相の位置において保持される。このバランスウェイトWは、前記実施形態と同様、第1軸線X1と直交する投影面で見て第1軸線X1を中心とする円弧状の外周縁部Woと、その外周縁部Woの両端間を結ぶ弦状の内周縁部Wiとを有して弓状に形成されており、その内周縁部Wiが連結板部33の外周部に、また外周縁部Woが第2支持部32の内周部にそれぞれ固着される。   On the outer peripheral portion of the connecting plate portion 33, a balance weight W is held at a position opposite in phase to the eccentric shaft portion 6e with respect to the first axis X1. Similar to the embodiment, the balance weight W is formed between an arcuate outer peripheral edge Wo centered on the first axis X1 as viewed from the projection plane orthogonal to the first axis X1 and between both ends of the outer peripheral edge Wo. The inner peripheral edge Wi is formed in an arc shape with a string-like inner peripheral edge Wi, and the outer peripheral edge Wo is the inner periphery of the second support part 32. It is fixed to each part.

その他の構成は、第1,第2実施形態と同様であるので、図8中、第1,第2実施形態と対応する部分には同一の参照符号を付して、重複する説明を省略する。   Since other configurations are the same as those of the first and second embodiments, portions corresponding to those of the first and second embodiments are denoted by the same reference numerals in FIG. .

この第3実施形態によれば、同期回転機構Iの第2支持部32が被動部材としてのドリブンギヤ3(実質的にはケーシングとしてのデフケースC)の内周に第1軸線X1回りに回転自在に支持される点を除いて、第1,第2実施形態の前記した作用効果と同様の作用効果が達成される。   According to the third embodiment, the second support portion 32 of the synchronous rotation mechanism I is rotatable around the first axis X1 on the inner periphery of the driven gear 3 (substantially a differential case C as a casing) as a driven member. Except for the point which is supported, the effect similar to the effect mentioned above of 1st, 2nd embodiment is achieved.

以上、本発明の実施形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was described, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、前記実施形態では、伝動装置として差動装置Dを例示し、その差動装置Dの、動力源から動力を受けるデフケースD(ケーシング)から第2伝動部材8や第1,第2変速機構T1,T2を介して第1出力軸6(偏心回転部材)及び第2出力軸7(第3伝動部材)に差動回転を許容しつつ分配するようにしたものを示したが、本発明は差動装置以外の種々の伝動装置にも実施可能である。   For example, in the embodiment, the differential device D is exemplified as the transmission device, and the second transmission member 8 and the first and second transmission mechanisms from the differential case D (casing) of the differential device D that receives power from the power source. Although the first output shaft 6 (eccentric rotating member) and the second output shaft 7 (third transmission member) are distributed via T1 and T2 while allowing differential rotation, the present invention shows that The present invention can be applied to various transmission devices other than the differential device.

例えば、前記実施形態のデフケースCに相当するケーシングを固定のミッションケースとし、第1出力軸6(偏心回転部材)又は第2出力軸7(第3伝動部材)の何れか一方を入力軸、またその何れか他方を出力軸とすることで、前記実施形態の差動装置Dを、入力軸に入力される回転トルクを変速(減速又は増速)して出力軸に伝達し得る変速機(減速機又は増速機)として転用実施可能であり、その場合には、その変速機(減速機又は増速機)が本発明の伝動装置となる。   For example, a casing corresponding to the differential case C of the above embodiment is a fixed transmission case, and either the first output shaft 6 (eccentric rotating member) or the second output shaft 7 (third transmission member) is an input shaft, By using either one of the output shafts as an output shaft, the differential device D according to the embodiment can change (decelerate or increase) the rotational torque input to the input shaft and transmit it to the output shaft (deceleration). The transmission (speed reducer or speed increaser) is the transmission device of the present invention.

また、前記実施形態では、伝動装置としての差動装置Dを自動車のミッションケースM内に収容しているが、差動装置Dは自動車用の差動装置に限定されるものではなく、種々の機械装置用の差動装置として実施可能である。   In the embodiment, the differential device D as a transmission device is accommodated in the transmission case M of the automobile. However, the differential device D is not limited to the differential apparatus for the automobile, It can be implemented as a differential for a mechanical device.

また、前記実施形態では、伝動装置としての差動装置Dを、左・右輪伝動系に適用して、左右の駆動車軸S1、S2に対し差動回転を許容しつつ動力を分配するものを示したが、本発明では、伝動装置としての差動装置を、前・後輪駆動車両における前・後輪伝動系に適用して、前後の駆動車輪に対し差動回転を許容しつつ動力を分配するようにしてもよい。   In the above embodiment, the differential device D as a transmission device is applied to the left / right wheel transmission system to distribute power while allowing differential rotation with respect to the left and right drive axles S1, S2. Although shown in the present invention, the differential device as a transmission device is applied to the front / rear wheel transmission system in the front / rear wheel drive vehicle to allow power to be driven while allowing differential rotation with respect to the front and rear drive wheels. You may make it distribute.

また、前記実施形態では、第1伝動部材(第1ケース半体C1)及び第2伝動部材8間で変速しつつトルク伝達可能な第1変速機構T1として、第1伝動溝21及び第2伝動溝22並びにその両伝動溝21,22間に介装した第1伝動ボール23よりなる転動ボール式変速機構を用い、また第2伝動部材8及び第3伝動部材(第2出力軸7)間で変速しつつトルク伝達可能な第2変速機構T2として、第3伝動溝24及び第4伝動溝25並びその両伝動溝24,25間に介装した第2伝動ボール26よりなる転動ボール式変速機構を用いたものを示したが、本発明の第1,第2変速機構のうちの少なくとも一方の変速機構は、前記実施形態の構造に限定されない。即ち、偏心回転部材の回転に連動して第2軸線回りの自転及び第1軸線回りの公転が可能な伝動部材(即ち第2伝動部材)を含む種々の変速機構、例えば内接式遊星歯車機構や、種々の構造のサイクロイド減速機(増速機)或いはトロコイド減速機(増速機)を、本発明の第1,第2変速機構のうちの少なくとも一方に適用するようにしてもよい。   In the embodiment, the first transmission groove 21 and the second transmission are used as the first transmission mechanism T1 capable of transmitting torque while shifting between the first transmission member (first case half C1) and the second transmission member 8. A rolling ball type speed change mechanism comprising a groove 22 and a first transmission ball 23 interposed between the transmission grooves 21 and 22 is used, and between the second transmission member 8 and the third transmission member (second output shaft 7). As a second speed change mechanism T2 capable of transmitting torque while shifting, a rolling ball type comprising a third transmission groove 24, a fourth transmission groove 25, and a second transmission ball 26 interposed between the two transmission grooves 24, 25. Although a transmission mechanism is used, at least one of the first and second transmission mechanisms of the present invention is not limited to the structure of the above embodiment. That is, various transmission mechanisms including a transmission member (that is, a second transmission member) capable of rotating around the second axis and revolving around the first axis in conjunction with the rotation of the eccentric rotating member, such as an inscribed planetary gear mechanism. Alternatively, a cycloid reduction gear (speed increaser) or a trochoid reduction gear (speed increase) having various structures may be applied to at least one of the first and second transmission mechanisms of the present invention.

また前記実施形態では、第2及び第3伝動溝22,24の個別加工を容易にすべく、第2伝動部材8を、一対の伝動部材半体8a,8bより分割構成し且つその両伝動部材半体8a,8bの相互間を一体的に結合して成るものを用いたが、本発明では、一体物の第2伝動部材を用いるようにしてもよい。   Moreover, in the said embodiment, in order to make individual processing of the 2nd and 3rd transmission grooves 22 and 24 easy, the 2nd transmission member 8 is divided and comprised from a pair of transmission member half bodies 8a and 8b, and both the transmission members Although the one formed by integrally coupling the half bodies 8a and 8b is used, in the present invention, an integral second transmission member may be used.

また、前記実施形態では、バランスウェイトWの横断面形状を、その外周縁部WoがデフケースCの内周面に沿わせるようにした弓形形状としたものを示したが、本発明のバランスウェイトの形態は、実施形態に限定されず、即ち、デフケースCの内周面と干渉することなく所期のバランサ機能を発揮し得る形状であれば適宜設定可能であり、例えばボール状、直方体状、カプセル状であってもよい。   Moreover, in the said embodiment, although the cross-sectional shape of the balance weight W was shown as the arch shape that the outer peripheral edge Wo followed the inner peripheral surface of the differential case C, the balance weight of the present invention is shown. The form is not limited to the embodiment, that is, any form can be appropriately set as long as the desired balancer function can be exhibited without interfering with the inner peripheral surface of the differential case C. For example, a ball shape, a rectangular parallelepiped shape, a capsule shape It may be a shape.

また、前記実施形態では、第1,第2変速機構T1,T2の各伝動溝21,22;24,25をトロコイド曲線に沿った波形環状の波溝としているが、これら伝動溝は実施形態に限定されるものでなく、例えばサイクロイド曲線に沿った波形環状の波溝としてもよい。   Moreover, in the said embodiment, although each transmission groove 21,22; 24,25 of 1st, 2nd transmission mechanism T1, T2 is made into the waveform annular wave groove along a trochoid curve, these transmission grooves are in embodiment. It is not limited, For example, it is good also as a wave-shaped annular wave groove along a cycloid curve.

また、前記実施形態では、第1,第2変速機構T1,T2の第1及び第2伝動溝21,22間、並びに第3及び第4伝動溝24,25間にボール状の第1及び第2転動体23,26を介装したものを示したが、その転動体をローラ状又はピン状としてもよく、この場合に、第1及び第2伝動溝21,22、並びに第3及び第4伝動溝24,25は、ローラ状又はピン状の転動体が転動し得るような内側面形状に形成される。   In the above-described embodiment, the first and second ball-shaped first and second transmission grooves 21 and 22 and the third and fourth transmission grooves 24 and 25 of the first and second transmission mechanisms T1 and T2 are provided. Although two rolling elements 23 and 26 are interposed, the rolling elements may be in the form of a roller or a pin. In this case, the first and second transmission grooves 21 and 22, and the third and fourth The transmission grooves 24 and 25 are formed in an inner surface shape so that a roller-like or pin-like rolling element can roll.

また前記実施形態では、第1および第2出力軸6,7をデフケースCに直接支持させたが、第1および第2出力軸6,7を、デフケースCに支持される駆動車軸S1,S2に接続して、これら駆動車軸を介してデフケースに支持させることもできる。   In the embodiment, the first and second output shafts 6 and 7 are directly supported by the differential case C. However, the first and second output shafts 6 and 7 are connected to the drive axles S1 and S2 supported by the differential case C. They can be connected and supported by the differential case via these drive axles.

C・・・・・ケーシングとしてのデフケース
D・・・・・伝動装置としての差動装置
I・・・・・同期回転機構
S1・・・・第1ドライブ軸としての右方の駆動車軸
S2・・・・第2ドライブ軸としての左方の駆動車軸
T1・・・・第1変速機構
T2・・・・第2変速機構
W・・・・・バランスウェイト
X1・・・・第1軸線
X2・・・・第2軸線
6・・・・・偏心回転部材としての第1出力軸
6j・・・・偏心回転部材としての第1出力軸の主軸部
6e・・・・偏心回転部材としての第1出力軸の偏心軸部
7・・・・・第3伝動部材としての第2出力軸
8・・・・・第2伝動部材
21,22・・第1,第2伝動溝
23・・・・第1転動体としての第1伝動ボール
24,25・・第3,第4伝動溝
26・・・・第2転動体としての第2伝動ボール
31・・・・第1支持部
32・・・・第2支持部
33・・・・連結部としての連結筒部、連結板部
C ... Differential case D as casing D ... Differential device I as transmission device ... Synchronous rotation mechanism S1 ... Right drive axle S2 as first drive shaft・ ・ ・ Left drive axle T1 as the second drive shaft ... First transmission mechanism T2 ... Second transmission mechanism W ... Balance weight X1 ... First axis X2 ... ... the second axis 6 ... the first output shaft 6j as the eccentric rotating member ... the main shaft portion 6e of the first output shaft as the eccentric rotating member ... the first output shaft as the eccentric rotating member Eccentric shaft portion 7 of the output shaft ... The second output shaft 8 as the third transmission member ... The second transmission members 21, 22, ..., the first and second transmission grooves 23, ... First transmission balls 24, 25 as a single rolling element, third and fourth transmission grooves 26,... Second transmission bolt as a second rolling element Le 31 ... connecting tube portion of the first support portion 32 ... second support portions 33 ... connecting portion, the connecting plate portion

Claims (4)

第1軸線(X1)を中心軸線とする第1伝動部材(C1)を一体に有するケーシング(C)と、
そのケーシング(C)に前記第1軸線(X1)回りに回転自在に支持される主軸部(6j)、および前記第1軸線(X1)から偏心した第2軸線(X2)上に位置する偏心軸部(6e)を互いに一体に連結してなる偏心回転部材(6)と、
前記第1伝動部材(C1)に隣接配置されて前記偏心軸部(6e)に回転自在に支持される第2伝動部材(8)と、
その第2伝動部材(8)に隣接配置されて前記ケーシング(C)に前記第1軸線(X1)回りに回転自在に支持される第3伝動部材(7)と、
前記第1及び第2伝動部材(C1,8)間で変速しつつトルク伝達可能な第1変速機構(T1)と、
前記第2及び第3伝動部材(8,7)間で変速しつつトルク伝達可能な第2変速機構(T2)と、
前記第2伝動部材(8)の径方向外方に配置されるバランスウェイト(W)と、
このバランスウェイト(W)を、前記第1軸線(X1)に関して前記偏心軸部(6e)とは逆位相の位置に保持しつつ前記偏心回転部材(6)と同期回転させる同期回転機構(I)とを備えることを特徴とする伝動装置。
A casing (C) integrally including a first transmission member (C1) having a first axis (X1) as a central axis;
A main shaft portion (6j) rotatably supported around the first axis (X1) by the casing (C), and an eccentric shaft positioned on the second axis (X2) eccentric from the first axis (X1). An eccentric rotating member (6) formed by integrally connecting the parts (6e) to each other;
A second transmission member (8) disposed adjacent to the first transmission member (C1) and rotatably supported by the eccentric shaft portion (6e);
A third transmission member (7) disposed adjacent to the second transmission member (8) and supported rotatably around the first axis (X1) by the casing (C);
A first transmission mechanism (T1) capable of transmitting torque while shifting between the first and second transmission members (C1, 8);
A second transmission mechanism (T2) capable of transmitting torque while shifting between the second and third transmission members (8, 7);
A balance weight (W) disposed radially outward of the second transmission member (8);
Synchronous rotation mechanism (I) that rotates the balance weight (W) synchronously with the eccentric rotation member (6) while holding the balance weight (W) at a position opposite in phase to the eccentric shaft portion (6e) with respect to the first axis (X1). A transmission device comprising:
前記同期回転機構(I)は、前記第2伝動部材(8)の外周に前記第2軸線(X2)回りに回転自在に支持される第1支持部(31)と、前記ケーシング(C)又は前記第3伝動部材(7)に前記第1軸線(X)回りに回転自在に支持される第2支持部(32)と、それら第1及び第2支持部(31,32)間を一体的に連結する連結部(33)とを有していて、該第1支持部(31)又は連結部(33)に前記バランスウェイト(W)を前記逆位相の位置で保持することを特徴とする、請求項1に記載の伝動装置。   The synchronous rotation mechanism (I) includes a first support portion (31) rotatably supported around the second axis (X2) on the outer periphery of the second transmission member (8), and the casing (C) or A second support part (32) supported rotatably around the first axis (X) by the third transmission member (7) and the first and second support parts (31, 32) are integrated. The balance weight (W) is held at the position of the opposite phase by the first support part (31) or the connection part (33). The transmission device according to claim 1. 請求項1又は2記載の伝動装置において、
前記第1変速機構(T1)は、第1伝動部材(C1)の、第2伝動部材(8)との対向面に第1軸線(X1)を中心として形成される波形環状の第1伝動溝(21)と、第2伝動部材(8)の、第1伝動部材(C1)との対向面に第2軸線(X2)を中心として形成される波形環状で波数が第1伝動溝(21)とは異なる第2伝動溝(22)と、第1及び第2伝動溝(21,22)の複数の重なり部に介装され、第1及び第2伝動溝(21,22)を転動しながら第1及び第2伝動部材(C1,8)間の変速伝動を行う複数の第1転動体(23)とで構成され、また前記第2変速機構(T2)は、第2伝動部材(8)の、第3伝動部材(7)との対向面に第2軸線(X2)を中心として形成される波形環状の第3伝動溝(24)と、第3伝動部材(7)の、第2伝動部材(8)との対向面に第1軸線(X1)を中心として形成される波形環状で波数が第3伝動溝(25)とは異なる第4伝動溝と、第3及び第4伝動溝(23,24)の複数の重なり部に介装され、第3及び第4伝動溝(23,24)を転動しながら第2及び第3伝動部材(8,7)間の変速伝動を行う複数の第2転動体(26)とで構成されることを特徴とする伝動装置。
In the transmission device according to claim 1 or 2,
The first transmission mechanism (T1) has a first annular transmission groove formed on the surface of the first transmission member (C1) facing the second transmission member (8) with the first axis (X1) as the center. (21) and the second transmission member (8) facing the first transmission member (C1) on the surface facing the second axis (X2), the corrugated ring having a wave number of the first transmission groove (21) Different from the second transmission groove (22) and a plurality of overlapping portions of the first and second transmission grooves (21, 22), and rolls on the first and second transmission grooves (21, 22). However, the second transmission mechanism (T2) includes a plurality of first rolling elements (23) that perform transmission transmission between the first and second transmission members (C1, 8). ) Of the third annular transmission groove (24) formed around the second axis (X2) on the surface facing the third transmission member (7), and the third transmission A fourth transmission groove having a wave shape and a wave number different from that of the third transmission groove (25) formed around the first axis (X1) on the surface of the material (7) facing the second transmission member (8); The second and third transmission members (8, 8) are interposed in a plurality of overlapping portions of the third and fourth transmission grooves (23, 24) and roll on the third and fourth transmission grooves (23, 24). 7) A transmission device comprising a plurality of second rolling elements (26) for performing transmission transmission between 7).
請求項3記載の伝動装置を利用した差動装置であって、
前記ケーシング(C)は、第1伝動部材(C1)を一体的に有していて動力を入力されるデフケースであり、
このデフケース(C)には、主軸部(6j)に接続される第1ドライブ軸(S1)と、第3伝動部材(7)に接続される第2ドライブ軸(S2)とが回転可能に支持され、
第1伝動溝(21)の波数をZ1、第2伝動溝(22)の波数をZ2、第3伝動溝(24)の波数をZ3、第4伝動溝(25)の波数をZ4としたとき、次式
(Z1/Z2)×(Z3/Z4)=2
が成立することを特徴とする差動装置。
A differential device using the transmission device according to claim 3,
The casing (C) is a differential case that has a first transmission member (C1) integrally and receives power.
The differential case (C) rotatably supports a first drive shaft (S1) connected to the main shaft portion (6j) and a second drive shaft (S2) connected to the third transmission member (7). And
When the wave number of the first transmission groove (21) is Z1, the wave number of the second transmission groove (22) is Z2, the wave number of the third transmission groove (24) is Z3, and the wave number of the fourth transmission groove (25) is Z4. The following formula (Z1 / Z2) × (Z3 / Z4) = 2
A differential device characterized by that.
JP2015175932A 2015-09-07 2015-09-07 Transmission device and differential device Pending JP2017053378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175932A JP2017053378A (en) 2015-09-07 2015-09-07 Transmission device and differential device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175932A JP2017053378A (en) 2015-09-07 2015-09-07 Transmission device and differential device

Publications (1)

Publication Number Publication Date
JP2017053378A true JP2017053378A (en) 2017-03-16

Family

ID=58320602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175932A Pending JP2017053378A (en) 2015-09-07 2015-09-07 Transmission device and differential device

Country Status (1)

Country Link
JP (1) JP2017053378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179788A1 (en) * 2017-03-29 2018-10-04 武蔵精密工業株式会社 Planetary transmission device and differential device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179788A1 (en) * 2017-03-29 2018-10-04 武蔵精密工業株式会社 Planetary transmission device and differential device

Similar Documents

Publication Publication Date Title
JP6513658B2 (en) Differential
WO2017094796A1 (en) Transmission device and differential device
WO2018099392A1 (en) Planetary speed reducer with small tooth difference, in-vehicle display, and vehicle
WO2016013315A1 (en) Differential device
JP2016031081A (en) Differential gear
JP2007078177A (en) Power transmission device
JP6407678B2 (en) Power transmission device
JP2017141910A (en) Transmission device
JP2017053378A (en) Transmission device and differential device
JP2006064175A (en) Power transmission mechanism and drive device for bicycle
JP2017172774A (en) Transmission device
US20180291993A1 (en) Transmission device
WO2017104763A1 (en) Differential device
WO2017131141A1 (en) Transmission device
JP5163537B2 (en) Driving force distribution device
JP2017141929A (en) Transmission device
JP2008014500A5 (en)
WO2017082208A1 (en) Power transmitting device
WO2017086344A1 (en) Differential device
WO2016013314A1 (en) Differential device
WO2018179788A1 (en) Planetary transmission device and differential device
JP6617301B2 (en) Mobile transport mechanism
JP2017133661A (en) Transmission device
JP6602628B2 (en) Torque fluctuation reduction device
WO2017154898A1 (en) Power transmitting device