JP2017141910A - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
JP2017141910A
JP2017141910A JP2016024062A JP2016024062A JP2017141910A JP 2017141910 A JP2017141910 A JP 2017141910A JP 2016024062 A JP2016024062 A JP 2016024062A JP 2016024062 A JP2016024062 A JP 2016024062A JP 2017141910 A JP2017141910 A JP 2017141910A
Authority
JP
Japan
Prior art keywords
transmission
transmission member
axis
groove
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016024062A
Other languages
Japanese (ja)
Inventor
右典 新庄
Sukenori Shinjo
右典 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to JP2016024062A priority Critical patent/JP2017141910A/en
Publication of JP2017141910A publication Critical patent/JP2017141910A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To form second and third transmission grooves in a second transmission member while preventing a strength of the second transmission member from being lacked even without setting the tabular second transmission member to be specially thick in a transmission device comprising: a first transmission member defining a first axis as the center axis; an eccentric rotation member in which a main shaft part rotatable around the first axis and an eccentric shaft part defining a second axis as the center axis are integrally connected; the tabular second transmission member which is supported in a freely rotatable manner by the eccentric shaft part; the third transmission member which faces the second transmission member while defining the first axis as the center axis; a first transmission mechanism between the first and second transmission members; and a second transmission mechanism between the second and third transmission members.SOLUTION: On a side face 8f of a second transmission member 8 at one side in an axial direction, a second transmission groove 22 of a first transmission mechanism T1 and a third transmission groove 24 of a second transmission mechanism T2 which is disposed to be surrounded by the second transmission groove 22, are provided together.SELECTED DRAWING: Figure 1

Description

本発明は、伝動装置、特に第1軸線を中心軸線とするように配置された第1伝動部材と、第1軸線回りに回転可能な主軸部、および第1軸線から偏心した第2軸線を中心軸線とする偏心軸部が一体的に連結された偏心回転部材と、偏心軸部に回転自在に支持されると共に第1伝動部材に対向する第2伝動部材と、第1軸線を中心軸線とするように配置されると共に第2伝動部材に対向する第3伝動部材と、第1及び第2伝動部材間で変速しつつトルク伝達可能な第1変速機構と、第2及び第3伝動部材間で変速しつつトルク伝達可能な第2変速機構とを備えた伝動装置に関する。   The present invention is centered on a transmission device, particularly a first transmission member arranged so that the first axis is a central axis, a main shaft portion rotatable around the first axis, and a second axis eccentric from the first axis. An eccentric rotating member integrally connected to an eccentric shaft portion serving as an axis, a second transmission member that is rotatably supported by the eccentric shaft portion and faces the first transmission member, and the first axis as a central axis A third transmission member disposed opposite to the second transmission member, a first transmission mechanism capable of transmitting torque while shifting between the first and second transmission members, and between the second and third transmission members. The present invention relates to a transmission device including a second transmission mechanism capable of transmitting torque while shifting.

上記伝動装置は、例えば特許文献1に示されるように従来公知であり、このものでは、第1変速機構が、第1伝動部材の、第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状の第1伝動溝と、第2伝動部材の、第1伝動部材との対向面に在り且つ第2軸線を中心とする波形環状で波数が第1伝動溝とは異なる第2伝動溝と、第1及び第2伝動溝の複数の交差部に介装され、それら第1及び第2伝動溝を転動しながら第1及び第2伝動部材間の変速伝動に関与する複数の第1転動体とを有し、第2変速機構が、第2伝動部材の、第3伝動部材との対向面に在り且つ第2軸線を中心とする波形環状の第3伝動溝と、第3伝動部材の、第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状で波数が第3伝動溝とは異なる第4伝動溝と、第3及び第4伝動溝の複数の交差部に介装され、それら第3及び第4伝動溝を転動しながら第2及び第3伝動部材間の変速伝動を行う複数の第2転動体とを有している。   The transmission device is conventionally known as disclosed in, for example, Patent Document 1. In this device, the first speed change mechanism is located on a surface of the first transmission member facing the second transmission member, and the first axis is arranged. A second corrugated annular first transmission groove and a second transmission member on a surface facing the first transmission member, the second transmission member being a corrugated annular centered on the second axis and having a wave number different from the first transmission groove. A plurality of transmission grooves and a plurality of intersections of the first and second transmission grooves, and a plurality of transmission gears involved in the transmission between the first and second transmission members while rolling the first and second transmission grooves. A third rolling element having a first rolling element, the second speed change mechanism being located on a surface of the second transmission member facing the third transmission member and having a wavy annular shape centering on the second axis; The transmission member is on the surface facing the second transmission member and has a wave shape with the first axis as the center, and the wave number is different from that of the third transmission groove. 4 transmission grooves and a plurality of intersections of the third and fourth transmission grooves, and a plurality of transmissions for performing transmission transmission between the second and third transmission members while rolling the third and fourth transmission grooves And a second rolling element.

そして、この伝動装置では、例えば第1〜第3伝動部材を板状に構成すると共にその三者を軸方向に重ね合わせるように配置することで、装置の軸方向幅を縮小させて、装置の軸方向の扁平小型化を図り得る利点がある。   In this transmission device, for example, the first to third transmission members are configured in a plate shape and arranged so that the three members overlap in the axial direction, thereby reducing the axial width of the device, There is an advantage that the flatness in the axial direction can be reduced.

特許第4814351号公報Japanese Patent No. 4814351

ところが特許文献1の伝動装置においては、第2伝動部材の軸方向一側面に第2伝動溝が、またその他側面に第3伝動溝がそれぞれ形成され、しかもこれら第2及び第3伝動溝は、第2軸線と直交する投影面で見て互いに重なるように配置されている。そのため、第2及び第3伝動溝の溝底間における第2伝動部材の肉厚が必然的に減少し、第2伝動部材の強度アップを図る上で不利になる。   However, in the transmission device of Patent Document 1, a second transmission groove is formed on one side surface in the axial direction of the second transmission member, and a third transmission groove is formed on the other side surface, and these second and third transmission grooves are They are arranged so as to overlap each other when viewed on the projection plane orthogonal to the second axis. Therefore, the thickness of the second transmission member between the bottoms of the second and third transmission grooves inevitably decreases, which is disadvantageous in increasing the strength of the second transmission member.

即ち、伝動装置の伝動中、第1,第2変速機構における各伝動溝は、対応する転動体から拡張方向の荷重を受け、その溝底部に応力集中が発生する。このとき、第2及び第3伝動溝の形成により、その両溝間における第2伝動部材の肉厚が減少していると、その箇所が上記応力集中に因り変形破損し易くなる等の問題がある。   That is, during transmission of the transmission, each transmission groove in the first and second transmission mechanisms receives a load in the expansion direction from the corresponding rolling element, and stress concentration occurs at the bottom of the groove. At this time, if the thickness of the second transmission member between the two grooves is reduced due to the formation of the second and third transmission grooves, there is a problem that the portion is likely to be deformed and damaged due to the stress concentration. is there.

そこで従来装置では、上記問題を回避すべく、両溝間における上記肉厚減少を見込んで第2伝動部材全体の肉厚を厚く設定しており、これが第2伝動部材の重量増ひいては伝動装置の重量増を来たし、のみならず、伝動装置の軸方向幅を多少とも増加させる要因となる。   Therefore, in the conventional device, in order to avoid the above problem, the thickness of the entire second transmission member is set to be thick in anticipation of the reduction in the thickness between the two grooves, and this increases the weight of the second transmission member and thus the transmission device. Not only does this increase the weight, it also causes a slight increase in the axial width of the transmission.

本発明は、かかる事情に鑑みてなされたものであって、板状の第2伝動部材の肉厚を特別に厚く設定せずとも、第2伝動部材に、これの強度不足を招くことなく第2及び第3伝動溝を形成可能とした伝動装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and the second transmission member can be provided with the second transmission member without causing a lack of strength thereof without setting the thickness of the plate-like second transmission member to be particularly thick. An object of the present invention is to provide a transmission device capable of forming the second and third transmission grooves.

上記目的を達成するために、本発明は、第1軸線を中心軸線とするように配置された第1伝動部材と、第1軸線回りに回転可能な主軸部、および第1軸線から偏心した第2軸線を中心軸線とする偏心軸部が一体的に連結された偏心回転部材と、前記偏心軸部に回転自在に支持されると共に前記第1伝動部材に対向する板状の第2伝動部材と、第1軸線を中心軸線とするように配置されると共に前記第2伝動部材に対向する第3伝動部材と、前記第1及び第2伝動部材間で変速しつつトルク伝達可能な第1変速機構と、前記第2及び第3伝動部材間で変速しつつトルク伝達可能な第2変速機構とを備え、前記第1変速機構が、前記第1伝動部材の、前記第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状の第1伝動溝と、前記第2伝動部材の、前記第1伝動部材との対向面に在り且つ第2軸線を中心とする波形環状で波数が第1伝動溝とは異なる第2伝動溝と、第1及び第2伝動溝の複数の交差部に介装され、それら第1及び第2伝動溝を転動しながら前記第1及び第2伝動部材間の変速伝動を行う複数の第1転動体とを有し、前記第2変速機構は、前記第2伝動部材の、前記第3伝動部材との対向面に在り且つ第2軸線を中心とする波形環状の第3伝動溝と、前記第3伝動部材の、前記第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状で波数が第3伝動溝とは異なる第4伝動溝と、第3及び第4伝動溝の複数の交差部に介装され、それら第3及び第4伝動溝を転動しながら前記第2及び第3伝動部材間の変速伝動を行う複数の第2転動体とを有してなる伝動装置であって、前記第2伝動部材の、軸方向で一方側の側面に、前記第2伝動溝と、その第2伝動溝で囲繞されるように配置した前記第3伝動溝とが共に設けられることを第1の特徴とする。   In order to achieve the above object, the present invention provides a first transmission member arranged so that the first axis is a central axis, a main shaft portion rotatable around the first axis, and a first shaft eccentric from the first axis. An eccentric rotating member integrally connected with an eccentric shaft portion having two axes as a central axis, and a plate-like second transmission member that is rotatably supported by the eccentric shaft portion and faces the first transmission member; A first transmission mechanism that is arranged with the first axis as a central axis and that faces the second transmission member, and a first transmission mechanism capable of transmitting torque while shifting between the first and second transmission members. And a second transmission mechanism capable of transmitting torque while shifting between the second and third transmission members, wherein the first transmission mechanism is a surface of the first transmission member facing the second transmission member. The first transmission groove having an annular shape centered on the first axis and the first axis A plurality of first and second transmission grooves, a second transmission groove on the surface of the transmission member facing the first transmission member and having a wave shape centered on the second axis and having a wave number different from that of the first transmission groove; And a plurality of first rolling elements that perform speed change transmission between the first and second transmission members while rolling in the first and second transmission grooves. The mechanism is a wave-shaped third transmission groove on the surface of the second transmission member facing the third transmission member and centering on the second axis, and the second transmission member of the third transmission member A fourth annular groove having a wave shape centered on the first axis and having a wave number different from that of the third transmission groove, and a plurality of intersections of the third and fourth transmission grooves. A plurality of second rolling elements for performing transmission transmission between the second and third transmission members while rolling the third and fourth transmission grooves; The second transmission member includes a second transmission groove and a third transmission groove arranged to be surrounded by the second transmission groove on a side surface on one side in the axial direction of the second transmission member. The first feature is that they are provided together.

また本発明は、第1の特徴に加えて、前記第1伝動部材は環状に構成され、前記第3伝動部材は、これの少なくとも一部が前記第1伝動部材により囲繞されるように配置されることを第2の特徴とする。   According to the present invention, in addition to the first feature, the first transmission member is formed in an annular shape, and the third transmission member is disposed so that at least a part of the third transmission member is surrounded by the first transmission member. This is the second feature.

また本発明は、前記第1又は第2の特徴に加えて、前記第3伝動溝は、前記第2伝動溝よりも波数が少なく設定されることを第3の特徴とする。   In addition to the first or second feature, the third feature of the present invention is that the third transmission groove is set to have a smaller wave number than the second transmission groove.

また本発明は、前記第1〜第3の何れかの特徴に加えて、前記第1〜第3伝動部材を収容すると共に前記第1伝動部材を相対回転不能に支持するケーシングを備え、第1軸線上に並ぶ一対の軸のうちの何れか一方が前記主軸部に、またその何れか他方が前記第3伝動部材にそれぞれ連結されることを第4の特徴とする。   In addition to any one of the first to third features, the present invention further includes a casing that houses the first to third transmission members and supports the first transmission member so as not to be relatively rotatable. A fourth feature is that any one of a pair of shafts arranged on the axis is connected to the main shaft portion, and any one of the other shafts is connected to the third transmission member.

本発明の第1の特徴によれば、第2伝動部材の、軸方向で一方側の側面に、第2伝動溝と、その第2伝動溝で囲繞されるように配置した第3伝動溝とが共に設けられるので、第2及び第3伝動溝の各溝底における第2伝動部材の肉厚減少を最小限に抑えることができる。これにより、板状の第2伝動部材の肉厚を特別厚く設定しなくても、第2伝動部材は、その強度不足を来たすことなく第2及び第3伝動溝を的確に形成可能となるため、第2伝動部材の軽量化ひいては伝動装置の軽量化に寄与することができ、その上、伝動装置の軸方向幅の増加を抑えて、その小型化に寄与することができる。しかも第2及び第3伝動溝を第2伝動部材の一方側の側面にのみ設けることで、その両伝動溝の成形又は加工を第2伝動部材に対しその一側面側から一挙に効率よく行うことができるから、生産性の向上に寄与することができる。   According to the first feature of the present invention, the second transmission member has a second transmission groove on a side surface on one side in the axial direction, and a third transmission groove disposed so as to be surrounded by the second transmission groove. Since both are provided, the thickness reduction of the 2nd transmission member in each groove bottom of the 2nd and 3rd transmission groove can be suppressed to the minimum. Thereby, even if the thickness of the plate-like second transmission member is not set to be particularly thick, the second transmission member can accurately form the second and third transmission grooves without causing insufficient strength. In addition, it is possible to contribute to the weight reduction of the second transmission member, and thus to the weight reduction of the transmission device, and to contribute to the miniaturization of the transmission device by suppressing the increase in the axial width of the transmission device. In addition, by providing the second and third transmission grooves only on one side surface of the second transmission member, both the transmission grooves can be efficiently molded from the one side surface to the second transmission member at once. Therefore, it can contribute to the improvement of productivity.

また本発明の第2の特徴によれば、第1伝動部材は環状に構成され、第3伝動部材は、これの少なくとも一部が第1伝動部材により囲繞されるように配置されるので、環状をなす第1伝動部材の内周側のスペースを第3伝動部材の設置スペースに利用可能となり、これにより、伝動装置の軸方向幅を更に短縮させることができて、軸方向に一層コンパクトな伝動装置が得られる。   According to the second feature of the present invention, the first transmission member is formed in an annular shape, and the third transmission member is arranged so that at least a part of the third transmission member is surrounded by the first transmission member. The space on the inner peripheral side of the first transmission member forming the third transmission member can be used as the installation space for the third transmission member, thereby further reducing the axial width of the transmission device, and further reducing the transmission in the axial direction. A device is obtained.

また本発明の第3の特徴によれば、第3伝動溝は、第2伝動溝よりも波数が少なく設定されるので、第3伝動溝が第2伝動溝の径方向内方側に在ることで比較的小径となっても、第3伝動溝は、それの波数が比較的少ないことにより、その溝の曲率を特段大きくすることなく的確に形成可能となる。   According to the third feature of the present invention, since the third transmission groove is set to have a smaller wave number than the second transmission groove, the third transmission groove is on the radially inner side of the second transmission groove. Even if the diameter of the third transmission groove is relatively small, the third transmission groove can be accurately formed without particularly increasing the curvature of the groove because the wave number of the third transmission groove is relatively small.

また本発明の第4の特徴によれば、第1〜第3伝動部材を収容すると共に第1伝動部材を相対回転不能に支持するケーシングを備え、第1軸線上に並ぶ一対の軸のうちの何れか一方が偏心回転部材の主軸部に、またその何れか他方が第3伝動部材にそれぞれ連結されるので、伝動装置を、同軸上に並ぶ一対の軸間で軸方向にコンパクトに配備可能な減速機又は増速機として構成することができる。   According to a fourth aspect of the present invention, the apparatus includes a casing that houses the first to third transmission members and supports the first transmission member so that the first transmission member cannot be rotated relative to the first axis. Since either one is connected to the main shaft portion of the eccentric rotating member and the other is connected to the third transmission member, the transmission device can be compactly arranged in the axial direction between a pair of coaxially arranged shafts. It can be configured as a speed reducer or speed increaser.

第1実施形態に係る伝動装置(減速機)の全体縦断面図Whole longitudinal cross-sectional view of the transmission device (reduction gear) which concerns on 1st Embodiment 図1の2−2線断面図2-2 sectional view of FIG. 第2実施形態に係る伝動装置(差動装置)の全体縦断面図Overall longitudinal sectional view of a transmission device (differential device) according to a second embodiment 図3の4−4線断面図Sectional view taken along line 4-4 in FIG.

本発明の実施形態を添付図面に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1,図2に示す本発明の第1実施形態を説明する。図1において、伝動装置としての車両用減速機Rは、第1伝動軸S1の回転を第1,第2変速機構T1,T2を介して減速して第2伝動軸S2に伝達するものであって、入力軸としての第1伝動軸S1には、図示しない動力源が直接又は伝動機構を介して接続される。また出力軸としての第2伝動軸S2には、動力源からの動力で減速駆動される各種作動機器(例えば車輪)が直接又は伝動機構を介して接続される。   First, a first embodiment of the present invention shown in FIGS. 1 and 2 will be described. In FIG. 1, a vehicle speed reducer R as a transmission device decelerates the rotation of the first transmission shaft S1 via the first and second transmission mechanisms T1 and T2 and transmits it to the second transmission shaft S2. A power source (not shown) is connected to the first transmission shaft S1 as the input shaft directly or via a transmission mechanism. Further, various operating devices (for example, wheels) that are driven to decelerate by the power from the power source are connected to the second transmission shaft S2 as the output shaft directly or via a transmission mechanism.

減速機Rは、図示しない支持体(例えば車体フレーム)に固定支持される中空のケーシングCと、そのケーシングC内に収容されて各々円環状をなす第1,第2,第3伝動部材5,8,9と、同じくケーシングC内に収容されて第2伝動部材8に囲繞される偏心回転部材6と、第1及び第2伝動部材5,8間で変速しつつトルク伝達可能な第1変速機構T1と、第2及び第3伝動部材8,9間で変速しつつトルク伝達可能な第2変速機構T2とを主要な構成要素とする。   The reduction gear R includes a hollow casing C fixedly supported by a support body (not shown) (for example, a vehicle body frame), and first, second, and third transmission members 5 that are housed in the casing C and have an annular shape. 8, 9, the first rotating member capable of transmitting torque while shifting between the eccentric rotating member 6 housed in the casing C and surrounded by the second transmission member 8, and the first and second transmission members 5, 8. The main component is a mechanism T1 and a second transmission mechanism T2 capable of transmitting torque while shifting between the second and third transmission members 8 and 9.

ケーシングCは、第1,第2ケーシング半体C1,C2を着脱可能に締結した中空の二つ割り構造とされる。その両ケーシング半体C1,C2の内周部には、軸方向外方に一体に延出する第1,第2軸受ボス部41,42がそれぞれ連設され、それら第1,第2軸受ボス部41,42には第1,第2伝動軸S1,S2の各内端部が第1,第2軸受B1;B2,B2′(例えばボール軸受)を介してそれぞれ第1軸線X1回りに回転可能に支持される。   The casing C has a hollow split structure in which the first and second casing halves C1 and C2 are detachably fastened. First and second bearing boss portions 41 and 42 extending integrally outward in the axial direction are connected to the inner peripheral portions of the casing halves C1 and C2, respectively. In the portions 41 and 42, the inner ends of the first and second transmission shafts S1 and S2 rotate around the first axis X1 via first and second bearings B1 and B2 and B2 '(for example, ball bearings), respectively. Supported as possible.

上記第1伝動部材5は、第1軸線X1を中心軸線として板状に形成されており、ケーシングCの一側壁(即ち第1ケーシング半体C1)に相対回転不能に連結される。本実施形態では、第1伝動部材5がケーシングCに固着手段(例えば溶接、カシメ等)により固着されるが、第1伝動部材5はケーシングCに一体に形成されてもよいし、或いはスプライン嵌合されてもよい。   The first transmission member 5 is formed in a plate shape with the first axis X1 as a central axis, and is connected to one side wall of the casing C (that is, the first casing half C1) in a relatively non-rotatable manner. In the present embodiment, the first transmission member 5 is fixed to the casing C by fixing means (for example, welding, caulking, etc.), but the first transmission member 5 may be formed integrally with the casing C, or spline-fitted. May be combined.

上記偏心回転部材6は、第1軸線X1を中心軸線とする主軸部6jと、第1軸線X1から所定偏心量eだけ偏心した第2軸線X2を中心軸線とする偏心軸部6eとを一体に有するものであり、主軸部6jには、第1伝動軸S1が同軸に連結(本実施形態では一体に形成)される。尚、偏心回転部材6と第1伝動軸S1とを別々に形成して、その両者を一体回転するよう連結(例えばスプライン嵌合)してもよい。   The eccentric rotating member 6 integrally includes a main shaft portion 6j having a first axis line X1 as a central axis, and an eccentric shaft portion 6e having a second axis line X2 eccentric from the first axis X1 by a predetermined eccentric amount e as a central axis line. The first transmission shaft S1 is coaxially connected to the main shaft portion 6j (formed integrally in the present embodiment). Note that the eccentric rotating member 6 and the first transmission shaft S1 may be formed separately and connected so as to rotate together (for example, spline fitting).

上記第2伝動部材8は、板状に形成されており、偏心軸部6e上に第3軸受B3(例えばボール軸受)を介して第2軸線X2回りに回転自在に支持される。その第2伝動部材8の、軸方向で一側面8fは、第1伝動部材5の内側面に対向する。   The second transmission member 8 is formed in a plate shape, and is supported on the eccentric shaft portion 6e so as to be rotatable around the second axis X2 via a third bearing B3 (for example, a ball bearing). One side surface 8 f of the second transmission member 8 is opposed to the inner surface of the first transmission member 5 in the axial direction.

上記第3伝動部材9は、第1軸線X1を中心軸線として板状に形成されており、第1伝動部材5の径方向内方側に同心状に配置される。この配置により、第3伝動部材9の少なくとも一部(本実施形態では略全部)が第1伝動部材5により囲繞される。そして、この第3伝動部材9は、第2伝動軸S2に同軸上で連結(本実施形態で一体に形成)され、その第3伝動部材9の内側面もまた、第2伝動部材8の上記一側面8fに対向している。尚、第3伝動部材9と第2伝動軸S2とを別々に形成して、その両者を一体回転するよう連結(例えばスプライン嵌合)してもよい。   The third transmission member 9 is formed in a plate shape with the first axis line X1 as the central axis, and is arranged concentrically on the radially inner side of the first transmission member 5. With this arrangement, at least a part (substantially all in the present embodiment) of the third transmission member 9 is surrounded by the first transmission member 5. The third transmission member 9 is coaxially connected to the second transmission shaft S2 (integrally formed in the present embodiment), and the inner side surface of the third transmission member 9 is also the above-mentioned second transmission member 8. Opposite the one side 8f. Alternatively, the third transmission member 9 and the second transmission shaft S2 may be formed separately and connected so as to rotate together (for example, spline fitting).

而して、第2伝動部材8は、偏心回転部材6(第1伝動軸S1)の第1軸線X1回りの回転に伴い、偏心軸部6eに対し第2軸線X2回りに自転しつつ、第1伝動軸S1に対し第1軸線X1回りに公転する。   Thus, the second transmission member 8 rotates about the second axis X2 with respect to the eccentric shaft portion 6e as the eccentric rotation member 6 (first transmission shaft S1) rotates about the first axis X1, while rotating about the second axis X2. Revolve around the first axis X1 with respect to one transmission shaft S1.

また本実施形態においては、第1及び第2変速機構T1,T2によるトルク伝達中、第2伝動部材8には第1,第3伝動部材5,8から離隔する方向(図1で左向き)のスラスト荷重が作用するが、当該スラスト荷重を第3軸受B3を介して第1伝動軸S1で受けることができる。これにより、第2伝動部材8の背面をケーシングC(第1ケーシング半体C1)に摺接させてスラスト荷重を受ける場合と比べて回転抵抗を低減可能である。   Further, in the present embodiment, during the torque transmission by the first and second transmission mechanisms T1, T2, the second transmission member 8 is separated from the first and third transmission members 5, 8 (leftward in FIG. 1). Although the thrust load acts, the thrust load can be received by the first transmission shaft S1 via the third bearing B3. Thereby, rotation resistance can be reduced compared with the case where the back surface of the 2nd transmission member 8 is made to slide-contact with the casing C (1st casing half body C1), and a thrust load is received.

次に第1,第2変速機構T1,T2について、順に説明する。   Next, the first and second transmission mechanisms T1 and T2 will be described in order.

第1伝動部材5の、第2伝動部材8に対向する内側面には、第1軸線X1を中心とした波形環状の第1伝動溝21が形成され、この第1伝動溝21は、図示例では第1軸線X1を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第2伝動部材8の一側面8fの、第1伝動部材5に対向する部分(即ち外周寄りの側面部)には、第2軸線X2を中心とした波形環状の第2伝動溝22が形成される。この第2伝動溝22は、図示例では第2軸線X2を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、第1伝動溝21の波数Z1とは異なる(例えば少ない)波数Z2を有して第1伝動溝21と複数箇所で交差する。第1伝動溝21及び第2伝動溝22の交差部(即ち重なり部)には、第1転動体としての複数の第1ボール23…が介装され、各々の第1ボール23は、第1及び第2伝動溝21,22の内側面を転動自在である。   On the inner surface of the first transmission member 5 facing the second transmission member 8, a wavy annular first transmission groove 21 centering on the first axis X <b> 1 is formed, and the first transmission groove 21 is illustrated in the illustrated example. Then, it extends in the circumferential direction along a hypotrochoid curve having a virtual circle centered on the first axis X1 as a base circle. On the other hand, a portion of one side surface 8f of the second transmission member 8 that faces the first transmission member 5 (that is, a side surface portion near the outer periphery) has a corrugated annular second transmission groove 22 centered on the second axis X2. It is formed. In the illustrated example, the second transmission groove 22 extends in the circumferential direction along an epitrochoid curve having a virtual circle centered on the second axis X2 as a base circle, and is different from the wave number Z1 of the first transmission groove 21. Crosses the first transmission groove 21 at a plurality of locations with a wave number Z2 (for example, small). A plurality of first balls 23 as first rolling elements are interposed at intersections (that is, overlapping portions) of the first transmission groove 21 and the second transmission groove 22, and each of the first balls 23 is a first one. And the inner surface of the 2nd transmission grooves 21 and 22 can roll freely.

第1伝動部材5及び第2伝動部材8の相対向面間には、円環状で扁平な第1保持部材H1が介装される。この第1保持部材H1は、複数の第1ボール23の、第1、第2伝動溝21,22相互の交差部での両伝動溝21,22への係合状態を維持し得るように、複数の第1ボール23をそれらの相互間隔を一定に規制しつつ回転自在に保持する複数の円形の保持孔31を有している。   Between the opposing surfaces of the first transmission member 5 and the second transmission member 8, an annular and flat first holding member H1 is interposed. The first holding member H1 can maintain the engaged state of the plurality of first balls 23 in both the transmission grooves 21 and 22 at the intersections of the first and second transmission grooves 21 and 22. A plurality of circular holding holes 31 are provided to hold the plurality of first balls 23 in a freely rotating manner while keeping their mutual intervals constant.

また、第2伝動部材8の上記一側面8fの、第3伝動部材9に対向する部分(即ち内周寄りの側面部)には、第2軸線X2を中心とした波形環状の第3伝動溝24が形成され、この第3伝動溝24は、図示例では第2軸線X2を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びている。一方、第3伝動部材9の、第2伝動部材8と対向する内側面には、第1軸線X1を中心とした波形環状の第4伝動溝25が形成される。この第4伝動溝25は、図示例では第1軸線X1を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びており、第3伝動溝24の波数Z3とは異なる(例えば少ない)波数Z4を有して第3伝動溝24と複数箇所で交差する。第3伝動溝24及び第4伝動溝25の交差部(重なり部)には、第2転動体としての複数の第2ボール26…が介装され、各第2ボール26は、第3及び第4伝動溝24,25の内側面を転動自在である。   In addition, a portion of the one side surface 8f of the second transmission member 8 that faces the third transmission member 9 (that is, a side surface portion closer to the inner periphery) has a third annular transmission groove having a wave shape centered on the second axis X2. 24 is formed, and the third transmission groove 24 extends in the circumferential direction along an epitrochoid curve having a virtual circle centered on the second axis X2 in the illustrated example. On the other hand, on the inner surface of the third transmission member 9 facing the second transmission member 8, a wavy annular fourth transmission groove 25 centering on the first axis X <b> 1 is formed. In the illustrated example, the fourth transmission groove 25 extends in the circumferential direction along a hypotrochoid curve having a virtual circle centered on the first axis X1 as a base circle, and is different from the wave number Z3 of the third transmission groove 24. It intersects with the third transmission groove 24 at a plurality of locations with a wave number Z4 (for example, less). A plurality of second balls 26 as second rolling elements are interposed at the intersecting portion (overlapping portion) of the third transmission groove 24 and the fourth transmission groove 25, and each second ball 26 has a third and a third one. 4 The inner surfaces of the transmission grooves 24 and 25 can roll freely.

第3伝動部材9及び第2伝動部材8の相対向面間には、第1保持部材H1により囲繞される円環状で扁平な第2保持部材H2が介装される。この第2保持部材H2は、複数の第2ボール26…の、第3、第4伝動溝24,25相互の交差部での両伝動溝24,25への係合状態を維持し得るように、複数の第2ボール26…をそれらの相互間隔を一定に規制しつつ回転自在に保持する複数の円形の保持孔32を有している。   Between the opposing surfaces of the third transmission member 9 and the second transmission member 8, an annular and flat second holding member H2 surrounded by the first holding member H1 is interposed. The second holding member H2 can maintain the engagement state of the plurality of second balls 26 to the transmission grooves 24 and 25 at the intersections of the third and fourth transmission grooves 24 and 25. The plurality of second balls 26 are provided with a plurality of circular holding holes 32 for holding the second balls 26...

ところで第2伝動部材8の軸方向一側面8fに各々形成されて波形環状をなす第2及び第3伝動溝22,24は、第2伝動溝22により第3伝動溝24が囲繞されるように配置形成される。しかも本実施形態では、径方向内方側の第3伝動溝24の波数Z3が、径方向外方側の第2伝動溝22の波数Z2よりも少なく設定される。   By the way, the second and third transmission grooves 22 and 24 that are formed on the one side surface 8f in the axial direction of the second transmission member 8 and have a corrugated ring shape are surrounded by the second transmission groove 22. Arrangement is formed. Moreover, in the present embodiment, the wave number Z3 of the third transmission groove 24 on the radially inner side is set to be smaller than the wave number Z2 of the second transmission groove 22 on the radially outer side.

而して、第1伝動溝21、第2伝動溝22及び第1ボール23は、互いに協働して第1段階の変速(減速)を行う第1変速機構T1を構成し、また第3伝動溝24、第4伝動溝25及び第2ボール26は、互いに協働して第2段階の変速(減速)を行う第2変速機構T2を構成する。   Thus, the first transmission groove 21, the second transmission groove 22, and the first ball 23 constitute a first transmission mechanism T1 that cooperates with each other to perform a first-stage speed change (deceleration), and a third transmission. The groove 24, the fourth transmission groove 25, and the second ball 26 constitute a second transmission mechanism T2 that cooperates with each other to perform a second-stage speed change (deceleration).

尚、ケーシングCの第1軸受ボス部41と第1伝動軸S1との間には、第1軸受B1よりも外方側に環状シール部材43が介装され、また第2軸受ボス部42と第2伝動軸S2との間には、両第2軸受B2,B2′間において環状シール部材44が介装される。これらシール部材43,44により、ケーシングC内の減速機構が外部より遮蔽される。   An annular seal member 43 is interposed between the first bearing boss 41 of the casing C and the first transmission shaft S1 on the outer side of the first bearing B1, and the second bearing boss 42 and An annular seal member 44 is interposed between the second transmission shafts S2 between the second bearings B2 and B2 ′. These sealing members 43 and 44 shield the speed reduction mechanism in the casing C from the outside.

次に、第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

図示しない動力源からの動力により第1伝動軸S1(入力軸)が回転駆動されると、これと一体の偏心回転部材6の偏心軸部6eが第1軸線X1回りに公転し、これに伴い、偏心軸部6e上の第2伝動部材8も第1軸線X1回りに公転する。この公転によれば、ケーシングCに固着されて回転規制される第1伝動部材5の第1伝動溝21と、第2伝動部材8の第2伝動溝22との相互間にその両溝21,22の交差部で係合する各第1ボール23が、その両溝21,22上を転動することによって、第2伝動部材8が偏心軸部6e上で第2軸線X2回りに自転する。   When the first transmission shaft S1 (input shaft) is rotationally driven by power from a power source (not shown), the eccentric shaft portion 6e of the eccentric rotation member 6 integrated therewith revolves around the first axis X1, and accordingly The second transmission member 8 on the eccentric shaft portion 6e also revolves around the first axis X1. According to this revolution, both the grooves 21, between the first transmission groove 21 of the first transmission member 5 fixed to the casing C and restricted in rotation and the second transmission groove 22 of the second transmission member 8, Each first ball 23 engaged at the intersection of 22 rolls on both grooves 21 and 22, whereby the second transmission member 8 rotates around the second axis X <b> 2 on the eccentric shaft portion 6 e.

斯かる第2伝動部材8の自転及び公転によれば、第2,第3伝動部材8,9上の第3,第4伝動溝24,25の相互間にその両溝24,25の交差部で係合する各第2ボール26が両溝24,25上を転動することによって、第3伝動部材9が第1軸線X1回りに自転駆動される。そして、その自転駆動力は、第3伝動部材9と一体の第2伝動軸S2(出力軸)に伝達される。   According to the rotation and revolution of the second transmission member 8, the intersection of the grooves 24 and 25 between the third and fourth transmission grooves 24 and 25 on the second and third transmission members 8 and 9. As the second balls 26 that engage with each other roll on the grooves 24 and 25, the third transmission member 9 is driven to rotate about the first axis X1. The rotation driving force is transmitted to the second transmission shaft S2 (output shaft) integral with the third transmission member 9.

かくして、動力源からの動力で駆動される第1伝動軸S1の回転が第1,第2変速機構T1,T2を順次経て第2伝動軸S2に減速して伝達され、第2伝動軸S2、従ってこれに連なる作動機器を減速駆動することができる。   Thus, the rotation of the first transmission shaft S1 driven by the power from the power source is decelerated and transmitted to the second transmission shaft S2 through the first and second speed change mechanisms T1 and T2, and is transmitted to the second transmission shaft S2. Accordingly, it is possible to drive the operating equipment connected thereto at a reduced speed.

そして、本実施形態のような転動ボール式の減速機Rにおいて、第1伝動溝21の波数をZ1、第2伝動溝22の波数をZ2、第3伝動溝24の波数をZ3、第4伝動溝25の波数をZ4としたとき、第1伝動軸S1(入力軸)と第2伝動軸S2(出力軸)間の減速比εは、
ε=1−{(Z1×Z3)/(Z2×Z4)}
として表される。
In the rolling ball type speed reducer R as in this embodiment, the wave number of the first transmission groove 21 is Z1, the wave number of the second transmission groove 22 is Z2, the wave number of the third transmission groove 24 is Z3, When the wave number of the transmission groove 25 is Z4, the reduction ratio ε between the first transmission shaft S1 (input shaft) and the second transmission shaft S2 (output shaft) is
ε = 1 − {(Z1 × Z3) / (Z2 × Z4)}
Represented as:

上記転動ボール式の減速機Rにおいては、第1伝動部材5と第2伝動部材8間のトルク伝達は、第1伝動溝21、複数の第1ボール23…及び第2伝動溝22を介して行われ、また第2伝動部材8と第3伝動部材9間のトルク伝達は、第3伝動溝24、複数の第2ボール26…及び第4伝動溝25を介して行われる。これにより、第1伝動部材5と第2伝動部材8、並びに第2伝動部材8と第3伝動部材9の各間では、トルク伝達が第1及び第2ボール23,26が存在する複数箇所に分散して行われることになるため、第1〜第3伝動部材5,8,9及び第1、第2ボール23,26等の各伝動要素の強度増及び軽量化が図られる。しかも本実施形態の伝動構造によれば、第1〜第3伝動部材5,8,9を各々板状とすることにより軸方向に扁平小型化が容易な変速装置(減速機R)が提供可能となる。   In the rolling ball type reduction gear R, torque transmission between the first transmission member 5 and the second transmission member 8 is performed via the first transmission groove 21, the plurality of first balls 23, and the second transmission groove 22. Further, torque transmission between the second transmission member 8 and the third transmission member 9 is performed via the third transmission groove 24, the plurality of second balls 26, and the fourth transmission groove 25. Thereby, between each of the 1st transmission member 5 and the 2nd transmission member 8, and the 2nd transmission member 8 and the 3rd transmission member 9, torque transmission is carried out to a plurality of places where the 1st and 2nd balls 23 and 26 exist. Since it is performed in a distributed manner, the strength and weight of each transmission element such as the first to third transmission members 5, 8, 9 and the first and second balls 23, 26 can be increased. Moreover, according to the transmission structure of the present embodiment, it is possible to provide a transmission (reduction gear R) that is easily flattened in the axial direction by making the first to third transmission members 5, 8, 9 each plate-like. It becomes.

また本実施形態では、第2伝動部材8の軸方向一側面8f(図1で右側面)にだけ、波形環状をなす第2及び第3伝動溝22,24が互いに交差しないように(即ち第2伝動溝22により第3伝動溝24が囲繞されるように)配置形成される。そのため、第2及び第3伝動溝22,24の溝底間における第2伝動部材8の肉厚減少が最小限に抑えられるから、板状をなす第2伝動部材8の肉厚を特別厚く設定しなくても、第2伝動部材8は、強度不足を来たすことなく第2及び第3伝動溝22,24を的確に形成可能となる。これにより、第2伝動部材8の軽量化ひいては伝動装置(減速機R)の軽量化が達成され、しかも伝動装置(減速機R)の軸方向幅の増加が効果的に抑えられて、装置の扁平小型化が達成される。   Further, in the present embodiment, the second and third transmission grooves 22 and 24 having a wavy shape do not intersect each other only on one axial side surface 8f (right side surface in FIG. 1) of the second transmission member 8 (that is, the first transmission member 8). The second transmission groove 22 is arranged and formed so that the third transmission groove 24 is surrounded. Therefore, since the thickness reduction of the 2nd transmission member 8 between the groove bottoms of the 2nd and 3rd transmission grooves 22 and 24 is suppressed to the minimum, the thickness of the 2nd transmission member 8 which makes plate shape is set to special thickness. Even without this, the second transmission member 8 can accurately form the second and third transmission grooves 22 and 24 without causing insufficient strength. Thereby, the weight reduction of the 2nd transmission member 8 and the weight reduction of a transmission device (reduction gear R) are achieved, and also the increase in the axial direction width of a transmission device (reduction gear R) is suppressed effectively, Flatness reduction is achieved.

その上、本実施形態では、第2伝動溝22により、波数Z3が比較的少ない第3伝動溝24が囲繞される配置であるため、第3伝動溝24が第2伝動溝22の径方向内方側に在ることで比較的小径となっても、第3伝動溝24は、これの波数Z3を比較的少なくしたことにより、その曲率を特別に大きくしなくても的確に形成可能である。   In addition, in the present embodiment, the third transmission groove 24 is disposed in the radial direction of the second transmission groove 22 because the second transmission groove 22 surrounds the third transmission groove 24 having a relatively small wave number Z3. Even if the third transmission groove 24 has a relatively small diameter by being on the side, the third transmission groove 24 can be accurately formed by reducing the wave number Z3 of the third transmission groove 24 without particularly increasing its curvature. .

しかも本実施形態によれば、第2及び第3伝動溝22,24が第2伝動部材8の一方側の側面8fにのみ設けられることで、その両伝動溝22,24の成形(例えば鍛造、焼結又は鋳造等の型成形)或いは加工(例えば切削加工)等を第2伝動部材8に対しその一側面側から一挙に効率よく行えるようになり、生産性の向上が達成される。   In addition, according to the present embodiment, the second and third transmission grooves 22 and 24 are provided only on the side surface 8f on one side of the second transmission member 8, thereby forming the transmission grooves 22 and 24 (for example, forging, Molding such as sintering or casting) or processing (for example, cutting) can be efficiently performed on the second transmission member 8 from one side face at a time, thereby improving productivity.

更に本実施形態の第3伝動部材9は、これの少なくとも一部(本実施形態では略全部)が環状の第1伝動部材5により囲繞されるように配置されるので、第1伝動部材5の内周側のスペースを第3伝動部材9の設置スペースに利用可能となる。これにより、伝動装置(減速機R)の軸方向幅を更に短縮させることができるから、軸方向によりコンパクトな伝動装置が得られる。   Further, the third transmission member 9 of the present embodiment is arranged so that at least a part (substantially all in this embodiment) of the third transmission member 9 is surrounded by the annular first transmission member 5. The space on the inner peripheral side can be used as the installation space for the third transmission member 9. Thereby, since the axial direction width | variety of a transmission device (reduction gear R) can further be shortened, a more compact transmission device is obtained by an axial direction.

次に第2実施形態を、図3及び図4を参照して説明する。先の実施形態では、伝動装置として転動ボール式の減速機Rを例示したが、本第2実施形態の伝動装置は転動ボール式の車両用差動装置Dとして例示される。   Next, a second embodiment will be described with reference to FIGS. In the previous embodiment, the rolling ball type reduction gear R was exemplified as the transmission device, but the transmission device of the second embodiment is exemplified as the rolling ball type vehicle differential device D.

この差動装置Dは、図示しない変速機と共にミッションケース100内に収容され、エンジン等の動力源に変速機を介して連動するリングギヤCgの回転を、第1軸線X1上に並ぶ一対の駆動車軸S1,S2(即ち第1,第2伝動軸)に対して、両軸S1,S2相互の差動回転を許容しつつ分配する。尚、各々の駆動車軸S1,S2とミッションケース100との間は、シール部材101でシールされる。   The differential device D is housed in a transmission case 100 together with a transmission (not shown), and a pair of drive axles arranged on the first axis X1 to rotate the ring gear Cg linked to a power source such as an engine via the transmission. Distribution is performed while allowing differential rotation between the shafts S1 and S2 with respect to S1 and S2 (that is, the first and second transmission shafts). The drive axles S1, S2 and the transmission case 100 are sealed with a seal member 101.

差動装置Dは、ミッションケース100に第1軸線X1回りに回転可能に支持されるケーシングCと、そのケーシングC内に収容される後述の差動機構Dmとで構成される。ケーシングCは、デフケースとして機能するものであって、ヘリカルギヤよりなるリングギヤCgを外周部に有する円筒状のケーシング本体Cmと、ケーシング本体Cmの軸方向両端部に外周端部がそれぞれ一体的に接合される左右一対の側壁Ca,Cbとを備える。   The differential device D includes a casing C that is rotatably supported by the mission case 100 around the first axis X1, and a differential mechanism Dm described later that is housed in the casing C. The casing C functions as a differential case, and a cylindrical casing main body Cm having a ring gear Cg made of a helical gear on the outer peripheral portion, and outer peripheral end portions are integrally joined to both axial end portions of the casing main body Cm. A pair of left and right side walls Ca and Cb.

その両側壁Ca,Cbは、各々の内周端部において軸方向外方に延びる円筒ボス状の第1,第2軸受B1,B2を一体に有している。その第1,第2軸受B1,B2の外周部は、ミッションケース100に外軸受102(例えばボール軸受)を介して第1軸線X1回りに回転自在に支持される。また第1,第2軸受B1,B2の内周面(即ち軸受面)には、第1,第2駆動車軸S1,S2がそれぞれ回転自在に嵌合、支持される。   Both side walls Ca and Cb integrally have cylindrical boss-like first and second bearings B1 and B2 extending outward in the axial direction at the respective inner peripheral ends. The outer peripheral portions of the first and second bearings B1 and B2 are supported by the transmission case 100 so as to be rotatable around the first axis X1 via an outer bearing 102 (for example, a ball bearing). The first and second drive axles S1 and S2 are rotatably fitted and supported on the inner peripheral surfaces (that is, bearing surfaces) of the first and second bearings B1 and B2, respectively.

次に差動機構Dmの構造を説明する。差動機構Dmは、ケーシングC内に収容される各々円環状をなす第1,第2,第3伝動部材5,8,9と、ケーシングC内に収容されて第1,第2伝動部材5,8に囲繞される偏心回転部材6と、第1及び第2伝動部材5,8間で変速しつつトルク伝達可能な第1変速機構T1と、第2及び第3伝動部材8,9間で変速しつつトルク伝達可能な第2変速機構T2とを主要な構成要素とする。   Next, the structure of the differential mechanism Dm will be described. The differential mechanism Dm includes first, second, and third transmission members 5, 8, and 9 each having an annular shape that is accommodated in the casing C, and the first and second transmission members 5 that are accommodated in the casing C. , 8, between the first and second transmission members 8, 9, the first transmission mechanism T 1 capable of transmitting torque while shifting between the first and second transmission members 5, 8. The second transmission mechanism T2 capable of transmitting torque while shifting is a main component.

第1伝動部材5は、第1軸線X1を中心軸線とするもので、ケーシングCの一側壁Cbに同軸に連結(本実施形態では一体に形成)される。尚、第1伝動部材5は、ケーシングCと別体に構成して、ケーシングCに固着(例えば溶接)してもよいし或いはスプライン嵌合してもよい。   The first transmission member 5 has the first axis X1 as a central axis, and is coaxially connected to one side wall Cb of the casing C (formed integrally in the present embodiment). The first transmission member 5 may be configured separately from the casing C, and may be fixed (for example, welded) to the casing C or may be spline fitted.

偏心回転部材6は、第1軸線X1を中心軸線とする主軸部6jと、第2軸線X2を中心軸線とする偏心軸部6eとを一体に有するものであり、主軸部6jには、第1伝動軸としての第1駆動車軸S1の内端部が同軸に連結(本実施形態ではスプライン嵌合111)される。そして、偏心軸部6eには第2伝動部材8が第3軸受B3(例えばボール軸受)を介して第2軸線X2回りに回転自在に支持され、その第2伝動部材8の軸方向一側面8fは第1伝動部材5の内側面に対向する。   The eccentric rotating member 6 integrally includes a main shaft portion 6j having a first axis line X1 as a central axis, and an eccentric shaft portion 6e having a second axis line X2 as a central axis. The main shaft portion 6j includes a first shaft portion 6j. The inner end portion of the first drive axle S1 serving as the transmission shaft is connected coaxially (in this embodiment, spline fitting 111). A second transmission member 8 is supported on the eccentric shaft portion 6e via a third bearing B3 (for example, a ball bearing) so as to be rotatable about the second axis X2, and one axial side surface 8f of the second transmission member 8 is supported. Is opposed to the inner surface of the first transmission member 5.

第3伝動部材9は、第1軸線X1回りに回転する第2駆動車軸S2に同軸上で連結(本実施形態ではスプライン嵌合112)されていて、第2駆動車軸S2と共に第1軸線X1回りに回転する。また第3伝動部材9の内側面は、第2伝動部材8の軸方向一側面8fに対向する。   The third transmission member 9 is coaxially connected to the second drive axle S2 that rotates around the first axis X1 (in this embodiment, the spline fitting 112), and around the first axis X1 together with the second drive axle S2. Rotate to. Further, the inner side surface of the third transmission member 9 is opposed to one axial side surface 8 f of the second transmission member 8.

尚、第2実施形態において、第2伝動部材8の外周側に配置される第2伝動溝22は、第1実施形態と同様にエピトロコイド曲線に沿って周方向に延びる溝であるが、第2伝動部材8の内周側に配置される第3伝動溝24は、第1実施形態とは異なり、ハイポトロコイド曲線に沿って周方向に延びる溝である。そして、第2実施形態の第4伝動溝25は、エピトロコイド曲線に沿って周方向に延びる溝である。   In the second embodiment, the second transmission groove 22 disposed on the outer peripheral side of the second transmission member 8 is a groove extending in the circumferential direction along the epitrochoid curve as in the first embodiment. 2 Unlike the first embodiment, the third transmission groove 24 disposed on the inner peripheral side of the transmission member 8 is a groove extending in the circumferential direction along the hypotrochoid curve. And the 4th transmission groove 25 of 2nd Embodiment is a groove | channel extended in the circumferential direction along an epitrochoid curve.

而して、第2実施形態においても、第2伝動部材8は、偏心回転部材6(第1駆動車軸S1)の第1軸線X1回りの回転に伴い、偏心軸部6eに対し第2軸線X2回りに自転しつつ、第1駆動車軸S1に対し第1軸線X1回りに公転する。   Thus, also in the second embodiment, the second transmission member 8 has the second axis X2 with respect to the eccentric shaft portion 6e as the eccentric rotation member 6 (first drive axle S1) rotates about the first axis X1. Revolving around the first axis X1 relative to the first drive axle S1 while rotating around.

また第2実施形態の第1,第2変速機構T1,T2の構造は、第1実施形態の第1,第2変速機構T1,T2の構造と基本的に同様であるので、各構成要素に同様の参照符号を付すに留め、機構の説明は省略する。但し、第2実施形態では、第1,第2変速機構T1,T2が、偏心回転部材6(第1駆動車軸S1)を固定した状態でケーシングCを回転させたときに、第1伝動部材5から第3伝動部材9を2倍の増速比を以て駆動するように構成される。   The structure of the first and second speed change mechanisms T1 and T2 of the second embodiment is basically the same as the structure of the first and second speed change mechanisms T1 and T2 of the first embodiment. The description of the mechanism is omitted only by attaching the same reference numerals. However, in the second embodiment, when the first and second speed change mechanisms T1 and T2 rotate the casing C with the eccentric rotating member 6 (first driving axle S1) fixed, the first transmission member 5 is used. The third transmission member 9 is configured to be driven with a double speed increasing ratio.

そのために、第2実施形態においては、第1伝動溝21の波数をZ1、第2伝動溝22の波数をZ2、第3伝動溝24の波数をZ3、第4伝動溝25の波数をZ4としたとき、下記式が成立するように、第1〜第4伝動溝21,22,24,25が形成される。   Therefore, in the second embodiment, the wave number of the first transmission groove 21 is Z1, the wave number of the second transmission groove 22 is Z2, the wave number of the third transmission groove 24 is Z3, and the wave number of the fourth transmission groove 25 is Z4. Then, the first to fourth transmission grooves 21, 22, 24, 25 are formed so that the following formula is established.

(Z1/Z2)×(Z3/Z4)=2
望ましくは、例えばZ1=8、Z2=6、Z3=6、Z4=4とするとよい。
(Z1 / Z2) × (Z3 / Z4) = 2
Desirably, for example, Z1 = 8, Z2 = 6, Z3 = 6, and Z4 = 4.

この場合には、8波の第1伝動溝21と6波の第2伝動溝22とが7箇所で交差し、この7箇所の交差部(重なり部)に7個の第1ボール23が介装され、また6波の第3伝動溝24と4波の第4伝動溝25とが5箇所で交差し、この5箇所の交差部(重なり部)に5個の第2ボール26が介装される。   In this case, the eight-wave first transmission groove 21 and the six-wave second transmission groove 22 intersect at seven locations, and seven first balls 23 are interposed at the seven intersection portions (overlapping portions). The 6-wave third transmission groove 24 and the 4-wave fourth transmission groove 25 intersect at five locations, and five second balls 26 are interposed at the five intersection portions (overlapping portions). Is done.

また上記場合において、例えば第1駆動車軸S1を固定することで偏心回転部材6(従って偏心軸部6e)を固定した状態において、エンジンからの動力でリングギヤCgが駆動され、ケーシングC(従って第1伝動部材5)を第1軸線X1回りに回転させると、第1伝動部材5の8波の第1伝動溝21が第2伝動部材8の6波の第2伝動溝22を第1ボール23を介して駆動するので、第1伝動部材5が8/6の増速比を以て第2伝動部材8を駆動することになる。そして、この第2伝動部材8の回転によれば、第2伝動部材8の6波の第3伝動溝24が第3伝動部材9の4波の第4伝動溝25を第2ボール26を介して駆動するので、第2伝動部材8が6/4の増速比を以て第3伝動部材9を駆動することになる。   In the above case, for example, in a state where the eccentric rotating member 6 (and hence the eccentric shaft portion 6e) is fixed by fixing the first drive axle S1, the ring gear Cg is driven by the power from the engine, and the casing C (and therefore the first shaft 1). When the transmission member 5) is rotated around the first axis X1, the first transmission groove 21 of the first transmission member 5 and the second transmission groove 22 of the six transmission waves of the second transmission member 8 become the first ball 23. Therefore, the first transmission member 5 drives the second transmission member 8 with a speed increasing ratio of 8/6. Then, according to the rotation of the second transmission member 8, the six-wave third transmission groove 24 of the second transmission member 8 passes the four-wave fourth transmission groove 25 of the third transmission member 9 via the second ball 26. Therefore, the second transmission member 8 drives the third transmission member 9 with a speed increasing ratio of 6/4.

結局、第1伝動部材5は、
(Z1/Z2)×(Z3/Z4)=(8/6)×(6/4)=2
の増速比を以て第3伝動部材9を駆動することになる。
After all, the first transmission member 5 is
(Z1 / Z2) × (Z3 / Z4) = (8/6) × (6/4) = 2
The third transmission member 9 is driven with the speed increasing ratio.

一方、第2駆動車軸S2を固定することで第3伝動部材9を固定した状態において、デフケース(従って第1伝動部材5)を回転させると、第1伝動部材5の回転駆動力と、第2伝動部材8の、不動の第3伝動部材9に対する駆動反力とにより、第2伝動部材8は、偏心回転部材6の偏心軸部6e(第2軸線X2)に対し自転しながら第1軸線X1回りに公転して、偏心軸部6eを第1軸線X1回りに駆動する。その結果、第1伝動部材5は、2倍の増速比を以て偏心回転部材6を駆動することになる。   On the other hand, when the differential case (and hence the first transmission member 5) is rotated in a state where the third transmission member 9 is fixed by fixing the second drive axle S2, the rotational drive force of the first transmission member 5 and the second The second transmission member 8 rotates with respect to the eccentric shaft portion 6e (second axis X2) of the eccentric rotating member 6 by the driving reaction force of the transmission member 8 against the stationary third transmission member 9, and the first axis X1. Revolving around, the eccentric shaft portion 6e is driven around the first axis X1. As a result, the first transmission member 5 drives the eccentric rotating member 6 with a double speed increasing ratio.

而して、偏心回転部材6及び第3伝動部材9の負荷が相互にバランスしたり、相互に変化したりすると、第2伝動部材8の自転量及び公転量が無段階に変化し、偏心回転部材6及び第3伝動部材9の回転数の平均値が第1伝動部材5の回転数と等しくなる。こうして、第1伝動部材5の回転は、偏心回転部材6及び第3伝動部材9に分配され、したがってリングギヤCgからデフケースCに伝達された回転力を左右の駆動車軸S1,S2に分配することができる。   Thus, when the loads of the eccentric rotating member 6 and the third transmission member 9 are balanced with each other or change with each other, the amount of rotation and the amount of revolution of the second transmission member 8 change steplessly, and the eccentric rotation The average value of the rotational speeds of the member 6 and the third transmission member 9 is equal to the rotational speed of the first transmission member 5. Thus, the rotation of the first transmission member 5 is distributed to the eccentric rotation member 6 and the third transmission member 9, so that the rotational force transmitted from the ring gear Cg to the differential case C can be distributed to the left and right drive axles S1, S2. it can.

かくして、第2実施形態の伝動構造によれば、第1〜第3伝動部材5,8,9を各々板状とすることにより軸方向に扁平小型化が容易な差動装置Dが提供可能となる。   Thus, according to the transmission structure of the second embodiment, the first to third transmission members 5, 8, 9 can each be plate-like, and thus a differential device D that can be easily flattened in the axial direction can be provided. Become.

そして、この第2実施形態においても、第2伝動部材8の一側面8fにおける第2,第3伝動溝22,24の配置構成が、第1実施形態のそれと同様であるので、その配置構成に関連して、第1実施形態と略同等の作用効果を併せて達成可能である。   And also in this 2nd Embodiment, since the arrangement configuration of the 2nd, 3rd transmission grooves 22 and 24 in one side 8f of the 2nd transmission member 8 is the same as that of 1st Embodiment, it is in the arrangement configuration. In relation to this, it is possible to achieve the same effect as that of the first embodiment.

以上、本発明の実施形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was described, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、第1実施形態では、伝動装置として、車両用の減速機Rに実施したものを例示したが、本発明の伝動装置は、車両以外の種々の機械装置のための減速機として使用してもよい。   For example, in the first embodiment, the transmission device implemented on the reduction gear R for the vehicle is exemplified, but the transmission device of the present invention is used as a reduction gear for various mechanical devices other than the vehicle. Also good.

また第1実施形態では、第1伝動軸S1を入力軸とし、第2伝動軸S2を出力軸とした減速機Rを伝動装置として示したが、この伝動装置を例えば、第1伝動軸S1を出力軸とし、第2伝動軸S2を入力軸とすることで増速機として使用してもよい。   In the first embodiment, the reduction gear R using the first transmission shaft S1 as the input shaft and the second transmission shaft S2 as the output shaft is shown as the transmission device. However, for example, the transmission device may be the first transmission shaft S1. By using the second transmission shaft S2 as the input shaft as the output shaft, the speed increasing device may be used.

また第2実施形態では、伝動装置としての差動装置Dを自動車のミッションケース1内に収容しているが、差動装置Dは自動車用の差動装置に限定されるものではなく、種々の機械装置のための差動装置として実施可能である。   In the second embodiment, the differential device D as a transmission device is accommodated in the transmission case 1 of the automobile. However, the differential device D is not limited to the differential apparatus for an automobile, It can be implemented as a differential for a mechanical device.

また、第2実施形態では、差動装置Dを、左・右輪伝動系に適用して、左右の駆動車軸S1,S2に対し差動回転を許容しつつ動力を分配するものを示したが、本発明では、差動装置を、前・後輪駆動車両における前・後輪伝動系に適用して、前後の駆動車輪に対し差動回転を許容しつつ動力を分配するようにしてもよい。   In the second embodiment, the differential device D is applied to the left / right wheel transmission system to distribute power while allowing differential rotation to the left and right drive axles S1, S2. In the present invention, the differential device may be applied to a front / rear wheel transmission system in a front / rear wheel drive vehicle to distribute power while allowing differential rotation to the front and rear drive wheels. .

また、第2実施形態では、第1,第2軸受B1,B2を円筒ボス状としてケーシングCと一体化したものを例示したが、第1実施形態のようにケーシングCと別部品化した第1,第2軸受B1,B2を介してケーシングCに第1,第2駆動車軸S1,S2(第1,第2伝動軸)を回転自在に支持させるようにしてもよい。   In the second embodiment, the first and second bearings B1 and B2 are formed as cylindrical bosses and integrated with the casing C. However, the first and second casings B1 and B2 are separated from the casing C as in the first embodiment. The first and second drive axles S1 and S2 (first and second transmission shafts) may be rotatably supported on the casing C via the second bearings B1 and B2.

また、前記実施形態では、第1,第2変速機構T1,T2の各伝動溝21,22;24,25をトロコイド曲線に沿った波形環状の波溝としているが、これら伝動溝は、前記実施形態に限定されるものでなく、例えばサイクロイド曲線に沿った波形環状の波溝としてもよい。   In the above-described embodiment, the transmission grooves 21, 22; 24, 25 of the first and second transmission mechanisms T1, T2 are corrugated annular wave grooves along the trochoid curve. It is not limited to a form, For example, it is good also as a waveform annular wave groove along a cycloid curve.

また、前記実施形態では、第1,第2変速機構T1,T2の第1及び第2伝動溝21,22間、並びに第3及び第4伝動溝24,25間にボール状の第1及び第2転動体23,26を介装したものを示したが、その転動体をローラ状又はピン状としてもよく、この場合に、第1及び第2伝動溝21,22、並びに第3及び第4伝動溝24,25は、ローラ状又はピン状の転動体が転動し得るような内側面形状に形成される。   In the above-described embodiment, the first and second ball-shaped first and second transmission grooves 21 and 22 and the third and fourth transmission grooves 24 and 25 of the first and second transmission mechanisms T1 and T2 are provided. Although two rolling elements 23 and 26 are interposed, the rolling elements may be in the form of a roller or a pin. In this case, the first and second transmission grooves 21 and 22, and the third and fourth The transmission grooves 24 and 25 are formed in an inner surface shape so that a roller-like or pin-like rolling element can roll.

また前記実施形態では、第1,第2保持部材H1,H2を、内・外周面が各々真円の円環状リングより構成したものを示したが、第1,第2保持部材の形状は、前記実施形態に限定されず、少なくとも複数の第1,第2ボール23,26を各々一定間隔で保持し得る環状体であればよく、例えば楕円状の環状体、或いは波形に湾曲した環状体であってもよい。なお、第1,第2保持部材H1,H2無しでも第1,第2ボール23,26が円滑に転動可能である場合には、第1,第2保持部材H1,H2を省略してもよい。   In the above embodiment, the first and second holding members H1 and H2 are configured by an annular ring having inner and outer peripheral surfaces each having a perfect circle, but the shape of the first and second holding members is as follows. The present invention is not limited to the above embodiment, and any annular body that can hold at least a plurality of first and second balls 23 and 26 at regular intervals may be used. For example, an elliptical annular body or an annular body curved in a waveform There may be. If the first and second balls 23 and 26 can smoothly roll without the first and second holding members H1 and H2, the first and second holding members H1 and H2 may be omitted. Good.

C・・・・・・ケーシング
D・・・・・・差動装置(伝動装置)
R・・・・・・減速機(伝動装置)
S1・・・・・第1伝動軸(軸)
S2・・・・・第2伝動軸(軸)
T1,T2・・第1,第2変速機構
X1,X2・・第1,第2軸線
5,8,9・・第1,第2,第3伝動部材
6・・・・・・偏心回転部材
6e・・・・・偏心軸部
6j・・・・・主軸部
21,22・・第1,第2伝動溝
23,26・・第1,第2ボール(第1,第2転動体)
24,25・・第3,第4伝動溝
C ··· Casing D ··· Differential gear (transmission device)
R ... Reducer (transmission device)
S1 ... 1st transmission shaft (shaft)
S2 ... 2nd transmission shaft (shaft)
T1, T2,..., First and second transmission mechanisms X1, X2,..., First and second axes 5, 8, 9, .., first, second, and third transmission members 6. 6e... Eccentric shaft portion 6j... Main shaft portions 21, 22,..., First and second transmission grooves 23, 26 .., first and second balls (first and second rolling elements)
24, 25 ... 3rd and 4th transmission groove

Claims (4)

第1軸線(X1)を中心軸線とするように配置された第1伝動部材(5)と、
第1軸線(X1)回りに回転可能な主軸部(6j)、および第1軸線(X1)から偏心した第2軸線(X2)を中心軸線とする偏心軸部(6e)が一体的に連結された偏心回転部材(6)と、
前記偏心軸部(6e)に回転自在に支持されると共に前記第1伝動部材(5)に対向する板状の第2伝動部材(8)と、
第1軸線(X1)を中心軸線とするように配置されると共に前記第2伝動部材(8)に対向する第3伝動部材(9)と、
前記第1及び第2伝動部材(5,8)間で変速しつつトルク伝達可能な第1変速機構(T1)と、
前記第2及び第3伝動部材(8,9)間で変速しつつトルク伝達可能な第2変速機構(T2)とを備え、
前記第1変速機構(T1)が、前記第1伝動部材(5)の、前記第2伝動部材(8)との対向面に在り且つ第1軸線(X1)を中心とする波形環状の第1伝動溝(21)と、前記第2伝動部材(8)の、前記第1伝動部材(5)との対向面に在り且つ第2軸線(X2)を中心とする波形環状で波数が第1伝動溝(21)とは異なる第2伝動溝(22)と、第1及び第2伝動溝(21,22)の複数の交差部に介装され、それら第1及び第2伝動溝(21,22)を転動しながら第1及び第2伝動部材(5,8)間の変速伝動を行う複数の第1転動体(23)とを有し、
前記第2変速機構(T2)が、前記第2伝動部材(8)の、前記第3伝動部材(9)との対向面に在り且つ第2軸線(X2)を中心とする波形環状の第3伝動溝(24)と、前記第3伝動部材(9)の、前記第2伝動部材(8)との対向面に在り且つ第1軸線(X1)を中心とする波形環状で波数が第3伝動溝(24)とは異なる第4伝動溝(25)と、第3及び第4伝動溝(24,25)の複数の交差部に介装され、それら第3及び第4伝動溝(24,25)を転動しながら第2及び第3伝動部材(8,9)間の変速伝動を行う複数の第2転動体(26)とを有してなる伝動装置であって、
前記第2伝動部材(8)の、軸方向で一方側の側面(8f)に、前記第2伝動溝(22)と、その第2伝動溝(22)で囲繞されるように配置した前記第3伝動溝(24)とが共に設けられることを特徴とする伝動装置。
A first transmission member (5) disposed so as to have the first axis (X1) as a central axis;
A main shaft portion (6j) rotatable around the first axis (X1) and an eccentric shaft portion (6e) having a second axis (X2) eccentric from the first axis (X1) as a central axis are integrally connected. An eccentric rotating member (6),
A plate-like second transmission member (8) that is rotatably supported by the eccentric shaft portion (6e) and faces the first transmission member (5);
A third transmission member (9) disposed so as to have the first axis (X1) as a central axis and facing the second transmission member (8);
A first transmission mechanism (T1) capable of transmitting torque while shifting between the first and second transmission members (5, 8);
A second transmission mechanism (T2) capable of transmitting torque while shifting between the second and third transmission members (8, 9);
The first transmission mechanism (T1) is located on a surface of the first transmission member (5) facing the second transmission member (8) and has a wave-shaped first shape centered on the first axis (X1). A first wave number is transmitted in a wave shape centered on the second axis (X2) on the surface of the transmission groove (21) and the second transmission member (8) facing the first transmission member (5). A second transmission groove (22) different from the groove (21) and a plurality of intersecting portions of the first and second transmission grooves (21, 22) are interposed between the first and second transmission grooves (21, 22). And a plurality of first rolling elements (23) that perform transmission transmission between the first and second transmission members (5, 8) while rolling
The second transmission mechanism (T2) is located on a surface of the second transmission member (8) facing the third transmission member (9) and has a waveform-shaped third centered on the second axis (X2). The wave number of the third transmission is a wave-shaped ring centered on the first axis (X1) on the surface of the transmission groove (24) and the third transmission member (9) facing the second transmission member (8). A fourth transmission groove (25) different from the groove (24) and a plurality of intersecting portions of the third and fourth transmission grooves (24, 25) are interposed between the third and fourth transmission grooves (24, 25). And a plurality of second rolling elements (26) for performing transmission transmission between the second and third transmission members (8, 9) while rolling),
The second transmission member (8) is disposed on one side surface (8f) in the axial direction so as to be surrounded by the second transmission groove (22) and the second transmission groove (22). A transmission device comprising three transmission grooves (24).
前記第1伝動部材(5)は環状に構成され、前記第3伝動部材(9)は、これの少なくとも一部が前記第1伝動部材(5)により囲繞されるように配置されることを特徴とする、請求項1に記載の伝動装置。   The first transmission member (5) is formed in an annular shape, and the third transmission member (9) is arranged such that at least a part of the first transmission member (9) is surrounded by the first transmission member (5). The transmission device according to claim 1. 前記第3伝動溝(24)は、前記第2伝動溝(22)よりも波数が少なく設定されることを特徴とする、請求項1又は2に記載の伝動装置。   The transmission device according to claim 1 or 2, wherein the third transmission groove (24) is set to have a smaller wave number than the second transmission groove (22). 前記第1〜第3伝動部材(5,8,9)を収容すると共に前記第1伝動部材(5)を相対回転不能に支持するケーシング(C)を備え、
第1軸線(X1)上に並ぶ一対の軸(S1,S2)のうちの何れか一方(S1)が前記主軸部(6j)に、またその何れか他方(S2)が前記第3伝動部材(9)にそれぞれ連結されることを特徴とする、請求項1〜3の何れか1項に記載の伝動装置。
A casing (C) for housing the first to third transmission members (5, 8, 9) and supporting the first transmission member (5) so as not to be relatively rotatable;
One of the pair of shafts (S1, S2) arranged on the first axis (X1) (S1) is the main shaft portion (6j), and the other (S2) is the third transmission member ( The transmission device according to any one of claims 1 to 3, wherein the transmission device is connected to 9).
JP2016024062A 2016-02-10 2016-02-10 Transmission device Pending JP2017141910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024062A JP2017141910A (en) 2016-02-10 2016-02-10 Transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024062A JP2017141910A (en) 2016-02-10 2016-02-10 Transmission device

Publications (1)

Publication Number Publication Date
JP2017141910A true JP2017141910A (en) 2017-08-17

Family

ID=59627558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024062A Pending JP2017141910A (en) 2016-02-10 2016-02-10 Transmission device

Country Status (1)

Country Link
JP (1) JP2017141910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222695A (en) * 2012-01-13 2017-12-21 エックススプレイ ファーマ パブリーク・アクチエボラグXSpray Pharma AB(publ) Pharmaceutical compositions comprising stable, amorphous, hybrid nanoparticles of at least one protein kinase inhibitor and at least one polymeric stabilizing and matrix-forming component
WO2019078088A1 (en) * 2017-10-18 2019-04-25 日本電産シンポ株式会社 Transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222695A (en) * 2012-01-13 2017-12-21 エックススプレイ ファーマ パブリーク・アクチエボラグXSpray Pharma AB(publ) Pharmaceutical compositions comprising stable, amorphous, hybrid nanoparticles of at least one protein kinase inhibitor and at least one polymeric stabilizing and matrix-forming component
WO2019078088A1 (en) * 2017-10-18 2019-04-25 日本電産シンポ株式会社 Transmission
CN111212993A (en) * 2017-10-18 2020-05-29 日本电产新宝株式会社 Speed variator
JPWO2019078088A1 (en) * 2017-10-18 2020-11-05 日本電産シンポ株式会社 transmission
JP7207628B2 (en) 2017-10-18 2023-01-18 日本電産シンポ株式会社 transmission

Similar Documents

Publication Publication Date Title
JP6513658B2 (en) Differential
WO2017094796A1 (en) Transmission device and differential device
WO2016013315A1 (en) Differential device
JP2016031081A (en) Differential gear
JP2017141910A (en) Transmission device
JP6407678B2 (en) Power transmission device
WO2017170588A1 (en) Gearing
WO2017146059A1 (en) Differential gear
WO2017131141A1 (en) Transmission device
WO2017104763A1 (en) Differential device
US10359098B1 (en) Hypo-cycloidal differential
WO2017170587A1 (en) Gearing
WO2016199708A1 (en) Transmission device
JP2017172774A (en) Transmission device
JP2017053378A (en) Transmission device and differential device
JP2017141929A (en) Transmission device
WO2017086344A1 (en) Differential device
WO2017104764A1 (en) Transmission device
JP2017115993A (en) Differential device
JP2017101694A (en) Transmission device
WO2017082208A1 (en) Power transmitting device
WO2017170589A1 (en) Transmission device
WO2017154898A1 (en) Power transmitting device
WO2018179788A1 (en) Planetary transmission device and differential device
JP2017133661A (en) Transmission device