JP2014040892A - Frictional roller type transmission - Google Patents

Frictional roller type transmission Download PDF

Info

Publication number
JP2014040892A
JP2014040892A JP2012184282A JP2012184282A JP2014040892A JP 2014040892 A JP2014040892 A JP 2014040892A JP 2012184282 A JP2012184282 A JP 2012184282A JP 2012184282 A JP2012184282 A JP 2012184282A JP 2014040892 A JP2014040892 A JP 2014040892A
Authority
JP
Japan
Prior art keywords
roller
peripheral surface
outer peripheral
cross
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184282A
Other languages
Japanese (ja)
Inventor
Ichiu Tanaka
一宇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012184282A priority Critical patent/JP2014040892A/en
Publication of JP2014040892A publication Critical patent/JP2014040892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a frictional roller type transmission having high transmitting efficiency and realizing a structure to easily ensure durability, by preventing rolling contact portions of peripheral faces of rollers 12b, 13b and 27 from having surface pressures largely different from each other regardless of difference in unevenness in a circumferential direction, of an outer peripheral face of a sun roller 12b and an inner peripheral face of the circular roller 13b.SOLUTION: With respect to cross-sectional shapes of rollers 12b, 13b and 27, a combination of the cross-sectional shape of an outer peripheral face of a sun roller 12b and the cross-sectional shape of outer peripheral face of each of intermediate rollers 27 and 27 is determined to reduce surface pressure of a rolling contact portion, in comparison with a combination of the cross-sectional shape of the outer peripheral face of each of the intermediate rollers 27 and 27, and the cross-sectional shape of an inner peripheral face of a circular roller 13b. A difference in generated surface pressures is canceled on the basis of unevenness in a circumferential direction.

Description

この発明は、例えば電気自動車の駆動系に組み込んだ状態で、電動モータから駆動輪にトルクを伝達する、摩擦ローラ式変速機の改良に関する。尚、本発明の摩擦ローラ式変速機は、トルクを増大しつつ回転速度を減速する減速機として利用する事が多いと考えられるが、増速機として使用する事を妨げるものではない。   The present invention relates to an improvement in a friction roller type transmission that transmits torque from an electric motor to driving wheels in a state where it is incorporated in a driving system of an electric vehicle, for example. In addition, although it is thought that the friction roller type transmission of this invention is often used as a reduction gear which decelerates rotational speed, increasing torque, it does not prevent using as a speed increaser.

近年に於ける化石燃料の消費量低減の流れを受けて、電気自動車の研究が進み、一部で実施されている。電気自動車の動力源である電動モータは、化石燃料を直接燃焼させる事により動く内燃機関(エンジン)とは異なり、出力軸のトルク及び回転速度の特性が自動車用として好ましい(一般的に、起動時に最大トルクを発生する)ので、必ずしも内燃機関を駆動源とする一般的な自動車の様な変速機を設ける必要はない。但し、電気自動車の場合でも、変速機を設ける事により、加速性能及び高速性能を改善できる。具体的には、変速機を設ける事で、車両の走行速度と加速度との関係を、ガソリンエンジンを搭載した自動車に近い、滑らかなものにできる。この点に就いて、図7を参照しつつ説明する。   In response to the recent trend of reducing fossil fuel consumption, research on electric vehicles has progressed and some have been implemented. Unlike an internal combustion engine (engine) that moves by directly burning fossil fuel, an electric motor that is a power source of an electric vehicle is preferable for an automobile in terms of output shaft torque and rotational speed characteristics (generally at startup) Therefore, it is not always necessary to provide a transmission such as a general automobile using an internal combustion engine as a drive source. However, even in the case of an electric vehicle, acceleration performance and high speed performance can be improved by providing a transmission. Specifically, by providing a transmission, the relationship between the traveling speed and acceleration of the vehicle can be made smooth, similar to a car equipped with a gasoline engine. This point will be described with reference to FIG.

例えば、電気自動車の駆動源である電動モータの出力軸と、駆動輪に繋がるデファレンシャルギヤの入力部との間部分に、減速比の大きな動力伝達装置を設けた場合、電気自動車の加速度(G)と走行速度(km/h)との関係は、図7の実線aの左半部と鎖線bとを連続させた様になる。即ち、低速時の加速性能は優れているが、高速走行ができなくなる。これに対して、前記間部分に減速比の小さな動力伝達装置を設けた場合、前記関係は、図7の鎖線cと実線aの右半部とを連続させた様になる。即ち、高速走行は可能になるが、低速時の加速性能が損なわれる。これに対して、前記出力軸と前記入力部との間に変速機を設け、車速に応じてこの変速機の減速比を変えれば、前記実線aの左半部と右半部とを連続させた如き特性を得られる。この特性は、図7に破線dで示した、同程度の出力を有するガソリンエンジン車とほぼ同等であり、加速性能及び高速性能に関して、ガソリンエンジン車と同等の性能を得られる事が分かる。   For example, when a power transmission device having a large reduction ratio is provided between an output shaft of an electric motor that is a drive source of an electric vehicle and an input portion of a differential gear connected to the drive wheel, the acceleration (G) of the electric vehicle And the traveling speed (km / h) are such that the left half of the solid line a in FIG. In other words, acceleration performance at low speed is excellent, but high-speed running is not possible. On the other hand, when a power transmission device with a small reduction ratio is provided in the intermediate portion, the relationship is such that the chain line c in FIG. 7 and the right half of the solid line a are continuous. That is, high-speed travel is possible, but acceleration performance at low speed is impaired. On the other hand, if a transmission is provided between the output shaft and the input unit and the reduction ratio of the transmission is changed according to the vehicle speed, the left half part and the right half part of the solid line a are made continuous. The following characteristics can be obtained. This characteristic is almost the same as that of a gasoline engine vehicle having the same level of output as shown by the broken line d in FIG. 7, and it can be seen that the same performance as that of a gasoline engine vehicle can be obtained with respect to acceleration performance and high speed performance.

図8は、この様な事情に鑑みて考えられた、電気自動車用駆動装置を示している(特願2011−250531)。この先発明に係る電気自動車用駆動装置は、車両駆動用電動モータ1と、摩擦ローラ式減速機2と、変速機3と、回転伝達装置4とを備える。そして、この摩擦ローラ式減速機2の入力軸5と、前記車両駆動用電動モータ1の出力軸6とを互いに同心に配置して、トルクの伝達を可能に接続する。又、前記摩擦ローラ式減速機2の出力軸19(後述する図9参照)を、前記変速機3の駆動側回転軸7と同心に配置して、トルク伝達可能に接続する。   FIG. 8 shows a drive device for an electric vehicle that has been considered in view of such circumstances (Japanese Patent Application No. 2011-250531). The drive device for an electric vehicle according to the prior invention includes an electric motor 1 for driving a vehicle, a friction roller type speed reducer 2, a transmission 3, and a rotation transmission device 4. The input shaft 5 of the friction roller type reduction gear 2 and the output shaft 6 of the electric motor 1 for driving the vehicle are arranged concentrically with each other so that torque can be transmitted. An output shaft 19 (see FIG. 9 to be described later) of the friction roller type speed reducer 2 is disposed concentrically with the drive side rotating shaft 7 of the transmission 3 so as to be able to transmit torque.

前記変速機3は、前記駆動側回転軸7と従動側回転軸8との間に、減速比が互いに異なる、1対の歯車伝達機構9a、9bを設けて成る。そして、1対のクラッチ機構10a、10bの切り換えにより、何れか一方の歯車伝達機構9a(9b)のみを、動力の伝達を可能な状態として、前記駆動側回転軸7と前記従動側回転軸8との間の減速比を、高低の2段階に変換可能としている。
更に、前記回転伝達装置4は、複数の歯車を組み合わせた、一般的な歯車伝達機構であり、前記従動側回転軸8の回転をデファレンシャルギヤ11の入力部に伝達し、左右1対の駆動輪を回転駆動する様に構成している。
The transmission 3 is provided with a pair of gear transmission mechanisms 9a and 9b having different reduction ratios between the driving side rotating shaft 7 and the driven side rotating shaft 8. Then, by switching between the pair of clutch mechanisms 10a and 10b, only one of the gear transmission mechanisms 9a (9b) is allowed to transmit power so that the drive side rotary shaft 7 and the driven side rotary shaft 8 can be transmitted. The reduction ratio between and can be converted into two steps of high and low.
Further, the rotation transmission device 4 is a general gear transmission mechanism in which a plurality of gears are combined. The rotation transmission device 4 transmits the rotation of the driven side rotation shaft 8 to the input portion of the differential gear 11 and a pair of left and right drive wheels. Is driven to rotate.

尚、前記摩擦ローラ式減速機2としては、例えば特許文献1に記載されたものが使用できる。図9は、この特許文献1に記載された摩擦ローラ式減速機2を示している。この摩擦ローラ式減速機2は、入力軸5と、出力軸19と、太陽ローラ12と、環状ローラ13と、複数個の遊星ローラ14、14と、ローディングカム装置15とを備える。このうちの太陽ローラ12は、軸方向に分割された1対の太陽ローラ素子16a、16bを前記入力軸5の周囲に、互いの先端面同士の間に隙間を介在させた状態で互いに同心に、且つ、このうちの一方の太陽ローラ素子16aを前記入力軸5に対する相対回転を可能に配置して成る。又、前記各遊星ローラ14、14は、遊星軸17、17の周囲に回転自在に支持した状態で、それぞれの外周面を前記太陽ローラ12の外周面と前記環状ローラ13の内周面とに転がり接触させている。又、前記各遊星軸17、17の基端部は、キャリア18を介して、前記出力軸19の基端部に結合固定している。   For example, the friction roller type speed reducer 2 described in Patent Document 1 can be used. FIG. 9 shows the friction roller type speed reducer 2 described in Patent Document 1. The friction roller type speed reducer 2 includes an input shaft 5, an output shaft 19, a sun roller 12, an annular roller 13, a plurality of planetary rollers 14 and 14, and a loading cam device 15. Of these, the sun roller 12 is concentrically arranged with a pair of sun roller elements 16a and 16b divided in the axial direction around the input shaft 5 with a gap interposed between the tip surfaces thereof. In addition, one of the sun roller elements 16a is arranged so as to be rotatable relative to the input shaft 5. The planetary rollers 14, 14 are rotatably supported around the planetary shafts 17, 17, and the outer peripheral surfaces thereof are the outer peripheral surface of the sun roller 12 and the inner peripheral surface of the annular roller 13. Rolling contact. The base end portions of the planetary shafts 17 and 17 are coupled and fixed to the base end portion of the output shaft 19 via a carrier 18.

更に、前記ローディングカム装置15は、一方の太陽ローラ素子16aと、前記入力軸5との間に設けて、この入力軸5の回転に伴ってこの一方の太陽ローラ素子16aを、他方の太陽ローラ素子16bに向け押圧しつつ、これら両太陽ローラ素子16a、16bから成る、前記太陽ローラ12を回転駆動する。この為に、前記入力軸5の中間部に、止め輪20により支え環21を係止し、この支え環21と前記一方の太陽ローラ素子16aとの間に、この支え環21の側から順番に、皿ばね22と、カム板23と、複数個の玉24、24とを設けている。そして、互いに対向する、前記一方の太陽ローラ素子16aの基端面と前記カム板23の片側面との、それぞれ円周方向複数箇所ずつに、被駆動側カム面25、25と駆動側カム面26、26とを設けている。これら各カム面25、26はそれぞれ、軸方向に関する深さが円周方向に関して中央部で最も深く、同じく両端部に向かうに従って漸次浅くなる形状を有する。   Further, the loading cam device 15 is provided between one sun roller element 16a and the input shaft 5, and the one sun roller element 16a is replaced with the other sun roller as the input shaft 5 rotates. The sun roller 12 composed of both the sun roller elements 16a and 16b is rotationally driven while being pressed toward the element 16b. For this purpose, a support ring 21 is locked to a middle portion of the input shaft 5 by a retaining ring 20, and the support ring 21 and the one sun roller element 16 a are sequentially arranged from the support ring 21 side. A disc spring 22, a cam plate 23, and a plurality of balls 24, 24 are provided. Then, the driven cam surfaces 25 and 25 and the driving cam surface 26 are respectively provided at a plurality of circumferential positions on the base end surface of the one sun roller element 16a and the one side surface of the cam plate 23, which face each other. , 26 are provided. Each of the cam surfaces 25 and 26 has a shape in which the depth in the axial direction is deepest in the central portion in the circumferential direction, and gradually becomes shallower toward both ends.

この様なローディングカム装置15は、前記入力軸5が停止している状態では、前記各玉24、24が、図11の(A)に示す様に、前記各カム面25、26の最も深くなった部分に位置する。この状態では、前記皿ばね22の弾力により、前記一方の太陽ローラ素子16aを前記他方の太陽ローラ素子16bに向け押圧する。これに対して、前記入力軸5が回転すると、前記各玉24、24が、図11の(B)に示す様に、前記各カム面25、26の浅くなった部分に移動する。そして、前記一方の太陽ローラ素子16aと前記カム板23との間隔を拡げ、前記一方の太陽ローラ素子16aを前記他方の太陽ローラ素子16bに向け押圧する。この結果、この一方の太陽ローラ素子16aはこの他方の太陽ローラ素子16bに向け、前記皿ばね22の弾力と、前記各カム面25、26に対して前記各玉24、24が乗り上げる事により発生する推力とのうちの、大きな方の力で押圧されつつ回転駆動される。   In such a loading cam device 15, when the input shaft 5 is stopped, the balls 24, 24 are deepest on the cam surfaces 25, 26 as shown in FIG. Located in the part. In this state, the one sun roller element 16a is pressed toward the other sun roller element 16b by the elasticity of the disc spring 22. On the other hand, when the input shaft 5 rotates, the balls 24 and 24 move to shallow portions of the cam surfaces 25 and 26 as shown in FIG. And the space | interval of said one sun roller element 16a and the said cam board 23 is expanded, and said one sun roller element 16a is pressed toward the said other sun roller element 16b. As a result, the one sun roller element 16a is generated by the elasticity of the disc spring 22 and the balls 24 and 24 riding on the cam surfaces 25 and 26 toward the other sun roller element 16b. It is driven to rotate while being pressed by the larger force of the thrust to be applied.

上述の様な摩擦ローラ式減速機2の運転時には、前記ローディングカム装置15が発生する軸方向の推力により、前記各遊星ローラ14、14の外周面と、前記太陽ローラ12の外周面及び前記環状ローラ13の内周面との転がり接触部の面圧が上昇する。この面圧は、前記入力軸5と前記出力軸19との間で伝達すべきトルクの大きさに応じて上昇する。この状態でこの入力軸5を回転させると、この回転が、前記太陽ローラ12から前記各遊星ローラ14、14に伝わり、これら各遊星ローラ14、14がこの太陽ローラ12の周囲で、自転しつつ公転する。そこで、これら各遊星ローラ14、14の公転運動を、前記キャリア18を介して前記出力軸19により取り出す。   During operation of the friction roller type speed reducer 2 as described above, the outer circumferential surface of each of the planetary rollers 14, 14, the outer circumferential surface of the sun roller 12, and the annular shape are generated by the axial thrust generated by the loading cam device 15. The surface pressure of the rolling contact portion with the inner peripheral surface of the roller 13 increases. This surface pressure increases according to the magnitude of torque to be transmitted between the input shaft 5 and the output shaft 19. When the input shaft 5 is rotated in this state, the rotation is transmitted from the sun roller 12 to the planetary rollers 14, 14, and the planetary rollers 14, 14 are rotating around the sun roller 12. Revolve. Therefore, the revolving motion of each of the planetary rollers 14 and 14 is taken out by the output shaft 19 through the carrier 18.

前述の図8に示した電気自動車用駆動装置の様に、車両駆動用電動モータ1と変速機3との間に摩擦ローラ式減速機2を配置すれば、電気エネルギの効率的利用の為、前記車両駆動用電動モータ1として、小型且つ高回転型(例えば最高回転速度が3万min-1程度)のものを使用しても、運転時の振動及び騒音を抑えられる。即ち、第一段の減速機として、前記摩擦ローラ式減速機2を使用するので、高速回転部分での振動の発生を抑えられる。それぞれが歯車伝達機構である、前記変速機3及び回転伝達装置4の回転速度は、一般的なガソリンエンジンを搭載した自動車の変速機部分の運転速度と同程度(最高で数千min-1程度)に抑えられるので、何れの部分でも、不快な振動や騒音が発生する事はない。 If the friction roller type speed reducer 2 is arranged between the vehicle driving electric motor 1 and the transmission 3 as in the electric vehicle driving device shown in FIG. 8, the electric energy can be used efficiently. Even if a small and high rotation type (for example, the maximum rotation speed is about 30,000 min −1 ) is used as the vehicle driving electric motor 1, vibration and noise during operation can be suppressed. That is, since the friction roller type speed reducer 2 is used as the first stage speed reducer, it is possible to suppress the occurrence of vibrations at the high speed rotating portion. The rotational speeds of the transmission 3 and the rotation transmission device 4, each of which is a gear transmission mechanism, are approximately the same as the driving speed of a transmission portion of a vehicle equipped with a general gasoline engine (up to several thousand min −1 Therefore, no unpleasant vibration or noise is generated in any part.

尚、上述の図9に示した摩擦ローラ式減速機2は、前記環状ローラ13を固定し、各中間ローラを前記各遊星ローラ14、14する事により、これら各遊星ローラ14、14の公転運動を、前記キャリア18を介し、減速した出力として取り出す構造を採用している。これに対して、中間ローラを自転のみ可能とし、環状ローラを回転させて動力伝達を行わせる構造もある。例えば、未公開であるが、前記特願2011−250531には、図12に示す様な、環状ローラから動力を取り出す構造の摩擦ローラ式減速機2aが開示されている。本発明は、この図12に示した構造でも実施可能であるから、前記図12に示した構造に就いて、簡単に説明する。   In the friction roller type speed reducer 2 shown in FIG. 9 described above, the annular roller 13 is fixed, and the intermediate rollers are moved to the planetary rollers 14, 14, so that the planetary rollers 14, 14 revolve. Is taken out through the carrier 18 as a decelerated output. On the other hand, there is a structure in which the intermediate roller can only rotate and the annular roller is rotated to transmit power. For example, although not disclosed, the Japanese Patent Application No. 2011-250531 discloses a friction roller type speed reducer 2a having a structure for extracting power from an annular roller as shown in FIG. Since the present invention can be implemented with the structure shown in FIG. 12, the structure shown in FIG. 12 will be briefly described.

この図12に示した摩擦ローラ式減速機2aは、入力軸5aにより太陽ローラ12aを回転駆動し、この太陽ローラ12aの回転を、複数個の中間ローラ27、27を介して環状ローラ13aに伝達し、この環状ローラ13aの回転を出力軸19aから取り出す様にしている。前記各中間ローラ27、27は、それぞれの中心部に設けた自転軸28、28を中心として自転するが、前記太陽ローラ12aの周囲で公転する事はない。前記太陽ローラ12aは、互いに同じ形状を有する1対の太陽ローラ素子16c、16cを互いに同心に組み合わせて成り、これら両太陽ローラ素子16c、16cを軸方向両側から挟む位置に、それぞれローディングカム装置15a、15aを設置して、前記入力軸5aの回転に伴って前記両太陽ローラ素子16c、16cを、互いに近付く方向に押圧しつつ同方向に回転駆動する様にしている。上述した各構成部分は、段付円筒状のハウジング29内に収納している。   In the friction roller type speed reducer 2a shown in FIG. 12, the sun roller 12a is rotationally driven by the input shaft 5a, and the rotation of the sun roller 12a is transmitted to the annular roller 13a via a plurality of intermediate rollers 27 and 27. The rotation of the annular roller 13a is taken out from the output shaft 19a. Each of the intermediate rollers 27 and 27 rotates around the rotation shafts 28 and 28 provided at the center thereof, but does not revolve around the sun roller 12a. The sun roller 12a is formed by concentrically combining a pair of sun roller elements 16c and 16c having the same shape, and the loading cam device 15a is provided at a position sandwiching both the sun roller elements 16c and 16c from both sides in the axial direction. , 15a, and the two sun roller elements 16c, 16c are driven to rotate in the same direction while being pressed toward each other as the input shaft 5a rotates. Each component described above is housed in a stepped cylindrical housing 29.

又、前記環状ローラ13aは、前記ハウジング29の軸方向中間部で前記太陽ローラ12aの周囲部分に、この太陽ローラ12aと同心に配置している。前記環状ローラ13aの内周面は、軸方向に関して内径が変化しない円筒面とし、この環状ローラ13aと前記出力軸19aの基端部とを、断面L字形の連結部30により連結している。   Further, the annular roller 13a is disposed concentrically with the sun roller 12a in the peripheral portion of the sun roller 12a at the axially intermediate portion of the housing 29. The inner peripheral surface of the annular roller 13a is a cylindrical surface whose inner diameter does not change in the axial direction, and the annular roller 13a and the base end portion of the output shaft 19a are connected by a connecting portion 30 having an L-shaped cross section.

更に、前記各中間ローラ27、27は、前記環状ローラ13aの内周面と前記太陽ローラ12aとの間の環状空間内に、前記各自転軸28、28を中心とする回転(自転)を自在に、且つ、前記環状ローラ13a及び前記太陽ローラ12aの径方向に関する若干の変位を可能に設置している。又、前記各中間ローラ27、27の外周面は、軸方向中間部を単なる円筒面31とすると共に、軸方向両側部分を、前記両太陽ローラ素子16c、16cの外周面と同方向に同一角度傾斜した、部分円すい状凸面32、32としている。   Further, the intermediate rollers 27 and 27 can freely rotate (rotate) around the rotation shafts 28 and 28 in an annular space between the inner peripheral surface of the annular roller 13a and the sun roller 12a. In addition, the annular roller 13a and the sun roller 12a are installed so as to be slightly displaceable in the radial direction. Further, the outer peripheral surfaces of the intermediate rollers 27 and 27 have the axial intermediate portion as a simple cylindrical surface 31 and the axially opposite side portions at the same angle in the same direction as the outer peripheral surfaces of the solar roller elements 16c and 16c. Inclined partial conical convex surfaces 32 and 32 are provided.

上述の様に構成する、先発明の摩擦ローラ式減速機2aの運転時、電動モータにより前記入力軸5aを回転駆動すると、前記両太陽ローラ素子16c、16cが、前記両ローディングカム装置15a、15aの働きにより、互いに近付く方向に押圧されつつ、前記入力軸5aと同じ方向に同じ速度で回転する。そして、前記両太陽ローラ素子16c、16cにより構成される前記太陽ローラ12aの回転が、前記各中間ローラ27、27を介して前記環状ローラ13aに伝わり、前記出力軸19aから取り出される。   When the input shaft 5a is rotationally driven by an electric motor during the operation of the friction roller type speed reducer 2a of the prior invention configured as described above, both the sun roller elements 16c, 16c are both loaded cam devices 15a, 15a. By the action of the above, while being pressed toward each other, they rotate in the same direction as the input shaft 5a at the same speed. Then, the rotation of the sun roller 12a constituted by the both sun roller elements 16c and 16c is transmitted to the annular roller 13a through the intermediate rollers 27 and 27 and is taken out from the output shaft 19a.

太陽ローラと環状ローラと複数の中間ローラ(遊星ローラ)とを組み合わせて成る摩擦ローラ式変速機の場合、特に工夫をしない限り、前記太陽ローラの外周面と前記各中間ローラの外周面との転がり接触部である内径側トラクション部の面圧と、これら各中間ローラの外周面と前記環状ローラの内周面との転がり接触部である外径側トラクション部の面圧との間に、大きな差を生じる。具体的には、前記内径側トラクション部の面圧が、前記外径側トラクション部の面圧に比べて、大幅に高くなる。この様な差が生じる理由は、前記太陽ローラの外周面の円周方向に関する形状が凸円弧であるのに対して、前記環状ローラの内周面の円周方向に関する形状が凹円弧である為である。この様な理由により前記各トラクション部の面圧に大きな差が生じると、これら各トラクション部での伝達効率を適切に規制する事ができないだけでなく、前記太陽ローラの外周面の転がり疲れ寿命を確保する事が難しくなる。   In the case of a friction roller type transmission comprising a combination of a sun roller, an annular roller, and a plurality of intermediate rollers (planetary rollers), unless otherwise devised, the outer circumferential surface of the sun roller and the outer circumferential surface of each intermediate roller roll. There is a large difference between the surface pressure of the inner diameter side traction portion that is the contact portion and the surface pressure of the outer diameter side traction portion that is the rolling contact portion between the outer peripheral surface of each intermediate roller and the inner peripheral surface of the annular roller. Produce. Specifically, the surface pressure of the inner diameter side traction portion is significantly higher than the surface pressure of the outer diameter side traction portion. The reason why such a difference occurs is that the shape of the outer peripheral surface of the sun roller in the circumferential direction is a convex arc, whereas the shape of the inner peripheral surface of the annular roller in the circumferential direction is a concave arc. It is. For this reason, if there is a large difference in the surface pressure of each traction part, not only can the transmission efficiency in each traction part be properly regulated, but also the rolling fatigue life of the outer peripheral surface of the sun roller can be reduced. It becomes difficult to secure.

特開2004−116670号公報JP 2004-116670 A

本発明は、上述の様な事情に鑑み、太陽ローラの外周面と環状ローラの内周面との周方向に関する凹凸の相違に基づく、この太陽ローラの外周面と各中間ローラの外周面との転がり接触部である内径側トラクション部の面圧と、これら各中間ローラの外周面と環状ローラの内周面との転がり接触部である外径側トラクション部の面圧との差を、低減乃至は解消できて、良好な伝達効率を得易く、しかも耐久性の確保も図り易い構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is based on the difference in unevenness in the circumferential direction between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller, and the outer peripheral surface of the sun roller and the outer peripheral surface of each intermediate roller. Reduce or reduce the difference between the surface pressure of the inner diameter side traction portion that is the rolling contact portion and the surface pressure of the outer diameter side traction portion that is the rolling contact portion between the outer peripheral surface of each intermediate roller and the inner peripheral surface of the annular roller. The invention was invented to realize a structure in which good transmission efficiency can be easily obtained, and durability can be easily secured.

本発明の摩擦ローラ式変速機は、入力軸及び出力軸と、太陽ローラと、環状ローラと、複数個の中間ローラとを備える。
これら各中間ローラは、前記太陽ローラの外周面と前記環状ローラの内周面との間の環状空間内に、少なくとも自転を可能に設置しており、それぞれの外周面を前記太陽ローラの外周面及び前記環状ローラの内周面に転がり接触させている。
又、前記太陽ローラは、軸方向に2分割された1対の太陽ローラ素子から成るもので、これら各太陽ローラ素子同士は、少なくとも動力伝達時に、互いに近付く方向に押圧されつつ、同方向に同速度で回転する。
又、前記入力軸及び前記出力軸は、互いの相対回転を可能として、前記太陽ローラ及び前記環状ローラと同心に配置された状態で、前記各ローラのうちの何れかのローラ又は何れかのローラと共に回転する支持部材のうちから選択される2種類の要素に、前記入力軸と前記出力軸とで互いに別の要素に結合している。
The friction roller type transmission of the present invention includes an input shaft and an output shaft, a sun roller, an annular roller, and a plurality of intermediate rollers.
Each of these intermediate rollers is installed in an annular space between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller so as to be able to rotate at least. And in contact with the inner peripheral surface of the annular roller.
Further, the sun roller is composed of a pair of sun roller elements that are divided into two in the axial direction. These sun roller elements are pressed in the direction of approaching each other at least during power transmission, and the same in the same direction. Rotates at speed.
The input shaft and the output shaft can rotate relative to each other, and are arranged concentrically with the sun roller and the annular roller. The input shaft and the output shaft are coupled to two different elements to two types of elements selected from the supporting members that rotate together.

特に、本発明の摩擦ローラ式変速機に於いては、互いに転がり接触する前記各ローラの周面の、これら各ローラの中心軸を含む仮想平面に関する断面形状に関して、前記太陽ローラ素子の外周面の断面形状と前記各中間ローラの外周面の断面形状との組み合わせを、これら各中間ローラの外周面の断面形状と前記環状ローラの内周面の断面形状との組み合わせよりも、これら各ローラの周面同士の転がり接触部の面圧を低くする組み合わせとしている。
そして、前記太陽ローラの外周面と前記環状ローラの内周面との周方向に関する凹凸の相違に基づく、この太陽ローラの外周面と前記各中間ローラの外周面との転がり接触部の面圧と、これら各中間ローラの外周面と前記環状ローラの内周面との転がり接触部の面圧との差を、低減乃至は解消している。
In particular, in the friction roller transmission of the present invention, regarding the cross-sectional shape of the peripheral surfaces of the rollers that are in rolling contact with each other with respect to a virtual plane including the central axis of each of the rollers, The combination of the cross-sectional shape and the cross-sectional shape of the outer peripheral surface of each intermediate roller is different from the combination of the cross-sectional shape of the outer peripheral surface of each intermediate roller and the cross-sectional shape of the inner peripheral surface of the annular roller. It is set as the combination which makes the surface pressure of the rolling contact part of surfaces low.
And the surface pressure of the rolling contact portion between the outer peripheral surface of the sun roller and the outer peripheral surface of each of the intermediate rollers based on the difference in irregularities in the circumferential direction between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller The difference between the surface pressure of the rolling contact portion between the outer peripheral surface of each intermediate roller and the inner peripheral surface of the annular roller is reduced or eliminated.

上述の様な本発明を実施する場合に、具体的には、請求項2に記載した発明の様に、前記各中間ローラの外周面の断面形状を、部分円弧状の凸円弧とする。
又、前記両太陽ローラ素子の外周面の断面形状を、部分円弧状の凹円弧とする。
更に、前記環状ローラの内周面の断面形状を、中心軸と平行な直線とする。
When carrying out the present invention as described above, specifically, the cross-sectional shape of the outer peripheral surface of each of the intermediate rollers is a partially arcuate convex arc as in the invention described in claim 2.
Moreover, let the cross-sectional shape of the outer peripheral surface of the said both sun roller element be a concave arc of a partial circular arc shape.
Furthermore, the cross-sectional shape of the inner peripheral surface of the annular roller is a straight line parallel to the central axis.

或いは、請求項3に記載した発明の様に、前記各中間ローラの外周面の断面形状を、部分円弧状の凸円弧とする。
又、前記両太陽ローラ素子の外周面の断面形状を、互いに近付く程中心軸に近付く方向に傾斜した直線とする。
更に、前記環状ローラの内周面の断面形状を、部分円弧状の凸円弧とする。
Alternatively, as in the invention described in claim 3, the cross-sectional shape of the outer peripheral surface of each intermediate roller is a convex arc having a partial arc shape.
Moreover, the cross-sectional shape of the outer peripheral surfaces of the two sun roller elements is a straight line that is inclined in a direction approaching the central axis as it approaches each other.
Furthermore, the cross-sectional shape of the inner peripheral surface of the annular roller is a partially arcuate convex arc.

上述の様に構成する本発明の摩擦ローラ式変速機によれば、太陽ローラの外周面と各中間ローラの外周面との転がり接触部である内径側トラクション部の面圧と、これら各中間ローラの外周面と環状ローラの内周面との転がり接触部である外径側トラクション部の面圧との差を、低減乃至は解消できる。
即ち、本発明の場合には、前記各ローラの周面の断面形状を工夫している為、前記太陽ローラの外周面と前記環状ローラの内周面との周方向に関する凹凸の相違に基づいて生じる、前記内径側、外径側各トラクション部の面圧の差を相殺できる。
この為、これら各トラクション部の何れに就いても、面圧を適正範囲に収めて、摩擦ローラ式変速機の伝達効率を良好にできる事に加え、前記太陽ローラの外周面の転がり疲れ寿命を確保できて、前記摩擦ローラ式変速機の耐久性の確保も図り易くなる。
According to the friction roller type transmission of the present invention configured as described above, the surface pressure of the inner diameter side traction portion which is a rolling contact portion between the outer peripheral surface of the sun roller and the outer peripheral surface of each intermediate roller, and each of these intermediate rollers The difference between the surface pressure of the outer diameter side traction portion which is the rolling contact portion between the outer peripheral surface of the annular roller and the inner peripheral surface of the annular roller can be reduced or eliminated.
That is, in the case of the present invention, since the cross-sectional shape of the peripheral surface of each roller is devised, based on the unevenness in the circumferential direction between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller. The difference between the surface pressures of the inner diameter side and outer diameter side traction portions can be offset.
For this reason, in any of these traction sections, the surface pressure is kept within an appropriate range, the transmission efficiency of the friction roller type transmission can be improved, and the rolling fatigue life of the outer peripheral surface of the sun roller can be increased. It is possible to ensure the durability of the friction roller type transmission.

本発明の実施の形態の第1例を示す、摩擦ローラ式変速機の要部略側面図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part schematic side view of the friction roller type transmission which shows the 1st example of embodiment of this invention. 図1のW−W断面図。WW sectional drawing of FIG. 本発明の実施の形態の第2例を示す、摩擦ローラ式変速機の要部略側面図。The principal part schematic side view of the friction roller type transmission which shows the 2nd example of embodiment of this invention. 図3のX−X断面図。XX sectional drawing of FIG. 実施の形態の第1例に関して、具体的な寸法の1例を説明する為の、図2と同様の図。The figure similar to FIG. 2 for demonstrating one example of a specific dimension regarding the 1st example of embodiment. 実施の形態の第2例に関して、具体的な寸法の1例を説明する為の、図4と同様の図。The figure similar to FIG. 4 for demonstrating one example of a specific dimension regarding the 2nd example of embodiment. 電気自動車用駆動装置に変速機を組み込む事による効果を説明する為の線図。The diagram for demonstrating the effect by incorporating a transmission into the drive device for electric vehicles. 先発明に係る電気自動車用駆動装置の斜視図。The perspective view of the drive device for electric vehicles which concerns on a prior invention. 従来から知られている摩擦ローラ式減速機の1例を示す断面図。Sectional drawing which shows an example of the friction roller type reduction gear conventionally known. 図9の拡大Y−Y断面図。FIG. 10 is an enlarged YY sectional view of FIG. 9. 図10の拡大Z−Z断面図。FIG. 11 is an enlarged ZZ sectional view of FIG. 10. 先発明に係る摩擦ローラ式減速機の断面図。Sectional drawing of the friction roller type reduction gear which concerns on a prior invention.

[実施の形態の第1例]
図1〜2は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。本例の摩擦ローラ式減速機2bは、各中間ローラ27、27の外周面を、これら各中間ローラ27、27の中心軸を含む仮想平面に関する断面形状が部分凸円弧状である、凸曲面33としている。又、環状ローラ13bの内周面を、軸方向に関して内径が変化しない円筒面としている。更に、太陽ローラ12bを構成する1対の太陽ローラ素子16d、16dの外周面を、これら両太陽ローラ素子16d、16dの中心軸を含む仮想平面に関する断面形状が部分凹円弧状である、凹曲面34、34としている。これら各凹曲面34、34の断面形状の曲率半径は、前記各中間ローラ27、27の外周面である、前記各凸曲面33、33の断面形状の曲率半径よりも少し大きくしている。そして、前記各中間ローラ27、27の外周面である前記各凸曲面33、33と、前記環状ローラ13bの内周面及び前記両太陽ローラ素子16d、16dの外周面である前記両凹曲面34、34とを、それぞれ転がり接触させている。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. The friction roller type speed reducer 2b of the present example has a convex curved surface 33 in which the cross-sectional shape of the outer peripheral surface of each intermediate roller 27, 27 with respect to a virtual plane including the central axis of each intermediate roller 27, 27 is a partially convex arc shape. It is said. The inner peripheral surface of the annular roller 13b is a cylindrical surface whose inner diameter does not change in the axial direction. Further, the outer peripheral surface of the pair of sun roller elements 16d and 16d constituting the sun roller 12b is a concavely curved surface in which a cross-sectional shape with respect to a virtual plane including the central axis of both the sun roller elements 16d and 16d is a partially concave arc shape. 34, 34. The radius of curvature of the cross-sectional shape of each of the concave curved surfaces 34, 34 is slightly larger than the radius of curvature of the cross-sectional shape of each of the convex curved surfaces 33, 33, which is the outer peripheral surface of each of the intermediate rollers 27, 27. The convex curved surfaces 33 and 33 that are outer peripheral surfaces of the intermediate rollers 27 and 27, the inner peripheral surface of the annular roller 13b, and the biconcave curved surface 34 that is the outer peripheral surfaces of the sun roller elements 16d and 16d. , 34 are in rolling contact with each other.

上述の様に本例の摩擦ローラ式変速機2bの場合には、前記各ローラ12b、13b、27の、それぞれの中心軸を含む仮想平面に関する断面形状に関して、前記各中間ローラ27、27の外周面と前記環状ローラ13bの内周面との転がり接触部は、凸円弧と直線との接触状態となり、前記各中間ローラ27、27の外周面と前記太陽ローラ12bの外周面との転がり接触部は、凸円弧と凹円弧との接触状態となる。この為、前記断面形状として現れる軸方向に関する限り、前記両太陽ローラ素子16d、16dの外周面と前記各中間ローラ27、27の外周面との接触面積が、これら各中間ローラ27、27の外周面と前記環状ローラ13bの内周面との接触面積よりも広くなる傾向になる。一方、円周方向に関して見た場合には、前記両太陽ローラ素子16d、16dの外周面と前記各中間ローラ27、27の外周面との接触面積が、これら各中間ローラ27、27の外周面と前記環状ローラ13bの内周面との接触面積よりも狭くなる傾向になる。この様に、転がり接触部の面積の広狭が変化する傾向を、軸方向と円周方向とで互いに逆にしている。この為、前記太陽ローラ12bの外周面と前記環状ローラ13bの内周面との周方向に関する凹凸の相違に基づいて生じる、前記太陽ローラ12bの外周面と前記環状ローラ13bの内周面とに関する、それぞれの転がり接触部(内径側、外径側各トラクション部)の面圧の差を相殺できる。   As described above, in the case of the friction roller type transmission 2b of this example, the outer periphery of each of the intermediate rollers 27 and 27 is related to the sectional shape of each of the rollers 12b, 13b, and 27 with respect to the virtual plane including the respective central axes. The rolling contact portion between the surface and the inner peripheral surface of the annular roller 13b is in a contact state between the convex arc and the straight line, and the rolling contact portion between the outer peripheral surface of each of the intermediate rollers 27 and 27 and the outer peripheral surface of the sun roller 12b. Is a contact state between the convex arc and the concave arc. Therefore, as far as the axial direction appearing as the cross-sectional shape is concerned, the contact area between the outer peripheral surfaces of the sun roller elements 16d and 16d and the outer peripheral surfaces of the intermediate rollers 27 and 27 is the outer periphery of the intermediate rollers 27 and 27. The contact area between the surface and the inner peripheral surface of the annular roller 13b tends to be larger. On the other hand, when viewed in the circumferential direction, the contact area between the outer peripheral surfaces of the solar roller elements 16d and 16d and the outer peripheral surfaces of the intermediate rollers 27 and 27 is the outer peripheral surface of the intermediate rollers 27 and 27. And the contact area with the inner peripheral surface of the annular roller 13b tends to be narrower. In this way, the tendency of the area of the rolling contact portion to change is reversed between the axial direction and the circumferential direction. For this reason, the outer peripheral surface of the sun roller 12b and the inner peripheral surface of the annular roller 13b, which are generated based on the difference in irregularities in the circumferential direction between the outer peripheral surface of the sun roller 12b and the inner peripheral surface of the annular roller 13b. The difference in surface pressure between the rolling contact portions (inner diameter side and outer diameter side traction portions) can be offset.

この結果、前記内径側、外径側各トラクション部の何れに就いても、面圧を適正範囲に収めて、前記摩擦ローラ式減速機2bの伝達効率を良好にできる事に加えて、前記太陽ローラ12bの外周面の転がり疲れ寿命を確保できて、前記摩擦ローラ式減速機2bの耐久性の確保も図り易くなる。
その他の部分の構成及び作用は、前述の図9に示した従来構造、或いは前述の図12に示した先発明構造と同様であるから、重複する図示並びに説明は省略する。
As a result, in addition to being able to keep the surface pressure within an appropriate range and improving the transmission efficiency of the friction roller type speed reducer 2b for each of the inner diameter side and outer diameter side traction portions, The rolling fatigue life of the outer peripheral surface of the roller 12b can be secured, and the durability of the friction roller type speed reducer 2b can be easily secured.
Since the configuration and operation of the other parts are the same as those of the conventional structure shown in FIG. 9 or the structure of the prior invention shown in FIG. 12, overlapping illustrations and descriptions are omitted.

[実施の形態の第2例]
図3〜4は、請求項1、3に対応する、本発明の実施の形態の第2例を示している。本例の摩擦ローラ式減速機2cの場合も、各中間ローラ27、27の外周面を、断面形状が部分円弧状の凸円弧である、凸曲面33a、33aとしている。これら各凸曲面33a、33aの断面形状の曲率半径は、上述した実施の形態の第1例の凸曲面33、33(図2参照)の断面形状の曲率半径よりも少し大きくしている。
又、太陽ローラ12cを構成する1対の太陽ローラ素子16e、16eの外周面を、互いに近付く程外径が小さくなる方向に傾斜した、部分円すい状凸面35、35としている。即ち、前記両太陽ローラ素子16e、16eの外周面の断面形状を、互いに対向する内端面に向かう程中心軸に近付く方向に傾斜した直線としている。
更に、環状ローラ13cの内周面を、断面形状が部分円弧状の凸円弧である、凸曲面36としている。
この様に構成する本例の摩擦ローラ式減速機2cの場合も、前記太陽ローラ12cの外周面と前記環状ローラ13cの内周面との周方向に関する凹凸の相違に基づいて生じる、各転がり接触部の面圧の差を相殺できる。
[Second Example of Embodiment]
3 to 4 show a second example of an embodiment of the present invention corresponding to claims 1 and 3. Also in the case of the friction roller type speed reducer 2c of this example, the outer peripheral surfaces of the intermediate rollers 27 and 27 are convex curved surfaces 33a and 33a whose sectional shape is a partial arc. The curvature radii of the cross-sectional shapes of the convex curved surfaces 33a and 33a are slightly larger than the curvature radii of the cross-sectional shapes of the convex curved surfaces 33 and 33 (see FIG. 2) of the first example of the embodiment described above.
The outer peripheral surfaces of the pair of sun roller elements 16e and 16e constituting the sun roller 12c are partially conical convex surfaces 35 and 35 that are inclined in a direction in which the outer diameter decreases as they approach each other. That is, the cross-sectional shape of the outer peripheral surfaces of the sun roller elements 16e and 16e is a straight line that is inclined in a direction approaching the central axis toward the inner end surfaces facing each other.
Furthermore, the inner peripheral surface of the annular roller 13c is a convex curved surface 36 whose sectional shape is a convex arc having a partial arc shape.
Also in the case of the friction roller type speed reducer 2c of this example configured as described above, each rolling contact is generated based on the difference in unevenness in the circumferential direction between the outer peripheral surface of the sun roller 12c and the inner peripheral surface of the annular roller 13c. The difference in surface pressure of the part can be offset.

前述の図1〜2に示した実施の形態の第1例の構造に関し、具体的な寸法の1例に就いて、図5を参照しつつ説明する。
この図5に示した各部の寸法を、次の様に規制する。
太陽ローラ12bの外周面と各中間ローラ27、27の外周面との転がり接触部の直径D : 32.0mm
両太陽ローラ素子16d、16dの外周面の断面形状の曲率半径R : 25mm
前記太陽ローラ12bの外周面と前記各中間ローラ27、27の外周面との転がり接触部での前記各中間ローラ27、27の直径Dps : 52mm
前記各中間ローラ27、27の外周面の断面形状の曲率半径R : 22mm
これら各中間ローラ27、27の最大径Dpr : 52.5mm
環状ローラ13bの内径D : 136.5mm
前記太陽ローラ12bの外周面と前記各中間ローラ27、27の外周面との転がり接触部の中心部でのこれら各面に関する接線の、前記太陽ローラ12bの中心軸に対する傾斜角度α : 8゜
With respect to the structure of the first example of the embodiment shown in FIGS. 1 and 2 described above, an example of specific dimensions will be described with reference to FIG.
The dimensions of each part shown in FIG. 5 are regulated as follows.
Diameter D s of rolling contact portion between outer peripheral surface of sun roller 12b and outer peripheral surface of each intermediate roller 27, 27: 32.0 mm
Curvature radius R s of the cross-sectional shape of the outer peripheral surface of both sun roller elements 16d, 16d: 25 mm
Diameter D ps of each of the intermediate rollers 27 and 27 at a rolling contact portion between the outer peripheral surface of the sun roller 12b and the outer peripheral surface of each of the intermediate rollers 27 and 27: 52 mm
Curvature radius R p of the cross-sectional shape of the outer peripheral surface of each of the intermediate rollers 27, 27: 22 mm
The maximum diameter D pr of each of these intermediate rollers 27, 27: 52.5 mm
Inside diameter D r of the annular roller 13b: 136.5mm
Inclination angle α of the tangent to each surface at the center of the rolling contact portion between the outer peripheral surface of the sun roller 12b and the outer peripheral surfaces of the intermediate rollers 27, 27 with respect to the central axis of the sun roller 12b: 8 °

以上の条件で、前記太陽ローラ12bの外周面と前記各中間ローラ27、27の外周面との転がり接触部の法線力が4941Nに、これら各中間ローラ27、27の外周面と前記環状ローラ13cの内周面との転がり接触部に関する法線力が9786Nに、それぞれなる様に、ローディングカム装置の押圧力を調節したと仮定した場合、前記各転がり接触部の面圧は、以下の通りになる。
前記太陽ローラ12bの外周面と前記各中間ローラ27、27の外周面との転がり接触部(内径側トラクション部)の面圧 : 3.01GPa
前記各中間ローラ27、27の外周面と前記環状ローラ13cの内周面との転がり接触部(外径側トラクション部)の面圧 : 3.01GPa
以上の事から明らかな様に、前述の実施の形態の第1例の構造で、各部の寸法を適切に規制する事により、各転がり接触部の面圧をほぼ均等に規制できる。
Under the above conditions, the normal force of the rolling contact portion between the outer peripheral surface of the sun roller 12b and the outer peripheral surfaces of the intermediate rollers 27 and 27 is 4941N, and the outer peripheral surface of the intermediate rollers 27 and 27 and the annular roller are Assuming that the pressing force of the loading cam device is adjusted so that the normal force related to the rolling contact portion with the inner peripheral surface of 13c is 9786 N, the surface pressure of each rolling contact portion is as follows. become.
Surface pressure of rolling contact portion (inner diameter side traction portion) between outer peripheral surface of sun roller 12b and outer peripheral surface of each intermediate roller 27, 27: 3.01 GPa
Surface pressure of the rolling contact portion (outer diameter side traction portion) between the outer peripheral surface of each of the intermediate rollers 27 and 27 and the inner peripheral surface of the annular roller 13c: 3.01 GPa
As is clear from the above, with the structure of the first example of the above-described embodiment, the surface pressure of each rolling contact portion can be regulated almost equally by appropriately regulating the dimensions of each portion.

前述の図3〜4に示した実施の形態の第2例の構造に関し、具体的な寸法の1例に就いて、図6を参照しつつ説明する。
この図6に示した各部の寸法を、次の様に規制する。
太陽ローラ12cの外周面と各中間ローラ27、27の外周面との転がり接触部の直径D : 33.4mm
前記太陽ローラ12bの外周面と前記各中間ローラ27、27の外周面との転がり接触部での前記各中間ローラ27、27の直径Dps : 51.0mm
前記各中間ローラ27、27の外周面の断面形状の曲率半径R : 57.5mm
これら各中間ローラ27、27の最大径Dpr : 52.1mm
環状ローラ13cの内径D : 136.5mm
この環状ローラ13cの内周面である凸曲面36の断面形状の曲率半径Rr : 40mm
1対の太陽ローラ素子16e、16eの外周面の、これら両太陽ローラ素子16e、16eの中心軸に対する傾斜角度α : 8゜
Regarding the structure of the second example of the embodiment shown in FIGS. 3 to 4 described above, an example of specific dimensions will be described with reference to FIG.
The dimensions of the parts shown in FIG. 6 are regulated as follows.
Diameter D s of rolling contact between the outer peripheral surface of the sun roller 12c and the outer peripheral surface of each intermediate roller 27, 27: 33.4 mm
Diameter D ps of each of the intermediate rollers 27 and 27 at the rolling contact portion between the outer peripheral surface of the sun roller 12b and the outer peripheral surface of each of the intermediate rollers 27 and 27: 51.0 mm
Curvature radius R p of the cross-sectional shape of the outer peripheral surface of each intermediate roller 27, 27: 57.5 mm
The maximum diameter D pr of each of these intermediate rollers 27, 27: 52.1 mm
Inside diameter D r of the annular roller 13c: 136.5mm
The curvature radius Rr of the cross-sectional shape of the convex curved surface 36 which is the inner peripheral surface of the annular roller 13c: 40 mm
Inclination angle α of the outer peripheral surface of the pair of sun roller elements 16e, 16e with respect to the central axis of both the sun roller elements 16e, 16e: 8 °

以上の条件で、前記太陽ローラ12cの外周面と前記各中間ローラ27、27の外周面との転がり接触部の法線力が4941Nに、これら各中間ローラ27、27の外周面と前記環状ローラ13cの内周面との転がり接触部に関する法線力が9786Nに、それぞれなる様に、ローディングカム装置の押圧力を調節したと仮定した場合、前記各転がり接触部の面圧は、以下の通りになる。
前記太陽ローラ12bの外周面と前記各中間ローラ27、27の外周面との転がり接触部(内径側トラクション部)の面圧 : 3.0GPa
前記各中間ローラ27、27の外周面と前記環状ローラ13cの内周面との転がり接触部(外径側トラクション部)の面圧 : 2.98Pa
以上の事から明らかな様に、前述の実施の形態の第2例の構造でも、各部の寸法を適切に規制する事により、各転がり接触部の面圧をほぼ均等に規制できる。
Under the above conditions, the normal force of the rolling contact portion between the outer peripheral surface of the sun roller 12c and the outer peripheral surfaces of the intermediate rollers 27 and 27 is 4941N, and the outer peripheral surface of the intermediate rollers 27 and 27 and the annular roller Assuming that the pressing force of the loading cam device is adjusted so that the normal force related to the rolling contact portion with the inner peripheral surface of 13c is 9786 N, the surface pressure of each rolling contact portion is as follows. become.
Surface pressure of a rolling contact portion (inner diameter side traction portion) between the outer peripheral surface of the sun roller 12b and the outer peripheral surfaces of the intermediate rollers 27 and 27: 3.0 GPa
Surface pressure of the rolling contact portion (outer diameter side traction portion) between the outer peripheral surface of each of the intermediate rollers 27 and 27 and the inner peripheral surface of the annular roller 13c: 2.98 Pa
As is apparent from the above, even in the structure of the second example of the above-described embodiment, the surface pressure of each rolling contact portion can be regulated almost uniformly by appropriately regulating the dimensions of each portion.

図示の各例は、摩擦ローラ式変速機を減速機として使用する場合に就いて説明したが、入力軸と出力軸とを入れ替えれば、増速機として使用する事もできる。又、本発明を、前述の図9に示した様な、遊星ローラ式の構造に適用する事もできる。   In each example shown in the figure, the friction roller type transmission is used as a speed reducer. However, if the input shaft and the output shaft are interchanged, they can be used as a speed increaser. The present invention can also be applied to a planetary roller type structure as shown in FIG.

1 車両駆動用電動モータ
2、2a、2b、2c 摩擦ローラ式減速機
3 変速機
4 回転伝達装置
5、5a 入力軸
6 出力軸
7 駆動側回転軸
8 従動側回転軸
9a、9b 歯車伝達機構
10a、10b クラッチ機構
11 デファレンシャルギヤ
12、12a、12b、12c 太陽ローラ
13、13a、13b、13c 環状ローラ
14 遊星ローラ
15、15a ローディングカム装置
16a、16b、16c、16d、16e 太陽ローラ素子
17 遊星軸
18 キャリア
19 出力軸
20 止め輪
21 支え環
22 皿ばね
23 カム板
24 玉
25 被駆動側カム面
26 駆動側カム面
27 中間ローラ
28 自転軸
29 ハウジング
30 連結部
31 円筒面
32 部分円すい状凸面
33、33a 凸曲面
34 凹曲面
35 部分円すい状凸面
36 凸曲面
DESCRIPTION OF SYMBOLS 1 Vehicle drive electric motor 2, 2a, 2b, 2c Friction roller type reduction gear 3 Transmission 4 Rotation transmission device 5, 5a Input shaft 6 Output shaft 7 Drive side rotation shaft 8 Drive side rotation shaft 9a, 9b Gear transmission mechanism 10a 10b Clutch mechanism 11 Differential gears 12, 12a, 12b, 12c Sun rollers 13, 13a, 13b, 13c Annular roller 14 Planetary rollers 15, 15a Loading cam devices 16a, 16b, 16c, 16d, 16e Sun roller element 17 Planetary shaft 18 Carrier 19 Output shaft 20 Retaining ring 21 Support ring 22 Belleville spring 23 Cam plate 24 Ball 25 Driven side cam surface 26 Drive side cam surface 27 Intermediate roller 28 Rotating shaft 29 Housing 30 Connecting portion 31 Cylindrical surface 32 Partial conical convex surface 33, 33a Convex surface 34 Concave surface 35 Partial conical convex surface 36 Convex surface

Claims (3)

入力軸及び出力軸と、太陽ローラと、環状ローラと、複数個の中間ローラとを備え、
これら各中間ローラは、前記太陽ローラの外周面と前記環状ローラの内周面との間の環状空間内に、少なくとも自転を可能に設置されたもので、それぞれの外周面を前記太陽ローラの外周面及び前記環状ローラの内周面に転がり接触させており、
前記太陽ローラは、軸方向に2分割された1対の太陽ローラ素子から成るもので、これら各太陽ローラ素子同士は、少なくとも動力伝達時に、互いに近付く方向に押圧されつつ、同方向に同速度で回転するものであり、
前記入力軸及び前記出力軸は、互いの相対回転を可能として、前記太陽ローラ及び前記環状ローラと同心に配置された状態で、前記各ローラのうちの何れかのローラ又は何れかのローラと共に回転する支持部材のうちから選択される2種類の要素に、前記入力軸と前記出力軸とで互いに別の要素に結合されている摩擦ローラ式変速機に於いて、
互いに転がり接触する前記各ローラの周面の、これら各ローラの中心軸を含む仮想平面に関する断面形状に関して、前記太陽ローラ素子の外周面の断面形状と前記各中間ローラの外周面の断面形状との組み合わせを、これら各中間ローラの外周面の断面形状と前記環状ローラの内周面の断面形状との組み合わせよりも、これら各ローラの周面同士の転がり接触部の面圧を低くする組み合わせとする事により、前記太陽ローラの外周面と前記環状ローラの内周面との周方向に関する凹凸の相違に基づく、この太陽ローラの外周面と前記各中間ローラの外周面との転がり接触部の面圧と、これら各中間ローラの外周面と前記環状ローラの内周面との転がり接触部の面圧との差を、低減乃至は解消した事を特徴とする摩擦ローラ式変速機。
An input shaft and an output shaft, a sun roller, an annular roller, and a plurality of intermediate rollers;
Each of these intermediate rollers is installed in an annular space between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller so that it can rotate at least. Rolling contact with the surface and the inner peripheral surface of the annular roller,
The sun roller is composed of a pair of sun roller elements that are divided into two in the axial direction. These sun roller elements are pressed in the direction of approaching each other at least during power transmission and at the same speed in the same direction. Is rotating,
The input shaft and the output shaft can rotate relative to each other and rotate together with any one of the rollers or any roller while being concentrically arranged with the sun roller and the annular roller. In the friction roller type transmission in which the input shaft and the output shaft are coupled to different elements to two types of elements selected from among the supporting members
Regarding the cross-sectional shape of the peripheral surfaces of the rollers that are in rolling contact with each other with respect to a virtual plane including the central axis of the rollers, the cross-sectional shape of the outer peripheral surface of the sun roller element and the cross-sectional shape of the outer peripheral surface of the intermediate rollers The combination is a combination that lowers the surface pressure of the rolling contact portion between the peripheral surfaces of the respective rollers, rather than the combination of the cross-sectional shape of the outer peripheral surface of each of the intermediate rollers and the cross-sectional shape of the inner peripheral surface of the annular roller. Accordingly, the surface pressure of the rolling contact portion between the outer peripheral surface of the sun roller and the outer peripheral surface of each of the intermediate rollers is based on the difference in unevenness in the circumferential direction between the outer peripheral surface of the sun roller and the inner peripheral surface of the annular roller. And a friction roller transmission characterized in that the difference between the surface pressure of the rolling contact portion between the outer peripheral surface of each intermediate roller and the inner peripheral surface of the annular roller is reduced or eliminated.
前記各中間ローラの外周面の断面形状が部分円弧状の凸円弧であり、前記両太陽ローラ素子の外周面の断面形状が部分円弧状の凹円弧であり、前記環状ローラの内周面の断面形状が、中心軸と平行な直線である、請求項1に記載した摩擦ローラ式変速機。   The cross-sectional shape of the outer peripheral surface of each intermediate roller is a partially arc-shaped convex arc, the cross-sectional shape of the outer peripheral surfaces of the two sun roller elements is a partially arc-shaped concave arc, and the cross-section of the inner peripheral surface of the annular roller The friction roller transmission according to claim 1, wherein the shape is a straight line parallel to the central axis. 前記各中間ローラの外周面の断面形状が部分円弧状の凸円弧であり、前記両太陽ローラ素子の外周面の断面形状が、互いに近付くほど中心軸に近付く方向に傾斜した直線であり、前記環状ローラの内周面の断面形状が部分円弧状の凸円弧である、請求項1に記載した摩擦ローラ式変速機。   The cross-sectional shape of the outer peripheral surface of each intermediate roller is a partially arcuate convex arc, and the cross-sectional shapes of the outer peripheral surfaces of the two sun roller elements are straight lines that are inclined in a direction approaching the central axis as they approach each other, The friction roller type transmission according to claim 1, wherein a cross-sectional shape of the inner peripheral surface of the roller is a convex arc having a partial arc shape.
JP2012184282A 2012-08-23 2012-08-23 Frictional roller type transmission Pending JP2014040892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184282A JP2014040892A (en) 2012-08-23 2012-08-23 Frictional roller type transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184282A JP2014040892A (en) 2012-08-23 2012-08-23 Frictional roller type transmission

Publications (1)

Publication Number Publication Date
JP2014040892A true JP2014040892A (en) 2014-03-06

Family

ID=50393307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184282A Pending JP2014040892A (en) 2012-08-23 2012-08-23 Frictional roller type transmission

Country Status (1)

Country Link
JP (1) JP2014040892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161001A (en) * 2015-02-27 2016-09-05 株式会社デンソー Traction drive device
WO2016158106A1 (en) * 2015-03-30 2016-10-06 日本精工株式会社 Friction roller type reduction gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161001A (en) * 2015-02-27 2016-09-05 株式会社デンソー Traction drive device
WO2016158106A1 (en) * 2015-03-30 2016-10-06 日本精工株式会社 Friction roller type reduction gear
US10359102B2 (en) 2015-03-30 2019-07-23 Nsk Ltd. Friction roller-type reduction gear

Similar Documents

Publication Publication Date Title
AU2012370697B2 (en) Continuously variable transmission
JP5903834B2 (en) Friction roller speed reducer and electric vehicle drive device
US20120231925A1 (en) Continuously variable transmission
JP2014040885A (en) Friction roller-type change gear
JP5817104B2 (en) Roller friction transmission unit
JP2014040892A (en) Frictional roller type transmission
JP2014163495A (en) Friction roller type speed reducer and drive device for electric automobile
JP2012193793A (en) Friction roller type reduction gear and electric vehicle drive unit
JP2011153645A (en) Continuously variable transmission and control device of continuously variable transmission
JP5234015B2 (en) Continuously variable transmission
JP2012193792A (en) Friction roller type reduction gear and electric vehicle drive unit
JP3870594B2 (en) Toroidal continuously variable transmission
JP2014214838A (en) Continuously variable transmission
JP2014196825A (en) Friction roller type reduction gear
JP2011190882A (en) Continuously variable transmission
JP5867132B2 (en) Friction roller reducer
JP2012197930A (en) Friction roller type reduction gear and electric vehicle drive system
JP5966420B2 (en) Friction roller reducer
JP2012193794A (en) Friction roller type reduction gear and electric vehicle drive unit
JP7393284B2 (en) dynamic damper device
JP5842560B2 (en) Friction roller reducer
JP2014040886A (en) Friction roller type transmission
JP2016008675A (en) Friction roller type reduction gear
JP5761445B2 (en) Continuously variable transmission
JP4978557B2 (en) Friction wheel type continuously variable transmission