JP4978557B2 - Friction wheel type continuously variable transmission - Google Patents

Friction wheel type continuously variable transmission

Info

Publication number
JP4978557B2
JP4978557B2 JP2008130879A JP2008130879A JP4978557B2 JP 4978557 B2 JP4978557 B2 JP 4978557B2 JP 2008130879 A JP2008130879 A JP 2008130879A JP 2008130879 A JP2008130879 A JP 2008130879A JP 4978557 B2 JP4978557 B2 JP 4978557B2
Authority
JP
Japan
Prior art keywords
transmission
output
continuously variable
rolling element
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008130879A
Other languages
Japanese (ja)
Other versions
JP2009281404A (en
Inventor
将 尾崎
康 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008130879A priority Critical patent/JP4978557B2/en
Publication of JP2009281404A publication Critical patent/JP2009281404A/en
Application granted granted Critical
Publication of JP4978557B2 publication Critical patent/JP4978557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

本発明は、車両の動力伝達装置等に用いられる無段変速装置に関し、ことに、一対の摩擦車式無段変速機が対向して配置され、摩擦伝動を行う部材間に押付け力を付与するためのローディング装置を備えた変速装置に関するものである。   The present invention relates to a continuously variable transmission used for a power transmission device of a vehicle, and in particular, a pair of friction wheel type continuously variable transmissions are arranged to face each other and apply a pressing force between members that perform friction transmission. The present invention relates to a transmission equipped with a loading device.

無段変速機(CVT)は、入出力軸の回転数の比(変速比)を連続的に変更可能な変速機であって、車両、各種の作業機等の分野で広く使用されている。車両において、エンジン動力を車輪に伝達する動力伝達装置の変速機として無段変速機を用いたときは、有段の変速機とは異なり、車両走行状態に応じた連続的な変速が可能であり、変速ショックのない走行が実現できるとともに車両の燃料経済性の面でも有利となる。また、省エネルギを目的として、車両の減速時のエネルギや排熱エネルギを回転動力の形で回収するときも、無段変速機を利用して適正な回転数へ変換することが望ましい。   A continuously variable transmission (CVT) is a transmission capable of continuously changing the rotation speed ratio (transmission ratio) of an input / output shaft, and is widely used in the fields of vehicles, various working machines, and the like. In a vehicle, when a continuously variable transmission is used as a transmission of a power transmission device that transmits engine power to wheels, unlike a stepped transmission, continuous shifting according to the vehicle running state is possible. Thus, it is possible to realize traveling without a shift shock, and it is advantageous in terms of fuel economy of the vehicle. For the purpose of energy saving, it is also desirable to use a continuously variable transmission to convert to an appropriate rotational speed when recovering the energy at the time of vehicle deceleration or exhaust heat energy in the form of rotational power.

無段変速機としては、機械式のものや油圧式のものなどがあり、機械式の無段変速機の中では、Vベルトを用いその伝動用プーリの対向円錐面の幅を調節して変速を行うVベルト式無段変速機が、車両用動力伝達装置の変速機として実用化されている。機械式の無段変速機には、摩擦車を用い摩擦力で動力を伝達する摩擦車式無段変速機があり、これは、離れた軸の間のプーリに特殊なVベルトを掛け渡すVベルト式無段変速機と比べると、密閉式の潤滑が可能でまとまりがよい、などの利点を備えている。   The continuously variable transmission includes a mechanical type and a hydraulic type. Among mechanical type continuously variable transmissions, a V-belt is used to adjust the width of the opposing conical surface of the transmission pulley to change the speed. A V-belt type continuously variable transmission that performs the above has been put to practical use as a transmission for a vehicle power transmission device. Among mechanical continuously variable transmissions, there is a friction wheel continuously variable transmission that uses a friction wheel to transmit power by frictional force. This is because a special V belt is passed around a pulley between separated shafts. Compared with a belt-type continuously variable transmission, it has advantages such as hermetic lubrication and good unity.

摩擦車式無段変速機においても、各種の変速機が知られており、入出力軸に固定されたディスクの対向する曲面の間にパワーローラを配置し、パワーローラの傾斜角を変えて変速を行うトロイダル式変速機、あるいは遊星式に配置した円錐型の摩擦ホイール(遊星ホイール)を利用する遊星ホイール式の無段変速機等がある。遊星ホイールによる伝動を行う無段変速機には、入力軸の回転に対し出力軸の回転を停止させ、さらに逆転させることが可能な無段変速機も存在する。例えば、特開平3−9171号公報には、このような無段変速機を2台対向して配置し、それぞれの無段変速機により車両の左右の車輪を独立して駆動する車両用動力伝達装置が示されている。また、実公昭39−33734号公報には、同一構造の一対の無段変速機を対称的に対向させた形で配置し、単一の出力軸から出力を取り出す変速装置が開示されている。   Various types of friction wheel type continuously variable transmissions are also known, and a power roller is disposed between opposing curved surfaces of a disk fixed to an input / output shaft, and the inclination of the power roller is changed to change speed. Or a planetary wheel type continuously variable transmission using a conical friction wheel (planetary wheel) arranged in a planetary manner. Among continuously variable transmissions that perform transmission using planetary wheels, there are continuously variable transmissions that can stop the rotation of the output shaft relative to the rotation of the input shaft and further reverse the rotation. For example, in Japanese Patent Laid-Open No. 3-9171, two such continuously variable transmissions are arranged opposite to each other, and the vehicle power transmission in which left and right wheels of the vehicle are independently driven by each continuously variable transmission. The device is shown. Japanese Utility Model Publication No. 39-33734 discloses a transmission in which a pair of continuously variable transmissions having the same structure are arranged symmetrically facing each other and an output is taken out from a single output shaft.

ところで、摩擦車式無段変速機では、摩擦伝動を行う部材間の摩擦力を確保し確実な動力伝達を行うため、接触する部材間に押付け力を付与する必要がある。押付け力を付与する装置は、ローディング装置(調圧継手)と呼ばれており、一般的には、伝達する負荷に応じて押付け力を調節するため、出力軸等に置かれた乗り上げ式円板カムにより伝達トルクに対応するスラスト力を発生させ、これを押付け力に振り向けるように構成される。こうしたローディング装置を備え、遊星式に配置した円錐型の摩擦ホイールを利用する無段変速機は、一例として特開平5−187509号公報に開示されている。   By the way, in a friction wheel type continuously variable transmission, in order to ensure the frictional force between the members which perform friction transmission, and to perform reliable power transmission, it is necessary to provide pressing force between the members which contact. A device that applies a pressing force is called a loading device (pressure-regulating joint). Generally, a ride-on disk placed on an output shaft or the like is used to adjust the pressing force according to a load to be transmitted. The cam is configured to generate a thrust force corresponding to the transmission torque and to direct the thrust force to the pressing force. A continuously variable transmission including such a loading device and using a conical friction wheel arranged in a planetary manner is disclosed in Japanese Patent Application Laid-Open No. 5-187509 as an example.

図6には特開平5−187509号公報に記載された無段変速機を示す。図6(a)において、エンジン動力は、出力軸101の回りに回転可能に嵌め込まれた傘歯車102に入力され、傘歯車102と一体となったキャリア103を回転させる。キャリア103に固定された支軸104には、円錐型の摩擦ホイール105が回転自在に支持されており、摩擦ホイール105の底面端部は、出力軸101に嵌め込まれた出力ディスク106に圧接される。つまり、摩擦ホイール105は、出力軸101の回りを公転しながら支軸104の回りを自転する遊星運動を行う。摩擦ホイール105の外周面には、回転不能の変速リング107が接触しており、その接触位置を軸方向に移動すると、摩擦ホイール105の自転速度が増減する。これにより、傘歯車102と出力軸101との回転数の比を無段階に変化させることができる。   FIG. 6 shows a continuously variable transmission described in Japanese Patent Application Laid-Open No. 5-187509. In FIG. 6A, engine power is input to a bevel gear 102 that is rotatably fitted around the output shaft 101, and rotates a carrier 103 that is integrated with the bevel gear 102. A conical friction wheel 105 is rotatably supported on a support shaft 104 fixed to the carrier 103, and a bottom end portion of the friction wheel 105 is pressed against an output disk 106 fitted on the output shaft 101. . That is, the friction wheel 105 performs a planetary motion that rotates around the support shaft 104 while revolving around the output shaft 101. A non-rotatable transmission ring 107 is in contact with the outer peripheral surface of the friction wheel 105. When the contact position is moved in the axial direction, the rotation speed of the friction wheel 105 increases or decreases. Thereby, the ratio of the rotation speed of the bevel gear 102 and the output shaft 101 can be changed steplessly.

出力軸101には、摩擦伝動を行う部材間の摩擦力を確保するため押付け力を加えるローディング装置108が設置してある。ローディング装置108は、図6(b)に示すように、出力ディスク106と出力軸101に固定した歯車109とにそれぞれ円板カム106C、109Cを形成し、その間に、ガイド部材110の孔に挿入されるボール体111を配置した構造となっている。出力軸101が回転すると、ボール体111が円板カム106C等の傾斜部Xに乗り上げ、出力ディスク106を図の左方に押す。出力ディスク106は出力軸101には固着されておらず軸方向に可動であって、出力ディスク106の左方への移動により、摩擦ホイール105の下端部と出力ディスク106との圧接部分には押付け力が付与され、動力伝達のための摩擦力が確保される。この押付け力は、出力軸101のトルクが増大するにつれ大きなものとなる。
特開平3−9171号公報 実公昭39−33734号公報 特開平5−187509号公報
The output shaft 101 is provided with a loading device 108 that applies a pressing force in order to secure a frictional force between members that perform frictional transmission. As shown in FIG. 6B, the loading device 108 forms disc cams 106C and 109C on the output disk 106 and the gear 109 fixed to the output shaft 101, respectively, and is inserted into the hole of the guide member 110 therebetween. The ball body 111 is arranged. When the output shaft 101 rotates, the ball body 111 rides on the inclined portion X such as the disc cam 106C and pushes the output disk 106 to the left in the figure. The output disk 106 is not fixed to the output shaft 101 and is movable in the axial direction. When the output disk 106 moves leftward, the output disk 106 is pressed against the pressure contact portion between the lower end of the friction wheel 105 and the output disk 106. A force is applied, and a frictional force for power transmission is secured. This pressing force becomes larger as the torque of the output shaft 101 increases.
JP-A-3-9171 Japanese Utility Model Publication No. 39-33734 Japanese Patent Laid-Open No. 5-187509

摩擦車式無段変速機を用いて動力伝達を行う場合、伝達する動力(トルク)を増大したときには、摩擦伝動を行う部材間の摩擦力が増加し、一定の限度を超えると両者の間に過大な滑りが生じて、滑り損傷を起こす虞れがある。これを防止するには、特許文献2に記載された無段変速機のように、入力軸を共通とする同一構造の一対の摩擦車式無段変速機を対称的に対向させて配置し、単一の出力軸により出力する方法が考えられる。この方法によれば、摩擦伝動を行う部材間の摩擦力が理論上は半分に低下するとともに、摩擦伝動の際に入力軸に作用する軸方向のスラスト力が相殺されるので、スラストベアリングなどの軸の支持機構が簡素化される。   When power is transmitted using a friction wheel type continuously variable transmission, when the power (torque) to be transmitted is increased, the frictional force between the members performing frictional transmission increases. Excessive slipping may occur and cause slip damage. In order to prevent this, like a continuously variable transmission described in Patent Document 2, a pair of friction wheel continuously variable transmissions having the same structure and having a common input shaft are disposed opposite to each other symmetrically, A method of outputting by a single output shaft can be considered. According to this method, the frictional force between the members performing the frictional transmission is theoretically reduced to half and the axial thrust force acting on the input shaft during the frictional transmission is canceled out. The shaft support mechanism is simplified.

しかし、同一構造の一対の摩擦車式無段変速機を対向させて配置したとしても、各々の無段変速機には不可避的な製造誤差や組付け誤差が存在し、また、潤滑条件等の相違により経年変化に伴う摩耗も異なるため、共通の入力軸から駆動したときに、各々の無段変速機の出力回転数には多少の差が生じる。2個の摩擦車式無段変速機は単一の出力軸に連結されているので、各々の無段変速機に生じた回転差は、摩擦伝動を行う部材間に発生する滑りにより吸収されるが、これによって滑り量が増大して無段変速機に過大な発熱が発生したり、いずれかの無段変速機に滑り損傷が起こることがある。また、摩擦伝動を行う部材間に押付け力を加えるローディング装置は、同一のものをそれぞれの摩擦車式無段変速機に対して設ける必要がある。
本発明は、一対の摩擦車式無段変速機を対向して配置した変速装置において、各々の無段変速機の回転差に起因する滑り量の増大を防止し、かつ、押付け力を付与するローディング装置の構成を簡易化して、上記の問題点を解決することを課題とする。
However, even if a pair of friction wheel type continuously variable transmissions of the same structure are arranged to face each other, each continuously variable transmission has inevitable manufacturing errors and assembly errors, and the lubrication conditions, etc. Since the wear due to aging changes depending on the difference, there is a slight difference in the output rotational speed of each continuously variable transmission when driven from a common input shaft. Since the two friction wheel type continuously variable transmissions are connected to a single output shaft, the rotational difference generated in each continuously variable transmission is absorbed by the slip generated between the members that perform friction transmission. However, this may increase the amount of slip and generate excessive heat in the continuously variable transmission, or may cause slip damage to any of the continuously variable transmissions. In addition, the same loading device that applies a pressing force between members that perform friction transmission needs to be provided for each friction wheel type continuously variable transmission.
The present invention provides a transmission device in which a pair of friction wheel type continuously variable transmissions are arranged so as to face each other, and prevents an increase in slippage due to a rotational difference between the respective continuously variable transmissions and provides a pressing force. It is an object of the present invention to solve the above problems by simplifying the configuration of the loading device.

上記の課題に鑑み、本発明の変速装置は、一対の摩擦車式無段変速機を、各々の摩擦車式無段変速機の出力部材が中央部に位置するよう対称的に配置し、両出力部材に押圧される転動体を設けて両出力部材の相対的な回転運動を許容するとともに、転動体により出力部材に押付け力を作用させるものである。すなわち、本発明は、
「共通する入力軸を備えた一対の摩擦車式無段変速機を、前記入力軸に直交する面に対し対称的に配置した変速装置であって、
各々の前記摩擦車式無段変速機の出力部材が、前記一対の摩擦車式無段変速機の中間部に対向して配置されるとともに、各々の前記出力部材の対向面には、径方向外方に傾斜部を有する円周溝が形成され、
前記出力部材の対向面の間には、各々の前記円周溝の傾斜部に接触し、径方向の軸の回りに回転する転動体と、前記入力軸の軸心を中心として回転し、前記転動体が挿入される貫通空間部を有するガイド部材とが設置され、
前記ガイド部材には、各々の前記出力部材の出力を合わせて取り出す出力取出部材が連結されており、
各々の前記出力部材と前記ガイド部材との相対的な変位により、前記転動体が径方向外方に移動して、前記出力部材に形成された前記円周溝の傾斜部に押付けられ、各々の前記出力部材を反対方向に押圧する」
ことを特徴とする変速装置となっている。
In view of the above problems, the transmission of the present invention is a symmetrical arrangement of a pair of friction wheel continuously variable transmissions such that the output members of the respective friction wheel continuously variable transmissions are located in the center. A rolling element pressed against the output member is provided to allow relative rotational movement of both output members, and a pressing force is applied to the output member by the rolling element. That is, the present invention
"A transmission in which a pair of friction wheel type continuously variable transmissions having a common input shaft is arranged symmetrically with respect to a plane orthogonal to the input shaft,
An output member of each of the friction wheel type continuously variable transmissions is disposed to face an intermediate portion of the pair of friction wheel type continuously variable transmissions, and a radial direction is provided on an opposing surface of each of the output members. A circumferential groove having an inclined portion is formed on the outside,
Between the opposing surfaces of the output member, the rolling member is in contact with the inclined portion of each circumferential groove and rotates about a radial axis, and rotates about the axis of the input shaft, A guide member having a through space portion into which the rolling element is inserted; and
The guide member is connected to an output extraction member that takes out the output of each of the output members together,
Due to the relative displacement between each of the output members and the guide member, the rolling element moves radially outward and is pressed against the inclined portion of the circumferential groove formed in the output member. Press the output member in the opposite direction "
The transmission is characterized by this.

請求項2に記載のように、前記貫通空間部に挿入される前記転動体を球体とし、かつ、前記貫通空間部の径方向内方に直線部を形成して、前記転動体が、前記貫通空間部における周方向の移動に伴い径方向外方に移動するように構成することができる。   According to a second aspect of the present invention, the rolling element inserted into the penetrating space portion is a sphere, and a linear portion is formed radially inward of the penetrating space portion so that the rolling element is the penetrating member. It can comprise so that it may move to radial direction outward with the movement of the circumferential direction in a space part.

また、請求項3に記載のように、前記貫通空間部に挿入される前記転動体を、前記円周溝の傾斜部に接触する半球体と軸とを備えるものとし、かつ、前記転動体の軸を、前記貫通空間部の径方向内方の角部に接触する転動体支持体に嵌め込み、前記転動体が、前記貫通空間部における転動体支持体の傾斜に伴い径方向外方に移動するように構成することができる。   According to a third aspect of the present invention, the rolling element inserted into the through space is provided with a hemisphere and a shaft that are in contact with the inclined portion of the circumferential groove, and the rolling element The shaft is fitted into a rolling element support that contacts a radially inner corner of the through space, and the rolling element moves radially outward as the rolling element support inclines in the through space. It can be constituted as follows.

本発明の変速装置は、請求項4に記載のように、各々の前記摩擦車式無段変速機が「前記入力軸の回りに配置された複数の遊星ホイールを備え、前記遊星ホイールには、前記入力軸に圧接される転動面と、変速円錐面とが形成されており、前記転動面の外方には、リング状の前記出力部材が圧接され、かつ、前記変速円錐面には、回転方向には固定され軸方向には移動可能な変速リングが圧接される」ものであるときに、特に好ましい効果を発揮する。   In the transmission of the present invention, as described in claim 4, each of the friction wheel type continuously variable transmissions includes “a plurality of planetary wheels arranged around the input shaft, A rolling surface pressed against the input shaft and a speed change conical surface are formed. The ring-shaped output member is pressed against the outside of the rolling surface, and the speed change conical surface is Particularly advantageous effects are exhibited when the transmission ring is fixed in the rotational direction and movable in the axial direction.

本発明の変速装置においては、共通する入力軸を備えた一対の摩擦車式無段変速機が、入力軸に直交する面に対し対称的に、すなわち、対向して配置されており、各々の摩擦車式無段変速機の出力部材が2個の摩擦車式無段変速機の中間部に位置している。両出力部材の間には、双方の出力部材に接触する転動体と、転動体を保持するガイド部材とが配置してあり、変速装置の出力は、両摩擦車式無段変速機の出力部材の出力を合わせた形でガイド部材を介して取り出される。そのため、単一の摩擦車式無段変速機により変速するものと比較すると、摩擦伝動を行う部材間の摩擦力が半分となるとともに、摩擦伝動の際に入力軸に作用する軸方向のスラスト力が相殺されるので、スラストベアリングなどの構造が簡易なものとなる。   In the transmission of the present invention, a pair of friction wheel continuously variable transmissions having a common input shaft are disposed symmetrically, that is, opposed to a plane orthogonal to the input shaft. An output member of the friction wheel type continuously variable transmission is located at an intermediate portion between the two friction wheel type continuously variable transmissions. Between the two output members, a rolling element that contacts both output members and a guide member that holds the rolling element are arranged, and the output of the transmission is the output member of the two-friction type continuously variable transmission Are taken out through the guide member in a combined form. Therefore, the frictional force between the members that perform frictional transmission is halved and the axial thrust force that acts on the input shaft during frictional transmission is compared to that that shifts with a single friction wheel type continuously variable transmission. Since this cancels out, the structure of a thrust bearing or the like becomes simple.

ガイド部材の貫通空間部に挿入されて両出力部材の間に配置された転動体は、ガイド部材の両出力部材に対する相対的な変位に応じて径方向外方に移動する。つまり、変速装置の出力取出部材に働く負荷トルクによりガイド部材が両出力部材の回転方向後方に相対的に変位することに伴って、両出力部材の間に配置される転動体が径方向外方に移動する。各々の出力部材の対向面には径方向外方に傾斜部を有する円周溝が形成されており、径方向外方に移動した転動体は、両出力部材の傾斜部に押圧される。これによって、転動体が傾斜部とガイド部材との間にロックされた状態となり、各々の摩擦車式無段変速機の出力部材から転動体を介してガイド部材へ動力が伝達されるとともに、転動体は、両出力部材を互いに反対方向に押し広げる力を作用する。したがって、両出力部材の間に配置される転動体は、2個の摩擦車式無段変速機に共用のローディング装置としても機能し、各々の出力部材を介して両摩擦車式無段変速機には押付け力が付加され、摩擦伝動を行う部材間に確実な摩擦力が生じることとなる。   The rolling elements that are inserted into the through space portion of the guide member and disposed between the two output members move radially outward in accordance with relative displacement of the guide member with respect to the two output members. That is, as the guide member is relatively displaced rearward in the rotational direction of the output members due to the load torque acting on the output extraction member of the transmission, the rolling elements arranged between the output members are radially outward. Move to. A circumferential groove having an inclined portion radially outward is formed on the opposing surface of each output member, and the rolling elements that have moved radially outward are pressed against the inclined portions of both output members. As a result, the rolling element is locked between the inclined portion and the guide member, and power is transmitted from the output member of each friction wheel type continuously variable transmission to the guide member via the rolling element. The moving body acts to push both output members in opposite directions. Therefore, the rolling element disposed between the two output members also functions as a loading device shared by the two friction wheel type continuously variable transmissions, and the both friction wheel type continuously variable transmissions are provided via the respective output members. A pressing force is applied to the member, and a certain frictional force is generated between the members performing frictional transmission.

また、ガイド部材の貫通空間部に挿入された転動体は、両出力部材の径方向外方の傾斜部に押圧されるが、転動体自体は、径方向の軸の回りを回転することが可能である。対向して配置した2個の摩擦車式無段変速機が同一構造であったとしても、不可避的な製造誤差や組付け誤差等に起因して、各々の無段変速機における出力部材の回転数には多少の差が生じるけれども、この回転数の差は、転動体自体の回転により吸収することができる。つまり、傾斜部に押圧された転動体には、回転数の大きい出力部材に引かれる摩擦力と回転数の小さい出力部材に引きずられる摩擦力とによる回転モーメントが作用し、転動体が径方向の軸の回りを回転して回転数差を補償する。換言すれば、本発明のローディング装置の転動体は、両出力部材の回転数差を許容するものであり、これによって、両出力部材の回転数差により摩擦伝動を行う部材間に滑りが発生することを防止できる。   In addition, the rolling elements inserted into the through space portion of the guide member are pressed by the radially outward inclined portions of both output members, but the rolling elements themselves can rotate around the radial axis. It is. Even if two friction wheel type continuously variable transmissions arranged opposite to each other have the same structure, the rotation of the output member in each continuously variable transmission due to inevitable manufacturing errors, assembly errors, etc. Although a slight difference occurs in the number, this difference in the rotation number can be absorbed by the rotation of the rolling element itself. In other words, the rolling element pressed by the inclined portion is subjected to a rotational moment due to the frictional force drawn by the output member having a high rotational speed and the frictional force dragged by the output member having a low rotational speed, and the rolling element is in the radial direction. Rotate around the axis to compensate for the rotational speed difference. In other words, the rolling element of the loading device according to the present invention allows a difference in rotational speed between the two output members, thereby causing slippage between the members performing frictional transmission due to the rotational speed difference between the two output members. Can be prevented.

請求項2に記載の発明は、貫通空間部に挿入される転動体を球体とし、かつ、貫通空間部の径方向内方に直線部を形成するものである。球体の転動体は、ガイド部材が両出力部材に対して相対的に変位すると、貫通空間部を径方向内方に直線部に沿って周方向に移動し、その結果、径方向外方に移動するようになる。この構成によれば、ガイド体の貫通空間部及び転動体の構造が単純であるので、作動時の信頼性が高く、また、製造コストを削減することが可能である。   According to the second aspect of the present invention, the rolling element inserted into the through space is a sphere, and a linear portion is formed radially inward of the through space. When the guide member is displaced relative to both output members, the spherical rolling element moves the through space portion radially inward along the straight portion, and consequently moves radially outward. To come. According to this structure, since the structure of the penetration space part of a guide body and a rolling element is simple, the reliability at the time of an operation | movement is high, and it is possible to reduce manufacturing cost.

請求項3に記載の発明は、貫通空間部に挿入される転動体を、出力部材の円周溝の傾斜部に接触する半球体と軸とによって構成し、かつ、転動体の軸を嵌め込む転動体支持体を貫通空間部の設置して、転動体支持体の下方の両端部が貫通空間部の径方向内方の角部に接触するようにしたものである。ガイド部材が両出力部材に対して相対的に変位すると、転動体支持体が、下方の端部を支点として貫通空間部において傾斜し、転動体が径方向外方に移動する結果、半球体の部分が円周溝の傾斜部に押付けられる。   According to a third aspect of the present invention, the rolling element inserted into the through space is configured by a hemisphere and a shaft that are in contact with the inclined portion of the circumferential groove of the output member, and the shaft of the rolling element is fitted. The rolling element support is provided in the through space, and both lower ends of the rolling element support are in contact with the radially inner corners of the through space. When the guide member is displaced relative to the two output members, the rolling element support body tilts in the penetrating space with the lower end as a fulcrum, and the rolling element moves radially outward. The portion is pressed against the inclined portion of the circumferential groove.

請求項4に記載の発明は、本発明におけるローディング装置等を、遊星ホイールによる遊星式の伝動を行う一対の無段変速機を対向して配置した変速装置、すなわち、摩擦車式無段変速機が「入力軸の回りに配置された複数の遊星ホイールを備え、遊星ホイールには、入力軸に圧接される転動面と、変速円錐面とが形成されており、転動面の外方には、リング状の出力部材が圧接され、かつ、変速円錐面には、回転方向には固定され軸方向には移動可能な変速リングが圧接される」ような変速装置に対して適用したものである。こうした摩擦車式無段変速機では、出力部材の停止や逆転まで可能で変速範囲が大きく、また、入力軸と遊星ホイールとの間、出力部材と遊星ホイールとの間及び変速リングと遊星ホイールとの間の3個所に摩擦伝動部分が存在する関係上、2個の摩擦車式無段変速機における出力部材に回転数差が生じる虞れが強い。本発明におけるローディング装置は、回転数差を許容して摩擦伝動部材間の滑りの増大を防止するものであるから、この摩擦車式無段変速機を備えた変速装置に適用したときの効果は、特に大きなものがある。   The invention according to claim 4 is a transmission in which a pair of continuously variable transmissions that perform planetary transmission by a planetary wheel is opposed to the loading device in the present invention, that is, a friction wheel type continuously variable transmission. Is equipped with a plurality of planetary wheels arranged around the input shaft, and the planetary wheel is formed with a rolling surface pressed against the input shaft and a speed change conical surface. Is applied to a transmission in which a ring-shaped output member is press-contacted, and a speed-change conical surface is press-contacted with a speed-change ring that is fixed in the rotational direction and movable in the axial direction. is there. In such a friction wheel type continuously variable transmission, the output member can be stopped and reversed, and the speed change range is large.In addition, between the input shaft and the planetary wheel, between the output member and the planetary wheel, and between the transmission ring and the planetary wheel, Because of the fact that there are friction transmission parts at three locations between the two, there is a strong possibility that a difference in rotational speed will occur between the output members of the two friction wheel type continuously variable transmissions. Since the loading device according to the present invention allows a difference in the rotational speed to prevent an increase in slip between the friction transmission members, the effect when applied to a transmission equipped with this friction wheel type continuously variable transmission is as follows. , Especially big ones.

以下、図面に基づき本発明の変速装置の実施例について説明するが、この実施例は、遊星ホイールによる伝動を行う一対の摩擦車式無段変速機を対向して配置した変速装置に関するものであり、まず、この無段変速機の構成及び変速原理等について、図1により説明する。図1(a)は、遊星ホイール式無段変速機の全体的な断面図であり、図1(b)は、無段変速機を遊星歯車機構に置き換えた等価モデルとなっている。   Hereinafter, an embodiment of a transmission according to the present invention will be described with reference to the drawings. This embodiment relates to a transmission in which a pair of friction wheel type continuously variable transmissions that perform transmission by a planetary wheel are opposed to each other. First, the configuration of the continuously variable transmission, the shift principle, and the like will be described with reference to FIG. FIG. 1A is an overall sectional view of a planetary wheel type continuously variable transmission, and FIG. 1B is an equivalent model in which the continuously variable transmission is replaced with a planetary gear mechanism.

図1(a)に示されるとおり、遊星ホイール式無段変速機には、入力軸1に対して遊星運動を行う複数の遊星ホイール2が、周方向に等間隔で配置されている。入力軸1は、円錐面の外周を有する入力ディスク11、12を備え、また、遊星ホイール2の両端部も同じく円錐面21、22をなしており、この部分は入力ディスクに対する転動面となっている。遊星ホイール2は、円錐面21が入力ディスク11に圧接され円錐面22が入力ディスク12に圧接されて、入力軸1の回りを公転しながら遊星ホイール2の中心軸の回りを自転する。そのため、遊星ホイール2の中心軸と両端の円錐面21、22及び入力ディスク11、12の円錐面は、断面図において入力軸1の軸線延長部の1点で交わるように形成されるとともに、複数の遊星ホイール2は、自転と公転とが可能であるようにキャリア3によって相互に連結される。   As shown in FIG. 1A, in the planetary wheel type continuously variable transmission, a plurality of planet wheels 2 that perform planetary motion with respect to the input shaft 1 are arranged at equal intervals in the circumferential direction. The input shaft 1 includes input disks 11 and 12 having an outer periphery of a conical surface, and both end portions of the planetary wheel 2 also form conical surfaces 21 and 22, which serve as rolling surfaces for the input disk. ing. The planetary wheel 2 rotates around the central axis of the planetary wheel 2 while revolving around the input shaft 1 with the conical surface 21 pressed against the input disk 11 and the conical surface 22 pressed against the input disk 12. Therefore, the center axis of the planetary wheel 2 and the conical surfaces 21 and 22 at both ends and the conical surfaces of the input disks 11 and 12 are formed so as to intersect at one point of the axial extension portion of the input shaft 1 in the sectional view. The planet wheels 2 are connected to each other by a carrier 3 so that they can rotate and revolve.

遊星ホイール2の小径側の端部である円錐面21の外周側には、無段変速機の出力部材である出力リング4が圧接されている。つまり、入力ディスク11、遊星ホイール2の円錐面21及び出力リング4は、遊星歯車機構におけるサンギヤ、プラネタリギヤ及びリングギヤにそれぞれ相当するものとなっている。   An output ring 4 that is an output member of the continuously variable transmission is pressed against the outer peripheral side of the conical surface 21 that is an end portion on the small diameter side of the planetary wheel 2. That is, the input disk 11, the conical surface 21 of the planetary wheel 2, and the output ring 4 correspond to the sun gear, the planetary gear, and the ring gear in the planetary gear mechanism, respectively.

遊星ホイール2の中間部には、両端部の円錐面とは逆方向に広がる変速円錐面23が形成される。変速円錐面23の断面図における外側の直線は、入力軸1の軸線と平行であって、その外周には変速リング5が圧接される。変速リング5は、回転方向には拘束されるとともに、変速円錐面23に沿って軸方向には移動可能であるよう構成され、軸方向に移動すると、変速リング5と変速円錐面23との接触点P(ピッチ点)が変化する。遊星ホイール2は、ピッチ点で変速リング5の内面を転動しながら自転及び公転を行うから、その回転数は、変速円錐面23のピッチ点における半径に応じて変わることとなる。   A speed change conical surface 23 is formed at the intermediate portion of the planetary wheel 2 and extends in the opposite direction to the conical surfaces at both ends. An outer straight line in the cross-sectional view of the transmission conical surface 23 is parallel to the axis of the input shaft 1, and the transmission ring 5 is pressed against the outer periphery thereof. The transmission ring 5 is configured to be constrained in the rotational direction and movable in the axial direction along the transmission cone surface 23. When the transmission ring 5 moves in the axial direction, the contact between the transmission ring 5 and the transmission cone surface 23 is achieved. Point P (pitch point) changes. Since the planetary wheel 2 rotates and revolves while rolling on the inner surface of the transmission ring 5 at the pitch point, the number of rotations thereof changes according to the radius at the pitch point of the transmission conical surface 23.

このように構成された遊星ホイール式無段変速機の各構成要素の回転数を、図1(b)の等価モデルにより計算する。
まず、キャリアが固定され、リングギヤB(変速リング5に相当)が回転すると仮定したときのリングギヤBの回転数N5を求める。サンギヤ(入力ディスク11に相当)の半径をR1、回転数をN1とし、プラネタリギヤA(遊星ホイール2の円錐面21に相当)の半径をR2、回転数をN2とすると、N2=−N1×R1/R2(サンギヤの回転方向を正とする)である。そして、プラネタリギヤB(ピッチ点における変速円錐面23の横断面に相当)の回転数はN2であるので、リングギヤBの回転数N5は、次式のとおりとなる。
N5=N2×R3/R5
R3:プラネタリギヤBの半径
R5:変速リング5の半径
次に、プラネタリギヤAの外側に噛合うリングギヤA(出力リング4に相当)の半径をR4、回転数をN4とすると、N4=N2×R2/R4となる。しかし、この計算は、リングギヤBが回転すると仮定したときのものであり、リングギヤBは実際には固定されているので、各部の回転数は、上記の回転数からリングギヤBの回転数N5を減算したものとして求められる。リングギヤAの実際の回転数Noは、次式のとおりとなる。
No=N4−N5=N2×(R2/R4−R3/R5)
したがって、出力リング4に相当するリングギヤAは、(R2/R4−R3/R5)の値の正負によって正方向及び逆方向の両方向に回転し、この値が0となるときには停止することとなる。ちなみに、実際の入力回転数をNiとすると、変速比rは、次式により表される。
r=No/Ni=No/(N1−N5)
The number of rotations of each component of the planetary wheel type continuously variable transmission configured as described above is calculated using the equivalent model shown in FIG.
First, the rotation speed N5 of the ring gear B when the carrier is fixed and the ring gear B (corresponding to the transmission ring 5) rotates is obtained. If the radius of the sun gear (corresponding to the input disk 11) is R1, the rotational speed is N1, the radius of the planetary gear A (corresponding to the conical surface 21 of the planetary wheel 2) is R2, and the rotational speed is N2, N2 = −N1 × R1 / R2 (the direction of rotation of the sun gear is positive). Since the rotational speed of the planetary gear B (corresponding to the transverse section of the speed change conical surface 23 at the pitch point) is N2, the rotational speed N5 of the ring gear B is given by the following equation.
N5 = N2 × R3 / R5
R3: Radius of planetary gear B R5: Radius of transmission ring 5 Next, assuming that the radius of ring gear A (corresponding to output ring 4) meshing with the outside of planetary gear A is R4 and the rotational speed is N4, N4 = N2 × R2 / R4. However, this calculation is based on the assumption that the ring gear B rotates. Since the ring gear B is actually fixed, the rotational speed of each part is obtained by subtracting the rotational speed N5 of the ring gear B from the above rotational speed. Is required. The actual rotational speed No of the ring gear A is as shown in the following equation.
No = N4-N5 = N2 × (R2 / R4-R3 / R5)
Therefore, the ring gear A corresponding to the output ring 4 rotates in both the forward and reverse directions depending on the value of (R2 / R4-R3 / R5), and stops when this value becomes zero. Incidentally, if the actual input rotational speed is Ni, the gear ratio r is expressed by the following equation.
r = No / Ni = No / (N1-N5)

ここで、上述の遊星ホイール式無段変速機を対向して配置した本発明の変速装置の実施例について、図2により説明する。
変速装置には、同一の構造を備えた一対の遊星ホイール式無段変速機A、Bが、共通の入力軸1に直交する面に対して対称的に、出力リング4が中間部で対向するように配置されている。ただし、遊星ホイール式無段変速機Bの入力ディスク11、12は、入力軸1にボールスプラインにより連結された中空スリーブの両端に固着されている。また、変速リング5の装着されるロッド6には逆ねじが設けてあり、遊星ホイール式無段変速機A、Bの各変速リング5は、ロッド6の回転によって互いに反対方向に同一距離移動するよう構成される。
Here, an embodiment of the transmission of the present invention in which the above-described planetary wheel type continuously variable transmission is arranged to face each other will be described with reference to FIG.
In the transmission, a pair of planetary wheel type continuously variable transmissions A and B having the same structure are symmetrical with respect to a plane perpendicular to the common input shaft 1, and the output ring 4 is opposed at the intermediate portion. Are arranged as follows. However, the input disks 11 and 12 of the planetary wheel type continuously variable transmission B are fixed to both ends of a hollow sleeve connected to the input shaft 1 by a ball spline. Further, the rod 6 to which the transmission ring 5 is attached is provided with a reverse screw, and the transmission rings 5 of the planetary wheel type continuously variable transmissions A and B move the same distance in the opposite directions by the rotation of the rod 6. It is configured as follows.

遊星ホイール式無段変速機A、Bの各出力リング4の間には、入力軸1に対して回転可能に嵌め込まれたボス部を有する円板状のガイド部材7が設置されている。ガイド部材7の外周には連続した歯71が形成され、これは、変速装置の出力軸8の端部に固着した歯車81と噛合っており、遊星ホイール式無段変速機A、Bの出力を合わせて外部に出力する出力取出部材となっている。   Between the output rings 4 of the planetary wheel type continuously variable transmissions A and B, a disc-shaped guide member 7 having a boss portion that is rotatably fitted to the input shaft 1 is installed. A continuous tooth 71 is formed on the outer periphery of the guide member 7, which meshes with a gear 81 fixed to the end of the output shaft 8 of the transmission, and outputs the planetary wheel type continuously variable transmissions A and B. It is an output extraction member that outputs to the outside together.

ガイド部材7の、各出力リング4と対面する部分には、ガイド部材7を貫通する貫通空間部72が設けられ、ここに球状の転動体9が挿入される。図3(a)に示すとおり、貫通空間部72は、軸方向から見ると、径方向外側が弧状で径方向内側が直線となった矩形状を呈する空間であって、挿入された転動体9は、径方向内側の直線に沿って中央から左右周方向に変位したときには、破線で示すように、径方向外方に移動することとなる。そして、図3(b)の拡大断面図に示すとおり、両方の出力リング4の対向面には、断面において径方向外側に傾斜部41を有する円周溝42が設けられており、転動体9が周方向に変位すると、転動体9の径方向外方の頂部近傍は、それぞれの出力リング4の傾斜部41に押圧される。換言すれば、転動体9は、周方向への変位に伴い径方向外方に移動して各出力リング4の傾斜部41を反対方向に押圧し、遊星ホイール式無段変速機A、Bの摩擦伝動を行う部材間に押付け力を発生させるローディング装置としても機能する。転動体9は球体であるから、両方の出力リング4の回転数に差が生じたときは、径方向の軸を中心に回転し、その差を吸収することが可能である。転動体9が挿入される貫通空間部72は、径方向内側が一つの直線である必要はなく、図3(c)に示すように、径方向内側をV字型の形状とすることによっても、転動体9は、貫通空間部72における周方向の移動に伴い径方向外方に移動することとなる。   A portion of the guide member 7 that faces each output ring 4 is provided with a through space 72 that penetrates the guide member 7, and the spherical rolling element 9 is inserted therein. As shown in FIG. 3A, the through space portion 72 is a space having a rectangular shape in which the radial outer side is an arc and the radial inner side is a straight line when viewed from the axial direction. When moving from the center to the left-right circumferential direction along the straight line on the radially inner side, as shown by the broken line, it will move radially outward. As shown in the enlarged cross-sectional view of FIG. 3B, the opposing surfaces of both output rings 4 are provided with circumferential grooves 42 having inclined portions 41 on the outer side in the radial direction in the cross section. Is displaced in the circumferential direction, the vicinity of the radially outer top portion of the rolling element 9 is pressed by the inclined portion 41 of each output ring 4. In other words, the rolling element 9 moves radially outward in accordance with the displacement in the circumferential direction and presses the inclined portion 41 of each output ring 4 in the opposite direction, so that the planetary wheel type continuously variable transmissions A and B It also functions as a loading device that generates a pressing force between members that perform friction transmission. Since the rolling element 9 is a sphere, when a difference occurs in the rotational speeds of both the output rings 4, the rolling element 9 can rotate around the radial axis and absorb the difference. The through space 72 into which the rolling element 9 is inserted does not have to be a straight line on the radially inner side, and as shown in FIG. The rolling element 9 moves radially outward along the circumferential movement of the through space 72.

次いで、図2の変速装置の作動について述べる。エンジン等からの動力によって入力軸1が回転すると、遊星ホイール式無段変速機A、Bの入力ディスク11、12は、複数の遊星ホイール2を自転させると同時に入力軸1の回りに公転させる。これにより、遊星ホイール2の端部外周に押圧されたそれぞれの出力リング4が回転し、その回転数が、遊星ホイール2の変速円錐面23に圧接された変速リング5の位置により変化するのは、前述したとおりである。   Next, the operation of the transmission shown in FIG. 2 will be described. When the input shaft 1 is rotated by power from an engine or the like, the input disks 11 and 12 of the planetary wheel type continuously variable transmissions A and B cause the plurality of planet wheels 2 to rotate and simultaneously revolve around the input shaft 1. Thereby, each output ring 4 pressed against the outer periphery of the end of the planetary wheel 2 rotates, and the number of rotations varies depending on the position of the transmission ring 5 pressed against the transmission conical surface 23 of the planetary wheel 2. As described above.

各出力リング4の対向する円周溝42の間には、ガイド部材7の貫通空間部72に挿入された転動体9が置かれている。ガイド部材7には変速装置の出力軸8の負荷が作用しているから、各出力リング4が回転すると、ガイド部材7は、出力リング4に対し回転方向の後方に相対的に変位する。ガイド部材7の相対的な変位に伴って、転動体9は、貫通空間部72の径方向内側の直線に沿って周方向に移動し、かつ、径方向外方に移動して円周溝の傾斜部41に押圧される。そのため、転動体9はいわばその位置にロックされた状態となり、出力リング4の回転が、転動体9及びガイド部材7を介して出力軸8に伝達される。傾斜部41には転動体9から出力軸8の負荷トルクに応じた反力が作用し、この反力によって各出力リング4が互いに反対方向に押圧され、摩擦伝動を行う部材間に押付け力が発生する。   Between the circumferential grooves 42 facing each output ring 4, the rolling elements 9 inserted in the through space 72 of the guide member 7 are placed. Since the load of the output shaft 8 of the transmission is acting on the guide member 7, when each output ring 4 rotates, the guide member 7 is relatively displaced rearward in the rotational direction with respect to the output ring 4. With the relative displacement of the guide member 7, the rolling element 9 moves in the circumferential direction along a straight line on the radially inner side of the through space 72 and moves outward in the radial direction to form the circumferential groove. Pressed by the inclined portion 41. Therefore, the rolling element 9 is in a locked state at that position, and the rotation of the output ring 4 is transmitted to the output shaft 8 via the rolling element 9 and the guide member 7. A reaction force corresponding to the load torque of the output shaft 8 is applied from the rolling element 9 to the inclined portion 41, and each output ring 4 is pressed in the opposite direction by this reaction force, and a pressing force is generated between the members that perform friction transmission. appear.

ところで、遊星ホイール式無段変速機A、Bの構造が同一であっても、不可避的な製造誤差等に起因して、両方の出力リング4の回転数には多少なりとも差が生じる。つまり、ガイド部材7の回転に対し、一方の出力リング4の回転が相対的に速く、他方の出力リング4の回転が相対的に遅くなる。この回転数の差が生じたときは、図4に示すように、両方の出力リング4の傾斜部41に押圧される転動体9の径方向外方の頂部近傍には、相対的な速度差に基づく回転モーメントが作用し、転動体9は、ガイド部材7の径方向の軸を中心として回転する。この回転により、両方の出力リング4における回転数の差が許容される。   By the way, even if the planetary wheel type continuously variable transmissions A and B have the same structure, the rotational speeds of both output rings 4 are somewhat different due to inevitable manufacturing errors. That is, the rotation of one output ring 4 is relatively fast and the rotation of the other output ring 4 is relatively slow with respect to the rotation of the guide member 7. When this rotational speed difference occurs, as shown in FIG. 4, there is a relative speed difference in the vicinity of the radially outer apex of the rolling elements 9 pressed by the inclined portions 41 of both output rings 4. A rolling moment based on the above acts, and the rolling element 9 rotates about the radial axis of the guide member 7. Due to this rotation, a difference in rotation speed between the two output rings 4 is allowed.

このように、本発明のローディング装置の転動体9は、2台の無段変速機の出力リング4に発生する回転数の差に応じて回転するので、それぞれの出力リング4は、他方の出力リング4と同期することなく回転が可能である。したがって、ガイド部材7を介して両方の出力リング4を共通の出力軸8に連結しても、出力リング4が強制的に同期されることに伴い生じる、摩擦伝動を行う部材間の滑りの増大を回避することができる。両方の出力リング4の回転数に差が生じたときは、ガイド部材7は、それらの回転数の平均回転数で回転するようになる。   As described above, the rolling elements 9 of the loading device of the present invention rotate in accordance with the difference in the number of rotations generated in the output rings 4 of the two continuously variable transmissions, so that each output ring 4 has the other output. The rotation is possible without being synchronized with the ring 4. Therefore, even if both the output rings 4 are connected to the common output shaft 8 via the guide member 7, an increase in slippage between the members that perform frictional transmission that occurs when the output ring 4 is forcibly synchronized. Can be avoided. When a difference occurs in the rotational speeds of both the output rings 4, the guide member 7 rotates at an average rotational speed of those rotational speeds.

図5は、本発明のローディング装置における転動体の変形例を示すものである。この変形例では、転動体9は、各出力リング4の円周溝42の傾斜部に接触する半球体91と軸92とを備えており、軸92がベアリングを介して転動体支持体93に回転自在に嵌め込まれている。図5(a)に示すとおり、転動体支持体93は断面が台形の部材であって、その底面がガイド部材7の貫通空間部72における径方向内側の直線上に載置され、底面の両端が貫通空間部72の角部Yに接触している。   FIG. 5 shows a modification of the rolling element in the loading apparatus of the present invention. In this modification, the rolling element 9 includes a hemispherical body 91 and a shaft 92 that are in contact with the inclined portion of the circumferential groove 42 of each output ring 4, and the shaft 92 is attached to the rolling element support body 93 via a bearing. It is fitted so that it can rotate freely. As shown in FIG. 5 (a), the rolling element support 93 is a member having a trapezoidal cross section, and its bottom surface is placed on a straight line on the radially inner side in the through space 72 of the guide member 7, and both ends of the bottom surface. Is in contact with the corner Y of the through space 72.

動力伝達時の負荷の作用により、ガイド部材7が各出力リング4に対し回転方向の後方に相対的に変位すると、図5(b)に示すように、貫通空間部72において転動体支持体93が角部Yを支点として傾斜する。この結果、転動体9は径方向外方に移動して半球体91が円周溝の傾斜部41に押圧されるため、図3の実施例の場合と同様に、出力リング4の回転が出力軸8に伝達されるとともに、各出力リング4が互いに反対方向に押圧され、摩擦伝動を行う部材間に押付け力が発生する。各出力リング4間に生じる速度差は、転動体9の軸92を中心とする回転によって許容されることとなる。
この変形例からも分かるとおり、本発明のローディング装置の転動体9は、変速装置の入力軸から出力軸(出力取出部材)へ動力伝達が行われるときに、ガイド部材と各出力リングとの相対的に変位により、貫通空間部において径方向外方に移動するものであればよい。転動体9の形状は、径方向の軸を中心とする回転体であれば、球体に限られるものではなく、また、円周溝42の傾斜部41は、断面において弧状にしてもよい。
When the guide member 7 is relatively displaced rearward in the rotational direction with respect to each output ring 4 due to the action of the load during power transmission, as shown in FIG. Is inclined with the corner Y as a fulcrum. As a result, the rolling element 9 moves radially outward and the hemisphere 91 is pressed against the inclined portion 41 of the circumferential groove, so that the rotation of the output ring 4 is output as in the case of the embodiment of FIG. While being transmitted to the shaft 8, the output rings 4 are pressed in directions opposite to each other, and a pressing force is generated between members performing frictional transmission. The speed difference generated between the output rings 4 is allowed by the rotation about the shaft 92 of the rolling element 9.
As can be seen from this modification, the rolling element 9 of the loading device according to the present invention has a relative relationship between the guide member and each output ring when power is transmitted from the input shaft of the transmission to the output shaft (output extraction member). In other words, any material that moves outward in the radial direction in the through space due to displacement can be used. The shape of the rolling element 9 is not limited to a sphere as long as it is a rotating body centered on the radial axis, and the inclined portion 41 of the circumferential groove 42 may be arcuate in cross section.

以上詳述したように、本発明は、一対の摩擦車式無段変速機を対向して配置した変速装置において、各々の摩擦車式無段変速機の出力部材を中央部に位置させるとともに、両出力部材に押圧される転動体を設け、両出力部材の相対的な回転運動を許容しながら転動体により両出力部材に押付け力を作用させ、摩擦車式無段変速機のローディング装置として機能させるものである。上記の実施例は、本発明の変速装置における摩擦車式無段変速機として遊星ホイール式無段変速機を採用したものであるが、トロイダル式無断変速機等の摩擦車式無段変速機を採用すること、すなわち、一対のトロイダル式無段変速機を対向して配置した変速装置に対して、本発明のローディング装置等を適用することもできる。また、上記の実施例では、変速装置の出力を歯車により外部に取り出しているが、チェーン機構を用いて取り出すようにすること、変速リングをリンク機構によって移動させることなど、実施例に対し種々の変更が可能であることは明らかである。   As described above in detail, the present invention is a transmission in which a pair of friction wheel type continuously variable transmissions are arranged to face each other, and the output member of each friction wheel type continuously variable transmission is positioned at the center, A rolling element that is pressed by both output members is provided, and a pressing force is applied to both output members by the rolling element while allowing the relative rotational movement of both output members to function as a loading device for a friction wheel type continuously variable transmission. It is something to be made. In the above embodiment, a planetary wheel type continuously variable transmission is adopted as the friction wheel type continuously variable transmission in the transmission of the present invention, but a friction vehicle type continuously variable transmission such as a toroidal type continuously variable transmission is used. The loading device or the like of the present invention can be applied to a transmission in which a pair of toroidal continuously variable transmissions are arranged so as to face each other. Further, in the above embodiment, the output of the transmission is taken out by the gear, but there are various types of the embodiment such as taking out using the chain mechanism and moving the transmission ring by the link mechanism. Obviously changes are possible.

本発明に用いられる遊星ホイール式無段変速機の構造の概略図及び等価モデルを示す図である。It is the figure which shows the schematic of the structure of the planetary wheel type continuously variable transmission used for this invention, and an equivalent model. 本発明の変速装置の構造を示す図である。It is a figure which shows the structure of the transmission of this invention. 本発明のローディング装置を示す図である。It is a figure which shows the loading apparatus of this invention. 本発明のローディング装置の作動を説明する図である。It is a figure explaining the action | operation of the loading apparatus of this invention. 本発明のローディング装置における転動体の変形例を示す図である。It is a figure which shows the modification of the rolling element in the loading apparatus of this invention. 従来の遊星ホイール式無段変速機の構造及びそのローディング装置を示す図である。It is a figure which shows the structure of the conventional planetary wheel type continuously variable transmission, and its loading apparatus.

符号の説明Explanation of symbols

1 入力軸
2 遊星ホイール
23 変速円錐面
3 キャリア
4 出力リング(出力部材)
41 傾斜部
5 変速リング
7 ガイド部材
72 貫通空間部
8 出力軸(出力取出部材)
9 転動体
1 Input shaft 2 Planetary wheel 23 Speed change conical surface 3 Carrier 4 Output ring (output member)
41 Inclined portion 5 Transmission ring 7 Guide member 72 Through space portion 8 Output shaft (output extraction member)
9 Rolling elements

Claims (4)

共通する入力軸を備えた一対の摩擦車式無段変速機を、前記入力軸に直交する面に対し対称的に配置した変速装置であって、
各々の前記摩擦車式無段変速機の出力部材が、前記一対の摩擦車式無段変速機の中間部に対向して配置されるとともに、各々の前記出力部材の対向面には、径方向外方に傾斜部を有する円周溝が形成され、
前記出力部材の対向面の間には、各々の前記円周溝の傾斜部に接触し、径方向の軸の回りに回転する転動体と、前記入力軸の軸心を中心として回転し、前記転動体が挿入される貫通空間部を有するガイド部材とが設置され、
前記ガイド部材には、各々の前記出力部材の出力を合わせて取り出す出力取出部材が連結されており、
各々の前記出力部材と前記ガイド部材との相対的な変位により、前記転動体が径方向外方に移動して、前記出力部材に形成された前記円周溝の傾斜部に押付けられ、各々の前記出力部材を反対方向に押圧することを特徴とする変速装置。
A transmission in which a pair of friction wheel type continuously variable transmissions having a common input shaft are arranged symmetrically with respect to a plane orthogonal to the input shaft,
An output member of each of the friction wheel type continuously variable transmissions is disposed to face an intermediate portion of the pair of friction wheel type continuously variable transmissions. A circumferential groove having an inclined portion is formed on the outside,
Between the opposing surfaces of the output member, the rolling member is in contact with the inclined portion of each circumferential groove and rotates about a radial axis, and rotates about the axis of the input shaft, A guide member having a through space portion into which the rolling element is inserted; and
The guide member is connected to an output extraction member that takes out the output of each of the output members together,
Due to the relative displacement between each of the output members and the guide member, the rolling element moves radially outward and is pressed against the inclined portion of the circumferential groove formed in the output member. The transmission is characterized by pressing the output member in the opposite direction.
前記貫通空間部に挿入される前記転動体が球体であり、かつ、前記貫通空間部の径方向内方には直線部が形成されており、前記転動体は、前記貫通空間部における周方向の移動に伴い径方向外方に移動する請求項1に記載の変速装置。 The rolling element inserted into the penetrating space is a sphere, and a linear portion is formed radially inward of the penetrating space, and the rolling element is circumferential in the penetrating space. The transmission according to claim 1, which moves radially outward as it moves. 前記貫通空間部に挿入される前記転動体が、前記円周溝の傾斜部に接触する半球体と軸とを備え、かつ、前記転動体の軸が、前記貫通空間部の径方向内方の角部に接触する転動体支持体に嵌め込まれており、前記転動体は、前記貫通空間部における転動体支持体の傾斜に伴い径方向外方に移動する請求項1に記載の変速装置。 The rolling element inserted into the penetrating space includes a hemisphere that contacts the inclined portion of the circumferential groove and a shaft, and the axis of the rolling element is radially inward of the penetrating space. 2. The transmission according to claim 1, wherein the transmission is fitted into a rolling element support in contact with a corner, and the rolling element moves radially outward as the rolling element support inclines in the through space. 各々の前記摩擦車式無段変速機は、前記入力軸の回りに配置された複数の遊星ホイールを備え、前記遊星ホイールには、前記入力軸に圧接される転動面と、変速円錐面とが形成されており、前記転動面の外方には、リング状の前記出力部材が圧接され、かつ、前記変速円錐面には、回転方向には固定され軸方向には移動可能な変速リングが圧接される請求項1乃至請求項3のいずれかに記載の変速装置。 Each of the friction wheel type continuously variable transmissions includes a plurality of planetary wheels arranged around the input shaft, and the planetary wheels include a rolling surface pressed against the input shaft, a transmission cone surface, The ring-shaped output member is pressed against the outside of the rolling surface, and the speed change conical surface is fixed in the rotational direction and movable in the axial direction. The transmission according to any one of claims 1 to 3, wherein is pressure-contacted.
JP2008130879A 2008-05-19 2008-05-19 Friction wheel type continuously variable transmission Expired - Fee Related JP4978557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130879A JP4978557B2 (en) 2008-05-19 2008-05-19 Friction wheel type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130879A JP4978557B2 (en) 2008-05-19 2008-05-19 Friction wheel type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2009281404A JP2009281404A (en) 2009-12-03
JP4978557B2 true JP4978557B2 (en) 2012-07-18

Family

ID=41452081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130879A Expired - Fee Related JP4978557B2 (en) 2008-05-19 2008-05-19 Friction wheel type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4978557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110871872A (en) * 2018-09-04 2020-03-10 宁波市江北明达工业设计有限公司 Stepless speed change device for realizing stepless speed change of bicycle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039171A (en) * 1989-06-01 1991-01-17 Seirei Ind Co Ltd Speed change operating device in continuously variable transmission of running vehicle
JPH11210773A (en) * 1998-01-20 1999-08-03 Nippon Seiko Kk Bearing of double cavity type toroidal continuously variable transmission
JP2002372113A (en) * 2001-06-14 2002-12-26 Nsk Ltd Toroidal type continuously variable transmission
JP5203209B2 (en) * 2006-09-08 2013-06-05 株式会社ミクニ Continuously variable transmission

Also Published As

Publication number Publication date
JP2009281404A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5131353B2 (en) Continuously variable transmission
US8382636B2 (en) Continuously variable transmission
KR101541673B1 (en) Continuously variable transmission
KR19980070831A (en) Pulley cylinder assembly in belt type continuously variable transmission
JP2010106957A (en) Belt-type continuously variable transmission
JP4978557B2 (en) Friction wheel type continuously variable transmission
JP2014040885A (en) Friction roller-type change gear
JP4232514B2 (en) Continuously variable transmission
JP3674264B2 (en) Continuously variable transmission
JP5418152B2 (en) Friction wheel type continuously variable transmission
JP2013167344A (en) Toroidal type continuously variable transmission
JP5120666B2 (en) Toroidal continuously variable transmission
JP4867931B2 (en) Continuously variable transmission
JP2014040892A (en) Frictional roller type transmission
JP4144166B2 (en) Continuously variable transmission for pumping pump or generator
JP5229582B2 (en) Continuously variable transmission
JP2002372115A (en) Frictional continuously variable transmission
JP4581562B2 (en) Continuously variable transmission
JP3654425B2 (en) Toroidal continuously variable transmission
JP2008309241A (en) Continuously variable transmission
JP4513391B2 (en) Toroidal continuously variable transmission
JP2003042254A (en) Toroidal continuously variable transmission and continuously variable transmission system
JP4433377B2 (en) Toroidal continuously variable transmission
JP2014058988A (en) Toroidal type continuously variable transmission
JP2012193794A (en) Friction roller type reduction gear and electric vehicle drive unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees