WO2013183285A1 - ディスクフィルタおよびこれに用いられるフィルタディスク - Google Patents

ディスクフィルタおよびこれに用いられるフィルタディスク Download PDF

Info

Publication number
WO2013183285A1
WO2013183285A1 PCT/JP2013/003508 JP2013003508W WO2013183285A1 WO 2013183285 A1 WO2013183285 A1 WO 2013183285A1 JP 2013003508 W JP2013003508 W JP 2013003508W WO 2013183285 A1 WO2013183285 A1 WO 2013183285A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
disk
groove
curve
flow path
Prior art date
Application number
PCT/JP2013/003508
Other languages
English (en)
French (fr)
Inventor
真育 岩崎
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to JP2014519839A priority Critical patent/JP6163155B2/ja
Priority to US14/405,200 priority patent/US9492769B2/en
Publication of WO2013183285A1 publication Critical patent/WO2013183285A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/56Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in series connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/44Edge filtering elements, i.e. using contiguous impervious surfaces
    • B01D29/46Edge filtering elements, i.e. using contiguous impervious surfaces of flat, stacked bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/90Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding
    • B01D29/908Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding provoking a tangential stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/92Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging filtrate
    • B01D29/925Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging filtrate containing liquid displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/04Supports for the filtering elements
    • B01D2201/0415Details of supporting structures

Definitions

  • the present invention relates to a disk filter and a filter disk used for the disk filter, and more particularly to a disk filter suitable for liquid filtration and a filter disk used for the disk filter.
  • disk filters have been employed as means for filtering water used for various purposes such as irrigation.
  • the disc filter is configured by fitting a plurality of annular plate-like filter discs to the outer periphery of the center shaft and stacking them up and down to be accommodated in the filter case.
  • a groove extending from the outer end (outer periphery) in the radial direction to the inner end (inner periphery) is formed on the front and back surfaces of each filter disk.
  • the groove forms, for example, a water flow path (water conduit) by the groove on the surface of the first filter disk and the back surface of the second filter disk.
  • the filter case has an inlet for allowing water supplied from a water source to flow in, and an outlet for allowing filtered water to flow toward the supply destination (downstream side).
  • the disk filter is disclosed in Patent Document 1, for example.
  • the shape of the groove of the disk filter described in Patent Document 1 is a linear shape.
  • the aperture ratio on the outer peripheral side of the filter disk is smaller than the aperture ratio on the inner peripheral side of the filter disk.
  • the aperture ratio is the ratio of the total area of all the openings of the grooves on the outer peripheral surface or the inner peripheral surface to the total area of the outer peripheral surface or inner peripheral surface of the filter disk when it is assumed that no groove exists. is there.
  • the disk filter described in Patent Document 1 has a defect that filtration cannot be performed properly unless the water pressure is increased using a high-pressure pump on the water source side.
  • Examples of the method of increasing the aperture ratio on the outer peripheral side of the filter disk include, for example, a method of increasing the width of the groove from the inner peripheral side of the filter disk toward the outer peripheral side, and the depth of the groove from the inner peripheral side to the outer peripheral side. There is a way to deepen.
  • the width of the groove gradually increases from the inner peripheral side toward the outer peripheral side. For this reason, in the former method, there is a problem that large foreign matters are liable to flow into the flow path and the filtration capacity is lowered.
  • Patent Document 2 describes a metal filter having a curved groove on the surface of a metal plate. According to such a configuration of the filter, it is possible to increase the aperture ratio on the outer peripheral side without causing the problems of the two methods.
  • Patent Document 2 it is difficult for the curved groove described in Patent Document 2 to suppress the pressure loss (in other words, the pipe resistance of the flow path formed by the groove) as compared to the linear groove.
  • the filter described in Patent Document 2 also requires a high-pressure pump in order to appropriately perform filtration, in the same manner as the disk filter having a linear groove, considering the generated pressure loss.
  • the aperture ratio is increased by the groove, the effect of reducing the pressure loss may not be obtained.
  • An object of the present invention is to provide a disk filter that has a low pressure loss and a high aperture ratio and can appropriately and efficiently filter a low-pressure liquid, and a filter disk used therefor.
  • the present invention provides the following disk filter.
  • a filter case having a liquid inlet and outlet, a long center shaft disposed in the filter case, and an annular plate having a predetermined thickness detachably accommodated in the filter case
  • a plurality of filter disks wherein the plurality of filter disks are stacked on each other with the center shaft inserted through holes in the filter disks, and each of the filter disks includes a surface of the filter disk and At least one of the rear surfaces has a plurality of grooves for connecting the outer periphery and the inner periphery of the filter disk to form the liquid flow path at a predetermined interval in the circumferential direction of the filter disk.
  • Each is formed in the shape of a curve in which the curvature gradually increases from the outer periphery toward the inner periphery,
  • the circumferential direction of the opening width of the Kimizo is greater than the circumferential direction of the opening width of the groove in the inner periphery, the disk filter.
  • Each of the filter disks has the plurality of grooves on both the front surface and the back surface, and the shape of each of the grooves on the front surface in plan view is the shape of the groove on the back surface in plan view.
  • the disc filter according to any one of [1] to [4], which is different from each shape.
  • annular plate-like filter disk having a predetermined thickness used for the disk filter according to any one of [1] to [6], wherein at least one of a front surface and a back surface of the filter disk A plurality of grooves for connecting the outer periphery and the inner periphery of the filter disk to form the liquid flow path at predetermined intervals in the circumferential direction of the filter disk, and each of the grooves Formed in the shape of a curve in which the curvature gradually increases from the outer periphery toward the inner periphery, the opening width in the circumferential direction of the groove in the outer periphery is larger than the opening width in the circumferential direction of the groove in the inner periphery, Filter disc.
  • the pressure loss of the flow path is low and the opening ratio of the flow path is high, a low-pressure liquid can be appropriately and efficiently filtered.
  • the curvature of the shape of the groove gradually increases from the outer periphery to the inner periphery of the filter disk, and the opening width of the groove on the outer periphery is the groove on the inner periphery. It is larger than the opening width. Therefore, the aperture ratio on the outer peripheral side of the filter disk can be increased, and an increase in pressure loss due to a sharp change in direction of the flow path formed by the grooves can be suppressed.
  • a relaxation curve suitable for gradual change of direction of the flow path in a direction from the outer peripheral side toward the inner peripheral side is selected. Therefore, the pressure loss can be effectively suppressed.
  • the pressure loss can be reduced by suppressing a steep change of the flow path in the direction from the outer peripheral side toward the inner peripheral side, and the inner periphery in the flow path
  • the fluid flow rate on the side decreases. Therefore, the ability to capture foreign matter in the groove can be enhanced.
  • a relaxation curve similar to the clothoid curve is selected. Therefore, the pressure loss can be effectively suppressed, and the flow rate of the fluid in the flow path can be maintained high to suppress the growth of the biofilm.
  • a mesh-like flow path is constituted by the grooves intersecting each other in plan view between adjacent filter disks stacked on the center shaft. Therefore, the ability to capture foreign matter in the groove can be enhanced.
  • the flow direction of the flow paths which are configured between the grooves of the adjacent filter discs stacked in an intersecting positional relationship in plan view, is aligned. Therefore, even when the liquid flows from the flow path formed by the groove of one filter disk to the flow path formed by the groove of the other filter disk at the intersection of the flow paths, It is possible to mitigate the increase in pressure loss by suppressing the direction change.
  • a disk filter capable of increasing the aperture ratio while suppressing pressure loss can be realized with a simple configuration.
  • FIG. 3 is a cross-sectional view of the filter cartridge in FIG. 1 cut along the line AA in FIG.
  • FIG. 2 is a schematic plan view of a filter disk in the disk filter in FIG. 1.
  • FIG. 6 is a schematic bottom view of the filter disk of FIG. 5.
  • FIG. 6 is a diagram schematically showing an enlarged part of the filter disk of FIG. 5.
  • FIG. 6 is a perspective view schematically showing an enlarged part of the filter disk of FIG. 5. It is a figure which shows typically the flow path of the liquid in the disc filter of FIG.
  • FIG. 1 is a longitudinal sectional view schematically showing a disk filter 1 in the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the filter cartridge 2 in the disk filter 1 of FIG. 3 is a cross-sectional view of the filter cartridge 2 of FIG. 2 along AA.
  • FIG. 4 is a plan view of the filter cartridge 2 of FIG.
  • FIG. 5 is a plan view showing the filter disk 21 in this embodiment mounted on the filter cartridge 2 in the disk filter 1 of FIG.
  • FIG. 6 is a bottom view of the filter disk 21 of FIG.
  • the disk filter 1 is roughly divided into a hollow filter case 3, a filter cartridge 2 detachably (accommodated / removed) in the filter case 3, and an urging force. And a compression spring 4 held in the filter case 3.
  • the filter case 3 includes an upper case 31 and a lower case 32.
  • the upper case 31 and the lower case 32 may be made of a resin material such as polypropylene.
  • the upper case 31 has a cylindrical outer peripheral wall portion 311 and a top wall portion 312 connected to the upper end portion of the outer peripheral wall portion 311.
  • the shape of the top wall 312 is a hemispherical shell shape.
  • Cylindrical portions 313 and 314 are extended toward the outside of the upper case 31 in the openings 312a and 312b.
  • the cylindrical portions 313 and 314 form a pair.
  • the left cylindrical portion 313 in FIG. 1 is an inlet 313 for allowing the liquid supplied from the liquid supply source side to flow into the flow path of the disk filter 1.
  • the outer peripheral surface of the inlet 313 may have a thread groove for screwing a pipe on the upstream side that is the liquid supply source side.
  • the liquid include water pumped up from a water source by a pump and a mixed liquid of water and liquid fertilizer.
  • the cylindrical portion 314 on the right side in FIG. 1 is an outlet 314 for allowing the liquid flowing in from the inlet 313 to flow out of the flow path of the disk filter 1 after being filtered by the disk filter 1.
  • the outlet 314 also extends from the opening 312 b to the inside of the upper case 31.
  • the start end portion 314 a of the outlet 314 is a tip portion of a portion of the tubular portion 314 inside the upper case 31 that is bent vertically downward, and is located at a central position inside the upper case 31. positioned.
  • the start end portion 314a is configured to function as a holding portion that holds the filter cartridge 2 from above.
  • the outer peripheral surface of the end portion side (the outer end portion of the upper case 31) in the outlet 314 may have a thread groove for screwing a downstream pipe that is a liquid supply destination side after filtration. .
  • the outer peripheral surface of the lower end portion of the outer peripheral wall portion 311 has a male screw portion 311 a for screwing the lower case 32.
  • the lower case 32 has a cylindrical outer peripheral wall portion 321 and a round dish-shaped bottom wall portion 322 connected to the lower end portion of the outer peripheral wall portion 321.
  • the inner diameter of the outer peripheral wall portion 321 may be the same as the inner diameter of the outer peripheral wall portion 311 of the upper case 31.
  • a spring seat 323 for supporting the compression spring 4 from below is disposed at the center position on the upper surface of the bottom wall portion 322.
  • the inner peripheral surface of the upper end portion of the outer peripheral wall portion 321 has a female screw portion 321 a for screwing the upper case 31 into the outer peripheral wall portion 321.
  • the configuration in which the outer peripheral wall portion 321 is joined to the upper case 31 is not limited to the configuration of the screw portion described above.
  • the lower end portion of the upper case 31 may have a female screw portion
  • the upper end portion of the lower case 32 may have a male screw portion.
  • a filter cartridge 2 includes a plurality of annular disk-shaped filter disks 21 having a predetermined thickness, and a center shaft on which the filter disks 21 are detachably fitted. 22, a presser flange 23 that presses the filter disc 21 fitted to the center shaft 22 from above (upper case 31 side), and a retainer for preventing the presser flange 23 and the filter disc 21 from coming off the center shaft 22. 24.
  • the filter disks 21 are stacked in the longitudinal direction of the long center shaft 22 in the vertical direction and are arranged on the outer periphery of the center shaft 22.
  • the longitudinal direction of the center shaft 22 corresponds to the thickness direction of the filter disk 21.
  • the filter disk 21 may be formed of a resin material such as polypropylene, and the plurality of filter disks 21 may be formed to the same size.
  • a recess 221 that is recessed upward is formed at the lower end of the center shaft 22.
  • the compression spring 4 supported by the spring seat 323 is fitted.
  • annular flange portion 222 that extends outward in the radial direction of the center shaft 22 is disposed at the lower end portion of the center shaft 22.
  • the flange portion 222 supports each filter disk 21 from below.
  • the shape of the cross section of a predetermined range portion (also referred to as “upper end portion”) 22a on the upper end side of the center shaft 22 is a cross shape.
  • the outer end edge in the radial direction (short direction) of the upper end portion 22a is shorter than the outer end edge in the short direction of the other portion (hereinafter referred to as a main body portion) 22b of the center shaft 22. Located inside.
  • the cross-sectional shape of the main body portion 22b of the center shaft 22 is also a cross shape.
  • the cross shape of the main body portion 22b is in a position overlapping the cross shape of the upper end portion 22a.
  • the cross shape of the main body portion 22b may be formed wider than the cross shape of the upper end portion 22a.
  • the main body 22 b may be thicker than the upper end portion 22 a or may protrude from the center axis of the center shaft 22.
  • the outer diameter (projecting length from the central axis) of the main body portion 22b is slightly smaller than the inner diameter of the filter disk 21 so that the filter disk 21 can be easily attached and detached.
  • the cross-shaped center shaft 22 described above constitutes a liquid flow path (a space communicating with the outlet 314) between the filter disk 21 and the outlet 314.
  • the holding flange 23 includes an annular small flange portion 231, a cylindrical portion 233 joined to the small flange portion 231 at the outer peripheral edge of the small flange portion 231, and a cylindrical portion 233. It is comprised from the annular large flange part 232 extended outward from an outer peripheral surface.
  • the small flange portion 231 is joined to the inner peripheral edge of the lower end of the cylindrical portion 233.
  • the large flange portion 232 is disposed above the small flange portion 231.
  • the small flange portion 231, the large flange portion 232 and the cylindrical portion 233 are all arranged with the same axis as the central axis.
  • the inner diameter of the small flange portion 231 is slightly larger than the outer diameter of the upper end portion 22 a of the center shaft 22.
  • the outer diameter of the small flange portion 231 is the same as the outer diameter of the main body portion 22 b of the center shaft 22.
  • the inner diameter of the large flange portion 232 is the same as the outer diameter of the small flange portion 231.
  • the outer diameter of the large flange portion 232 is substantially the same as the outer diameter of the filter disk 21.
  • the outer diameter of the cylindrical portion 233 is the same as the outer diameter of the small flange portion 231, and is slightly smaller than the inner diameter of the start end portion 314 a of the outlet 314.
  • the pressing flange 23 is inserted into the upper end portion 22 a of the center shaft 22 and is inserted into the start end portion 314 a of the outlet 314. Further, the holding flange 23 presses and holds the filter disk 21 by the urging force transmitted from below by the compression spring 4 transmitted through the filter disk 21. That is, the large flange portion 232 is pressed against the start end portion 314 a by the urging force, and the reaction force against the urging force presses the large flange portion 232 against the filter disk 21.
  • a groove 22aA for retaining 24 is formed in a portion 22a on the upper end side of the center shaft 22.
  • the retainer 24 is locked to the groove 22aA.
  • the retainer 24 may be the same as that described in Patent Document 1.
  • the compression spring 4 is disposed on the spring receiving seat 323 of the lower case 32.
  • the filter cartridge 2 is inserted into the lower case 32 by inserting the compression spring 4 into the recess 221 of the center shaft 22.
  • the upper case 31 is screwed into the lower case 32.
  • the upper case 31 is screwed to the lower case 32 while the starting end portion 314 a of the outlet 314 is in contact with the large flange portion 232.
  • the compression spring 4 is gradually pushed into the spring seat 323 by the pressure of the filter disk 21 by the large flange portion 232.
  • the filter disks 21 adjacent to each other (stacked) in the thickness direction are pressed against each other by the urging force of the compression spring 4.
  • the start end 314 a of the outlet 314 is in close contact with the large flange portion 232.
  • the inlet 313 and the outlet 314 are partitioned so that the liquid flowing in from the inlet 313 does not flow into the outlet 314 unless it passes through a flow path constituted by a groove 211 of the filter disk 21 described later.
  • each filter disk 21 mounted on the filter cartridge 2 has a plurality of liquid channels for forming a liquid flow path from the outer peripheral side to the inner peripheral side on each of the front surface 21a and the back surface 21b.
  • the groove 211 is provided.
  • the grooves 211 are formed from the outer peripheral edge to the inner peripheral edge of the front surface 21a or the back surface 21b, and are arranged radially at equal intervals in the circumferential direction of the front surface 21a or the back surface 21b.
  • the groove 211 is formed in a shape along a predetermined curve.
  • the shape of the predetermined curve is a shape in which the curvature gradually increases from the outer end side toward the inner end side. Therefore, the groove 211 is formed in a shape that gradually approaches a parallel direction from a direction that intersects obliquely with respect to the radial direction of the filter disk 21.
  • the width w and depth d of the groove 211 are constant.
  • the width w of the groove 211 is a distance between both side edges of the groove 211 in a direction orthogonal to the curve, and the depth d of the groove 211 is a distance from the front surface 21a or the back surface 21b of the filter disk 21 to the bottom of the groove 211. It is.
  • the direction of the groove 211 may be parallel to the radial direction at the inner peripheral edge of the filter disk 21.
  • the opening 211 a on the outer peripheral side of the groove 211 is formed in the outer peripheral surface by cutting out the cylindrical outer peripheral surface 21 c of the filter disk 21.
  • the opening 211b on the inner peripheral side of the groove 211 is formed on the inner peripheral surface by cutting out the cylindrical inner peripheral surface 21d of the filter disk 21.
  • the opening width Wout (the maximum width of the V-shaped opening 211a) of the opening 211a on the outer peripheral side along the circumferential direction of the filter disk 21 is the inner peripheral side. It is larger than the opening width Win (the maximum width of the V-shaped opening 211b) along the circumferential direction of the opening 211b.
  • the groove 211 of a certain filter disk 21 has a surface 21 a of another filter disk 21 adjacent in the thickness direction of the filter disk 21 or Covered by the back surface 21b.
  • a liquid flow path from the outer peripheral side toward the inner peripheral side is formed between the front surface 21a or the back surface 21b and the groove 211.
  • the change in the curvature of the groove 211 on the front surface 21a from the outer peripheral side to the inner peripheral side of the filter disk 21 is different from the change in the curvature of the groove 211 on the back surface 21b.
  • the shape of the groove 211 on the front surface 21a in plan view is different from the shape of the groove 211 on the back surface 21b in plan view. Therefore, between two adjacent filter disks 21 stacked, the groove 211 (for example, a portion indicated by a broken line in FIG. 7) on the back surface 21 b of one filter disk 21 and the surface of the other filter disk 21.
  • a net-like (in other words, lattice-like) flow path is formed by intersecting with the groove 211a of 21a (for example, a portion indicated by a solid line in FIG. 7).
  • the predetermined curve along which the groove 211 is to be along may be selected from the group consisting of a clothoid curve, an involute curve, and a cycloid curve.
  • the grooves 211 on the front surface 21a and the back surface 21b are both in the same direction in the circumferential direction of the filter disk 21 (the opposite direction in FIG. (Clockwise direction) may be formed. That is, when the direction in which the angle formed by the axis of the groove 211 gradually decreases with respect to the straight line in the radial direction of the filter disk 21 is defined as the direction of the groove 211, the direction of the groove 211 on the surface 21 a is the circumferential direction of the filter disk 211. The direction may be the same as the direction of the groove 211 on the back surface 21b (that is, clockwise or counterclockwise).
  • the groove 211 on the front surface 21 a and the groove 211 on the back surface 21 b are formed so as to go from the outer periphery to the inner periphery of the filter disk 21 in the same direction in the circumferential direction of the filter disk 21.
  • the grooves 211 on the front surface 21a and the back surface 21b may have shapes along different parts of the same curve among the predetermined curves.
  • channel 211 of the surface 21a and the back surface 21b may be the shape along a mutually different curve (same type
  • the groove 211 is a V-groove, but may be a groove having a shape other than the V-groove as necessary.
  • the opening width Wout at the outer end of the groove 211 is large. For this reason, even when the liquid pressure of the liquid supplied from the supply source (pump) side is low, the liquid can easily flow into the flow path.
  • the liquid flowing into the flow path proceeds in the flow path toward the inner peripheral surface 21 d side of the filter disk 21.
  • a net-like channel is constituted by the groove 211 between adjacent filter disks 21. For this reason, the foreign material which could not be captured on the outer peripheral surface 21c is efficiently captured.
  • the flow path is bent with a smoothly changing curvature that does not sharply change the direction of the liquid flow. For this reason, the increase in the pressure loss in the said flow path can be suppressed.
  • the clothoid curve is suitable for gradual change of the direction of the flow path, so that the pressure loss can be effectively suppressed.
  • the groove 211 is along the involute curve, it is possible to mitigate pressure loss by suppressing a steep change of direction of the flow path.
  • the flow velocity on the inner peripheral side of the flow path is reduced, the foreign matter capturing ability in the groove 211 can be enhanced.
  • channel 211 follows a cycloid curve, a pressure loss can be suppressed effectively similarly to a clothoid curve.
  • the groove 211 is along the cycloid curve, the flow velocity in the flow path is maintained high, and thus the growth of the biofilm can be suppressed.
  • the liquid in the flow path flows out of the flow path through the opening 211b of the inner peripheral surface 21d of the filter disk 21.
  • the filtered liquid that has flowed out of the flow path is a flow path formed between the filter disc 21 and the main body portion 22b of the center shaft 22, and a portion 22a on the upper end side of the pressing flange 23 and the center shaft 22. And then flow out of the disk filter 1 from the outlet 314.
  • disk filter and filter disk according to the present invention are not limited to the above-described embodiments, and may be variously modified within the limits that do not impair the characteristics of the present invention.
  • the groove 211 may be formed only on one of the front surface 21a and the back surface 21b of the filter disk 21.
  • the position and orientation of the inlet 313 in the filter case 3 may be adjusted so that the liquid flowing in from the inlet 313 generates a cyclone flow in the filter case 3. According to this configuration, it is possible to allow liquid to flow into the flow path (starting end side) formed by the groove 211 in a direction substantially parallel to the axial direction of the flow path. Therefore, filtration can be performed quickly.
  • the present invention is not limited to a cartridge type disk filter.
  • the present invention can be effectively applied to a disk filter in which the filter disk 21 is fitted to the center shaft provided in the case.
  • a disk filter capable of realizing both suppression of pressure loss and improvement of filtration capability is provided.
  • the disk filter is also suitably used for low-pressure liquid filtration such as irrigation liquid filtration. Therefore, the present invention is expected to contribute to the spread and development of businesses that require the transfer of low-pressure liquid such as irrigation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)

Abstract

 溝(211)は、フィルタディスク(21)の外周側から内周側に向けて曲率が漸増する所定の曲線に沿った形状に形成されている。フィルタディスク(21)の外周面(21c)における周方向に沿った溝(211)の開口部(211a)の幅Woutは、内周面(21a)における溝(211)の開口部(211b)の幅Winよりも大きい。ディスクフィルタは、液体の流路中にフィルタディスク(21)の積層体を含む。このため、当該ディスクフィルタの圧力損失は低く、開口率は高い。よって、当該ディスクフィルタは、低圧の液体も適正かつ効率的に濾過することができる。

Description

ディスクフィルタおよびこれに用いられるフィルタディスク
 本発明は、ディスクフィルタおよび当該ディスクフィルタに用いられるフィルタディスクに係り、特に、液体の濾過に好適なディスクフィルタおよび当該ディスクフィルタに用いられるフィルタディスクに関する。
 従来から、灌漑用等の各種の用途に用いられる水を濾過する手段として、いわゆるディスクフィルタが採用されている。
 前記ディスクフィルタは、円環板状の複数のフィルタディスクを、センタシャフトの外周に嵌合して上下に積み重ねてフィルタケース内に収容することによって構成されている。
 各フィルタディスクの表面および裏面には、径方向の外端(外周)から内端(内周)に亘る溝が形成されている。前記溝は、第一のフィルタディスクと第二のフィルタディスクを積み重ねたときに、例えば第一のフィルタディスクの表面の溝と第二のフィルタディスクの裏面とによって水の流路(導水路)を構成する。
 また、前記フィルタケースは、水源から供給された水を流入させる入口と、濾過後の水を供給先(下流側)に向けて流出させる出口とを有する。
 前記ディスクフィルタにおいては、入口からフィルタケース内に流入した水が、各フィルタディスクの溝によって構成される流路内に流入する際に、各フィルタディスクの周面または流路内において水中の異物が捕捉され、前記水が濾過される。
 前記ディスクフィルタは、例えば、特許文献1に示されている。
 しかしながら、特許文献1に記載のディスクフィルタの溝の形状は、直線形状である。このため、フィルタディスクの外周側の開口率が、フィルタディスクの内周側の開口率に比べて小さい。なお、開口率とは、溝が存在しないと仮定した場合におけるフィルタディスクの外周面または内周面の総面積に対する、前記外周面または前記内周面における溝の全開口部の総面積の比率である。
 このため、水源側からディスクフィルタに供給された水を、フィルタディスクの外周側から、溝によって形成された流路内に流入させる場合(すなわち、フィルタディスクの外周面を異物の捕捉面として機能させる場合)には、前記流路への前記水の流入が困難であった。
 したがって、特許文献1に記載のディスクフィルタは、水源側に高圧ポンプを用いて水圧を高めなければ濾過を適切に行うことができないといった欠点を有している。
 フィルタディスクの外周側の開口率を高める方法としては、例えば、フィルタディスクの内周側から外周側に向けて溝の幅を広げる方法や、前記内周側から外周側に向けて溝の深さを深くする方法がある。
 しかし、前者の方法では、前記溝の幅は、前記内周側から前記外周側に向けて漸増する。このため、前者の方法では、大きい異物が前記流路内に流入し易くなってしまい、濾過能力が低下してしまうといった不具合がある。
 また、後者の方法では、フィルタディスクの表面に形成された溝と裏面に形成された溝とがフィルタディスクの厚み方向において重なる位置に形成されたときに、フィルタディスクに孔があいてしまう虞があるといった不具合がある。
 一方、特許文献2には、金属製板材の板面に、曲線形状の溝を有する金属製濾過器が記載されている。このような濾過器の構成によれば、前記の二方法の不具合を生じさせずに外周側の開口率を高めることは可能である。
 しかしながら、特許文献2に記載の曲線形状の溝は、直線形状の溝に比べて、圧力損失(換言すれば、溝によって形成された流路の配管抵抗)を抑えることが困難となる。
 とりわけ、特許文献2の図10に示す溝8cおよび図11に示す溝8eのように、溝の曲率変化が急峻である場合や、特許文献2の図12のように、溝が徒に長い場合には、圧力損失が大きくなることは避けられない。
 したがって、特許文献2に記載の濾過器においても、濾過を適切に行うためには、発生する圧力損失を考慮すると、直線形状の溝を有する前記ディスクフィルタと同様に、高圧ポンプを要する。このように、前記の溝によって開口率を高めても、圧力損失を下げる効果が得られない場合がある。
特開平3-47505号公報 特開2004-181272号公報
 本発明の目的は、低い圧力損失と高い開口率とを有し、低圧の液体も適切かつ効率的に濾過することができるディスクフィルタおよびこれに用いるフィルタディスクを提供することである。
 前述した目的を達成するため、本発明は、以下のディスクフィルタを提供する。
 [1]液体の入口および出口を有するフィルタケースと、前記フィルタケース内に配置された長尺なセンタシャフトと、前記フィルタケース内に着脱可能に収容された所定の厚みを有する円環板状の複数のフィルタディスクとを備えるディスクフィルタであって、前記複数のフィルタディスクは、前記フィルタディスクの孔に前記センタシャフトが挿通されて互いに積み重ねられ、前記フィルタディスクのそれぞれは、前記フィルタディスクの表面および裏面の少なくとも一方に、前記フィルタディスクの外周と内周とを結ぶ、前記液体の流路を構成するための複数の溝を、前記フィルタディスクの周方向に所定の間隔で有し、前記溝のそれぞれは、前記外周から前記内周に向けて曲率が漸増する曲線の形状に形成され、前記外周における前記溝の前記周方向の開口幅は、前記内周における前記溝の前記周方向の開口幅よりも大きい、ディスクフィルタ。
 [2]前記曲線は、クロソイド曲線である、[1]に記載のディスクフィルタ。
 [3]前記曲線は、インボリュート曲線である、[1]に記載のディスクフィルタ。
 [4]前記曲線は、サイクロイド曲線である、[1]に記載のディスクフィルタ。
 [5]前記フィルタディスクのそれぞれは、前記表面および前記裏面の双方に前記複数の前記溝を有し、平面視における前記表面の前記溝のそれぞれの形状は、平面視における前記裏面の前記溝のそれぞれの形状と異なる、[1]~[4]のいずれか1項に記載のディスクフィルタ。
 [6]前記表面の溝および前記裏面の溝は、前記周方向における同一方向に向けて前記外周から前記内周に向かうように形成されている、[5]に記載のディスクフィルタ。
 [7][1]~[6]のいずれか1項に記載のディスクフィルタに用いられる、所定の厚みを有する円環板状のフィルタディスクであって、前記フィルタディスクの表面および裏面の少なくとも一方に、前記フィルタディスクの外周と内周とを結ぶ、前記液体の流路を構成するための複数の溝を、前記フィルタディスクの周方向に所定の間隔で有し、前記溝のそれぞれは、前記外周から前記内周に向けて曲率が漸増する曲線の形状に形成され、前記外周における前記溝の前記周方向の開口幅は、前記内周における前記溝の前記周方向の開口幅よりも大きい、フィルタディスク。
 本発明によれば、前記流路の圧力損失が低く、前記流路の開口率が高いことから、低圧の液体も適切かつ効率的に濾過することができる。
 すなわち、[1]に係る発明によれば、前記溝の形状の曲率は、前記フィルタディスクの外周から内周に向けて漸増し、前記外周における前記溝の開口幅は、前記内周における前記溝の開口幅よりも大きい。よって、フィルタディスクの外周側の開口率を高めることができるとともに、溝によって形成される流路の急峻な方向転換に起因する圧力損失の増加を抑制することができる。
 [2]に係る発明によれば、前記外周側から前記内周側に向かう方向における前記流路の方向転換を緩やかにするのに好適な緩和曲線が選択される。よって、前記圧力損失を有効に抑制することができる。
 [3]に係る発明によれば、前記外周側から前記内周側に向かう方向における前記流路の急峻な方向転換を抑えて前記圧力損失を緩和することができるとともに、前記流路における内周側での流体の流速が減少する。よって前記溝内で異物を捕捉する能力を高めることができる。
 [4]に係る発明によれば、クロソイド曲線と同様の緩和曲線が選択される。よって、前記圧力損失を有効に抑制することができるとともに、前記流路内における流体の流速を高く維持してバイオフィルムの増殖を抑制することができる。
 [5]に係る発明によれば、センタシャフト上に積み重ねられた隣接するフィルタディスク同士の間で、平面視において互いに交差する前記溝によって網状の流路が構成される。よって、前記溝内で異物を捕捉する能力を高めることができる。
 [6]に係る発明によれば、積み重ねられた隣接するフィルタディスクの溝同士の間で構成される、平面視において交差の位置関係にある流路の曲がる向きが揃えられる。このため、流路の交差箇所において、液体が一方のフィルタディスクの溝によって形成される流路内から他方のフィルタディスクの溝によって形成される流路内に流れる場合であっても、液体の急激な方向転換を抑制して圧力損失の増大を緩和することができる。
 [7]に係る発明によれば、圧力損失を抑制しつつ開口率を高めることができるディスクフィルタを、簡易な構成によって実現することができる。
本発明の一実施形態に係るディスクフィルタの断面を概略的に示す図である。 図1のディスクフィルタにおけるフィルタカートリッジの断面を概略的に示す図である。 図1中のフィルタカートリッジを図2のA-A線で切断した断面を示す図である。 図1中のフィルタカートリッジの平面図である。 図1中のディスクフィルタにおけるフィルタディスクの概略的な平面図である。 図5のフィルタディスクの概略的な下面図である。 図5のフィルタディスクの一部を拡大して概略的に示す図である。 図5のフィルタディスクの一部を拡大して概略的に示す斜視図である。 図1のディスクフィルタにおける液体の流路を模式的に示す図である。
 以下、本発明に係るディスクフィルタおよびこれに用いるフィルタディスクの実施形態について、図1~図9を参照して説明する。
 図1は、本実施形態におけるディスクフィルタ1を概略的に示す縦断面図である。また、図2は、図1のディスクフィルタ1におけるフィルタカートリッジ2を概略的に示す断面図である。さらに、図3は、図2のフィルタカートリッジ2のA-A断面図である。さらにまた、図4は、図2のフィルタカートリッジ2の平面図である。また、図5は、図1のディスクフィルタ1におけるフィルタカートリッジ2に搭載された本実施形態におけるフィルタディスク21を示す平面図である。さらに、図6は、図5のフィルタディスク21の下面図である。
 図1に示すように、ディスクフィルタ1は、大別して、中空のフィルタケース3と、フィルタケース3内に着脱(収容/取り出し)可能に収容されたフィルタカートリッジ2と、フィルタカートリッジ2を、付勢力を以てフィルタケース3内に保持する圧縮ばね4とによって構成されている。
 〔フィルタケースの具体的構成〕
 図1に示すように、フィルタケース3は、上側ケース31と下側ケース32とによって構成されている。上側ケース31および下側ケース32は、ポリプロピレン等の樹脂材料によって構成されてもよい。
 まず、上側ケース31について詳述する。図1に示すように、上側ケース31は、円筒形状の外周壁部311と、外周壁部311の上端部に連接された天壁部312とを有している。天壁部312の形状は、半球殻形状である。
 図1に示すように、天壁部312上には、図1における左右2カ所の開口部312a、312bが穿設されている。開口部312a、312bには、上側ケース31の外側に向けて、筒状部313、314が延設されている。筒状部313、314は、一対をなしている。
 筒状部313、314のうち、図1における左側の筒状部313は、液体の供給源側から供給された液体をディスクフィルタ1の流路内に流入させるための入口313である。入口313の外周面は、液体の供給源側である上流側の配管を螺合させるためのねじ溝を有していてもよい。なお、前記液体の例には、ポンプによって水源から汲み上げられた水、および、水と液肥との混合液が含まれる。
 一方、図1における右側の筒状部314は、入口313から流入した液体をディスクフィルタ1による濾過後にディスクフィルタ1の流路外に流出させるための出口314である。出口314は、図1に示すように、開口部312bから、上側ケース31の内側にも延びている。出口314の始端部314aは、上側ケース31の内側の筒状部314の部分のうち、下方に向けて垂直に折り曲げられている部分の先端部であり、上側ケース31の内部の中央の位置に位置している。始端部314aは、フィルタカートリッジ2を上方から押さえて保持する保持部としても機能するように構成されている。出口314における末端部側(上側ケース31の外側の端部)の外周面は、濾過後の液体の供給先側である下流側の配管を螺合させるためのねじ溝を有していてもよい。
 また、図1に示すように、外周壁部311の下端部の外周面は、下側ケース32を螺合させるための雄ねじ部311aを有する。
 次に、下側ケース32について詳述する。図1に示すように、下側ケース32は、円筒形状の外周壁部321と、外周壁部321の下端部に連接された丸皿状の底壁部322とを有している。なお、外周壁部321の内径は、上側ケース31の外周壁部311の内径と同径であってもよい。
 また、図1に示すように、底壁部322の上面の中央位置には、圧縮ばね4を下方から支持するためのばね受け座323が配置されている。
 さらに、図1に示すように、外周壁部321の上端部の内周面は、上側ケース31を外周壁部321に螺合させるための雌ねじ部321aを有する。ただし、上側ケース31に外周壁部321を接合する構成は、前述のねじ部の構成に限定されない。たとえば、上側ケース31の下端部が雌ねじ部を有し、下側ケース32の上端部が雄ねじ部を有してもよい。
 〔フィルタカートリッジの具体的構成〕
 図1~図4に示すように、フィルタカートリッジ2は、所定の厚みを有する円環板状の複数枚の、濾材としてのフィルタディスク21と、フィルタディスク21が着脱可能に嵌合されたセンタシャフト22と、センタシャフト22に嵌合されたフィルタディスク21を上方(上側ケース31側)から押さえる押さえフランジ23と、押さえフランジ23およびフィルタディスク21がセンタシャフト22から抜けることを防止するための抜け止め24とによって構成されている。
 より具体的には、図1および図2に示すように、フィルタディスク21は、上下方向に長尺のセンタシャフト22の長手方向に積み重ねられ、センタシャフト22の外周に配置されている。センタシャフト22の長手方向は、フィルタディスク21の厚み方向に相当する。フィルタディスク21は、ポリプロピレン等の樹脂材料によって形成されていてもよく、また、複数のフィルタディスク21は、互いに同寸に形成されていてもよい。
 また、図1および図2に示すように、センタシャフト22の下端部には、上方に向けて凹む凹部221が形成されている。凹部221には、ばね受け座323に支持された圧縮ばね4が嵌入されている。
 さらに、図1および図2に示すように、センタシャフト22の下端部には、センタシャフト22の径方向の外方に向けて延出する円環状のフランジ部222が配置されている。フランジ部222は、各フィルタディスク21を下方から支持している。
 図1、図2および図4に示すように、センタシャフト22の上端側の所定範囲の部位(「上端側の部位」とも言う)22aの横断面の形状は、十字形状である。上端側の部位22aの径方向(短手方向)の外端縁は、センタシャフト22の他の部位(以下、本体部と称する)22bの短手方向の外端縁よりも、前記短手方向の内側に位置する。
 また、図3に示すように、センタシャフト22の本体部22bの横断面の形状も十字形状である。本体部22bの十字形状は、上端側の部位22aの十字形状の下に重なる位置にある。本体部22bの十字形状は、上端側の部位22aの十字形状よりも太幅に形成されていてもよい。たとえば、本体部22bは、上端側の部位22aよりも、厚くてもよいし、センタシャフト22の中心軸からより突出していてもよい。本体部22bの外径(前記中心軸からの突出長さ)は、フィルタディスク21の着脱が行い易いように、フィルタディスク21の内径よりも僅かに小さい。
 前述の十字形状のセンタシャフト22は、フィルタディスク21と出口314との間における液体の流路(出口314に連通される空間)を構成している。
 さらに、図1および図2に示すように、押さえフランジ23は、円環状の小フランジ部231と、小フランジ部231の外周縁で小フランジ部231と接合する円筒部233と、円筒部233の外周面から外方に延出する円環状の大フランジ部232とから構成されている。小フランジ部231は、円筒部233の下端の内周縁に接合している。大フランジ部232は、小フランジ部231よりも上方に配置されている。小フランジ部231、大フランジ部232および円筒部233は、いずれも、同一の軸を中心軸として配置されている。ただし、小フランジ部231と大フランジ部232の上下方向の位置関係は、逆転していてもよい。小フランジ部231の内径は、センタシャフト22の上端側の部位22aの外径よりも僅かに大きい。小フランジ部231の外径は、センタシャフト22の本体部22bの外径と同じである。また、大フランジ部232の内径は、小フランジ部231の外径と同じである。大フランジ部232の外径は、フィルタディスク21の外径とほぼ同じである。さらに、円筒部233の外径は、小フランジ部231の外径と同じであり、出口314の始端部314aの内径よりも僅かに小さい。
 押さえフランジ23は、図1に示すように、センタシャフト22の上端側の部位22aに外挿されるとともに、出口314の始端部314aに内挿される。さらに、押さえフランジ23は、フィルタディスク21を介して伝えられる、圧縮ばね4による下方からの付勢力によって、フィルタディスク21を押圧し、保持する。すなわち、大フランジ部232は、前記付勢力によって始端部314aに圧接され、前記付勢力に抗する反作用の力は、大フランジ部232をフィルタディスク21に押圧する。
 さらにまた、図1および図2に示すように、センタシャフト22の上端側の部位22aには、抜け止め24用の溝22aAが形成されている。抜け止め24は、溝22aAに係止している。なお、抜け止め24は、特許文献1に記載されたものと同様であってよい。
 フィルタカートリッジ2をフィルタケース3内に収容するには、以下のようにすればよい。まず、下側ケース32のばね受け座323上に圧縮ばね4を配置する。次いで、フィルタカートリッジ2を、センタシャフト22の凹部221に圧縮ばね4を嵌入して下側ケース32内に入れる。その後、上側ケース31を下側ケース32に螺合させる。当該螺合の過程で、出口314の始端部314aが大フランジ部232に当接しながら上側ケース31を下側ケース32に螺合する。その結果、大フランジ部232によるフィルタディスク21の押圧により、圧縮ばね4がばね受け座323に次第に押し込まれる。そして、上側ケース31と下側ケース32との螺合によるフィルタカートリッジ2の収容が完了すると、厚み方向において互いに隣接する(積み重なった)フィルタディスク21同士は、圧縮ばね4の付勢力によって互いに圧接される。そして、出口314の始端部314aは、大フランジ部232に密接する。その結果、入口313から流入した液体が後述するフィルタディスク21の溝211で構成される流路を経なければ出口314に流入しないように、入口313と出口314との間が仕切られる。
 〔フィルタディスクについて〕
 フィルタカートリッジ2に搭載される各フィルタディスク21は、図5~図8に示すように、表面21aおよび裏面21bのそれぞれに、外周側から内周側に向かう液体の流路を構成するための複数の溝211を有している。
 溝211は、表面21aまたは裏面21bの外周縁から内周縁に亘って形成されており、表面21aまたは裏面21bの周方向に等間隔で放射状に配置されている。
 図7および図8に示すように、溝211は、所定の曲線に沿った形状に形成されている。前記所定の曲線の形状は、外端側から内端側に向かうにしたがって曲率が漸増する形状である。よって、溝211は、フィルタディスク21の径方向に対して、斜めに交わる方向から平行の向きに漸次近づく形状に形成されている。溝211の幅wおよび深さdは、それぞれ一定である。溝211の幅wは、前記曲線に直交する向きにおける溝211の両側縁間の距離であり、溝211の深さdは、フィルタディスク21の表面21aまたは裏面21bから溝211の底までの距離である。なお、溝211の向きは、フィルタディスク21の内周縁で、前記径方向に平行であってもよい。
 溝211における外周側の開口部211aは、図7および図8に示すように、フィルタディスク21の円筒形状の外周面21cが切り欠かれることによって当該外周面に構成されている。溝211における内周側の開口部211bは、フィルタディスク21の円筒形状の内周面21dが切り欠かれることによって当該内周面に構成されている。
 よって、図7および図8に示すように、外周側の開口部211aの、フィルタディスク21の周方向に沿った開口幅Wout(V字状の開口部211aの最大幅)は、内周側の開口部211bの上記周方向に沿った開口幅Win(V字状の開口部211bの最大幅)よりも大きい。
 前述のように、フィルタディスク21同士が圧縮ばね4の付勢力によって圧接された状態において、あるフィルタディスク21の溝211は、フィルタディスク21の厚み方向に隣接する他のフィルタディスク21の表面21aまたは裏面21bによって覆われる。こうして、表面21aまたは裏面21bと溝211の間に、外周側から内周側に向かう液体の流路が構成される。
 また、図7に示すように、表面21aの溝211におけるフィルタディスク21の外周側から内周側に向けての前記曲率の変化は、裏面21bの溝211の当該曲率の変化とは異なっている。このように、平面視における表面21aの溝211の形状は、平面視における裏面21bの溝211の形状とは異なっている。よって、積み重ねられた隣接する二枚のフィルタディスク21の間には、一方のフィルタディスク21の裏面21bの溝211(例えば、図7中、破線で示される部分)と他方のフィルタディスク21の表面21aの溝211(例えば、図7中、実線で示される部分)とを交差させた網状(換言すれば、格子状)の流路が構成される。
 なお、溝211を沿わせるべき所定の曲線は、クロソイド曲線、インボリュート曲線およびサイクロイド曲線からなる群から選ばれうる。
 また、図7に示すように、表面21aおよび裏面21bの溝211は、ともに、フィルタディスク21の外周側から内周側に向かうにしたがって、フィルタディスク21の周方向における同一方向(図7における反時計回り方向)に向かうような形状に形成されていてもよい。すなわち、フィルタディスク21の径方向の直線に対して溝211の軸線がなす角度が漸次減少する方向を溝211の方向としたとき、表面21aの溝211の方向は、フィルタディスク211の周方向において、裏面21bの溝211の向きと同じ向き(すなわち、時計回りまたは反時計回り)であってもよい。このように、表面21aの溝211および裏面21bの溝211は、フィルタディスク21の周方向における同一方向に向けて、フィルタディスク21の外周から内周に向かうように形成されている。
 さらに、表面21aおよび裏面21bの溝211は、前記所定の曲線のうち、互いに同一の曲線の異なる部位に沿った形状であってもよい。または、表面21aおよび裏面21bの溝211は、前記所定の曲線のうち、互いに異なる曲線(寸法が異なる同種の曲線または異種の曲線)に沿った形状であってもよい。
 さらにまた、図7および図8においては、溝211は、V溝であるが、必要に応じてV溝以外の形状の溝であってもよい。
 〔本実施形態の作用・効果〕
 本実施形態においては、図9における矢印に示すように、入口313からディスクフィルタ1に流入した液体が、互いに隣接する複数のフィルタディスク21の外周面21cで濾過される。液体中の異物は、外周面21cで捕捉される。液体は、外周面21cに開口する、溝211によって形成される流路内に流入する。
 ここで、図7および図8に示したように、溝211の外端における開口幅Woutが大きい。このため、供給源(ポンプ)側から供給された液体の液圧が低い場合であっても、液体を前記流路内に容易に流入させることができる。
 次いで、前記流路に流入した液体は、フィルタディスク21の内周面21d側に向かって流路内を進行する。前記流路内においては、隣接するフィルタディスク21の間で溝211によって網状の流路が構成されている。このため、外周面21cにおいて捕捉しきれなかった異物が効率よく補足される。
 前記流路は、液流の方向を急峻に転換させない、滑らかに変化する曲率で曲がっている。このため、前記流路内における圧力損失の増加を抑制することができる。
 例えば、溝211がクロソイド曲線に沿っていれば、クロソイド曲線が前記流路の方向転換を緩やかにするのに好適であるので、圧力損失を有効に抑制することができる。あるいは、溝211がインボリュート曲線に沿っていれば、前記流路の急峻な方向転換を抑えて圧力損失を緩和することができる。さらに、前記流路における内周側での流速が減少するので、溝211内における異物の捕捉能力を高めることができる。もしくは、溝211がサイクロイド曲線に沿っていれば、クロソイド曲線と同様に、圧力損失を有効に抑制することができる。さらに、溝211がサイクロイド曲線に沿っていれば、前記流路内における流速が高く維持されるので、バイオフィルムの増殖を抑制することができる。
 次いで、前記流路中の液体は、フィルタディスク21の内周面21dの開口部211bを介して前記流路から流出する。
 そして、前記流路から流出した濾過後の液体は、フィルタディスク21とセンタシャフト22の本体部22bとの間に形成された流路、および、押さえフランジ23とセンタシャフト22の上端側の部位22aとの間に形成された流路、を順次経た後に、出口314からディスクフィルタ1の外部に流出する。
 なお、本発明に係るディスクフィルタおよびフィルタディスクは、前述した実施の形態に限定されず、本発明の特徴を損なわない限度において種々変更されてもよい。
 例えば、溝211を、フィルタディスク21の表面21aおよび裏面21bのいずれか一方にのみ形成してもよい。
 または、フィルタケース3における入口313の位置および向きを調整して、入口313から流入した液体がフィルタケース3内においてサイクロン流を発生させるように構成してもよい。当該構成によれば、液体を溝211によって形成される前記流路(始端側)に、前記流路の軸方向に対してほぼ平行の向きで流入させることが可能となる。よって、濾過を迅速に行うことができる。
 さらに、本発明は、カートリッジ方式のディスクフィルタに限らない。たとえば、本発明は、ケースに備え付けのセンタシャフトにフィルタディスク21を嵌合するディスクフィルタにも有効に適用することができる。
 本出願は、2012年6月4日出願の特願2012-127024号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、圧力損失の抑制と濾過能力の向上との両方を実現可能なディスクフィルタが提供される。当該ディスクフィルタは、灌漑用液体の濾過のような、低圧の液体の濾過にも好適に用いられる。よって、本発明は、灌漑などの、低圧の液体の移送を要する事業の普及および発展に寄与することが期待される。
 1 ディスクフィルタ
 3 フィルタケース
 21 フィルタディスク
 21a 表面
 21b 裏面
 211 溝
 313 入口
 314 出口
 

Claims (7)

  1.  液体の入口および出口を有するフィルタケースと、
     前記フィルタケース内に配置された長尺なセンタシャフトと、
     前記フィルタケース内に着脱可能に収容された所定の厚みを有する円環板状の複数のフィルタディスクと
     を備えるディスクフィルタであって、
     前記複数のフィルタディスクは、前記フィルタディスクの孔に前記センタシャフトが挿通されて互いに積み重ねられ、
     前記フィルタディスクのそれぞれは、
     前記フィルタディスクの表面および裏面の少なくとも一方に、前記フィルタディスクの外周と内周とを結ぶ、前記液体の流路を構成するための複数の溝を、前記フィルタディスクの周方向に所定の間隔で有し、
     前記溝のそれぞれは、
     前記外周から前記内周に向けて曲率が漸増する曲線の形状に形成され、
     前記外周における前記溝の前記周方向の開口幅は、前記内周における前記溝の前記周方向の開口幅よりも大きい、
     ディスクフィルタ。
  2.  前記曲線は、クロソイド曲線である、
     請求項1に記載のディスクフィルタ。
  3.  前記曲線は、インボリュート曲線である、
     請求項1に記載のディスクフィルタ。
  4.  前記曲線は、サイクロイド曲線である、
     請求項1に記載のディスクフィルタ。
  5.  前記フィルタディスクのそれぞれは、前記表面および前記裏面の双方に前記複数の前記溝を有し、
     平面視における前記表面の前記溝のそれぞれの形状は、平面視における前記裏面の前記溝のそれぞれの形状と異なる、
     請求項1~4のいずれか1項に記載のディスクフィルタ。
  6.  前記表面の溝および前記裏面の溝は、前記周方向における同一方向に向けて前記外周から前記内周に向かうように形成されている、請求項5に記載のディスクフィルタ。
  7.  請求項1~6のいずれか1項に記載のディスクフィルタに用いられる、所定の厚みを有する円環板状のフィルタディスクであって、
     前記フィルタディスクの表面および裏面の少なくとも一方に、前記フィルタディスクの外周と内周とを結ぶ、前記液体の流路を構成するための複数の溝を、前記フィルタディスクの周方向に所定の間隔で有し、
     前記溝のそれぞれは、
     前記外周から前記内周に向けて曲率が漸増する曲線の形状に形成され、
     前記外周における前記溝の前記周方向の開口幅は、前記内周における前記溝の前記周方向の開口幅よりも大きい、
     フィルタディスク。
     
PCT/JP2013/003508 2012-06-04 2013-06-04 ディスクフィルタおよびこれに用いられるフィルタディスク WO2013183285A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014519839A JP6163155B2 (ja) 2012-06-04 2013-06-04 ディスクフィルタおよびこれに用いられるフィルタディスク
US14/405,200 US9492769B2 (en) 2012-06-04 2013-06-04 Disk filter and filter disk used for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012127024 2012-06-04
JP2012-127024 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183285A1 true WO2013183285A1 (ja) 2013-12-12

Family

ID=49711691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003508 WO2013183285A1 (ja) 2012-06-04 2013-06-04 ディスクフィルタおよびこれに用いられるフィルタディスク

Country Status (3)

Country Link
US (1) US9492769B2 (ja)
JP (1) JP6163155B2 (ja)
WO (1) WO2013183285A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176186A1 (en) * 2014-05-22 2015-11-26 Greenfield Specialty Alcohols Inc. Solid/fluid separation device and method
WO2015179984A1 (en) * 2014-05-30 2015-12-03 Greenfield Specialty Alcohols Inc. Split filter block for extruder press
US9352253B2 (en) 2010-11-09 2016-05-31 Greenfield Specialty Alcohols Inc. Solid/fluid separation device and method for treating biomass including solid/fluid separation
WO2016183657A1 (en) * 2015-05-19 2016-11-24 Exterran Water Solutions Ulc Filter backwash nozzle
US9643110B2 (en) 2012-04-05 2017-05-09 Greenfield Specialty Alcohols Inc. Twin screw extruder press for solid/fluid separation
US9943784B2 (en) 2015-05-21 2018-04-17 Exterran Water Solutions Ulc Filter backwash nozzle
US10786763B2 (en) 2016-05-02 2020-09-29 Greenfield Specialty Alcohols Inc. Filter for extruder press

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2547922A (en) * 2016-03-03 2017-09-06 Avon Water Systems Ltd Improvements in or relating to filtering apparatus
WO2018218345A1 (en) 2017-05-30 2018-12-06 Specialized Desanders Inc. Gravity desanding apparatus with filter polisher
US10967305B2 (en) 2017-05-30 2021-04-06 Specialized Desanders Inc. Boundary layer modification in closely-spaced passages
US11684874B2 (en) * 2020-12-29 2023-06-27 Metal Industries Research & Development Centre Tangential flow filtration module and tangential flow filtration assembly
US20220347603A1 (en) * 2021-04-30 2022-11-03 Pall Corporation Filter disk segments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218298A (ja) * 1983-05-27 1984-12-08 Sanshu Kaken Kogyo Kk 多板濾過部を有するスクリユープレス脱水機
JP2004181272A (ja) * 2002-11-29 2004-07-02 Nomizu Kosan:Kk 金属製ろ過器
JP2011515206A (ja) * 2008-03-06 2011-05-19 アミアド フィルトレイション システムズ リミテッド 高粘性流体濾過システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES232213A1 (es) * 1956-01-18 1957-05-16 Muller Jacques PERFECCIONAMIENTOS EN LAS ARANDELAS ACANALADAS PARA GUARNICIoN PERMEABLE DE BUJIAS, BLOQUES DE FILTRAJES Y TORTAS DE TAMIZADO
US3648843A (en) * 1969-03-06 1972-03-14 Ronald K Pearson Stacked sheet filter assembly
IL71674A0 (en) * 1984-04-27 1984-07-31 Drori Mordeki Multiple-disc type filters
JPH0347505A (ja) * 1989-07-13 1991-02-28 Bm:Kk フィルタ
WO2006096134A1 (en) * 2005-03-07 2006-09-14 Esco Process (Asia Pacific) Pte Ltd Liquid filter system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218298A (ja) * 1983-05-27 1984-12-08 Sanshu Kaken Kogyo Kk 多板濾過部を有するスクリユープレス脱水機
JP2004181272A (ja) * 2002-11-29 2004-07-02 Nomizu Kosan:Kk 金属製ろ過器
JP2011515206A (ja) * 2008-03-06 2011-05-19 アミアド フィルトレイション システムズ リミテッド 高粘性流体濾過システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352253B2 (en) 2010-11-09 2016-05-31 Greenfield Specialty Alcohols Inc. Solid/fluid separation device and method for treating biomass including solid/fluid separation
US9643110B2 (en) 2012-04-05 2017-05-09 Greenfield Specialty Alcohols Inc. Twin screw extruder press for solid/fluid separation
WO2015176186A1 (en) * 2014-05-22 2015-11-26 Greenfield Specialty Alcohols Inc. Solid/fluid separation device and method
CN106659954A (zh) * 2014-05-22 2017-05-10 格林菲尔德专业醇类公司 固体/流体分离装置及方法
EP3145613A4 (en) * 2014-05-22 2018-01-24 Greenfield Specialty Alcohols Inc. Solid/fluid separation device and method
WO2015179984A1 (en) * 2014-05-30 2015-12-03 Greenfield Specialty Alcohols Inc. Split filter block for extruder press
WO2016183657A1 (en) * 2015-05-19 2016-11-24 Exterran Water Solutions Ulc Filter backwash nozzle
US9943784B2 (en) 2015-05-21 2018-04-17 Exterran Water Solutions Ulc Filter backwash nozzle
US10786763B2 (en) 2016-05-02 2020-09-29 Greenfield Specialty Alcohols Inc. Filter for extruder press

Also Published As

Publication number Publication date
JP6163155B2 (ja) 2017-07-12
US9492769B2 (en) 2016-11-15
JPWO2013183285A1 (ja) 2016-01-28
US20150144546A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6163155B2 (ja) ディスクフィルタおよびこれに用いられるフィルタディスク
RU2370946C2 (ru) Капельный водовыпуск в форме диска
US10940410B2 (en) Fluid purification device
US9011686B2 (en) Filter cartridge with anti-drip feature
US9675755B2 (en) Syringe filter
JP5350286B2 (ja) 血液浄化用カラム
WO2008035593A1 (fr) Module de membranes à fibres creuses
CN108472562B (zh) 截断的过滤密封盒
US20130008848A1 (en) Filter comprising stackable filter wafers with filtering channels on opposing sides of the wafers
JP2007061808A (ja) 流動媒体を案内するスペーサ
CN104039428A (zh) 用于膜分离装置的密封板
JP5682863B2 (ja) 浄水器用カートリッジ
US20140124444A1 (en) Sintered metal fiber disks for chromatographic applications
JP2015029984A (ja) フィルターエレメント
SG189285A1 (en) Filtration system
JP6154239B2 (ja) フィルターユニット
JP2010042385A (ja) フィルタ
KR102045496B1 (ko) 중공사막 모듈
JP5349843B2 (ja) ストレーナ
JP2013236994A (ja) フィルタ
JP2021165000A (ja) ポリマーフィルタ
JP2012239986A (ja) フィルタ
WO2010104095A1 (ja) 浄水カートリッジ
JP5081750B2 (ja) 浄水器用カートリッジ
JP2006055205A (ja) 中空糸型血液浄化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519839

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800049

Country of ref document: EP

Kind code of ref document: A1