WO2013183257A1 - 衣類処理装置 - Google Patents

衣類処理装置 Download PDF

Info

Publication number
WO2013183257A1
WO2013183257A1 PCT/JP2013/003407 JP2013003407W WO2013183257A1 WO 2013183257 A1 WO2013183257 A1 WO 2013183257A1 JP 2013003407 W JP2013003407 W JP 2013003407W WO 2013183257 A1 WO2013183257 A1 WO 2013183257A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pipe
steam
steam generator
storage tank
Prior art date
Application number
PCT/JP2013/003407
Other languages
English (en)
French (fr)
Inventor
文彦 三垣
隆彦 島田
毅 福田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to SI201330596A priority Critical patent/SI2860298T1/sl
Priority to EP13800119.3A priority patent/EP2860298B1/en
Priority to CN201380016342.6A priority patent/CN104204333B/zh
Publication of WO2013183257A1 publication Critical patent/WO2013183257A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/40Steam generating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • D06F39/088Liquid supply arrangements

Definitions

  • the present invention relates to a clothing processing apparatus for washing, dehydrating and / or drying clothing.
  • Patent Document 1 A washing machine that supplies steam to clothes and sterilizes has been developed (see Patent Document 1).
  • the washing machine of patent document 1 heats the water which flows through the inside of a pipe line with a heater, and generates steam.
  • the steam is supplied from a steam generator to a storage tank that stores clothing. As a result, the storage tank is filled with steam.
  • Water generally contains impurities. If the water evaporates due to the generation of steam, impurities in the water may precipitate. Deposition of impurities in the steam generation system that generates and supplies steam may cause clogging of the steam supply path. Or the heat transfer rate to water may fall as a result of precipitation of an impurity.
  • An object of the present invention is to provide a clothing processing apparatus having a structure capable of appropriately treating impurities in water.
  • a clothing processing apparatus includes a storage tank that stores clothing, a steam generator that generates steam to be injected into the storage tank, a heater that heats the steam generator, and the steam.
  • a nozzle that injects into the storage tank; and a guide tube that guides the steam from the steam generator to the nozzle.
  • the guide pipe includes a branch pipe having a parent pipe into which the steam flows, a first pipe toward the nozzle, and a second pipe different from the first pipe.
  • the first pipe includes a portion disposed above a branch portion of the branch pipe.
  • the clothing treatment apparatus according to the present invention can appropriately treat impurities in water.
  • FIG. 2 is a schematic perspective view of the washing machine shown in FIG. 1. It is a schematic perspective view of the steam supply mechanism accommodated in the housing of the washing machine shown in FIG. It is a schematic perspective view of the steam generation part of the steam supply mechanism shown by FIG. It is a schematic perspective view of the steam generation part of the steam supply mechanism shown by FIG. It is a schematic perspective view of the attachment part for connecting the cover part and housing
  • FIG. 9 is a schematic exploded perspective view of the steam generator shown in FIGS. 8A and 8B.
  • FIG. 10 is a schematic plan view of the main piece shown in FIG. 9. It is the schematic of the water supply mechanism of the steam supply mechanism shown by FIG.
  • FIG. 2 is a schematic block diagram representing various elements of a washing machine used in a washing process. It is a schematic flowchart showing the control for adjusting the temperature of washing water. It is a graph which represents roughly the change of the temperature of the water supplied to the water tank of the washing machine shown by FIG. It is a schematic timing chart showing the timing of the steam supply during a dehydration process. It is a schematic timing chart showing the timing of the steam supply during a dehydration process.
  • FIG. 21 is a schematic cross-sectional view of the front wall of the washing machine shown in FIG. 20. It is sectional drawing which represents roughly operation
  • FIG. 26 is a schematic perspective view of the steam generator shown in FIG. 25.
  • washing machine exemplified as a clothing processing apparatus
  • the terms such as “up”, “down”, “left”, and “right” used in the following description are merely for the purpose of clarifying the explanation, and the principle of the washing machine is used. It is not limited at all.
  • the principle of the washing machine can also be applied to a device that performs a drying process, a dehydrating process, and other processes on clothes.
  • FIG. 1 is a schematic longitudinal sectional view of a washing machine 100 exemplified as a clothing processing apparatus according to the first embodiment. The washing machine 100 will be described with reference to FIG.
  • the washing machine 100 includes a casing 110 and a storage tank 200 that stores clothes in the casing 110.
  • the storage tank 200 includes a rotary drum 210 having a substantially cylindrical peripheral wall 211 that surrounds the rotation axis RX, and a water tank 220 that stores the rotary drum 210.
  • the storage tank 200 is formed in a substantially cylindrical shape surrounding the rotation axis RX.
  • the storage tank 200 stores clothes and washing water for washing clothes.
  • the washing water is drained from the storage tank 200. Thereafter, the rotating drum 210 rotates at a high speed.
  • the washing machine 100 includes a hot water heater 160 for heating the washing water.
  • the hot water heater 160 is disposed below the water tank 220. Control using the hot water heater 160 will be described later.
  • the housing 110 includes a front wall 111 in which an input port 119 for inputting clothes into the storage tank 200 is formed, and a rear wall 112 on the opposite side of the front wall 111.
  • the housing 110 includes a housing top wall 113 that extends substantially horizontally between the front wall 111 and the rear wall 112, and a housing bottom wall 114 on the opposite side of the housing top wall 113.
  • the rotating drum 210 and the water tank 220 are formed with openings 213 and 227 communicating with the charging port 119 formed in the front wall 111, respectively.
  • the washing machine 100 further includes a door 120 attached to the front wall 111.
  • the door body 120 rotates between a closed position that closes the input port 119 formed in the front wall 111 and an open position that opens the input port 119.
  • the user can turn the door 120 to the open position and put the clothes into the storage tub 200 through the insertion port 119 of the front wall 111. Thereafter, the user can move the door 120 to the closed position and cause the washing machine 100 to wash clothes.
  • the door 120 shown in FIG. 1 is in the closed position.
  • the door 120 closes the storage tank 200 in the closed position.
  • the rotating drum 210 rotates around a rotation axis RX extending between the front wall 111 and the rear wall 112.
  • the clothes put in the storage tank 200 move in the rotary drum 210 as the rotary drum 210 rotates, and are subjected to various processes such as washing, rinsing and / or dehydration.
  • the rotary drum 210 includes a bottom wall 212 that faces the door 120 at the closed position.
  • the water tank 220 includes a bottom 221 that surrounds a part of the bottom wall 212 and the peripheral wall 211 of the rotary drum 210, and a front part 222 that surrounds the other part of the peripheral wall 211 of the rotary drum 210 between the bottom 221 and the door body 120. .
  • the storage tank 200 includes a rotating shaft 230 attached to the bottom wall 212 of the rotating drum 210.
  • the rotation shaft 230 extends toward the rear wall 112 along the rotation axis RX.
  • the rotating shaft 230 passes through the bottom 221 of the water tank 220 and appears between the water tank 220 and the rear wall 112.
  • the washing machine 100 includes a motor 231 installed below the water tank 220, a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220, and a belt 233 for transmitting the power of the motor 231 to the pulley 232.
  • a motor 231 installed below the water tank 220
  • a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220
  • a belt 233 for transmitting the power of the motor 231 to the pulley 232.
  • the motor 231 operates, the power of the motor 231 is transmitted to the belt 233, the pulley 232, and the rotating shaft 230.
  • the rotating drum 210 rotates in the water tank 220.
  • the washing machine 100 further includes a packing structure 130 disposed between the front portion 222 of the water tank 220 and the door body 120.
  • the door 120 rotated to the closed position compresses the packing structure 130.
  • the packing structure 130 forms a watertight seal structure between the door body 120 and the front portion 222.
  • Washing machine 100 further includes a water supply port 140 connected to a faucet (not shown), and a distribution unit 141 for distributing water introduced through water supply port 140.
  • the water supply port 140 appears on the housing top wall 113 lying on the storage tank 200.
  • the distribution unit 141 is disposed between the housing top wall 113 and the storage tank 200.
  • the washing machine 100 further includes a detergent container (not shown) in which detergent is accommodated, and a steam supply mechanism 300 (described later) that injects steam into the container 200.
  • the distribution unit 141 includes a plurality of water supply valves for selectively supplying water to the storage tank 200, the detergent storage unit, and the steam supply mechanism 300.
  • route to the storage tank 200 and a detergent storage part is not shown.
  • a technique used in a known washing machine is suitably applied to water supply to the storage tank 200 and the detergent storage unit.
  • the washing machine 100 includes a main pipe line 180 connected to the water tank 220, a filter unit 181 for filtering water discharged from the water tank 220 through the main pipe line 180, and a circulation connected to a pipe line extending from the filter unit 181.
  • a drain line 185 for guiding water from 220. If the circulation pump 182 operates, the water discharged from the water tank 220 to the main pipe line 180 is returned to the water tank 220 again. If the drainage pump 184 operates, the water discharged from the water tank 220 to the main pipeline 180 is flowed out of the housing 110.
  • FIG. 2 is a schematic perspective view of the washing machine 100.
  • FIG. 3 is a schematic perspective view of the steam supply mechanism 300 accommodated in the housing 110. 2 and 3, the housing 110 is represented by a dotted line. In FIG. 3, the storage tank 200 is not shown. The arrows in FIG. 3 schematically represent the water supply path.
  • the steam supply mechanism 300 is described with reference to FIGS. 1 to 3.
  • the distribution unit 141 includes a first water supply valve 310 used in the steam supply mechanism 300, a second water supply valve 142 that opens and closes a water supply path to the detergent storage unit in which the detergent is stored, and a water tank 220. And a third water supply valve 143 that opens and closes the water supply path to.
  • the water supplied to the detergent container by the opening operation of the second water supply valve 142 is supplied to the container 200 as washing water (water in which the detergent is dissolved).
  • the water directly supplied to the water tank 220 by the opening operation of the third water supply valve 143 adjusts the concentration of the detergent in the washing water in the storage tank 200, adjusts the water level in the storage tank 200, and adjusts the turbidity of the washing water. May be used for
  • the steam supply mechanism 300 includes a water storage tank 320 disposed below the storage tank 200 in addition to the first water supply valve 310 described above.
  • the first water supply valve 310 is used to open and close the water supply path to the water storage tank 320.
  • water is supplied from the water supply port 140 to the water storage tank 320.
  • the first water supply valve 310 is closed, water supply to the water storage tank 320 is stopped.
  • the steam supply mechanism 300 further includes a pump 330 attached to the water storage tank 320 and a steam generator 400 that receives water discharged from the pump 330.
  • the pump 330 performs an intermittent or continuous water supply operation on the steam generation unit 400. During the intermittent water supply operation, the pump 330 supplies an appropriate amount of water adjusted so that instantaneous steam generation occurs to the steam generation unit 400. If the pump 330 continuously supplies water to the steam generation unit 400, impurities (scale) contained in the water used for generating steam are washed away from the steam generation unit 400.
  • the steam generator 400 is heated to a high temperature in order to generate steam to be injected into the storage tank 200. Since the housing 110 houses the housing tank 200 including the rotating drum 210 that rotates and the steam generator 400 heated to a high temperature, the housing tank 200 and the steam generator 400 are appropriately isolated from the user. The Therefore, the user can operate the washing machine 100 safely.
  • the steam supply mechanism 300 further includes a steam conduction pipe 340 extending downward from the steam generation unit 400.
  • the front portion 222 of the water tank 220 includes a peripheral wall portion 223 that surrounds the peripheral wall 211 of the rotating drum 210 and an annular portion 224 that cooperates with the packing structure 130 to form a watertight seal structure.
  • the steam conduction pipe 340 is connected to the peripheral wall part 223.
  • the steam generated by the steam generation unit 400 is supplied to the storage tank 200 through the steam conduction pipe 340.
  • tube 340 is made into a bellows shape so that the vibration at the time of rotating the storage tank 200 may not be transmitted to the steam generation part 400.
  • FIGS. 4A and 4B are schematic perspective views of the steam generating unit 400.
  • FIG. The steam generation unit 400 is described with reference to FIGS. 2 to 4B.
  • the steam generating unit 400 includes a substantially rectangular box-shaped case 410 and a steam generator 420 surrounded by the case 410.
  • the case 410 includes a container part 411 for housing the steam generator 420 and a lid part 412 that closes the container part 411.
  • the steam generator 420 is connected to the pump 330 using a connection pipe 421 and a tube (not shown). Further, the steam generator 420 is connected to the steam conduction pipe 340 using the exhaust pipe 422.
  • the container part 411 includes a bottom wall part 414 in which an opening 413 is formed. The connection pipe 421 and the exhaust pipe 422 protrude downward through the opening 413.
  • the steam generator 420 Since the pump 330 forcibly supplies water from the water storage tank 320 to the steam generator 420 in the steam generation unit 400, the steam generator 420 is disposed above the water storage tank 320. If water is supplied from the water storage tank 320 to the steam generator 420 without the pump 330, the water in the water storage tank 320 needs to be sent to the steam generator 420 by the action of gravity. In this case, the steam generator 420 needs to be disposed below the water storage tank 320.
  • water supply from the water storage tank 320 to the steam generator 420 is performed using the pump 330. Since water is forcibly supplied from the water storage tank 320 to the steam generator 420 by the pressure of the pump 330, there is little restriction on the vertical relationship regarding the layout design of the steam generator 420 and the water storage tank 320. Since the degree of freedom in the layout design of the water storage tank 320 and the steam generator 420 is increased, the space in the housing 110 is effectively used.
  • the steam generator 420 is disposed above the water storage tank 320, but the pump 330 can appropriately supply water from the water storage tank 320 to the steam generator 420.
  • the housing 110 includes a right wall 115 erected between the front wall 111 and the rear wall 112, and a left wall 116 opposite to the right wall 115.
  • the rotation axis RX extends along the right wall 115 and the left wall 116 (that is, the rotation axis RX extends substantially parallel to the right wall 115 and the left wall 116).
  • the vertical plane VP passing through the rotation axis RX is represented by a one-dot chain line.
  • the water storage tank 320 is disposed in a lower left space of the housing 110 (a space between the vertical plane VP and the left wall 116).
  • the steam generator 420 is disposed in the upper right space of the housing 110 (the space between the vertical plane VP and the right wall 115).
  • the steam generator 420 and the water storage tank 320 are disposed at substantially symmetrical positions with respect to the central axis (rotation axis RX) of the storage tank 200.
  • the water tank 320 is disposed near the rear wall 112, while the steam generator 420 is disposed near the front wall 111 rather than the rear wall 112.
  • a detergent container that accommodates detergent is disposed on one of the left and right sides in front of the upper part of the housing.
  • the space outside the substantially cylindrical storage tank 200 excluding the position occupied by the detergent storage section is effectively utilized for arranging the water storage tank 320 and the steam generator 420, respectively.
  • the water storage tank 320 is disposed on the lower left side of the housing 110 as shown in FIG. 2.
  • the steam generator 420 is disposed in front of the upper right side of the housing 110, the internal space between the inner surface of the substantially rectangular box-shaped housing 110 and the outer surface of the substantially cylindrical storage tank 200 is:
  • the storage tank 320 and the steam generator 420 are effectively used for the arrangement.
  • the water tank 320 and the steam generator 420 may be designed to be as large as possible within the allowed space.
  • the water storage tank 320 is disposed at a position substantially symmetrical to the detergent container with respect to the central axis (rotation axis RX) of the container 200, and the steam generator 420 is The water tank 320 may be disposed at a position substantially symmetrical with respect to the horizontal plane HP including the rotation axis RX of the storage tank 200. Similar to the layout design described above, the space inside the housing 110 is effectively utilized.
  • the water storage tank 320 may be disposed below the detergent container.
  • the steam generator 420 may be disposed above the water storage tank 320.
  • the steam generator 420 may be disposed at a position substantially symmetrical to the water storage tank 320 with respect to a vertical plane including the rotation axis RX of the storage tank 200.
  • the water storage tank 320 and the steam generator 420 may be disposed at substantially symmetrical positions with respect to the rotation axis RX of the storage tank 200 or the horizontal plane HP including the rotation axis RX. If the water storage tank 320 and the steam generator 420 are disposed at a position that is substantially symmetrical with respect to a vertical plane that passes through the approximate center in the front-rear direction of the casing 110, the space between the inner surface of the casing 110 and the outer surface of the storage tank 200 is reduced. The internal space is effectively utilized for arranging the water storage tank 320 and the steam generator 420.
  • FIG. 5 is a schematic perspective view of the attachment portion 150 attached to the lid portion 412.
  • the attachment part 150 will be described with reference to FIGS. 3 and 5.
  • the lid 412 includes a substantially rectangular upper wall 415, a lid peripheral wall 416 that projects downward from the edge of the upper wall 415, and a projecting piece 417 that projects forward from the lid peripheral wall 416.
  • the washing machine 100 includes an attachment portion 150 that is attached to the lid portion 412.
  • the mounting portion 150 includes a first mounting piece 151 fixed to the upper wall 415 and a second mounting piece 152 fixed to the protruding piece 417.
  • the first attachment piece 151 and the second attachment piece 152 protrude upward from the lid portion 412.
  • the first attachment piece 151 includes a first connection plate 153 connected to the upper wall 415, a first upright plate 154 protruding upward from the first connection plate 153, and a pair protruding rightward from the first upright plate 154.
  • the second mounting piece 152 includes a second connecting plate 156 connected to the protruding piece 417, a second upright plate 157 protruding upward from the second connecting plate 156, and a second protruding forward from the second upright plate 157.
  • Engaging piece 158 is a first connection plate 153 connected to the upper wall 415, a first upright plate 154 protruding upward from the first connection plate 153, and a pair protruding rightward from the first upright plate 154.
  • FIG. 6 is a schematic perspective view of the steam generation unit 400 fixed to the housing top wall 113 using the attachment unit 150. The attachment of the steam generation unit 400 to the housing top wall 113 will be described with reference to FIGS. 3 and 6.
  • the housing 110 includes a first reinforcement frame 117 disposed along the upper edge of the right wall 115 and a second reinforcement frame 118 disposed along the upper edge of the front wall 111. And further comprising.
  • a plurality of openings 171 are formed in the first reinforcing frame 117.
  • the first engagement piece 155 of the first attachment piece 151 is inserted into the opening 171.
  • the first attachment piece 151 is engaged with the first reinforcement frame 117.
  • the first mounting piece 151 includes a plurality of first fins 159 formed at corners between the first connection plate 153 and the first upright plate 154. Since most of the heat of the steam generating unit 400 is radiated through the first fins 159, the amount of heat transmitted to the first reinforcing frame 117 and the case ceiling wall 113 is reduced.
  • An opening is also formed in the second reinforcing frame 118.
  • the second engagement piece 158 of the second attachment piece 152 is inserted into the opening of the second reinforcement frame 118.
  • the second attachment piece 152 is engaged with the second reinforcing frame 118.
  • the steam generating unit 400 is fixed to the housing top wall 113 by the first mounting piece 151 and the second mounting piece 152.
  • the steam generator 400 is separated from the housing top wall 113 by a first upright plate 154 and a second upright plate 157 that are erected upward.
  • an air layer exists between the lid portion 412 and the housing top wall 113. Therefore, the heat transfer from the steam generation part 400 to the housing top wall 113 is alleviated.
  • the protruding piece 417 to which the second connection plate 156 of the second mounting piece 152 is connected includes a plurality of second fins 418 protruding downward. Since most of the heat of the steam generating unit 400 is radiated through the second fins 418, the amount of heat transmitted to the second connection plate 156 is reduced.
  • the second upright plate 157 is narrower than the second connection plate 156. Therefore, the amount of heat conducted from the second connection plate 156 to the second upright plate 157 is reduced. As a result, the amount of heat transferred to the second reinforcing frame 118 and the case ceiling wall 113 via the second upright plate 157 is reduced.
  • FIG. 7 is a schematic perspective view of the steam generating unit 400 connected to the first reinforcing frame 117 and the second reinforcing frame 118. The attachment of the steam generation unit 400 will be described with reference to FIG.
  • the outer contour of the housing 110 is represented by a one-dot chain line.
  • the first reinforcing frame 117 includes an outer edge 172 close to the right wall 115 extending downward from the housing top wall 113, and an inner edge 173 farther from the right wall 115 than the outer edge 172.
  • the first reinforcing frame 117 further includes a rib 174 extending downward from the inner edge 173.
  • the opening 171 described above is formed in the rib 174.
  • the first engagement piece 155 of the first attachment piece 151 is inserted into the opening 171 and protrudes toward the right wall 115.
  • the first attachment piece 151 is connected along the right edge of the lid portion 412. Therefore, the steam generation unit 400 is appropriately separated from the right wall 115 of the housing 110 by the first attachment piece 151. As a result, heat transfer from the steam generator 400 to the right wall 115 is alleviated.
  • the front wall 111 adjacent to the right wall 115 extends downward from the housing top wall 113.
  • the second mounting piece 152 suspended from the second reinforcing frame 118 is curved in the direction opposite to the front wall 111 and is connected to the steam generating unit 400. Therefore, the steam generator 400 is appropriately separated from the front wall 111 of the housing 110 by the second mounting piece 152. Thus, the steam generation unit 400 is held by the mounting unit 150 away from the housing 110.
  • ⁇ Steam generator> 8A and 8B are schematic perspective views of the steam generator 420.
  • the steam generator 420 is described with reference to FIGS. 8A and 8B.
  • the steam generator 420 includes a substantially rectangular main piece 423, a lid piece 424 disposed on the main piece 423, and a linear heater 425 disposed on the main piece 423.
  • the main piece 423 and the lid piece 424 are made of aluminum. Therefore, the main piece 423 and the lid piece 424 are appropriately heated by the heater 425.
  • the steam generator 420 further includes a thermistor 426 that detects the temperature of the steam generator 420.
  • the thermistor 426 is also attached to the main piece 423.
  • the heater 425 is controlled by temperature information obtained by the thermistor 426 using the thermistor 426. Therefore, the temperature of the main piece 423 and the lid piece 424 is kept substantially constant.
  • the same effect can be obtained by using a thermostat that controls on / off of the heater 425 at a predetermined temperature instead of the thermistor 426.
  • the thermistor 426 is exemplified as the detection unit.
  • FIG. 9 is a schematic perspective view of the main piece 423.
  • the main piece 423 will be described with reference to FIGS. 8B and 9.
  • the main piece 423 includes a main piece lower surface 427 to which the connection pipe 421, the exhaust pipe 422 and the thermistor 426 are attached, a peripheral surface 428 on which the heater 425 is disposed, and an upper surface 429 on the opposite side of the main piece lower surface 427. Including.
  • the main piece 423 is erected from the upper surface 429 toward the lid piece 424, and has an outer chamber wall 431 that defines a substantially triangular chamber space 430, and a substantially J shape that defines a flow path for steam in the chamber space 430. And an inner chamber wall 432.
  • FIG. 10 is a schematic exploded perspective view of the steam generator 420.
  • FIG. 11 is a schematic perspective view of the lid piece 424.
  • the steam generator 420 is described with reference to FIGS. 3 and 8B to 11.
  • the steam generator 420 includes a packing ring 433 attached to the main piece 423 so as to surround the outer chamber wall 431.
  • the packing ring 433 is made of heat resistant rubber.
  • the lid piece 424 includes a lower surface 434 facing the main piece 423, and an outer shield wall 435 having substantially the same shape as the outer chamber wall 431.
  • the lid piece 424 is pressed against the main piece 423.
  • the outer shield wall 435 compresses the packing ring 433 and keeps the chamber space 430 airtight.
  • the main piece 423 is formed with an inlet 437 through which water supplied through the connection pipe 421 flows into the chamber space 430.
  • An inflow port 437 formed substantially at the center of the chamber space 430 is surrounded by the inner chamber wall 432. If the pump 330 supplies a predetermined amount of water to the steam generator 420, the water is injected upward through the connection pipe 421 and the inlet 437. As a result, the water collides with the inner chamber wall 432, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lower surface 434 of the lid piece 424 positioned above the inflow port 437.
  • the steam generator 420 is heated by a heater 425 (eg, about 200 ° C.) and has high thermal energy.
  • the pump 330 that performs intermittent water supply operation supplies an appropriate amount of water to the heat energy of the steam generator 420 (for example, about 2 cc / time). As a result, the water emitted upward from the inlet 437 evaporates instantaneously.
  • Impurities contained in water supplied to the steam generator 420 may adhere to or deposit on the wall surface forming the chamber space 430 during vaporization.
  • the internal pressure of the chamber space 430 increases rapidly, so that the adhered or precipitated impurities are easily discharged from the chamber space 430 under the action of the pressure during vaporization.
  • the steam generator 420 is disposed above the storage tank 200.
  • impurities contained in the water supplied to the steam generator 420 cause the chamber space 430 such as the outer chamber wall 431, the inner chamber wall 432, the upper surface 429, and the lower surface 434 of the lid piece 424 of the main piece 423 during vaporization. It may adhere or deposit on the wall surface to be formed. If the impurities accumulate, the heat transfer efficiency between the wall surface and the supplied water is reduced. As a result, water becomes difficult to evaporate.
  • the steam generator 420 is disposed above the storage tank 200, the adhered or deposited impurities are discharged or dropped below the steam generator 420 by the action of pressure during vaporization or gravity.
  • impurities are easily discharged from the chamber space 430 to the storage tank 200.
  • the accumulation of impurities deposited or deposited in the chamber of the steam generator 420 is appropriately removed. Therefore, the vaporization ability due to impurity deposition is unlikely to decrease.
  • FIG. 12 is a schematic plan view of the main piece 423.
  • the main piece 423 will be described with reference to FIGS. 8B and 12.
  • the heater 425 extends along a substantially U-shaped path in the main piece 423. As a result, the heater 425 surrounds the inflow port 437 to which the connection pipe 421 is attached. As a result, the inner chamber wall 432 and the region surrounded by the inner chamber wall 432 have the highest temperature in the chamber space 430. Therefore, the water emitted through the inlet 437 evaporates instantaneously.
  • the main piece 423 has an exhaust port 438 formed at the end of the flow path.
  • the vapor generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust port 438 as the internal pressure of the chamber space 430 increases.
  • An exhaust pipe 422 is attached to the exhaust port 438. The steam that has reached the exhaust port 438 is exhausted downward through the exhaust pipe 422.
  • the heater 425 extends in a U shape along the outer path of the spiral flow path. Therefore, the steam generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust pipe 422 while being heated. Therefore, high-temperature steam is exhausted.
  • the steam generator 420 emits water to the heated wall surface and instantly evaporates it, less power is required to generate the same amount of steam compared to the prior art that generates steam with a heater immersed in water. That's it.
  • FIG. 13 is a schematic diagram of the water supply mechanism 500. The water supply mechanism 500 is demonstrated using FIG.
  • the water supply mechanism 500 that emits water to the chamber space 430 of the steam generator 420 includes the first water supply valve 310, the water storage tank 320, the pump 330, and the connection pipe 421.
  • the water supply mechanism 500 further includes a water level sensor 321 for measuring the water level stored in the water storage tank 320.
  • the first water supply valve 310 may supply water to the water storage tank 320 or stop water supply to the water storage tank 320 according to the water level detected by the water level sensor 321.
  • the first water supply valve 310 may be controlled according to the operation time and / or operation pattern of the pump 330 (intermittent water supply operation and / or continuous water supply operation). For example, the amount of water supplied from the first water supply valve 310 may be adjusted so that the water storage tank 320 becomes empty when the operation of the pump 330 is completed. As a result, the water in the water storage tank 320 is hardly frozen.
  • the pump 330 supplies the water stored in the water storage tank 320 to the chamber space 430 through the connection pipe 421.
  • the intermittent water supply operation of the pump 330 is adjusted so that water emitted into the chamber space 430 is instantly evaporated.
  • impurities contained in water may be deposited in the chamber space 430.
  • the continuous water supply operation of the pump 330 is adjusted so that water flows into the chamber space 430 at a flow rate sufficient to sweep away accumulated impurities.
  • the exhaust pipe 422 is connected to the steam conduction pipe 340.
  • the steam generated in the chamber space 430 by the intermittent water supply operation of the pump 330 and the water flowing into the chamber space 430 by the continuous water supply operation of the pump 330 enter the storage tank 200 through the exhaust pipe 422 and the steam conduction pipe 340. Inflow.
  • FIG. 14 is a schematic rear view of the front portion 222 of the storage tank 200. The supply of steam and water to the storage tank 200 will be described with reference to FIGS. 1, 13, and 14.
  • the annular portion 224 of the front portion 222 includes an inner surface 225 that faces the rotating drum 210 and an outer surface 226 that faces the front wall 111 of the housing 110.
  • FIG. 14 mainly shows the inner surface 225.
  • the steam supply mechanism 300 includes a branch pipe 351 and a nozzle 352 attached to the inner surface 225.
  • the steam supply mechanism 300 further includes a steam tube 353 that connects the branch pipe 351 and the nozzle 352.
  • the steam conduction pipe 340 is connected to the branch pipe 351 through the peripheral wall portion 223.
  • the steam generated in the chamber space 430 of the steam generator 420 flows into the steam conduction pipe 340 through the exhaust pipe 422 as the pressure in the chamber space 430 increases. Thereafter, the steam reaches the branch pipe 351 from the steam conduction pipe 340.
  • the nozzle 352 is disposed above the branch pipe 351. Since the steam reaching the branch pipe 351 is high temperature, it is guided to the steam tube 353 and reaches the nozzle 352. Eventually, the steam is jetted downward from the nozzle 352. As a result, the steam is sprayed directly on the clothes stored in the storage tank 200 through the opening 213 of the rotary drum 210.
  • the exhaust pipe 422, the steam conduction pipe 340, the branch pipe 351, and the steam tube 353 guide the steam generated in the chamber space 430 to the nozzle 352. Therefore, the exhaust pipe 422, the steam conducting pipe 340, the branch pipe 351, and the steam tube 353 are exemplified as guide pipes that define the flow path of steam between the steam generator 420 and the nozzle 352.
  • the pump 330 that performs intermittent water supply operation emits an appropriate amount of water to the high-temperature chamber space 430, so that the water evaporates instantaneously.
  • the internal pressure of the chamber space 430 increases rapidly. Therefore, the steam is injected from the nozzle 352 at a high pressure, and traverses the internal space of the storage tank 200 up and down. Clothing tends to gather near the lower end of the rotating drum 210 due to gravity. Since the vapor
  • the branch pipe 351 includes a parent pipe 354 connected to the steam conducting pipe 340, an upper pipe 355 bent upward from the parent pipe 354, and a lower pipe 356 bent downward from the parent pipe 354.
  • the upper tube 355 is located above the branch point of the branch tube 351. Steam or water flows into the parent pipe 354 through the steam conducting pipe 340.
  • the upper tube 355 is connected to the steam tube 353, and defines an upward path for the steam toward the nozzle 352.
  • the upper tube 355 and the steam tube 353 are exemplified as the first tube.
  • the lower tube 356 defines a downward path. While the pump 330 performs a continuous water supply operation, the water that flows into the branch pipe 351 through the steam conducting pipe 340 flows down through the lower pipe 356 by gravity.
  • the lower tube 356 is exemplified as the second tube.
  • FIG. 14 shows the included angle ⁇ 1 between the parent tube 354 and the upper child tube 355.
  • FIG. 14 also shows the included angle ⁇ ⁇ b> 2 between the parent tube 354 and the lower child tube 356.
  • the included angle ⁇ 1 is an obtuse angle
  • the included angle ⁇ 2 is an acute angle. Since the included angle ⁇ 2 is an acute angle, the piping loss from the parent tube 354 to the lower tube 356 is relatively large. Therefore, the steam that has flowed into the parent pipe 354 hardly flows to the lower child pipe 356 and flows mainly to the upper child pipe 355.
  • the upper tube 355 defines an upward flow path, the water flowing into the parent tube 354 hardly flows to the upper tube 355 and mainly flows to the lower tube 356 due to the action of gravity. Therefore, the flow path of steam and the flow path of water are appropriately separated.
  • the water that has flowed into the lower tube 356 flows down by gravity. As a result, it is guided between the rotating drum 210 and the water tank 220. The scale contained in the water flowing into the lower tube 356 is then discharged out of the housing 110 through the drain pipe 185.
  • the drain pipe 185 is exemplified as a drain path.
  • FIG. 15 is a graph schematically showing the relationship between the intermittent operation of the pump 330 and the temperature in the chamber space 430. The intermittent operation of the pump 330 will be described with reference to FIGS. 10, 13, and 15.
  • the period during which the pump 330 is operating (ON period) is set shorter than the period during which the pump 330 is stopped (OFF period). As a result, an appropriate amount of water is emitted into the chamber space 430.
  • the ON period a predetermined amount of water is supplied to the chamber space 430.
  • water evaporates and becomes steam.
  • the temperature of the chamber space 430 temporarily decreases due to the heat of vaporization caused by the phase change from water to steam.
  • the heater 425 can sufficiently raise the temperature of the chamber space 430 during the OFF period. Therefore, high-pressure steam continues to be supplied to the storage tank 200 while the pump 330 is intermittently operated.
  • the chamber space 430 is sufficiently heated during the OFF period, and an appropriate amount of water that instantaneously evaporates is supplied to the thermal energy of the steam generator 420 including the chamber space 430 during the ON period ( For example, about 2 cc / time), the high-pressure steam is continuously supplied to the storage tank 200.
  • FIG. 16 is a schematic block diagram showing various elements of the washing machine 100 used in the washing process. The operation of the washing machine 100 in the washing process will be described with reference to FIGS.
  • the washing machine 100 includes a control unit 122, a water temperature detection unit 161, and a water level detection unit 162 in addition to the distribution unit 141, the hot water heater 160, and the heater 425.
  • the water temperature detector 161 detects the temperature of the washing water stored in the storage tub 200.
  • An example of the water temperature detector 161 is a temperature sensor (not shown) attached to the water tank 220.
  • the water level detection unit 162 detects the water level of the washing water in the storage tub 200.
  • the water level detection unit 162 includes a water level sensor (not shown) attached to the water tank 220, a second water supply valve 142 and / or a flow meter and a second water supply valve attached to a path from the third water supply valve 143 to the water tank 220. 142 and / or a timer that counts from the opening time of the third water supply valve 143 may be used.
  • the control unit 122 controls the distribution unit 141, opens the second water supply valve 142 and the third water supply valve 143, and supplies wash water to the storage tank 200. During this time, the controller 122 may heat the steam generator 420 under feedback control between the thermistor 426 and the heater 425.
  • the water level detection unit 162 outputs a detection signal including information on the water level of the washing water in the storage tub 200 to the control unit 122. Based on the detection signal from the water level detection unit 162, the control unit 122 determines whether the hot water heater 160 is immersed in the wash water. If the hot water heater 160 is immersed in the washing water, the control unit 122 operates the hot water heater 160.
  • the water temperature detection unit 161 outputs a detection signal including information on the temperature of the washing water in the storage tub 200 to the control unit 122.
  • the control unit 122 determines whether the washing water has reached a predetermined temperature based on the detection signal from the water temperature detection unit 161. If the washing water has reached a predetermined temperature, the hot water heater 160 is stopped. Thereafter, the control unit 122 operates the pump 330 (steam supply mechanism 300: water supply mechanism 500). While the pump 330 is operating, the control unit 122 supplies water to the water storage tank 320 as necessary under feedback control of the water level sensor 321 and the first water supply valve 310.
  • FIG. 17 is a schematic flowchart showing the control for adjusting the temperature of the washing water. The control for adjusting the temperature of the washing water will be described with reference to FIGS. 1 and 15 to 17.
  • step S110 In step S ⁇ b> 110, the control unit 122 opens the second water supply valve 142 and / or the third water supply valve 143 to supply water to the storage tank 200. Thereafter, step S120 is executed.
  • Step S120 The control unit 122 stores in advance information related to the threshold value “LTH” determined for the water level of the washing water in the storage tub 200.
  • step S ⁇ b> 120 the control unit 122 uses the detection signal output from the water level detection unit 162 to compare the washing water level in the storage tub 200 with the threshold “LTH”. If the water level of the washing water exceeds the threshold “LTH”, step S130 is executed. In other cases, step S110 is executed. If the water level of the washing water exceeds the threshold value “LTH”, the threshold value “LTH” is appropriately determined so that the warm water heater 160 is immersed in the washing water.
  • Step S130 the control unit 122 operates the hot water heater 160. As a result, the wash water is heated rapidly. When heating of the washing water is started, step S140 is executed.
  • Step S140 The control unit 122 stores in advance information related to the threshold value “TTH” determined for the temperature of the washing water in the storage tub 200.
  • step S ⁇ b> 140 the control unit 122 compares the water temperature of the washing water in the storage tub 200 with the threshold “TTH” using the detection signal output from the water temperature detection unit 161. If the water temperature of the washing water exceeds the threshold “TTH”, step S150 is executed. In other cases, step S130 is executed.
  • Step S150 the control unit 122 stops the hot water heater 160. Thereafter, step S160 is executed.
  • Step S160 the control unit 122 operates the pump 330.
  • the operation of the pump 330 in step S160 is an intermittent type as described with reference to FIG.
  • the pump 330 may continue to operate intermittently until the washing process is completed.
  • FIG. 18 is a graph schematically showing a change in the temperature of the water supplied to the water tank 220 in the washing step. The effect of the steam used in the washing process will be described with reference to FIGS. 1, 10, 13 and 18.
  • the dotted line after stopping the heating represents a change in the temperature of water contained in the clothing when the heating by the hot water heater 160 is stopped and no steam is supplied.
  • the solid line after stopping the heating represents a change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and the steam is supplied to the storage tank 200.
  • the steam supplied to the storage tank 200 has a high temperature and is directly supplied to the clothing, so that the temperature drop of the water contained in the clothing in the water tank 220 is alleviated.
  • the heater 425 used in the steam generator 420 consumes less power than the hot water heater 160 attached to the water tank 220. Therefore, compared with the heat insulation of the water in the water tank 220 using the hot water heater 160, the heat insulation by the steam supply can achieve a small amount of power consumption. Therefore, the pump 330 preferably performs an intermittent water supply operation after the hot water heater 160 is stopped.
  • the rotating drum 210 is rotated at a high speed. As shown in FIG. 1, a large number of small holes 219 are formed in the peripheral wall 211 of the rotary drum 210.
  • the clothing housed in the rotating drum 210 is pressed against the peripheral wall 211 by the centrifugal force generated by the rotation of the rotating drum 210. As a result, moisture contained in the clothing is released out of the rotating drum 210 through the small holes 219. Thus, the garment is properly dehydrated.
  • Dehydrated clothing fibers tend to hydrogen bond with each other.
  • the hydrogen bonds between the fibers result in clothing folds.
  • the steam breaks hydrogen bonds between the fibers.
  • clothing wrinkles are reduced. Therefore, it is preferable that the pump 330 performs an intermittent water supply operation while the garment is undergoing a dehydration process.
  • steam is injected from the nozzle 352 into the rotating drum 210 at a high pressure.
  • the steam sprayed from the nozzle 352 crosses the storage tank 200, so that the steam sticks to the peripheral wall 211 and is uniformly sprayed on the rotating clothing. As a result, wrinkles are less likely to occur over the entire clothing in the rotating drum 210.
  • 19A to 19C are schematic timing charts showing the timing of supplying steam during the dehydration process. The timing of supplying steam is described with reference to FIGS. 1 and 19A to 19C.
  • the steam supply mechanism 300 may start supplying steam after a predetermined period (T1) has elapsed from the start of the dehydration process. In this case, since the garment contains less moisture, the garment is efficiently moistened by the heat of steam and moisture. As shown in FIGS. 19B and 19C, the steam supply mechanism 300 may start supplying steam in synchronization with the start of the dehydration process. In this case, since the temperature of the garment is raised at the initial stage of the dehydration process, the garment is effectively wetted at a high temperature. As shown in FIGS. 19A and 19B, the steam supply mechanism 300 may supply steam during a part of the dehydration process. As shown in FIG. 19C, the period during which the steam supply mechanism 300 supplies steam may coincide with the period from the start to the end of the dehydration process.
  • T1 a predetermined period
  • FIG. 20 is a schematic perspective view of the washing machine 100.
  • the control structure for the door 120 will be described with reference to FIGS. 1 and 20.
  • the washing machine 100 includes a lock mechanism 121 that locks the door body 120 in the closed position.
  • the door 120 in the closed position closes the storage tank 200 as shown in FIG.
  • the lock mechanism 121 includes a hook portion 123 attached to the door body 120.
  • a lock hole 124 formed corresponding to the hook portion 123 is formed in the front wall 111 of the housing 110. While the door body 120 is in the closed position, the hook portion 123 is inserted into the lock hole 124.
  • FIG. 21 is a schematic cross-sectional view of the front wall 111 around the lock hole 124.
  • the lock mechanism 121 will be further described with reference to FIGS.
  • the lock mechanism 121 includes a lock box 125 that forms a lock hole 124 in cooperation with the front wall 111.
  • the lock box 125 includes a lock casing 126 attached to the front wall 111 and a lock piece 127 disposed in the lock casing 126.
  • the lock piece 127 moves up and down within the lock casing 126.
  • FIGS. 22A to 22C are cross-sectional views schematically showing the operation of the lock mechanism 121.
  • FIG. The operation of the lock mechanism 121 will be described with reference to FIGS. 1 and 20 to 22C.
  • the lock piece 21 and 22A are located at the upper end position of the movement stroke of the lock piece 127.
  • the lock piece 127 is formed with a recess 128 communicating with the lock hole 124 at the upper end position.
  • the lock piece 127 While the door body 120 is in the open position (see FIG. 20), the lock piece 127 is in the upper end position.
  • the hook portion 123 is inserted into the recess 128 through the lock hole 124.
  • FIGS. 22B and 22C when the lock piece 127 is displaced downward, the hook portion 123 engages with the lock casing 126 attached to the front wall 111. Thereafter, when the lock piece 127 is displaced upward, the engagement between the hook portion 123 and the lock casing 126 is released.
  • FIG. 23 is a block diagram schematically showing a control structure for the door body 120 based on the temperature of the steam generator 420. The control with respect to the door body 120 will be described with reference to FIGS. 1, 8B, and 22A to 23.
  • the thermistor 426 described with reference to FIG. 8B detects the temperature of the main piece 423.
  • the thermistor 426 outputs a detection signal corresponding to the detected temperature to the control unit 122.
  • the control unit 122 keeps the door 120 locked by the lock mechanism 121 until the detection signal output from the thermistor 426 indicates a temperature equal to or lower than a predetermined value. As a result, the internal space of the storage tank 200 is isolated from the outside until the steam generator 420 becomes a predetermined temperature or lower. Therefore, the washing machine 100 becomes very safe.
  • FIG. 24 is a schematic flowchart of control for the door body 120 based on the temperature of the steam generator 420. The control with respect to the door body 120 is demonstrated using FIG.13, FIG.15, FIG.23 and FIG.
  • Step S210 When the process for the clothing using steam such as the washing process and the dehydrating process is completed, step S210 is executed.
  • the door 120 is locked by the lock mechanism 121 while clothing using steam is being processed.
  • step S210 the control unit 122 stops heating the steam generator 420 by the heater 425.
  • Step S220 is performed after the heater 425 stops heating the steam generator 420 under the control of the control unit 122.
  • Step S220 The water level sensor 321 described with reference to FIG. 13 detects the water level in the water storage tank 320.
  • the water level sensor 321 outputs a detection signal including information on the water level in the water storage tank 320 to the control unit 122.
  • step S220 the control unit 122 determines whether or not a sufficient amount of water for cooling the steam generator 420 is stored in the water storage tank 320 based on the detection signal from the water level sensor 321. If the amount of water in the water storage tank 320 is insufficient, step S230 is executed. In other cases, step S240 is executed.
  • Step S230 the control unit 122 opens the first water supply valve 310. As a result, the water storage tank 320 can store water supplied to the steam generator 420. Thereafter, step S220 is executed again.
  • Step S240 In step S240, the control unit 122 closes the first water supply valve 310. Thereafter, step S250 is executed.
  • Step S250 the control unit 122 controls the pump 330 to continuously supply water to the steam generator 420. As a result, the steam generator 420 is rapidly cooled. Thereafter, step S260 is executed.
  • Step S260 The control unit 122 stores in advance a threshold value “OTH” determined for the temperature of the steam generator 420.
  • the control unit 122 compares the temperature of the steam generator 420 indicated by the detection signal from the thermistor 426 with the threshold “OTH”. If the temperature of the steam generator 420 exceeds the threshold “OTH”, step S250 is executed again. In other cases, step S270 is executed. Therefore, the pump 330 continues to supply water continuously to the steam generator 420 under the control of the control unit 122 until the temperature of the steam generator 420 becomes equal to or lower than the threshold value “OTH”.
  • step S210 that is, while the heater 425 is heating the steam generator 420 under the control of the control unit 122
  • the pump 330 performs the intermittent water supply operation described with reference to FIG. .
  • step S260 the operation of the pump 330 is switched to a continuous water supply operation.
  • Step S270 In step S ⁇ b> 270, the control unit 122 controls the pump 330 and stops continuous water supply to the steam generator 420.
  • the pump 330 may continue to operate until the water in the water storage tank 320 is almost completely consumed.
  • Step S280 is performed after the continuous supply of water to the steam generator 420 is stopped.
  • Step S280 the control unit 122 controls the lock mechanism 121 to release the lock of the door body 120.
  • the control unit 122 can appropriately control the timing of unlocking by the lock mechanism 121 according to the temperature detected by the thermistor 426.
  • FIG. 25 is a schematic exploded perspective view of a steam generator 420A used in the washing machine exemplified as the clothing processing apparatus according to the second embodiment.
  • the washing machine of the second embodiment has the same structure as the washing machine 100 of the first embodiment except for the structure of the steam generator 420A. Therefore, differences from the first embodiment will be described below. Except for the following differences, the description of the first embodiment is applied to the washing machine of the second embodiment. Moreover, the same code
  • the steam generator 420A includes a main piece 423A, a lid piece 424A, and a packing ring 433 sandwiched between the main piece 423A and the lid piece 424A. Unlike the main piece 423 described in relation to the first embodiment, no heater is attached to the main piece 423A. On the other hand, a heater 425A is attached to the lid piece 424A.
  • FIG. 26 is a schematic perspective view of the cover piece 424A.
  • the mounting structure of the heater 425A will be described with reference to FIGS.
  • the lid piece 424A includes an inner shield wall 436 surrounded by the outer shield wall 435.
  • the inner shield wall 436 has substantially the same shape as the inner chamber wall 432 of the main piece 423A.
  • the inner shield wall 436 overlaps the inner chamber wall 432.
  • a spiral flow path is formed in the chamber space 430. Since the area of the lower surface 434 surrounded by the inner shield wall 436 faces the inflow port 437 formed in the main piece 423A, it will be referred to as “opposing area 439” in the following description.
  • the heater 425A is attached in the lid piece 424A so as to surround the facing region 439. If the flow rate of the water is adjusted so that the water flowing in from the inflow port 437 reaches the lid piece 424A, the opposing region 439 is particularly hot, so that instantaneous evaporation is achieved.
  • the embodiment described above mainly includes the following configuration.
  • the clothing processing apparatus includes a storage tank that stores clothing, a steam generator that generates steam to be injected into the storage tank, a heater that heats the steam generator, and the storage of the steam.
  • a nozzle that injects into the tank; and a guide tube that guides the steam from the steam generator to the nozzle.
  • the guide pipe includes a branch pipe having a parent pipe into which the steam flows, a first pipe toward the nozzle, and a second pipe different from the first pipe.
  • the first pipe includes a portion disposed above a branch portion of the branch pipe.
  • the steam generator heated by the heater generates steam to be injected into the storage tank that stores the clothes.
  • the steam is injected into the storage tank through the nozzle.
  • the garment is processed using steam.
  • the guide pipe for guiding the steam from the steam generator to the nozzle includes a branch pipe having a parent pipe into which the steam flows, a first pipe heading toward the nozzle, and a second pipe different from the first pipe. Since the first pipe includes a portion disposed above the branch portion of the branch pipe, the steam is appropriately guided to the nozzle. On the other hand, the impurities are less likely to go to the first pipe due to the gravitational action, and thus go to the second pipe. Impurities are appropriately processed through the second tube.
  • the clothing processing apparatus may include a water supply mechanism that supplies water into the steam generator.
  • the water may flow down through the second pipe while the water supply mechanism performs a continuous water supply operation.
  • the steam generator if the water supply mechanism performs a continuous water supply operation, the steam generator is washed. Therefore, since the lump of impurities that cause a decrease in heat exchange efficiency is removed from the steam generator, the steam generator can efficiently generate steam. As water flows down through the second pipe, the lump of impurities separated from the steam generator is less likely to go to the nozzle.
  • the first pipe may branch upward from the parent pipe.
  • the second pipe may branch downward from the parent pipe.
  • the water supply mechanism intermittently supplies the water to the steam generator, the steam may be injected from the nozzle through the parent pipe and the first pipe.
  • the water supply mechanism continuously supplies the water to the steam generator, the water may flow into the storage tank through the parent pipe and the second pipe.
  • the first pipe branches upward from the parent pipe
  • steam is supplied to the nozzle through the parent pipe and the first pipe while the water supply mechanism intermittently supplies water to the steam generator. Is injected from.
  • the garment is processed using steam.
  • the second pipe branches downward from the parent pipe water flows into the storage tank through the parent pipe and the second pipe while the water supply mechanism continuously supplies water to the steam generator. As a result, the lump of impurities separated from the steam generator is less likely to clog the nozzle.
  • the water supply mechanism may include a pump for supplying the water intermittently or continuously to the steam generator.
  • the pump supplies water intermittently or continuously to the steam generator, steam generation and cleaning of the steam generator are selectively performed according to the operation of the pump.
  • the storage tank may include a rotary drum having a cylindrical peripheral wall surrounding the rotation shaft, and a water tank that stores the rotary drum.
  • the water flowing down through the second pipe may be guided between the rotating drum and the water tank.
  • the water flowing down through the second pipe is guided between the rotating drum having a cylindrical peripheral wall surrounding the rotating shaft and the water tank containing the rotating drum, so that the lump of impurities contained in the water Contact with clothing is less likely to occur.
  • the clothing processing apparatus may further include a drainage path for draining from the storage tank.
  • the water flowing down through the second pipe may be guided to the drainage path.
  • the piping resistance of the flow path from the parent pipe to the first pipe may be smaller than the piping resistance of the flow path from the parent pipe to the second pipe.
  • the pipe resistance of the flow path from the parent pipe to the first pipe is smaller than the pipe resistance of the flow path from the parent pipe to the second pipe, most of the steam passes through the parent pipe through the first pipe. Flows into the pipe. Thereafter, the steam is jetted from the nozzle into the storage tank. As a result, the garment is properly processed using steam.
  • the water continuously supplied to the steam generator is strongly subjected to the gravitational action, and therefore flows into the second pipe through the parent pipe. Impurities flow into the storage tank through the parent pipe and the second pipe together with the continuously supplied water. Therefore, the impurities in water will be appropriately treated.
  • the branch angle between the parent tube and the first tube may be an obtuse angle.
  • the branch angle between the parent tube and the second tube may be an acute angle.
  • the branch angle between the parent tube and the first tube is an obtuse angle
  • the branch angle between the parent tube and the second tube is an acute angle.
  • the pipe resistance of the flow path toward the pipe is smaller than the pipe resistance of the flow path from the parent pipe to the second pipe. Therefore, much of the steam flows into the first pipe through the parent pipe. Thereafter, the steam is jetted from the nozzle into the storage tank. As a result, the garment is properly processed using steam.
  • the water continuously supplied to the steam generator is strongly subjected to the gravitational action, and therefore flows into the second pipe through the parent pipe. Impurities flow into the storage tank through the parent pipe and the second pipe together with the continuously supplied water. Therefore, the impurities in water will be appropriately treated.
  • the water supply mechanism may perform the continuous water supply operation.
  • the water supply mechanism performs a continuous water supply operation, so the temperature of the steam generator heated by the heater drops rapidly.
  • the clothing processing apparatus may further include a control unit that controls the heater and the pump.
  • the controller may cause the pump to continuously supply the water to the steam generator after stopping the heating of the steam generator by the heater.
  • control unit since the control unit causes the pump to continuously supply the water to the steam generator after stopping the heating of the steam generator by the heater, the temperature of the steam generator heated by the heater is Descent rapidly.
  • the clothing processing apparatus may further include a detection unit that detects the temperature of the steam generator.
  • the control unit may cause the pump to continuously supply the water to the steam generator until the temperature detected by the detection unit becomes a predetermined temperature or less.
  • the detection unit detects the temperature of the steam generator heated by the heater.
  • the control unit causes the pump to continuously supply water to the steam generator until the temperature detected by the detection unit falls below a predetermined temperature, so that the temperature of the steam generator heated by the heater rapidly decreases. .
  • the principle of the above-described embodiment is preferably used for an apparatus for processing clothing using steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

 本出願は、衣類を収容する収容槽(200)と、該収容槽(200)へ噴射される蒸気を発生させる蒸気発生器(420)と、該蒸気発生器(420)を加熱するヒータ(425)と、前記蒸気を前記収容槽(200)内へ噴射するノズル(352)と、前記蒸気発生器(420)から前記ノズル(352)へ前記蒸気を案内する案内管(340)と、を備える衣類処理装置(100)を開示する。前記案内管(340)は、前記蒸気が流入する親管(354)と、前記ノズル(352)へ向かう第1管(353)と、該第1管(353)とは異なる第2管(356)と、を有する分岐管(351)を含む。前記第1管(353)は、前記分岐管(351)の分岐部よりも上方に配設される部分を含む。

Description

衣類処理装置
 本発明は、衣類を洗濯、脱水及び/又は乾燥するための衣類処理装置に関する。
 衣類に蒸気を供給し、殺菌を行う洗濯機が開発されている(特許文献1参照)。特許文献1の洗濯機は、管路内を流れる水をヒータによって加熱し、蒸気を発生させる。蒸気は、蒸気発生器から衣類を収容する収容槽へ供給される。この結果、収容槽は、蒸気で満たされる。
 水は、一般的に、不純物を含有している。蒸気の発生のために、水が蒸発されるならば、水中の不純物が析出することがある。蒸気を発生及び供給する蒸気発生システム内における不純物の析出は、蒸気の供給経路の詰まりを誘発することもある。或いは、不純物の析出の結果、水への熱伝達率が低下することもある。
欧州特許第1863968号公報
 本発明は、水中の不純物を適切に処理することができる構造を有する衣類処理装置を提供することを目的とする。
 本発明の一局面に係る衣類処理装置は、衣類を収容する収容槽と、該収容槽へ噴射される蒸気を発生させる蒸気発生器と、該蒸気発生器を加熱するヒータと、前記蒸気を前記収容槽内へ噴射するノズルと、前記蒸気発生器から前記ノズルへ前記蒸気を案内する案内管と、を備える。該案内管は、前記蒸気が流入する親管と、前記ノズルへ向かう第1管と、該第1管とは異なる第2管と、を有する分岐管を含む。前記第1管は、前記分岐管の分岐部よりも上方に配設される部分を含む。
 本発明に係る衣類処理装置は、水中の不純物を適切に処理することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態の衣類処理装置として例示される洗濯機の概略的な縦断面図である。 図1に示される洗濯機の概略的な透視斜視図である。 図1に示される洗濯機の筐体に収容された蒸気供給機構の概略的な斜視図である。 図3に示される蒸気供給機構の蒸気発生部の概略的な斜視図である。 図3に示される蒸気供給機構の蒸気発生部の概略的な斜視図である。 図4A及び図4Bに示される蒸気発生部の蓋部と筐体とを接続するための取付部の概略的な斜視図である。 図5に示される取付部を用いて、筐体天壁に固定された蒸気発生部の概略的な斜視図である。 第1補強フレーム及び第2補強フレームに接続された蒸気発生部の概略的な斜視図である。 図4A及び図4Bに示される蒸気発生部の蒸気発生器の概略的な斜視図である。 図4A及び図4Bに示される蒸気発生部の蒸気発生器の概略的な斜視図である。 図8A及び図8Bに示される蒸気発生器の主片の概略的な斜視図である。 図8A及び図8Bに示される蒸気発生器の概略的な展開斜視図である。 図10に示される蒸気発生器の蓋片の概略的な斜視図である。 図9に示される主片の概略的な平面図である。 図3に示される蒸気供給機構の給水機構の概略図である。 図1に示される洗濯機の収容槽の前部の概略的な背面図である。 図13に示される給水機構のポンプの間欠動作とチャンバ空間内の温度との関係を概略的に表すグラフである。 洗い工程において用いられる洗濯機の様々な要素を表す概略的なブロック図である。 洗濯水の温度を調整するための制御を表す概略的なフローチャートである。 図1に示される洗濯機の水槽に供給された水の温度の変化を概略的に表すグラフである。 脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。 脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。 脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。 図1に示される洗濯機の概略的な斜視図である。 図20に示される洗濯機の前壁の概略的な断面図である。 図20に示される洗濯機のロック機構の動作を概略的に表す断面図である。 図20に示される洗濯機のロック機構の動作を概略的に表す断面図である。 図20に示される洗濯機のロック機構の動作を概略的に表す断面図である。 図8Bに示される蒸気発生器の温度に基づく扉体に対する制御を概略的に表すブロック図である。 扉体に対する制御の概略的なフローチャートである。 第2実施形態の衣類処理装置として例示される洗濯機に用いられる蒸気発生器の概略的な展開斜視図である。 図25に示される蒸気発生器の概略的な斜視図である。
 以下、図面を参照しつつ、衣類処理装置として例示される洗濯機が説明される。尚、以下の説明で用いられる「上」、「下」、「左」や「右」などの方向を表す用語は、単に、説明の明瞭化を目的とするものであり、洗濯機の原理を何ら限定するものではない。また、洗濯機の原理は、乾燥処理、脱水処理や衣類に対する他の処理を行う装置にも適用可能である。
 <第1実施形態>
 <洗濯機>
 図1は、第1実施形態の衣類処理装置として例示される洗濯機100の概略的な縦断面図である。図1を用いて、洗濯機100が説明される。
 洗濯機100は、筐体110と、筐体110内で衣類を収容する収容槽200と、を備える。収容槽200は、回転軸RXを取り囲む略円筒形状の周壁211を有する回転ドラム210と、回転ドラム210を収容する水槽220と、を含む。収容槽200は、回転軸RXを取り囲む略円筒形状に形成される。後述される洗い工程において、収容槽200は、衣類及び衣類を洗濯するための洗濯水を収容する。後述される脱水工程において、洗濯水は、収容槽200から排水される。その後、回転ドラム210は高速で回転する。
 洗濯機100は、洗濯水を加熱するための温水ヒータ160を備える。温水ヒータ160は、水槽220の下部に配設される。温水ヒータ160を用いた制御は後述される。
 筐体110は、収容槽200へ衣類を投入するための投入口119が形成された前壁111と、前壁111とは反対側の後壁112と、を備える。筐体110は、前壁111と後壁112との間で略水平に延びる筐体天壁113と、筐体天壁113とは反対側の筐体底壁114と、を含む。回転ドラム210及び水槽220には、前壁111に形成された投入口119と連通する開口部213,227がそれぞれ形成される。
 洗濯機100は、前壁111に取り付けられた扉体120を更に備える。扉体120は、前壁111に形成された投入口119を閉塞する閉位置と投入口119を開放する開位置との間で回動する。使用者は、扉体120を開位置に回動させ、前壁111の投入口119を通じて、衣類を収容槽200へ投入することができる。その後、使用者は、扉体120を閉位置に移動させ、洗濯機100に衣類を洗濯させることができる。尚、図1に示される扉体120は、閉位置に存する。扉体120は、閉位置において、収容槽200を閉塞する。
 回転ドラム210は、前壁111と後壁112との間で延びる回転軸RX周りに回転する。収容槽200に投入された衣類は、回転ドラム210の回転に伴って回転ドラム210内を移動し、洗い、すすぎ及び/又は脱水といった様々な処理を受ける。
 回転ドラム210は、閉位置にある扉体120に対向する底壁212を含む。水槽220は、回転ドラム210の底壁212及び周壁211の一部を取り囲む底部221と、底部221と扉体120との間で、回転ドラム210の周壁211の他の部分を取り囲む前部222と、を備える。
 収容槽200は、回転ドラム210の底壁212に取り付けられた回転シャフト230を含む。回転シャフト230は、回転軸RXに沿って、後壁112に向けて延びる。回転シャフト230は、水槽220の底部221を貫通し、水槽220と後壁112との間に現れる。
 洗濯機100は、水槽220の下方に据え付けられたモータ231と、水槽220の外に露出した回転シャフト230に取り付けられたプーリ232と、モータ231の動力をプーリ232に伝達するためのベルト233と、を更に備える。モータ231が作動すると、モータ231の動力は、ベルト233、プーリ232及び回転シャフト230に伝達される。この結果、回転ドラム210は、水槽220内で回転する。
 洗濯機100は、水槽220の前部222と扉体120との間に配設されたパッキン構造130を更に備える。閉位置に回動された扉体120は、パッキン構造130を圧縮する。この結果、パッキン構造130は、扉体120と前部222との間で水密シール構造を形成する。
 洗濯機100は、蛇口(図示せず)に接続される給水口140と、給水口140を介して導入された水を分配するための分配部141と、を更に備える。給水口140は、収容槽200上で横たわる筐体天壁113上に現れる。分配部141は、筐体天壁113と収容槽200との間に配設される。
 洗濯機100は、洗剤が収容される洗剤収容部(図示せず)及び収容槽200へ蒸気を噴射する蒸気供給機構300(後述される)を更に備える。分配部141は、収容槽200、洗剤収容部及び蒸気供給機構300に選択的に水を供給するための複数の給水弁を備える。尚、図1において、収容槽200及び洗剤収容部への給水経路は示されていない。収容槽200及び洗剤収容部への給水に対して、既知の洗濯機に用いられている技術が好適に適用される。
 洗濯機100は、水槽220に接続された主管路180と、主管路180を通じて水槽220から排出された水を濾過するフィルタ部181と、フィルタ部181から延設された管路に接続された循環ポンプ182と、循環ポンプ182及び水槽220に接続された循環管路183と、フィルタ部181から延設された管路に接続された排水ポンプ184と、排水ポンプ184から筐体110の外へ水槽220からの水を案内する排水管路185と、を更に備える。循環ポンプ182が作動するならば、水槽220から主管路180へ排出された水は、水槽220へ再度戻される。排水ポンプ184が作動するならば、水槽220から主管路180へ排出された水は、筐体110外へ流される。
 <蒸気供給機構>
 図2は、洗濯機100の概略的な透視斜視図である。図3は、筐体110に収容された蒸気供給機構300の概略的な斜視図である。図2及び図3において、筐体110は点線で表されている。図3において、収容槽200は、示されていない。図3中の矢印は、給水経路を概略的に表す。図1乃至図3を用いて、蒸気供給機構300が説明される。
 図3に示される如く、分配部141は、蒸気供給機構300に用いられる第1給水弁310と、洗剤が収容された洗剤収容部への給水経路を開閉する第2給水弁142と、水槽220への給水経路を開閉する第3給水弁143と、を含む。第2給水弁142の開動作によって洗剤収容部へ供給された水は、洗濯水(洗剤が溶解された水)として収容槽200へ供給される。第3給水弁143の開動作によって水槽220へ直接的に供給された水は、収容槽200内の洗濯水中の洗剤の濃度調整や、収容槽200中の水位調整や洗濯水の濁度調整のために用いられてもよい。
 蒸気供給機構300は、上述の第1給水弁310に加えて、収容槽200の下方に配置された貯水槽320と、を備える。第1給水弁310は、貯水槽320への給水経路を開閉するために用いられる。第1給水弁310が開くと、給水口140から貯水槽320へ水が供給される。第1給水弁310が閉じると、貯水槽320への給水は停止される。
 蒸気供給機構300は、貯水槽320に取り付けられたポンプ330と、ポンプ330から吐出された水を受ける蒸気発生部400と、を更に備える。ポンプ330は、蒸気発生部400に間欠的な或いは連続的な給水動作を行う。間欠的な給水動作の間、ポンプ330は、瞬間的な蒸気発生が生ずるように調整された適量の水を蒸気発生部400に供給する。ポンプ330が蒸気発生部400に連続的に給水を行うならば、蒸気発生のために用いられた水に含まれる不純物(スケール)が蒸気発生部400から洗い流される。
 蒸気発生部400は、収容槽200へ噴射される蒸気を発生させるために、高温に加熱される。筐体110は、回転運動する回転ドラム210を含む収容槽200と、高温に加熱する蒸気発生部400と、を収容するので、収容槽200及び蒸気発生部400は、使用者から適切に隔離される。したがって、使用者は、洗濯機100を安全に操作することができる。
 図2に示される如く、蒸気供給機構300は、蒸気発生部400から下方に延びる蒸気導通管340を更に備える。図1に示される如く、水槽220の前部222は、回転ドラム210の周壁211を取り囲む周壁部223と、パッキン構造130と協働して水密シール構造を形成する環状部224と、を含む。蒸気導通管340は、周壁部223へ接続される。蒸気発生部400が発生させた蒸気は、蒸気導通管340を通じて、収容槽200へ供給される。尚、蒸気導通管340は収容槽200を回転させた場合の振動を蒸気発生部400に伝達しないようにするために、蛇腹形状とするのが好ましい。
 図4A及び図4Bは、蒸気発生部400の概略的な斜視図である。図2乃至図4Bを用いて、蒸気発生部400が説明される。
 蒸気発生部400は、略矩形箱状のケース410と、ケース410に取り囲まれた蒸気発生器420と、を備える。ケース410は、蒸気発生器420を収容するための容器部411と、容器部411を閉じる蓋部412と、を備える。
 蒸気発生器420は、接続管421及びチューブ(図示せず)を用いて、ポンプ330に接続される。また、蒸気発生器420は、排気管422を用いて、蒸気導通管340に接続される。容器部411は、開口部413が形成された底壁部414を含む。接続管421及び排気管422は、開口部413を通じて下方に突出する。
 ポンプ330が貯水槽320から蒸気発生部400内の蒸気発生器420に強制的に給水を行うので、蒸気発生器420は貯水槽320より上方に配置される。ポンプ330なしで貯水槽320から蒸気発生器420への給水が行われるならば、貯水槽320中の水は、重力の作用によって蒸気発生器420に送られる必要がある。この場合、蒸気発生器420は、貯水槽320よりも下方に配置される必要がある。
 本実施形態において、貯水槽320から蒸気発生器420への給水は、ポンプ330を用いて実行される。水は、ポンプ330の圧力で強制的に貯水槽320から蒸気発生器420へ供給されるので、蒸気発生器420と貯水槽320との配置設計に関して、上下関係の制約が生じにくい。貯水槽320と蒸気発生器420との配置設計の自由度が増すので、筐体110内のスペースは、有効に利用される。
 図2に示される如く、蒸気発生器420は、貯水槽320よりも上方に配置されるが、ポンプ330は、水を、貯水槽320から蒸気発生器420へ適切に供給することができる。
 意図しない故障や他の不具合に起因して、蒸気発生器に水が不用意に流れ込むと、不必要に蒸気が発生することになる。本実施形態では、ポンプ330が利用されるので、貯水槽320は、蒸気発生器420より下方に配置される。ポンプ330が故障によって停止し、蒸気発生器420への水の供給が制御不能になった場合でも、貯水槽320/ポンプ330と蒸気発生器420とを連通するホース内に滞留する水は、蒸気発生器420に不必要に流れ込まない。上述の如く、ポンプ330なしでは、蒸気発生器420は、貯水槽320より下方に配置される必要がある。例えば、貯水槽320から蒸気発生器420へ水の供給を制御するために設けられた開閉弁といった制御部品が故障した場合には、蒸気発生器420への水の供給が制御できなくなり、重力の作用により貯水槽320から蒸気発生器420へ不必要に水が供給される。本実施形態では、ポンプ330が利用されるので、蒸気発生器420へ貯水槽320への不必要な水の供給は生じにくくなる。
 図2に示される如く、筐体110は、前壁111と後壁112との間で立設された右壁115と、右壁115とは反対側の左壁116と、を備える。回転軸RXは、右壁115及び左壁116に沿って延びる(即ち、回転軸RXは、右壁115及び左壁116に略平行に延びる)。
 図2には、回転軸RXを通過する垂直面VPが一点鎖線を用いて表されている。貯水槽320は、筐体110の左下の空間(垂直面VPと左壁116との間の空間)に配置される。蒸気発生器420は、筐体110の右上の空間(垂直面VPと右壁115との間の空間)に配置される。このように蒸気発生器420及び貯水槽320は、収容槽200の中心軸(回転軸RX)に対して、略対称の位置に配置される。また、貯水槽320は、後壁112の近くに配置される一方で、蒸気発生器420は、後壁112よりも前壁111の近くに配置される。
 一般的な洗濯機の場合、洗剤が収容される洗剤収容部は、筐体の上部前方の左側及び右側のうち一方に配設される。洗剤収容部が占める位置を除いた略円筒形の収容槽200外の空間は、貯水槽320と蒸気発生器420をそれぞれ配置するために有効に活用される。例えば、洗剤収容部が筐体110の上部前方の左側に配置されているならば、図2に示される如く、貯水槽320は、筐体110の左側下方の後方に配置される。このとき、蒸気発生器420が筐体110の右側上方の前方に配置されるならば、略矩形箱状の筐体110の内面並びに略円筒形の収容槽200外面との間の内部空間は、貯水槽320と蒸気発生器420を配置するために有効に活用される。この結果、貯水槽320及び蒸気発生器420は、許容された空間内で最大限に大きく設計されてもよい。
 洗剤収容部が上述の位置にあるならば、貯水槽320は、収容槽200の中心軸(回転軸RX)に対して洗剤収容部と略対称の位置に配置され、且つ、蒸気発生器420は、収容槽200の回転軸RXを含む水平面HPに対して、貯水槽320と略対称な位置に配置されてもよい。上述のレイアウト設計と同様に、筐体110内部の空間は、有効に活用される。
 洗剤収容部が上述の位置にあるならば、貯水槽320は、洗剤収容部の下方に配置されてもよい。この場合、蒸気発生器420は、貯水槽320より上方に配置されてもよい。このとき、蒸気発生器420は、収容槽200の回転軸RXを含む鉛直面に対して、貯水槽320と略対称な位置に配置されてもよい。この結果、上述のレイアウト設計と同様に、筐体110内部の空間は有効に活用される。
 収容槽200の回転軸RXが、筐体110の前後方向に傾斜している場合(例えば、回転ドラム210の回転軸RXが、後壁112から前壁111に向けて上方に傾斜しているような場合)、貯水槽320及び蒸気発生器420は、収容槽200の回転軸RX或いは回転軸RXを含む水平面HPに対して、略対称な位置に配置されてもよい。貯水槽320及び蒸気発生器420が筐体110の前後方向の略中心を通る鉛直面に対し略対称な位置に配置されるならば、筐体110の内面と収容槽200の外面との間の内部空間は、貯水槽320と蒸気発生器420とを配置するために有効に活用される。
 <筐体への取付構造>
 図5は、蓋部412に取り付けられる取付部150の概略的な斜視図である。図3及び図5を用いて、取付部150が説明される。
 蓋部412は、略矩形状の上壁415と、上壁415の縁部から下方に突出する蓋部周壁416と、蓋部周壁416から前方に突出する突出片417と、を含む。洗濯機100は、蓋部412に取り付けられる取付部150を備える。取付部150は、上壁415に固定される第1取付片151と、突出片417に固定される第2取付片152と、を含む。第1取付片151及び第2取付片152は、蓋部412から上方に突出する。
 第1取付片151は、上壁415に接続される第1接続板153と、第1接続板153から上方に突出する第1直立板154と、第1直立板154から右方に突出する一対の第1係合片155と、を含む。第2取付片152は、突出片417に接続される第2接続板156と、第2接続板156から上方に突出する第2直立板157と、第2直立板157から前方に突出する第2係合片158と、を含む。
 図6は、取付部150を用いて、筐体天壁113に固定された蒸気発生部400の概略的な斜視図である。図3及び図6を用いて、筐体天壁113への蒸気発生部400の取付が説明される。
 図3に示される如く、筐体110は、右壁115の上縁に沿って配設された第1補強フレーム117と、前壁111の上縁に沿って配設された第2補強フレーム118と、を更に備える。
 図6に示される如く、第1補強フレーム117には、複数の開口部171が形成される。第1取付片151の第1係合片155は、開口部171に挿入される。この結果、第1取付片151は、第1補強フレーム117に係合される。
 第1取付片151は、第1接続板153と第1直立板154との間の角隅部に形成された複数の第1フィン159を含む。蒸気発生部400の熱の多くは、第1フィン159を通じて放熱されるので、第1補強フレーム117及び筐体天壁113へ伝達される熱量は少なくなる。
 第2補強フレーム118にも開口部が形成される。図6に示される如く、第2取付片152の第2係合片158は、第2補強フレーム118の開口部に挿入される。この結果、第2取付片152は、第2補強フレーム118に係合される。この結果、蒸気発生部400は、第1取付片151と第2取付片152とによって、筐体天壁113に固定される。蒸気発生部400は、上方に立設した第1直立板154と第2直立板157とによって、筐体天壁113から離間される。この結果、蓋部412と筐体天壁113との間には、空気の層が存在することとなる。したがって、蒸気発生部400から筐体天壁113への熱伝達は緩和される。
 第2取付片152の第2接続板156が接続される突出片417は、下方に突出する複数の第2フィン418を含む。蒸気発生部400の熱の多くは、第2フィン418を通じて放熱されるので、第2接続板156へ伝達される熱量は少なくなる。第2直立板157は、第2接続板156より狭い。したがって、第2接続板156から第2直立板157へ伝導される熱量は少なくなる。この結果、第2直立板157を介して第2補強フレーム118及び筐体天壁113へ伝達される熱量は少なくなる。
 図7は、第1補強フレーム117及び第2補強フレーム118に接続された蒸気発生部400の概略的な斜視図である。図7を用いて、蒸気発生部400の取付が説明される。
 図7において、筐体110の外形輪郭は一点鎖線を用いて表されている。第1補強フレーム117は、筐体天壁113から下方に延出する右壁115に近接した外縁172と、外縁172よりも右壁115から離れた内縁173と、を含む。第1補強フレーム117は内縁173から下方に延出するリブ174を更に含む。上述の開口部171は、リブ174に形成される。第1取付片151の第1係合片155は、開口部171に挿入され、右壁115に向けて突出する。第1取付片151は、蓋部412の右縁に沿って接続される。したがって、蒸気発生部400は、第1取付片151によって、筐体110の右壁115から適切に離間される。この結果、蒸気発生部400から右壁115への熱伝達は緩和される。
 右壁115に隣接する前壁111は、筐体天壁113から下方に延出する。第2補強フレーム118から吊り下げられた第2取付片152は、前壁111とは反対方向に湾曲し、蒸気発生部400に接続される。したがって、蒸気発生部400は、第2取付片152によって、筐体110の前壁111から適切に離間される。かくして、蒸気発生部400は、筐体110から離れて、取付部150によって保持される。
 <蒸気発生器>
 図8A及び図8Bは、蒸気発生器420の概略的な斜視図である。図8A及び図8Bを用いて、蒸気発生器420が説明される。
 蒸気発生器420は、略矩形状の主片423と、主片423上に配設される蓋片424と、主片423に配設される線状のヒータ425と、を備える。本実施形態において、主片423及び蓋片424は、アルミニウムから形成される。したがって、主片423及び蓋片424は、ヒータ425によって適切に加熱される。
 蒸気発生器420は、蒸気発生器420の温度を検出するサーミスタ426を更に備える。上述の接続管421、排気管422及びヒータ425に加えて、サーミスタ426も主片423に取り付けられる。ヒータ425は、サーミスタ426を用いて、サーミスタ426によって得られる温度情報により制御される。したがって、主片423及び蓋片424の温度は、略一定に保たれる。尚、サーミスタ426の代わりに、所定の温度でヒータ425の入切を制御するサーモスタットを用いても同様の効果が得られる。本実施形態において、サーミスタ426は、検出部として例示される。
 図9は、主片423の概略的な斜視図である。図8B及び図9を用いて、主片423が説明される。
 主片423は、接続管421、排気管422及びサーミスタ426が取り付けられる主片下面427と、ヒータ425が配設される周面428と、主片下面427とは反対側の上面429と、を含む。主片423は、上面429から蓋片424に向けて立設し、略三角形状のチャンバ空間430を規定する外チャンバ壁431と、チャンバ空間430内で蒸気に流動経路を規定する略J字形状の内チャンバ壁432と、を更に備える。
 図10は、蒸気発生器420の概略的な展開斜視図である。図11は、蓋片424の概略的な斜視図である。図3、図8B乃至図11を用いて、蒸気発生器420が説明される。
 蒸気発生器420は、外チャンバ壁431を取り巻くように主片423に取り付けられるパッキンリング433を備える。パッキンリング433は、耐熱性ゴムから形成される。
 蓋片424は、主片423に対向する下面434と、外チャンバ壁431と略同形状の外シールド壁435と、を備える。蓋片424は、主片423に押しつけられる。この結果、外シールド壁435は、パッキンリング433を圧縮し、チャンバ空間430を気密に保つ。
 主片423には、接続管421を通じて供給された水がチャンバ空間430内に流入するための流入口437が形成される。チャンバ空間430の略中央に形成された流入口437は、内チャンバ壁432に取り囲まれる。ポンプ330が所定量の水を蒸気発生器420に供給するならば、接続管421及び流入口437を通じて、水が上向きに射出される。この結果、水は、内チャンバ壁432、内チャンバ壁432によって囲まれた主片423の上面429及び/又は流入口437の上方に位置する蓋片424の下面434に衝突する。蒸気発生器420は、ヒータ425によって加熱され(例えば、約200℃)、高い熱エネルギを有する。間欠的な給水動作を行うポンプ330は、蒸気発生器420が有する熱エネルギに対して、適量の水を供給する(例えば、約2cc/回)。この結果、流入口437から上向きに出射された水は、瞬時に蒸発する。
 蒸気発生器420に供給される水に含有される不純物は、気化時にチャンバ空間430を形成する壁面に付着或いは析出することもある。水の瞬時の蒸発の結果、チャンバ空間430の内圧は急激に上昇するので、付着或いは析出した不純物は、気化時の圧力の作用を受け、チャンバ空間430から容易に排出される。
 図2に示される如く、蒸気発生器420は、収容槽200よりも上方に配置される。上述の如く、蒸気発生器420に供給される水に含有される不純物が、気化時に主片423の外チャンバ壁431、内チャンバ壁432、上面429及び蓋片424の下面434といったチャンバ空間430を形成する壁面に付着或いは析出することもある。不純物が堆積するならば、壁面と供給された水との間での熱伝達効率が下がる。この結果、水は、蒸発しにくくなる。しかしながら、蒸気発生器420が収容槽200よりも上方に配置されるならば、付着或いは析出した不純物は、気化時の圧力や重力の作用により、蒸気発生器420の下方へ排出或いは落下される。したがって、不純物は、チャンバ空間430から収容槽200へ容易に排出される。この結果、蒸気発生器420のチャンバ内で付着或いは析出した不純物の堆積は適切に除去される。したがって、不純物の堆積による気化能力は、低下しにくくなる。
 図12は、主片423の概略的な平面図である。図8B及び図12を用いて、主片423が説明される。
 ヒータ425は、主片423内で略U字状の経路に沿って延びる。この結果、ヒータ425は、接続管421が取り付けられた流入口437を取り囲む。この結果、内チャンバ壁432及び内チャンバ壁432に取り囲まれた領域は、チャンバ空間430内で最も高温となる。したがって、流入口437を介して出射された水は瞬時に蒸発する。
 外チャンバ壁431によって規定されるチャンバ空間430内で略J字形状の内チャンバ壁432が延出するので、チャンバ空間430は渦巻き状の流動経路を描く。主片423には、流動経路の終端に形成された排気口438が形成される。内チャンバ壁432に取り囲まれる空間内で生じた蒸気は、チャンバ空間430の内圧の増加に伴って、排気口438へ向かう。排気口438には、排気管422が取り付けられる。排気口438に到達した蒸気は、排気管422を通じて、下向きに排気される。
 ヒータ425は、渦巻き状の流動経路のうち外側の経路に沿って、U字状に延びる。したがって、内チャンバ壁432に取り囲まれる空間内で生じた蒸気は、加熱されながら、排気管422に向かう。したがって、高温の蒸気が排気されることとなる。
 蒸気発生器420は、加熱された壁面に水を出射し瞬時に蒸発させるので、水中に浸されたヒータで蒸気を発生させる従来技術に比べ、同じ蒸気量を発生させるに要する消費電力は少なくて済む。
 <給水機構>
 図13は、給水機構500の概略図である。図13を用いて、給水機構500が説明される。
 蒸気発生器420のチャンバ空間430へ水を出射する給水機構500は、上述の第1給水弁310、貯水槽320、ポンプ330及び接続管421を含む。給水機構500は、貯水槽320が貯える水の水位を測定するための水位センサ321を更に備える。第1給水弁310は、水位センサ321によって検出された水位に応じて、貯水槽320へ給水或いは貯水槽320への給水停止を行ってもよい。
 ポンプ330の作動時間及び/又は動作パターン(間欠的な給水動作及び/又は連続的な給水動作)に応じて、第1給水弁310が制御されてもよい。例えば、ポンプ330の動作が終了したときに、貯水槽320が空になるように第1給水弁310からの給水量が調整されてもよい。この結果、貯水槽320内の水の凍結は生じにくくなる。
 ポンプ330は、貯水槽320内に貯められた水を、接続管421を通じて、チャンバ空間430に供給する。ポンプ330の間欠的な給水動作は、チャンバ空間430内に出射された水が瞬時に蒸発するように調整される。
 チャンバ空間430内での水の蒸発の結果、水に含有する不純物がチャンバ空間430内で堆積することもある。ポンプ330の連続的な給水動作は、堆積した不純物が押し流されるのに十分な流速で水がチャンバ空間430に流入するように調整される。
 排気管422は、蒸気導通管340に接続される。ポンプ330の間欠的な給水動作によってチャンバ空間430内で発生した蒸気及びポンプ330の連続的な給水動作によってチャンバ空間430内に流入した水は、排気管422及び蒸気導通管340を通じて収容槽200に流入する。
 <収容槽への蒸気及び水の供給>
 図14は、収容槽200の前部222の概略的な背面図である。図1、図13及び図14を用いて、収容槽200への蒸気及び水の供給が説明される。
 図1に示される如く、前部222の環状部224は、回転ドラム210に対向する内面225と筐体110の前壁111に対向する外面226と、を含む。図14は、内面225を主に示す。
 蒸気供給機構300は、内面225に取り付けられた分岐管351及びノズル352を備える。蒸気供給機構300は、分岐管351とノズル352とを接続する蒸気チューブ353を更に備える。蒸気導通管340は、周壁部223を介して、分岐管351に接続される。
 蒸気発生器420のチャンバ空間430内で発生した蒸気は、チャンバ空間430内での圧力増加に伴い、排気管422を通じて、蒸気導通管340に流入する。その後、蒸気は、蒸気導通管340から分岐管351に至る。ノズル352は、分岐管351より上方に配設される。分岐管351に到達した蒸気は、高温であるので、蒸気チューブ353に案内され、ノズル352に至る。最終的に、蒸気は、ノズル352から下方に噴射される。この結果、蒸気は、回転ドラム210の開口部213を通じて、収容槽200内に収容された衣類に直接的に吹きかけられることとなる。本実施形態において、排気管422、蒸気導通管340、分岐管351及び蒸気チューブ353は、チャンバ空間430内で発生した蒸気をノズル352へ案内する。したがって、排気管422、蒸気導通管340、分岐管351及び蒸気チューブ353は、蒸気発生器420とノズル352との間で蒸気の流動経路を規定する案内管として例示される。
 上述の如く、間欠的な給水動作を行うポンプ330は、高温のチャンバ空間430に適量の水を出射するので、水は瞬時に蒸発する。この結果、チャンバ空間430の内圧は急激に増大する。したがって、蒸気は、ノズル352から高圧で噴射され、収容槽200の内部空間を上下に横切ることとなる。回転ドラム210の下端付近には、重力によって衣類が集まりやすい。収容槽200の上部に取り付けられたノズル352から噴射された蒸気は、回転ドラム210の下端付近に到達するので、蒸気は衣類に効率的に供給されることとなる。
 分岐管351は、蒸気導通管340に接続される親管354と、親管354から上方に屈曲する上子管355と、親管354から下方に屈曲する下子管356と、を備える。上子管355は、分岐管351の分岐点よりも上方に位置する。親管354には、蒸気導通管340を通じて、蒸気又は水が流入する。上子管355は、蒸気チューブ353に接続され、蒸気がノズル352に向かう上向きの経路を規定する。本実施形態において、上子管355及び蒸気チューブ353は、第1管として例示される。
 下子管356は、上子管355とは異なり、下向きの経路を規定する。ポンプ330が連続的な給水動作を行っている間、蒸気導通管340を通じて分岐管351に流入した水は、重力作用によって、下子管356を通じて、流下する。本実施形態において、下子管356は、第2管として例示される。
 図14には、親管354と上子管355との間の挟角θ1が示されている。また、図14は、親管354と下子管356との間の挟角θ2も示す。挟角θ1は、鈍角である一方で、挟角θ2は鋭角である。挟角θ2は鋭角であるので、親管354から下子管356への配管損失は比較的大きい。したがって、親管354に流入した蒸気は、下子管356へほとんど流れず、上子管355へ主に流れる。一方、上子管355は上向きの流動経路を規定するので、親管354へ流入した水は、重力の作用により、上子管355へほとんど流れず、下子管356へ主に流れる。したがって、蒸気の流動経路と水の流動経路とが適切に分離される。
 下子管356へ流入した水は、重力作用によって、流下する。この結果、回転ドラム210と水槽220の間に導かれることとなる。下子管356へ流入した水に含まれるスケールは、その後、排水管路185を通じて、筐体110の外に排出される。本実施形態において、排水管路185は、排水経路として例示される。
 <間欠的なポンプの動作>
 図15は、ポンプ330の間欠動作とチャンバ空間430内の温度との関係を概略的に表すグラフである。図10、図13及び図15を用いて、ポンプ330の間欠動作が説明される。
 図15に示される如く、ポンプ330が作動している期間(ON期間)は、ポンプ330が停止している期間(OFF期間)と比べて短く設定される。この結果、適量の水がチャンバ空間430内に出射される。
 ON期間において、チャンバ空間430に所定量の水が供給される。この結果、水は蒸発し、蒸気となる。水から蒸気への相変化に起因する気化熱によって、チャンバ空間430の温度は一時的に低下する。上述の如く、OFF期間は比較的長く設定されているので、ヒータ425は、OFF期間の間にチャンバ空間430を十分に昇温することができる。したがって、ポンプ330が間欠動作を行っている間、高圧の蒸気が収容槽200に供給され続ける。特に、OFF期間の間にチャンバ空間430が十分に昇温され、ON期間において、チャンバ空間430を含む蒸気発生器420が有する熱エネルギに対して、瞬時に蒸発する適量の水が供給される(例えば、約2cc/回)ことで、良好に高圧の蒸気が収容槽200に供給され続けることなる。
 <洗い工程における蒸気の利用>
 図16は、洗い工程において用いられる洗濯機100の様々な要素を表す概略的なブロック図である。図1、図13及び図16を用いて洗い工程における洗濯機100の動作が説明される。
 洗濯機100は、分配部141、温水ヒータ160及びヒータ425に加えて、制御部122、水温検出部161及び水位検出部162を備える。水温検出部161は、収容槽200が貯える洗濯水の温度を検出する。水温検出部161として、水槽220に取り付けられた温度センサ(図示せず)が例示される。水位検出部162は、収容槽200内の洗濯水の水位を検出する。水位検出部162は、水槽220に取り付けられた水位センサ(図示せず)、第2給水弁142及び/又は第3給水弁143から水槽220へ至る経路に取り付けられた流量計や第2給水弁142及び/又は第3給水弁143の開時刻から計時するタイマであってもよい。
 制御部122は、分配部141を制御し、第2給水弁142及び第3給水弁143を開き、収容槽200へ洗濯水を供給する。この間、制御部122は、サーミスタ426とヒータ425との間でのフィードバック制御の下、蒸気発生器420を加熱してもよい。
 水位検出部162は、収容槽200内の洗濯水の水位に関する情報を含む検出信号を制御部122へ出力する。制御部122は、水位検出部162からの検出信号に基づき、温水ヒータ160が洗濯水に浸されているか否かを判定する。温水ヒータ160が洗濯水に浸されているならば、制御部122は、温水ヒータ160を作動させる。
 水温検出部161は、収容槽200内の洗濯水の温度に関する情報を含む検出信号を制御部122へ出力する。制御部122は、水温検出部161からの検出信号に基づき、洗濯水が所定の温度になったか否かを判定する。洗濯水が所定の温度に到達しているならば、温水ヒータ160を停止させる。その後、制御部122は、ポンプ330(蒸気供給機構300:給水機構500)を作動させる。ポンプ330が動作している間、制御部122は、水位センサ321と第1給水弁310とのフィードバック制御の下、貯水槽320へ必要に応じて給水する。
 図17は、洗濯水の温度を調整するための制御を表す概略的なフローチャートである。図1、図15乃至図17を用いて、洗濯水の温度を調整するための制御が説明される。
 (ステップS110)
 ステップS110において、制御部122は、第2給水弁142及び/又は第3給水弁143を開き、収容槽200へ給水する。その後、ステップS120が実行される。
 (ステップS120)
 制御部122は、収容槽200内の洗濯水の水位に対して定められた閾値「LTH」に関する情報を予め記憶している。ステップS120において、制御部122は、水位検出部162から出力された検出信号を用いて、収容槽200内の洗濯水の水位と閾値「LTH」とを比較する。洗濯水の水位が、閾値「LTH」を上回るならば、ステップS130が実行される。他の場合には、ステップS110が実行される。尚、洗濯水の水位が、閾値「LTH」を上回っているならば、温水ヒータ160が洗濯水に浸されているように、閾値「LTH」は適切に定められる。
 (ステップS130)
 ステップS130において、制御部122は、温水ヒータ160を作動させる。この結果、洗濯水は急速に加熱される。洗濯水の加熱が開始されると、ステップS140が実行される。
 (ステップS140)
 制御部122は、収容槽200内の洗濯水の温度に対して定められた閾値「TTH」に関する情報を予め記憶している。ステップS140において、制御部122は、水温検出部161から出力された検出信号を用いて、収容槽200内の洗濯水の水温と閾値「TTH」とを比較する。洗濯水の水温が、閾値「TTH」を上回るならば、ステップS150が実行される。他の場合には、ステップS130が実行される。
 (ステップS150)
 ステップS150において、制御部122は、温水ヒータ160を停止させる。その後、ステップS160が実行される。
 (ステップS160)
 ステップS160において、制御部122は、ポンプ330を作動させる。ステップS160におけるポンプ330の動作は、図15を参照して説明された如く、間欠式である。ポンプ330は、洗い工程が終了するまで、間欠的な動作を続けてもよい。
 図18は、洗い工程において水槽220に供給された水の温度の変化を概略的に表すグラフである。図1、図10、図13及び図18を用いて、洗い工程において用いられる蒸気の効果が説明される。
 図18に示される如く、洗い工程が開始されると、水槽220に水が供給される。この間、水槽220内の衣類に含まれる水の温度は、略一定である。その後、温水ヒータ160を用いて、水槽220内の水が加熱される。温水ヒータ160は、大きな熱量を発するので、水槽220内の衣類に含まれる水の温度は急速に上昇する。その後、所定の温度に到達すると、水槽220内の水の加熱は停止される。
 図18において、加熱停止後の点線は、温水ヒータ160による加熱が停止され、且つ、蒸気の供給がないときの衣類に含まれる水の温度の変化を表す。加熱停止後の実線は、温水ヒータ160による加熱が停止され、且つ、蒸気が収容槽200に供給されているときの衣類に含まれる水の温度の変化を表す。
 収容槽200へ供給される蒸気は、上述の如く、高温であり、また、衣類に向けて直接的に供給されるので、水槽220内の衣類に含まれる水の温度低下は緩和される。蒸気発生器420に用いられるヒータ425は、水槽220に取り付けられた温水ヒータ160よりも少ない電力を消費する。したがって、温水ヒータ160を用いた水槽220内の水の保温と比べて、蒸気供給による保温は、少ない消費電力量を達成することができる。したがって、ポンプ330は、温水ヒータ160の停止後、間欠的な給水動作をすることが好ましい。
 <脱水工程における蒸気の利用>
 図1、図13及び図14を用いて、脱水工程において用いられる蒸気の効果が説明される。
 脱水工程において、回転ドラム210は、高速で回転される。図1に示される如く、回転ドラム210の周壁211には、多数の小孔219が形成されている。回転ドラム210内に収容された衣類は、回転ドラム210の回転によって生じた遠心力により周壁211に押しつけられる。この結果、衣類に含まれる水分は、小孔219を通じて、回転ドラム210外へ放出される。かくして、衣類は、適切に脱水される。
 脱水された衣類の繊維は、互いに水素結合しやすい。繊維同士の水素結合は、衣類の皺に帰結する。回転ドラム210内に蒸気が供給されるならば、蒸気は繊維間の水素結合を解除する。この結果、衣類の皺が低減される。したがって、衣類が脱水処理を受けている間、ポンプ330が間欠的な給水動作を実行することが好ましい。間欠的な給水動作の結果、ノズル352から高圧で蒸気が回転ドラム210内に噴射される。上述の如く、ノズル352から噴射された蒸気は、収容槽200を横切るので、蒸気は、周壁211に張り付いて回転する衣類に満遍なく吹き付けられる。この結果、回転ドラム210内の衣類全体に亘って、皺が生じにくくなる。
 図19A乃至図19Cは、脱水工程中における蒸気供給のタイミングを表す概略的なタイミングチャートである。図1、図19A乃至図19Cを用いて、蒸気供給のタイミングが説明される。
 図19Aに示される如く、蒸気供給機構300は、脱水工程の開始から所定期間(T1)を経過した後、蒸気の供給を開始してもよい。この場合、衣類が含む水分が少ないので、衣類は、蒸気の熱量及び水分によって効率的に湿潤される。図19B及び図19Cに示される如く、蒸気供給機構300は、脱水工程の開始に同期して、蒸気の供給を開始してもよい。この場合、衣類は、脱水工程の初期に昇温されるので、衣類は効果的に高温で湿潤されることとなる。図19A及び図19Bに示される如く、蒸気供給機構300は、脱水工程の一部の期間に蒸気を供給してもよい。図19Cに示される如く、蒸気供給機構300が蒸気を供給する期間は、脱水工程の開始から終了までの期間に一致してもよい。
 <扉体に対する制御>
 図20は、洗濯機100の概略的な斜視図である。図1及び図20を用いて、扉体120に対する制御構造が説明される。
 図20に示される扉体120は、図1に示される扉体120とは異なり、投入口119を開放する開位置に存する。洗濯機100は、扉体120を閉位置でロックするロック機構121を備える。閉位置に存する扉体120は、図1に示される如く、収容槽200を閉塞する。
 ロック機構121は、扉体120に取り付けられたフック部123を備える。筐体110の前壁111には、フック部123に対応して形成されたロック穴124が形成される。扉体120が閉位置にある間、フック部123は、ロック穴124に挿入される。
 図21は、ロック穴124の周囲における前壁111の概略的な断面図である。図20及び図21を用いて、ロック機構121が更に説明される。
 ロック機構121は、前壁111と協働してロック穴124を形成するロック箱125を備える。ロック箱125は、前壁111に取り付けられるロック筐体126と、ロック筐体126内に配設されたロック片127と、を含む。ロック片127は、ロック筐体126内で上下に移動する。
 図22A乃至図22Cは、ロック機構121の動作を概略的に表す断面図である。図1、図20乃至図22Cを用いて、ロック機構121の動作が説明される。
 図21及び図22Aに示されるロック片127は、ロック片127の移動ストロークの上端位置に存する。ロック片127には、上端位置においてロック穴124と連通する凹部128が形成される。
 扉体120が開位置に存する間(図20参照)、ロック片127は、上端位置に存する。扉体120がその後閉位置へ移動すると、フック部123は、ロック穴124を通じて、凹部128へ挿入される。図22B及び図22Cに示される如く、ロック片127が下方に変位すると、フック部123は、前壁111に取り付けられたロック筐体126に係合する。その後、ロック片127が上方へ変位すると、フック部123とロック筐体126との間の係合は、解消される。
 図23は、蒸気発生器420の温度に基づく扉体120に対する制御構造を概略的に表すブロック図である。図1、図8B、図22A乃至図23を用いて、扉体120に対する制御が説明される。
 図8Bを参照して説明されたサーミスタ426は、主片423の温度を検出する。サーミスタ426は、検出された温度に応じた検出信号を制御部122へ出力する。
 制御部122は、サーミスタ426から出力された検出信号が所定の値以下の温度を指し示すまで、ロック機構121による扉体120のロックを維持する。この結果、蒸気発生器420が所定の温度以下となるまで、収容槽200の内部空間は外部から隔離される。したがって、洗濯機100は、非常に安全になる。
 図24は、蒸気発生器420の温度に基づく扉体120に対する制御の概略的なフローチャートである。図13、図15、図23及び図24を用いて、扉体120に対する制御が説明される。
 (ステップS210)
 上述の洗い工程や脱水工程といった蒸気を利用した衣類への処理が完了すると、ステップS210が実行される。尚、蒸気を利用した衣類が処理されている間、扉体120は、ロック機構121によってロックされている。
 ステップS210において、制御部122は、ヒータ425による蒸気発生器420の加熱を停止する。ヒータ425が、制御部122の制御下で、蒸気発生器420の加熱を停止した後、ステップS220が実行される。
 (ステップS220)
 図13を参照して説明された水位センサ321は、貯水槽320内の水位を検出する。水位センサ321は、貯水槽320内の水位に関する情報を含む検出信号を制御部122へ出力する。
 ステップS220において、制御部122は、水位センサ321からの検出信号に基づき、蒸気発生器420の冷却に十分な水量が貯水槽320に貯えられているか否かを判定する。貯水槽320内の水量が不十分ならば、ステップS230が実行される。他の場合には、ステップS240が実行される。
 (ステップS230)
 ステップS230において、制御部122は、第1給水弁310を開く。この結果、貯水槽320は、蒸気発生器420へ供給される水を貯えることができる。その後、ステップS220が再度実行される。
 (ステップS240)
 ステップS240において、制御部122は、第1給水弁310を閉じる。その後、ステップS250が実行される。
 (ステップS250)
 ステップS250において、制御部122は、ポンプ330を制御し、蒸気発生器420へ連続的に給水する。この結果、蒸気発生器420は急速に冷却される。その後、ステップS260が実行される。
 (ステップS260)
 制御部122は、蒸気発生器420の温度に対して定められた閾値「OTH」を予め記憶している。ステップS260において、制御部122は、サーミスタ426からの検出信号が指し示す蒸気発生器420の温度と閾値「OTH」とを比較する。蒸気発生器420の温度が閾値「OTH」を上回っているならば、ステップS250が再度実行される。他の場合には、ステップS270が実行される。したがって、蒸気発生器420の温度が閾値「OTH」以下になるまで、ポンプ330は、制御部122の制御下で、蒸気発生器420へ連続的な給水を継続する。
 ステップS210の前において(即ち、ヒータ425が制御部122の制御下で蒸気発生器420を加熱している間)、ポンプ330は、図15を参照して説明された間欠的な給水動作を行う。ステップS260において、ポンプ330の動作は、連続的な給水動作に切り替えられる。
 (ステップS270)
 ステップS270において、制御部122は、ポンプ330を制御し、蒸気発生器420への連続的な給水を停止する。尚、ポンプ330は、貯水槽320内の水が略完全に消費されるまで、動作を継続してもよい。蒸気発生器420への連続的な給水の停止の後、ステップS280が実行される。
 (ステップS280)
 ステップS280において、制御部122は、ロック機構121を制御し、扉体120のロックを解除する。かくして、制御部122は、サーミスタ426が検出した温度に応じて、ロック機構121によるロック解除のタイミングを適切に制御することができる。
 <第2実施形態>
 図25は、第2実施形態の衣類処理装置として例示される洗濯機に用いられる蒸気発生器420Aの概略的な展開斜視図である。第2実施形態の洗濯機は、蒸気発生器420Aの構造を除いて、第1実施形態の洗濯機100と同様の構造を有する。したがって、第1実施形態との相違点が、以下に説明される。以下の相違点を除いて、第1実施形態の説明は、第2実施形態の洗濯機に適用される。また、第1実施形態と同一の要素に対して、同一の符号が付されている。したがって、第1実施形態の説明は、同一の符号が付された要素に対しても適用される。
 蒸気発生器420Aは、主片423Aと、蓋片424Aと、主片423Aと蓋片424Aとに挟まれるパッキンリング433と、を備える。第1実施形態に関連して説明された主片423とは異なり、主片423Aには、ヒータは取り付けられていない。一方、蓋片424Aには、ヒータ425Aが取り付けられる。
 図26は、蓋片424Aの概略的な斜視図である。図25及び図26を用いて、ヒータ425Aの取付構造が説明される。
 蓋片424Aは、外シールド壁435に取り囲まれた内シールド壁436を備える。内シールド壁436は、主片423Aの内チャンバ壁432と略同形状である。内シールド壁436は、内チャンバ壁432に重なりあう。この結果、チャンバ空間430内に渦巻き状の流動経路が形成される。内シールド壁436に取り囲まれた下面434の領域は、主片423Aに形成された流入口437に対向するので、以下の説明において、「対向領域439」と称される。ヒータ425Aは、対向領域439を取り囲むように、蓋片424A内に取り付けられる。流入口437から流入した水が蓋片424Aに到達するように、水の流速が調整されるならば、対向領域439は特に高温となっているので、瞬時の蒸発が達成される。
 上述された実施形態は、以下の構成を主に備える。
 上述の実施形態に係る衣類処理装置は、衣類を収容する収容槽と、該収容槽へ噴射される蒸気を発生させる蒸気発生器と、該蒸気発生器を加熱するヒータと、前記蒸気を前記収容槽内へ噴射するノズルと、前記蒸気発生器から前記ノズルへ前記蒸気を案内する案内管と、を備える。前記案内管は、前記蒸気が流入する親管と、前記ノズルへ向かう第1管と、該第1管とは異なる第2管と、を有する分岐管を含む。前記第1管は、前記分岐管の分岐部よりも上方に配設される部分を含む。
 上記構成によれば、ヒータによって加熱された蒸気発生器は、衣類を収容する収容槽へ噴射される蒸気を発生させる。蒸気は、ノズルを介して、収容槽内へ噴射される。この結果、衣類は、蒸気を用いて処理されることとなる。
 蒸気発生器からノズルへ蒸気を案内する案内管は、蒸気が流入する親管と、ノズルへ向かう第1管と、第1管とは異なる第2管と、を有する分岐管を含む。第1管は、分岐管の分岐部よりも上方に配設される部分を含むので、蒸気はノズルに適切に案内される。一方、不純物は、重力作用により、第1管には向かいにくくなるので、第2管に向かう。不純物は、第2管を通じて、適切に処理される。
 上記構成において、衣類処理装置は、前記蒸気発生器内へ水を供給する給水機構を備えてもよい。該給水機構が連続的な給水動作をしている間、前記第2管を通じて、前記水が流下してもよい。
 上記構成によれば、給水機構が連続的な給水動作をするならば、蒸気発生器は洗浄される。したがって、熱交換効率の低下を引き起こす不純物の塊が蒸気発生器から除去されるので、蒸気発生器は、蒸気を効率的に発生させることができる。第2管を通じて、水が流下するので、蒸気発生器から分離された不純物の塊は、ノズルに向かいにくくなる。
 上記構成において、前記第1管は、前記親管から上方へ分岐してもよい。前記第2管は、前記親管から下方へ分岐してもよい。前記給水機構が前記蒸気発生器に間欠的に前記水を供給している間、前記蒸気は、前記親管及び前記第1管を通じて、前記ノズルから噴射されてもよい。前記給水機構が前記蒸気発生器に連続的に前記水を供給している間、前記水は前記親管及び前記第2管を通じて、前記収容槽内に流入してもよい。
 上記構成によれば、第1管は、親管から上方へ分岐するので、給水機構が蒸気発生器に間欠的に水を供給している間、蒸気は、親管及び第1管を通じて、ノズルから噴射される。この結果、衣類は、蒸気を用いて処理されることとなる。第2管は、親管から下方へ分岐するので、給水機構が蒸気発生器に連続的に水を供給している間、水は親管及び第2管を通じて、収容槽内に流入する。この結果、蒸気発生器から分離された不純物の塊は、ノズルに詰まりにくくなる。
 上記構成において、前記給水機構は、前記蒸気発生器に前記水を間欠的又は連続的に供給するポンプを含んでもよい。
 上記構成によれば、ポンプは、蒸気発生器に水を間欠的又は連続的に供給するので、ポンプの動作に応じて、蒸気発生及び蒸気発生器の洗浄が選択的になされることとなる。
 上記構成において、前記収容槽は、回転軸を取り囲む円筒形状の周壁を有する回転ドラムと、該回転ドラムを収容する水槽と、を含んでもよい。前記第2管を通じて流下する前記水は、前記回転ドラムと前記水槽との間に導かれてもよい。
 上記構成によれば、第2管を通じて流下する水は、回転軸を取り囲む円筒形状の周壁を有する回転ドラムと回転ドラムを収容する水槽との間に導かれるので、水中に含まれる不純物の塊と衣類との接触は生じにくくなる。
 上記構成において、衣類処理装置は、前記収容槽から排水するための排水経路を更に備えてもよい。前記第2管を通じて流下する前記水は、前記排水経路に導かれてもよい。
 上記構成によれば、第2管を通じて流下する水は、排水経路に導かれるので、蒸気発生器から分離された不純物の塊は、衣類処理装置から適切に排出される。
 上記構成において、前記親管から前記第1管へ向かう前記流動経路の配管抵抗は、前記親管から前記第2管へ向かう前記流動経路の配管抵抗よりも小さくてもよい。
 上記構成によれば、親管から第1管へ向かう流動経路の配管抵抗は、親管から第2管へ向かう流動経路の配管抵抗よりも小さいので、蒸気の多くは、親管を通じて、第1管へ流入する。その後、蒸気は、ノズルから収容槽内へ噴射される。この結果、衣類は、蒸気を用いて適切に処理されることとなる。一方、蒸気発生器へ連続的に供給された水は、重力作用を強く受けるので、親管を通じて、第2管へ流入する。不純物は、連続的に供給された水とともに、親管及び第2管を通じて、収容槽内に流入する。したがって、水中の不純物は適切に処理されることとなる。
 上記構成において、前記親管と前記第1管との間の分岐角は、鈍角であってもよい。前記親管と前記第2管との間の分岐角は、鋭角であってもよい。
 上記構成によれば、親管と第1管との間の分岐角は、鈍角であり、且つ、親管と第2管との間の分岐角は、鋭角であるので、親管から第1管へ向かう流動経路の配管抵抗は、親管から第2管へ向かう流動経路の配管抵抗よりも小さくなる。したがって、蒸気の多くは、親管を通じて、第1管へ流入する。その後、蒸気は、ノズルから収容槽内へ噴射される。この結果、衣類は、蒸気を用いて適切に処理されることとなる。一方、蒸気発生器へ連続的に供給された水は、重力作用を強く受けるので、親管を通じて、第2管へ流入する。不純物は、連続的に供給された水とともに、親管及び第2管を通じて、収容槽内に流入する。したがって、水中の不純物は適切に処理されることとなる。
 上記構成において、前記ヒータによる加熱が停止された後、前記給水機構は前記連続的な給水動作を実行してもよい。
 上記構成によれば、ヒータによる加熱が停止された後、給水機構は連続的な給水動作を実行するので、ヒータによって加熱された蒸気発生器の温度は急速に降下する。
 上記構成において、衣類処理装置は、前記ヒータ及び前記ポンプを制御する制御部を更に備えてもよい。該制御部は、前記ヒータによる前記蒸気発生器への加熱を停止した後に、前記ポンプに前記蒸気発生器へ連続的に前記水を供給させてもよい。
 上記構成によれば、制御部は、ヒータによる蒸気発生器への加熱を停止した後に、ポンプに蒸気発生器へ連続的に前記水を供給させるので、ヒータによって加熱された蒸気発生器の温度は急速に降下する。
 上記構成において、衣類処理装置は、前記蒸気発生器の温度を検出する検出部を更に備えてもよい。前記制御部は、前記検出部が検出した前記温度が所定の温度以下になるまで、前記ポンプに、前記蒸気発生器へ連続的に前記水を供給させてもよい。
 上記構成によれば、検出部は、ヒータによって加熱された蒸気発生器の温度を検出する。制御部は、検出部が検出した温度が所定の温度以下になるまで、ポンプに、蒸気発生器へ連続的に水を供給させるので、ヒータによって加熱された蒸気発生器の温度は急速に降下する。
 上述の実施形態の原理は、蒸気を用いて衣類を処理する装置に好適に利用される。

Claims (11)

  1.  衣類を収容する収容槽と、
     該収容槽へ噴射される蒸気を発生させる蒸気発生器と、
     該蒸気発生器を加熱するヒータと、
     前記蒸気を前記収容槽内へ噴射するノズルと、
     前記蒸気発生器から前記ノズルへ前記蒸気を案内する案内管と、を備え、
     該案内管は、前記蒸気が流入する親管と、前記ノズルへ向かう第1管と、該第1管とは異なる第2管と、を有する分岐管を含み、
     前記第1管は、前記分岐管の分岐部よりも上方に配設される部分を含むことを特徴とする衣類処理装置。
  2.  前記蒸気発生器内へ水を供給する給水機構を備え、
     該給水機構が連続的な給水動作をしている間、前記第2管を通じて、前記水が流下することを特徴とする請求項1に記載の衣類処理装置。
  3.  前記第1管は、前記親管から上方へ分岐し、
     前記第2管は、前記親管から下方へ分岐し、
     前記給水機構が前記蒸気発生器に間欠的に前記水を供給している間、前記蒸気は、前記親管及び前記第1管を通じて、前記ノズルから噴射され、
     前記給水機構が前記蒸気発生器に連続的に前記水を供給している間、前記水は前記親管及び前記第2管を通じて、前記収容槽内に流入することを特徴とする請求項2に記載の衣類処理装置。
  4.  前記給水機構は、前記蒸気発生器に前記水を間欠的又は連続的に供給するポンプを含むことを特徴とする請求項2又は3に記載の衣類処理装置。
  5.  前記収容槽は、回転軸を取り囲む円筒形状の周壁を有する回転ドラムと、該回転ドラムを収容する水槽と、を含み、
     前記第2管を通じて流下する前記水は、前記回転ドラムと前記水槽との間に導かれることを特徴とする請求項4に記載の衣類処理装置。
  6.  前記収容槽から排水するための排水経路を更に備え、
     前記第2管を通じて流下する前記水は、前記排水経路に導かれることを特徴とする請求項4又は5に記載の衣類処理装置。
  7.  前記親管から前記第1管へ向かう流動経路の配管抵抗は、前記親管から前記第2管へ向かう流動経路の配管抵抗よりも小さいことを特徴とする請求項4乃至6のいずれか1項に記載の衣類処理装置。
  8.  前記親管と前記第1管との間の分岐角は、鈍角であり、
     前記親管と前記第2管との間の分岐角は、鋭角であることを特徴とする請求項7に記載の衣類処理装置。
  9.  前記ヒータによる加熱が停止された後、前記給水機構は前記連続的な給水動作を実行することを特徴とする請求項2乃至8のいずれか1項に記載の衣類処理装置。
  10.  前記ヒータ及び前記ポンプを制御する制御部を更に備え、
     該制御部は、前記ヒータによる前記蒸気発生器への加熱を停止した後に、前記ポンプに前記蒸気発生器へ連続的に前記水を供給させることを特徴とする請求項4乃至8のいずれか1項に記載の衣類処理装置。
  11.  前記蒸気発生器の温度を検出する検出部を更に備え、
     前記制御部は、前記検出部が検出した前記温度が所定の温度以下になるまで、前記ポンプに、前記蒸気発生器へ連続的に前記水を供給させることを特徴とする請求項10に記載の衣類処理装置。
PCT/JP2013/003407 2012-06-06 2013-05-29 衣類処理装置 WO2013183257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI201330596A SI2860298T1 (sl) 2012-06-06 2013-05-29 Naprava za obdelavo oblačil
EP13800119.3A EP2860298B1 (en) 2012-06-06 2013-05-29 Clothes treatment device
CN201380016342.6A CN104204333B (zh) 2012-06-06 2013-05-29 衣物处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012128810A JP6074922B2 (ja) 2012-06-06 2012-06-06 衣類処理装置
JP2012-128810 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183257A1 true WO2013183257A1 (ja) 2013-12-12

Family

ID=49711665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003407 WO2013183257A1 (ja) 2012-06-06 2013-05-29 衣類処理装置

Country Status (5)

Country Link
EP (1) EP2860298B1 (ja)
JP (1) JP6074922B2 (ja)
CN (1) CN104204333B (ja)
SI (1) SI2860298T1 (ja)
WO (1) WO2013183257A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567234A (zh) * 2015-10-09 2017-04-19 青岛海尔洗衣机有限公司 一体式加热和蒸汽发生器及具有它的干衣机
CN105544133B (zh) * 2016-02-19 2018-07-17 拓卡奔马机电科技有限公司 一种用于铺布机熨烫的加热喷雾装置
RU2764136C1 (ru) * 2018-06-27 2022-01-13 ЭлДжи ЭЛЕКТРОНИКС ИНК. Стиральная машина
CN111334974A (zh) * 2018-12-18 2020-06-26 青岛海尔滚筒洗衣机有限公司 衣物处理设备的控制方法及衣物处理设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313793A (ja) * 2003-04-14 2004-11-11 Lg Electronics Inc 蒸気噴射式洗濯機の洗濯方法
JP2005058741A (ja) * 2003-08-13 2005-03-10 Lg Electronics Inc 洗濯機の洗濯方法及びその装置
EP1863968A1 (en) 2005-03-25 2007-12-12 LG Electronics Inc. Washing machine having steam generator
JP2009213693A (ja) * 2008-03-11 2009-09-24 Toshiba Corp ドラム式洗濯機
JP2009285203A (ja) * 2008-05-29 2009-12-10 Asahi Seisakusho:Kk 殺菌機能付洗濯機及び殺菌洗浄方法
JP2011092540A (ja) * 2009-10-30 2011-05-12 Sharp Corp 洗濯機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406842B2 (en) * 2003-08-13 2008-08-05 Lg Electronics Inc. Washing machine
KR101328918B1 (ko) * 2006-07-10 2013-11-14 엘지전자 주식회사 세탁장치 및 그 운전방법
KR101556150B1 (ko) * 2008-12-31 2015-09-30 엘지전자 주식회사 드럼세탁기
JP2013208248A (ja) * 2012-03-30 2013-10-10 Panasonic Corp 衣類処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313793A (ja) * 2003-04-14 2004-11-11 Lg Electronics Inc 蒸気噴射式洗濯機の洗濯方法
JP2005058741A (ja) * 2003-08-13 2005-03-10 Lg Electronics Inc 洗濯機の洗濯方法及びその装置
EP1863968A1 (en) 2005-03-25 2007-12-12 LG Electronics Inc. Washing machine having steam generator
JP2009213693A (ja) * 2008-03-11 2009-09-24 Toshiba Corp ドラム式洗濯機
JP2009285203A (ja) * 2008-05-29 2009-12-10 Asahi Seisakusho:Kk 殺菌機能付洗濯機及び殺菌洗浄方法
JP2011092540A (ja) * 2009-10-30 2011-05-12 Sharp Corp 洗濯機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860298A4

Also Published As

Publication number Publication date
CN104204333A (zh) 2014-12-10
CN104204333B (zh) 2016-06-29
EP2860298A1 (en) 2015-04-15
JP2013252238A (ja) 2013-12-19
JP6074922B2 (ja) 2017-02-08
SI2860298T1 (sl) 2017-05-31
EP2860298A4 (en) 2015-09-16
EP2860298B1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6244536B2 (ja) 衣類処理装置
JP6074922B2 (ja) 衣類処理装置
WO2013183259A1 (ja) 衣類処理装置
WO2013183256A1 (ja) 衣類処理装置
JP2014054400A (ja) 衣類処理装置
WO2013183258A1 (ja) 洗濯機
JP2014171561A (ja) 衣類処理装置
WO2013145064A1 (ja) 衣類処理装置
WO2013145063A1 (ja) 衣類処理装置
JP2013208249A (ja) 衣類処理装置
JP2014004054A (ja) 衣類処理装置
EP2832914B1 (en) Clothes treatment device
WO2013145068A1 (ja) 衣類処理装置
JP2014033845A (ja) 衣類処理装置
JP2014004056A (ja) 衣類処理装置
JP2014004059A (ja) 衣類処理装置
JP2014050506A (ja) 衣類処理装置
JP2017148092A (ja) 衣類処理装置
WO2013145066A1 (ja) 衣類処理装置
JP2014004062A (ja) 衣類処理装置
JP2018134263A (ja) 衣類処理装置
JP2017029499A (ja) 衣類処理装置
JP2014042700A (ja) 衣類処理装置
JP2020065624A (ja) 衣類処理装置
JP2014023674A (ja) 衣類処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800119

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013800119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013800119

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE