WO2013182465A1 - Procédé de production de pipérazine - Google Patents

Procédé de production de pipérazine Download PDF

Info

Publication number
WO2013182465A1
WO2013182465A1 PCT/EP2013/061081 EP2013061081W WO2013182465A1 WO 2013182465 A1 WO2013182465 A1 WO 2013182465A1 EP 2013061081 W EP2013061081 W EP 2013061081W WO 2013182465 A1 WO2013182465 A1 WO 2013182465A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
ammonia
catalyst
deoa
distillation
Prior art date
Application number
PCT/EP2013/061081
Other languages
German (de)
English (en)
Inventor
Roland Bou Chedid
Johann-Peter Melder
Ulrich Abel
Roman Dostalek
Nina Challand
Bernd Stein
Michael Jödecke
Original Assignee
Basf Se
Basf Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf Schweiz Ag filed Critical Basf Se
Publication of WO2013182465A1 publication Critical patent/WO2013182465A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/023Preparation; Separation; Stabilisation; Use of additives

Definitions

  • the present invention relates to a process for the preparation of piperazine of the formula I.
  • Piperazine finds inter alia. Use as intermediate in the preparation of fuel additives (US 3,275,554 A, DE 21 25 039 A and DE 36 1 1 230 A), surfactants, pharmaceutical and plant protection agents, hardeners for epoxy resins, catalysts for polyurethanes, intermediates for the preparation of quaternary ammonium compounds, plasticizers, corrosion inhibitors,
  • WO 03/051508 A1 (Huntsman Petrochemical Corp.) relates to processes for the amination of alcohols using specific Cu / Ni / Zr / Sn-containing catalysts which in another embodiment contain Cr instead of Zr (see page 4, lines 10) -16).
  • the catalysts described in this WO application contain no alumina and no cobalt.
  • WO 2008/006750 A1 (BASF AG) relates to certain Pb, Bi, Sn, Sb and / or in-doped, zirconium dioxide, copper, nickel and cobalt-containing catalysts and their use in processes for the preparation of an amine by reacting a primary or secondary alcohols, aldehydes and / or ketones with hydrogen and ammonia, a primary or secondary amine.
  • Aluminum oxide carriers are not taught.
  • WO 2009/080507 A1 (BASF SE) relates to certain Sn- and Co-doped, zirconium dioxide, copper and nickel-containing catalysts and their use in processes for preparing an amine by reacting a primary or secondary alcohol, aldehyde and / or ketone with hydrogen and ammonia, a primary or secondary amine.
  • Aluminum oxide carriers are not taught.
  • WO 2009/080506 A1 (BASF SE) describes certain Pb, Bi, Sn, Mo, Sb and / or P-doped, zirconium dioxide, nickel and iron-containing catalysts and their use in processes for preparing an amine by reacting a primary or secondary Alcohols, aldehydes and / or ketones with hydrogen and ammonia, a primary or secondary amine.
  • Aluminum oxide carriers are not taught.
  • the catalysts preferably contain no Cu and no Co.
  • WO 2009/080508 A1 (BASF SE) teaches certain Pb, Bi, Sn and / or Sb-doped, zirconium dioxide, copper, nickel, cobalt and iron-containing catalysts and their use in processes for the preparation of an amine by reacting a primary or secondary alcohol, aldehyde and / or ketone with hydrogen and ammonia, a primary or secondary amine.
  • Aluminum oxide carriers are not taught.
  • WO 201 1/067199 A1 (BASF SE) relates to certain catalysts comprising aluminum oxide, copper, nickel, cobalt and tin and their use in processes for the preparation of an amine from a primary or secondary alcohol, aldehyde and / or ketone.
  • WO 201/157710 A1 (BASF SE) describes the preparation of certain cyclic tertiary methylamines, wherein an amino alcohol from the group 1, 4-aminobutanol, 1, 5-aminopentanol, aminodiglycol (ADG) or aminoethyl ethanolamine, with methanol at elevated temperature in the presence of a copper-containing heterogeneous catalyst in the liquid phase.
  • WO 2012/049101 A1 (BASF SE) relates to a process for preparing certain cyclic tertiary amines by reacting an amino alcohol from the group 1, 4-aminobutanol, 1, 5-aminopentanol, aminodiglycol (ADG) or aminoethyl-ethanolamine, with a reacting certain primary or secondary alcohol at elevated temperature in the presence of a copper-containing heterogeneous catalyst in the liquid phase.
  • ADG aminodiglycol
  • EP 696 572 A (BASF AG) relates to aminating hydrogenations using Zr2 / CuO / NiO / M0O3 catalysts.
  • the preparation of, inter alia, piperazines from polybasic alcohols is mentioned on page 4, lines 39-40. It was an object of the present invention to improve the economy of previous processes for the preparation of piperazine of the formula I and to remedy a disadvantage or several disadvantages of the prior art. It should be found conditions which are technically easy to prepare and which allow the process with high conversion, high yield, space-time yields (RZA), selectivity coupled with high mechanical stability of the catalyst molding and lower .
  • RZA space-time yields
  • oxygen-containing compounds of molybdenum calculated as M0O3, and containing the reaction in the liquid phase at an absolute pressure in the range of 160 to 220 bar, a temperature in the range of 180 to 220 ° C, using ammonia in a molar ratio to used DEOA of 5 to 20 and in the presence of 0.2 to 9.0% by weight of hydrogen, based on the total amount of DEOA and ammonia used.
  • the process can be carried out continuously or batchwise. Preferred is a continuous driving style.
  • the starting materials (DEOA, ammonia) are evaporated in a circulating gas stream and fed to the reactor in gaseous form.
  • the educts (DEOA, ammonia) can also be evaporated as aqueous solutions and passed with the circulating gas stream on the catalyst bed.
  • Preferred reactors are tubular reactors. Examples of suitable reactors with recycle gas stream can be found in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. B 4, pages 199-238, "Fixed-Bed Reactors".
  • reaction is advantageously carried out in a tube bundle reactor or in a monostane system.
  • the tubular reactor in which the reaction takes place can consist of a series connection of several (eg two or three) individual tubular reactors.
  • an intermediate feed of feed (containing the DEOA and / or ammonia and / or H) and / or circulating gas and / or reactor discharge from a downstream reactor is advantageously possible here.
  • the cycle gas preferably contains at least 10, especially 50 to 100, especially 80 to 100, vol.% H 2 .
  • the catalysts are preferably used in the form of catalysts which consist only of catalytically active material and optionally a deformation aid (such as graphite or stearic acid), if the catalyst is used as a shaped body, ie no further catalytic contain active accompanying substances.
  • a deformation aid such as graphite or stearic acid
  • oxide carrier zirconium dioxide (Zr0 2 ) is considered as belonging to the catalytically active mass.
  • monoclinic, tetragonal or cubic modification is preferred. Particularly preferred is the monoclinic modification.
  • the catalysts are used in such a way that the catalytically active mass ground to powder is introduced into the reaction vessel or that the catalytically active composition after grinding, mixing with molding aids, shaping and heat treatment as Katalysatorformkorper- example, as tablets, spheres, rings , Extrudates (eg strands) - in the reactor arranges.
  • the concentration data (in% by weight) of the components of the catalyst are in each case, if not stated otherwise, the catalytically active composition of the finished catalyst after its last heat treatment and before its reduction with hydrogen.
  • the catalytically active mass of the catalyst, after its last heat treatment and before its reduction with hydrogen is defined as the sum of the masses of the catalytically active constituents and of the abovementioned catalyst support material and contains essentially the following constituents:
  • ZrO2 Zirconium dioxide
  • oxygen-containing compounds of copper and nickel and possibly molybdenum are examples of zirconium dioxide (ZrO2) and oxygen-containing compounds of copper and nickel and possibly molybdenum.
  • Components of the catalytically active composition are usually from 70 to 100% by weight, preferably from 80 to 100% by weight, particularly preferably from 90 to 100% by weight, especially> 95% by weight, very particularly> 98% by weight , in particular> 99 wt .-%, z. B. particularly preferably 100 wt .-%.
  • the catalytically active composition of the catalysts according to the invention and used in the process according to the invention may further contain one or more elements (oxidation state 0) or their inorganic or organic compounds selected from groups I A to VI A and I B to VI I B and VII I of the Periodic Table.
  • Transition metals such as Mn or MnÜ2, Mo or M0O3, W or tungsten oxides, Ta or tantalum oxides, Nb or niobium oxides or niobium oxalate, V or vanadium oxides or vanadyl pyrophosphate; Lanthanides, such as Ce or CeO 2 or Pr or P ⁇ C; Alkaline earth metal oxides, such as SrO; Alkaline earth metal carbonates such as MgCO-3, CaCO-3 and BaCO-3; Alkali metal oxides such as Na 2 O, K 2 O; Alkali metal carbonates such as U2CO3, Na2CÜ3 and K2CO3; Boron oxide (B2O3).
  • Mn or MnÜ2, Mo or M0O3, W or tungsten oxides, Ta or tantalum oxides, Nb or niobium oxides or niobium oxalate, V or vanadium oxides or vanadyl pyrophosphate Lanthanides, such
  • the catalytically active composition of the catalyst preferably contains no oxygen-containing compounds of silicon and / or chromium.
  • the catalytically active composition of the catalyst preferably contains no oxygen-containing compounds of titanium and / or of aluminum.
  • the catalytically active material is not doped with other metals or metal compounds.
  • the catalysts can be prepared by known methods, for. B. by precipitation, precipitation, impregnation, be prepared.
  • Preferred heterogeneous catalysts contain in their catalytically active composition prior to reduction with hydrogen 20 to 85 wt .-%, preferably 20 to 65 wt .-%, particularly preferably 22 to 40 wt .-%, oxygen-containing compounds of zirconium, calculated as ZrÜ2 .
  • heterogeneous catalysts in the process according to the invention are catalysts disclosed in EP 382 049 A (BASF AG) or correspondingly preparable, their catalytically active composition before treatment with hydrogen
  • the catalyst is preferably at a temperature in the range of 100 to 500 ° C, especially 150 to 400 ° C, especially 180 to 300 ° C, over a period of at least 25 min., Particularly at least 60 min., A hydrogen containing atmosphere or a hydrogen atmosphere.
  • the period of activation of the catalyst may be up to 1 h, especially up to 12 h, in particular up to 24 h.
  • at least a portion of the oxygen-containing metal compounds present in the catalysts is reduced to the corresponding metals, so that they are present together with the various oxygen compounds in the active form of the catalyst.
  • the inventive method is preferably carried out continuously, wherein the catalyst is preferably arranged as a fixed bed in the reactor. Both an inflow of the fixed catalyst bed from above and from below is possible.
  • the ammonia is used in an amount of from 5 to 20 times the molar amount, preferably from 6 to 18 times the molar amount, more preferably from 7 to 17 times the molar amount, in particular from 9 to 16 times the molar amount, in particular from 10 to 10 molar amounts. up to 15 times the molar amount, eg 12 to 14 times the molar amount, in each case based on the DEOA used.
  • the ammonia can be used as an aqueous solution, especially as a 30 to 90% strength by weight aqueous solution. It is preferably used without further solvent (compressed gas, purity especially 95 to 100 wt .-% strength).
  • the starting material DEOA is preferably used as an aqueous solution, in particular as a 75 to 95% strength by weight aqueous solution, for example 80% strength by weight aqueous solution.
  • Catalyst volume data always refer to the bulk volume.
  • the amination of the primary alcohol groups of the starting material DEOA is carried out in the liquid phase.
  • the fixed bed process is in the liquid phase.
  • the reactants (DEOA, ammonia) are passed on, preferably simultaneously, in the liquid phase at pressures of from 16.0 to 22.0 MPa (160 to 220 bar), preferably from 17.0 to 22.0 MPa preferably 18.0 to 21, 0 MPa, more preferably 19.0 to 20.0 MPa, and temperatures of 180 to 220 ° C, especially 185 to 215 ° C, preferably 190 to 210 ° C, in particular 190 to 205 ° C. , including hydrogen over the catalyst, which is usually located in a preferably heated from the outside fixed bed reactor. It is both a trickle way and a sumping possible.
  • the catalyst loading is generally in the range of 0.3 to 0.8, preferably 0.4 to 0.7, particularly preferably 0.5 to 0.6 kg, DEOA per liter of catalyst (bulk volume) and hour (DEOA calculated as 100 % strength).
  • a dilution of the starting materials with a suitable solvent such as water, tetrahydrofuran, dioxane, N-methylpyrrolidone or ethylene glycol dimethyl ether, take place. It is expedient to heat the reactants before they are introduced into the reaction vessel, preferably to the reaction temperature.
  • the pressure in the reaction vessel which results from the sum of the partial pressures of the ammonia, the DEOA and the reaction products formed and optionally the solvent used at the indicated temperatures, is expediently increased to the desired reaction pressure by pressing on hydrogen.
  • the excess ammonia can be recycled together with the hydrogen.
  • the catalyst is arranged as a fixed bed, it may be advantageous for the selectivity of the reaction to mix the shaped catalyst bodies in the reactor with inert fillers, so to speak to "dilute" them.
  • the proportion of fillers in such catalyst preparations may be 20 to 80, especially 30 to 60 and especially 40 to 50 parts by volume.
  • the reaction water formed in the course of the reaction in each case one mole per mole of reacted alcohol group
  • the reaction water formed in the course of the reaction generally has an effect on the degree of conversion, the reaction rate speed, the selectivity and the catalyst life is not disturbing and is therefore expediently removed only during the work-up of the reaction product from this, z. B. distillative.
  • the excess hydrogen and the excess amination agent present, if any, are removed from the reaction effluent and the reaction crude product obtained is purified, for. B. by a fractional rectification. Suitable work-up procedures are for.
  • EP 1 312 600 A and EP 1 312 599 A both BASF AG.
  • the excess primary amine and the hydrogen are advantageously returned to the reaction zone. The same applies to the possibly not fully implemented DEOA.
  • a work-up of the product of the reaction is preferably configured as follows: From the reaction product of the reaction by distillation
  • step iv optionally present unreacted DEOA (II) and / or optionally present aminoethylethanolamine as a by-product with the formula III separated overhead and recycled to the reaction.
  • step i separated ammonia having a purity of 90 to 99.9 wt .-%, particularly 95 to 99.9 wt .-% is preferably recycled to the reaction, wherein a portion of the separated ammonia, especially 1 to 30 wt. -% of the separated ammonia, further particularly 2 to 20 wt .-% of the separated ammonia, can be discharged.
  • distillation stage 1 D1
  • reaction stage 2 R2 in D1 separated MEOA wholly or partially, preferably completely, in a second reaction stage in the presence of an amination catalyst continuously with
  • reaction stage 3 R3
  • DEOA separated in D1 completely or partially, preferably completely, in a third reaction stage by the method as described above with ammonia In the first reaction stage, ethylene oxide (EO) is preferably reacted with ammonia in the presence of water as catalyst.
  • EO ethylene oxide
  • the amination catalyst used in the second reaction stage (R2) is preferably a Cu-containing heterogeneous catalyst, more preferably a Cu- and Ni-containing heterogeneous catalyst, especially a Cu- and Ni- and Co-containing heterogeneous catalyst, especially the one disclosed in DE 19 53 263 A (BASF AG) disclosed Cu / Ni / Co / Al 2 0 3 - catalyst used.
  • FIG. 1 shows schematically a particularly preferred embodiment of the integrated method.
  • distillation stage 4 In the distillation stage 4 (D4) optionally incurred MEOA is advantageously recycled to the second reaction stage (R2).
  • Figure 2 shows schematically a further particularly preferred embodiment of the integrated method.
  • Catalyst A a Cu / Ni / Mo / ZrO 2 catalyst as disclosed in EP 696 572 A1 (BASF AG), was prepared by precipitation, filtration, heat treatment and tableting (6 ⁇ 3 mm tablets).
  • the catalyst had the following composition before its treatment (activation) with hydrogen: 50 wt .-% NiO, 17 wt .-% CuO and 1, 5 wt .-% Mo0 3 on Zr0 2 (31, 5 wt .-%).
  • a heated tubular reactor with 14 mm inner diameter, a centrally mounted thermocouple and a total volume of 1000 ml was filled in the lower part with a layer of glass beads (250 ml), then filled with 500 ml of the reduced catalyst A and finally the remaining part with glass beads.
  • the reactor was maintained at a temperature of about 185 to 200 ° C and a total pressure of 200 bar.
  • the reaction temperature was chosen so that a DEOA conversion of> 90% was achieved.
  • the mixture leaving the reactor was cooled and vented to atmospheric pressure.
  • samples were taken from the reaction mixture and analyzed by gas chromatography.
  • a 30 m long GC column "RTX-5 Amines” was used, with a temperature program: 70 ° C / 5 min, heat to 280 ° C at a rate of 5 ° C / min, at 280 ° C / 10 minutes.
  • the workup may preferably be carried out by the following five steps:
  • reaction stage 1 The reaction of EO with NH3, catalyzed homogeneously with water, was carried out continuously at a NH 3 : EO molar ratio (MV) of 10 (reaction stage 1).
  • the ethanolamines were separated by distillation (distillation stage 1).

Abstract

Procédé de production de pipérazine de formule I par mise en réaction de diéthanolamine (DEOA) de formule II avec de l'ammoniac (NH3) en présence d'hydrogène et d'un catalyseur supporté contenant du métal, caractérisé en ce que la masse catalytiquement active du catalyseur contient, avant sa réduction avec de l'hydrogène, 20 à 85 % en poids de composés oxygénés du zirconium, exprimés en ZrO2, 1 à 30 % en poids de composés oxygénés du cuivre, exprimés en CuO, 14 à 70 % en poids de composés oxygénés du nickel, exprimés en NiO, et 0 à 5 % en poids de composés oxygénés du molybdène, exprimés en MoO3, ladite mise en réaction étant conduite dans la phase liquide à une pression absolue de l'ordre de 160 à 220 bars, à une température de l'ordre de 180 à 220 °C, avec ajout d'ammoniac dans un rapport molaire à la DEOA employée de 5 à 20, et en présence de 0,2 à 9,0 % en poids d'hydrogène, rapporté à la quantité totale de DEOA et d'ammoniac utilisés.
PCT/EP2013/061081 2012-06-06 2013-05-29 Procédé de production de pipérazine WO2013182465A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12171068.5 2012-06-06
EP12171068 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013182465A1 true WO2013182465A1 (fr) 2013-12-12

Family

ID=48576395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/061081 WO2013182465A1 (fr) 2012-06-06 2013-05-29 Procédé de production de pipérazine

Country Status (1)

Country Link
WO (1) WO2013182465A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046353A (zh) * 2018-08-27 2018-12-21 湘潭大学 一种Cu/m-ZrO2催化剂及制备方法及用途

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275554A (en) 1963-08-02 1966-09-27 Shell Oil Co Polyolefin substituted polyamines and lubricants containing them
DE2125039A1 (de) 1970-05-21 1971-12-02 Shell Int Research Verfahren zur Herstellung von Aminen und deren Verwendung als Zusatzstoffe für Schmierstoffe und Kraft- bzw. Brennstoffe
DE1953263A1 (de) 1969-10-23 1972-02-17 Basf Ag Verfahren zur Herstellung von Aminen aus Alkoholen
EP0075940B1 (fr) 1981-09-30 1985-09-18 Union Carbide Corporation Procédé pour la fabrication d'éthylènediamine
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
EP0382049A1 (fr) 1989-02-04 1990-08-16 BASF Aktiengesellschaft Catalyseur et procédé pour l'hydroamination d'alcools
EP0696572A1 (fr) 1994-08-08 1996-02-14 Basf Aktiengesellschaft Procédé pour la préparation d'amines
DE19859776A1 (de) 1998-12-23 2000-06-29 Basf Ag Verfahren zur Herstellung von Aminen
EP1312600A1 (fr) 2001-10-30 2003-05-21 BASF Aktiengesellschaft Procédé de séparation d'un mélange d'amines bruts contenant de l'eau provenant de la synthèse de l'amine
EP1312599A1 (fr) 2001-10-30 2003-05-21 BASF Aktiengesellschaft Procédé de séparation d'un mélange d'amines bruts contenant de l'eau provenant de la synthèse de l'amine
WO2003051508A1 (fr) 2001-12-14 2003-06-26 Huntsman Petrochemical Corporation Ameliorations apportees a des catalyseurs de reaction d'amination
WO2006114417A2 (fr) 2005-04-26 2006-11-02 Basf Aktiengesellschaft Procede de production d'amines d'ethylene
WO2008006750A1 (fr) 2006-07-14 2008-01-17 Basf Se Procédé de production d'une amine
WO2009080506A1 (fr) 2007-12-21 2009-07-02 Basf Se Procédé de préparation d'une amine
WO2009080507A1 (fr) 2007-12-21 2009-07-02 Basf Se Procédé de préparation d'une amine
WO2009080508A1 (fr) 2007-12-21 2009-07-02 Basf Se Procédé de préparation d'une amine
WO2010115759A2 (fr) 2009-04-08 2010-10-14 Basf Se Procédé de production de 1,6-hexanediol par hydrogénation d'oligoesters et de polyesters
WO2011067199A1 (fr) 2009-12-03 2011-06-09 Basf Se Catalyseur et procédé de production d'une amine
WO2011157710A1 (fr) 2010-06-15 2011-12-22 Basf Se Procédé de production d'une méthylamine tertiaire cyclique
CN102304101A (zh) 2011-05-26 2012-01-04 绍兴兴欣化工有限公司 哌嗪与n-烷基哌嗪联产工艺
WO2012049101A1 (fr) 2010-10-14 2012-04-19 Basf Se Procédé de production d'une amine tertiaire cyclique

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275554A (en) 1963-08-02 1966-09-27 Shell Oil Co Polyolefin substituted polyamines and lubricants containing them
DE1953263A1 (de) 1969-10-23 1972-02-17 Basf Ag Verfahren zur Herstellung von Aminen aus Alkoholen
DE2125039A1 (de) 1970-05-21 1971-12-02 Shell Int Research Verfahren zur Herstellung von Aminen und deren Verwendung als Zusatzstoffe für Schmierstoffe und Kraft- bzw. Brennstoffe
EP0075940B1 (fr) 1981-09-30 1985-09-18 Union Carbide Corporation Procédé pour la fabrication d'éthylènediamine
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
EP0382049A1 (fr) 1989-02-04 1990-08-16 BASF Aktiengesellschaft Catalyseur et procédé pour l'hydroamination d'alcools
EP0696572A1 (fr) 1994-08-08 1996-02-14 Basf Aktiengesellschaft Procédé pour la préparation d'amines
DE19859776A1 (de) 1998-12-23 2000-06-29 Basf Ag Verfahren zur Herstellung von Aminen
EP1312600A1 (fr) 2001-10-30 2003-05-21 BASF Aktiengesellschaft Procédé de séparation d'un mélange d'amines bruts contenant de l'eau provenant de la synthèse de l'amine
EP1312599A1 (fr) 2001-10-30 2003-05-21 BASF Aktiengesellschaft Procédé de séparation d'un mélange d'amines bruts contenant de l'eau provenant de la synthèse de l'amine
WO2003051508A1 (fr) 2001-12-14 2003-06-26 Huntsman Petrochemical Corporation Ameliorations apportees a des catalyseurs de reaction d'amination
WO2006114417A2 (fr) 2005-04-26 2006-11-02 Basf Aktiengesellschaft Procede de production d'amines d'ethylene
WO2008006750A1 (fr) 2006-07-14 2008-01-17 Basf Se Procédé de production d'une amine
WO2009080506A1 (fr) 2007-12-21 2009-07-02 Basf Se Procédé de préparation d'une amine
WO2009080507A1 (fr) 2007-12-21 2009-07-02 Basf Se Procédé de préparation d'une amine
WO2009080508A1 (fr) 2007-12-21 2009-07-02 Basf Se Procédé de préparation d'une amine
WO2010115759A2 (fr) 2009-04-08 2010-10-14 Basf Se Procédé de production de 1,6-hexanediol par hydrogénation d'oligoesters et de polyesters
WO2011067199A1 (fr) 2009-12-03 2011-06-09 Basf Se Catalyseur et procédé de production d'une amine
WO2011157710A1 (fr) 2010-06-15 2011-12-22 Basf Se Procédé de production d'une méthylamine tertiaire cyclique
WO2012049101A1 (fr) 2010-10-14 2012-04-19 Basf Se Procédé de production d'une amine tertiaire cyclique
CN102304101A (zh) 2011-05-26 2012-01-04 绍兴兴欣化工有限公司 哌嗪与n-烷基哌嗪联产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", vol. B 4, article "Fixed-Bed Reactors", pages: 199 - 238

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046353A (zh) * 2018-08-27 2018-12-21 湘潭大学 一种Cu/m-ZrO2催化剂及制备方法及用途

Similar Documents

Publication Publication Date Title
EP2029520B1 (fr) Procédé pour produire des éthylèneamines et des éthanolamines à partir de monoéthylèneglycol (meg)
EP2225030B1 (fr) Procédé de préparation d'une amine
EP2225029B1 (fr) Procédé de préparation d'une amine et catalyseur
EP1986990B1 (fr) Procédé pour produire des éthylèneamines et des éthanolamines par hydroamination de monoéthylèneglycol et d'ammoniac en présence d'un catalyseur
EP2780109B1 (fr) Procédé pour la production des catalyseurs contenant sn
EP2197830B1 (fr) Procédé pour produire des amines à partir de polyols
EP2855443B1 (fr) Procédé de production d'une mono-n-alkyl-pipérazine
EP2506966A1 (fr) Catalyseur et procédé de production d'une amine
EP2185499A1 (fr) Procédé pour produire des amines à partir de glycérine
WO2006136571A1 (fr) Procede de production en continu d'une amine
WO2014184039A1 (fr) Procédé de production de n-alkylpipérazines
DE102005012209A1 (de) Verfahren zur Herstellung eines Ethylamins
US8981093B2 (en) Process for preparing piperazine
EP3717448B1 (fr) Procédé de préparation continue de 1,2-propylène diamine (1,2-pda) et de diméthyl diéthylènetriamine (dmdeta)
EP1971568B1 (fr) Procede de fabrication en continu d'une amine aromatique primaire
WO2013182468A1 (fr) Procédé de production de pipérazine
US20130331574A1 (en) Process for Preparing Piperazine
WO2014184048A1 (fr) Procédé de production de n-alkylpipérazines
EP2855442B1 (fr) Procédé de production d'une mono-n-alkyl-pipérazine
DE102010040427A1 (de) Verfahren zur Herstellung von Mono-n-Octylamin (MOA)
WO2013182465A1 (fr) Procédé de production de pipérazine
EP2872494B1 (fr) Procédé de préparation de pyrrolidine
EP1899291B1 (fr) Procede de production en continu d'une amine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13726748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13726748

Country of ref document: EP

Kind code of ref document: A1