WO2013182104A1 - 吸波装置及无线终端 - Google Patents

吸波装置及无线终端 Download PDF

Info

Publication number
WO2013182104A1
WO2013182104A1 PCT/CN2013/078321 CN2013078321W WO2013182104A1 WO 2013182104 A1 WO2013182104 A1 WO 2013182104A1 CN 2013078321 W CN2013078321 W CN 2013078321W WO 2013182104 A1 WO2013182104 A1 WO 2013182104A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing
antenna
interlayer
absorbing device
top surface
Prior art date
Application number
PCT/CN2013/078321
Other languages
English (en)
French (fr)
Inventor
张璐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013182104A1 publication Critical patent/WO2013182104A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape

Definitions

  • the present invention relates to the field of communications, and in particular to a wave absorbing device and a wireless terminal.
  • the Specific Absorption Rate (SAR) indicator is used to measure the electromagnetic energy absorbed and consumed by the human body in an electromagnetic exposure environment.
  • the physical meaning of SAR is the electromagnetic power absorbed or consumed by human tissue per unit mass, in units of W/kg, or mW/g.
  • SAR reacts to the near-field radiation characteristics of the mobile terminal antenna, and the total radiant energy is the far-field radiation performance of the mobile terminal antenna.
  • the total radiant energy is related to the access performance and communication quality of the terminal and the base station, and it is often desirable that the higher the better. But the higher the total radiant energy, often means higher SAR measurements. Therefore, in order to ensure that the terminal can pass the SAR test standard, a trade-off between total radiant energy and SAR performance is required.
  • SAR reduction techniques include: reducing total radiated power, introducing parasitic metal structures, using absorbing materials, absorbing coatings, metal shielding/reflecting layers, and the like.
  • the method of reducing the total radiated power affects the quality of the communication terminal, especially at the cell edge.
  • a parasitic metal structure is introduced near the antenna or on the printed circuit board (PCB) metal floor.
  • PCB printed circuit board
  • the idea is to change the current distribution on the metal surface by the coupling effect, thereby reducing the local peak value of the SAR.
  • this method lacks uniform rules, and can only use trial and error debugging methods through experience, which is blind and cannot guarantee the final SAR value.
  • Related Art Mobile terminals often only have SAR exceeding the standard within a certain frequency range.
  • the use of absorbing materials affects the total radiation characteristics of all frequency bands, and in the specific implementation, only the thickness, size and placement position of the absorbing materials can be adjusted, and the debugging flexibility. small.
  • the mobile terminal of the related art improves the radiation index of the antenna, it always causes greater harm to the human body, and thus the antenna radiation and the SAR peak are always contradictory and cannot be reconciled.
  • the invention provides a absorbing device and a wireless terminal, so as to at least solve the related art, when the mobile terminal improves the radiation index of the antenna, it always causes greater harm to the human body, and thus the antenna radiation and the SAR peak always contradict each other. , the problem that cannot be reconciled.
  • a wave absorbing apparatus comprising: a periodic array unit disposed on a top surface of the absorbing device, having a settable frequency selection characteristic, and configured to be scheduled Absorbing in a frequency band, wherein the predetermined frequency band comprises: a frequency band in which a maximum absorption ratio SAR is located; and an intermediate dielectric interlayer disposed between the top surface and the bottom surface and configured to be in a periodic array
  • the units work together to attenuate the electromagnetic waves radiated by the antenna.
  • the intermediate medium interlayer is disposed between the top surface and the metal ground surface, and a periodic distribution of metal vias is disposed between the top surface and the metal ground surface, wherein the metal via penetrates An intermediate dielectric interlayer, and the periodic array unit and the metal ground plane Electrical connection.
  • the intermediate medium interlayer is disposed between the top surface and the non-metal ground surface, wherein the non-metal ground surface is provided with an array unit.
  • a periodically distributed metallic via is disposed between the top surface and the non-metal underlying surface, wherein the metallic via extends through the intermediate dielectric interlayer and the periodic array unit and The array unit is electrically connected.
  • the material of the intermediate medium layer sandwich comprises a magnetic loss type absorbing material and/or an electric loss type absorbing material.
  • the magnetic loss type absorbing material of the intermediate medium interlayer and the electric loss type absorbing material have a periodic distribution structure on the same plane.
  • the magnetic loss type absorbing material and the electric loss type absorbing material on the same plane of the intermediate medium interlayer are distributed around, wherein a matrix unit of the magnetic loss absorbing material is subjected to the electric loss type
  • the absorbing material surrounds, or the matrix unit of the electrical loss absorbing material is surrounded by the magnetic loss absorbing material.
  • the matrix elements of the magnetic loss absorbing material on the same plane of the intermediate dielectric interlayer are staggered with the matrix elements of the electrical loss absorbing material.
  • the intermediate dielectric interlayer is provided in multiple layers, wherein the material of each intermediate dielectric interlayer has a relative dielectric constant and/or relative magnetic permeability that is different from the adjacent intermediate dielectric interlayer.
  • a wireless terminal comprising the wave absorbing device according to any one of the above, wherein the absorbing device is disposed on a peripheral surface of a PCB of the terminal.
  • the absorbing device extends in a non-empty area of the antenna of the terminal.
  • the absorbing device of the present invention uses the following design: a periodic unit having a configurable frequency selection characteristic for performing absorbing waves in a predetermined frequency band, wherein the predetermined frequency band includes: a specific absorption rate SAR maximum value Frequency band.
  • the absorbing wave can be performed in a predetermined frequency band, and by working with the array unit, the purpose of attenuating the electromagnetic wave radiated by the antenna can be achieved, even when the radiation index of the antenna is high, The electromagnetic wave is radiated to the human body without affecting the communication, and the user experience is improved.
  • FIG. 1 is a schematic structural view of a wave absorbing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a classical circuit analog absorber according to a preferred embodiment of the present invention
  • FIG. 3 is an equivalent circuit diagram of a classical circuit analog absorber according to a preferred embodiment of the present invention
  • FIG. 6 is a first schematic view of a usable form of a periodic unit according to a preferred embodiment of the present invention
  • FIG. 7 is a second schematic view of a usable form of a periodic unit according to a preferred embodiment of the present invention
  • Figure 9 is a cross-sectional view showing a multilayer sandwich structure of a wave absorbing device in accordance with a preferred embodiment of the present invention
  • Figure 10 is a two-dimensional array of material loss and magnetic loss type material units of a wave absorbing device in accordance with a preferred embodiment of the present invention. Schematic diagram of the unit arrangement;
  • Figure 11 is a second schematic diagram showing the arrangement of two-dimensional array elements of a material loss type and a magnetic loss type material unit of a wave absorbing apparatus according to a preferred embodiment of the present invention
  • Figure 12 is a block diagram showing the structure of a mobile data card terminal in accordance with a preferred embodiment of the present invention.
  • the Frequency Selective Surface is a two-dimensional surface in which metal elements are periodically arranged.
  • the arrangement structure of the equivalent dipole antenna and the slot antenna is essentially a spatial filter. Physically it can be approximated as a complex LC resonant circuit.
  • the frequency selective surface structure can reflect and transmit electromagnetic waves, thereby exhibiting significant bandpass or bandstop filtering.
  • the circuit simulation absorber is a periodic structure based on a high-loss material, and absorbs electromagnetic waves inside the structure to achieve absorption. The circuit simulates an absorber with a good absorption bandwidth.
  • the existing circuit simulation absorber structure is relatively simple, and the intermediate layer medium is more than the power loss type material, the design freedom is small, and the working frequency is high.
  • an embodiment of the present invention provides a absorbing device, which is shown in FIG. 1 and includes: a periodic array unit 13 disposed on the top surface 10 of the absorbing device. a predetermined frequency selection characteristic for performing absorption in a predetermined frequency band, wherein the predetermined frequency band comprises: a frequency band in which the maximum absorption rate SAR is located; an intermediate medium interlayer 11 disposed between the top surface 10 and the bottom surface And for cooperating with the periodic array unit 13 described above to attenuate electromagnetic waves radiated by the antenna.
  • the absorbing wave can be performed in a predetermined frequency band, and by working with the array unit 13, the purpose of attenuating the electromagnetic wave radiated by the antenna can be achieved, even when the radiation index of the antenna is high. It can reduce the radiation of electromagnetic waves to the human body without affecting communication, and improve the user experience.
  • the underlying surface of the intermediate dielectric interlayer 11 can also be divided into metal and non-metal.
  • the intermediate dielectric interlayer 11 is disposed between the top surface 10 and the metal floor layer 12.
  • a periodically distributed metallic via 21 is disposed between the top surface 10 and the metal ground plane 12, wherein the metal via 21 extends through the intermediate dielectric interlayer 11 and is electrically connected to the array unit 13 and the metal ground plane 12.
  • the periodically distributed metallic vias 21 may be periodically distributed over the array elements 13, or may be distributed over a plurality of array elements 13.
  • the intermediate dielectric interlayer 11 is disposed between the top surface 10 and the non-metallic underlying surface 14, wherein the non-metallic underlying surface 14 is provided with an array unit 15 for attenuating electromagnetic waves radiated by the antenna.
  • the array unit 15 herein may have the same design as the array unit 13, and of course, it may be designed to have a different design depending on the intensity of electromagnetic waves absorbed as required.
  • a periodically distributed metallic via 21 is disposed between the top surface 10 and the non-metal underlying surface 14, wherein the metal via 21 extends through the intermediate dielectric interlayer 11 and is electrically connected to the array unit 13 and the array unit 15. Similar to the metal underlying surface 12 described above, the periodically distributed metallic vias 21 may be periodically distributed over the array elements 13, or may be distributed over a plurality of array elements 13.
  • absorbing materials mainly includes ferrite, barium titanate, metal particles, graphite, silicon carbide, conductive fibers and the like.
  • Ferrite has a high magnetic permeability at high frequencies, and electromagnetic waves are easy to enter and rapidly attenuate.
  • the absorbing of the absorbing material essentially absorbs or attenuates the electromagnetic waves at the point of incidence, and the electromagnetic energy converted into thermal energy or other forms of energy is consumed by the dielectric loss of the material.
  • the absorbing materials can be classified into electric loss type and magnetic loss type according to the loss mechanism. Electrically lossy materials are mainly absorbed by the electron polarization, ion polarization, molecular polarization or interfacial polarization of the medium to attenuate electromagnetic waves.
  • the magnetic loss type material mainly relies on the magnetic excitation mechanism such as hysteresis loss, domain wall resonance and aftereffect loss to cause electromagnetic wave absorption and attenuation.
  • the mechanism is to reduce the near field of the antenna and suppress the surface current of the mobile phone near the human body side.
  • the SAR exceeds the standard in the frequency range.
  • the use of absorbing materials will affect the total radiation characteristics of all frequency bands. In the specific implementation, only the thickness, size and placement position of the absorbing materials can be adjusted, and the debugging flexibility is small.
  • the electric loss type material and the magnetic loss type material based on the related technology have better absorbing characteristics, and the intermediate medium interlayer 11 can replace the conventional air medium, and the magnetic loss type absorbing material and/or the electric loss type absorbing wave are used. material.
  • the magnetic loss type absorbing material of the intermediate medium interlayer 11 and the electric loss type absorbing material may have a periodic distribution structure on the same plane, for example, a checkerboard type. When implemented, the magnetic loss type misdistribution of the intermediate dielectric interlayer 11 on the same plane may be as shown in FIG.
  • the intermediate medium interlayer corresponding to the position of the array unit 13 may also be
  • the magnetic loss-type absorbing material and the electric loss-type absorbing material on the same plane surround or the electric loss-type absorbing material matrix unit is surrounded by the magnetic loss-type absorbing material.
  • the magnetic The lossy type absorbing material and the electric loss type absorbing material have a staggered distribution structure on the same plane and are not limited to the above two cases.
  • the intermediate dielectric interlayer 11 can be provided in multiple layers, and the relative dielectric constant and/or relative magnetic permeability of each layer can be set differently from the adjacent intermediate dielectric interlayer. Different relative dielectric constants and / or relative magnetic permeability can further absorb electromagnetic waves and reduce radiation to the human body.
  • the embodiment further provides a wireless terminal, which may be a wireless mobile terminal or a wireless non-mobile terminal. It may include the wave absorbing device in the above embodiment, wherein the wave absorbing device may be disposed on the outer peripheral surface of the PCB board 2 of the terminal. When set, the absorbing device extends in the non-cleaning area of the antenna, that is, does not extend to the clearing area of the antenna, preventing interference with the antenna signal.
  • the device of the above technical solution by providing a periodic structure of the absorbing device on the peripheral surface of the PCB of the wireless terminal device, the near field distribution of the electromagnetic field of the terminal antenna can be changed, and the hot spot of the near field energy distribution can be eliminated, thereby effectively Improved SAR performance of wireless terminal equipment. And there is no need to make major changes to the antennas, circuits, and structures that have been designed. At the same time, due to the complex periodic structure and parameters of the absorbing structure, it can be designed for different frequencies with great flexibility and adaptability.
  • the preferred embodiment proposes an absorbing device based on a periodic structure, which can effectively reduce the SAR value of the mobile terminal.
  • the periodic structure absorbing device is composed of a periodic surface unit and a magnetic loss type/electric loss type absorbing material interlayer. Since the surface of the periodic structure has a configurable frequency selection characteristic, the frequency at which the SAR maximum value is located can be specifically designed to ensure that the radiated power performance of the antenna in the entire operating frequency band is not significantly affected.
  • the absorbing sandwich material reduces the operating frequency of the frequency selective surface, allowing the absorbing structure to operate in the frequency range of mobile communications.
  • the absorbing interlayer may also be composed of a periodic sandwich unit.
  • the periodic sandwich structure can be spatially arranged by the electric loss type and the magnetic loss type absorbing material to further achieve good absorption of electromagnetic waves.
  • the circuit analog Absorber in the related art is a special frequency selective surface that can achieve the absorbing effect. As shown in Fig. 2, it is usually composed of a circuit analog sheet 8 and a metal ground plane 7 behind it. On the circuit simulation 8 A metal cross unit 9 that is periodically arranged.
  • the equivalent circuit diagram of the transmission line of this structure is shown in Figure 3. As shown in the figure, the gap between each cross metal unit and the unit constitutes a series connected equivalent RLC (resistance, inductance, capacitance) to form a resonant circuit. At the resonant frequency, the incident electromagnetic wave is trapped in two layers and is resonated and lost, thereby achieving the absorbing function.
  • the circuit simulating the microwave absorber has the disadvantages of large size and high operating frequency (usually several tens of GHz), which is difficult to directly apply to wireless mobile devices.
  • FIG. 4 shows a three-dimensional view of a absorbing device with periodic surface elements (where the periodic surface elements are exemplified by one of a plurality of array elements).
  • the apparatus includes a top surface 10, an intermediate dielectric interlayer 11 and a metallic ground plane 12.
  • the top surface 10 is periodically arranged by the array unit 13.
  • the interlayer material may be composed of a magnetic loss type/electric loss type absorbing material.
  • the frequency of the sandwich material selects the operating frequency of the surface.
  • the frequency of the sandwich material can be determined by:
  • FIG. 5 shows an alternative embodiment of a absorbing device with periodic surface elements (where the periodic surface elements are exemplified by one of a plurality of array elements).
  • the apparatus includes a top surface 10, an intermediate dielectric interlayer 11 and a bottom surface 14.
  • the top surface 10 comprises a surface array unit 13 and the bottom surface comprises a surface array unit 15.
  • Array units 13 and 15 can be designed in different types to form a complex resonant bandpass, band stop structure with greater flexibility in frequency design and commissioning.
  • Figure 6 shows several specific forms of surface metal units (black is a metal part), such as a square groove 16, a Jerusalem-shaped cross 17, and a circular cross 18.
  • Figure 7 shows several unit forms (black is a metal part) based on a meander line and a rectangular ring, such as a four-unit zigzag line rectangle layout 19 and a central zigzag line layout 20.
  • the periodic surface unit 13 periodically aligns
  • the periodic structure can be designed for different incident angles of electromagnetic waves, which can disturb and absorb the near-field distribution of electromagnetic waves radiated by the antenna, and finally reduce the SAR peak of the near-field of the terminal antenna.
  • Figure 8 shows an example of another periodic absorbing device.
  • a periodically distributed metallic via 21 is distributed between the top surface 10 and the bottom surface 14 of the device.
  • the metal via 21 penetrates through the interlayer 11 and is electrically connected to the surface layer array unit 13 and the bottom surface array unit 15.
  • the equivalent inductance L of the absorbing structure can be further increased, thereby reducing the resonance frequency and achieving a better absorbing effect.
  • Figure 9 shows an embodiment of a wave absorbing device of a multilayer sandwich structure.
  • the absorbing device comprises a top surface 10 and a bottom surface 14.
  • a plurality of layers (N layers) of electrical loss type/magnetic loss type absorbing materials are distributed in the thickness direction, and each of the sub-layers may have independent relative permittivity and relative magnetic permeability.
  • the ith layer interlayer 22 has a dielectric parameter of ⁇ ⁇ and an equivalent relative permeability ⁇ ⁇ .
  • Figs. 10 and 11 both show an embodiment in which a periodic absorbing device can be used in the presence of an electric loss type and a magnetic loss type material.
  • the electric loss type and the magnetic loss type absorbing material can also be used as a periodic interlayer unit, and the upper period is arranged in the 2D plane direction of the absorbing device.
  • Fig. 10 shows a layout in which a magnetic loss type absorbing rectangular unit (hatched hatched area) is embedded in an electric loss type absorbing rectangular unit (white area).
  • Figure 11 shows the layout of the magnetic loss type absorbing rectangular unit and the electric loss type absorbing rectangular unit.
  • the preferred embodiment also provides a mobile terminal having a periodic absorbing device with good frequency selectivity according to the frequency band and spatial position at which the SAR peak occurs in the wireless terminal test.
  • the absorbing device with a periodic structure may be arranged in different directions in the vicinity of the antenna of the mobile terminal to absorb and change the radiation characteristics of the near-field of the antenna, thereby achieving the purpose of reducing the SAR value.
  • the mobile terminal comprises: a PCB circuit board, an antenna connected to the PCB board radio frequency circuit, a structural shell, and a universal serial bus (USB) connector.
  • the peripheral surface of the PCB board is provided with a periodic structure absorbing device, and the periodic absorbing device does not extend to the clearance area of the antenna.
  • the above design achieves the purpose of reducing the SAR peak by placing an absorbing structure on one or more sides of the antenna, and has the least influence on the radiation characteristics of other frequency bands to ensure communication quality.
  • the absorbing structure can be distributed inside and outside the casing structure, or can be suspended around the PCB by the bracket or attached to the circuit shield of the PCB.
  • design parameters of the periodic structure such as the form of the metal structure of the periodic unit, the trace, the size, the properties of the absorbing material (electric loss type, magnetic loss type), the number of layers, the thickness, the position and the arrangement, etc. Adjust the overall performance of the absorbing structure to achieve the desired standard.
  • the wide absorbing characteristics of the traditional magnetic loss/electric loss absorbing materials can be controlled, and only the peak frequency of the desired SAR hotspot can be controlled. Reduce the radiation performance impact on other frequency bands of the antenna, and ultimately guarantee the quality of terminal communication.
  • the currently popular data card type wireless terminal devices are in the form of cubes, and are connected through a USB connector at the end and a notebook.
  • Figure 12 is a view of the mobile data card terminal.
  • the data card has a USB connector 1 at the end.
  • the data card housing 4 includes a PCB circuit board 2, a built-in transmitting and receiving antenna 3, and a wave absorbing device 5.
  • the PCB circuit is electrically connected through the feed point 6 and the antenna 3.
  • the absorbing device is placed on the outer surface of the PCB and does not extend to the clear area of the antenna.
  • the general idea of implementing SAR control by the absorbing device is to set the periodic absorbing device in the direction of the radiation hot spot of the wireless terminal antenna; then adjust the structure of the periodic absorbing unit and the structure of the sandwich structure to achieve a reduction in the required frequency band.
  • the purpose of SAR peaks in a particular frequency band does not affect the radiation characteristics of other frequency bands of the antenna.
  • the technology for arranging the periodic structure absorbing device on multiple surfaces of the wireless terminal product proposed in this embodiment can reduce the local SAR peak in a certain frequency band without affecting the overall receiving and transmitting performance of the terminal, and reduce the pair.
  • the harm of human radiation since the wireless terminal SAR performance is improved only by the external absorbing structure, it is not necessary to make major changes to the designed antenna, circuit and structure, thereby shortening the development cycle and cost.
  • the application has great flexibility and adaptability, and achieves the purpose of miniaturization of wireless terminals.
  • the absorbing wave can be performed in a predetermined frequency band.
  • the electromagnetic wave in the high frequency band can be absorbed according to the settable frequency selection characteristic, without affecting the communication situation.
  • the electromagnetic radiation to the human body is reduced, and the user experience is improved.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the absorbing device provided by the embodiments of the present invention can absorb waves in a predetermined frequency band and cooperate with the array unit to achieve the purpose of attenuating electromagnetic waves radiated by the antenna even in the antenna.
  • the radiation index is high, the radiation of the electromagnetic wave to the human body can be reduced without affecting the communication, and the user experience is improved.

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

一种吸波装置及无线终端,包括:周期性的阵列单元,其设置在吸波装置的顶层面上,具有可设定的频率选择特性,并配置成在预定频段内进行吸波,其中,预定的频段包括:比吸收率SAR最大值所在的频段;以及中间介质夹层,其设置在顶层面与底层面之间,并配置成与上述周期性的阵列单元协同工作以衰减天线辐射的电磁波。通过运用本发明的吸波装置,可以在预定的频段内进行吸波,并通过与阵列单元协同工作,达到以衰减天线辐射的电磁波的目的,即使在天线的辐射指标很高时,也可以在不影响通信的情况下减少电磁波对人体的辐射,提高了用户体验。

Description

吸波装置及无线终端
技术领域
本发明涉及通信领域, 具体而言, 涉及一种吸波装置及无线终端。
背景技术
由于无线通讯技术的发展, 个人无线终端类产品 (例如, 移动终端、 数 据卡、 平板电脑等)得到广泛普及和应用。 随着终端产品的小型化和便携化 的发展, 用户在日常的使用场景中往往将此类产品放置在离身体较近的距离 范围内。 因此, 无线终端辐射出的电磁能量对人体健康的影响成为公众关心 的话题。
国际上釆用比吸收率(Specific Absorption Rate, 简称为 SAR )指标来衡 量电磁暴露环境下人体吸收和消耗的电磁能量。 SAR的物理含义为单位质量 的人体组织所吸收或消耗的电磁功率, 单位为 W/kg, 或者 mW/g。 在使用各 种终端产品时,移动终端的 SAR峰值的降低和天线的辐射指标的提高往往相 互矛盾。 SAR反应移动终端天线的近场辐射特性, 而总辐射能量是移动终端 天线的远场辐射性能。 在无线通讯系统中, 总辐射能量关系到终端和基站的 接入性能和通讯质量, 往往希望越高越好。 但是越高的总辐射能量, 往往意 味着较高的 SAR测量值。 因此, 为了保证终端能够通过 SAR的测试标准, 需要在总辐射能量和 SAR性能之间进行权衡。
目前,许多国家制定了相应法规,通过限定无线终端设备 SAR值的上限, 确保电磁辐射对人体的安全。 例如美国联邦电信委员会(FCC ) 明确规定了 各种无线移动终端在与人体的相互作用时最大允许的比吸收率。 按照规定: 手机类产品在靠近人脑一侧的 SAR峰值不能超过 1.6mW/g; 对于数据卡类产 品, 在所有可能被人体接触的表面附近, SAR峰值均不能超过 1.6mW/g上限 (建议不超过 1.2mW/g ) 。
因此当今的多模多制式无线终端天线设计, 除了需要满足足够的工作带 宽和隔离度之外, 还要兼顾小型化, 同时还要满足 SAR峰值的规定。 由于终 端天线位于结构复杂的电路器件、 PCB基板和外壳中, 它们在天线近场相互 影响, 形成复杂的边界条件。 这些因素都使 SAR的估算和分析异常难度, 测 量和定量分析难度都较天线远场特性大。 这些都给数据卡天线设计提出了更 大的挑战。
常用的 SAR降低技术主要包括: 降低总辐射功率, 引入寄生金属结构, 釆用吸波材料、 吸波涂覆层、 金属屏蔽 /反射层等。 降低总辐射功率的方法会 影响通讯终端的质量, 尤其是在小区边缘的通讯质量。 在天线附近或印制电 路板 ( Printed Circuit Board, 简称为 PCB )金属地板上引入寄生金属结构, 其 思想是通过耦合效应改变金属上表面电流分布,从而降低 SAR局部峰值数值。 但该方法缺乏统一的规则, 只能通过经验釆用试错调试方法, 具有盲目性且 不能保证最终 SAR值达标。相关技术移动终端往往只在某个频段范围内 SAR 超标, 使用吸波材料会影响所有频段的总辐射特性, 而且在具体实施时只能 调整吸波材料的厚度、 大小和放置位置, 调试灵活度小。
相关技术的移动终端在提高天线的辐射指标时, 总会对人体造成更大的 危害, 进而天线辐射与 SAR峰值总是相互矛盾, 无法调和。
发明内容
本发明提供了一种吸波装置及无线终端, 以至少解决相关技术中, 移动 终端在提高天线的辐射指标时, 总会对人体造成更大的危害, 进而天线辐射 与 SAR峰值总是相互矛盾, 无法调和的问题。
根据本发明的一个方面, 提供了一种吸波装置, 包括: 周期性的阵列单 元, 其设置在所述吸波装置的顶层面上, 具有可设定的频率选择特性, 并配 置成在预定频段内进行吸波, 其中, 预定的频段包括: 比吸收率 SAR最大值 所在的频段; 以及中间介质夹层, 其设置在所述顶层面与底层面之间, 并配 置成与上述周期性的阵列单元协同工作以衰减天线辐射的电磁波。
所述中间介质夹层设置在所述顶层面与金属地底层面之间, 所述顶层面 与所述金属地底层面之间设置有周期分布的金属性过孔, 其中, 所述金属过 孔贯穿所述中间介质夹层, 且与所述周期性的阵列单元和所述金属地底层面 电性连接。
所述中间介质夹层设置在所述顶层面与非金属地底层面之间, 其中, 所 述非金属地底层面上设置有阵列单元。
在所述顶层面与所述非金属地底层面之间设置有周期分布的金属性过 孔, 其中, 所述金属性过孔贯穿所述中间介质夹层, 且与所述周期性的阵列 单元和所述阵列单元电性连接。
所述中间介质层夹的材料包括磁损耗型吸波材料和 /或电损耗型吸波材 料。
所述中间介质夹层的所述磁损耗型吸波材料和所述电损耗型吸波材料在 同一平面上具有周期性的分布结构。
所述中间介质夹层的在同一平面上的所述磁损耗型吸波材料和所述电损 耗型吸波材料环绕分布, 其中, 所述磁损耗型吸波材料的矩阵单元被所述电 损耗型吸波材料环绕, 或者, 所述电损耗型吸波材料的矩阵单元被所述磁损 耗型吸波材料环绕。
所述中间介质夹层的在同一平面上的所述磁损耗型吸波材料的矩阵单元 与所述电损耗型吸波材料的矩阵单元交错分布。
所述中间介质夹层设置为多层, 其中, 每层中间介质夹层的材料的相对 介电常数和 /或相对磁导率不同于邻近的中间介质夹层。
根据本发明的另一方面, 提供了一种无线终端, 包括上述任一项所述的 吸波装置, 所述吸波装置设置在所述终端的 PCB板的外围面上。
所述吸波装置延伸在所述终端的天线的非净空区域。
本发明的吸波装置釆用了如下设计: 周期性单元, 具有可设定的频率选 择特性,用于在预定频段内进行吸波,其中,预定的频段包括: 比吸收率 SAR 最大值所在的频段。 通过运用本发明的吸波装置, 可以在预定的频段内进行 吸波, 并通过与阵列单元协同工作, 达到以衰减天线辐射的电磁波的目的, 即使在天线的辐射指标很高时, 也可以在不影响通信的情况下减少电磁波对 人体的辐射, 提高了用户体验。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是根据本发明实施例的吸波装置的结构示意图;
图 2是根据本发明优选实施例的经典的电路模拟吸波器示意图; 图 3是根据本发明优选实施例的经典的电路模拟吸波器的等效电路图;
视图一; 视图二;
图 6是才艮据本发明优选实施例的周期性单元的可用形式的示意图一; 图 7是才艮据本发明优选实施例的周期性单元的可用形式的示意图二; 视图三;
图 9是根据本发明优选实施例的吸波装置的多层夹层结构的剖面视图; 图 10 是根据本发明优选实施例的吸波装置的带有电损耗型和磁损耗型 材料单元二维阵列单元排列的示意图一;
图 11 是根据本发明优选实施例的吸波装置的带有电损耗型和磁损耗型 材料单元二维阵列单元排列的示意图二;
图 12是根据本发明优选实施例的移动数据卡终端的结构示意图。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
移动终端在提高天线的辐射指标时, 总会对人体造成更大的危害, 进而 天线辐射与 SAR峰值总是相互矛盾, 无法调和。 相关技术中, 频率选择性表 面( Frequency Selective Surface )是一种金属单元周期性排列的二维表面 , 一 般可等效偶极子天线和缝隙天线的排列结构, 其本质是一个空间滤波器。 物 理上可以近似为复杂 LC谐振电路。 在谐振频率上, 频率选择表面结构可对 电磁波产生反射和传输作用, 从而表现出明显的带通或者带阻的滤波作用。 电路模拟吸收体是一种基于高损耗材料的周期结构, 通过在结构内部产生电 磁波谐振, 达到吸收的作用。 电路模拟吸收体有较好的吸收带宽。 但目前已 有的电路模拟吸收体结构较简单, 中间层介质多釆用电损耗型材料, 设计自 由度少, 工作频率较高。
基于上述问题, 本发明实施例提供了一种吸波装置, 其结构示意如图 1 所示, 包括: 周期性的阵列单元 13 , 设置在所述吸波装置的顶层面 10上, 具有可设定的频率选择特性, 用于在预定频段内进行吸波, 其中, 预定的频 段包括: 比吸收率 SAR最大值所在的频段; 中间介质夹层 11 ,设置在所述顶 层面 10与底层面之间, 用于与上述周期性的阵列单元 13协同工作以衰减天 线辐射的电磁波。 通过运用本实施例的吸波装置, 可以在预定的频段内进行 吸波,并通过与阵列单元 13协同工作,达到以衰减天线辐射的电磁波的目的, 即使在天线的辐射指标很高时, 也可以在不影响通信的情况下减少电磁波对 人体的辐射, 提高了用户体验。
其中, 中间介质夹层 11的底层面还可以分为金属与非金属。
如果底层面为金属的, 则中间介质夹层 11设置在顶层面 10与金属地底 层面 12之间。
在顶层面 10与金属地底层面 12之间设置有周期分布的金属性过孔 21 , 其中, 金属过孔 21贯穿中间介质夹层 11 , 且与阵列单元 13和金属地底层面 12电性连接。周期分布的金属性过孔 21可以是周期分布在个阵列单元 13上, 也可以是在一个阵列单元 13上分布多个。
如果底层面为非金属的, 中间介质夹层 11设置在顶层面 10与非金属地 底层面 14之间, 其中, 非金属地底层面 14上设置有阵列单元 15 , 用于衰减 天线辐射的电磁波。此处的阵列单元 15可以与阵列单元 13具有相同的设计, 当然, 也可以根据要求吸收电磁波强度的不同, 设计成具要有不同设计的类 型。 在顶层面 10与非金属地底层面 14之间设置有周期分布的金属性过孔 21 , 其中, 金属过孔 21贯穿中间介质夹层 11 , 且与阵列单元 13和阵列单元 15 电性连接。 与上述金属地底层面 12相似, 周期分布的金属性过孔 21可以是 周期分布在个阵列单元 13上, 也可以是在一个阵列单元 13上分布多个。
日常中, 实际应用的吸波材料主要包含铁氧体、 钛酸钡、 金属微粒、 石 墨、 碳化硅、 导电纤维等。 铁氧体在高频下有较高的磁导率, 电磁波易于进 入并且快速衰减。 吸波材料的吸波实质是吸收或衰减入射点电磁波, 并且通 过材料的介质损耗使电磁能量转变成热能或其他形式的能量消耗掉。 吸波材 料按照损耗机制可分为电损耗型和磁损耗型。 电损耗型材料主要靠介质的电 子极化、 离子极化、 分子极化或界面极化来吸收, 衰减电磁波。 磁损耗型材 料主要是靠磁滞损耗, 畴壁共振和后效损耗等磁激化机制来引起电磁波的吸 收和衰减。 吸波材料的吸波性能主要和其复介电常数 ε=ε'-」ε"和复磁导率 μ=μ'-」μ"有关, 具体取决于复介电常数和磁导率的虚部 ε"和 μ"。通过吸波材料 或者金属屏蔽层通常容易获得所需的 SAR值。 其机理在于减小天线近场, 抑 制手机靠近人体侧的表面电流。但移动终端往往只在某个频段范围内 SAR超 标, 使用吸波材料会影响所有频段的总辐射特性, 而且在具体实施时只能调 整吸波材料的厚度、 大小和放置位置, 调试灵活度小。
基于相关技术的电损耗型材料和磁损耗型材料具有较好的吸波特性, 中 间介质夹层 11 可以将传统的空气介质进行替换, 用磁损耗型吸波材料和 /或 电损耗型吸波材料。 其中, 可以设置所述中间介质夹层 11的所述磁损耗型吸 波材料和所述电损耗型吸波材料在同一平面上具有周期性的分布结构, 例如 棋盘式。 实施时, 可以是所述中间介质夹层 11在同一平面上的所述磁损耗型 错分布可以如图 11所示。
实施时, 还可以是在所述阵列单元 13 位置对应下的所述中间介质夹层
11 在同一平面上的所述磁损耗型吸波材料和所述电损耗型吸波材料环绕分 或者, 所述电损耗型吸波材料矩阵单元被所述磁损耗型吸波材料环绕。 如图 10所示, 为电损耗型材料环绕磁损耗型材料矩形单元的情况。 当然, 所述磁 损耗型吸波材料和所述电损耗型吸波材料在同一平面上具有交错的分布结构 并不限于上述两种情况。
实施时, 中间介质夹层 11 可以设置为多层, 各层的相对介电常数和 /或 相对磁导率可以与邻近的中间介质夹层设置为不同。 不同的相对介电常数和 / 或相对磁导率可以进一步吸收电磁波, 减少对人体的辐射。
本实施例还提供了一种无线终端, 该终端可以为无线移动终端, 也可以 为无线非移动终端。 其可以包括上述实施例中的吸波装置, 其中, 该吸波装 置可以设置在终端的 PCB板 2的外围面上。 设置时, 吸波装置延伸在天线的 非净空区域, 即不延伸到天线的净空区域, 防止了对天线信号的干扰。
由上述技术方案的装置可以看出,通过在无线终端设备的 PCB板外围面 上设置周期性结构的吸波装置, 可以改变终端天线的电磁场近场分布, 消除 近场能量分布集中热点, 从而有效的改善了无线终端设备的 SAR性能。 而且 不需要对已设计成型的天线、 电路和结构做出重大改动。 同时, 由于吸波结 构具有复杂的周期结构和参数, 可针对不同的频率设计, 具有很大的灵活性 和适应度。
下面结合附图及优选实施例进行说明。
优选实施例
本优选实施例提出一种基于周期性结构的吸波装置, 可以实现对移动终 端 SAR值的有效降低。该周期性结构吸波装置由周期性的表面单元和磁损耗 型 /电损耗型吸波材料夹层构成。 由于周期结构表面具有可设定的频率选择特 性, 可对 SAR最大值所在的频率进行针对性设计, 从而保证天线在整个工作 频带内的辐射功率性能不受显著的影响。 同时, 吸波夹层材料可降低频率选 择表面的工作频率, 使吸波结构工作在移动通讯的频率范围。 进一步的, 该 吸波夹层还可以由周期性夹层单元构成。 周期性夹层结构可由电损耗型、 磁 损耗型吸波材料在空间上排列而成, 进一步实现对电磁波的良好吸收。
相关技术中的电路模拟吸波器(Circuit Analog Absorber )是一种特殊的 频率选择性表面, 能够达到吸波效果。 如图 2所示, 它通常是由电路模拟片 ( Circuit Analog Sheet ) 8和背后的金属地平面 7构成。 在电路模拟片 8上有 周期性排列的金属十字单元 9。 图 3 中显示了该结构的传输线等效电路图。 如图所示, 各十字金属单元和单元之间的缝隙构成一个串联的等效 RLC (电 阻、 电感、 电容)构成谐振电路。 在谐振频率上对入射电磁波困在两层内谐 振并且损耗, 从而达到吸波功能。但是该电路模拟吸波器的缺点是尺寸较大, 工作频率高 (通常为几十个 GHz ) , 很难直接应用在无线移动设备上。
针对于传统电路模拟滤波器的缺点, 本实施例提出一种周期性结构的吸 波装置, 可以实现对移动终端 SAR值的有效降低。 图 4给出了一种带有周期 性表面单元(此处周期性表面单元是以多个阵列单元中的一个为例) 的吸波 装置的三维视图。 该装置包括顶层面 10, 中间介质夹层 11和金属地底层面 12。 其中顶层面 10由阵列单元 13周期性排列而成。 而夹层材质可由磁损耗 型 /电损耗型吸波材料构成。 夹层材质的频率选择表面的工作频率, 夹层材质 的频率可由下式决定:
Figure imgf000010_0001
其中, c和 λο分别为真空中的光速和波长。 LC为等效电感和电容, 并最 终取决于谐振结构中的等效相对介电常数 —eff和等效相对磁导率 eff。 常用 的吸波磁性介质的相对磁导率在几十到几百之间, 通过引入磁性介质, 可非 常有效的降低周期谐振结构的工作频率, 使其工作在移动通讯所需的频段。 图 5给出了另一种带有周期性表面单元(此处周期性表面单元是以多个阵列 单元中的一个为例) 的吸波装置的实施例。 该装置包括顶层面 10, 中间介质 夹层 11和底层面 14。 其中顶层面 10包含表面阵列单元 13 , 底层面包含表面 阵列单元 15。 阵列单元 13和 15可设计成不同的类型, 从而形成复杂的谐振 带通、 带阻结构, 在频率设计和调试方面具有更大的灵活性。
具体的, 图 6给出了表面金属单元的几种可用具体形式(黑色为金属部 分) , 如方形槽 16、 耶路撒冷形十字 17、 环形十字 18。 图 7给出了基于曲 折线和矩形环的单元几种单元形式(黑色为金属部分) , 如四单元曲折线矩 形布局 19和中心式曲折线布局 20。周期性表面单元 13在顶层面 10上周期排 歹 |J。 调整电磁谐振单元不同的形式, 单元结构长度和宽度, 可对等效相对介 电常数和相对磁导率进行改变, 从而调谐在不同的工作频率内。 具体的单元 尺寸多在 1/50至 1/2等效波长范围内, 典型值的尺寸为 1/20等效波长。 周期 结构可针对不同的电磁波入射角度进行设计, 对天线辐射电磁波的近场分布 起到扰动和吸收作用, 最终降低终端天线近场的 SAR峰值。
图 8给出了另外一种周期性吸波装置的实例。 具体的, 在该装置顶层面 10和底层面 14之间, 分布有周期分布的金属性过孔 21。 金属过孔 21贯穿夹 层 11 , 并且和表层表面阵列单元 13 , 底面表面阵列单元 15电性连接。 通过 金属过孔 21 , 可以进一步增加吸波结构的等效电感 L, 从而降低谐振频率, 并达到更好的吸波效果。
图 9给出多层夹层结构的吸波装置实施例。吸波装置包含顶层面 10和底 层面 14。 在顶层 10和底层 14之间, 在厚度方向分布有多层(N层) 电损耗 型 /磁损耗型吸波材料, 每个子夹层可具有独立的相对介电常数和相对磁导 率。如第 i层夹层 22具有的介质参数为 εη和等效相对磁导率 μη。通过布置多 层夹层设计, 可以获得更宽的吸波带宽。
通过对电损耗型和磁损耗型吸波材料吸波机理的分析, 可以看到电损耗 型和磁损耗型的吸波不互相干扰, 因此可以对这两种吸波材料进行周期性的 布局和排列。 图 10和 11都显示了电损耗型和磁损耗型材料共存下, 周期吸 波装置可釆用的实施例。 其中, 电损耗型和磁损耗型吸波材料也可作为周期 性夹层单元, 在吸波装置的 2D平面方向上进行上周期排列。 具体的, 图 10 显示了磁损耗型吸波矩形单元(斜线阴影区域)嵌入到于电损耗型吸波矩形 单元(白色区域)之中的布局。 图 11显示了磁损耗型吸波矩形单元和电损耗 型吸波矩形单元交错排列的布局。 通过周期性的布置两种类型的吸波材料, 可以获得更大的设计灵活度和吸波效果。
本优选实施例根据无线终端测试中 SAR峰值出现的频段和空间位置,还 提供了一种具有良好频率选择性的周期吸波装置的移动终端。 实施时, 可以 是在移动终端天线近旁不同方向上, 设置具有周期性结构的吸波装置, 吸收 并且改变天线近区辐射特性, 从而达到降低 SAR值目的。 优选地, 该移动终 端包括: PCB电路板, 与 PCB板射频电路连接的天线, 结构外壳、 通用串行 总线(USB )连接器。 其中 PCB板的外围面上, 设置周期结构吸波装置, 周 期吸波装置不延伸到天线的净空区域。 上述设计通过在天线周边某个面或者多个面方向上放置吸波结构, 达到 降低 SAR峰值的目的, 并且对其他频段的辐射特性影响最小,以保证通信质 量。 吸波结构可分布在机壳结构件内部和外部, 也可通过支架悬浮在 PCB板 四周, 或贴敷于 PCB板的电路屏蔽罩上。 具体的, 通过改变周期结构的设计 参数: 如周期单元金属结构的形式、 走线、 尺寸, 吸波材质的属性(电损耗 型、 磁损耗型) 、 层数、 厚度、 位置和排列方式等, 调整吸波结构整体性能 以达到所需标准。 同时由于引入了具有良好频率选择性的表面单元, 可以克 月良传统磁损耗型 /电损耗型吸波材料较宽的吸波特性,可以只针对所需的 SAR 热点峰值频点进行控制, 减少对天线其他频段的辐射性能影响, 最终保证终 端通信的质量。
在具体实施时, 目前流行的数据卡类无线终端设备, 造型多釆用立方体 形式, 通过末端的 USB连接器和笔记本等设备连接。 图 12为移动数据卡终 端的视图。 其中数据卡末端带有 USB连接器 1。 数据卡外壳 4内包含有 PCB 电路板 2、 内置发射接收天线 3、 吸波装置 5。 PCB电路通过馈电点 6和天线 3电性连接。吸波装置放置在 PCB板的外围面上, 不延伸到天线的净空区域。
结合以上技术描述可知,通过吸波装置实现 SAR控制的总体思路是在无 线终端天线辐射热点方向设置周期吸波装置; 随后调整周期吸波单元结构、 夹层结构的属性, 在所需频段内达到降低特定频段 SAR峰值的目的, 同时不 影响天线其他频段的辐射特性。
综上可见, 本实施例提出的在无线终端产品多个表面上布置周期结构吸 波装置的技术, 可在不影响终端整体接收发射性能的同时, 降低某个频段内 的局部 SAR峰值, 减少对人体辐射的危害。 此外, 由于只通过外吸波结构改 进无线终端 SAR性能, 因此不需要对已设计成型的天线、 电路和结构做出重 大改动, 进而缩短研发周期和成本。 应用时具有很大的灵活性和适应度, 实 现了无线终端小型化设计的目的。
从以上的描述中, 可以看出, 本发明实现了如下技术效果:
通过运用本发明实施例, 可以在预定的频段内进行吸波, 在天线的辐射 指标很高时, 也可以根据可设定的频率选择特性吸收此高频段内的电磁波, 在不影响通信的情况下减少了电磁波对人体的辐射, 提高了用户体验。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性 与有关技术相比, 本发明实施方式提供的吸波装置可以在预定的频段内 进行吸波, 并通过与阵列单元协同工作, 达到以衰减天线辐射的电磁波的目 的, 即使在天线的辐射指标很高时, 也可以在不影响通信的情况下减少电磁 波对人体的辐射, 提高了用户体验。

Claims

权 利 要 求 书
1. 一种吸波装置, 包括:
周期性的阵列单元( 13 ) , 其设置在所述吸波装置的顶层面( 10 )上, 具有可设定的频率选择特性, 并配置成在预定频段内进行吸波, 其中, 所 述预定的频段包括: 比吸收率 SAR最大值所在的频段; 以及
中间介质夹层(11 ) , 其设置在所述顶层面(10)与底层面之间, 并 配置成与所述周期性的阵列单元( 13 )协同工作以衰减天线辐射的电磁波。
2. 根据权利要求 1所述的装置, 其中, 所述中间介质夹层(11 )设置在所 述顶层面 (10) 与金属地底层面 (12)之间, 所述顶层面 (10)与所述 金属地底层面 (12)之间设置有周期分布的金属性过孔(21 ) , 其中, 所述金属过孔(21 )贯穿所述中间介质夹层(11 ) , 且与所述周期性的 阵列单元(13)和所述金属地底层面 (12) 电性连接。
3. 根据权利要求 1所述的装置, 其中,
所述中间介质夹层( 11 )设置在所述顶层面( 10)与非金属地底层面 (14)之间, 其中, 所述非金属地底层面 ( 14 )上设置有阵列单元( 15 )。
4. 根据权利要求 3所述的装置, 其中, 在所述顶层面 (10)与所述非金属 地底层面 (14)之间设置有周期分布的金属性过孔(21 ) , 其中, 所述 金属性过孔(21 )贯穿所述中间介质夹层(11 ) , 且与所述周期性的阵 列单元(13)和所述阵列单元(15) 电性连接。
5. 根据权利要求 1至 4中任一项所述的装置,其中,所述中间介质夹层( 11 ) 的材料包括磁损耗型吸波材料和 /或电损耗型吸波材料。
6. 根据权利要求 5所述的装置, 其中, 所述中间介质夹层(11 ) 的所述磁 损耗型吸波材料和所述电损耗型吸波材料在同一平面上具有周期性的分 布结构。
7. 根据权利要求 6所述的装置, 其中, 所述中间介质夹层(11 ) 的在同一 平面上的所述磁损耗型吸波材料和所述电损耗型吸波材料环绕分布, 其 或者,所述电损耗型吸波材料的矩阵单元被所述磁损耗型吸波材料环绕。
8. 根据权利要求 6所述的装置, 其中, 所述中间介质夹层(11 ) 的在同一 矩阵单元交错分布。
9. 根据权利要求 5所述的装置, 其中, 所述中间介质夹层 ( 11 )设置为多 同于邻近的中间介质夹层。
10. 一种无线终端, 包括权利要求 1至 9中任一项所述的吸波装置, 所述吸 波装置设置在所述终端的印制电路板 PCB ( 2 ) 的外围面上。
11. 根据权利要求 10所述的无线终端, 其中, 所述吸波装置延伸在所述终端 的天线的非净空区域。
PCT/CN2013/078321 2012-10-19 2013-06-28 吸波装置及无线终端 WO2013182104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210401705.5 2012-10-19
CN2012104017055A CN102904065A (zh) 2012-10-19 2012-10-19 吸波装置及无线终端

Publications (1)

Publication Number Publication Date
WO2013182104A1 true WO2013182104A1 (zh) 2013-12-12

Family

ID=47576197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078321 WO2013182104A1 (zh) 2012-10-19 2013-06-28 吸波装置及无线终端

Country Status (2)

Country Link
CN (1) CN102904065A (zh)
WO (1) WO2013182104A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141647A1 (en) * 2020-01-06 2021-07-15 Raytheon Company Tunable radio frequency (rf) absorber and thermal heat spreader
US11924963B2 (en) 2022-02-03 2024-03-05 Raytheon Company Printed-circuit isolation barrier for co-site interference mitigation

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904065A (zh) * 2012-10-19 2013-01-30 中兴通讯股份有限公司南京分公司 吸波装置及无线终端
CN103151619A (zh) * 2013-02-03 2013-06-12 北京工业大学 基于频率选择表面的宽频复合吸波结构
CN103715513B (zh) * 2014-01-17 2016-03-30 中国科学院光电技术研究所 一种基于亚波长金属结构的宽频吸波材料
KR101664995B1 (ko) * 2015-04-27 2016-10-11 공주대학교 산학협력단 선택적 전자파 흡수기능을 갖는 시트
CN106332534B (zh) * 2015-07-10 2020-03-10 深圳光启尖端技术有限责任公司 吸波体结构
WO2017008709A1 (zh) * 2015-07-10 2017-01-19 深圳光启尖端技术有限责任公司 一种吸波体结构
CN105958212B (zh) * 2016-04-27 2020-07-10 电子科技大学 全向双频段吸波材料
CN106094262B (zh) * 2016-06-02 2019-02-15 上海师范大学 一种电控太赫兹幅度调制器及其制造方法
KR101822754B1 (ko) * 2016-08-04 2018-01-26 주식회사 아이두잇 혼 안테나 및 상기 혼 안테나의 제조 방법
CN106602252B (zh) * 2017-01-20 2023-09-01 浙江大学 网格方环加载过孔结构的2.5维超宽带移动通信天线罩
CN107069236A (zh) * 2017-06-12 2017-08-18 山东师范大学 一种对x波段雷达隐形的导弹隐形膜
CN107979965B (zh) * 2017-11-22 2019-06-25 中国舰船研究设计中心 单元小型化双通带双极化频率选择电磁防护材料结构
CN110690538A (zh) * 2019-09-17 2020-01-14 淮安信息职业技术学院 一种双频双极化带通三维频率选择表面
CN114002874A (zh) 2020-07-28 2022-02-01 京东方科技集团股份有限公司 显示面板及显示装置
CN111952720B (zh) * 2020-09-28 2022-11-22 西安电子科技大学 天线组件及电子设备
CN113113776B (zh) * 2021-03-31 2022-08-02 西安理工大学 一种太赫兹复合超材料多带吸收器及双向设计方法
WO2023221145A1 (zh) * 2022-05-20 2023-11-23 北京小米移动软件有限公司 天线模组、移动终端以及天线阵列的辐射范围的调整方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031072A1 (en) * 1997-01-13 1998-07-16 Symetrix Corporation Electromagnetic wave absorption panels and materials for same
CN201044264Y (zh) * 2007-05-28 2008-04-02 达昌电子科技(苏州)有限公司 天线模块
CN201044256Y (zh) * 2007-01-04 2008-04-02 达昌电子科技(苏州)有限公司 多频段的频率选择滤波装置
CN102904065A (zh) * 2012-10-19 2013-01-30 中兴通讯股份有限公司南京分公司 吸波装置及无线终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400043A (en) * 1992-12-11 1995-03-21 Martin Marietta Corporation Absorptive/transmissive radome
DE69830360T2 (de) * 1997-05-01 2005-10-27 Kitagawa Industries Co., Ltd., Nagoya Absorber für electromagnetsiche Wellen
CN1926933B (zh) * 2004-03-01 2010-12-08 新田株式会社 电磁波吸收体
CN102110891A (zh) * 2009-12-23 2011-06-29 西北工业大学 S波段超材料完全吸收基板微带天线
CN102510296A (zh) * 2011-11-09 2012-06-20 中兴通讯股份有限公司 移动终端及降低移动终端辐射的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031072A1 (en) * 1997-01-13 1998-07-16 Symetrix Corporation Electromagnetic wave absorption panels and materials for same
CN201044256Y (zh) * 2007-01-04 2008-04-02 达昌电子科技(苏州)有限公司 多频段的频率选择滤波装置
CN201044264Y (zh) * 2007-05-28 2008-04-02 达昌电子科技(苏州)有限公司 天线模块
CN102904065A (zh) * 2012-10-19 2013-01-30 中兴通讯股份有限公司南京分公司 吸波装置及无线终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141647A1 (en) * 2020-01-06 2021-07-15 Raytheon Company Tunable radio frequency (rf) absorber and thermal heat spreader
US11784416B2 (en) 2020-01-06 2023-10-10 Raytheon Company Tunable radio frequency (RF) absorber and thermal heat spreader
US11924963B2 (en) 2022-02-03 2024-03-05 Raytheon Company Printed-circuit isolation barrier for co-site interference mitigation

Also Published As

Publication number Publication date
CN102904065A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2013182104A1 (zh) 吸波装置及无线终端
Wong et al. High‐isolation conjoined loop multi‐input multi‐output antennas for the fifth‐generation tablet device
Das et al. Application of a compact electromagnetic bandgap array in a phone case for suppression of mobile phone radiation exposure
WO2012100480A1 (zh) 实现sar控制的方法和装置
Yoon et al. Investigation of near-field wireless power transfer in the presence of lossy dielectric materials
Sampath et al. A novel miniaturized polarization independent band-stop frequency selective surface
Güneş et al. GSM filtering of horn antennas using modified double square frequency selective surface
CN102044753B (zh) 带十字型高阻抗表面金属条接地的天线及其无线通讯装置
US9147941B2 (en) Antenna grounded with U-shaped high-impedance surface metal strips and its wireless communication device
WO2013067730A1 (zh) 移动终端及降低移动终端辐射的方法
Niaz et al. Synthesis of ultraminiaturized frequency-selective surfaces utilizing 2.5-D tapered meandering lines
Wong et al. Small‐size multiband planar antenna for LTE700/2300/2500 operation in the tablet computer
Seman et al. Investigations on fractal square loop FSS at oblique incidence for GSM applications
Karahan et al. Design and analysis of angular stable antipodal F‐type frequency selective surface with multi‐band characteristics
WO2014161348A1 (zh) 多输入多输出天线系统和辐射吸收方法
US20200127385A1 (en) Slot Antenna and Mobile Terminal
Sultan et al. Comprehensive study of printed antenna with the handset modeling
CN215989260U (zh) 一种频选装置及电子系统
Rezapour et al. Isolation enhancement of rectangular dielectric resonator antennas using wideband double slit complementary split ring resonators
Yang et al. Harmonic interference suppression within a multiple‐antenna system using integrated slender magnetic metamaterials
Lin et al. Use of high-impedance screens for enhancing antenna performance with electromagnetic compatibility
Zhu et al. Design of low‐specific absorption rate sticker using electric‐field components optimization
Kartal et al. A new frequency selective absorber surface at the unlicensed 2.4‐GHz ISM band
Kumaran et al. Low-profile high impedance surface on magneto-dielectric nanocomposite for wideband absorption of mobile phone radiation
Huang et al. A broadband adaptive waveguide high-power microwave protector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799903

Country of ref document: EP

Kind code of ref document: A1