WO2012100480A1 - 实现sar控制的方法和装置 - Google Patents

实现sar控制的方法和装置 Download PDF

Info

Publication number
WO2012100480A1
WO2012100480A1 PCT/CN2011/075104 CN2011075104W WO2012100480A1 WO 2012100480 A1 WO2012100480 A1 WO 2012100480A1 CN 2011075104 W CN2011075104 W CN 2011075104W WO 2012100480 A1 WO2012100480 A1 WO 2012100480A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling structure
metal coupling
antenna
wireless terminal
sar
Prior art date
Application number
PCT/CN2011/075104
Other languages
English (en)
French (fr)
Inventor
张璐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012100480A1 publication Critical patent/WO2012100480A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2275Supports; Mounting means by structural association with other equipment or articles used with computer equipment associated to expansion card or bus, e.g. in PCMCIA, PC cards, Wireless USB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for achieving specific absorption rate (SAR) control.
  • SAR specific absorption rate
  • the main object of the present invention is to provide a method and apparatus for implementing SAR control to reduce local SAR peaks and reduce damage to human radiation.
  • the technical solution of the present invention is achieved as follows:
  • a method for realizing specific absorption rate SAR control is applied to a wireless terminal, the method comprising: providing a metal coupling structure in different directions around an antenna of the wireless terminal; generating a whole for near-field radiation by the metal coupling structure The director or reflector acts to direct the near-field radiation of the antenna to the opposite direction of the user.
  • the method of setting the metal coupling structure is:
  • the metal coupling structure is disposed on the peripheral surface of the data card including the upper and lower surfaces, the left and right surfaces, and the top end surface.
  • the process of producing an integral director or reflector includes:
  • the metal coupling structure acts as a transmitter for the transmitting antenna; when the parasitic element is capacitive, the metal coupling structure acts as a director for the transmitting antenna.
  • the method for guiding the antenna near-field radiation as a whole to the opposite direction of the user is:
  • the method also includes:
  • a device for implementing SAR control comprising a structure of a wireless terminal, wherein a metal coupling structure is arranged in different directions around the antenna of the device for generating an overall director or reflector for near-field radiation, and the antenna is near-field The radiation is directed towards the opposite direction of the user.
  • the metal coupling structure includes a single layer structure, a plurality of layers of complementary structures, and has at least one of the following shapes: a rectangle, a line shape, a comb shape, a cross shape, and a nested ring shape.
  • the rectangle ⁇ uses a half wave length. Further, a device including a conductive reed is provided for connecting the single-ended or double-end of the suspended metal coupling structure to the PCB metal ground in the device, thereby changing the induced current distribution of the antenna on the PCB, and adjusting accordingly And reduce the SAR value.
  • a dielectric plate is added under the metal coupling structure for shortening the equivalent wavelength, thereby shortening the size and distance of the metal coupling structure.
  • the metal coupling structure is disposed on an inner surface and/or an outer surface of the data card housing of the device. Setting the positional relationship of the metal coupling structure is:
  • the envelope wrapping the data card of the device can affect the receiving performance of the terminal without affecting the terminal at the same time, the overall reduction of local SAR peaks, reducing the harm to human radiation.
  • the present invention eliminates the need to make significant changes to the antennas, circuits, and structures that have been designed, saves cost, and saves space. It has great flexibility and adaptability in application, and achieves the purpose of miniaturization of wireless terminals.
  • Figure la and Figure lb are three-dimensional structure diagrams of common wireless terminal data cards and corresponding two-dimensional unfolded surface diagrams;
  • Figure 2a, Figure 2b and Figure 2c show the layout of the three commonly used dual-antenna data card main and auxiliary antennas on the PCB;
  • Figure 3a and Figure 3b are schematic diagrams of a data card with a metal coupling structure and a corresponding two-dimensional expanded surface
  • Figure 4 is a schematic view of a usable metal coupling structure
  • Figure 5a and Figure 5b are schematic illustrations of the metal coupling structure in the vicinity of the USB connector and the two conductor reed connectors;
  • FIG. 6 is a schematic flow chart of implementing SAR control according to an embodiment of the present invention. detailed description
  • the SAR value can be reduced and the structure space can be saved without affecting the overall radiation quality of the wireless terminal antenna.
  • a plurality of metal coupling structures are added on four or more surfaces of the data card antenna to change the radiation characteristics and current distribution of the near-field of the antenna, thereby achieving the overall reduction of the SAR value.
  • a multi-antenna wireless terminal with reduced SAR peaks can be provided.
  • These include: a multilayer PCB with RF baseband circuitry, a primary antenna for transmission and reception, a diversity/MIMO antenna for reception, a structural enclosure, a USB connector, the metal located on the inner and/or outer walls of the enclosure Coupling the structure and ensuring it is in multiple directions of the antenna.
  • the metal coupling structure may have various shapes, such as at least one of the following shapes: a rectangle, a line shape, a comb shape, a cross shape, a nested ring shape, etc., and other structure types, such as a single layer structure, multiple layers, may also be used.
  • a plurality of the metal coupling structures may be added in the vicinity of the transmitting antenna of the wireless terminal, and the near field distribution of the antenna is changed by the electromagnetic coupling effect to achieve the purpose of reducing the SAR value.
  • the SAR value distribution may be adjusted by changing at least one of parameters such as position, shape, and direction of the metal coupling structure.
  • the suspended metal coupling structure can be connected to the single-ended or double-ended PCB metal ground, thereby changing the induced current distribution of the antenna on the PCB, and adjusting and reducing the SAR value accordingly.
  • the metal coupling structure may have various shapes such as a rectangular shape, a polygonal line shape, a comb shape, a cross shape, a nested ring shape, or the like, and may also be in the form of a single layer or a plurality of layers of complementary structures.
  • the metal coupling structure may be distributed in the casing structural member Internal and / or external, it can also be suspended around the PCB board by the bracket; or the metal coupling structure that is suspended can be connected to the metal ground on the PCB through the conductor connector.
  • the metal coupling structure does not significantly impair the far-field radiation characteristics of the data card antenna, and the quality of the communication signal is ensured.
  • the SAR value is improved only by the external metal coupling structure, significant changes to the antenna, circuit, and structure that have been designed are not required, thereby saving cost and space. It has great flexibility and adaptability in application, and achieves the purpose of miniaturization of wireless terminals.
  • the currently popular data card type wireless terminal devices are in the form of cubes, and are connected to the notebook through the end USB connector.
  • Figure la is a three-dimensional view of the data card terminal of this type.
  • the data card housing 1 has a USB connector 2 at the end.
  • the data card housing 1 contains a circuit structure such as a PCB board 3 and a shield.
  • the surfaces 7 to 8 correspond to the upper and lower surfaces, the left and right surfaces, and the top surface of the data card, respectively.
  • SAR measurements are usually performed near the five surfaces mentioned above. The SAR peaks of data card products are mostly distributed around the four surfaces of 4, 5, 6, and 7.
  • FIG 2 shows an example of the layout of three commonly used dual-antenna data card main and auxiliary antennas on a PCB.
  • multi-mode (WCDMA, CDMA2000, and LTE standards, etc.) data card terminal products widely use dual antenna-single-transmit dual-reception mode.
  • the main antenna 10 is responsible for transmitting and receiving.
  • the secondary antenna (MIMO antenna) 9 is responsible for receiving, and the two-channel reception can effectively improve the received signal quality and transmission throughput. Since the main antenna balances transmission and reception, it usually has a large spatial area, and the SAR peak is mainly distributed near the main antenna 10. In practical applications, it may be necessary to arrange and design the metal coupling structure according to the main antenna form and position.
  • FIG. 3 shows an example of a data card application.
  • the data card with the metal coupling structure 11 has a lower SAR value.
  • an electromagnetic coupling effect is achieved by distributing a plurality of rectangular strip-shaped metal strip structures and a ring structure on the peripheral surface (4, 5, 6, and 7 sides) of the data card. Pass Through the lead-in effect, the near-field radiation (EM field) in the main antenna space is adjusted to the USB connector as a whole, thereby equivalently reducing the SAR value near the 4, 5, 6, and 7 faces.
  • the rectangular strip metal can be approximated by a half-wave length.
  • the metal coupling structure acts as a transmitter for the transmitting antenna; when the parasitic element is capacitive, the metal coupling structure acts as a director for the transmitting antenna.
  • the distance between the reflector and the antenna is one-fourth of the equivalent wavelength, and the maximum reflection can be achieved.
  • the dielectric plate 12 can be added under a metal coupling structure to shorten the equivalent wavelength, thereby shortening the size and distance of the metal coupling structure.
  • the material of the dielectric plate 12 needs to select a high dielectric constant material, such as ceramic, mica, polyester polymer material, etc.; a ferromagnetic material may also be selected to increase the coupling inductance of the metal coupling structure.
  • the metal coupling structure can be constructed in a variety of configurations and forms.
  • Figure 4 contains some specific forms.
  • Figure a is a rectangular square structure
  • Figure b is a double-layer complementary metal triangle structure (achievable by FPC)
  • Figure c is a rectangular strip array structure
  • Figure d is a polygonal line array structure
  • Figure e is a comb line array structure
  • Figure f is a cross array structure
  • Figure g is a ring/linear array structure
  • Figure h is a rectangular wave line structure
  • Figure i is a nested ring array inductor structure
  • Figure j is a double layer surrounding inductor structure.
  • Figure f is a frequency selective surface structure that is capable of forming a passband or stopband filter for differently polarized spatial electromagnetic waves in a particular frequency band.
  • FIG. 5 is an example of application of the metal coupling structure 11 in the vicinity of the USB connector 2.
  • the sheet metal coupling structure 11 is disposed adjacent to the metal USB connector 2 and the PCB board 3.
  • One end of the metal coupling structure 11 is connected by metal contact of the contact spring 13 and the upper surface of the PCB board 3, and the other end is suspended. Since one end of the metal coupling structure 11 is metal-connected to the PCB and the distance from the USB connector 2 is small, electromagnetic coupling can occur therebetween, thereby changing the distribution of the induced current on the metal ground of the PCB 3, thereby changing the data.
  • the distribution of electromagnetic radiation in the vicinity of the card reduces the SAR value.
  • Figure 5b illustrates two forms of SMD reeds and connections.
  • the metal coupling structure 11 can be machined on the inner or outer surface of the data card housing 1. Specifically, it can be realized by laser engraving (LDS), injection molding (MID), flexible circuit (FPC), stamped metal (painted metal), sprayed conductive metal paint, etc.; it can also be processed independently in soft covers such as plastics and rubber, and The envelope is wrapped outside the data card terminal to achieve the purpose of reducing the SAR value.
  • LDS laser engraving
  • MID injection molding
  • FPC flexible circuit
  • stamped metal painted metal
  • sprayed conductive metal paint etc.
  • the envelope is wrapped outside the data card terminal to achieve the purpose of reducing the SAR value.
  • FIG. 6 is a schematic flowchart of implementing SAR control according to an embodiment of the present invention, where the process includes the following steps:
  • Step 610 A metal coupling structure is disposed in different directions around the antenna.
  • Step 620 The near-field radiation is used to generate an overall director or reflector by the metal coupling structure, and the antenna near-field radiation is entirely directed to the opposite direction of the user.
  • the technology of the present invention for arranging a metal coupling structure on a plurality of outer surfaces of a wireless terminal product can reduce the local SAR peak and reduce the harm to human radiation without affecting the terminal receiving and transmitting performance.
  • the present invention does not require significant changes to the antennas, circuits, and structures that have been designed, saves cost, and saves space. It has great flexibility and adaptability in application, and achieves the purpose of miniaturization of wireless terminals.
  • the present invention does not specifically define the geometry and structure of the metal coupling structure, and only several possible examples are given in FIG. 4, using other types of geometric figures not mentioned in the present invention, or the present invention. Any modification made by the geometric figures is within the scope of the present invention.
  • the above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included. Within the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Transceivers (AREA)

Description

实现 SAR控制的方法和装置 技术领域
本发明涉及通信领域, 具体涉及实现比吸收率 (SAR )控制的方法和 装置。 背景技术
随着无线通信技术飞速的发展, 个人无线终端 (手机、 数据卡、 MiFi/Hotspot等)得到广泛普及和应用。 在日常应用场景中, 此类产品和人 体的距离越来越小, 无线终端带来的电磁辐射对人体健康的影响成为公众 关心的话题。 通常, 国际上釆用 SAR指标来衡量电磁暴露环境下人体吸收 的能量。许多国家也制定相应法规,通过限定无线终端设备 SAR值的上限, 确保电磁辐射对人体的安全性。 因此, 当今无线终端产品设计, 除了需满 足多模新制式, 还要兼顾小型化同时满足 SAR峰值的规定。
现有的 SAR降低技术, 通常釆用牺牲天线通信质量的方式, 如通过降 低射频功放的输出功率等级, 或通过在终端内部放置吸波材料和涂覆吸波 层, 来达到降低 SAR的目的。 此外, 还有在无线终端中设置导体反射器和 屏蔽器的方法, 隔离天线向人体侧发射的电磁波。 但此类单侧反射器的措 施, 虽然减少了天线对某一测人体的辐射, 也会导致另外一侧辐射的增强。 而且反射器和屏蔽器在装配过程中, 需要更大的位置空间, 这也违背了无 线终端小型化设计的初衷。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现 SAR控制的方法和装 置, 以降低局部 SAR峰值, 减少对人体辐射的危害。 为达到上述目的, 本发明的技术方案是这样实现的:
一种实现比吸收率 SAR控制的方法,应用于无线终端中,该方法包括: 在所述无线终端的天线周边的不同方向上设置金属耦合结构; 由所述金属耦合结构对近场辐射产生整体引向器或反射器作用, 将天 线近场辐射整体导向用户的反方向。
设置所述金属耦合结构的方法为:
在包含上下表面、 左右表面和顶端表面在内的数据卡四周表面上设置 所述金属耦合结构。
所述产生整体引向器或反射器作用的过程包括:
当寄生单元为电感性时, 所述金属耦合结构对发射天线起发射器作用; 当寄生单元为电容性时, 所述金属耦合结构对发射天线起引向器作用。 所述将天线近场辐射整体导向用户的反方向的方法为:
根据所述金属耦合结构的位置、 形态、 方向之一在内的设置, 将所述 无线终端的主天线空间上的近场辐射整体向 USB连接器调整, 从而等效降 低数据卡四周表面附近的 SAR值。
该方法还包括:
设置包括导电簧片在内的器件, 将悬浮的所述金属耦合结构单端或双 端和所述无线终端中的 PCB金属地连接,从而改变天线在 PCB上的感应电 流分布, 相应调整并降低 SAR值。
一种实现 SAR控制的装置, 包含无线终端的结构, 在该装置的天线周 边的不同方向上设置有金属耦合结构, 用于对近场辐射产生整体引向器或 反射器作用, 将天线近场辐射整体导向用户的反方向。
所述金属耦合结构包括单层结构、 多层互补结构, 并且至少具有以下 形状之一: 矩形、 折线形、 梳形、 十字形、 嵌套环形。
所述矩形釆用半波长度。 进一步设置包括导电簧片在内的器件, 用于将悬浮的所述金属耦合结 构单端或双端和所述装置中的 PCB金属地连接,从而改变天线在 PCB上的 感应电流分布, 相应调整并降低 SAR值。
进一步在所述金属耦合结构下添加介质板, 用于缩短等效波长, 从而 缩短所述金属耦合结构的尺寸和距离。
所述金属耦合结构设置于所述装置的数据卡外壳内表面和 /或外表面。 设置所述金属耦合结构的位置关系为:
以独立加工的方式设置于封套内, 所述封套包裹在所述装置的数据卡 本发明提出的在无线终端产品多个外表面上布置金属耦合结构的技 术, 可在不影响终端接收发射性能的同时, 整体降低局部 SAR峰值, 减少 对人体辐射的危害。 此外, 本发明不需要对已设计成型的天线、 电路和结 构做出重大改动, 节约成本, 也可节省空间。 在应用时具有很大的灵活性 和适应度, 实现了无线终端小型化设计的目的。 附图说明
图 la和图 lb为常用无线终端数据卡三维结构图以及对应的二维展开 表面示意图;
图 2a、 图 2b和图 2c为三种常用的双天线数据卡主副天线在 PCB上的 布局示意图;
图 3a和图 3b为带有金属耦合结构的数据卡示意图以及相应二维展开 表面示意图;
图 4为可用的金属耦合结构示意图;
图 5a和图 5b为 USB连接器附近的金属耦合结构以及两种导体簧片连 接器的示意图;
图 6为本发明实施例的实现 SAR控制的流程简图。 具体实施方式
总体而言, 可以基于金属耦合结构, 在不影响无线终端天线总体辐射 质量的前提下, 降低 SAR值并节省结构空间。 如: 在数据卡天线四个甚至 更多表面上增加多个金属耦合结构, 以改变天线近区辐射特性和电流分布, 从而达到整体降低 SAR值的目的。
具体而言, 可以提供一种具有降低 SAR峰值的多天线无线终端。 其中 包括: 带有射频基带电路的多层 PCB、 用于发射和接收的主天线、 用于接 收的分集 /MIMO天线、 结构外壳、 USB连接器、位于机壳内壁和 /或外壁的 所述金属耦合结构, 并确保处于天线多个方向区域内。
所述金属耦合结构可具有多种形状, 如至少具有以下形状之一: 矩形、 折线形、 梳形、 十字形、 嵌套环形等, 还可釆用其他结构类型, 如单层结 构、 多层互补结构等, 以增强所述金属耦合结构和天线辐射场的电磁耦合。
通常, 可以在无线终端发射天线附近添加多个所述金属耦合结构, 通 过电磁耦合效应改变天线近区场分布, 达到降低 SAR值的目的。 具体的, 可以通过改变所述金属耦合结构的位置、 形态、 方向等参数中至少之一, 调整 SAR值分布。 另外, 通过设置导电簧片等器件, 可以将悬浮的所述金 属耦合结构单端或双端和 PCB金属地连接,从而改变天线在 PCB上的感应 电流分布, 相应调整并降低 SAR值。 所述金属耦合结构可具有多种形状, 如矩形、 折线形、 梳形、 十字形、 嵌套环形等, 还可釆用单层或多层互补 结构等形式。
可见, 通过在天线周边多个方向上设置多个金属耦合结构, 对近场辐 射产生整体引向器或反射器作用, 可以将天线近场辐射整体导向数据卡 USB连接器方向, 即将辐射导向用户的反方向(如: 笔记本方向), 以降低 数据卡四周方向的 SAR值。 这不同于目前常用的反射技术, 后者只单纯改 变手机人脑单侧的电磁辐射能量。 所述金属耦合结构可分布在机壳结构件 内部和 /或外部, 也可通过支架悬浮在 PCB板四周; 或者通过导体连接器, 将悬空的所述金属耦合结构和 PCB上金属地联通。 由于电磁耦合的存在从 而改变 PCB基板金属地、 屏蔽罩外壳上的感应电流分布, 避免表面强电流 集中, 从而降低终端设备周边 SAR局部峰值。 同时, 所述金属耦合结构并 不显著削弱数据卡天线远场辐射特性, 保证了通信信号的质量。
此外, 由于只通过外加金属耦合结构改进 SAR值, 因此不需要对已设 计成型的天线、 电路和结构做出重大改动, 进而节约成本, 也可节省空间。 在应用时具有很大的灵活性和适应度, 实现了无线终端小型化设计的目的。
在具体实施时, 目前流行的数据卡类无线终端设备, 造型多釆用立方 体形式,通过末端的 USB连接器和笔记本相连。 图 la为该类数据卡终端的 三维视图。 其中, 数据卡外壳 1的末端带有 USB连接器 2。 数据卡外壳 1 内包含 PCB板 3、 屏蔽罩等电路结构。 对于立方体的数据卡表面, 可以展 开成图 lb的二维形式, 其中表面 7到 8分别对应数据卡上下表面、 左右表 面和顶端表面。 SAR测量通常就在上述的 5个表面近旁进行。 数据卡类产 品的 SAR峰值多分布在 4、 5、 6、 7这四个表面附近。
图 2为三种常用的双天线数据卡主副天线在 PCB上布局实例。 当前多 模(WCDMA、 CDMA2000和 LTE制式等)数据卡类终端产品广泛釆用双 天线-单发射双接收模式。 具体的, 主天线 10 负责发射和接收。 副天线 ( MIMO天线) 9负责接收,通过双路接收可有效提高接收信号质量和传输 吞吐量。 由于主天线兼顾发射和接收, 因此通常具有较大的空间区域, SAR 峰值主要分布在主天线 10附近。 在实际应用时, 可以需要根据主天线形式 和位置, 对所述金属耦合结构做相应布局和设计。
图 3为数据卡应用实例。 带有所述金属耦合结构 11的数据卡具有较低 的 SAR值。 具体的, 如图 3b, 通过在数据卡四周表面 (4、 5、 6、 7面) 上分布多个矩形条形金属条状结构和环形结构, 以达到电磁耦合效应。 通 过引向作用, 将主天线空间上的近场辐射(EM场)整体向 USB连接器调 整, 从而等效降低在 4、 5、 6、 7面附近的 SAR值。 矩形条形金属可釆用 近似半波长度。 当寄生单元为电感性时, 金属耦合结构对发射天线起发射 器作用; 当寄生单元为电容性时, 金属耦合结构对发射天线起引向器作用。 而理想情况下反射器和天线的距离为四分之一等效波长, 此时可以达到最 大反射效果。 在小型化要求下, 如图 3a所示, 可以在金属耦合结构下添加 介质板 12以缩短等效波长, 从而缩短所述金属耦合结构的尺寸和距离。 介 质板 12的材料需选择高介电常数材料, 如陶瓷、 云母、 聚酯类高分子材料 等; 也可选择铁磁性材料, 以增加所述金属耦合结构的耦合电感。
所述金属耦合结构可以釆用多种结构和形式。 图 4 包含一些具体的形 式。 其中, 图 a为矩形方片结构, 图 b为双层互补金属三角结构 (可通过 FPC实现 ), 图 c为矩形条阵列结构, 图 d为折线形阵列结构, 图 e为梳状 线阵列结构, 图 f为十字阵列结构, 图 g为环形 /线形阵列结构, 图 h为矩 形波折线结构,图 i为嵌套环形阵列电感结构,图 j为双层环绕形电感结构。 其中, 图 d和图 h的褶皱表面, 可使电磁波杂散化, 以降低在某个点上的 电磁能聚集。 图 f为类似频率选择性表面结构, 能够在某特定频带内对不同 极化的空间电磁波形成通带或阻带滤波器。
图 5为在 USB连接器 2附近的应用所述金属耦合结构 11的实例。 如 图 5a所示, 在金属 USB连接器 2和 PCB板 3临近上方布置所述片状金属 耦合结构 11。 该金属耦合结构 11的一端通过接触簧片 13和 PCB板 3上表 面的金属地连接, 另外一端悬空。 由于所述金属耦合结构 11的一端和 PCB 金属地连接, 且距离 USB连接器 2距离很小, 因此在其间可以发生电磁耦 合, 从而改变天线在 PCB板 3金属地上感应电流的分布, 从而改变数据卡 附近区域内的电磁辐射分布, 降低 SAR值。 图 5b示意两种形式的 SMD簧 片和连接方式。 所述金属耦合结构 11可加工在数据卡外壳 1的内表面或外表面。 具体 可通过镭雕(LDS )、 注塑 (MID )、 柔性电路(FPC )、 冲压金属(Stamped Metal ), 喷涂导电金属漆等技术实现; 也可以独立加工在塑料、 橡胶等柔软 封套内, 并将封套包裹在数据卡类终端外侧, 达到降低 SAR值的目的。
结合以上技术描述可知, 实现 SAR控制的总体思路可以表示如图 6所 示。 参见图 6, 图 6为本发明实施例的实现 SAR控制的流程简图, 该流程 包括以下步骤:
步骤 610: 在天线周边不同方向上设置金属耦合结构。
步骤 620:由所述金属耦合结构对近场辐射产生整体引向器或反射器作 用, 将天线近场辐射整体导向用户的反方向。
综上所述可见, 本发明提出的在无线终端产品多个外表面上布置金属 耦合结构的技术,可在不影响终端接收发射性能的同时,整体降低局部 SAR 峰值, 减少对人体辐射的危害。 此外, 本发明不需要对已设计成型的天线、 电路和结构做出重大改动, 节约成本, 也可节省空间。 在应用时具有很大 的灵活性和适应度, 实现了无线终端小型化设计的目的。
另外, 本发明不对所述金属耦合结构釆用的几何图形和结构做具体限 定, 图 4 中只是给出几种可行的例子, 釆用本发明未提到的其它类型的几 何图形, 或对本发明的几何图形所作的任何形式的修改, 均在本发明的保 护范围内。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发 明的保护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换 和改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现比吸收率 SAR控制的方法, 应用于无线终端中, 其特征 在于, 该方法包括:
在所述无线终端的天线周边的不同方向上设置金属耦合结构; 由所述金属耦合结构对近场辐射产生整体引向器或反射器作用, 将天 线近场辐射整体导向用户的反方向。
2、 根据权利要求 1所述的方法, 其特征在于, 设置所述金属耦合结构 的方法为:
在包含上下表面、 左右表面和顶端表面在内的数据卡四周表面上设置 所述金属耦合结构。
3、 根据权利要求 1所述的方法, 其特征在于, 所述产生整体引向器或 反射器作用的过程包括:
当寄生单元为电感性时, 所述金属耦合结构对发射天线起发射器作用; 当寄生单元为电容性时, 所述金属耦合结构对发射天线起引向器作用。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述将天线 近场辐射整体导向用户的反方向的方法为:
根据所述金属耦合结构的位置、 形态、 方向之一在内的设置, 将所述 无线终端的主天线空间上的近场辐射整体向 USB连接器调整, 从而等效降 低数据卡四周表面附近的 SAR值。
5、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 该方法还包 括:
设置包括导电簧片在内的器件, 将悬浮的所述金属耦合结构单端或双 端和所述无线终端中的 PCB金属地连接,从而改变天线在 PCB上的感应电 流分布, 相应调整并降低 SAR值。
6、 一种实现 SAR控制的装置, 包含无线终端的结构, 其特征在于, 在该装置的天线周边的不同方向上设置有金属耦合结构, 用于对近场辐射 产生整体引向器或反射器作用, 将天线近场辐射整体导向用户的反方向。
7、 根据权利要求 6所述的装置, 其特征在于, 所述金属耦合结构包括 单层结构、 多层互补结构, 并且至少具有以下形状之一: 矩形、 折线形、 梳形、 十字形、 嵌套环形。
8、根据权利要求 7所述的装置,其特征在于, 所述矩形釆用半波长度。
9、 根据权利要求 6至 8任一项所述的装置, 其特征在于, 进一步设置 包括导电簧片在内的器件, 用于将悬浮的所述金属耦合结构单端或双端和 所述装置中的 PCB金属地连接, 从而改变天线在 PCB上的感应电流分布, 相应调整并降低 SAR值。
10、 根据权利要求 6至 8任一项所述的装置, 其特征在于, 进一步在 所述金属耦合结构下添加介质板, 用于缩短等效波长, 从而缩短所述金属 耦合结构的尺寸和距离。
11、 根据权利要求 6至 8任一项所述的装置, 其特征在于, 所述金属 耦合结构设置于所述装置的数据卡外壳内表面和 /或外表面。
12、 根据权利要求 11所述的装置, 其特征在于, 设置所述金属耦合结 构的位置关系为:
以独立加工的方式设置于封套内, 所述封套包裹在所述装置的数据卡
PCT/CN2011/075104 2011-01-24 2011-06-01 实现sar控制的方法和装置 WO2012100480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110025602.9 2011-01-24
CN2011100256029A CN102157777A (zh) 2011-01-24 2011-01-24 实现sar控制的方法和装置

Publications (1)

Publication Number Publication Date
WO2012100480A1 true WO2012100480A1 (zh) 2012-08-02

Family

ID=44439066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075104 WO2012100480A1 (zh) 2011-01-24 2011-06-01 实现sar控制的方法和装置

Country Status (2)

Country Link
CN (1) CN102157777A (zh)
WO (1) WO2012100480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11924783B2 (en) 2018-11-27 2024-03-05 Samsung Electronics Co., Ltd. Apparatuses and methods for controlling exposure to wireless communication

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138794B (zh) * 2011-11-28 2015-02-11 启碁科技股份有限公司 射频装置及无线通信装置
CN102738584B (zh) * 2012-06-15 2016-03-02 中兴通讯股份有限公司 一种降低数据卡sar值的终端天线及其成型方法
CN103078172B (zh) * 2013-02-20 2015-03-25 上海安费诺永亿通讯电子有限公司 具有高敏感度感应装置的天线
CN103208676B (zh) * 2013-02-22 2016-04-20 惠州硕贝德无线科技股份有限公司 一种降低比吸收率的天线
CN104124991B (zh) * 2013-04-25 2016-08-03 启碁科技股份有限公司 射频装置及无线通信装置
CN104300202B (zh) * 2013-07-17 2019-02-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN104332717B (zh) * 2014-11-27 2017-09-15 陈念 反射器
CN104538734A (zh) * 2014-12-23 2015-04-22 昆山联滔电子有限公司 天线
CN104566027B (zh) * 2014-12-26 2018-10-26 生迪光电科技股份有限公司 Led照明装置、系统及其天线布置方法
CN106154340B (zh) * 2015-03-26 2019-03-01 神讯电脑(昆山)有限公司 具有物体侦测功能的电子装置及物体侦测方法
CN105742778A (zh) * 2016-03-08 2016-07-06 昆山联滔电子有限公司 天线结构
CN107343310B (zh) * 2017-06-09 2019-05-17 维沃移动通信有限公司 一种天线功率调节方法及移动终端
CN108061830B (zh) * 2017-11-28 2020-03-17 Oppo广东移动通信有限公司 电子设备辐射杂散源定位方法
CN108400430B (zh) * 2018-02-06 2021-08-17 中兴通讯股份有限公司 一种天线装置及终端
CN110913064A (zh) * 2018-09-18 2020-03-24 青岛海信移动通信技术股份有限公司 一种控制人体辐射吸收率的方法和移动终端
CN111755803B (zh) * 2020-06-30 2023-06-23 联想(北京)有限公司 一种电子设备和控制方法
CN111987478B (zh) * 2020-09-28 2022-05-13 西安电子科技大学 天线模组和终端
CN111987471A (zh) * 2020-09-28 2020-11-24 西安电子科技大学 Fss覆层结构及电子设备
CN117996397A (zh) * 2021-04-08 2024-05-07 荣耀终端有限公司 天线装置、电子设备及电子设备组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486521A (zh) * 2000-12-14 2004-03-31 加载有电抗性表面的空腔天线
CN1509505A (zh) * 2002-02-27 2004-06-30 ���µ�����ҵ��ʽ���� 用于无线设备的天线装置
CN1682406A (zh) * 2002-09-12 2005-10-12 西门子公司 具有降低的sar值的无线电通信设备
CN201044264Y (zh) * 2007-05-28 2008-04-02 达昌电子科技(苏州)有限公司 天线模块
CN201084827Y (zh) * 2007-09-07 2008-07-09 达昌电子科技(苏州)有限公司 单极天线模块
CN101540433A (zh) * 2009-05-08 2009-09-23 深圳华为通信技术有限公司 一种无线终端的天线设计方法及数据卡单板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201616503U (zh) * 2010-04-08 2010-10-27 湖南华诺星空电子技术有限公司 用于生命搜救探测仪的超宽带收发天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486521A (zh) * 2000-12-14 2004-03-31 加载有电抗性表面的空腔天线
CN1509505A (zh) * 2002-02-27 2004-06-30 ���µ�����ҵ��ʽ���� 用于无线设备的天线装置
CN1682406A (zh) * 2002-09-12 2005-10-12 西门子公司 具有降低的sar值的无线电通信设备
CN201044264Y (zh) * 2007-05-28 2008-04-02 达昌电子科技(苏州)有限公司 天线模块
CN201084827Y (zh) * 2007-09-07 2008-07-09 达昌电子科技(苏州)有限公司 单极天线模块
CN101540433A (zh) * 2009-05-08 2009-09-23 深圳华为通信技术有限公司 一种无线终端的天线设计方法及数据卡单板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11924783B2 (en) 2018-11-27 2024-03-05 Samsung Electronics Co., Ltd. Apparatuses and methods for controlling exposure to wireless communication

Also Published As

Publication number Publication date
CN102157777A (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2012100480A1 (zh) 实现sar控制的方法和装置
US10027159B2 (en) Antenna for transmitting wireless power signals
US8928538B2 (en) Antenna system providing high isolation between antennas on electronics device
CN104885296B (zh) 环形天线及移动终端
US7911405B2 (en) Multi-band low profile antenna with low band differential mode
EP1305843B1 (en) Antenna arrangement and portable radio communication device
TWI657620B (zh) 天線指向性控制系統及包含其之無線裝置
KR100980774B1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
TWI517498B (zh) 天線裝置
TWI423524B (zh) 具切換不同輻射場形之特性的天線結構與製作方法
US9748661B2 (en) Antenna for achieving effects of MIMO antenna
TWI540790B (zh) 天線裝置及應用其之通訊裝置
KR20130023669A (ko) 높은 격리도를 갖는 미모/다이버시티 안테나
WO2007037841A2 (en) Wireless communication device with integrated antenna
US9236653B2 (en) Antenna device
EP2053688B1 (en) Antenna system for wireless digital devices
US20090262023A1 (en) Antenna assembly, printed wiring board and device
TWI533637B (zh) 在lte/gsm頻帶中用於mimo/多元化操作的lte天線對
WO2014161348A1 (zh) 多输入多输出天线系统和辐射吸收方法
TWI392137B (zh) 行動裝置
US20110223858A1 (en) Mobile Communication Device with Low Near-Field Radiation and Related Antenna Structure
TW201324952A (zh) 可抑制天線間相互干擾的天線結構
CN102157794A (zh) 谐振产生的三频段天线
US20130043315A1 (en) RFID tag with open-cavity antenna structure
KR100895658B1 (ko) 무선 애플리케이션을 위한 낮은 프로파일 스마트 안테나 및그 관련 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856822

Country of ref document: EP

Kind code of ref document: A1