WO2013067730A1 - 移动终端及降低移动终端辐射的方法 - Google Patents

移动终端及降低移动终端辐射的方法 Download PDF

Info

Publication number
WO2013067730A1
WO2013067730A1 PCT/CN2011/083851 CN2011083851W WO2013067730A1 WO 2013067730 A1 WO2013067730 A1 WO 2013067730A1 CN 2011083851 W CN2011083851 W CN 2011083851W WO 2013067730 A1 WO2013067730 A1 WO 2013067730A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
antenna
electromagnetic
electromagnetic bandgap
radiation
Prior art date
Application number
PCT/CN2011/083851
Other languages
English (en)
French (fr)
Inventor
陈霖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013067730A1 publication Critical patent/WO2013067730A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces

Definitions

  • the present invention relates to the field of communications, and in particular to a mobile terminal and a method for reducing radiation of a mobile terminal.
  • BACKGROUND OF THE INVENTION Due to the rapid development of mobile communication technologies, applications of mobile communication terminals have become very popular, and as mobile services become more and more abundant, people use mobile terminals more and more every day. Therefore, the safety of electromagnetic radiation of wireless terminals is also receiving increasing attention from end users.
  • the Specific Absorbing Ratio (SAR) is an indicator of the dose size of electromagnetic radiation entering the human body at the wireless terminal. SAR is defined as the electromagnetic power absorbed by the human body per unit mass, in units of W/Kg.
  • SAR test standards There are two types of SAR test standards, one is the US FCC standard, and the other is the European CE standard. The main difference between the two standards is in two aspects, one is the range of test duration and the average value of the test value, and the other is the limit requirement.
  • FCC adopts 5 minutes test, lg average method, the limit requirement for mobile phone terminal products is 1.6mw/g, the limit for data card terminal products is 1.2mw/g ; and CE adopts 15 minutes test.
  • the method of averaging 10g the limit requirements are correspondingly 2mw / g and 1.6mw / g. It can be seen that the FCC requirements for SAR, especially for data card products, are more stringent.
  • the human body model (Human Phantom) that mimics human tissue is used for actual measurement.
  • saline is filled with human body tissue fluid, and its dielectric constant is similar to the normal dielectric constant of the human body.
  • the specific expression of SAR is as follows: Among them, is the conductivity of human tissue, ⁇ is the density of human tissue, 1 ⁇ 1 is the square of the local electric field vector amplitude in the tissue fluid.
  • the SAR in human tissue is proportional to the square of the electric field strength in the tissue, and is determined by the incident electromagnetic field parameters (such as frequency, intensity, direction), the relative position of the electromagnetic field source to the target, and the genetic characteristics of the exposed tissue of the human body.
  • TRP Total Radiated Power
  • TIS Total Isotropic Sensitivity
  • a commonly used method for reducing SAR is to apply an absorbing material on the outer casing to absorb a part of the radiated electromagnetic waves.
  • the reduced radiation performance of the antenna also means that the antenna's ability to receive electromagnetic signals is reduced, that is, the use of absorbing materials reduces TRP and TIS performance.
  • the present invention provides a mobile terminal and a method for reducing radiation of the mobile terminal, so as to at least solve the related art, the method of coating the absorbing material reduces the radiation of the antenna to the human body, and reduces the problem of the antenna receiving the electromagnetic signal.
  • a mobile terminal comprising: an antenna; an electrical tape gap structure connected to the antenna, configured to reduce radiation of the antenna to the human body.
  • the electrical tape gap structure is located on the earpiece and/or microphone side of the mobile terminal.
  • the electrical tape gap structure comprises: an upper metal surface, a lower metal surface, and a dielectric substrate disposed to electromagnetically isolate the upper metal surface and the lower metal surface, wherein the upper metal surface is periodically arranged with an electromagnetic band gap unit, and the lower metal surface is shared with the antenna Ground.
  • the shape of the electric tape gap unit is rectangular, and the center of the electric tape gap unit is provided with a through hole which is covered with metal and connects the upper metal surface and the lower metal surface.
  • the electric tape gap unit is a square having a side length of 9 mm.
  • the radius of the via is 0.5 mm.
  • the periodic arrangement of the electrical tape gap units is a periodic arrangement of 0.5 mm band gaps between the electromagnetic bandgap units.
  • the dielectric substrate has a dielectric constant greater than 10.
  • the mobile terminal further includes: a PCB circuit board, and the electrical tape gap structure is located between the antenna and the PCB circuit board.
  • the electrical tape gap structure and the antenna can be connected by screws or snaps.
  • a method of reducing radiation of a mobile terminal comprising: installing an electromagnetic bandgap structure disposed in the mobile terminal to reduce radiation of the antenna to the human body.
  • the invention adopts the electromagnetic band gap structure to reduce the radiation of the antenna to the human body, and the electric tape gap structure can reduce the back radiation of the antenna, and installing the same in the mobile terminal can reduce the radiation of the antenna to the human body, and does not affect or even improve the electromagnetic signal received by the antenna.
  • Ability BRIEF DESCRIPTION OF THE DRAWINGS
  • the accompanying drawings which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • FIG. 2 is a schematic structural view of a mobile terminal according to a preferred embodiment of the present invention
  • FIG. 3 is an electromagnetic band gap according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a mobile terminal according to a preferred embodiment of the present invention;
  • FIG. 5 is a schematic structural view of an electromagnetic bandgap unit according to a preferred embodiment of the present invention;
  • Fig. 7 is a schematic structural view of a mobile terminal in accordance with a preferred embodiment of the present invention.
  • the present invention provides a method of reducing radiation from a mobile terminal by installing an electromagnetic bandgap structure 124 disposed in the mobile terminal 12 to reduce radiation from the antenna 122 to the human body 14.
  • the embodiment of the invention further provides a mobile terminal, which is implemented based on the foregoing method for reducing radiation of a mobile terminal.
  • 1 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 1, the mobile terminal 12 includes an antenna 122 and an electromagnetic bandgap structure 124.
  • the electrical tape gap structure 124 is connected to the antenna 122 and is configured to reduce the radiation of the antenna 122 to the human body 14.
  • the method of coating the absorbing material is used to reduce the radiation of the antenna to the human body, but this also reduces the ability of the antenna to receive electromagnetic signals.
  • the electromagnetic band gap structure is adopted to reduce the radiation of the antenna to the human body.
  • the electromagnetic band gap structure is generally used to improve the radiation efficiency of the antenna in the microwave circuit, and the inventors have found that the electromagnetic band gap structure can also reduce the back of the antenna. Radiation, therefore, mounting it in a mobile terminal can reduce the radiation of the antenna to the human body without affecting or even improving the ability of the antenna to receive electromagnetic signals.
  • the earpiece and/or microphone 126 is the component of the mobile terminal 12 that is closest to the human body 14 when answering the call.
  • the electromagnetic bandgap structure 124 is mounted to the earpiece and/or microphone 126 side of the mobile terminal 12, as shown in Figure 2, which minimizes radiation from the antenna to the human body.
  • the electrical tape gap structure is a periodic structure developed from the photonic bandgap structure. This structure can manipulate the propagation of electromagnetic waves to a certain extent, which is manifested in that the structure can block the propagation of electromagnetic waves in certain frequency bands and has certain forbidden band characteristics.
  • the electrical tape gap structure is a band-stop filter that is formed by periodically arranging a mixture of different dielectrics, metals, and the like.
  • the electrical tape gap structure 124 includes: an upper metal surface 1242, a lower metal surface 1244, and a dielectric substrate 1246 disposed to electromagnetically isolate the upper metal surface 1242 and the lower metal surface 1244, wherein the upper metal surface 1242 is periodically arranged with an electromagnetic band gap unit
  • the lower metal surface 1244 is co-located with the antenna 122.
  • the dielectric substrate 1246 has a dielectric constant greater than 10.
  • the outer shape of the electrical tape gap unit is rectangular, and the center of the electrical tape gap unit is provided with a through hole which is covered with metal and connects the upper metal surface 1242 and the lower metal surface 1244.
  • the electrical tape gap unit is a square having a side length of 9 mm, the radius of the via hole is 0.5 mm, and the periodic arrangement of the electromagnetic bandgap cells is performed by using a band gap of 0.5 mm between the electromagnetic bandgap units.
  • the mobile terminal further includes: a PCB circuit board 128.
  • the electrical tape gap structure 124 is located between the antenna 122 and the PCB circuit board 128. As shown in FIG.
  • the length and width of the electromagnetic bandgap structure 124 are similar to those of the PCB circuit board 128.
  • the electrical tape gap structure and the antenna are connectable by means of screws or snaps.
  • the electromagnetic bandgap structure 124 of the present invention is a serial port hole structure, which is a mixture of a metal piece and a dielectric substrate, and is similar to a PCB board of unwelded components. Connecting the electromagnetic bandgap structure to the terminal antenna, It acts to reduce the backward radiation of the antenna to the side close to the human body. After the antenna substrate, a substrate with an electromagnetic band gap structure is added, and a high dielectric constant material (such as a dielectric constant greater than 10) is used as the dielectric substrate.
  • a high dielectric constant material such as a dielectric constant greater than 10.
  • the terminal electromagnetic bandgap structure includes an intermediate dielectric layer and upper and lower metal faces.
  • the metal layer at the bottom of the dielectric substrate serves as a ground plane and is connected to the ground plane of the antenna.
  • a square electromagnetic bandgap cell is periodically arranged on the upper surface of the substrate, and the structure of the electromagnetic bandgap cell is as shown in FIG.
  • the implementation process of the embodiment of the present invention will be described in detail below with reference to examples.
  • the preferred embodiment is tested in the 1800 GHz band.
  • the structure of the electrical tape gap unit is 9 mm x 9 mm.
  • the electromagnetic bandgap cell is copper-clad, the band gap is 0.5 mm, and a copper-clad via having a radius of 0.5 mm is punched at the center, such as Figure 5 shows.
  • the via hole connects the copper layer of the surface unit on the dielectric board to the ground plane of the lower surface of the dielectric board.
  • FIG. 7 is a schematic structural diagram of a mobile terminal according to a preferred embodiment of the present invention. Taking a Planar Invert F Antenna (PIFA) as an example, the relative position of the electrical tape gap structure and the antenna is as shown in FIG. 6 . .
  • PIFA Planar Invert F Antenna
  • the electromagnetic band gap structure is located at the rear of the antenna substrate, and the grounding unit and the grounding unit of the antenna are connected by a side metal structure; the upper surface of the electric tape gap structure is made of a copper structure, and the center is connected to the lower bottom surface through the metal via.
  • SEMCAD software for electromagnetic simulation, the lg SAR values in the 1800 MHz band were simulated using the same PIFA antenna to simulate the addition of the electromagnetic bandgap structure and the absence of the electromagnetic bandgap structure. In both cases, the relative position of the human head model and the antenna is exactly the same, except that in one case the electromagnetic bandgap structure is added to the back of the antenna.
  • the simulation setting conditions are exactly the same, and the absorption of the radiation amount of the terminal antenna by the human head is calculated.
  • the OTA (Over the Air) parameter TRP of the antenna is compared with the TIS in the two cases. Table 1. Comparison of simulation results
  • the following results can be obtained:
  • the difference between the TRP and TIS values in the two cases is small, which means After the addition of the electromagnetic bandgap structure, there is no significant decrease in the radiation performance of the antenna; however, the SAR value can be reduced by about 30%.
  • the terminal is the same distance from the human body, but considering the actual test, the introduction of the electromagnetic bandgap structure will make the distance between the antenna and the human body become longer, which will inevitably lead to lower SAR value test results. At the same time, the increased thickness of the terminal is also within an acceptable range.
  • a mobile terminal and a method of reducing radiation of the mobile terminal are provided.
  • the invention adopts the electromagnetic band gap structure to reduce the radiation of the antenna to the human body, and the electric tape gap structure can reduce the back radiation of the antenna, and installing the same in the mobile terminal can reduce the radiation of the antenna to the human body, and does not affect or even improve the electromagnetic signal received by the antenna.
  • the electrical tape gap structure is similar to a PCB board.
  • the fabrication process includes copper and via, which is the same as the PCB manufacturing process. When processing, it can be incorporated into the processing of the antenna or PCB.
  • the processing cost and complexity are both Within the acceptable range; and the electromagnetic bandgap structure has high-impedance surface characteristics, which can reduce surface wave loss and increase the gain of the antenna.
  • the use of the electromagnetic bandgap structure overcomes the disadvantages of the absorbing material, the ferrite material being expensive, and the life expectancy affected by the temperature environment, and the addition of the dielectric substrate is also within an acceptable range, compared with the open resonant ring in which the left hand material is periodically arranged. Easy to apply.

Abstract

本发明公开了一种移动终端及降低移动终端辐射的方法,该移动终端(12)包括:天线(122);电磁带隙结构(124),与天线(122)相连接,设置为降低天线(122)对人体(14)的辐射。本发明将电磁带隙结构(124)安装于移动终端(12)中可以降低天线(122)对人体(14)的辐射,同时不影响甚至提高天线(122)接收电磁信号的能力。

Description

移动终端及降低移动终端辐射的方法
技术领域 本发明涉及通信领域, 具体而言,涉及一种移动终端及降低移动终端辐射的方法。 背景技术 由于移动通信技术的快速发展, 移动通信终端的应用已经非常普及, 而随着移动 业务的日益丰富, 人们每天使用移动终端的时间也越来越多。 因此, 无线终端电磁辐 射的安全问题也日益受到终端用户的关注。 电磁辐射局部吸收率(Specific Absorbing Ratio, 简称为 SAR)是一个表征无线终 端电磁辐射进入人体的剂量大小的指标。 SAR定义为人体每单位质量吸收的电磁功率, 单位为 W/Kg。 SAR的测试标准有两种, 一种是美国 FCC标准, 一种是欧洲 CE标准。 这两个标准的主要差别在两个方面, 一是测试时长与测试值取平均的范围, 另一个方 面是限值要求。 FCC采用 5分钟测试, lg取平均的方法, 对手机类终端产品要求的限 值是 1.6mw/g, 对数据卡类终端产品要求的限值是 1.2mw/g; 而 CE采用 15分钟测试, 10g取平均的方法, 其限值要求相应为 2mw/g和 1.6mw/g。 由此可见, FCC对 SAR的 要求, 尤其是对数据卡类产品 SAR的要求更为严格。 由于很难直接对人体进行测试, 所以都是采用模仿人体组织的人体模型 (Human Phantom)进行实际的测设。在所述的人体模型中, 充有来模拟人体组织液的盐水, 其 介电常数类似于人体正常的介电常数。 SAR的具体表达公式如下:
Figure imgf000002_0001
其中, 是人体组织的电导率, ^是人体组织的密度, 1^1 是组织液中局部电场 矢量幅值的平方。人体组织中的 SAR与该组织中的电场强度的平方成正比, 并且是由 入射的电磁场参数(如频率、 强度、 方向)、 电磁场源与目标的相对位置、 暴露的人体 的典型组织的遗传特性、 地面的影响以及暴露的环境影响来确定。 除了 SAR指标外, 无线终端还要满足多种性能指标的需求。与电磁辐射直接相关 的另外两个指标分别是总的辐射功率 (Total Radiated Power, 简称为 TRP ) 和总的各 项同性接收灵敏度 (Total Isotropic Sensitivity, 简称为 TIS)。 由于 SAR指标直接与终 端的电磁辐射相关, 反映的是终端天线辐射的能量在空间的集中情况, 而 TRP是在环 绕终端的一个虚拟球面上对终端天线辐射的电磁能量进行积分而得到的, 因此, 终端 的 TRP指标和 SAR指标是密切相关的。 一般说来, 为了保持无线终端接入网络的和 上行传输数据的能力, 需要对无线终端的 TRP下限。 相关技术中,常用的降低 SAR的方法是在外壳上涂覆吸波材料来吸收部分辐射的 电磁波。 但是, 天线辐射性能降低也意味着天线接收电磁信号能力的降低, 即使用吸 波材料会降低 TRP和 TIS性能。 发明内容 本发明提供了一种移动终端及降低移动终端辐射的方法,以至少解决相关技术中, 采用涂覆吸波材料的方法降低天线对人体的辐射, 会降低天线接收电磁信号能力的问 题。 根据本发明的一个方面, 提供了一种移动终端, 包括: 天线; 电磁带隙结构, 与 天线相连接, 设置为降低天线对人体的辐射。 电磁带隙结构位于移动终端的听筒和 /或话筒侧。 电磁带隙结构包括: 上层金属面、 下层金属面以及设置为对上层金属面和下层金 属面进行电磁隔离的介质基板, 其中上层金属面上周期排布电磁带隙单元, 下层金属 面与天线共地。 电磁带隙单元的外形是矩形, 电磁带隙单元的中心设置有过孔, 该过孔覆盖有金 属, 并使得上层金属面和下层金属面相连接。 电磁带隙单元是边长 9毫米的正方形。 过孔的半径是 0.5毫米。 电磁带隙单元的周期排布方式是在电磁带隙单元之间采用 0.5毫米的带隙间距进 行周期排布。 介质基板的介电常数大于 10。 上述移动终端还包括: PCB电路板, 电磁带隙结构位于天线和 PCB电路板之间。 电磁带隙结构与天线可通过螺钉或者卡扣的方式进行连接。 根据本发明的另一方面, 提供了一种降低移动终端辐射的方法, 包括: 在移动终 端中安装设置为降低天线对人体的辐射的电磁带隙结构。 本发明采用电磁带隙结构降低天线对人体的辐射, 电磁带隙结构可以降低天线的 背向辐射, 将其安装于移动终端中可以降低天线对人体的辐射, 同时不影响甚至提高 天线接收电磁信号的能力。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的移动终端的结构示意图; 图 2是根据本发明优选实施例一的移动终端的结构示意图; 图 3是根据本发明优选实施例的电磁带隙结构的结构示意图; 图 4是根据本发明优选实施例二的移动终端的结构示意图; 图 5是根据本发明优选实施例的电磁带隙单元的结构示意图; 图 6是根据本发明优选实施例的电磁带隙结构的俯视图; 图 7是根据本发明优选实施例的移动终端的结构示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明提供了一种降低移动终端辐射的方法,该方法通过在移动终端 12中安装设 置为降低天线 122对人体 14的辐射的电磁带隙结构 124实现。 本发明实施例还提供了一种移动终端, 该移动终端是基于上述降低移动终端辐射 的方法实现的。 图 1是根据本发明实施例的移动终端的结构示意图, 如图 1所示, 该 移动终端 12包括天线 122和电磁带隙结构 124。其中, 电磁带隙结构 124,与天线 122 相连接, 设置为降低天线 122对人体 14的辐射。 相关技术中, 采用涂覆吸波材料的方法降低天线对人体的辐射, 但是这样也会降 低天线接收电磁信号的能力。 本发明实施例中采用电磁带隙结构降低天线对人体的辐 射, 该电磁带隙结构通常用于在微波电路中来提高天线辐射效率, 而发明人发现该电 磁带隙结构还可以降低天线的背向辐射, 因此, 将其安装于移动终端中可以降低天线 对人体的辐射, 同时不影响甚至提高天线接收电磁信号的能力。 通常, 听筒和 /或话筒 126是移动终端 12在接听电话时最靠近人体 14的部件。 所 以, 本优选实施例中, 将电磁带隙结构 124安装于移动终端 12的听筒和 /或话筒 126 侧, 如图 2所示, 这样可以最大限度地降低天线对人体的辐射。 电磁带隙结构是从光子带隙结构发展而来的一种具有周期性的结构。 此结构能够 在一定程度上操纵电磁波的传播, 具体表现为此结构能够在某些频段上阻止电磁波的 传播, 具有一定的禁带特性。 本质上说, 电磁带隙结构是由不同介质、 金属等混合体 单元按周期排列构成的带阻滤波器。 由于此特性的存在, 电磁带隙结构一般应用于微 带天线中来抑制基底的表面波, 抑制高次谐波, 提高辐射增益等方面。 下面对电磁带隙结构 124进行详细描述, 如图 3所示。 电磁带隙结构 124包括: 上层金属面 1242、 下层金属面 1244以及设置为对上层 金属面 1242和下层金属面 1244进行电磁隔离的介质基板 1246,其中上层金属面 1242 上周期排布电磁带隙单元, 下层金属面 1244与天线 122共地。 其中, 介质基板 1246的介电常数大于 10。 电磁带隙单元的外形是矩形, 电磁带 隙单元的中心设置有过孔, 该过孔覆盖有金属,并使得上层金属面 1242和下层金属面 1244相连接。 优选地, 电磁带隙单元是边长 9毫米的正方形, 过孔的半径是 0.5毫米, 且电磁 带隙单元的周期排布方式是在电磁带隙单元之间采用 0.5毫米的带隙间距进行周期排 布。 上述移动终端还包括: PCB电路板 128, 电磁带隙结构 124位于天线 122和 PCB 电路板 128之间, 如图 4所示, 该电磁带隙结构 124的长宽尺寸与 PCB电路板 128尺 寸相近。 优选地, 电磁带隙结构与天线可通过螺钉或者卡扣的方式进行连接。 综上所述, 本发明中的电磁带隙结构 124, 是一种串口孔结构, 是金属片与介质 基板的混合体,类似一个未焊接元器件的 PCB板。将该电磁带隙结构与终端天线相连, 起到降低天线对靠近人体一侧的后向辐射的作用。 在天线基板后, 加入电磁带隙结构 的基板, 采用一种高介电常数材料 (如介电常数大于 10) 作为介质基板。 且该电磁带 隙结构的长宽尺寸与 PCB电路板尺寸相近。 终端电磁带隙结构包括中间介质层和上、 下层金属面。 介质基板底部金属层作为接地面, 与天线的接地面连接。 在基板的上表 面周期排列方形电磁带隙单元, 该电磁带隙单元的结构如图 5所示。 下面将结合实例对本发明实施例的实现过程进行详细描述。 本优选实施例在 1800GHz频段进行实验, 电磁带隙单元结构大小为 9mmx9mm, 将该电磁带隙单元覆铜, 带隙间距为 0.5mm, 在其中心打半径为 0.5mm的覆铜过孔, 如图 5所示。 过孔使介质板上表面单元覆铜层与介质板下表面接地面相连。 图 6是根 据本发明优选实施例的电磁带隙结构的俯视图。 图 7是根据本发明优选实施例的移动终端的结构示意图, 以终端常用平面倒 F天 线 (Planar Invert F Antenna, 简称为 PIFA) 为例, 电磁带隙结构与天线的相对位置如 图 6所示。 引入的电磁带隙结构位于天线基板的后方, 其接地单元与天线的接地单元 通过侧面的金属结构进行连接; 电磁带隙结构的上表面方形结构覆铜, 中心通过金属 过孔与下底面连接。 通过使用 SEMCAD软件进行电磁仿真,计算在 1800MHz频段,使用同一款 PIFA 天线分别仿真加入电磁带隙结构与不加入电磁带隙结构两种情况下的 lg SAR值。 两 种情况中, 人头模型与天线的相对位置完全相同, 只是在其中一种情况中天线背面加 入了电磁带隙结构。 仿真设置条件完全相同, 计算人头对终端天线辐射量的吸收, 同 时, 对这两种情况中天线的 OTA ( Over the Air) 参数 TRP与 TIS进行对比。 表 1.仿真结果对比表
Figure imgf000006_0001
由上述仿真, 可得出如下结果: 相同情况下, 同一款 PIFA天线没有加入电磁带 隙结构与加入电磁带隙结构后, 两种情况下的 TRP、 TIS值差别较小, 这也意味着在 加入电磁带隙结构后, 没有引起天线的辐射性能的明显下降; 但是 SAR值却可以降低 30%左右。 本仿真考虑的两种情况中终端离人体距离相同, 但是考虑到实际测试中, 引入了电磁带隙结构会使天线与人体的距离变远, 必然会得出更低的 SAR值测试结 果。 同时, 终端所增加的厚度也在可接受的范围内。 综上所述, 根据本发明的上述实施例, 提供了一种移动终端及降低移动终端辐射 的方法。 本发明采用电磁带隙结构降低天线对人体的辐射, 电磁带隙结构可以降低天 线的背向辐射, 将其安装于移动终端中可以降低天线对人体的辐射, 同时不影响甚至 提高天线接收电磁信号的能力。 另外, 电磁带隙结构类似于一个 PCB板, 制作工艺包 括覆铜与过孔, 与 PCB板制作工艺相同, 在加工时, 可并入天线或者 PCB板的加工 中去, 加工成本与复杂度均在可接受范围内; 且电磁带隙结构具有高阻抗表面特性, 从而可以减小表面波损耗, 提高天线的增益。 利用电磁带隙结构克服了吸波材料、 铁 氧体材料价格昂贵、寿命受温度环境影响的缺点,且加入介质基板也在可接受范围内, 与左手材料周期排列的开口谐振环相比, 更容易被应用。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种移动终端, 包括:
天线 ( 122);
电磁带隙结构(124),与所述天线(122)相连接,设置为降低所述天线(122 ) 对人体 (14) 的辐射。
2. 根据权利要求 1所述的移动终端, 其中, 所述电磁带隙结构(124)位于所述移 动终端的听筒和 /或话筒 (126) 侧。
3. 根据权利要求 1所述的移动终端, 其中, 所述电磁带隙结构(124)包括: 上层 金属面(1242)、 下层金属面(1244) 以及设置为对所述上层金属面(1242)和 所述下层金属面(1244)进行电磁隔离的介质基板(1246), 其中所述上层金属 面( 1242)上周期排布电磁带隙单元,所述下层金属面( 1244)与所述天线( 122) 共地。
4. 根据权利要求 3所述的移动终端, 其中, 所述电磁带隙单元的外形是矩形, 所 述电磁带隙单元的中心设置有过孔, 该过孔覆盖有金属, 并使得所述上层金属 面 (1242) 和所述下层金属面 (1244) 相连接。
5. 根据权利要求 4所述的移动终端, 其中, 所述电磁带隙单元是边长 9毫米的正 方形。
6. 根据权利要求 4所述的移动终端, 其中, 所述过孔的半径是 0.5毫米。
7. 根据权利要求 4所述的移动终端, 其中, 所述电磁带隙单元的周期排布方式是 在所述电磁带隙单元之间采用 0.5毫米的带隙间距进行周期排布。
8. 根据权利要求 3所述的移动终端, 其中, 所述介质基板 (1246) 的介电常数大 于 10。
9. 根据权利要求 1至 8中任一项所述的移动终端,其中,还包括: PCB电路板( 128), 所述电磁带隙结构 (124) 位于所述天线 (122) 和所述 PCB电路板 (128) 之 间。 根据权利要求 1至 8中任一项所述的移动终端,其中,所述电磁带隙结构(124) 与所述天线 (122) 可通过螺钉或者卡扣的方式进行连接。
一种降低移动终端辐射的方法, 包括: 在移动终端中安装设置为降低所述天线 ( 122) 对人体 (14) 的辐射的电磁带隙结构 (124)。
PCT/CN2011/083851 2011-11-09 2011-12-12 移动终端及降低移动终端辐射的方法 WO2013067730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110351861.0 2011-11-09
CN2011103518610A CN102510296A (zh) 2011-11-09 2011-11-09 移动终端及降低移动终端辐射的方法

Publications (1)

Publication Number Publication Date
WO2013067730A1 true WO2013067730A1 (zh) 2013-05-16

Family

ID=46222350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083851 WO2013067730A1 (zh) 2011-11-09 2011-12-12 移动终端及降低移动终端辐射的方法

Country Status (2)

Country Link
CN (1) CN102510296A (zh)
WO (1) WO2013067730A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682625B (zh) * 2012-09-18 2018-03-27 中兴通讯股份有限公司 一种多输入多输出天线及移动终端
CN102904065A (zh) * 2012-10-19 2013-01-30 中兴通讯股份有限公司南京分公司 吸波装置及无线终端
CN103001005B (zh) * 2012-10-25 2014-12-17 中兴通讯股份有限公司 降低电磁辐射比吸收率的装置及移动终端
CN106299680B (zh) * 2015-06-12 2019-10-29 联想(北京)有限公司 一种电磁带隙结构件、电磁带隙结构接地板和天线
CN106025510A (zh) * 2016-08-03 2016-10-12 北京邮电大学 一种天线
CN107181056B (zh) * 2017-05-16 2022-08-30 叶云裳 一种微波衰减型gnss测量型天线及设备
CN111525276B (zh) * 2020-04-13 2022-01-04 Oppo广东移动通信有限公司 电子设备
CN112688085B (zh) * 2020-12-29 2023-08-29 深圳品创兴科技有限公司 一种5g新型降低sar的柔性薄膜
CN114497932B (zh) * 2021-12-28 2023-07-18 江苏亨通太赫兹技术有限公司 一种插入ebg结构的毫米波双工器
CN114818412B (zh) * 2022-03-18 2022-09-27 北京航空航天大学 一种人脑受电磁辐射的高精度计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090237323A1 (en) * 2008-03-19 2009-09-24 Electronics And Telecommunications Research Institute Apparatus and method for reducing electromagnetic waves
US20100149060A1 (en) * 2008-12-12 2010-06-17 National Taiwan University Antenna module and design method thereof
CN102044753A (zh) * 2010-12-07 2011-05-04 惠州Tcl移动通信有限公司 带十字型高阻抗表面金属条接地的天线及其无线通讯装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090237323A1 (en) * 2008-03-19 2009-09-24 Electronics And Telecommunications Research Institute Apparatus and method for reducing electromagnetic waves
US20100149060A1 (en) * 2008-12-12 2010-06-17 National Taiwan University Antenna module and design method thereof
CN102044753A (zh) * 2010-12-07 2011-05-04 惠州Tcl移动通信有限公司 带十字型高阻抗表面金属条接地的天线及其无线通讯装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KWAK, S.I. ET AL.: "Comparison of the SAR in the Human Head using the EBG structures applied to a Mobile Handset", PROCEEDINGS OF THE 37TH EUROPEAN MICROWAVE CONFERENCE, October 2007 (2007-10-01), pages 937 - 938, XP031191956 *
WANG, FEI ET AL.: "Reduction of Mobile Phone Radiation Effects on Human Health Using the EBG Structures", JOURNAL OF MICROWAVES, August 2010 (2010-08-01), pages 274 - 277 *

Also Published As

Publication number Publication date
CN102510296A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013067730A1 (zh) 移动终端及降低移动终端辐射的方法
Islam et al. Low-pass filter based integrated 5G smartphone antenna for sub-6-GHz and mm-wave bands
Sultan et al. Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN services
Biswas et al. Investigation on decoupling of wide band wearable multiple‐input multiple‐output antenna elements using microstrip neutralization line
Rehman et al. Investigation of on-body bluetooth transmission
El Halaoui et al. Multiband planar inverted-F antenna with independent operating bands control for mobile handset applications
KR20070010428A (ko) 휴대폰 전자파 차폐용 복합시트 및 그 제조 방법
Li et al. A compact MIMO antenna system design with low correlation from 1710 MHz to 2690 MHz
Singh et al. Compact printed diversity antenna for LTE700/GSM1700/1800/UMTS/Wi-Fi/Bluetooth/LTE2300/2500 applications for slim mobile handsets
Spandana et al. Numerical Computation of SAR in Human Head with Transparent Shields Using Transmission Line Method.
WO2012058878A1 (zh) 一种移动终端及降低其电磁波能量吸收比的方法
Ikeuchi et al. SAR and radiation characteristics of a dipole antenna above differentfinite EBG substratesin the presence of a realistichead model in the 3.5 GHz band
Sultan et al. Comprehensive study of printed antenna with the handset modeling
Faruque et al. New low specific absorption rate (SAR) antenna design for mobile handset
Belrhiti et al. Internal compact printed loop antenna for WWAN/WLAN/ISM/LTE smartphone applications
Li et al. A compact dual-band MIMO antenna of mobile phone
CN215989260U (zh) 一种频选装置及电子系统
CN112332088A (zh) 一种高隔离5g天线系统
Lin et al. Use of high-impedance screens for enhancing antenna performance with electromagnetic compatibility
WO2024067012A1 (zh) 天线及电子设备
Sun et al. A printed multiband antenna for cellphone applications
Kumaran et al. Low-profile high impedance surface on magneto-dielectric nanocomposite for wideband absorption of mobile phone radiation
WO2023142463A1 (zh) 馈电天线及电子设备
WO2023040928A1 (zh) 一种电子设备
Chiu et al. Constraints and performances of various antenna types in commercial mobile terminals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875271

Country of ref document: EP

Kind code of ref document: A1