WO2013181993A1 - 半导体光源的驱动系统及半导体照明装置 - Google Patents

半导体光源的驱动系统及半导体照明装置 Download PDF

Info

Publication number
WO2013181993A1
WO2013181993A1 PCT/CN2013/076105 CN2013076105W WO2013181993A1 WO 2013181993 A1 WO2013181993 A1 WO 2013181993A1 CN 2013076105 W CN2013076105 W CN 2013076105W WO 2013181993 A1 WO2013181993 A1 WO 2013181993A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
light source
semiconductor light
drive system
switching device
Prior art date
Application number
PCT/CN2013/076105
Other languages
English (en)
French (fr)
Inventor
齐晓明
Original Assignee
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧普照明股份有限公司 filed Critical 欧普照明股份有限公司
Priority to EP13800096.3A priority Critical patent/EP2785149B1/en
Priority to US14/404,775 priority patent/US9967930B2/en
Priority to BR112014030295-2A priority patent/BR112014030295B1/pt
Priority to JP2015515375A priority patent/JP5757644B1/ja
Publication of WO2013181993A1 publication Critical patent/WO2013181993A1/zh
Priority to ZA2014/09526A priority patent/ZA201409526B/en
Priority to HK14112930.2A priority patent/HK1199593A1/zh
Priority to IN14DEN2015 priority patent/IN2015DN00014A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2827Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the present invention relates to a drive system for a semiconductor light source, and more particularly to a drive system for a step-up and step semiconductor light source. Background technique
  • the semiconductor light source is a light source and display device for the third generation of semiconductor materials. It has the characteristics of low power consumption, long life, no pollution, rich color, and strong controllability. It is a revolution in the lighting source and light industry. With the development of LEDs, more and more LED lighting products are entering the market.
  • the electronic drive part of the LED is an integral part of the LED lighting product.
  • the invention uses a small number of components to form a self-oscillating circuit, and combines a buck-boost line to form an LED electronic driver.
  • the invention realizes the electronic driving part of the LED by using fewer components, greatly reduces the number of components and the cost, makes the proportion of the electronic driving part in the LED lighting system greatly reduced, and has high efficiency and wide applicable output voltage range.
  • An embodiment of the present invention provides a driving system for a semiconductor light source, the driving system comprising: a transformer device, the transformer device includes a first coil and a second coil coupled to each other, and the second coil is used for receiving input a switching device connected in series with the second coil of the transformer device and configured to control energy storage and release of the second coil; an output device connected in parallel with the second coil of the transformer device, and And for supplying power to the semiconductor light source, wherein the first coil of the transformer device is induced by the second coil to generate an induction signal for controlling conduction and deactivation of the switching device.
  • the drive system further comprises: an activation device for activating the switching device when an input voltage is initially applied.
  • the switching device comprises a switch and at least one discrete component, the at least one discrete component being connected between the first coil and the control end of the switch, and the sensing signal is passed
  • the at least one discrete component controls the switch.
  • discrete components are discrete resistors, capacitors, inductors, and the like that correspond to integrated circuits.
  • the at least one discrete component comprises a capacitive component.
  • the at least one discrete component further comprises a resistive component, and the resistive component and the capacitive component are connected in series.
  • the starting device includes a resistive element and a unidirectional conductive element connected in series, and a connection point between the resistive element and the unidirectional conductive element is connected to a control end of the switching device .
  • a semiconductor lighting device including: a semiconductor light source load; a transformer device, wherein the transformer device includes a first coil and a second coil coupled to each other, wherein the second coil is used Receiving an input voltage; a switching device connected in series with the second coil of the transformer device, and for controlling energy storage and release of the second coil; and an output device connected in parallel with the second coil of the transformer device Connecting, and for supplying power to the semiconductor light source load, wherein the first coil of the transformer device is induced by the second coil to generate an induction signal for controlling conduction and deactivation of the switching device.
  • FIG. 1 is a schematic diagram of a drive system of a semiconductor light source.
  • FIG. 2 is a circuit diagram of a semiconductor light source driving system in accordance with an embodiment of the present invention.
  • 3A is a schematic diagram of a startup phase of a semiconductor light source driving system in accordance with an embodiment of the present invention.
  • 3B is a schematic diagram of a first energy storage phase of a semiconductor light source driving system in accordance with an embodiment of the present invention.
  • 3C is a schematic diagram of a phase of energy release of a semiconductor light source driving system in accordance with an embodiment of the present invention.
  • 3D is a schematic diagram of a second energy storage phase of a semiconductor light source driving system in accordance with an embodiment of the present invention.
  • 4 is a waveform diagram showing voltages and currents during operation of a semiconductor light source driving system in accordance with an embodiment of the present invention.
  • Figure 1 is a schematic illustration of a drive system for a semiconductor light source of the present invention.
  • Vin represents the input voltage.
  • the input voltage is the DC input voltage and can be a rectified DC voltage or a rectified and filtered DC voltage.
  • I represents the starting device, II represents the transformer device, m represents the switching device, IV represents the output device, and V represents the semiconductor light source load.
  • the starting device I is used to bring the switching device into an on state at startup (i.e., when the input voltage Vin is initially applied).
  • the transformer device II includes a first coil and a second coil coupled to each other, the second coil for receiving an input voltage and performing energy storage and energy release under the control of the switching device III.
  • the first coil is induced by the second coil to generate an inductive signal for controlling the turning on and off of the switching device III.
  • the output device is configured to supply power to the semiconductor light source differently according to energy storage and release of the second coil.
  • FIG. 2 is a circuit diagram of a detailed drive system of a semiconductor light source in accordance with an embodiment of the present invention.
  • the starting device 1 includes a first resistor 101 and a first diode 102 connected in series.
  • the first end of the first resistor 101 is connected to the first voltage input end
  • the second end of the first resistor 101 is connected to the second end of the first diode 102
  • the second end of the first diode 102 is second
  • the voltage input is connected.
  • the second voltage input can be directly grounded.
  • the resistors can be replaced by other resistive components and that the diodes can be replaced by other one-way components such as transistors.
  • the transformer device II includes a first coil 201 and a second coil 202 that are coupled to each other.
  • the first coil 201 is connected in series with the first capacitor 203 and the second resistor 204.
  • the first end of the first coil 201 is connected to the first end of the first capacitor 203, and the second end of the first capacitor 203 is connected to the first end of the second resistor 204.
  • the second end of the first coil 201 is grounded.
  • the first end of the second coil 202 is coupled to the first voltage input.
  • the first end of the first coil 201 and the first end of the second coil 202 are the same end.
  • the second coil 202 is connected in series with the switching device, thereby performing energy storage and energy release under the control of the switching device.
  • the capacitor can be replaced by other capacitively functional components.
  • the resistor can be replaced by other components having a resistive function.
  • the switching device III of Fig. 2 includes a triode 300 including a base 301, a collector 302, and an emitter 303.
  • the emitter 303 is coupled to the second voltage input.
  • the switching device III may also be a MOS transistor.
  • the gate of the MOS transistor corresponds to the base of the transistor
  • the source corresponds to the collector of the transistor
  • the drain corresponds to the emitter of the transistor.
  • the second end of the second resistor 204 is connected to the base 301 of the transistor 300 and is connected to the second end of the first resistor 101.
  • the second end of the second coil 202 is connected to the collector 302 of the transistor 300.
  • the output device IV includes a second diode 401 and a second capacitor 402 connected in series, and the series connection of the second diode 401 and the second capacitor 402 is connected in parallel with the second coil 202.
  • the first end of the second diode 401 is connected to the second end of the second coil 202
  • the second end of the second diode 401 is connected to the second end of the second capacitor 402
  • the first end of the second capacitor 402 Connected to the first voltage input.
  • a first end of the second capacitor 402 is coupled to the first end of the semiconductor source load V
  • a second end of the second capacitor 402 is coupled to the second end of the semiconductor source load V.
  • the semiconductor light source load V includes one or more semiconductor light sources that are connected together in a variety of ways, such as LEDs or OLEDs.
  • the working principle of the semiconductor light source driving system of the present invention is as follows: In the startup phase, as shown in FIG. 3A, when the semiconductor light source driving system of the present invention is connected to the DC input voltage Vin, Vin passes the first A resistor 101 and the base 301 of the transistor 300 and the emitter 303 are discharged to generate a current II, and the collector 302 and the emitter 303 of the transistor 300 are turned on. Vin is discharged by the collector 302 and the emitter 303 of the second coil 202 and the transistor 300 to generate a current 12. Thereafter, the semiconductor light source driving system of the present invention enters a first energy storage stage.
  • the second coil 202 stores energy and generates a voltage V2 at both ends thereof, and the first coil 201 is induced by the second coil 202 to generate an induced electromotive force VI.
  • VI is discharged by the first capacitor 203, the second resistor 204, and the base 301 and the emitter 303 of the transistor 300 to generate a current 13.
  • 13 charges the first capacitor 203.
  • the illustrated direction voltage V3 is generated across the first capacitor 203. As V3 rises, 13 falls, and the transistor 300 is turned off.
  • the semiconductor light source driving system of the present invention enters a discharge phase, and the semiconductor light source load V starts to emit light.
  • the first coil 201 is sensed by the second coil 202.
  • the electromotive force VI should be reversed as well.
  • the VI is discharged by the first diode 102, the second resistor 204, and the first capacitor 203 to generate a current 14.
  • Transistor 300 is turned off.
  • the voltage V2 across the second coil 202 is discharged through the second diode 401 and the semiconductor light source load V, and the second coil 202 is discharged, and the second capacitor 402 is charged to generate the voltage V5.
  • Current 14 reverse charges the first capacitor 203 to produce a reverse voltage V4.
  • the semiconductor light source driving system of the present invention enters a second energy storage stage.
  • the second energy storage phase is different from the first energy storage phase, in which the semiconductor light source load V emits light.
  • the voltage V5 across the second capacitor 402 is discharged through the semiconductor light source load, and the voltage V4 across the first capacitor 203 passes through the resistor 204, the base 301 of the transistor 300, and the emitter 303 and the first
  • the first line 201 is discharged to generate a current 15 to cause the collector 302 and the emitter 303 of the transistor 300 to be turned on.
  • Vin generates a current 12 by discharging the collector 302 and the emitter 303 of the second coil 202 and the transistor 300.
  • the second line ⁇ 202 stores energy and generates a voltage V2 across it.
  • the first coil 201 is induced by the second coil 202 to generate an induced electromotive force VI, which is discharged by the first capacitor 203, the second resistor 204, and the base 301 and the emitter 303 of the transistor 300 to generate a current 13.
  • the illustrated direction voltage V3 is generated across the first capacitor 203. As V3 rises, 13 falls, and the transistor 300 is turned off. However, since the current flowing through the second coil 202 cannot be abruptly changed, the current flows through the second diode 401 to the semiconductor light source load, and the voltage V2 across the second coil 202 is reversed. Thereafter, the semiconductor light source drive system of the present invention re-enters the release phase.
  • the semiconductor light source driving system of the present invention re-enters the second energy storage phase from the energy release phase, and thus circulates.
  • Vin generates a current II through the first resistor R1 and the base 301 and the emitter 303 of the transistor 300, causing the transistor 300 to conduct and operate in the amplification region.
  • the induced electromotive force VI on the first coil 201 generates current through the first capacitor 203, the second resistor 204, and the base 301 and the emitter 303 of the transistor 300. 13 , the triode 300 enters the saturation region; as the current 13 charges the first capacitor 203, the voltage V3 across the first capacitor 203 rises, and the current 13 drops, which causes the diode 300 to exit the saturation region and enter the cut-off region.
  • the current 12 flowing through the second coil 202 cannot be abruptly changed, The current 12 therefore flows through the second diode 401 to the semiconductor source load and reverses the voltage V2 across the second coil 202.
  • the diode 300 is turned off, and the voltage across the first coil 201 is reversed as the voltage across the second coil 202 is reversed, and passes through the second resistor 204 and The first diode 102 reverse charges the first capacitor 203.
  • the induced electromotive force VI on the first coil 201 generates a current 13 through the first capacitor 203, the second resistor 204, and the base 301 and the emitter 303 of the transistor 300.
  • the transistor 300 is again brought into the saturation region, and the second coil 202 starts to store energy; then, as the current 13 charges the first capacitor 203, the voltage V3 across the first capacitor 203 rises, the current 13 decreases, and the diode 300 exits. Saturate zone and enter the cutoff zone.
  • FIG. 4 waveform diagrams of voltage and current when the semiconductor light source driving system is operated according to an embodiment of the present invention are shown. It should be noted that the waveform diagram of the startup phase is not shown in FIG.
  • Vin is discharged through the second coil 202 and the collector 302 and the emitter 303 of the transistor 300 to generate a current 12, and the second coil 202 begins to store energy; and the first coil 201 induces an induced electromotive force VI, VI passes through A capacitor 203, a second resistor 204, and a base 301 and an emitter 303 of the transistor 300 are discharged to generate a current 13, 13 for charging the first capacitor 203.
  • the voltage V3 across the first capacitor 203 is approximately equal to the induced electromotive force VI generated by the first coil 201, and 13 decreases to turn off the transistor 300.
  • the second line The ⁇ 202 generates a current ⁇ , ⁇ flowing through the second diode 401 to cause the semiconductor light source load V to start to emit light, and the current ⁇ gradually decreases, the voltage V2 across the second line 202 is reversed, and the second line 202 begins to discharge.
  • the voltage across the second capacitor 402 is equal to the voltage V2 across the second coil 202, and the second coil 202 stops discharging and the second capacitor 402 supplies power to the semiconductor source load V.
  • the voltage V4 across the first capacitor 203 is discharged through the resistor 204, the base 301 of the transistor 300, and the emitter 303 and the first coil 201, generating a current 15, causing the collector 302 and the emitter 303 of the transistor 300.
  • Vin through the second coil 202 and the collector 302 and emitter 303 of the transistor 300 to generate a current 12
  • the second coil 202 begins to store energy.
  • the voltage V3 across the first capacitor 203 is approximately equal to the induced electromotive force VI generated by the first coil 201, and the decrease 13 causes the transistor 300 to be turned off, however, since the current 12 flowing through the second coil 202 cannot be abruptly changed, The second coil 202 generates a current Io flowing through the second diode 401 to make the half
  • the conductor light source load V starts to emit light, and the current Io gradually decreases, and the voltage V2 across the second line 202 is reversed, and the second line 202 begins to discharge.
  • the working sequence of t2 - t4 is repeated from time t4, that is, the working sequence of t2 _ t4 such as t4 - t6, t6 - t8.
  • the switching device III is constructed using an NPN type triode in the embodiment of the present invention
  • the present invention is not limited thereto, and those skilled in the art will readily recognize that the PNP type triode is used to construct the switching device III and the starting device I is changed accordingly.
  • the connection structure of the device II, the switching device III, and the output device IV should be included in the scope of the present invention.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种半导体光源的驱动系统以及一种半导体照明装置。所述驱动系统包括:变压装置,该变压装置包括互相耦合的第一线圈(201)和第二线圈(202),所述第二线圈(202)用于接收输入电压;开关装置,与所述变压装置的第二线圈(202)串联连接,并且用于控制该第二线圈(202)的储能和释能;输出装置,与所述变压装置的第二线圈(202)并联连接,并且用于向所述半导体光源供电,其中,所述变压装置的第一线圈(201)受第二线圈(202)的感应产生感应信号,用于控制所述开关装置的导通与截止。

Description

半导体光源的驱动系统及半导体照明装置 技术领域
本发明涉及一种半导体光源的驱动系统, 且更具体来说, 涉及一种升降 压半导体光源的驱动系统。 背景技术
半导体光源 (LED )是第三代半导体材料制作的光源和显示器件, 具有 耗电量少、 寿命长、 无污染、 色彩丰富、 可控性强等特点, 是照明光源及光 产业的一次革命。 随着 LED的发展, 越来越多的 LED照明产品涌入市场。
LED的电子驱动部分是 LED照明产品中一个不可缺少的组成部分。
站在 LED市场角度, LED照明终端售价仍高于传统灯泡与节能灯, 降 价已成为扩大市场接受度的关键。
随着 LED颗粒价格的不断下降, 电子驱动部分的价格比例越显重要, 目前市场上所普及使用的 LED驱动线路大都采用 IC控制, 其主要缺点就是 价格成本较高。 如果不用 IC 控制, 一般会采用反激式自激震荡线路 ( Fly-back ), 这种线路的效率低, 稳定性差, 适用输出电压范围窄。 发明内容
本发明的目的是提供一种结构筒单, 应用范围非常宽, 成本低廉的主要 针对 LED照明产品中的电子驱动线路。本发明使用少量元器件组合形成自激 振荡线路, 结合升降压线路, 构成 LED电子驱动器。 本发明使用较少元器件 实现 LED的电子驱动部分, 大大减少了元器件数量和成本, 使电子驱动部分 占 LED照明系统中的比例大幅度缩小, 并具有效率高, 适用的输出电压范围 宽的特点。
本发明实施例提供了一种半导体光源的驱动系统, 所述驱动系统包括: 变压装置, 该变压装置包括互相耦合的第一线圏和第二线圏, 所述第二线圏 用于接收输入电压; 开关装置, 与所述变压装置的第二线圏串联连接, 并且 用于控制该第二线圏的储能和释能; 输出装置, 与所述变压装置的第二线圏 并联连接, 并且用于向所述半导体光源供电, 其中, 所述变压装置的第一线 圏受第二线圏的感应产生感应信号, 用于控制所述开关装置的导通与截止。 根据本发明实施例, 所述驱动系统还包括: 启动装置, 用于在初始施加 输入电压时启动所述开关装置。
根据本发明实施例, 所述开关装置包括开关和至少一个分立元器件, 所 述至少一个分立元器件连接在所述第一线圏和所述开关的控制端之间, 并且 所述感应信号通过所述至少一个分立元器件以控制所述开关。 本领域的一般 技术人员应该理解, 分立元器件是和集成电路相对应的分立的电阻, 电容, 电感等元器件。 根据本发明实施例, 所述至少一个分立元器件包括容性元件。
根据本发明实施例, 所述至少一个分立元器件还包括阻性元件, 并且所 述阻性元件和所述容性元件串联。
根据本发明实施例, 所述启动装置包括串联在一起的阻性元件和单向导 通元件, 所述阻性元件和所述单向导通元件之间的连接点与所述开关装置的 控制端连接。
根据本发明的另一个实施例, 还提供一种半导体照明装置, 包括: 半导 体光源负载; 变压装置, 该变压装置包括互相耦合的第一线圏和第二线圏, 所述第二线圏用于接收输入电压; 开关装置, 与所述变压装置的第二线圏串 联连接, 并且用于控制该第二线圏的储能和释能; 输出装置, 与所述变压装 置的第二线圏并联连接, 并且用于向所述半导体光源负载供电, 其中, 所述 变压装置的第一线圏受第二线圏的感应产生感应信号, 用于控制所述开关装 置的导通与截止。
根据以下参考附图对本发明的描述, 本发明的其他目标和效用将变得显 而易见, 并且读者可全面了解本发明。 附图说明
图 1是半导体光源的驱动系统示意图。
图 2是根据本发明实施例的半导体光源驱动系统电路图。
图 3A是根据本发明实施例的半导体光源驱动系统启动阶段示意图。 图 3B 是根据本发明实施例的半导体光源驱动系统第一储能阶段示意 图。
图 3C是根据本发明实施例的半导体光源驱动系统释能阶段的示意图。 图 3D 是根据本发明实施例的半导体光源驱动系统第二储能阶段的示意 图。 图 4示出了根据本发明实施例的半导体光源驱动系统操作时的电压和电 流的波形图。
在上述附图中, 相同附图标记指示相同、 相似或相应的元件或功能。 具体实施方式
下文将参照图式通过实施例来详细描述本发明的具体实施例。
图 1是本发明所述半导体光源的驱动系统的示意图。
图 1中, Vin代表输入电压。 该输入电压是直流输入电压, 可以是经过 整流后的直流电压, 或者整流且滤波后的直流电压。 I代表启动装置, II代 表变压装置, m代表开关装置, IV代表输出装置, V代表半导体光源负载。
所述启动装置 I用于在启动时 (即, 在输入电压 Vin初始施加时)使开 关装置处于导通状态。所述变压装置 II包括互相耦合的第一线圏和第二线圏, 所述第二线圏用于接收输入电压并且在所述开关装置 III的控制下进行储能 和释能。 所述第一线圏受所述第二线圏的感应产生感应信号, 用于控制所述 开关装置 III的导通和截止。所述输出装置用于根据所述第二线圏的储能和释 能不同地向所述半导体光源供电。
图 2是根据本发明的一个实施例的详细的半导体光源的驱动系统电路 图。
图 2中,启动装置 I 包括串联在一起的第一电阻 101和第一二极管 102。 第一电阻 101的第一端与第一电压输入端连接, 第一电阻 101的第二端与第 一二极管 102的第二端连接, 第一二极管 102的第二端与第二电压输入端连 接。 第二电压输入端可以直接接地。 本领域的一般技术人员应该知晓, 电阻 可以被其他阻性元件所替代, 二极管也可被其他单向导通元件(如三极管) 所替代。
变压装置 II包括互相耦合的第一线圏 201和第二线圏 202。第一线圏 201 和第一电容 203以及第二电阻 204串联。 第一线圏 201的第一端与第一电容 203的第一端连接, 第一电容 203的第二端与第二电阻 204的第一端连接。 第一线圏 201的第二端接地。第二线圏 202的第一端与第一电压输入端连接。 第一线圏 201的第一端和第二线圏 202的第一端为同名端。所述第二线圏 202 与所述开关装置串联连接, 由此在所述开关装置的控制下进行储能和释能。 本领域的一般技术人员应该知晓, 电容可以被其他具有容性功能的元件所代 替, 电阻可以被其他具有阻性功能的元件所代替。
图 2中的开关装置 III包括三极管 300, 其包括基极 301 , 集电极 302, 和发射极 303。 在本实施例中, 发射极 303与第二电压输入端连接。
开关装置 III也可以是 MOS管, 在这种情况下, MOS管的栅极相当于 三极管的基极, 源极相当于三极管的集电极, 漏极相当于三极管的发射极。
第二电阻 204的第二端与三极管 300的基极 301相连, 并且与第一电阻 101的第二端相连。 第二线圏 202的第二端与三极管 300的集电极 302相连。
输出装置 IV 包括串联在一起的第二二极管 401和第二电容 402 ,所述第 二二极管 401和第二电容 402的串联连接和第二线圏 202并联。 第二二极管 401的第一端与第二线圏 202的第二端连接, 第二二极管 401的第二端与第 二电容 402的第二端连接, 第二电容 402的第一端与第一电压输入端连接。 此外, 第二电容 402的第一端与半导体光源负载 V的第一端连接, 第二电容 402的第二端与半导体光源负载 V的第二端连接。
半导体光源负载 V包括一个或者多个以多种方式连接在一起的半导体光 源, 例如 LED或者 OLED等发光光源。
结合图 3A-D, 本发明所述的半导体光源驱动系统工作原理说明如下: 启动阶段, 如图 3A所示, 当本发明所述的半导体光源驱动系统连接到 直流输入电压 Vin后, Vin通过第一电阻 101和三极管 300的基极 301以及发 射极 303进行放电产生电流 II , 使三极管 300的集电极 302和发射极 303导 通。 Vin通过第二线圏 202和三极管 300的集电极 302和发射极 303进行放 电产生电流 12。此后, 本发明所述的半导体光源驱动系统进入第一储能阶段。
第一储能阶段, 如图 3B所示, 12通过第二线圏 202, 第二线圏 202储能 并在其两端产生电压 V2, 同时第一线圏 201受第二线圏 202感应产生感应电 动势 VI, VI通过第一电容 203、 第二电阻 204和三极管 300的基极 301及发 射极 303进行放电产生电流 13。 13对第一电容 203进行充电。 第一电容 203 两端产生图示方向电压 V3。 随着 V3的上升, 13下降, 并且随之使得三极 管 300截止。 然而, 由于流过第二线圏 202的电流不能突变, 因此该电流通 过第二二极管 401流动到半导体光源负载,并且使第二线圏 202两端电压 V2 反向。 此后, 本发明所述的半导体光源驱动系统进入释能阶段, 并且半导体 光源负载 V开始发光。
释能阶段, 如图 3C所示, 第一线圏 201受第二线圏 202感应产生的感 应电动势 VI同样反向。 VI通过第一二极管 102、 第二电阻 204、 第一电容 203进行放电产生电流 14。 三极管 300截止。 第二线圏 202两端电压 V2通过 第二二极管 401与半导体光源负载 V进行放电, 第二线圏 202释能, 同时为 第二电容 402充电产生电压 V5。 电流 14对第一电容 203反向充电产生反向 电压 V4。在第二线圏 202两端电压 V2下降至低于第二电容 402两端电压 V5 时, 停止释能。 此后, 本发明所述的半导体光源驱动系统进入第二储能阶段。 该第二储能阶段与所述第一储能阶段有所不同, 在该第二储能阶段中, 所述 半导体光源负载 V发光。
第二储能阶段,如图 3D所示, 第二电容 402两端电压 V5通过半导体光 源负载放电, 第一电容 203两端电压 V4通过电阻 204、 三极管 300的基极 301和发射极 303和第一线圏 201进行放电,产生电流 15,使三极管 300的集 电极 302和发射极 303导通。 Vin通过第二线圏 202和三极管 300的集电极 302和发射极 303进行放电产生电流 12。 第二线圏 202储能, 在其两端产生 电压 V2。 接下来, 参考图 3B中的变压装置 II和开关装置 III来继续描述。 第一线圏 201受第二线圏 202感应产生感应电动势 VI, VI通过第一电容 203、 第二电阻 204和三极管 300的基极 301及发射极 303进行放电产生电流 13。
13对第一电容 203进行充电。 第一电容 203两端产生图示方向电压 V3。 随 着 V3的上升, 13下降, 并且随之使得三极管 300截止。 然而由于流过第二 线圏 202的电流不能突变, 因此该电流通过第二二极管 401流动到半导体光 源负载, 并且使第二线圏 202两端电压 V2反向。 此后, 本发明所述的半导 体光源驱动系统再次进入释能阶段。
然后, 本发明所述的半导体光源驱动系统从释能阶段再次进入第二储能 阶段, 如此循环。
下面进一步说明三极管 300在各阶段的工作情况。
如图 3A所示, 在启动阶段, Vin通过第一电阻 R1以及三极管 300的基 极 301和发射极 303产生电流 II , 使三极管 300导通并且工作在放大区。
然后, 如图 3B所示, 在第一储能阶段中, 第一线圏 201上的感应电动 势 VI通过第一电容 203、 第二电阻 204、 以及三极管 300的基极 301和发射 极 303产生电流 13 , 使三极管 300进入饱和区; 随着电流 13给第一电容 203 充电使得第一电容 203两端电压 V3升高, 电流 13下降, 又使二极管 300退 出饱和区并进入截止区。 然而, 由于流过第二线圏 202的电流 12不能突变, 因此该电流 12通过第二二极管 401流动到半导体光源负载, 并且使第二线圏 202两端电压 V2反向。
接下来, 如图 3C所示, 在释能阶段中, 二极管 300截止, 第一线圏 201 两端电压随着第二线圏 202两端电压的反向而反向, 并且通过第二电阻 204 和第一二极管 102对第一电容 203进行反向充电。
然后, 如图 3D所示, 在第二储能阶段, 第一线圏 201上的感应电动势 VI通过第一电容 203、 第二电阻 204、 以及三极管 300的基极 301和发射极 303产生电流 13, 使三极管 300再次进入饱和区, 第二线圏 202开始储能; 然后,随着电流 13给第一电容 203充电使得第一电容 203两端电压 V3升高, 电流 13下降, 又使二极管 300退出饱和区并进入截止区。
接下来, 再次循环到释能阶段, 如此循环第二储能阶段和释能阶段。 如图 4所示, 示出了根据本发明实施例的半导体光源驱动系统操作时的 电压和电流的波形图。 应注意, 在图 4中没有示出启动阶段的波形图。
在时刻 t0, Vin通过第二线圏 202和三极管 300的集电极 302和发射极 303进行放电产生电流 12, 第二线圏 202开始储能; 并且第一线圏 201感应 产生感应电动势 VI, VI通过第一电容 203、 第二电阻 204和三极管 300的基 极 301及发射极 303进行放电产生电流 13 , 13对第一电容 203进行充电。
在时刻 tl , 第一电容 203两端电压 V3近似等于第一线圏 201产生的感 应电动势 VI , 13减小使三极管 300截止, 然而由于流过第二线圏 202的电流 12不能突变, 因此第二线圏 202产生电流 Ιο, Ιο流过第二二极管 401使半导 体光源负载 V开始发光, 并且电流 Ιο逐渐下降, 第二线圏 202两端电压 V2 反向, 第二线圏 202开始释能。
接下来, 在时刻 t2, 第二电容 402两端电压等于第二线圏 202两端电压 V2, 第二线圏 202停止释能而由第二电容 402向半导体光源负载 V供电。 另 一方面, 第一电容 203两端电压 V4通过电阻 204、 三极管 300的基极 301和 发射极 303和第一线圏 201进行放电, 产生电流 15, 使三极管 300的集电极 302和发射极 303导通; Vin通过第二线圏 202和三极管 300的集电极 302 和发射极 303进行放电产生电流 12, 第二线圏 202开始储能。
然后, 在时刻 t3, 第一电容 203两端电压 V3近似等于第一线圏 201产 生的感应电动势 VI , 13减小使三极管 300截止, 然而由于流过第二线圏 202 的电流 12不能突变,因此第二线圏 202产生电流 Io,流过第二二极管 401使半 导体光源负载 V开始发光, 并且电流 Io逐渐下降, 第二线圏 202两端电压 V2反向, 第二线圏 202开始释能。
接下来, 从时刻 t4开始重复 t2 - t4的工作序列, 即 t4 - t6、 t6 - t8等重 复 t2 _ t4的工作序列。
尽管在本发明实施例中采用 NPN型三极管来构成开关装置 III, 然而本 发明不限于此, 本领域技术人员很容易想到采用 PNP型三极管来构成开关装 置 III并且相应地变化启动装置 I、 变压装置 II、 开关装置 III、 输出装置 IV 的连接结构, 该变化应被包括在本发明范围之内。
此外, 本领域技术人员也^艮容易想到采用 Ν型或 Ρ型 MOS管来构成开 关装置并且相应地变化启动装置 I、 变压装置 II、 开关装置 III、 输出装置 IV 的连接结构, 该变化亦应被包括在本发明范围之内。
上述实施例只是例示性的, 并且不希望它们限制本发明的技术方法。 虽 然已参照优选实施例详细描述了本发明, 但所属领域的技术人员将了解, 可 在不偏离本发明技术方法的精神和范畴的情况下修改或等同替换本发明的技 术方法, 这些修改和等同替换也属于本发明权利要求书的保护范畴。

Claims

权 利 要 求 书
1. 一种半导体光源的驱动系统, 包括:
变压装置, 该变压装置包括互相耦合的第一线圏和第二线圏, 所述第二 线圏用于接收输入电压;
开关装置, 与所述变压装置的第二线圏串联连接, 并且用于控制该第二 线圏的储能和释能;
输出装置, 与所述变压装置的第二线圏并联连接, 并且用于向所述半导 体光源供电,
其中, 所述变压装置的第一线圏受第二线圏的感应产生感应信号, 用于 控制所述开关装置的导通与截止。
2. 如权利要求 1所述的驱动系统, 其中, 在所述第二线圏释能时由所述 第二线圏向所述半导体光源供电并且由所述第二线圏向所述输出装置充电, 而在所述第二线圏储能时由该输出装置向所述半导体光源供电。
3. 如权利要求 1所述的驱动系统, 还包括: 启动装置, 用于在初始施加 输入电压时启动所述开关装置。
4. 如权利要求 1所述的驱动系统, 其中, 所述开关装置包括开关和至少 一个分立元器件, 所述至少一个分立元器件连接在所述第一线圏和所述开关 的控制端之间, 并且所述感应信号通过所述至少一个分立元器件以控制所述 开关。
5. 如权利要求 4所述的驱动系统, 其中, 所述至少一个分立元器件包括 容性元件。
6. 如权利要求 5所述的驱动系统, 所述至少一个分立元器件还包括阻性 元件, 该阻性元件和所述容性元件串联。
7. 如权利要求 3所述的驱动系统, 所述启动装置包括串联在一起的阻 性元件和单向导通元件, 所述阻性元件和所述单向导通元件之间的连接点与 所述开关装置的控制端连接。
8. 一种半导体照明装置, 包括:
半导体光源负载;
变压装置, 该变压装置包括互相耦合的第一线圏和第二线圏, 所述第二 线圏用于接收输入电压; 开关装置, 与所述变压装置的第二线圏串联连接, 并且用于控制该第二 线圏的储能和释能;
输出装置, 与所述变压装置的第二线圏并联连接, 并且用于向所述半导 体光源负载供电;
其中, 所述变压装置的第一线圏受第二线圏的感应产生感应信号, 用于 控制所述开关装置的导通与截止。
9. 如权利要求 8所述的半导体照明装置, 其中, 所述开关装置包括开关 和至少一个分立元器件, 所述至少一个分立元器件连接在所述第一线圏和所 述开关的控制端之间, 并且所述感应信号通过所述至少一个分立元器件以控 制所述开关。
10. 如权利要求 8所述的半导体照明装置, 还包括: 启动装置, 用于在 初始施加输入电压时启动所述开关装置。
PCT/CN2013/076105 2012-06-04 2013-05-22 半导体光源的驱动系统及半导体照明装置 WO2013181993A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13800096.3A EP2785149B1 (en) 2012-06-04 2013-05-22 Drive system of semiconductor light source, and semiconductor lighting device
US14/404,775 US9967930B2 (en) 2012-06-04 2013-05-22 Drive system of semiconductor light source, and semiconductor lighting device
BR112014030295-2A BR112014030295B1 (pt) 2012-06-04 2013-05-22 Sistema de acionamento de fonte de luz semicondutora e dispositivo de iluminação semicondutora
JP2015515375A JP5757644B1 (ja) 2012-06-04 2013-05-22 半導体光源の駆動システム及び半導体照明装置
ZA2014/09526A ZA201409526B (en) 2012-06-04 2014-12-23 Drive system of semiconductor light source, and semiconductor lighting device
HK14112930.2A HK1199593A1 (zh) 2012-06-04 2014-12-24 半導體光源的驅動系統及半導體照明裝置
IN14DEN2015 IN2015DN00014A (zh) 2012-06-04 2015-01-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210181467.1A CN103458559B (zh) 2012-06-04 2012-06-04 半导体光源的驱动系统及半导体照明装置
CN201210181467.1 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013181993A1 true WO2013181993A1 (zh) 2013-12-12

Family

ID=49711352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076105 WO2013181993A1 (zh) 2012-06-04 2013-05-22 半导体光源的驱动系统及半导体照明装置

Country Status (11)

Country Link
US (1) US9967930B2 (zh)
EP (1) EP2785149B1 (zh)
JP (1) JP5757644B1 (zh)
CN (1) CN103458559B (zh)
BR (1) BR112014030295B1 (zh)
DE (1) DE202013012382U1 (zh)
HK (2) HK1192097A1 (zh)
IN (1) IN2015DN00014A (zh)
TW (1) TW201352060A (zh)
WO (1) WO2013181993A1 (zh)
ZA (1) ZA201409526B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498052A (zh) * 2002-10-03 2004-05-19 模拟微电子学股份有限公司 驱动ccfl的方法和系统
CN1863423A (zh) * 2005-05-13 2006-11-15 夏普株式会社 Led驱动电路、led照明装置和背光灯
CN101048052A (zh) * 2006-03-30 2007-10-03 徐富雄 散热用的风扇式显示器
CN101652005A (zh) * 2008-08-13 2010-02-17 索尼株式会社 发光二极管驱动设备
US20100148692A1 (en) * 2008-12-12 2010-06-17 Biegel George E Auto-dimming apparatus for controlling power delivered to a load
CN102042508A (zh) * 2009-10-23 2011-05-04 陈进祥 光源装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416863B2 (ja) 1994-06-27 2003-06-16 松下電工株式会社 電源装置
TW291620B (zh) 1995-05-10 1996-11-21 Philips Electronics Nv
DK1499005T3 (da) * 2003-07-15 2005-10-24 Friwo Mobile Power Gmbh Frit svingende blokeringskonverter med ström- og spændingsbegrænsning
US6856103B1 (en) * 2003-09-17 2005-02-15 Varon Lighting, Inc. Voltage regulator for line powered linear and switching power supply
EP2163134A2 (en) * 2007-05-07 2010-03-17 Koninklijke Philips Electronics N.V. High power factor led-based lighting apparatus and methods
WO2009138180A1 (de) * 2008-05-15 2009-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Spannungswandlerschaltung und verfahren zum getakteten zuführen von energie zu einem energiespeicher
US8305004B2 (en) * 2009-06-09 2012-11-06 Stmicroelectronics, Inc. Apparatus and method for constant power offline LED driver
US8143800B2 (en) * 2009-06-22 2012-03-27 O2Micro, Inc. Circuits and methods for driving a load with power factor correction function
TWI538553B (zh) * 2009-08-25 2016-06-11 皇家飛利浦電子股份有限公司 多通道照明單元及供應電流至其光源之驅動器
JP5457927B2 (ja) 2010-04-23 2014-04-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 発光素子の制御回路
CN102474959B (zh) * 2010-07-22 2015-01-28 松下电器产业株式会社 点亮电路、灯以及照明装置
JP5408161B2 (ja) * 2011-03-11 2014-02-05 Smk株式会社 自励式スイッチング電源回路
TWM423415U (en) * 2011-10-05 2012-02-21 Darfon Electronics Corp Non-isolated buck-boost light emitting diode driving circuit
CN202663608U (zh) * 2012-06-04 2013-01-09 欧普照明股份有限公司 半导体光源的驱动系统及半导体照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498052A (zh) * 2002-10-03 2004-05-19 模拟微电子学股份有限公司 驱动ccfl的方法和系统
CN1863423A (zh) * 2005-05-13 2006-11-15 夏普株式会社 Led驱动电路、led照明装置和背光灯
CN101048052A (zh) * 2006-03-30 2007-10-03 徐富雄 散热用的风扇式显示器
CN101652005A (zh) * 2008-08-13 2010-02-17 索尼株式会社 发光二极管驱动设备
US20100148692A1 (en) * 2008-12-12 2010-06-17 Biegel George E Auto-dimming apparatus for controlling power delivered to a load
CN102042508A (zh) * 2009-10-23 2011-05-04 陈进祥 光源装置

Also Published As

Publication number Publication date
CN103458559B (zh) 2015-04-15
EP2785149B1 (en) 2017-04-19
US9967930B2 (en) 2018-05-08
HK1199593A1 (zh) 2015-07-03
IN2015DN00014A (zh) 2015-05-22
BR112014030295B1 (pt) 2021-08-17
US20150145432A1 (en) 2015-05-28
EP2785149A4 (en) 2015-08-19
DE202013012382U1 (de) 2016-08-03
BR112014030295A2 (pt) 2017-06-27
EP2785149A1 (en) 2014-10-01
JP2015523684A (ja) 2015-08-13
TWI508614B (zh) 2015-11-11
CN103458559A (zh) 2013-12-18
HK1192097A1 (zh) 2014-08-08
TW201352060A (zh) 2013-12-16
ZA201409526B (en) 2016-08-31
JP5757644B1 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
CN100526956C (zh) 用于lcd背光的逆变器驱动电路
TW201004471A (en) Current supply circuit and current control circuit for LED
Chen et al. A loss-adaptive self-oscillating buck converter for LED driving
CN105186852A (zh) 自激共振型功率因数改善电路以及光源驱动装置
KR20070032256A (ko) 조명용 저압 전원 회로, 조명 장치 및 조명용 저압 전원출력 방법
US20170265261A1 (en) Switched mode power converter circuit and method
JP7066060B2 (ja) 駆動回路及び関連ランプ
JP2011100837A (ja) 自励式led駆動回路
CN102403896A (zh) 基于MOSFET的自激式Boost变换器
WO2013181993A1 (zh) 半导体光源的驱动系统及半导体照明装置
TWM346239U (en) Driving device of lighting apparatus
CN202663608U (zh) 半导体光源的驱动系统及半导体照明装置
US9130465B2 (en) Minimum off time control systems and methods for switching power converters in discontinuous conduction mode
WO2012144274A1 (ja) Led点灯装置およびled照明装置
CN107087328B (zh) Led驱动电路
JP5815387B2 (ja) Led点灯装置およびled点灯装置の制御方法
JP5293961B2 (ja) Led駆動回路
JP2006244878A (ja) 車両用灯具の点灯制御装置
JP5519861B2 (ja) 電源回路
JP5357553B2 (ja) 電源装置及びそれを用いた照明器具
CN102510217A (zh) 基于MOSFET的自激式Zeta变换器
JP2011065874A (ja) 照明用led駆動回路
KR101401901B1 (ko) Led 모듈 구동용 전원 공급 장치와 이를 구비하는 led 조명 장치
JP5720363B2 (ja) 照明装置
CN102522890A (zh) 基于MOSFET的自激式Buck-Boost变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800096

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013800096

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013800096

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14404775

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015515375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014030295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141204