WO2013180520A1 - 소화약제 회수 시스템 및 방법 - Google Patents

소화약제 회수 시스템 및 방법 Download PDF

Info

Publication number
WO2013180520A1
WO2013180520A1 PCT/KR2013/004826 KR2013004826W WO2013180520A1 WO 2013180520 A1 WO2013180520 A1 WO 2013180520A1 KR 2013004826 W KR2013004826 W KR 2013004826W WO 2013180520 A1 WO2013180520 A1 WO 2013180520A1
Authority
WO
WIPO (PCT)
Prior art keywords
extinguishing agent
pressure
storage tank
heat exchanger
temperature
Prior art date
Application number
PCT/KR2013/004826
Other languages
English (en)
French (fr)
Inventor
유민수
Original Assignee
주식회사 동양엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동양엔지니어링 filed Critical 주식회사 동양엔지니어링
Publication of WO2013180520A1 publication Critical patent/WO2013180520A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/026Permanently-installed equipment with containers for delivering the extinguishing substance the extinguishing material being put under pressure by means other than pressure gas, e.g. pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants

Definitions

  • the present invention relates to a extinguishing agent recovery system, and in particular, to propose a new system and an effective recovery method capable of recovering and recycling a extinguishing agent.
  • Extinguishing agents are liquid type extinguishing agents such as Halon-1301, Halon-1211, Halon-2402, and HFC-23.
  • Halon gas is a fire extinguishing agent developed using bromine as a main raw material, and bromine is used to suppress a combustion reaction by blocking substances generated in the combustion process or deactivating oxygen atoms.
  • HFC-23 is a representative greenhouse gas generated in the manufacturing process of HCFC-22, a refrigerant for air conditioners.
  • ozone depletion index and global warming index of halon gas and HFC-23 are shown in the following table.
  • ODP Ozone Depletion Index
  • GWP Global Warming Index
  • the above table is based on CFC-11 with ODP and GWP of 1.0, and the global warming coefficient is based on 1.0 standard (GWP) of carbon dioxide (CO 2 ).
  • the fire extinguishing agent is designated as the main cause of ozone layer destruction and global warming, and it is prohibited to produce under the Montreal Convention and the climate Convention. Until the future use is prohibited, the extinguishing agent is efficiently recovered and reused or totally extinguished. It must be recovered and disposed of.
  • the present invention has been made under the above-described technical background, and an object of the present invention is to provide an extinguishing agent recovery system capable of efficiently recovering and reusing the extinguishing agent currently being produced and distributed, or recovering and disposing of it in its entirety.
  • the present invention is to provide a system for efficiently and stably recovering the total amount of the extinguishing agent by controlling the pressure and temperature of the extinguishing agent.
  • the present invention receives the extinguishing agent stored in the cylinder and converts it to a lower temperature and lower pressure than the state stored in the cylinder, and is connected to a refrigeration system including a heat exchanger and a compressor, the refrigeration system And a storage tank for recovering and storing a low temperature low pressure extinguishing agent from a refrigeration system, a sensor unit for sensing a temperature of the refrigeration system, a temperature and a pressure of the storage tank, and the refrigeration based on a signal detected from the sensor unit.
  • a fire extinguishing agent recovery system is provided that includes a control panel that controls the operation of the system.
  • the refrigeration system is the evaporation temperature of the heat exchanger is set to -25 °C or less, the storage tank may be set to maintain a pressure of 1.5MPa or less.
  • the extinguishing agent recovery system may further include a suction pressure regulating valve for adjusting the pressure before the extinguishing agent is introduced into the compressor of the refrigeration system, and further comprising a filter drier for purifying dust and water in the recovery process of the extinguishing agent.
  • a suction pressure regulating valve for adjusting the pressure before the extinguishing agent is introduced into the compressor of the refrigeration system, and further comprising a filter drier for purifying dust and water in the recovery process of the extinguishing agent.
  • a filter drier for purifying dust and water in the recovery process of the extinguishing agent.
  • it is installed between the heat exchanger and the storage tank, it may include a double heat exchanger for condensing the extinguishing agent condensed in the heat exchanger to low temperature low pressure once more.
  • the present invention also operates a refrigeration system to maintain the evaporation temperature of the heat exchanger below a set value, to maintain the storage tank in a vacuum state for the recovery and storage of the extinguishing agent, the pressure difference between the liquid extinguishing agent stored in the cylinder
  • a refrigeration system to maintain the evaporation temperature of the heat exchanger below a set value, to maintain the storage tank in a vacuum state for the recovery and storage of the extinguishing agent, the pressure difference between the liquid extinguishing agent stored in the cylinder
  • the present invention sends the remaining extinguishing agent of the gaseous phase remaining in the cylinder after the liquid extinguishing agent recovery to the heat exchanger by operating the compressor of the refrigeration system, condensing the gaseous extinguishing agent introduced into the heat exchanger in a liquid state and recovered to the storage tank It further comprises the step.
  • the gaseous extinguishing agent may be adjusted through the suction pressure regulating valve before entering the suction pipe of the compressor of the refrigeration system.
  • the extinguishing agent is a halon gas
  • nitrogen contained in the cylinder is introduced into the heat exchanger along with the gas extinguishing agent and then released into the atmosphere.
  • the recovered HFC-23 is evaporated and used as a refrigerant to operate a refrigeration cycle, so that the temperature in the storage tank can be maintained at ⁇ 20 ° C. or lower and the pressure at 1.5 MPa or lower.
  • the present invention it is possible to recover and recycle or discard the entire extinguishing agent stably by storing and storing the extinguishing agent stably while maintaining the low temperature and low pressure using the refrigeration system.
  • FIG. 1 is a schematic view showing a fire extinguishing agent recovery system of the present invention.
  • FIG. 2 is a block diagram showing a fire extinguishing agent recovery system according to a preferred embodiment of the present invention.
  • FIG. 3 is an operational flowchart of a system for recovering halon gas as a extinguishing agent.
  • the present invention comprises a refrigeration system including a heat exchanger and a compressor to receive a fire extinguishing agent stored in the cylinder to convert to a lower temperature and lower pressure than the state stored in the cylinder; A storage tank connected to the refrigeration system, the storage tank recovering and storing a low temperature low pressure extinguishing agent from the refrigeration system; A sensor unit for sensing the temperature of the refrigeration system and the temperature and pressure of the storage tank; And a control panel for controlling the operation of the refrigeration system based on the signal sensed by the sensor unit.
  • the present invention operates the refrigeration system to maintain the evaporation temperature of the heat exchanger below the set value; Maintaining the storage tank in vacuum for recovery and storage of extinguishing agent; Introducing a liquid extinguishing agent stored in the cylinder into a heat exchanger of the refrigeration system by a pressure difference to convert the liquid extinguishing agent into a lower temperature and a lower pressure than the state stored in the cylinder; Recovering the cold low pressure extinguishing agent into a storage tank; According to the recovery of the extinguishing agent, a method for recovering a extinguishing agent comprising stopping the operation of the refrigeration system when the pressure in the storage tank exceeds the reference value.
  • Halon-1301 one of the halon gas, has a pressure of 1.4 MPa at room temperature of 20 ° C. It is stored in a liquid state in a separate cylinder container (capacity 50kg) to be used as a fire extinguishing agent. nitrogen (N 2) as a pressure is (pressure 4.0MPa).
  • HFC-23 has a pressure of 4.0MPa at room temperature of 20 °C, and is not pressurized for the ejection of the extinguishing agent, it is stored in a container and ejected at its own pressure.
  • the extinguishing agent recovery system of the present invention as shown in the schematic diagram of FIG. 1 includes a cylinder 200 and a storage tank for extinguishing agent recovery each containing the extinguishing agent in the refrigeration system 100. 300 are connected to each other, and a control panel 400 for controlling the operation of the refrigeration system is connected.
  • the extinguishing agent recovery system of the present invention operates on the following principle.
  • halon gas when recovering the halon gas in the cylinder pressurized with nitrogen, about 90% of the halon gas is ejected into the liquid phase, and about 10% is ejected with the nitrogen in a vaporized state.
  • the liquid halon gas is transferred to the storage tank 300 from the cylinder 200 through the refrigeration system 100 by the system of the present invention, and after the liquid halon gas is recovered, the halon gas and nitrogen in the remaining gas state
  • the halon gas is condensed and transferred to the storage tank.
  • the pressure of the heat exchanger rises by the set pressure value, nitrogen is released into the atmosphere, and only pure halon gas is recovered to the storage tank in the liquid phase.
  • the system of the present invention is a liquid HFC-23 through a heat exchanger so that the entire amount of HFC-23 having high pressure characteristics can be effectively recovered, stored and reused at room temperature. Recovered at low temperature and low pressure (1.5 MPa).
  • the storage tank and the heat exchanger can be minimized by using a heat insulating material.
  • the HFC-23 recovered from the storage tank can be evaporated to reduce the temperature in the storage tank to prevent pressure rise.
  • the sensor unit in the refrigerating system is connected to the control panel 400, and the operation and temperature of the heat exchanger or the compressor of the refrigerating system are controlled based on the temperature and pressure signals detected by the sensor unit.
  • FIG. 2 is a block diagram of an apparatus for extinguishing agent recovery system according to a preferred embodiment of the present invention.
  • the cylinder 200 containing the extinguishing agent and the storage tank 300 are respectively connected to a heat exchanger (evaporator) 120 in the refrigeration system 100 by pipes (solid lines connecting the components), and the storage tank is
  • the compressor 130 is connected to the pipe.
  • Each pipe is provided with a plurality of valves V1 to V4 and electromagnetic valves S1 to S6 as necessary.
  • the heat exchanger and the storage tank are provided with a pressure sensor or a temperature sensor to sense the temperature and pressure during operation.
  • the evaporation temperature of the heat exchanger 120 is set to a set value or less, for example, -25 ° C. or less using a two-stage compression refrigeration system. (Step S110).
  • the storage tank 300 is vacuumed for recovery and storage of the extinguishing agent.
  • the compressor 130 in the system can be used to discharge the air in the storage tank 300 to the outside to maintain a vacuum state.
  • the refrigeration compressor 130 is started after opening the stop valves V1, the electromagnetic valves S1 and S2. When the vacuum is reached, the operation is automatically stopped by the set value of the pressure controller.
  • the solenoid valves S3 and S4 are opened to recover the liquid extinguishing agent (Halon) in the liquid state
  • the valve V4 of the cylinder 200 is opened. Due to the pressure difference, the extinguishing agent halon gas in the liquid state in the cylinder 200 is recovered to the storage tank 300 via the heat exchanger 120.
  • the halon gas in the liquid phase passing through the heat exchanger 120 maintains low temperature and low pressure (-20 ° C./0.5 MPa) (step S120). Dust and water in the recovery process is purified through the filter drier 170.
  • the storage tank 300 which is a recovery device, includes a temperature sensor (T / S, 310) and a pressure sensor (DPS Dual Pressure Sensor, 320), and detects the temperature and pressure in the storage tank so that the pressure and the temperature are higher than or equal to a set value.
  • the refrigeration system can be operated to lower the pressure and temperature, and the recovery of the extinguishing agent can be blocked when the pressure is over a certain pressure by another pressure setting.
  • the refrigeration compressor 130 is operated to send the halon gas and the nitrogen in the cylinder 200 to the heat exchanger 120.
  • the refrigeration compressor 130 is started after opening the electromagnetic valves S3, S4, S5, and S6.
  • the gaseous halon gas introduced into the heat exchanger 120 is condensed (heat exchanged) in a liquid state and transferred to the storage tank 300 to be recovered (step S130), and nitrogen stays at the top of the heat exchanger 120.
  • the pressure of the upper nitrogen of the heat exchanger 120 rises, and the pressure sensor (P / S, 140) detects this and releases nitrogen into the atmosphere when the pressure is higher than a predetermined pressure (step S140).
  • the method separates and recovers the halon gas and nitrogen.
  • the suction pressure is adjusted using the suction pressure regulating valve (SPR) 160 to prevent the failure of the compressor 130 due to the high pressure. can do.
  • SPR suction pressure regulating valve
  • the heat exchanger 120 condenses the storage tank.
  • the extinguishing agent recovered to 300 may be condensed at a low temperature low pressure once more.
  • the electronic valve S7 is opened and the compressor 130 is operated to maintain a storage container (not shown) in a vacuum and then stored by a pressure difference from the storage tank. Can deliver extinguishing agent in container.
  • step S110 by using a two-stage compression refrigeration system to maintain the evaporation temperature of the heat exchanger 120 B, for example to a temperature below the set value -25 °C (step S110). .
  • the storage tank 300 is vacuumed for recovery and storage of the extinguishing agent.
  • the refrigeration compressor 130 in the system By using the refrigeration compressor 130 in the system to discharge the air in the storage tank 300 to the outside to maintain a vacuum state, in this case, after opening the stop valve V1 and the electromagnetic valves S1, S2 and starts the refrigeration compressor 130 When the vacuum is reached, the operation is automatically stopped by the set value of the pressure controller.
  • the stop valves V3, the solenoid valves S3 and S4 are opened, and the valve V4 of the cylinder 200 is opened. Due to the pressure difference, the extinguishing agent HFC-23 in the liquid state in the cylinder 200 is recovered to the storage tank 300 via the heat exchanger 120 (step S120).
  • the liquid HFC-23 passing through the heat exchanger 120 is introduced into the storage tank 300 at a temperature of ⁇ 20 ° C. and a pressure of 1.5 MPa.
  • the temperature in the storage tank is HFC-23. Through evaporation of the temperature and pressure can be maintained at -20 ° C / 1.4MPa or less (step S130).
  • Dust and water in the recovery process is purified through the filter drier 170 in front of the suction pipe of the refrigeration compressor (130).
  • the remaining gaseous state of the HFC-23 is controlled by the high pressure by adjusting the suction pressure by using the suction pressure regulating valve (SPR, 160) before entering the suction pipe of the refrigeration compressor (130). ) Can be prevented in advance.
  • SPR, 160 suction pressure regulating valve
  • the gaseous HFC-23 is discharged at a constant pressure to flow into the heat exchanger 120, and the gaseous HFC-23 introduced into the heat exchanger 120 is condensed and recovered to the storage tank 300 (step S140). .
  • the recovery is completed, the operation of the refrigeration system is automatically stopped by the pressure setting.
  • the extinguishing agent is stably recovered and stored while being kept at low temperature and low pressure, and thus the entire extinguishing agent can be effectively recovered and recycled or disposed.
  • the present invention relates to a fire extinguishing agent recovery system and method, and will be used in various chemical industries in connection with industries related to fire extinguishing agents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

본 발명은 실린더에 저장되어 있는 소화약제를 유입 받아 실린더에 저장되어 있는 상태 보다 저온 및 저압으로 변환시키며, 열교환기와 압축기를 포함하는 냉동 시스템과, 상기 냉동 시스템과 연결되며, 냉동 시스템으로부터 저온 저압의 소화약제를 회수하여 저장하는 저장 탱크와, 상기 냉동 시스템의 온도 및 상기 저장 탱크의 온도와 압력을 감지하는 센서부, 및 상기 센서부로부터 감지된 신호를 기반으로 상기 냉동 시스템의 동작을 제어하는 컨트롤 패널을 포함하는 소화약제 회수 시스템을 제공한다. 냉동시스템을 가동하여 열교환기의 증발 온도를 설정값 이하로 유지한 상태에서, 실린더에 저장된 액상의 소화약제는 압력차에 의하여 열교환기로 유입되며, 실린더에 저장된 상태 보다 저온 및 저압 상태로 변환된 후 저장 탱크로 회수된다.

Description

소화약제 회수 시스템 및 방법
본 발명은 소화약제 회수 시스템에 관한 것으로서, 상세하게는 소화약재를 회수 재활용할 수 있는 새로운 시스템 및 효과적인 회수 방법을 제안한다
소화약제는 액상형 소화제(消火劑)로서 Halon-1301, Halon-1211, Halon-2402, HFC-23 등이 있다.
할론 가스는 브로민을 주원료로 하여 개발한 소화제이며, 브로민이 연소 과정에서 생기는 물질을 차단하거나 산소 원자를 비활성화함으로써 연소 반응을 억제하는 것을 이용한 것이다. 또한, HFC-23는 에어컨용 냉매인 HCFC-22를 제조 과정에서 발생하는 대표적인 온실가스이다.
할론 가스와 HFC-23의 오존파괴지수와 지구온난화지수는 다음 표와 같다.
표 1
소화약제 명칭 오존파괴지수(ODP) 지구온난화지수(GWP)
Halon-1211 3.0 11,580
Halon-1301 10.0 11,580
Halon-2402 6.0 11,580
HFC-23 0 11,700
위 표는 ODP 및 GWP가 각 1.0인 CFC-11을 기준으로 한 값이며, 지구온난화계수는 이산화탄소(CO2)의 1.0 기준(GWP)으로 한 값이다.
상기 소화약제는 오존층 파괴 및 지구온난화의 주원인으로 지목되고 있으며 몬트리얼협약 및 기후협약에 의거 생산 금지되어 있는 품목으로 향후 사용 금지 시까지는 현재의 생산되어 유통되고 있는 소화약제를 효율적으로 회수하여 재사용하거나 전량회수하여 폐기하도록 하여야 한다.
지난 92년 오존층 파괴물질 규제를 위한 몬트리올의정서에 가입한 우리나라는 개도국으로 분류돼 99년부터 두 가스 사용을 단계적으로 감축, 2010년부터 완전 사용할 수 없게 되었고, 몬트리올의정서에서 1차 규제물질로 분류된 프레온가스(CFCs)와 할론 가스(HALON)의 신규 생산 및 수입이 2010년부터 전면 금지된 바 있다.
다만, 몬트리올의정서 규정에 따라 이미 보유하고 있거나 회수·재생된 분량에 대해서는 2010년 이후에도 계속 사용할 수 있도록 했다.
본 발명은 전술한 기술적 배경하에서 창안된 것으로, 본 발명의 목적은 현재 생산되어 유통되고 있는 소화약제를 효율적으로 회수하여 재사용하거나 전량 회수하여 폐기할 수 있는 소화약제 회수 시스템을 제공하는 것이다.
또한, 본 발명은 소화약제가 지니고 있는 압력 및 온도의 제어를 통하여 효율적이고 안정적으로 소화약제를 전량 회수하는 시스템을 제공하는 것이다.
기타, 본 발명의 또 다른 목적 및 기술적 특징은 이하의 상세한 설명에서 보다 구체적으로 제시될 것이다.
상기 목적을 달성하기 위하여, 본 발명은 실린더에 저장되어 있는 소화약제를 유입 받아 실린더에 저장되어 있는 상태 보다 저온 및 저압으로 변환시키며, 열교환기와 압축기를 포함하는 냉동 시스템과, 상기 냉동 시스템과 연결되며, 냉동 시스템으로부터 저온 저압의 소화약제를 회수하여 저장하는 저장 탱크와, 상기 냉동 시스템의 온도 및 상기 저장 탱크의 온도와 압력을 감지하는 센서부, 및 상기 센서부로부터 감지된 신호를 기반으로 상기 냉동 시스템의 동작을 제어하는 컨트롤 패널을 포함하는 소화약제 회수 시스템을 제공한다.
상기 냉동 시스템은 열교환기의 증발 온도가 -25℃ 이하로 설정되며, 상기 저장 탱크는 1.5MPa 이하의 압력을 유지하도록 설정될 수 있다.
상기 소화약제 회수 시스템은 냉동 시스템의 압축기에 소화약제가 유입되기 전에 압력을 조정하는 흡입압력조정밸브를 더 포함할 수 있고, 소화약제의 회수 과정에서 분진 및 수분을 정제하는 필터드라이어를 더 포함할 수 있다. 또한, 상기 열교환기와 저장 탱크 사이에 설치되며, 열교환기에서 응축된 소화약제를 한번 더 저온 저압으로 응축시키는 이중열교환기를 포함할 수 있다.
본 발명은 또한, 냉동시스템을 가동하여 열교환기의 증발 온도를 설정값 이하로 유지하고, 소화약제의 회수 및 저장을 위하여 저장 탱크를 진공 상태로 유지하고, 실린더에 저장된 액상의 소화약제를 압력차에 의하여 냉동 시스템의 열교환기로 유입시켜 실린더에 저장된 상태 보다 저온 및 저압 상태로 변환시키고, 저온 저압의 소화약제를 저장 탱크로 회수하고, 소화약제의 회수에 따라 저장 탱크의 압력이 기준치를 넘어서면 냉동 시스템의 동작을 중지하는 단계를 포함하는 소화약제 회수 방법을 제공한다.
또한, 본 발명은 액상의 소화약제 회수 후 실린더에 남아있는 기상의 잔여 소화약제를 냉동 시스템의 압축기를 운전하여 열교환기로 보내고, 열교환기로 유입된 기상의 소화약제를 액체 상태로 응축하여 저장 탱크로 회수하는 단계를 더 포함한다. 기상의 소화약제는 냉동 시스템의 압축기의 흡입 배관으로 유입되기 전 흡입압력조정밸브를 통하여 흡입압력이 조정될 수 있다.
상기 소화약제가 할론 가스인 경우 실린더에 포함되는 질소는 기상의 소화약제와 함께 열교환기로 유입된 후 대기중으로 방출시킨다.
상기 소화약제가 HFC-23인 경우 회수된 HFC-23을 증발시켜 냉매로 사용하여 냉동 사이클을 운전하여, 저장 탱크 내의 온도를 -20℃ 이하, 압력을 1.5MPa 이하로 유지할 수 있다.
본 발명에 따르면, 냉동 시스템을 이용하여 소화약제를 저온 및 저압으로 유지한 채 안정적으로 회수 저장함으로써 소화약제를 전량 회수하여 재활용하거나 폐기하는 것이 가능하다.
도 1은 본 발명의 소화약제 회수 시스템을 보인 개략도.
도 2는 본 발명의 바람직한 실시예에 따른 소화약제 회수 시스템을 보인 장치 구성도.
도 3은 소화약제로서 할론 가스를 회수하기 위한 시스템의 동작 순서도.
도 4는 소화약제로서 HFC-23를 회수하기 위한 시스템의 동작 순서도.
본 발명은, 실린더에 저장되어 있는 소화약제를 유입 받아 실린더에 저장되어 있는 상태 보다 저온 및 저압으로 변환시키며, 열교환기와 압축기를 포함하는 냉동 시스템과; 상기 냉동 시스템과 연결되며, 냉동 시스템으로부터 저온 저압의 소화약제를 회수하여 저장하는 저장 탱크와; 상기 냉동 시스템의 온도 및 상기 저장 탱크의 온도와 압력을 감지하는 센서부; 및 상기 센서부로부터 감지된 신호를 기반으로 상기 냉동 시스템의 동작을 제어하는 컨트롤 패널을 포함하는 소화약제 회수 시스템을 제안한다.
또한, 본 발명은 냉동시스템을 가동하여 열교환기의 증발 온도를 설정값 이하로 유지하고; 소화약제의 회수 및 저장을 위하여 저장 탱크를 진공 상태로 유지하고; 실린더에 저장된 액상의 소화약제를 압력차에 의하여 냉동 시스템의 열교환기로 유입시켜 실린더에 저장된 상태 보다 저온 및 저압 상태로 변환시키고; 저온 저압의 소화약제를 저장 탱크로 회수하고; 소화약제의 회수에 따라 저장 탱크의 압력이 기준치를 넘어서면 냉동 시스템의 동작을 중지하는 단계를 포함하는 소화약제 회수 방법을 제안한다.
할론 가스 중의 하나인 Halon-1301는 20℃의 상온에서는 1.4MPa의 압력을 가지고 있으며, 소화약제로 사용하기 위하여 별도의 실린더 용기(용량 50kg)에 액상으로 저장되어 있으며, 화재시 압력에 의하여 분출되도록 질소(N2)로 가압(압력 4.0MPa)되어 있다.
또한, HFC-23은 20℃의 상온에서 4.0MPa의 압력을 가지고 있으며, 소화약제의 분출을 위하여 별도로 가압되지 않으며, 용기에 보관되어 자체의 압력으로 분출된다.
이러한 소화약제를 원활하게 회수하기 위하여, 도 1의 개략도에 도시한 바와 같은 본 발명의 소화약제 회수 시스템은 냉동 시스템(100)에 각각 소화약제를 담고 있는 실린더(200)와 소화약제 회수용 저장 탱크(300)가 각각 연결되고, 냉동 시스템의 동작을 제어하는 컨트롤 패널(400)이 연결되어 있다. 본 발명의 소화약제 회수 시스템은 다음과 같은 원리로 동작한다.
먼저 할론 가스의 경우, 질소로 가압된 실린더 내의 할론 가스를 회수할 때 90% 정도의 할론 가스가 액상으로 분출되며, 10%정도는 기화 상태로 질소와 함께 분출된다. 이때 본 발명의 시스템에 의하여 액상의 할론 가스는 실린더(200)로부터 냉동 시스템(100)을 통해 저장 탱크(300)로 이송되며, 액상의 할론 가스가 회수된 후, 잔여 기체 상태의 할론 가스와 질소의 경우 열교환기에 의하여 할론 가스는 응축되어 저장탱크로 이송되고, 질소는 설정된 압력값에 의하여 열교환기의 압력이 상승하면 대기 중으로 방출되어 순수한 할론 가스만 액상으로 저장탱크에 회수된다.
또한, 소화약제로서 HFC-23을 회수하는 경우, 본 발명의 시스템은 상온에서 높은 압력의 특성이 있는 HFC-23을 효과적으로 전량 회수하여 보관 및 재사용할 수 있도록, 액상의 HFC-23은 열교환기를 통하여 저온 및 저압(1.5MPa)으로 회수된다.
특히, HFC-23의 회수 및 저장시 저온 및 저압을 유지하기 위하여 열교환기 내의 증발온도를 -25℃ 이하로 유지시켜주어야 하며, 이를 위하여 본 발명의 바람직한 실시예에서는 2단 압축 냉동시스템을 적용한다. 또한, 회수되어 저장된 HFC-23를 저압으로 유지하기 위하여 저장 탱크와 열교환기를 보온재를 이용하여 외부열의 침입을 최소화할 수 있으며, HFC-23을 저장탱크에 회수후 보관시 온도상승에 따른 압력상승을 막기 위하여 저장탱크로 회수된 HFC-23을 증발시켜 저장 탱크 내의 온도를 떨어뜨려 압력상승을 방지할 수 있다.
냉동 시스템 내의 센서부는 컨트롤 패널(400)에 연결되며, 센서부에서 감지된 온도 및 압력 신호를 기반으로 냉동 시스템의 열교환기 또는 압축기의 동작 및 온도가 제어된다.
이와 같은 본 발명의 소화약제 회수 시스템 및 회수 방법에 대해 구체적인 실시예를 통하여 보다 상세하게 설명한다.
도 2는 본 발명의 바람직한 실시예에 따른 소화약제 회수 시스템의 장치 구성도이다. 냉동 시스템(100) 내의 열교환기(증발기)(120)에 소화약제를 담고 있는 실린더(200)와 저장 탱크(300)가 각각 배관(각 부품 사이를 연결한 실선)으로 연결되어 있고, 저장 탱크는 또한 압축기(130)와 배관으로 연결되어 있다. 각 배관에는 다수의 밸브(V1 ~ V4)와 전자변(S1 ~ S6)이 필요에 따라 설치되어 있다. 또한, 열교환기와 저장 탱크에는 압력 센서나 온도 센서가 설치되어 동작 중의 온도 및 압력이 감지된다.
소화약제 Halon 가스의 회수
소화약제로서 할론 가스를 회수하는 경우, 도 3의 동작 순서에 도시한 바와 같이, 2단 압축 냉동시스템을 이용하여 열교환기(120)의 증발 온도를 설정값 이하로, 예를 들어 - 25℃ 이하로 유지시킨다(단계 S110).
이와 동시에 또는 순차적으로, 소화약제의 회수 및 저장을 위하여 저장 탱크(300)를 진공 상태로 만든다. 시스템 내의 압축기(130)를 이용하여 저장 탱크(300) 내의 공기를 외부로 방출시켜 진공 상태를 유지시킬 수 있으며, 이 경우 스톱밸브 V1, 전자변 S1, S2을 열어준 후 냉동 압축기(130)를 기동하고, 진공상태에 이르면 압력 콘트롤러의 설정값에 의하여 자동으로 운전을 정지시킨다.
액체 상태(Liquid)의 소화약제(Halon)를 회수하기 위해 스톱밸브 V3, 전자변 S3, S4을 열어준 후, 실린더(200)의 밸브 V4을 열어준다. 압력차에 의하여 실린더(200) 내 액체 상태의 소화약제 할론 가스는 열교환기(120)를 거쳐 저장 탱크(300)로 회수된다. 열교환기(120)를 통과하는 액상의 할론 가스는 저온 및 저압(-20℃/0.5MPa)을 유지하게 된다(단계 S120). 회수과정에서 분진 및 수분은 필터드라이어(170)를 통하여 정제된다.
회수 장치인 저장 탱크(300)는 온도센서(T/S, 310), 압력센서 (DPS Dual Pressure Sensor, 320)를 구비하고 있으며, 저장 탱크 내의 온도와 압력을 감지하여 압력과 온도가 설정값 이상이 되면 냉동 시스템이 작동되어 압력과 온도를 낮출 수 있고, 또 다른 압력 설정에 의하여 일정 압력 이상이 되면 소화약제의 회수를 차단할 수 있다.
액상의 할론 가스가 회수된 후 실린더(200) 내에는 기체 상태의 할론 가스와 질소가 혼입(8.5대 1.5)되어 있다. 기상의 잔여 할론 가스를 회수하기 위해 냉동 압축기(130)를 운전하여 실린더(200) 내의 할론 가스와 질소를 열교환기(120)로 보낸다. 이 경우 전자변 S3, S4, S5, S6을 열어준 후 냉동 압축기(130)를 기동한다.
열교환기(120)로 유입된 기체 상태의 할론 가스는 액체 상태로 응축(열교환)되어 저장 탱크(300)로 이송되어 회수되며(단계 S130), 질소는 열교환기(120)의 상부에 머무르게 된다. 이 과정이 반복되면, 열교환기(120) 상부 질소의 압력이 상승하며, 압력 센서(P/S, 140)는 이를 감지하여 일정 압력 이상이 되면 대기중으로 질소를 방출시키고(단계 S140), 이와 같은 방법으로 할론 가스와 질소를 분리하여 회수하게 된다.
기체상태의 할론 가스와 질소가 냉동 압축기(130)의 흡입 배관으로 유입되기 전 흡입압력조정밸브(SPR, 160)를 이용하여 흡입압력을 조정함으로써 고압으로 인한 압축기(130)의 고장을 미연에 방지할 수 있다.
또한, 2단 압축 냉동 시스템에서 저온 저압의 냉매가 열교환기(120)의 코일로 들어가는 중간에 팽창변(T1)을 사용하여 이중열교환기(150) 쪽으로 보내주면, 열교환기(120)에서 응축되어 저장 탱크(300)로 회수되는 소화약제를 한번 더 저온 저압으로 응축시킬 수 있다.
한편, 저장 탱크에 회수된 소화약제를 별도의 보관 용기로 이동시킬 경우에는 전자변 S7을 열고 압축기(130)를 가동하여 보관 용기(미도시)를 진공으로 유지한 후 저장 탱크로부터 압력차에 의하여 보관 용기로 소화약제를 전달할 수 있다.
소화약제 HFC-23의 회수
먼저, 도 4의 동작 순서에 도시한 바와 같이, 2단 압축 냉동 시스템을 이용하여 열교환기(120) B의 증발온도를 예를 들어 설정값 -25℃ 이하의 온도로 유지시켜준다(단계 S110).
소화약제의 회수 및 저장을 위하여 저장 탱크(300)를 진공상태로 만든다. 시스템 내의 냉동 압축기(130)를 이용하여 저장 탱크(300) 내의 공기를 외부로 방출시켜 진공 상태를 유지시키며, 이 경우 스톱밸브 V1과 전자변 S1, S2을 열어준 후 냉동 압축기(130)를 기동하고 진공상태에 이르면 압력 콘트롤러의 설정값에 의하여 자동으로 운전이 정지된다.
액체 상태 HFC-23을 회수하기 위하여, 스톱밸브 V3, 전자변 S3, S4을 열어준 후, 실린더(200)의 밸브 V4을 열어준다. 압력차에 의하여 실린더(200) 내 액체 상태의 소화약제 HFC-23은 열교환기(120)를 거쳐 저장 탱크(300)로 회수된다(단계 S120).
열교환기(120)를 통과하는 액상의 HFC-23은 -20℃의 온도 및 1.5MPa 의 압력으로 저장 탱크(300)에 유입된다. 저장 탱크(300)의 온도 및 압력 상승을 방지하기 위하여 냉동 압축기(130)의 운전을 통하여 회수 저장된 HFC-23을 증발시켜 냉매로 사용하여 냉동 사이클을 운전하게 되면, 저장 탱크 내의 온도는 HFC-23의 증발을 통하여 온도 및 압력을 -20℃/1.4MPa 이하로 유지시킬 수 있다(단계 S130).
회수과정에서 분진 및 수분은 냉동 압축기(130) 흡입배관 앞쪽의 필터 드라이어(170)를 통하여 정제된다.
액상의 HFC-23 회수 후 잔여 기체 상태의 HFC-23은 냉동 압축기(130)의 흡입배관으로 유입되기 전 흡입압력조정밸브(SPR, 160)를 이용하여 흡입 압력을 조정함으로써 고압으로 인한 압축기(130)의 고장을 미연에 방지할 수 있다.
기상의 HFC-23은 일정한 압력으로 토출되어 열교환기(120)로 유입되도록 하며, 열교환기(120)로 유입된 기체 상태의 HFC-23은 응축되어 저장 탱크(300)로 회수된다(단계 S140). 회수가 완료되면 압력 설정에 의하여 냉동 시스템의 운전이 자동으로 멈춘다.
이와 같이 냉동 시스템을 이용하여 소화약제를 저온 및 저압으로 유지한 채 안정적으로 회수 저장함으로써 소화약제를 효과적으로 전량 회수하여 재활용하거나 폐기하는 것이 가능하다.
이상에서 바람직한 실시예를 통하여 본 발명을 예시적으로 설명하였으나, 본 발명은 이와 같은 특정 실시예에만 한정되는 것은 아니며 본 발명에서 제시한 기술적 사상, 구체적으로는 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있을 것이다.
본 발명은 소화약제 회수 시스템 및 방법에 관한 것으로서, 소화약제에 관련한 산업과 연계하여 각종 화학산업분야에 이용될 것이다.

Claims (15)

  1. 실린더에 저장되어 있는 소화약제를 유입 받아 실린더에 저장되어 있는 상태 보다 저온 및 저압으로 변환시키며, 열교환기와 압축기를 포함하는 냉동 시스템과,
    상기 냉동 시스템과 연결되며, 냉동 시스템으로부터 저온 저압의 소화약제를 회수하여 저장하는 저장 탱크와,
    상기 냉동 시스템의 온도 및 상기 저장 탱크의 온도와 압력을 감지하는 센서부, 및
    상기 센서부로부터 감지된 신호를 기반으로 상기 냉동 시스템의 동작을 제어하는 컨트롤 패널을 포함하는 소화약제 회수 시스템.
  2. 제1항에 있어서, 상기 냉동 시스템은 열교환기의 증발 온도가 -25℃ 이하로 설정되며, 상기 저장 탱크는 1.5MPa 이하의 압력을 유지하도록 설정되는 것을 특징으로 하는 소화약제 회수 시스템.
  3. 제1항에 있어서, 상기 냉동 시스템은 2단 압축 냉동 시스템인 것을 특징으로 하는 소화약제 회수 시스템.
  4. 제1항에 있어서, 상기 소화약제 회수 시스템은 냉동 시스템의 압축기에 소화약제가 유입되기 전에 압력을 조정하는 흡입압력조정밸브를 더 포함하는 소화약제 회수 시스템.
  5. 제1항에 있어서, 상기 소화약제 회수 시스템은 소화약제의 회수 과정에서 분진 및 수분을 정제하는 필터드라이어를 더 포함하는 소화약제 회수 시스템.
  6. 제1항에 있어서, 상기 열교환기와 저장 탱크 사이에 설치되며, 열교환기에서 응축된 소화약제를 한번 더 저온 저압으로 응축시키는 이중열교환기를 포함하는 소화약제 회수 시스템.
  7. 냉동시스템을 가동하여 열교환기의 증발 온도를 설정값 이하로 유지하고,
    소화약제의 회수 및 저장을 위하여 저장 탱크를 진공 상태로 유지하고,
    실린더에 저장된 액상의 소화약제를 압력차에 의하여 냉동 시스템의 열교환기로 유입시켜 실린더에 저장된 상태 보다 저온 및 저압 상태로 변환시키고,
    저온 저압의 소화약제를 저장 탱크로 회수하고,
    소화약제의 회수에 따라 저장 탱크의 압력이 기준치를 넘어서면 냉동 시스템의 동작을 중지하는 단계를 포함하는 소화약제 회수 방법.
  8. 제7항에 있어서, 액상의 소화약제 회수 후 실린더에 남아있는 기상의 잔여 소화약제를 냉동 시스템의 압축기를 운전하여 열교환기로 보내고, 열교환기로 유입된 기상의 소화약제를 액체 상태로 응축하여 저장 탱크로 회수하는 단계를 더 포함하는 소화약제 회수 방법.
  9. 제8항에 있어서, 상기 소화약제가 할론 가스인 경우 실린더에 포함되는 질소는 기상의 소화약제와 함께 열교환기로 유입된 후 대기중으로 방출시키는 것을 특징으로 하는 소화약제 회수 방법.
  10. 제8항에 있어서, 기상의 소화약제는 냉동 시스템의 압축기의 흡입 배관으로 유입되기 전 흡입압력조정밸브를 통하여 흡입압력이 조정되는 것을 특징으로 하는 소화약제 회수 방법.
  11. 제7항에 있어서, 상기 소화약제가 할론 가스인 경우 열교환기를 통과하는 액상의 할론 가스는 -20℃ 이하의 온도 및 0.5MPa 이하의 압력으로 변환되어 저장 탱크로 회수되는 소화약제 회수 방법.
  12. 제7항에 있어서, 소화약제가 회수되는 과정에서 상기 저장 탱크 내의 온도와 압력을 감지하여 압력과 온도가 설정값 이상이 되면 냉동 시스템을 작동시켜 저장 탱크 내의 압력과 온도를 낮추는 것을 특징으로 하는 소화약제 회수 방법.
  13. 제7항에 있어서, 상기 소화약제가 HFC-23인 경우 소화약제가 열교환기를 통과하여 1.5MPa 이하의 압력으로 변환되어 저장 탱크로 회수되는 것을 특징으로 하는 소화약제 회수 방법.
  14. 제13항에 있어서, 회수된 HFC-23을 증발시켜 냉매로 사용하여 냉동 사이클을 운전하여, 저장 탱크 내의 온도를 -20℃ 이하, 압력을 1.5MPa 이하로 유지하는 것을 특징으로 하는 소화약제 회수 방법.
  15. 제7항에 있어서, 상기 열교환기로부터 저온 저압으로 변환된 소화약제는 저장 탱크로 회수되기 전 이중열교환기에서 한번 더 응축 과정을 겪으며 저온 및 저압 상태로 저장 탱크에 회수되는 것을 특징으로 하는 소화약제 회수 방법.
PCT/KR2013/004826 2012-05-31 2013-05-31 소화약제 회수 시스템 및 방법 WO2013180520A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0058549 2012-05-31
KR1020120058549A KR101204006B1 (ko) 2012-05-31 2012-05-31 소화약제 회수 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2013180520A1 true WO2013180520A1 (ko) 2013-12-05

Family

ID=47565181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004826 WO2013180520A1 (ko) 2012-05-31 2013-05-31 소화약제 회수 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101204006B1 (ko)
WO (1) WO2013180520A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301589A (zh) * 2013-06-25 2013-09-18 北京丰荣航空科技有限公司 航空用灭火瓶内卤代烷灭火剂回收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000835A (ko) * 1992-06-19 1994-01-10 이관우 프레온 가스(Freon Gas : CFC; 염화불화탄소)의 회수 및 재생장치
JP2000274938A (ja) * 1999-03-23 2000-10-06 Toshiba Corp ガス回収装置
KR200286664Y1 (ko) * 2002-05-09 2002-08-21 주식회사 클린글로브 프레온 가스 회수 재생기
KR101095199B1 (ko) * 2009-08-14 2011-12-16 김상현 육불화황가스 회수 및 정제장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000835A (ko) * 1992-06-19 1994-01-10 이관우 프레온 가스(Freon Gas : CFC; 염화불화탄소)의 회수 및 재생장치
JP2000274938A (ja) * 1999-03-23 2000-10-06 Toshiba Corp ガス回収装置
KR200286664Y1 (ko) * 2002-05-09 2002-08-21 주식회사 클린글로브 프레온 가스 회수 재생기
KR101095199B1 (ko) * 2009-08-14 2011-12-16 김상현 육불화황가스 회수 및 정제장치

Also Published As

Publication number Publication date
KR101204006B1 (ko) 2012-11-23

Similar Documents

Publication Publication Date Title
US5283035A (en) Method for recovering a sterilizing gas
US20180216784A1 (en) Circulating inert-gas seal system based on gas-supply servo device and QHSE based storage and transportation method
KR101318555B1 (ko) 마취가스 재생 방법 및 장치
WO2020067654A1 (ko) 가연성 냉매를 이용하는 냉동시스템의 안전운전방법 및 안전운전장치
EP0885841A1 (en) System and method for collecting and refining SF6 gas
WO2013180520A1 (ko) 소화약제 회수 시스템 및 방법
WO1992022778A1 (en) System and method for recovering and purifying a halocarbon composition
US5749245A (en) Refrigerant separation system
KR101999394B1 (ko) 냉매 재생장치 및 이를 이용한 냉매 재생방법
JP2566338B2 (ja) Co▲下2▼液化装置
JP5669343B2 (ja) 冷凍サイクル装置
JP6067255B2 (ja) 冷媒回収装置および冷媒回収方法
US5582014A (en) Halon recovery system
CN212559442U (zh) 油气回收系统
JPH0611216A (ja) 冷媒の回収装置、および冷媒の回収方法
JP2000146372A (ja) 冷媒回収装置
CN112776563A (zh) 一种二氧化碳热泵与灭火集成式热管理系统及控制方法
KR102029258B1 (ko) 발포 공정에서 배출되는 발포 가스 회수 장치 및 방법
GB2231136A (en) Gas separation
CN104896875B (zh) 一种油汽回收装置及其自动保温控制方法
JPH02157573A (ja) 冷媒回収装置
JP2779729B2 (ja) ハロゲン化物消火薬剤の分離回収方法
CN212262432U (zh) 一种消防灭火剂多级分离回收系统
CN203668286U (zh) 单体回收装置
US11519647B2 (en) Cooling system using vacuum cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798004

Country of ref document: EP

Kind code of ref document: A1