WO2013179826A1 - パルス波形測定機能を有するレーザアニール装置 - Google Patents

パルス波形測定機能を有するレーザアニール装置 Download PDF

Info

Publication number
WO2013179826A1
WO2013179826A1 PCT/JP2013/062011 JP2013062011W WO2013179826A1 WO 2013179826 A1 WO2013179826 A1 WO 2013179826A1 JP 2013062011 W JP2013062011 W JP 2013062011W WO 2013179826 A1 WO2013179826 A1 WO 2013179826A1
Authority
WO
WIPO (PCT)
Prior art keywords
average
pulse
waveform information
laser annealing
waveform
Prior art date
Application number
PCT/JP2013/062011
Other languages
English (en)
French (fr)
Inventor
佑三郎 太田
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to KR1020147030496A priority Critical patent/KR101534454B1/ko
Publication of WO2013179826A1 publication Critical patent/WO2013179826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains

Definitions

  • the present invention relates to a laser annealing apparatus having a pulse waveform measuring function, and more specifically, a laser annealing apparatus having a pulse waveform measuring function capable of monitoring deterioration of pulse laser light corresponding to various laser oscillators and pulse waveforms. About.
  • a laser annealing apparatus that irradiates a surface of a substrate to be processed with a pulsed laser beam output from a gas excitation pulsed laser oscillator, and the deterioration of gas based on a ratio between a first peak value and a second peak value of the pulsed laser beam
  • a laser annealing apparatus for judging the above (for example, see Patent Document 1).
  • a pulse laser beam L profiler for measuring the peak value and area of the pulse laser beam is commercially available from Hamamatsu Photonics, for example.
  • Patent Document 1 a laser annealing apparatus is assumed in which a gas-excited pulsed laser oscillator outputs a pulsed laser beam and the waveform of the pulsed laser beam has a first peak value and a second peak value.
  • some laser annealing apparatuses use, for example, a semiconductor laser-excited solid-state laser oscillator, and others use a pulsed laser beam having a pulse waveform having no second peak value. Therefore, the object of the present invention is not limited to the gas excitation pulse laser oscillator and the pulse waveform having the first peak value and the second peak value, and the deterioration of the pulse laser beam is monitored corresponding to various laser oscillators and pulse waveforms.
  • An object of the present invention is to provide a laser annealing apparatus having a pulse waveform measurement function that can be performed.
  • the present invention relates to a laser annealing apparatus for irradiating the surface of a substrate (B) to be processed with a pulsed laser beam (L), receiving the pulsed laser beam (L) and receiving light intensity data (I).
  • a laser annealing apparatus (100) having the pulse waveform measurement function according to the first aspect average waveform information including at least item values of average peak values and average area values in a plurality of pulses is acquired. Since the pulse is targeted, the adverse effect of noise can be suppressed.
  • the average peak value and the average area value can be acquired by any laser oscillator or pulse waveform.
  • group waveform information including at least the average value, variation, maximum value, and minimum value of each item value in the plurality of average waveform information as the item value is acquired and output, for example, the operator can set each item value of the group waveform information.
  • the deterioration of the pulse laser beam (L) can be monitored.
  • the present invention comprises an evaluation means (3) for evaluating the group waveform information in the laser annealing apparatus (100) having a pulse waveform measurement function according to the first aspect, and the output means ( 10)
  • a laser annealing apparatus having a pulse waveform measurement function, wherein the evaluation result is output instead of the group waveform information, or both the group waveform information and the evaluation result are output. (100) is provided.
  • the group waveform information is evaluated and the result of the evaluation is output. Light degradation can be monitored.
  • the present invention provides a laser annealing apparatus (100) having a pulse waveform measurement function according to the second aspect, wherein the laser annealing process is interrupted when the result of the evaluation is an inappropriate pulse waveform.
  • a laser annealing apparatus (100) having a pulse waveform measuring function characterized by comprising means (3).
  • the control means (3) automatically interrupts the laser annealing process according to the evaluation result, thereby suppressing the occurrence of defective products. I can do it.
  • the present invention relates to an average half-value width and an average of 1 as items of the average waveform information in the laser annealing apparatus (100) having a pulse waveform measurement function according to any one of the first to third aspects.
  • the present invention provides a laser annealing apparatus (100) having a pulse waveform measurement function including at least one of / e 2 width and average rise time.
  • the laser annealing apparatus (100) having the pulse waveform measurement function according to the fourth aspect since the number of items of average waveform information increases, it is possible to more accurately monitor the deterioration of the pulse laser beam.
  • the laser annealing apparatus having the pulse waveform measuring function of the present invention
  • the laser annealing apparatus is not limited to the gas excitation pulse laser oscillator and the pulse waveform having the first peak value and the second peak value, and is compatible with various laser oscillators and pulse waveforms. The deterioration of the pulsed laser beam can be monitored.
  • FIG. 1 is a configuration explanatory view showing a laser annealing apparatus having a pulse waveform measurement function according to Example 1.
  • FIG. It is explanatory drawing which shows each item of average waveform information.
  • It is a flowchart which shows the pulse waveform measurement process in the laser annealing apparatus which has a pulse waveform measurement function based on Example 1.
  • FIG. It is an illustration figure which shows the display mode of the group waveform information and the result of evaluation.
  • FIG. 1 is a configuration explanatory diagram illustrating a laser annealing apparatus 100 having a pulse waveform measurement function according to the first embodiment.
  • the laser annealing apparatus 100 having the pulse waveform measurement function includes an XY stage 7 on which the silicon substrate B is placed and can move in the x direction and the y direction, a laser irradiation chamber 9 in which the silicon substrate B and the XY stage 7 can be accommodated, A pulse laser light source section 1 that is installed outside the laser irradiation chamber 9 and generates a pulse laser beam L, and introduces the pulse laser beam L from the outside to the inside of the laser irradiation chamber 9 and has a rectangular laser on the surface of the silicon substrate B.
  • An optical system 8 that forms an irradiation spot, a laser light receiving unit 2 that receives the pulsed laser light L that has passed through the half mirror 5 and outputs the received light intensity data I, and an average peak value in a plurality of pulses from the received light intensity data I And average area information that includes at least the average area value as item values and averages the item values in multiple average waveform information And the control unit 3 for acquiring the group waveform information including the variation and the maximum value and the minimum value at least as the item value, and an operation unit 10 for displaying the group waveform information.
  • the pulse laser light source unit 1 includes, for example, an excimer laser oscillator, a variable attenuator, and a homogenizer.
  • the laser light receiving unit 2 includes, for example, a biplanar photoelectric tube, a digitizer (sampling period is 0.5 ns, for example), and a storage device.
  • the control unit 10 is a computer, for example.
  • FIG. 2 is an explanatory diagram showing each item of the average waveform information.
  • the pulse width of one pulse waveform is, for example, 100 ns, and the pulse period is, for example, 1.66 ms.
  • P1 is a peak value, which is the maximum value that appears within a certain time (for example, 20 ns) from the rise of the pulse waveform.
  • P2 is the second peak value, which is the maximum value that appears after a certain time (for example, 50 ns) from the rise of the pulse waveform.
  • A is an area and is shown by hatching.
  • W1 is a half width.
  • W2 is 1 / e 2 width.
  • T is the rise time, which is the time from the rise of the pulse waveform to the maximum value appearing within a certain time (for example, 20 ns).
  • FIG. 3 is a flowchart showing a pulse waveform measurement process executed by the control unit 3.
  • step S1 the process waits until the operator inputs an instruction to start laser irradiation through the operation unit 10, and proceeds to step S2 when the instruction is input.
  • step S2 the pulse laser light source unit 1 and the XY stage 7 are driven, and irradiation of the pulse laser beam L onto the silicon substrate B is started.
  • step S3 the received light intensity data I is read and divided into waveform data for each pulse and stored. Assuming that the digitizer sampling period is 0.5 ns and the pulse width of one pulse waveform is 100 ns, the received light intensity data I is 200 and the waveform data for one pulse is constructed.
  • step S4 it is checked whether the operator has input a laser irradiation end instruction using the operation unit 10. If the instruction is not input, the process returns to step S3. If the instruction is input, the process proceeds to step S5. In step S5, the pulsed laser light source unit 1 is turned off, and the irradiation of the pulsed laser light L onto the silicon substrate B is terminated. Then, the process ends.
  • Steps S11 to S13 are executed in parallel with steps S1 to S4.
  • step S12 each item value of average waveform information is obtained from N pieces of waveform data and stored as average waveform information for one group. The items include at least an average peak value and an average area. In addition, an average half width, an average 1 / e 2 width, an average rise time, and the like may be included.
  • step S13 N pieces of waveform data for which average waveform information has been acquired are discarded.
  • Steps S21 to S26 are executed in parallel with steps S11 to S13.
  • each item value of the group waveform information is obtained from the average waveform information for the M groups.
  • the items include at least an average value, variation, maximum value, and minimum value of each item value of the average waveform information. Other statistics may be included.
  • step S23 the suitability of each item value of the group waveform information is evaluated. For example, a reference value for each item of the group waveform information is set, and if the item value is within ⁇ 10% of the reference value, the item value is evaluated as “appropriate”, and if it is out of the range, it is evaluated as “inappropriate”. .
  • step S24 the group waveform information and the evaluation result are output to the operation unit 10. For example, as shown in FIG. 4, each item value of the group waveform information is displayed on the display of the operation unit 10 in green / normal font if the evaluation is “appropriate”, and in red / diagonal font if the evaluation is “inappropriate”. indicate.
  • step S25 if the evaluation of all the item values is “proper”, the process proceeds to step S26, and if there is even one item whose evaluation is “inappropriate”, the process proceeds to step S27.
  • step S26 the average waveform information for the M groups for which group waveform information has been acquired is discarded after a predetermined storage period has elapsed. Thereby, a required storage capacity can be suppressed. Then, the process returns to step S21.
  • step S27 the pulse laser light source unit 1 is turned off, the irradiation of the pulse laser light L on the silicon substrate B is interrupted, and the operator is notified. Then, the process ends.
  • average waveform information including at least item values of average peak values and average area values in a plurality of pulses is acquired.
  • the value can be obtained by any laser oscillator or pulse waveform. Further, since a plurality of pulses are averaged, the adverse effect of noise can be suppressed. Then, since group waveform information including at least the average value, variation, maximum value, and minimum value of each item value in the plurality of average waveform information as the item value is acquired and output, for example, the operator can set each item value of the group waveform information. It is possible to monitor the deterioration of the pulse laser beam by watching the above.
  • the laser annealing apparatus having the pulse waveform measurement function of the present invention can be used for, for example, a process of forming an amorphous silicon semiconductor layer formed on a glass substrate into a polycrystalline silicon semiconductor layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)

Abstract

 パルスレーザ光(L)を受光し受光強度データ(I)を出力するレーザ受光部(2)と、受光強度データ(I)から複数個のパルスにおける平均ピーク値と平均面積値とを少なくとも項目値として含む平均波形情報を取得し、得られた複数の平均波形情報について各項目値の平均値とバラツキと最大値と最小値とを少なくとも項目値として含む群波形情報を取得する制御部(3)と、群波形情報を出力する操作部(10)とを具備する。ガス励起パルスレーザ発振器や第1ピーク値および第2ピーク値を持つパルス波形に限定されずに、パルスレーザ光の劣化を監視できる。

Description

パルス波形測定機能を有するレーザアニール装置
 本発明は、パルス波形測定機能を有するレーザアニール装置に関し、さらに詳しくは、種々のレーザ発振器やパルス波形に対応してパルスレーザ光の劣化を監視することが出来るパルス波形測定機能を有するレーザアニール装置に関する。
 従来、ガス励起パルスレーザ発振器が出力するパルスレーザ光を被処理基板の表面に照射するレーザアニール装置であって、パルスレーザ光の第1ピーク値および第2ピーク値の比を基にガスの劣化を判定するレーザアニール装置が知られている(例えば、特許文献1参照。)。
 他方、パルスレーザ光のピーク値や面積などを測定するパルスレーザ光Lプロファイラが例えば浜松ホトニクス株式会社から市販されている。
特開2011-238804号公報
 上記特許文献1では、ガス励起パルスレーザ発振器がパルスレーザ光を出力し且つそのパルスレーザ光の波形が第1ピーク値および第2ピーク値を持つようなレーザアニール装置が想定されている。
 しかし、レーザアニール装置には、例えば半導体レーザ励起固体レーザ発振器を用いるものや、第2ピーク値を持たないパルス波形のパルスレーザ光を使用するものもある。
 そこで、本発明の目的は、ガス励起パルスレーザ発振器や第1ピーク値および第2ピーク値を持つパルス波形に限定されず、種々のレーザ発振器やパルス波形に対応してパルスレーザ光の劣化を監視することが出来るパルス波形測定機能を有するレーザアニール装置を提供することにある。
 第1の観点では、本発明は、パルスレーザ光(L)を被処理基板(B)の表面に照射するレーザアニール装置において、前記パルスレーザ光(L)を受光しその受光強度データ(I)を出力する受光手段(2)と、前記受光強度データ(I)から複数個のパルスにおける平均ピーク値と平均面積値とを少なくとも項目値として含む平均波形情報を取得する平均波形情報取得手段(3)と、複数の前記平均波形情報における各項目値の平均値とバラツキと最大値と最小値とを少なくとも項目値として含む群波形情報を取得する群波形情報取得手段(3)と、前記群波形情報を出力する出力手段(10)とを具備したことを特徴とするパルス波形測定機能を有するレーザアニール装置(100)を提供する。
 上記第1の観点によるパルス波形測定機能を有するレーザアニール装置(100)では、複数個のパルスにおける平均ピーク値と平均面積値とを少なくとも項目値として含む平均波形情報を取得するが、複数個のパルスを対象とするため、ノイズの悪影響を抑制することが出来る。また、平均ピーク値と平均面積値は、どのようなレーザ発振器やパルス波形でも取得可能である。そして、複数の平均波形情報における各項目値の平均値とバラツキと最大値と最小値とを少なくとも項目値として含む群波形情報を取得し出力するので、例えば操作者が群波形情報の各項目値を見て、パルスレーザ光(L)の劣化を監視することが出来る。
 第2の観点では、本発明は、前記第1の観点によるパルス波形測定機能を有するレーザアニール装置(100)において、前記群波形情報を評価する評価手段(3)を具備し、前記出力手段(10)は、前記群波形情報に代えて前記評価の結果を出力するか、又は、前記群波形情報および前記評価の結果の両方を出力することを特徴とするパルス波形測定機能を有するレーザアニール装置(100)を提供する。
 上記第2の観点によるパルス波形測定機能を有するレーザアニール装置(100)では、群波形情報を評価し、その評価の結果を出力するので、例えば操作者がその評価の結果を見て、パルスレーザ光の劣化を監視することが出来る。
 第3の観点では、本発明は、前記第2の観点によるパルス波形測定機能を有するレーザアニール装置(100)において、前記評価の結果がパルス波形不適正であった時にレーザアニール処理を中断させる制御手段(3)を具備したことを特徴とするパルス波形測定機能を有するレーザアニール装置(100)を提供する。
 上記第3の観点によるパルス波形測定機能を有するレーザアニール装置(100)では、評価の結果に応じて、制御手段(3)がレーザアニール処理を自動的に中断させるので、不良品の発生を抑制することが出来る。
 第4の観点では、本発明は、前記第1から第3のいずれかの観点によるパルス波形測定機能を有するレーザアニール装置(100)において、前記平均波形情報の項目として、平均半値幅と平均1/e2幅と平均立上り時間のうちの少なくとも1つを含むことを特徴とするパルス波形測定機能を有するレーザアニール装置(100)を提供する。
 上記第4の観点によるパルス波形測定機能を有するレーザアニール装置(100)では、平均波形情報の項目が増えるため、より的確にパルスレーザ光の劣化を監視することが出来る。
 本発明のパルス波形測定機能を有するレーザアニール装置によれば、ガス励起パルスレーザ発振器や第1ピーク値および第2ピーク値を持つパルス波形に限定されず、種々のレーザ発振器やパルス波形に対応してパルスレーザ光の劣化を監視することが出来る。
実施例1に係るパルス波形測定機能を有するレーザアニール装置を示す構成説明図である。 平均波形情報の各項目を示す説明図である。 実施例1に係るパルス波形測定機能を有するレーザアニール装置におけるパルス波形測定処理を示すフロー図である。 群波形情報および評価の結果の表示態様を示す例示図である。
 以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
-実施例1-
 図1は、実施例1に係るパルス波形測定機能を有するレーザアニール装置100を示す構成説明図である。
 このパルス波形測定機能を有するレーザアニール装置100は、シリコン基板Bを載せてx方向およびy方向に移動しうるXYステージ7と、シリコン基板BおよびXYステージ7を収容しうるレーザ照射室9と、レーザ照射室9の外側に設置されパルスレーザ光Lを発生するパルスレーザ光源部1と、パルスレーザ光Lをレーザ照射室9の外側から内側に導入すると共にシリコン基板Bの表面に長方形状のレーザ照射スポットを形成する光学系8と、ハーフミラー5を透過したパルスレーザ光Lを受光しその受光強度データIを出力するレーザ受光部2と、受光強度データIから複数個のパルスにおける平均ピーク値と平均面積値とを少なくとも項目値として含む平均波形情報を取得すると共に複数の平均波形情報における各項目値の平均値とバラツキと最大値と最小値とを少なくとも項目値として含む群波形情報を取得する制御部3と、群波形情報を表示しうる操作部10とを具備している。
 パルスレーザ光源部1は、例えばエキシマレーザ発振器と可変アテネータとホモジナイザを含んでいる。
 レーザ受光部2は、例えばバイプラナ光電管とデジタイザ(サンプリング周期は例えば0.5ns)と記憶装置を含んでいる。
 制御部10は、例えばコンピュータである。
 図2は、平均波形情報の各項目を示す説明図である。なお、1個のパルス波形のパルス幅は例えば100nsであり、パルス周期は例えば1.66msである。
 P1はピーク値であり、パルス波形の立上りから一定時間(例えば20ns)の範囲内に出現する最大値である。
 P2は第2ピーク値であり、パルス波形の立上りから一定時間(例えば50ns)以後に出現する最大値である。但し、第2ピーク値P2が無いパルス波形では項目にならない。
 Aは面積であり、ハッチングにより図示している。
 W1は半値幅である。
 W2は1/e2幅である。
 Tは立上り時間であり、パルス波形の立上りから一定時間(例えば20ns)の範囲内に出現する最大値に至るまでの時間である。
 図3は、制御部3が実行するパルス波形測定処理を示すフロー図である。
 ステップS1では、操作者がレーザ照射開始の指示を操作部10で入力するまで待ち、指示が入力されたらステップS2へ進む。
 ステップS2では、パルスレーザ光源部1やXYステージ7を駆動し、シリコン基板Bへのパルスレーザ光Lの照射を開始する。
 ステップS3では、受光強度データIを読み込み、パルス1個毎の波形データに分けて記憶する。デジタイザのサンプリング周期を0.5nsとし、1個のパルス波形のパルス幅を100nsとすると、受光強度データIが200個でパルス1個分の波形データが構成される。
 ステップS4では、操作者がレーザ照射終了の指示を操作部10で入力したかチェックし、指示が入力されてないならステップS3に戻り、指示が入力されていたらステップS5へ進む。
 ステップS5では、パルスレーザ光源部1をオフし、シリコン基板Bへのパルスレーザ光Lの照射を終了する。そして、処理を終了する。
 ステップS11~S13は、ステップS1~S4と並行して実行される。
 ステップS11では、N(=2以上の自然数)個分の波形データが得られるまで待ち、N個分の波形データが得られたらステップS12へ進む。
 ステップS12では、N個分の波形データから平均波形情報の各項目値を求め、1群分の平均波形情報として記憶する。項目には、少なくとも平均ピーク値と平均面積とが含まれる。他に、平均半値幅、平均1/e2幅、平均立上り時間などを含めてもよい。
 ステップS13では、平均波形情報を取得済みのN個分の波形データを破棄する。例えばパルス1個分の波形データが受光強度データIが200個であり且つ1群分の波形データ数N=100とすると、N個分の波形データとして20000個の受光強度データIを破棄する。これにより、必要な記憶容量を抑制できる。
 そして、ステップS11に戻る。
 ステップS21~S26は、ステップS11~S13と並行して実行される。
 ステップS21では、M(=2以上の自然数)群分の平均波形情報が得られるまで待ち、M群分の平均波形情報が得られたらステップS22へ進む。
 ステップS22では、M群分の平均波形情報から群波形情報の各項目値を求める。項目には、平均波形情報の各項目値の少なくとも平均値とバラツキと最大値と最小値とが含まれる。他の統計値を含めてもよい。
 ステップS23では、群波形情報の各項目値の適否を評価する。例えば群波形情報の各項目の基準値を設定しておき、項目値が基準値の±10%の範囲内なら当該項目値を「適正」と評価し、範囲外なら「不適正」と評価する。
 ステップS24では、群波形情報および評価の結果を操作部10へ出力する。
 例えば図4に示すように、操作部10のディスプレイに、群波形情報の各項目値を、評価が「適正」なら緑色・普通字体で表示し、評価が「不適正」なら赤色・斜め字体で表示する。なお、パルス周期を1.66msとし、M=100とすると、16.6s毎に群波形情報および評価の結果が更新される。
 ステップS25では、全ての項目値の評価が「適正」であればステップS26に進み、評価が「不適正」の項目が1つでもあればステップS27に進む。
 ステップS26では、群波形情報を取得済みのM群分の平均波形情報のうちで所定の保存期間が経過したものを破棄する。これにより、必要な記憶容量を抑制できる。
 そして、ステップS21に戻る。
 ステップS27では、パルスレーザ光源部1をオフし、シリコン基板Bへのパルスレーザ光Lの照射を中断し、操作者に報知する。そして、処理を終了する。
 実施例1に係るパルス波形測定機能を有するレーザアニール装置100によれば、複数個のパルスにおける平均ピーク値と平均面積値とを少なくとも項目値として含む平均波形情報を取得するが、ピーク値と面積値は、どのようなレーザ発振器やパルス波形でも取得可能である。また、複数個のパルスを平均するため、ノイズの悪影響を抑制することが出来る。そして、複数の平均波形情報における各項目値の平均値とバラツキと最大値と最小値とを少なくとも項目値として含む群波形情報を取得し出力するので、例えば操作者が群波形情報の各項目値を見守ることにより、パルスレーザ光の劣化を監視することが出来る。
 本発明のパルス波形測定機能を有するレーザアニール装置は、例えばガラス基板上に形成した非晶質シリコン半導体層を多結晶シリコン半導体層化する処理に利用できる。
 1          パルスレーザ光源部
 2          レーザ受光部
 3          制御部
 7          XYステージ
 8          光学系
 9          レーザ照射室
 10         操作部
 100        パルス波形測定機能を有するレーザアニール装置
 B          シリコン基板

Claims (4)

  1.  パルスレーザ光(L)を被処理基板(B)の表面に照射するレーザアニール装置において、前記パルスレーザ光(L)を受光しその受光強度データ(I)を出力する受光手段(2)と、前記受光強度データ(I)から複数個のパルスにおける平均ピーク値と平均面積値とを少なくとも項目値として含む平均波形情報を取得する平均波形情報取得手段(3)と、複数の前記平均波形情報における各項目値の平均値とバラツキと最大値と最小値とを少なくとも項目値として含む群波形情報を取得する群波形情報取得手段(3)と、前記群波形情報を出力する出力手段(10)とを具備したことを特徴とするパルス波形測定機能を有するレーザアニール装置(100)。
  2.  請求項1に記載のパルス波形測定機能を有するレーザアニール装置(100)において、前記群波形情報を評価する評価手段(3)を具備し、前記出力手段(10)は、前記群波形情報に代えて前記評価の結果を出力するか、又は、前記群波形情報および前記評価の結果の両方を出力することを特徴とするパルス波形測定機能を有するレーザアニール装置(100)。
  3.  請求項2に記載のパルス波形測定機能を有するレーザアニール装置(100)において、前記評価の結果がパルス波形不適正であった時にレーザアニール処理を中断させる制御手段(3)を具備したことを特徴とするパルス波形測定機能を有するレーザアニール装置(100)。
  4.  請求項1から請求項3のいずれかに記載のパルス波形測定機能を有するレーザアニール装置(100)において、前記平均波形情報の項目として、平均半値幅と平均1/e2幅と平均立上り時間のうちの少なくとも1つを含むことを特徴とするパルス波形測定機能を有するレーザアニール装置(100)。
PCT/JP2013/062011 2012-05-28 2013-04-24 パルス波形測定機能を有するレーザアニール装置 WO2013179826A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147030496A KR101534454B1 (ko) 2012-05-28 2013-04-24 펄스 파형 측정 기능을 가지는 레이저 어닐링 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-120487 2012-05-28
JP2012120487A JP5829575B2 (ja) 2012-05-28 2012-05-28 パルス波形測定機能を有するレーザアニール装置

Publications (1)

Publication Number Publication Date
WO2013179826A1 true WO2013179826A1 (ja) 2013-12-05

Family

ID=49673031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062011 WO2013179826A1 (ja) 2012-05-28 2013-04-24 パルス波形測定機能を有するレーザアニール装置

Country Status (3)

Country Link
JP (1) JP5829575B2 (ja)
KR (1) KR101534454B1 (ja)
WO (1) WO2013179826A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741777A (zh) * 2013-12-27 2015-07-01 Ap系统股份有限公司 激光照射方法和激光照射装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (ja) * 1996-06-25 1998-01-16 Toshiba Corp パルスガスレーザ発振装置、レーザアニール装置、半導体装置の製造方法、及び半導体装置
WO2010087299A1 (ja) * 2009-02-02 2010-08-05 株式会社日本製鋼所 半導体膜のレーザアニール方法およびアニール装置
JP2011014685A (ja) * 2009-07-01 2011-01-20 Sumitomo Heavy Ind Ltd レーザ照射装置、及びレーザ照射方法
JP2011238804A (ja) * 2010-05-11 2011-11-24 Japan Steel Works Ltd:The レーザアニール処理装置、レーザアニール処理体の製造方法およびレーザアニール処理プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (ja) * 1996-06-25 1998-01-16 Toshiba Corp パルスガスレーザ発振装置、レーザアニール装置、半導体装置の製造方法、及び半導体装置
WO2010087299A1 (ja) * 2009-02-02 2010-08-05 株式会社日本製鋼所 半導体膜のレーザアニール方法およびアニール装置
JP2011014685A (ja) * 2009-07-01 2011-01-20 Sumitomo Heavy Ind Ltd レーザ照射装置、及びレーザ照射方法
JP2011238804A (ja) * 2010-05-11 2011-11-24 Japan Steel Works Ltd:The レーザアニール処理装置、レーザアニール処理体の製造方法およびレーザアニール処理プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741777A (zh) * 2013-12-27 2015-07-01 Ap系统股份有限公司 激光照射方法和激光照射装置
CN104741777B (zh) * 2013-12-27 2018-09-04 Ap系统股份有限公司 激光照射方法和激光照射装置

Also Published As

Publication number Publication date
JP2013247266A (ja) 2013-12-09
JP5829575B2 (ja) 2015-12-09
KR101534454B1 (ko) 2015-07-06
KR20140133614A (ko) 2014-11-19

Similar Documents

Publication Publication Date Title
EP3032660B1 (en) Light amplifying device and laser processing apparatus
US9318870B2 (en) Deep ultra-violet light sources for wafer and reticle inspection systems
US20150369742A1 (en) Measuring apparatus and measuring method
JP5978266B2 (ja) 時間計測装置、時間計測方法、発光寿命計測装置、及び発光寿命計測方法
JP5829575B2 (ja) パルス波形測定機能を有するレーザアニール装置
JP2020051858A (ja) 半導体デバイス検査方法及び半導体デバイス検査装置
JP6283507B2 (ja) 半導体デバイス計測装置及び半導体デバイス計測方法
US20160266466A1 (en) Waveguides, and systems and methods for forming and using such waveguides
US20140042332A1 (en) Defect Inspection Apparatus And Defect Inspection Method
JP2016102811A (ja) パルスレーザ装置
JP2008083118A (ja) パルス光出力装置およびパルス光出力方法
US10164402B2 (en) Stabilizing optical frequency combs
JP5551788B2 (ja) 物質を加工処理する機器およびその作動方法
JP5664913B2 (ja) ファイバレーザ装置および出力監視方法
JP2015012204A (ja) レーザアニール装置
JP5792612B2 (ja) 放射線強度計測装置
CN114755216A (zh) 基于双光频梳的相干反斯托克斯拉曼光谱测量系统及方法
JP2011064573A (ja) 光ファイバの障害点検出装置
GB2554998A (en) Selective amplifier
US20130039653A1 (en) Device and method for processing an optical signal
JP2018032824A (ja) 光パルス信号生成装置、レーザ加工装置及びバイオイメージング装置
JP2013217903A (ja) 試料分析装置及び試料分析プログラム
JP2009036706A (ja) 光学材料のレーザ損傷耐性推定方法及びレーザ損傷耐性推定装置
US8716685B1 (en) Systems and methods for use in generating pulsed terahertz radiation
JP2013004597A (ja) レーザ装置、該レーザ装置を備えた露光装置及び検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147030496

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797520

Country of ref document: EP

Kind code of ref document: A1