WO2013179748A1 - Electrode catheter - Google Patents

Electrode catheter Download PDF

Info

Publication number
WO2013179748A1
WO2013179748A1 PCT/JP2013/058877 JP2013058877W WO2013179748A1 WO 2013179748 A1 WO2013179748 A1 WO 2013179748A1 JP 2013058877 W JP2013058877 W JP 2013058877W WO 2013179748 A1 WO2013179748 A1 WO 2013179748A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
electrode
catheter
diameter
distal
Prior art date
Application number
PCT/JP2013/058877
Other languages
French (fr)
Japanese (ja)
Inventor
裕生子 田中
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to CN201380027075.2A priority Critical patent/CN104363847B/en
Priority to KR1020147031296A priority patent/KR101649062B1/en
Publication of WO2013179748A1 publication Critical patent/WO2013179748A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1417Ball
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Definitions

  • the present invention relates to an electrode catheter, and more particularly to an electrode catheter having an electrode attached to the tip of the catheter and a mechanism for irrigating a liquid such as physiological saline to the electrode.
  • the ablation catheter that is an electrode catheter
  • Those equipped with an irrigation mechanism are used.
  • the temperature sensor is excessive due to the saline flowing through the flow path.
  • the temperature of the tissue around the tip electrode cannot be accurately measured and is detected low, and as a result, the ablation temperature may be increased more than necessary.
  • the tip electrode capable of irrigating the liquid is extremely small (for example, When a plurality of openings are arranged on the circumference, the size fits inside the circumference), and efficient ablation treatment cannot be performed by an ablation catheter equipped with such a tip electrode.
  • the irrigation opening is formed on the outer peripheral surface of the catheter shaft, the liquid from the opening is ejected in a direction perpendicular to the shaft axis and cannot be ejected toward the tip electrode.
  • a first object of the present invention is to provide an electrode catheter capable of irrigating a liquid from the rear end side with respect to the surface of the tip electrode having a spherical portion.
  • the second object of the present invention is that an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode during cauterization, and is excellent in the cooling effect of the surface of the tip electrode and the thrombus formation suppressing effect on the surface, And it is providing the electrode catheter provided with the irrigation mechanism which can perform efficient cauterization treatment.
  • the third object of the present invention is to provide an irrigation mechanism that can sufficiently bring the liquid into contact with the tip hemisphere of the tip electrode having a spherical portion and that is particularly excellent in thrombus formation suppression effect on the tip hemisphere. It is to provide an electrode catheter.
  • a fourth object of the present invention is to provide an electrode catheter capable of irrigating a liquid also to the tip hemisphere of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
  • a fifth object of the present invention is to provide an electrode catheter equipped with an irrigation mechanism that can accurately measure the temperature of the tissue around the tip electrode and can appropriately control the ablation temperature. It is in.
  • the electrode catheter of the present invention includes a catheter shaft having a lumen serving as a liquid flow path, A tip electrode having a spherical portion connected to the tip side of the catheter shaft;
  • the catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode.
  • an electrode catheter In the inside of the reduced diameter portion of the distal end of the catheter shaft is an electrode catheter in which a plurality of inclined lumens are formed extending in the distal direction while inclining radially outward of the catheter shaft and reaching each of the irrigation openings.
  • the outer diameter of the catheter shaft is (D 1 ), the diameter of the spherical portion of the tip electrode is (D 2 ), and the axial direction from the rear end of the reduced diameter portion of the catheter shaft to the tip edge of the irrigation opening (L 1 ), the distance in the axial direction of the shaft from the tip edge of the irrigation opening to the maximum diameter portion of the tip electrode (L 2 ), and the inclination angle at the tip diameter-reduced portion of the catheter shaft ( ⁇ ),
  • the formula (I): 0.95D 2 ⁇ D 1 +2 (L 2 tan ⁇ L 1 tan ⁇ ) ⁇ 1.05 D 2 Is established, and
  • the inclination angle ( ⁇ ) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
  • a plurality of irrigation openings are arranged in the reduced diameter portion of the catheter shaft, so that the liquid ejected from each of the plurality of irrigation openings is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode having a spherical portion.
  • the liquid sprayed to the tip electrode from each of the plurality of irrigation openings flows in the tip direction along the surface of the tip electrode, so that the surface of the tip electrode is cooled compared to a conventional catheter having an irrigation mechanism.
  • the blood in the vicinity of the surface of the tip electrode is sufficiently agitated and diluted to exert an excellent thrombus formation suppressing effect.
  • the irrigation opening is formed in the catheter shaft, it is not necessary to form an opening in the tip electrode.
  • the electrode catheter of the present invention is remarkably superior in the thrombus formation suppressing effect on the tip electrode surface as compared with a conventionally known catheter having an irrigation mechanism.
  • a sufficient surface area can be secured, and an efficient ablation treatment can be performed as an ablation catheter.
  • a plurality of inclined lumens are formed inside the distal diameter reduced portion of the catheter shaft, extending in the distal direction while being inclined outward in the radial direction of the catheter shaft and reaching each of the irrigation openings. Since (I) is established and the inclination angle ( ⁇ ) of the inclined lumen is specified, the liquid ejected from the irrigation opening through the inclined lumen is allowed to have a maximum diameter of the tip electrode having a spherical portion. It is possible to reach the vicinity of the electrode surface in the portion, and further, this liquid can be sufficiently brought into contact with the tip hemisphere of the tip electrode (the tip hemisphere can be reliably irrigated).
  • the liquid ejected from the irrigation opening through the inclined lumen is allowed to flow outside the catheter shaft.
  • the tip hemisphere of the tip electrode having a spherical portion with a diameter equal to or larger than the diameter can be sufficiently brought into contact.
  • the “irrigation opening” may be formed across the distal diameter-reduced portion of the catheter shaft and the rear end portion of the distal electrode, and the distal edge of the irrigation opening in such a case is the rear end portion of the distal electrode. Will exist.
  • the inclination angle ( ⁇ ) is preferably 7.0 to 8.0 °, 9.4 to 9.9 °, or 10.5 to 12.0 °. catheter.
  • the inclination angle ( ⁇ ) is preferably 9.4 to 9.9 ° or 10.5 to 12.0 °.
  • the diameter (D 1 ) of the catheter shaft is 1.0 to 3.0 mm
  • the distance (L 1 ) is 1.0 to 3.0 mm
  • the distance (L 2 ) is It is preferable that the angle is 1.0 to 2.5 mm and the inclination angle ( ⁇ ) is 5.0 to 30.0 °.
  • the electrode catheter of the present invention includes a catheter shaft having a lumen serving as a liquid flow path, A tip electrode having a spherical portion connected to the tip side of the catheter shaft;
  • the catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode.
  • an electrode catheter In the inside of the reduced diameter portion of the distal end of the catheter shaft is an electrode catheter in which a plurality of inclined lumens are formed extending in the distal direction while inclining radially outward of the catheter shaft and reaching each of the irrigation openings.
  • the diameter of the spherical portion of the tip electrode is (D 2 ), the tip diameter-reduced portion at the tip edge of the irrigation opening or the outer diameter of the tip electrode is (D 3 ), and the tip from the tip edge of the irrigation opening to the tip
  • the distance in the axial direction of the shaft to the maximum diameter portion of the electrode is (L 2 ) and the inclination angle of the inclined lumen is ( ⁇ )
  • the inclination angle ( ⁇ ) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
  • the above formula (II) is established and the inclination angle ( ⁇ ) of the inclined lumen is specified, so that the injection is performed through the inclined lumen from the irrigation opening.
  • the liquid to be reached can reach the vicinity of the electrode surface at the maximum diameter portion of the tip electrode having a spherical portion, and the liquid can be sufficiently brought into contact with the tip hemisphere of the tip electrode (tip hemisphere).
  • the surface can be reliably irrigated).
  • a temperature sensor is attached to the tip side from the irrigation opening, specifically, a temperature sensor is attached to the inside of the tip electrode.
  • the electrode catheter having such a configuration, since the liquid flow path is not formed inside the tip electrode to which the temperature sensor is attached, the temperature sensor is not excessively cooled, and the periphery of the tip electrode Therefore, the temperature of the tissue can be accurately measured, and appropriate control of the ablation temperature can be performed.
  • the liquid can be irrigated from the rear end side with respect to the entire surface of the tip electrode having a spherical portion.
  • an abnormal temperature rise does not occur in a part of the tip electrode during cauterization, it is excellent in the effect of cooling the surface of the tip electrode and the effect of suppressing the formation of thrombus on the surface of the tip electrode, Can perform efficient cauterization treatment.
  • the liquid can be sufficiently brought into contact with the tip hemisphere of the tip electrode having a spherical portion. Therefore, the electrode catheter of the present invention has an effect of inhibiting thrombus formation on the tip hemisphere. Especially good.
  • FIG. 2 is a transverse sectional view (II-II sectional view of FIG. 1) of a catheter shaft constituting the ablation catheter shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG.
  • It is a longitudinal cross-sectional view which shows the inside of the front-end
  • FIGS. 1 to 4 is an ablation catheter used for treatment of arrhythmia in the heart.
  • the ablation catheter 100 of this embodiment includes a central lumen 13 through which a lead wire and the like are passed, and 10 sub-lumens (eight serving as a liquid flow path) arranged at equiangular intervals (36 ° intervals) around the central lumen 13.
  • a catheter shaft 10 having two lumens 12) serving as insertion passages for the lumen 11 and the pulling wires 31, 32, a distal electrode 20 having a spherical portion 21 connected to the distal end side of the catheter shaft 10, and a catheter A ring-shaped electrode 40 attached to the distal end portion of the shaft 10, a control handle 70 connected to the rear end side of the catheter shaft 10, a liquid injection tube 80, and a temperature sensor attached to the inside of the distal end electrode 20 ( Thermocouple) 90, and the catheter shaft 10 has a distal diameter-reduced portion 10 that is tapered toward the distal direction.
  • the rear diameter reduced portion 10A of the catheter shaft 10 has a rear end.
  • An electrode that communicates with each of the eight lumens 11 on the end side, and is formed with eight inclined lumens 111 extending in the distal direction while being inclined radially outward of the catheter shaft 10 to reach each of the irrigation openings 112.
  • the catheter is configured such that the outer diameter of the catheter shaft 10 is (D 1 ), the diameter of the spherical portion 21 of the distal electrode 20 is (D 2 ), and the irrigation opening 112 is formed from the rear end of the reduced diameter portion 10 A of the catheter shaft 10.
  • FIG. 3 and 4 show a longitudinal section cut along a plane including the central axes of the central lumen 13 and the two lumens 11 shown in FIG. Therefore, in FIG. 3 and FIG. 4, two lumens 11 out of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 111 out of “eight inclined lumens 111”, “ Only two irrigation openings 112 of the eight irrigation openings 112 "are shown.
  • liquid 1 is connected to the catheter shaft 10 through the inside of the control handle 70, and the liquid is supplied to the lumen 11 of the catheter shaft 10 through the injection tube 80.
  • liquid physiological saline can be exemplified.
  • the control handle 70 shown in FIG. 1 is connected to the rear end side of the catheter tube 10 and includes a rotating plate 75 for performing a tip deflection operation of the catheter.
  • the catheter shaft 10 constituting the ablation catheter 100 is provided with a central lumen 13 through which a conducting wire (not shown) connected to the tip electrode 20 and the ring electrode 40 is passed, and the central lumen.
  • Ten sub-lumens formed at equal intervals around the central lumen 13 have the same outer diameter.
  • Tensile wires 31 and 32 for performing a tip deflection operation of the catheter are inserted into two lumens 12 of the ten sub-lumens, respectively.
  • the eight lumens 11 through which the pulling wires 31 and 32 are not inserted constitute a liquid flow path.
  • the rear ends of the tension wires 31 and 32 are connected to the rotating plate 75 (see FIG. 1) of the control handle 70, and the distal ends of the tension wires 31 and 32 are, for example, the distal end portion of the catheter shaft 10.
  • the connection is fixed.
  • Reference numeral 15 denotes a rigid body embedded in the catheter shaft 10 in order to surely perform the deflection operation by the pulling wires 31 and 32.
  • the rigid body 15 is made of a metal bar spring such as a Ni—Ti alloy, and has different bending directions due to the rigid bodies 15 and 15 arranged in a direction perpendicular to the bending direction (the arrangement direction of the tension wires 31 and 32). The direction can be secured.
  • the catheter shaft 10 may be made of a material having the same characteristics along the axial direction, but is preferably formed integrally using materials having different rigidity (hardness) along the axial direction. Specifically, it is preferable that the constituent material on the proximal end side has relatively high rigidity, and the constituent material on the distal end side has relatively low rigidity.
  • the catheter shaft 10 is made of a synthetic resin such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon, or PEBAX (polyether block amide).
  • the proximal end side of the catheter shaft 10 may be a blade tube obtained by braiding a tube made of these synthetic resins with a stainless steel wire.
  • the outer diameter (D 1 ) of the catheter shaft 10 (the outer diameter of the portion other than the reduced diameter portion 10A) is preferably 1.0 to 3.0 mm, more preferably 1.3 to 3.0 mm, and particularly preferably. Is 1.6 to 2.7 mm.
  • the length of the catheter shaft 10 is preferably 600 to 1500 mm, and more preferably 900 to 1200 mm.
  • the catheter shaft 10 has a distal diameter-reducing portion 10A that is reduced in diameter toward the distal direction, and an inclined lumen 111 is formed inside the distal-diameter reduced portion 10A.
  • the inclined lumen 111 communicates with a lumen 11 (non-inclined lumen) that is a liquid flow path on the rear end side, and extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10, and has a reduced diameter portion 10 ⁇ / b> A. It is opened in the outer peripheral surface. This opening is the irrigation opening 112, and eight irrigation openings 112 are formed along the outer periphery of the tip reduced diameter portion 10A.
  • the rear end of the inclined lumen 111 (the tip of the lumen 11) may be located inside the shaft portion other than the tip reduced diameter portion 10A.
  • Each of the inclined lumens 111 extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10. Thereby, the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is ejected toward the distal end side in the axial direction of the catheter shaft 10 and outward in the radial direction. For this reason, it is possible to irrigate the surface of a tip electrode having a certain size (for example, a tip electrode having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft 10).
  • the distal electrode 20 constituting the ablation catheter 100 has a spherical portion 21, a neck portion 22, and a cylindrical portion 23. As shown in FIGS. 3 and 4, the distal electrode 20 is connected to the distal end side of the catheter shaft 10 by the cylindrical portion 23 being inserted and fixed inside the distal diameter reduced portion 10 ⁇ / b> A.
  • the diameter of the spherical portion 21 corresponding to the maximum diameter of the distal electrode 20 is (D 2 ), and the distal edge (opening edge) of the irrigation opening 112 from the rear end of the reduced diameter portion 10 A of the catheter shaft 10. (L 1 ), the distance in the shaft axial direction from the tip edge of the irrigation opening 112 to the maximum diameter portion of the tip electrode 20 (L 2 ).
  • D 2 D 1 +2 (L 2 ⁇ tan ⁇ L 1 ⁇ tan ⁇ ) is established.
  • the outer diameter (the diameter of a circle connecting each of the plurality of tip edges) of the tip reduced diameter portion 10A on the tip edge of the irrigation opening 112 can be represented by D 1 -2 ⁇ L 1 ⁇ tan ⁇ .
  • the liquid ejected in the distal direction from the distal edge of the irrigation opening 112 at the ejection angle equal to the inclination angle ( ⁇ ) of the inclined lumen 111 moves the shaft axis while moving the distance (L 2 ) in the shaft axis direction.
  • the distance L 2 ⁇ tan ⁇ is moved in a direction perpendicular to the direction (radial direction of the shaft).
  • an extrapolated line EX obtained by extrapolating (extending) an inner straight line that defines the inclined lumen 111 schematically shows a path of liquid ejected from the tip edge of the irrigation opening 112.
  • the distance in the axial direction of the shaft from the rear end of the reduced diameter portion 10A of the catheter shaft 10 to the distal end edge of the irrigation opening 112 (projection distance to the central axis of the catheter shaft 10) (L 1 )
  • the thickness is preferably 1.0 to 3.0 mm, more preferably 1.5 to 2.7 mm. If this distance (L 1 ) is too small, the above equation (1) cannot be satisfied or the inclination angle of the inclined lumen 111 is increased (12.5) in order to satisfy the above equation (1).
  • the electrode catheter of the present invention cannot be constructed. On the other hand, when the distance (L 1 ) is excessive, the distance of the inclined lumen 111 becomes too long, and the processing becomes difficult.
  • the ring-shaped electrode 40 cannot be provided on the inclined lumen 111, the distance between the ring-shaped electrode 40 and the tip electrode 20 becomes excessive, and it becomes difficult to design in accordance with a request to reduce the distance between these electrodes. Also occurs.
  • the inclination angle ( ⁇ ) at the distal diameter reduced portion 10A of the catheter shaft 10 is preferably 5.0 to 30.0 °, and more preferably 7.0 to 20.0 °.
  • the distance in the axial direction of the shaft from the distal end edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 (projection distance to the central axis of the catheter shaft 10) (L 2 ) is 1.0 to 2.5 mm.
  • the thickness is preferably 1.2 to 2.0 mm.
  • the inclination angle ( ⁇ ) of the inclined lumen 111 is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
  • the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 is established by the above formula (1) and the inclination angle ( ⁇ ) being 5 ° or more.
  • the required size for example, the ratio of the diameter of the spherical portion 21 to the outer diameter of the catheter shaft 10 (D 2 / D 1 ) is 0.7 or more).
  • this inclination angle is less than 5 °, the diameter of the spherical portion of the tip electrode becomes too small, and an efficient ablation treatment cannot be performed by an ablation catheter equipped with such a tip electrode.
  • the inclination angle ( ⁇ ) is 12.5 ° or less
  • the liquid ejected from the irrigation opening 112 toward the maximum diameter portion of the tip electrode 20 through the inclination lumen 111 is allowed to flow in the maximum diameter portion.
  • the vicinity of the electrode surface can be reliably reached.
  • the liquid that is ejected from the irrigation opening 112 through the inclined lumen 111 having an inclination angle ( ⁇ ) of 12.5 ° or less and flows along the shape of the tip electrode 20 is directed to the center of the tip electrode 20.
  • the maximum force due to the stable action of the force (the force caused by the flow velocity difference (pressure difference) between the liquid flowing in the vicinity of the electrode surface and the liquid flowing away from the electrode surface)
  • the liquid that has reached the vicinity of the electrode surface in the diameter portion can then form a flow that covers the tip hemisphere 21A, thereby sufficiently bringing the liquid into contact with the tip hemisphere 21A of the tip electrode.
  • the tip hemisphere 21A can be reliably irrigated).
  • an electrode catheter satisfying the above formula (1) and having an inclination angle ( ⁇ ) of the inclination lumen in the range of 5.0 to 12.5 ° is provided.
  • the liquid could not be brought into sufficient contact with the tip hemisphere only when the inclination angle ( ⁇ ) was 9.1 to 9.3 ° (Comparative Example 1 described later).
  • the force that tries to direct the liquid flow toward the center direction (inner side) of the tip electrode becomes unstable only in the range of the tilt angle ( ⁇ ) described above. This is presumed to be because it becomes impossible to form a liquid flow that covers the hemisphere.
  • the inclination angle ( ⁇ ) of the inclined lumen 111 is usually 5.0 to 9.0 ° or 9.4 to 12.5 °, preferably 7.0 to 8.0 °, It is set to 9.4 to 9.9 ° or 10.5 to 12.0 °, particularly preferably 9.4 to 9.9 ° or 10.5 to 12.0 °.
  • the diameter (D 2 ) of the spherical portion 21 corresponding to the maximum diameter of the tip electrode 20 is the outer diameter (D 1 ) of the catheter shaft 10, the distance (L 1 ), the distance (L 2 ), and the inclination angle ( ⁇ ), which is determined based on the above-described equation (1) by the inclination angle ( ⁇ ).
  • the diameter (D 2 ) of the spherical portion 21 determined in this way is preferably 1.0 to 3.0 mm, more preferably 1.5 to 2.5 mm, and particularly preferably 1.7 to 2 mm. .3 mm.
  • the ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 to the outer diameter (D 1 ) of the catheter shaft 10 is preferably 0.5 to 1.5, and more preferably. Is set to 0.7 to 1.0.
  • a temperature sensor 90 made of a thermocouple or the like for controlling the ablation temperature is mounted inside the tip electrode 20. Further, the conducting wire 95 connected to the temperature sensor 90 is drawn through the central lumen 13.
  • the temperature sensor 90 measures the temperature of the tissue around the tip electrode 20, and this measurement temperature is fed back to control the ablation temperature (adjustment of high-frequency energy). .
  • the eight irrigation openings 112 are arranged in the tapered distal diameter-reducing portion 10A, so that the liquid ejected from each of the irrigation openings 112 is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode 20.
  • the liquid ejected from the rear end side (each of the irrigation openings 112 arranged in the distal diameter-reduced portion 10A of the catheter shaft 10) with respect to the distal electrode 20 is the rear end portion (neck portion) of the distal electrode 20 22) from the tip portion (spherical portion 21) toward the tip direction along the surface of the tip electrode 20, and blood around the tip electrode 20 is sufficiently agitated / diluted so that an irrigation mechanism is provided.
  • the effect of cooling the surface of the tip electrode 20 is excellent, and an excellent effect of suppressing thrombus formation is also obtained by sufficiently stirring and diluting the blood near the surface of the tip electrode 20.
  • each of the irrigation openings 112 is formed inside the reduced diameter portion 10A of the catheter shaft 10. Therefore, the liquid ejected from each of the irrigation openings 112 is ejected toward the outer side in the distal direction (the distal side in the axial direction of the catheter shaft 10 and the outer side in the radial direction).
  • the liquid ejection angle coincides with the inclination angle ( ⁇ ) of the inclined lumen 111.
  • the liquid ejected from the irrigation opening 112 through the inclined lumen 111 can reach the vicinity of the electrode surface at the maximum diameter portion of the tip electrode 20, and this liquid can be sufficiently brought into contact with the tip hemispherical surface 21A of the tip electrode 20 (examples described later). 12-15).
  • the irrigation opening 112 is formed in the insulating catheter shaft 10 (tip reduced diameter portion 10A) and the conductive tip electrode 20 has no edge, when the ablation catheter 100 is used (at the time of cauterization). In this case, an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode 20, and the formation of thrombus formed by contact of blood with such high temperature part is suppressed.
  • the temperature sensor 90 is attached to the tip side of the irrigation opening 112, there is no need to form a liquid flow path inside the tip electrode 20 to which the temperature sensor 90 is attached. 90 is not excessively cooled, and the temperature of the tissue around the tip electrode 20 can be accurately measured.
  • the value of D 1 +2 (L 2 ⁇ tan ⁇ L 1 ⁇ tan ⁇ ) is in the range of 0.95D 2 to 1.05D 2 and the inclination angle ( ⁇ ) is 5.0 to 12.5 °. (However, except 9.1 to 9.3 °), the liquid ejected from the irrigation opening through the inclined lumen is sufficiently brought into contact with the tip hemisphere of the tip electrode ( It was confirmed that the tip hemisphere can be reliably irrigated).
  • the ablation catheter 105 shown in FIG. 5 includes a catheter shaft 50 having ten sub-lumens (eight lumens 51 serving as a liquid flow path and two lumens serving as an insertion passage for a tension wire).
  • the catheter shaft 50 has a distal diameter-reducing portion 50A that is tapered toward the distal direction, and the distal diameter-reduced portion 50A has eight irrigation for irrigating the surface of the distal electrode 20.
  • An opening for use 512 is disposed, and the inside of the reduced diameter portion 50A of the catheter shaft 50 communicates with each of eight lumens 51 (non-inclined lumens) on the rear end side, and is inclined outward in the radial direction of the catheter shaft 10.
  • eight inclined lumens 511 extending in the distal direction and reaching each of the irrigation openings 512 are formed.
  • FIG. 5 the same reference numerals are used for the same components as those of the ablation catheter 100 shown in FIG. Further, in FIG. 5, two lumens 51 of “eight lumens 51 serving as a liquid flow path”, two inclined lumens 511 of “eight inclined lumens 511”, “eight irrigation” Two of the irrigation openings 512 "are shown.
  • a liquid guide groove 26 that is continuous with each of the inclined lumens 511 and is inclined at the same angle as the inclination angle ( ⁇ ) of the inclined lumen 511 is provided. Is formed. Thereby, the irrigation opening 512 is formed across the distal diameter reduced portion 50A of the catheter shaft 50 and the neck portion 22 of the distal electrode 20, and the distal edge of the irrigation opening 512 is It exists in the neck part 22.
  • the spray angle of the liquid sprayed from the tip edge of the irrigation opening 512 located at the neck portion 22 of the tip electrode 20 matches the tilt angle ( ⁇ ) of the tilt lumen 511. Can be made.
  • the diameter of the spherical portion 21 of the tip electrode 20 is (D 2 )
  • the outer diameter of the tip electrode 20 (neck portion 22) at the tip edge of the irrigation opening 512 is (D 3 )
  • the tilt angle of the tilt lumen 511 is ( ⁇ )
  • the liquid ejected from the irrigation opening 512 through the inclined lumen 511 can reach the vicinity of the electrode surface at the maximum diameter portion of the tip electrode 20, and The liquid can be sufficiently brought into contact with the tip hemisphere 21A of the tip electrode 20 (the tip hemisphere 21A can be reliably irrigated).
  • D 3 +2 (L 2 ⁇ tan ⁇ ) is in the range of 0.95D 2 to 1.05D 2 and the inclination angle ( ⁇ ) is 5.0 to 12.5 ° (however, 9.1 to 9.3)
  • the liquid ejected from the irrigation opening through the inclined lumen should be in sufficient contact with the tip hemisphere of the tip electrode (to ensure that the tip hemisphere is irrigated). It was confirmed that
  • the number of inclined lumens formed inside the tip diameter-reduced portion is not limited to 8, and can be appropriately selected within a range of 4 to 12, for example.
  • an intermediate member an intermediate member having a means for joining and / or diverting liquid
  • the number of the inclined lumens formed on the inner surface may be different from the number of the lumens (lumens serving as a liquid flow path) formed inside the portion other than the tip diameter-reduced portion.
  • a material different from the constituent material of the shaft portion other than the tip portion for example, an aromatic polyether ketone such as polyether ether ketone (PEEK), a ceramic material, etc. ) May be adopted.
  • PEEK polyether ether ketone
  • the catheter shaft 10 has an outer diameter (D 1 ) of 2.4 mm, the distance (L 1 ) is 2.63 mm, and the inclination angle of the distal diameter reduced portion 10A.
  • ( ⁇ ) is 10.0 °
  • the distance (L 2 ) is 1.21 mm
  • the inclination angle ( ⁇ ) of the inclined lumen 111 is 5.0 °
  • the presence state of the physiological saline in the liquid (blood and / or physiological saline) in contact with the distal hemispherical surface 21A of the distal electrode 20 is analyzed using the analysis software “SolidWorks Flow Simulation” ( D ssault was simulated by using the Systems SolidWorks Corporation Co., Ltd.).
  • the ratio of the electrode surface in contact with the liquid having a physiological saline abundance ratio (saline content ratio in the liquid) of 40% or more (the ratio of the electrode surface in the total area of the tip hemisphere 21A) Is 95 area% or more, and according to the specifications of Example 1, it was confirmed that physiological saline could be sufficiently brought into contact with the tip hemisphere.
  • the setting parameters in the above analysis software are as follows.
  • Examples 2 to 15 and Comparative Examples 1 to 4 Ablation catheter similar to that of Example 1 except that the distance (L 1 ), the distance (L 2 ), the inclination angle ( ⁇ ) of the inclined lumen, and the diameter (D 2 ) of the spherical portion were changed according to Table 1 below.
  • the presence of physiological saline in the liquid in contact with the tip hemisphere of the tip electrode was simulated.
  • the results are also shown in Table 1 below.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

An electrode catheter which has: a catheter shaft (10); and a tip electrode (20) having a spherical portion (21); and is provided with an irrigation mechanism; wherein a plurality of irrigation openings (112) are arranged at a tip reduced-diameter section (10A) of the shaft (10), a plurality of inclined lumens (111) are formed in the interior of the tip reduced-diameter section (10A), and the formula: D2 ≒ D1 +2 (L2·tanα-L1·tanβ) applies, where (D1) is the outer diameter of the catheter shaft (10), (D2) is the diameter of the spherical portion (21), (L1) is the distance from the rear end of the tip reduced-diameter section (10A) to the tip edge of the irrigation openings (112), (L2) is the distance from the tip edge of the irrigation openings (112) to a maximum diameter section of the tip electrode (20), (β) is the angle of incline of the tip reduced-diameter section (10A), and (α) is the angle of incline of the inclined lumens (111), the angle of incline (α) being 5.0-12.5° (excluding 9.1-9.3°). According to this electrode catheter, a liquid can be adequately contacted with a tip hemisphere of the tip electrode having the spherical portion.

Description

電極カテーテルElectrode catheter
 本発明は、電極カテーテルに関し、更に詳しくは、カテーテルの先端に電極が装着されるとともに、この電極に生理食塩水などの液体を灌注する機構を備えた電極カテーテルに関する。 The present invention relates to an electrode catheter, and more particularly to an electrode catheter having an electrode attached to the tip of the catheter and a mechanism for irrigating a liquid such as physiological saline to the electrode.
 電極カテーテルであるアブレーションカテーテルにおいて、焼灼時に高温となった先端電極を冷却するとともに、先端電極の周辺の血液を攪拌・希釈して先端電極の表面に血栓が形成されることを防止するために、灌注機構を備えているものが使用されている。 In the ablation catheter that is an electrode catheter, in order to cool the tip electrode that has become hot during cauterization and to stir and dilute blood around the tip electrode to prevent thrombus formation on the tip electrode surface, Those equipped with an irrigation mechanism are used.
 灌注機構を備えた従来のカテーテルとしては、カテーテルシャフトを通って先端電極の内部に供給された生理食塩水を当該先端電極の表面に形成された複数の開口から噴射するタイプのものが紹介されている(例えば特許文献1および特許文献2参照)。 As a conventional catheter provided with an irrigation mechanism, a catheter that injects physiological saline supplied through the catheter shaft into the tip electrode from a plurality of openings formed on the surface of the tip electrode has been introduced. (For example, see Patent Document 1 and Patent Document 2).
特許第2562861号公報Japanese Patent No. 2566281 特開2006-239414号公報JP 2006-239414 A
 しかしながら、先端電極の表面に灌注用の開口が形成されてなる従来公知のカテーテルには、下記(1)~(4)のような問題がある。 However, conventionally known catheters in which an irrigation opening is formed on the surface of the tip electrode have the following problems (1) to (4).
(1)先端電極の表面に開口を設けると、開口縁などに不可避的にエッジが形成される。そして、このようなエッジが形成されている先端電極によって焼灼を行うと、エッジ部分の電流密度がきわめて高くなり、この部分で異常な温度上昇が起きて、血栓が急速に形成される虞がある。
(2)先端電極の表面に形成された開口から生理食塩水を噴射しても、先端電極の表面に対して十分な灌注を行うこと(表面を液体で覆うこと)ができないため、先端電極の表面を十分に冷却することができず、また、表面における血栓の形成を十分に防止・抑制することができない。特に、先端電極の軸に対して垂直方向に生理食塩水を噴射する上記特許文献1および特許文献2に記載のカテーテルにおいては、先端電極の表面に対して生理食塩水を十分に接触させることができないため、電極表面の冷却効果および血栓の形成抑制効果はきわめて低いものである。
(3)複数の開口を電極表面に形成することにより、先端電極の表面積を十分に確保することができなくなり、効率的な焼灼治療を行うことができない。
(4)アブレーションカテーテルを構成する先端電極の内部には、通常、焼灼温度の制御のために、熱電対などの温度センサが装着されている。然るに、先端電極の表面に灌注用の開口が形成されている(先端電極の内部に生理食塩水の流路が形成されている)場合には、流路を流れる生理食塩水により温度センサが過度に冷却される結果、先端電極の周囲にある組織の温度を正確に測定することができずに低く検出してしまい、この結果、焼灼温度を必要以上に上昇させてしまうことがある。
(1) When an opening is provided on the surface of the tip electrode, an edge is inevitably formed at the opening edge or the like. When cauterization is performed with the tip electrode having such an edge, the current density in the edge portion becomes extremely high, and an abnormal temperature rise occurs in this portion, so that a thrombus may be rapidly formed. .
(2) Even if physiological saline is injected from the opening formed on the surface of the tip electrode, sufficient irrigation cannot be performed on the surface of the tip electrode (the surface is covered with a liquid). The surface cannot be sufficiently cooled, and the formation of thrombus on the surface cannot be sufficiently prevented or suppressed. In particular, in the catheters described in Patent Document 1 and Patent Document 2 that inject physiological saline in a direction perpendicular to the axis of the tip electrode, the saline can be sufficiently brought into contact with the surface of the tip electrode. Therefore, the effect of cooling the electrode surface and the effect of suppressing thrombus formation are extremely low.
(3) By forming a plurality of openings on the electrode surface, it is impossible to ensure a sufficient surface area of the tip electrode, and efficient cauterization treatment cannot be performed.
(4) A temperature sensor such as a thermocouple is usually mounted inside the distal electrode constituting the ablation catheter in order to control the ablation temperature. However, when an opening for irrigation is formed on the surface of the tip electrode (a saline flow path is formed inside the tip electrode), the temperature sensor is excessive due to the saline flowing through the flow path. As a result of the cooling, the temperature of the tissue around the tip electrode cannot be accurately measured and is detected low, and as a result, the ablation temperature may be increased more than necessary.
 上記(1)~(4)のような問題を解決するために、先端電極の表面に対して外側(後端側)から液体を灌注することが考えられる。
 しかしながら、球状部分を有する先端電極の表面に対して、後端側から液体を灌注する
場合には、この先端電極の最大径部よりも先端側に位置する球状部分の電極表面(以下、「先端半球面」という。)に対して液体を十分に接触させることができない。
 また、先端電極の表面に液体を灌注するための開口を、カテーテルシャフトの先端面(シャフト軸に垂直な先端面)に形成する場合には、液体を灌注可能な先端電極はきわめて小さいもの(例えば、複数の開口が円周上に配置されている場合に、当該円周の内側に納まるサイズ)となり、そのような先端電極を備えたアブレーションカテーテルによっては、効率的な焼灼治療を行うことはできない。
 一方、灌注用開口をカテーテルシャフトの外周面に形成する場合には、開口からの液体はシャフト軸に垂直な方向に噴射され、先端電極に向けて噴射することはできない。
In order to solve the problems (1) to (4), it is conceivable to irrigate the liquid from the outside (rear end side) with respect to the surface of the tip electrode.
However, when liquid is irrigated from the rear end side with respect to the surface of the tip electrode having a spherical portion, the electrode surface of the spherical portion located on the tip side of the maximum diameter portion of the tip electrode (hereinafter referred to as “tip tip”). The liquid cannot be sufficiently brought into contact with the “hemisphere”.
In addition, when an opening for irrigating liquid on the surface of the tip electrode is formed in the tip surface of the catheter shaft (tip surface perpendicular to the shaft axis), the tip electrode capable of irrigating the liquid is extremely small (for example, When a plurality of openings are arranged on the circumference, the size fits inside the circumference), and efficient ablation treatment cannot be performed by an ablation catheter equipped with such a tip electrode. .
On the other hand, when the irrigation opening is formed on the outer peripheral surface of the catheter shaft, the liquid from the opening is ejected in a direction perpendicular to the shaft axis and cannot be ejected toward the tip electrode.
 本発明は以上のような事情に基いてなされたものである。
 本発明の第1の目的は、球状部分を有する先端電極の表面に対して後端側から液体を灌注することができる電極カテーテルを提供することにある。
 本発明の第2の目的は、焼灼時において先端電極の一部に異常な温度上昇(高温部)を生じることがなく、先端電極の表面の冷却効果および表面における血栓の形成抑制効果に優れ、しかも、効率的な焼灼治療を行うことができる、灌注機構を備えた電極カテーテルを提供することにある。
 本発明の第3の目的は、球状部分を有する先端電極の先端半球面に対して液体を十分に接触させることができ、先端半球面における血栓形成抑制効果に特に優れた、灌注機構を備えた電極カテーテルを提供することにある。
 本発明の第4の目的は、カテーテルシャフトの外径以上の直径の球状部分を有する先端電極の先端半球面に対しても液体を灌注することができる電極カテーテルを提供することにある。
 本発明の第5の目的は、先端電極の周囲にある組織の温度を正確に測定することができ、焼灼温度の制御を適正に行うことができる、灌注機構を備えた電極カテーテルを提供することにある。
The present invention has been made based on the above situation.
A first object of the present invention is to provide an electrode catheter capable of irrigating a liquid from the rear end side with respect to the surface of the tip electrode having a spherical portion.
The second object of the present invention is that an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode during cauterization, and is excellent in the cooling effect of the surface of the tip electrode and the thrombus formation suppressing effect on the surface, And it is providing the electrode catheter provided with the irrigation mechanism which can perform efficient cauterization treatment.
The third object of the present invention is to provide an irrigation mechanism that can sufficiently bring the liquid into contact with the tip hemisphere of the tip electrode having a spherical portion and that is particularly excellent in thrombus formation suppression effect on the tip hemisphere. It is to provide an electrode catheter.
A fourth object of the present invention is to provide an electrode catheter capable of irrigating a liquid also to the tip hemisphere of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
A fifth object of the present invention is to provide an electrode catheter equipped with an irrigation mechanism that can accurately measure the temperature of the tissue around the tip electrode and can appropriately control the ablation temperature. It is in.
(1)本発明の電極カテーテルは、液体の流路となるルーメンを有するカテーテルシャフトと、
 このカテーテルシャフトの先端側に接続された、球状部分を有する先端電極とを備えてなり、
 前記カテーテルシャフトは、先端方向に向かってテーパ状に縮径する先端縮径部を有し、この先端縮径部には、前記先端電極の表面に液体を灌注するための複数の灌注用開口が配置され、
 前記カテーテルシャフトの先端縮径部の内部には、当該カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて前記灌注用開口の各々に至る複数の傾斜ルーメンが形成されている電極カテーテルであって、
 前記カテーテルシャフトの外径を(D)、前記先端電極の球状部分の直径を(D)、前記カテーテルシャフトの先端縮径部の後端から前記灌注用開口の先端縁までのシャフト軸方向の距離を(L)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記カテーテルシャフトの先端縮径部における傾斜角度を(β)、前記傾斜ルーメンの傾斜角度を(α)とするとき、式(I):
  0.95D≦D+2(L・tanα-L・tanβ)≦1.05D
が成立し、かつ、
 前記傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることを特徴とする。
(1) The electrode catheter of the present invention includes a catheter shaft having a lumen serving as a liquid flow path,
A tip electrode having a spherical portion connected to the tip side of the catheter shaft;
The catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode. Arranged,
In the inside of the reduced diameter portion of the distal end of the catheter shaft is an electrode catheter in which a plurality of inclined lumens are formed extending in the distal direction while inclining radially outward of the catheter shaft and reaching each of the irrigation openings. And
The outer diameter of the catheter shaft is (D 1 ), the diameter of the spherical portion of the tip electrode is (D 2 ), and the axial direction from the rear end of the reduced diameter portion of the catheter shaft to the tip edge of the irrigation opening (L 1 ), the distance in the axial direction of the shaft from the tip edge of the irrigation opening to the maximum diameter portion of the tip electrode (L 2 ), and the inclination angle at the tip diameter-reduced portion of the catheter shaft (β ), When the inclination angle of the inclined lumen is (α), the formula (I):
0.95D 2 ≦ D 1 +2 (L 2 tan α−L 1 tan β) ≦ 1.05 D 2
Is established, and
The inclination angle (α) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
 このような構成の電極カテーテルによれば、カテーテルシャフトの先端縮径部に複数の灌注用開口が配置されていることにより、複数の灌注用開口の各々から噴射される液体を
先端方向に向かわせることができるので、球状部分を有する先端電極の表面に対して後端側から液体を噴射することができる。
 複数の灌注用開口の各々から先端電極に噴射された液体は、先端電極の表面に沿うようにして先端方向に流れるので、灌注機構を備えた従来のカテーテルと比較して先端電極の表面の冷却効果に優れるとともに、先端電極の表面付近の血液が十分に攪拌・希釈されることによっても優れた血栓形成抑制効果が奏される。
According to the electrode catheter having such a configuration, a plurality of irrigation openings are arranged in the reduced diameter portion of the catheter shaft, so that the liquid ejected from each of the plurality of irrigation openings is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode having a spherical portion.
The liquid sprayed to the tip electrode from each of the plurality of irrigation openings flows in the tip direction along the surface of the tip electrode, so that the surface of the tip electrode is cooled compared to a conventional catheter having an irrigation mechanism. In addition to being excellent in effect, the blood in the vicinity of the surface of the tip electrode is sufficiently agitated and diluted to exert an excellent thrombus formation suppressing effect.
 また、灌注用開口がカテーテルシャフトに形成されているので、先端電極には開口を形成する必要がない。これにより、先端電極には、開口の形成に伴うエッジが存在しないので、焼灼時において先端電極の一部に異常な温度上昇を生じることはなく、これにより、血栓の形成が抑制される。
 従って、本発明の電極カテーテルは、灌注機構を備えた従来公知のカテーテルと比較して、先端電極表面における血栓形成抑制効果が格段に優れている。
 また、先端電極には開口を形成する必要がないので、十分な表面積を確保することができ、アブレーションカテーテルとして効率的な焼灼治療を行うことができる。
Moreover, since the irrigation opening is formed in the catheter shaft, it is not necessary to form an opening in the tip electrode. As a result, since there is no edge associated with the formation of the opening in the tip electrode, an abnormal temperature rise does not occur in a part of the tip electrode during cauterization, thereby suppressing thrombus formation.
Therefore, the electrode catheter of the present invention is remarkably superior in the thrombus formation suppressing effect on the tip electrode surface as compared with a conventionally known catheter having an irrigation mechanism.
Moreover, since it is not necessary to form an opening in the tip electrode, a sufficient surface area can be secured, and an efficient ablation treatment can be performed as an ablation catheter.
 さらに、カテーテルシャフトの先端縮径部の内部には、カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて灌注用開口の各々に至る複数の傾斜ルーメンが形成されているとともに、上記の式(I)が成立し、かつ、傾斜ルーメンの傾斜角度(α)が特定されていることにより、この傾斜ルーメンを通って灌注用開口から噴射される液体を、球状部分を有する先端電極の最大径部における電極表面の近傍に到達させることができ、更に、この液体を、先端電極の先端半球面に対して十分に接触させること(先端半球面を確実に灌注すること)ができる。 Furthermore, a plurality of inclined lumens are formed inside the distal diameter reduced portion of the catheter shaft, extending in the distal direction while being inclined outward in the radial direction of the catheter shaft and reaching each of the irrigation openings. Since (I) is established and the inclination angle (α) of the inclined lumen is specified, the liquid ejected from the irrigation opening through the inclined lumen is allowed to have a maximum diameter of the tip electrode having a spherical portion. It is possible to reach the vicinity of the electrode surface in the portion, and further, this liquid can be sufficiently brought into contact with the tip hemisphere of the tip electrode (the tip hemisphere can be reliably irrigated).
 しかも、上記の式(I)が成立し、かつ、傾斜ルーメンの傾斜角度(α)が特定されていることにより、この傾斜ルーメンを通って灌注用開口から噴射される液体を、カテーテルシャフトの外径以上の直径の球状部分を有する先端電極の先端半球面に対しても十分に接触させることができる。 Moreover, since the above formula (I) is established and the inclination angle (α) of the inclined lumen is specified, the liquid ejected from the irrigation opening through the inclined lumen is allowed to flow outside the catheter shaft. The tip hemisphere of the tip electrode having a spherical portion with a diameter equal to or larger than the diameter can be sufficiently brought into contact.
 なお、「灌注用開口」は、カテーテルシャフトの先端縮径部および先端電極の後端部にまたがって形成されていてもよく、かかる場合における灌注用開口の先端縁は、先端電極の後端部に存在することとなる。 The “irrigation opening” may be formed across the distal diameter-reduced portion of the catheter shaft and the rear end portion of the distal electrode, and the distal edge of the irrigation opening in such a case is the rear end portion of the distal electrode. Will exist.
(2)本発明の電極カテーテルにおいて、前記傾斜角度(α)が7.0~8.0°、9.4~9.9°または10.5~12.0°であることが好ましい。
カテーテル。
(2) In the electrode catheter of the present invention, the inclination angle (α) is preferably 7.0 to 8.0 °, 9.4 to 9.9 °, or 10.5 to 12.0 °.
catheter.
(3)特に、前記傾斜角度(α)が9.4~9.9°または10.5~12.0°であることが好ましい。 (3) In particular, the inclination angle (α) is preferably 9.4 to 9.9 ° or 10.5 to 12.0 °.
(4)本発明の電極カテーテルにおいて、前記カテーテルシャフトの直径(D)が1.0~3.0mm、前記距離(L)が1.0~3.0mm、前記距離(L)が1.0~2.5mm、前記傾斜角度(β)が5.0~30.0°であることが好ましい。 (4) In the electrode catheter of the present invention, the diameter (D 1 ) of the catheter shaft is 1.0 to 3.0 mm, the distance (L 1 ) is 1.0 to 3.0 mm, and the distance (L 2 ) is It is preferable that the angle is 1.0 to 2.5 mm and the inclination angle (β) is 5.0 to 30.0 °.
(5)また、本発明の電極カテーテルは、液体の流路となるルーメンを有するカテーテルシャフトと、
 このカテーテルシャフトの先端側に接続された、球状部分を有する先端電極とを備えてなり、
 前記カテーテルシャフトは、先端方向に向かってテーパ状に縮径する先端縮径部を有し、この先端縮径部には、前記先端電極の表面に液体を灌注するための複数の灌注用開口が
配置され、
 前記カテーテルシャフトの先端縮径部の内部には、当該カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて前記灌注用開口の各々に至る複数の傾斜ルーメンが形成されている電極カテーテルであって、
 前記先端電極の球状部分の直径を(D)、前記灌注用開口の先端縁における前記先端縮径部または前記先端電極の外径を(D)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記傾斜ルーメンの傾斜角度を(α)とするとき、
    式(II):0.95D≦D+2(L・tanα)≦1.05D
が成立し、かつ、
 前記傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることを特徴とする。
(5) Moreover, the electrode catheter of the present invention includes a catheter shaft having a lumen serving as a liquid flow path,
A tip electrode having a spherical portion connected to the tip side of the catheter shaft;
The catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode. Arranged,
In the inside of the reduced diameter portion of the distal end of the catheter shaft is an electrode catheter in which a plurality of inclined lumens are formed extending in the distal direction while inclining radially outward of the catheter shaft and reaching each of the irrigation openings. And
The diameter of the spherical portion of the tip electrode is (D 2 ), the tip diameter-reduced portion at the tip edge of the irrigation opening or the outer diameter of the tip electrode is (D 3 ), and the tip from the tip edge of the irrigation opening to the tip When the distance in the axial direction of the shaft to the maximum diameter portion of the electrode is (L 2 ) and the inclination angle of the inclined lumen is (α),
Formula (II): 0.95D 2 ≦ D 3 +2 (L 2 · tan α) ≦ 1.05D 2
Is established, and
The inclination angle (α) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
 このような構成の電極カテーテルによれば、上記の式(II)が成立し、かつ、傾斜ルーメンの傾斜角度(α)が特定されていることにより、この傾斜ルーメンを通って灌注用開口から噴射される液体を、球状部分を有する先端電極の最大径部における電極表面の近傍に到達させることができ、更に、この液体を、先端電極の先端半球面に対して十分に接触させること(先端半球面を確実に灌注すること)ができる。 According to the electrode catheter having such a configuration, the above formula (II) is established and the inclination angle (α) of the inclined lumen is specified, so that the injection is performed through the inclined lumen from the irrigation opening. The liquid to be reached can reach the vicinity of the electrode surface at the maximum diameter portion of the tip electrode having a spherical portion, and the liquid can be sufficiently brought into contact with the tip hemisphere of the tip electrode (tip hemisphere). The surface can be reliably irrigated).
(6)本発明の電極カテーテルにおいて、前記灌注用開口より先端側に温度センサが装着されていること、具体的には、前記先端電極の内部に温度センサが装着されていることが好ましい。 (6) In the electrode catheter of the present invention, it is preferable that a temperature sensor is attached to the tip side from the irrigation opening, specifically, a temperature sensor is attached to the inside of the tip electrode.
 このような構成の電極カテーテルによれば、温度センサが装着される先端電極の内部に、液体の流路が形成されていないので、温度センサが過度に冷却されることはなく、先端電極の周囲における組織の温度を正確に測定することができ、焼灼温度についての適正な制御を行うことができる。 According to the electrode catheter having such a configuration, since the liquid flow path is not formed inside the tip electrode to which the temperature sensor is attached, the temperature sensor is not excessively cooled, and the periphery of the tip electrode Therefore, the temperature of the tissue can be accurately measured, and appropriate control of the ablation temperature can be performed.
 本発明の電極カテーテルによれば、球状部分を有する先端電極の表面全域に対して後端側から液体を灌注することができる。
 本発明の電極カテーテルによれば、焼灼時において先端電極の一部に異常な温度上昇を生じることがなく、先端電極の表面の冷却効果および先端電極の表面における血栓の形成抑制効果に優れ、しかも、効率的な焼灼治療を行うことができる。
 本発明の電極カテーテルによれば、球状部分を有する先端電極の先端半球面に対して、液体を十分に接触させることができ、従って、本発明の電極カテーテルは、先端半球面における血栓形成抑制効果に特に優れている。
 本発明の電極カテーテルによれば、カテーテルシャフトの外径以上の直径の球状部分を有する先端電極の先端半球面に対しても確実に液体を灌注することができる。
According to the electrode catheter of the present invention, the liquid can be irrigated from the rear end side with respect to the entire surface of the tip electrode having a spherical portion.
According to the electrode catheter of the present invention, an abnormal temperature rise does not occur in a part of the tip electrode during cauterization, it is excellent in the effect of cooling the surface of the tip electrode and the effect of suppressing the formation of thrombus on the surface of the tip electrode, Can perform efficient cauterization treatment.
According to the electrode catheter of the present invention, the liquid can be sufficiently brought into contact with the tip hemisphere of the tip electrode having a spherical portion. Therefore, the electrode catheter of the present invention has an effect of inhibiting thrombus formation on the tip hemisphere. Especially good.
According to the electrode catheter of the present invention, it is possible to reliably irrigate the tip hemisphere of the tip electrode having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft.
本発明の電極カテーテルの一実施形態に係るアブレーションカテーテルの正面図である。It is a front view of the ablation catheter which concerns on one Embodiment of the electrode catheter of this invention. 図1に示したアブレーションカテーテルを構成するカテーテルシャフトの横断面図(図1のII-II断面図)である。FIG. 2 is a transverse sectional view (II-II sectional view of FIG. 1) of a catheter shaft constituting the ablation catheter shown in FIG. 図1に示したアブレーションカテーテルの先端部分の内部を示す縦断面図(図2の III-III 断面図)である。FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG. 図1に示したアブレーションカテーテルの先端部分の内部を示す縦断面図(図2の III-III 断面図)である。FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG. 本発明の電極カテーテルの他の実施形態に係るアブレーションカテーテルの先端部分の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the front-end | tip part of the ablation catheter which concerns on other embodiment of the electrode catheter of this invention.
<第1実施形態>
 以下、本発明の電極カテーテルの一実施形態について図面を用いて説明する。
 図1乃至図4に示す電極カテーテルは、心臓における不整脈の治療に用いられるアブレーションカテーテルである。
<First Embodiment>
Hereinafter, an embodiment of an electrode catheter of the present invention will be described with reference to the drawings.
The electrode catheter shown in FIGS. 1 to 4 is an ablation catheter used for treatment of arrhythmia in the heart.
 この実施形態のアブレーションカテーテル100は、リード線などが引き通される中央ルーメン13およびその周りに等角度間隔(36°間隔)で配置された10本のサブルーメン(液体の流路となる8本のルーメン11、および引張ワイヤ31,32の挿通路となる2本のルーメン12)を有するカテーテルシャフト10と、カテーテルシャフト10の先端側に接続された、球状部分21を有する先端電極20と、カテーテルシャフト10の先端部分に装着されたリング状電極40と、カテーテルシャフト10の後端側に接続された制御ハンドル70と、液体の注入管80と、先端電極20の内部に装着された温度センサ(熱電対)90とを備えてなり、カテーテルシャフト10は、先端方向に向かってテーパ状に縮径する先端縮径部10Aを有し、この先端縮径部10Aには、先端電極20の表面に液体を灌注するための8つの灌注用開口112が配置され、カテーテルシャフト10の先端縮径部10Aの内部には、後端側において8本のルーメン11の各々に連通し、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口112の各々に至る8本の傾斜ルーメン111が形成されている電極カテーテルであって、カテーテルシャフト10の外径を(D)、先端電極20の球状部分21の直径を(D)、カテーテルシャフト10の先端縮径部10Aの後端から灌注用開口112の先端縁までのシャフト軸方向の距離を(L)、灌注用開口112の先端縁から先端電極20の最大径部までのシャフト軸方向の距離を(L)、カテーテルシャフト10の先端縮径部10Aにおける傾斜角度を(β)、傾斜ルーメン111の傾斜角度を(α)とするとき、式(1):D=D+2(L・tanα-L・tanβ)が成立し、かつ、傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)である。 The ablation catheter 100 of this embodiment includes a central lumen 13 through which a lead wire and the like are passed, and 10 sub-lumens (eight serving as a liquid flow path) arranged at equiangular intervals (36 ° intervals) around the central lumen 13. A catheter shaft 10 having two lumens 12) serving as insertion passages for the lumen 11 and the pulling wires 31, 32, a distal electrode 20 having a spherical portion 21 connected to the distal end side of the catheter shaft 10, and a catheter A ring-shaped electrode 40 attached to the distal end portion of the shaft 10, a control handle 70 connected to the rear end side of the catheter shaft 10, a liquid injection tube 80, and a temperature sensor attached to the inside of the distal end electrode 20 ( Thermocouple) 90, and the catheter shaft 10 has a distal diameter-reduced portion 10 that is tapered toward the distal direction. In this reduced diameter portion 10A, eight irrigation openings 112 for irrigating the liquid on the surface of the distal electrode 20 are arranged, and the rear diameter reduced portion 10A of the catheter shaft 10 has a rear end. An electrode that communicates with each of the eight lumens 11 on the end side, and is formed with eight inclined lumens 111 extending in the distal direction while being inclined radially outward of the catheter shaft 10 to reach each of the irrigation openings 112. The catheter is configured such that the outer diameter of the catheter shaft 10 is (D 1 ), the diameter of the spherical portion 21 of the distal electrode 20 is (D 2 ), and the irrigation opening 112 is formed from the rear end of the reduced diameter portion 10 A of the catheter shaft 10. The distance in the axial direction of the shaft to the distal edge (L 1 ), the distance in the axial direction from the distal edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 (L 2 ), and the catheter shuffling When the inclination angle at the tip diameter-reduced portion 10A of the rod 10 is (β) and the inclination angle of the inclination lumen 111 is (α), the equation (1): D 2 = D 1 +2 (L 2 · tan α−L 1 · tan β) is established, and the inclination angle (α) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
 ここに、図3および図4は、図2に示す中央ルーメン13および2本のルーメン11の中心軸を含む平面で切断した縦断面を示している。
 従って、図3および図4では、「液体の流路となる8本のルーメン11」のうちの2本のルーメン11、「8本の傾斜ルーメン111」のうちの2本の傾斜ルーメン111、「8つの灌注用開口112」のうちの2つ灌注用開口112のみが示されている。
3 and 4 show a longitudinal section cut along a plane including the central axes of the central lumen 13 and the two lumens 11 shown in FIG.
Therefore, in FIG. 3 and FIG. 4, two lumens 11 out of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 111 out of “eight inclined lumens 111”, “ Only two irrigation openings 112 of the eight irrigation openings 112 "are shown.
 図1に示した注入管80は、制御ハンドル70の内部を通ってカテーテルシャフト10に接続されており、この注入管80を通って、カテーテルシャフト10のルーメン11に液体が供給される。ここに、「液体」としては、生理食塩水を例示することができる。 1 is connected to the catheter shaft 10 through the inside of the control handle 70, and the liquid is supplied to the lumen 11 of the catheter shaft 10 through the injection tube 80. Here, as the “liquid”, physiological saline can be exemplified.
 図1に示した制御ハンドル70は、カテーテルチューブ10の後端側に接続されており、カテーテルの先端偏向操作を行うための回転板75を備えている。 The control handle 70 shown in FIG. 1 is connected to the rear end side of the catheter tube 10 and includes a rotating plate 75 for performing a tip deflection operation of the catheter.
 図2に示すように、アブレーションカテーテル100を構成するカテーテルシャフト10には、先端電極20やリング状電極40に接続された導線等(図示省略)が引き通される中央ルーメン13と、この中央ルーメン13の周りに等角度(36°=360°/10)の間隔で配置された10本のサブルーメンが形成されている。 As shown in FIG. 2, the catheter shaft 10 constituting the ablation catheter 100 is provided with a central lumen 13 through which a conducting wire (not shown) connected to the tip electrode 20 and the ring electrode 40 is passed, and the central lumen. Ten sub-lumens arranged at equiangular intervals (36 ° = 360 ° / 10) around 13 are formed.
 中央ルーメン13の周りに等間隔で形成された10本のサブルーメンは、互いに同一の外径を有している。10本のサブルーメンのうちの2本のルーメン12には、カテーテルの先端偏向操作を行うための引張ワイヤ31,32がそれぞれ挿通されている。
 そして、引張ワイヤ31,32が挿通されていない8本のルーメン11によって液体の流路が構成されている。
Ten sub-lumens formed at equal intervals around the central lumen 13 have the same outer diameter. Tensile wires 31 and 32 for performing a tip deflection operation of the catheter are inserted into two lumens 12 of the ten sub-lumens, respectively.
The eight lumens 11 through which the pulling wires 31 and 32 are not inserted constitute a liquid flow path.
 図2に示す引張ワイヤ31,32は、それぞれの後端が、制御ハンドル70の回転板75(図1参照)に連結され、引張ワイヤ31,32の先端は、例えば、カテーテルシャフト10の先端部に接続固定されている。
 これにより、例えば、図1に示すA1方向に回転板75を回転させると、引張ワイヤ31が引っ張られ、アブレーションカテーテル100の先端部分が矢印A方向に偏向動作し、図1に示すB1方向に回転板75を回転させると、引張ワイヤ32が引っ張られ、アブレーションカテーテル100の先端部分が矢印B方向に偏向動作する。
2, the rear ends of the tension wires 31 and 32 are connected to the rotating plate 75 (see FIG. 1) of the control handle 70, and the distal ends of the tension wires 31 and 32 are, for example, the distal end portion of the catheter shaft 10. The connection is fixed.
Thereby, for example, when the rotating plate 75 is rotated in the A1 direction shown in FIG. 1, the pulling wire 31 is pulled, and the distal end portion of the ablation catheter 100 is deflected in the arrow A direction and rotated in the B1 direction shown in FIG. When the plate 75 is rotated, the pulling wire 32 is pulled, and the distal end portion of the ablation catheter 100 is deflected in the arrow B direction.
 15は、引張ワイヤ31,32による偏向操作を確実に行わせるためにカテーテルシャフト10内に埋め込まれた剛性体である。
 剛性体15は、Ni-Ti合金などの金属製の棒ばねからなり、曲げ方向(引張ワイヤ31,32の配列方向)に対して垂直方向に配列された剛性体15,15により曲げ方向の異方性を担保することができる。
Reference numeral 15 denotes a rigid body embedded in the catheter shaft 10 in order to surely perform the deflection operation by the pulling wires 31 and 32.
The rigid body 15 is made of a metal bar spring such as a Ni—Ti alloy, and has different bending directions due to the rigid bodies 15 and 15 arranged in a direction perpendicular to the bending direction (the arrangement direction of the tension wires 31 and 32). The direction can be secured.
 カテーテルシャフト10は、軸方向に沿って同じ特性の材料で構成してもよいが、軸方向に沿って剛性(硬度)の異なる材料を用いて一体的に形成することが好ましい。具体的には、近位端側の構成材料が相対的に高い剛性を有し、遠位端側の構成材料が相対的に低い剛性を有するものであることが好ましい。 The catheter shaft 10 may be made of a material having the same characteristics along the axial direction, but is preferably formed integrally using materials having different rigidity (hardness) along the axial direction. Specifically, it is preferable that the constituent material on the proximal end side has relatively high rigidity, and the constituent material on the distal end side has relatively low rigidity.
 カテーテルシャフト10は、例えばポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン、ナイロン、PEBAX(ポリエーテルブロックアミド)などの合成樹脂で構成される。また、カテーテルシャフト10の近位端側は、これらの合成樹脂からなるチューブをステンレス素線で編組したブレードチューブであってもよい。 The catheter shaft 10 is made of a synthetic resin such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon, or PEBAX (polyether block amide). The proximal end side of the catheter shaft 10 may be a blade tube obtained by braiding a tube made of these synthetic resins with a stainless steel wire.
 カテーテルシャフト10の外径(D)(先端縮径部10A以外の部分の外径)は1.0~3.0mmであることが好ましく、更に好ましくは1.3~3.0mm、特に好ましくは1.6~2.7mmとされる。
 カテーテルシャフト10の長さは600~1500mmであることが好ましく、更に好ましくは900~1200mmとされる。
The outer diameter (D 1 ) of the catheter shaft 10 (the outer diameter of the portion other than the reduced diameter portion 10A) is preferably 1.0 to 3.0 mm, more preferably 1.3 to 3.0 mm, and particularly preferably. Is 1.6 to 2.7 mm.
The length of the catheter shaft 10 is preferably 600 to 1500 mm, and more preferably 900 to 1200 mm.
 図3および図4に示すように、カテーテルシャフト10は、先端方向に向かって縮径する先端縮径部10Aを有しており、この先端縮径部10Aの内部には傾斜ルーメン111が形成されている。
 傾斜ルーメン111は、その後端側において液体の流路であるルーメン11(非傾斜ルーメン)と連通しているとともに、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延び、先端縮径部10Aの外周面において開口している。この開口が灌注用開口112であり、先端縮径部10Aの外周に沿って8つの灌注用開口112が形成されている。
 なお、傾斜ルーメン111の後端(ルーメン11の先端)は、先端縮径部10A以外のシャフト部分の内部に位置していてもよい。
As shown in FIGS. 3 and 4, the catheter shaft 10 has a distal diameter-reducing portion 10A that is reduced in diameter toward the distal direction, and an inclined lumen 111 is formed inside the distal-diameter reduced portion 10A. ing.
The inclined lumen 111 communicates with a lumen 11 (non-inclined lumen) that is a liquid flow path on the rear end side, and extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10, and has a reduced diameter portion 10 </ b> A. It is opened in the outer peripheral surface. This opening is the irrigation opening 112, and eight irrigation openings 112 are formed along the outer periphery of the tip reduced diameter portion 10A.
The rear end of the inclined lumen 111 (the tip of the lumen 11) may be located inside the shaft portion other than the tip reduced diameter portion 10A.
 傾斜ルーメン111の各々は、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びている。これにより、傾斜ルーメン111を通って灌注用開口112から噴射される液体は、カテーテルシャフト10の軸方向における先端側で、かつ半径方向における外側に向けて噴射される。このため、ある程度サイズの大きな先端電極(例えば、カテーテルシャフト10の外径以上の直径の球状部分を有する先端電極)の表面に対しても灌注することが可能になる。 Each of the inclined lumens 111 extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10. Thereby, the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is ejected toward the distal end side in the axial direction of the catheter shaft 10 and outward in the radial direction. For this reason, it is possible to irrigate the surface of a tip electrode having a certain size (for example, a tip electrode having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft 10).
 アブレーションカテーテル100を構成する先端電極20は、球状部分21と、頸部22と、円筒状部分23とを有する。
 図3および図4に示すように、先端電極20は、その円筒状部分23が、先端縮径部10Aの内部に挿入固着されることにより、カテーテルシャフト10の先端側に接続される。
The distal electrode 20 constituting the ablation catheter 100 has a spherical portion 21, a neck portion 22, and a cylindrical portion 23.
As shown in FIGS. 3 and 4, the distal electrode 20 is connected to the distal end side of the catheter shaft 10 by the cylindrical portion 23 being inserted and fixed inside the distal diameter reduced portion 10 </ b> A.
 このアブレーションカテーテル100において、先端電極20の最大径に相当する球状部分21の直径を(D)、カテーテルシャフト10の先端縮径部10Aの後端から、灌注用開口112の先端縁(開口縁のうち、最も先端側にある部分)までのシャフト軸方向の距離を(L)、灌注用開口112の先端縁から先端電極20の最大径部までのシャフト軸方向の距離を(L)、カテーテルシャフト10の先端縮径部10Aにおける傾斜角度を(β)、傾斜ルーメン111の傾斜角度を(α)とするとき、
 式(1):D=D+2(L・tanα-L・tanβ)が成立する。
In this ablation catheter 100, the diameter of the spherical portion 21 corresponding to the maximum diameter of the distal electrode 20 is (D 2 ), and the distal edge (opening edge) of the irrigation opening 112 from the rear end of the reduced diameter portion 10 A of the catheter shaft 10. (L 1 ), the distance in the shaft axial direction from the tip edge of the irrigation opening 112 to the maximum diameter portion of the tip electrode 20 (L 2 ). When the inclination angle of the distal diameter reducing portion 10A of the catheter shaft 10 is (β) and the inclination angle of the inclined lumen 111 is (α),
Formula (1): D 2 = D 1 +2 (L 2 · tan α−L 1 · tan β) is established.
 ここに、灌注用開口112の先端縁上における先端縮径部10Aの外径(複数の先端縁の各々を結ぶ円の直径)は、D-2・L・tanβで表すことができる。
 一方、傾斜ルーメン111の傾斜角度(α)と等しい噴射角度で、灌注用開口112の先端縁から先端方向に噴射された液体は、シャフト軸方向に距離(L)移動する間に、シャフト軸方向とは垂直な方向(シャフトの半径方向)に、L・tanαの距離を移動する。
Here, the outer diameter (the diameter of a circle connecting each of the plurality of tip edges) of the tip reduced diameter portion 10A on the tip edge of the irrigation opening 112 can be represented by D 1 -2 · L 1 · tan β.
On the other hand, the liquid ejected in the distal direction from the distal edge of the irrigation opening 112 at the ejection angle equal to the inclination angle (α) of the inclined lumen 111 moves the shaft axis while moving the distance (L 2 ) in the shaft axis direction. The distance L 2 · tan α is moved in a direction perpendicular to the direction (radial direction of the shaft).
 これにより、灌注用開口112の先端縁から噴射された液体が、シャフト軸方向に距離(L)移動したときに、当該液体が到達する位置を結ぶ仮想円の直径はD-2・L・tanβ+2・L・tanα=D+2(L・tanα-L・tanβ)となる。 As a result, when the liquid ejected from the leading edge of the irrigation opening 112 moves a distance (L 2 ) in the shaft axial direction, the diameter of the imaginary circle connecting the positions where the liquid reaches is D 1 -2 · L 1 · tan β + 2 · L 2 · tan α = D 1 +2 (L 2 · tan α−L 1 · tan β).
 従って、上記の式(1)が成立するアブレーションカテーテル100、すなわち、先端電極20の最大径に相当する球状部分21の直径(D)と、液体が到達する位置を結ぶ仮想円の直径〔D+2(L・tanα-L・tanβ)〕とが常に一致するアブレーションカテーテル100によれば、灌注用開口112の先端縁から噴射された液体を、先端電極20の最大径部における電極表面の近傍に到達させることができる。
 図4において、傾斜ルーメン111を区画する内側の直線を外挿(延長)した外挿線EXが、灌注用開口112の先端縁から噴射される液体の行路を模式的に示している。
Therefore, the diameter (D 2 ) of the spherical portion 21 corresponding to the maximum diameter of the tip electrode 20 and the diameter of the virtual circle [D 1 +2 (L 2 · tan α−L 1 · tan β)] always matches with the ablation catheter 100, the liquid ejected from the distal edge of the irrigation opening 112 is transferred to the electrode surface at the maximum diameter portion of the distal electrode 20. Can be reached.
In FIG. 4, an extrapolated line EX obtained by extrapolating (extending) an inner straight line that defines the inclined lumen 111 schematically shows a path of liquid ejected from the tip edge of the irrigation opening 112.
 アブレーションカテーテル100において、カテーテルシャフト10の先端縮径部10Aの後端から灌注用開口112の先端縁までのシャフト軸方向の距離(カテーテルシャフト10の中心軸への投影距離)(L)は、1.0~3.0mmであることが好ましく、更に好ましくは1.5~2.7mmとされる。
 この距離(L)が過小である場合には、上記の式(1)を満足できなくなるか、上記の式(1)を満足させるために、傾斜ルーメン111の傾斜角度を大きく(12.5°を超えて)しなければならず、本発明の電極カテーテルを構成することができない。
 他方、この距離(L)が過大である場合には、傾斜ルーメン111の距離が長くなり過ぎて、加工が困難となる。また、リング状電極40は傾斜ルーメン111の上に設けることができないため、リング状電極40と先端電極20との間隔が過大となり、これらの電極間隔を小さくする要請に従う設計が困難となるという問題も生じる。
In the ablation catheter 100, the distance in the axial direction of the shaft from the rear end of the reduced diameter portion 10A of the catheter shaft 10 to the distal end edge of the irrigation opening 112 (projection distance to the central axis of the catheter shaft 10) (L 1 ) The thickness is preferably 1.0 to 3.0 mm, more preferably 1.5 to 2.7 mm.
If this distance (L 1 ) is too small, the above equation (1) cannot be satisfied or the inclination angle of the inclined lumen 111 is increased (12.5) in order to satisfy the above equation (1). The electrode catheter of the present invention cannot be constructed.
On the other hand, when the distance (L 1 ) is excessive, the distance of the inclined lumen 111 becomes too long, and the processing becomes difficult. Further, since the ring-shaped electrode 40 cannot be provided on the inclined lumen 111, the distance between the ring-shaped electrode 40 and the tip electrode 20 becomes excessive, and it becomes difficult to design in accordance with a request to reduce the distance between these electrodes. Also occurs.
 カテーテルシャフト10の先端縮径部10Aにおける傾斜角度(β)は5.0~30.0°であることが好ましく、更に好ましくは7.0~20.0°とされる。 The inclination angle (β) at the distal diameter reduced portion 10A of the catheter shaft 10 is preferably 5.0 to 30.0 °, and more preferably 7.0 to 20.0 °.
 この傾斜角度(β)が過小である場合には、傾斜ルーメン111の傾斜角度を得るため
に、距離(L)を過大に設計する必要が生じるため、上記と同様の問題を招く。
 他方、この傾斜角度(β)が過大である場合には、傾斜ルーメン111の距離、特に、灌注用開口112の後端縁までの距離(図4において、傾斜ルーメン111を区画する外側の直線距離)が小さくなり、噴射される液体を先端方向に向けて押し出すガイド機能が損なわれる虞がある。そして、この場合には、噴射される液体がすぐに外径方向に拡がり過ぎることになり、拡散が過剰になってしまう。
When the inclination angle (β) is too small, it is necessary to design the distance (L 1 ) excessively in order to obtain the inclination angle of the inclined lumen 111, which causes the same problem as described above.
On the other hand, when the inclination angle (β) is excessive, the distance of the inclined lumen 111, particularly the distance to the rear end edge of the irrigation opening 112 (in FIG. 4, the linear distance outside the section defining the inclined lumen 111). ) Becomes smaller, and the guide function of pushing the ejected liquid toward the tip may be impaired. In this case, the liquid to be ejected immediately spreads too much in the outer diameter direction, resulting in excessive diffusion.
 上記の式(1)における-2・L・tanβは、先端縮径部10Aの後端から灌注用開口112の先端縁に至るまでの先端縮径部10Aの縮径量に相当する。
 2・L・tanβが過大となる場合には、カテーテルシャフトの径が過大となるため、カテーテル全体の設計が困難となる。
−2 · L 1 · tan β in the above equation (1) corresponds to the amount of reduction in the diameter of the tip reduced diameter portion 10A from the rear end of the tip reduced diameter portion 10A to the tip edge of the irrigation opening 112.
When 2 · L 1 · tan β is excessive, the diameter of the catheter shaft is excessive, which makes it difficult to design the entire catheter.
 灌注用開口112の先端縁から先端電極20の最大径部までのシャフト軸方向の距離(カテーテルシャフト10の中心軸への投影距離)(L)は1.0~2.5mmであることが好ましく、更に好ましくは1.2~2.0mmとされる。 The distance in the axial direction of the shaft from the distal end edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 (projection distance to the central axis of the catheter shaft 10) (L 2 ) is 1.0 to 2.5 mm. The thickness is preferably 1.2 to 2.0 mm.
 この距離(L)が過小である場合には、灌注用開口から噴射される液体が、球状部分の後端部分に遮られて最大径部における電極表面の近傍に到達することが困難となる。
 他方、この距離(L)が過大である場合には、灌注用開口から噴射される液体が最大径部における電極表面の近傍に到達することが困難となる。
When this distance (L 2 ) is too small, it becomes difficult for the liquid ejected from the irrigation opening to be blocked by the rear end portion of the spherical portion and to reach the vicinity of the electrode surface at the maximum diameter portion. .
On the other hand, when this distance (L 2 ) is excessive, it becomes difficult for the liquid ejected from the irrigation opening to reach the vicinity of the electrode surface at the maximum diameter portion.
 アブレーションカテーテル100において、傾斜ルーメン111の傾斜角度(α)は、5.0~12.5°(但し、9.1~9.3°を除く。)とされる。 In the ablation catheter 100, the inclination angle (α) of the inclined lumen 111 is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
 上記式(1)が成立し、かつ、この傾斜角度(α)が5°以上であることにより、先端電極20の球状部分21の直径(D)を、効率的な焼灼治療を行うために必要な大きさ(例えば、カテーテルシャフト10の外径に対する球状部分21の直径の比率(D/D)を0.7以上)とすることができる。
 この傾斜角度が5°未満である場合には、先端電極の球状部分の直径が過小になって、そのような先端電極を備えたアブレーションカテーテルによっては、効率的な焼灼治療を行うことはできない。
In order to perform the effective ablation treatment, the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 is established by the above formula (1) and the inclination angle (α) being 5 ° or more. The required size (for example, the ratio of the diameter of the spherical portion 21 to the outer diameter of the catheter shaft 10 (D 2 / D 1 ) is 0.7 or more).
When this inclination angle is less than 5 °, the diameter of the spherical portion of the tip electrode becomes too small, and an efficient ablation treatment cannot be performed by an ablation catheter equipped with such a tip electrode.
 また、この傾斜角度(α)が12.5°以下であることにより、傾斜ルーメン111を通って灌注用開口112から先端電極20の最大径部に向けて噴射される液体を、最大径部における電極表面の近傍に確実に到達させることができる。
 更に、傾斜角度(α)が12.5°以下である傾斜ルーメン111を通って灌注用開口112から噴射され、先端電極20の形状に沿って流れる液体には、その流れを先端電極20の中心方向(内側)に向かわせようとする力〔電極表面の近傍に流れる液体と、電極表面から離間して流れる液体との流速差(圧力差)による力〕が安定的に作用することにより、最大径部における電極表面の近傍に到達した液体は、その後、先端半球面21Aを覆うような流れを形成することができ、これにより、先端電極の先端半球面21Aに対して十分に液体を接触させること(先端半球面21Aを確実に灌注すること)ができる。
Further, when the inclination angle (α) is 12.5 ° or less, the liquid ejected from the irrigation opening 112 toward the maximum diameter portion of the tip electrode 20 through the inclination lumen 111 is allowed to flow in the maximum diameter portion. The vicinity of the electrode surface can be reliably reached.
Further, the liquid that is ejected from the irrigation opening 112 through the inclined lumen 111 having an inclination angle (α) of 12.5 ° or less and flows along the shape of the tip electrode 20 is directed to the center of the tip electrode 20. The maximum force due to the stable action of the force (the force caused by the flow velocity difference (pressure difference) between the liquid flowing in the vicinity of the electrode surface and the liquid flowing away from the electrode surface) The liquid that has reached the vicinity of the electrode surface in the diameter portion can then form a flow that covers the tip hemisphere 21A, thereby sufficiently bringing the liquid into contact with the tip hemisphere 21A of the tip electrode. (The tip hemisphere 21A can be reliably irrigated).
 傾斜ルーメンの傾斜角度が過大である場合には、先端電極20の最大径部に向けて灌注用開口112から噴射される液体であっても、最大径部における電極表面の近傍に対して十分に到達させることができなくなり、また、最大径部における電極表面の近傍に到達した液体であっても拡散しやすくなり、先端半球面を覆うような液体の流れを形成することが困難となる。
 この結果、後述する比較例4に示すように、先端半球面に対して液体を十分に接触させることができない。
When the inclination angle of the inclined lumen is excessive, even the liquid ejected from the irrigation opening 112 toward the maximum diameter portion of the tip electrode 20 is sufficient for the vicinity of the electrode surface at the maximum diameter portion. It becomes impossible to reach the liquid, and even if the liquid reaches the vicinity of the electrode surface at the maximum diameter portion, it becomes easy to diffuse, and it becomes difficult to form a liquid flow that covers the tip hemisphere.
As a result, as shown in Comparative Example 4 to be described later, the liquid cannot be sufficiently brought into contact with the tip hemisphere.
 また、本発明者らの検討によれば、上記の式(1)を満足し、かつ、傾斜ルーメンの傾斜角度(α)が5.0~12.5°の範囲にある電極カテーテルであっても、この傾斜角度(α)が9.1~9.3°である場合に限って、先端半球面に対して液体を十分に接触させることができないことが確認された(後述する比較例1~3参照)。
 この理由については明らかではないが、液体の流れを先端電極の中心方向(内側)に向かわせようとする力が、上記の傾斜角度(α)の範囲に限って不安定になることにより、先端半球面を覆うような液体の流れを形成することができなくなるからであると推測される。
Further, according to the study by the present inventors, an electrode catheter satisfying the above formula (1) and having an inclination angle (α) of the inclination lumen in the range of 5.0 to 12.5 ° is provided. However, it was confirmed that the liquid could not be brought into sufficient contact with the tip hemisphere only when the inclination angle (α) was 9.1 to 9.3 ° (Comparative Example 1 described later). To 3).
Although the reason for this is not clear, the force that tries to direct the liquid flow toward the center direction (inner side) of the tip electrode becomes unstable only in the range of the tilt angle (α) described above. This is presumed to be because it becomes impossible to form a liquid flow that covers the hemisphere.
 上記のような理由により、傾斜ルーメン111の傾斜角度(α)は、通常5.0~9.0°または9.4~12.5°とされ、好ましくは7.0~8.0°、9.4~9.9°または10.5~12.0°、特に好ましくは9.4~9.9°または10.5~12.0°とされる。 For the above reasons, the inclination angle (α) of the inclined lumen 111 is usually 5.0 to 9.0 ° or 9.4 to 12.5 °, preferably 7.0 to 8.0 °, It is set to 9.4 to 9.9 ° or 10.5 to 12.0 °, particularly preferably 9.4 to 9.9 ° or 10.5 to 12.0 °.
 先端電極20の最大径に相当する球状部分21の直径(D)は、カテーテルシャフト10の外径(D)、前記距離(L)、前記距離(L)、前記傾斜角度(β)、前記傾斜角度(α)によって上記の式(1)に基いて決定され、傾斜ルーメン111の傾斜角度(α)が大きくなる程、球状部分21の直径(D)も大きくなる。
 このようにして決定される球状部分21の直径(D)としては1.0~3.0mmであることが好ましく、更に好ましくは1.5~2.5mm、特に好ましくは1.7~2.3mmとされる。
The diameter (D 2 ) of the spherical portion 21 corresponding to the maximum diameter of the tip electrode 20 is the outer diameter (D 1 ) of the catheter shaft 10, the distance (L 1 ), the distance (L 2 ), and the inclination angle (β ), Which is determined based on the above-described equation (1) by the inclination angle (α). As the inclination angle (α) of the inclination lumen 111 increases, the diameter (D 2 ) of the spherical portion 21 also increases.
The diameter (D 2 ) of the spherical portion 21 determined in this way is preferably 1.0 to 3.0 mm, more preferably 1.5 to 2.5 mm, and particularly preferably 1.7 to 2 mm. .3 mm.
 カテーテルシャフト10の外径(D)に対する先端電極20の球状部分21の直径(D)の比率(D/D)としては0.5~1.5であることが好ましく、更に好ましくは0.7~1.0とされる。 The ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 to the outer diameter (D 1 ) of the catheter shaft 10 is preferably 0.5 to 1.5, and more preferably. Is set to 0.7 to 1.0.
 (D/D)の値が過小(例えば0.5未満)である場合には、そのような先端電極を備えたカテーテルによっては効率的な焼灼治療を行うことが困難となる。
 他方、(D/D)の値が過大である場合には、そのような先端電極の表面に対して十分な量の液体を灌注すること(十分に冷却効果・血栓の形成抑制効果を発現させること)が困難となる。
When the value of (D 2 / D 1 ) is too small (for example, less than 0.5), it is difficult to perform efficient cauterization treatment depending on the catheter provided with such a tip electrode.
On the other hand, when the value of (D 2 / D 1 ) is excessive, a sufficient amount of liquid is irrigated onto the surface of such a tip electrode (a sufficient cooling effect and thrombus formation suppressing effect is obtained). It is difficult to express).
 図3および図4に示すように、先端電極20の内部には、焼灼温度を制御するための熱電対等からなる温度センサ90が装着されている。また、温度センサ90に接続された導線95は、中央ルーメン13に引き通されている。
 アブレーションカテーテル100の使用時(焼灼治療時)に、温度センサ90によって、先端電極20の周辺組織の温度が測定され、この測定温度がフィードバックされて焼灼温度の制御(高周波エネルギーの調整)が行われる。
As shown in FIGS. 3 and 4, a temperature sensor 90 made of a thermocouple or the like for controlling the ablation temperature is mounted inside the tip electrode 20. Further, the conducting wire 95 connected to the temperature sensor 90 is drawn through the central lumen 13.
When the ablation catheter 100 is used (at the time of ablation treatment), the temperature sensor 90 measures the temperature of the tissue around the tip electrode 20, and this measurement temperature is fed back to control the ablation temperature (adjustment of high-frequency energy). .
 この実施形態のアブレーションカテーテル100によれば、8つの灌注用開口112がテーパ状の先端縮径部10Aに配置されていることにより、灌注用開口112の各々から噴射される液体を先端方向に向かわせることができるので、先端電極20の表面に対して、後端側から液体を噴射することができる。
 そして、先端電極20に対して後端側(カテーテルシャフト10の先端縮径部10Aに配置されている灌注用開口112の各々)から噴射された液体は、先端電極20の後端部(頸部22)から先端部(球状部分21)に向かって、先端電極20の表面に沿うように先端方向に流れ、先端電極20の周辺の血液は十分に攪拌・希釈されるので、灌注機構を備えた従来のカテーテルと比較して先端電極20の表面の冷却効果に優れるとともに、先端電極20の表面付近の血液が十分に攪拌・希釈されることによっても優れた血栓形成抑
制効果が奏される。
According to the ablation catheter 100 of this embodiment, the eight irrigation openings 112 are arranged in the tapered distal diameter-reducing portion 10A, so that the liquid ejected from each of the irrigation openings 112 is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode 20.
Then, the liquid ejected from the rear end side (each of the irrigation openings 112 arranged in the distal diameter-reduced portion 10A of the catheter shaft 10) with respect to the distal electrode 20 is the rear end portion (neck portion) of the distal electrode 20 22) from the tip portion (spherical portion 21) toward the tip direction along the surface of the tip electrode 20, and blood around the tip electrode 20 is sufficiently agitated / diluted so that an irrigation mechanism is provided. Compared to a conventional catheter, the effect of cooling the surface of the tip electrode 20 is excellent, and an excellent effect of suppressing thrombus formation is also obtained by sufficiently stirring and diluting the blood near the surface of the tip electrode 20.
 また、カテーテルシャフト10の先端縮径部10Aの内部には、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口112の各々に至る8本の傾斜ルーメン111が形成されているので、灌注用開口112の各々から噴射される液体は、先端方向外側(カテーテルシャフト10の軸方向における先端側で、かつ半径方向における外側)に向けて噴射される。ここに、液体の噴射角度は、傾斜ルーメン111の傾斜角度(α)と一致する。 In addition, eight inclined lumens 111 extending in the distal direction while being inclined outward in the radial direction of the catheter shaft 10 and reaching each of the irrigation openings 112 are formed inside the reduced diameter portion 10A of the catheter shaft 10. Therefore, the liquid ejected from each of the irrigation openings 112 is ejected toward the outer side in the distal direction (the distal side in the axial direction of the catheter shaft 10 and the outer side in the radial direction). Here, the liquid ejection angle coincides with the inclination angle (α) of the inclined lumen 111.
 また、カテーテルシャフト10の先端縮径部10Aの内部には、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口112の各々に至る8本の傾斜ルーメン111が形成されているとともに、上記の式(1):D=D+2(L・tanα-L・tanβ)が成立し、かつ、傾斜ルーメンの傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることにより、この傾斜ルーメン111を通って灌注用開口112から噴射される液体を、先端電極20の最大径部における電極表面の近傍に到達させることができ、更に、この液体を、先端電極20の先端半球面21Aに対して十分に接触させること(先端半球面21Aを確実に灌注すること)ができる(後述する実施例1~15参照)。 In addition, eight inclined lumens 111 extending in the distal direction while being inclined outward in the radial direction of the catheter shaft 10 and reaching each of the irrigation openings 112 are formed inside the reduced diameter portion 10A of the catheter shaft 10. And the above formula (1): D 2 = D 1 +2 (L 2 · tan α−L 1 · tan β) is satisfied, and the inclination angle (α) of the inclination lumen is 5.0 to 12.5 °. (However, except 9.1 to 9.3 °), the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is allowed to flow in the vicinity of the electrode surface at the maximum diameter portion of the tip electrode 20. Furthermore, the liquid can be sufficiently brought into contact with the tip hemispherical surface 21A of the tip electrode 20 (the tip hemispherical surface 21A can be reliably irrigated) (Examples 1 to 5 described later). See 15 .
 また、先端電極20の球状部分21がカテーテルシャフト10の外径(D)以上の直径(D)を有するものであっても、傾斜ルーメン111を通って灌注用開口112から噴射される液体を、先端電極20の最大径部における電極表面の近傍に到達させることができ、更に、この液体を、先端電極20の先端半球面21Aに対して十分に接触させることができる(後述する実施例12~15参照)。 Further, even if the spherical portion 21 of the tip electrode 20 has a diameter (D 2 ) equal to or larger than the outer diameter (D 1 ) of the catheter shaft 10, the liquid ejected from the irrigation opening 112 through the inclined lumen 111. Can reach the vicinity of the electrode surface at the maximum diameter portion of the tip electrode 20, and this liquid can be sufficiently brought into contact with the tip hemispherical surface 21A of the tip electrode 20 (examples described later). 12-15).
 また、灌注用開口112が絶縁性のカテーテルシャフト10(先端縮径部10A)に形成されていて、導電性の先端電極20にはエッジが存在しないので、アブレーションカテーテル100の使用時(焼灼時)において先端電極20の一部に異常な温度上昇(高温部)を生じることはなく、そのような高温部に血液が接触して形成される血栓の形成が抑制される。 In addition, since the irrigation opening 112 is formed in the insulating catheter shaft 10 (tip reduced diameter portion 10A) and the conductive tip electrode 20 has no edge, when the ablation catheter 100 is used (at the time of cauterization). In this case, an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode 20, and the formation of thrombus formed by contact of blood with such high temperature part is suppressed.
 また、先端電極20には灌注用の開口を形成する必要がないので、十分な表面積を確保することができ、アブレーションカテーテルとして効率的な焼灼治療を行うことができる。 In addition, since it is not necessary to form an irrigation opening in the tip electrode 20, a sufficient surface area can be secured, and an efficient ablation treatment can be performed as an ablation catheter.
 また、灌注用開口112よりも先端側に温度センサ90が装着されていることにより、温度センサ90が装着されている先端電極20の内部に液体の流路を形成する必要はないので、温度センサ90が過度に冷却されることはなく、先端電極20の周囲にある組織の温度を正確に測定することができる。 In addition, since the temperature sensor 90 is attached to the tip side of the irrigation opening 112, there is no need to form a liquid flow path inside the tip electrode 20 to which the temperature sensor 90 is attached. 90 is not excessively cooled, and the temperature of the tissue around the tip electrode 20 can be accurately measured.
 図4に示したアブレーションカテーテル100は、上記の式(1):D=D+2(L・tanα-L・tanβ)が成立するものであるが、本発明者が鋭意検討を重ねた結果、D+2(L・tanα-L・tanβ)の値が0.95D~1.05Dの範囲にあり、かつ、傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることにより、傾斜ルーメンを通って灌注用開口から噴射される液体を、先端電極の先端半球面に対して十分に接触させること(先端半球面を確実に灌注すること)ができることが確認された。 The ablation catheter 100 shown in FIG. 4 satisfies the above formula (1): D 2 = D 1 +2 (L 2 · tan α−L 1 · tan β). As a result, the value of D 1 +2 (L 2 · tan α−L 1 · tan β) is in the range of 0.95D 2 to 1.05D 2 and the inclination angle (α) is 5.0 to 12.5 °. (However, except 9.1 to 9.3 °), the liquid ejected from the irrigation opening through the inclined lumen is sufficiently brought into contact with the tip hemisphere of the tip electrode ( It was confirmed that the tip hemisphere can be reliably irrigated).
 D+2(L・tanα-L・tanβ)の値が0.95D未満であると、灌注用開口から噴射される液体の一部が球状部分の後端部分に遮られ、先端電極の先端半球面
に対して十分な液体を接触させることが困難となる。
 他方、D+2(L・tanα-L・tanβ)の値が1.05Dを超える場合には、灌注用開口から噴射される液体を、先端電極20の最大径部における電極表面近傍に効率的に到達させることができなくなる場合がある。
When the value of D 1 +2 (L 2 · tan α−L 1 · tan β) is less than 0.95D 2 , a part of the liquid ejected from the irrigation opening is blocked by the rear end portion of the spherical portion, and the tip electrode It is difficult to bring sufficient liquid into contact with the tip hemisphere.
On the other hand, when the value of D 1 +2 (L 2 · tan α−L 1 · tan β) exceeds 1.05D 2 , the liquid ejected from the irrigation opening is allowed to flow near the electrode surface at the maximum diameter portion of the tip electrode 20. May not be able to be reached efficiently.
<第2実施形態>
 図5に示すアブレーションカテーテル105は、10本のサブルーメン(液体の流路となる8本のルーメン51、および引張ワイヤの挿通路となる2本のルーメン)を有するカテーテルシャフト50を備えてなり、このカテーテルシャフト50は、先端方向に向かってテーパ状に縮径する先端縮径部50Aを有し、この先端縮径部50Aには、先端電極20の表面に液体を灌注するための8つの灌注用開口512が配置され、カテーテルシャフト50の先端縮径部50Aの内部には、後端側において8本のルーメン51(非傾斜ルーメン)の各々に連通し、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口512の各々に至る8本の傾斜ルーメン511が形成されている。
<Second Embodiment>
The ablation catheter 105 shown in FIG. 5 includes a catheter shaft 50 having ten sub-lumens (eight lumens 51 serving as a liquid flow path and two lumens serving as an insertion passage for a tension wire). The catheter shaft 50 has a distal diameter-reducing portion 50A that is tapered toward the distal direction, and the distal diameter-reduced portion 50A has eight irrigation for irrigating the surface of the distal electrode 20. An opening for use 512 is disposed, and the inside of the reduced diameter portion 50A of the catheter shaft 50 communicates with each of eight lumens 51 (non-inclined lumens) on the rear end side, and is inclined outward in the radial direction of the catheter shaft 10. On the other hand, eight inclined lumens 511 extending in the distal direction and reaching each of the irrigation openings 512 are formed.
 なお、図5において、図4に示したアブレーションカテーテル100と同一の構成要素には、同一の符号を用いている。
 また、図5では、「液体の流路となる8本のルーメン51」のうちの2本のルーメン51、「8本の傾斜ルーメン511」のうちの2本の傾斜ルーメン511、「8つの灌注用開口512」のうちの2つ灌注用開口512が示されている。
In FIG. 5, the same reference numerals are used for the same components as those of the ablation catheter 100 shown in FIG.
Further, in FIG. 5, two lumens 51 of “eight lumens 51 serving as a liquid flow path”, two inclined lumens 511 of “eight inclined lumens 511”, “eight irrigation” Two of the irrigation openings 512 "are shown.
 アブレーションカテーテル105を構成する先端電極20の後端部(頸部22)には、傾斜ルーメン511の各々に連続し、傾斜ルーメン511の傾斜角度(α)と同じ角度で傾斜する液体の案内溝26が形成されている。
 これにより、灌注用開口512は、カテーテルシャフト50の先端縮径部50Aと、先端電極20の頸部22とにまたがって形成され、そのような灌注用開口512の先端縁は、先端電極20の頸部22に存在することとなる。
 この案内溝26が形成されていることにより、先端電極20の頸部22に位置する灌注用開口512の先端縁から噴射される液体の噴射角度を、傾斜ルーメン511の傾斜角度(α)と一致させることができる。
In the rear end portion (neck portion 22) of the distal electrode 20 constituting the ablation catheter 105, a liquid guide groove 26 that is continuous with each of the inclined lumens 511 and is inclined at the same angle as the inclination angle (α) of the inclined lumen 511 is provided. Is formed.
Thereby, the irrigation opening 512 is formed across the distal diameter reduced portion 50A of the catheter shaft 50 and the neck portion 22 of the distal electrode 20, and the distal edge of the irrigation opening 512 is It exists in the neck part 22.
By forming the guide groove 26, the spray angle of the liquid sprayed from the tip edge of the irrigation opening 512 located at the neck portion 22 of the tip electrode 20 matches the tilt angle (α) of the tilt lumen 511. Can be made.
 図5に示したアブレーションカテーテル105において、先端電極20の球状部分21の直径を(D)、灌注用開口512の先端縁における先端電極20(頸部22)の外径を(D)、灌注用開口512の先端縁から先端電極20の最大径部までのシャフト軸方向の距離を(L)、傾斜ルーメン511の傾斜角度を(α)とするときに、式(2):D=D+2(L・tanα)が成立し、かつ、傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)である。 In the ablation catheter 105 shown in FIG. 5, the diameter of the spherical portion 21 of the tip electrode 20 is (D 2 ), the outer diameter of the tip electrode 20 (neck portion 22) at the tip edge of the irrigation opening 512 is (D 3 ), When the distance in the axial direction of the shaft from the tip edge of the irrigation opening 512 to the maximum diameter portion of the tip electrode 20 is (L 2 ) and the tilt angle of the tilt lumen 511 is (α), equation (2): D 2 = D 3 +2 (L 2 · tan α) is satisfied, and the inclination angle (α) is 5.0 to 12.5 ° (except for 9.1 to 9.3 °).
 この実施形態のアブレーションカテーテル105によれば、傾斜ルーメン511を通って灌注用開口512から噴射される液体を、先端電極20の最大径部における電極表面の近傍に到達させることができ、更に、この液体を、先端電極20の先端半球面21Aに対して十分に接触させること(先端半球面21Aを確実に灌注すること)ができる。 According to the ablation catheter 105 of this embodiment, the liquid ejected from the irrigation opening 512 through the inclined lumen 511 can reach the vicinity of the electrode surface at the maximum diameter portion of the tip electrode 20, and The liquid can be sufficiently brought into contact with the tip hemisphere 21A of the tip electrode 20 (the tip hemisphere 21A can be reliably irrigated).
 図5に示したアブレーションカテーテル105は、上記の式(2):D=D+2(L・tanα)が成立するものであるが、本発明者が鋭意検討を重ねた結果、D+2(L・tanα)の値が0.95D~1.05Dの範囲にあり、かつ、傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることにより、傾斜ルーメンを通って灌注用開口から噴射される液体を、先端電極の先端半球面に対して十分に接触させること(先端半球面を確実に灌注すること)ができることが確認された。 The ablation catheter 105 shown in FIG. 5 satisfies the above formula (2): D 2 = D 3 +2 (L 2 · tan α). As a result of extensive studies by the inventor, D 3 +2 (L 2 · tan α) is in the range of 0.95D 2 to 1.05D 2 and the inclination angle (α) is 5.0 to 12.5 ° (however, 9.1 to 9.3) By excluding °, the liquid ejected from the irrigation opening through the inclined lumen should be in sufficient contact with the tip hemisphere of the tip electrode (to ensure that the tip hemisphere is irrigated). It was confirmed that
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、種々の変更が可能である。
 例えば、先端縮径部の内部に形成された傾斜ルーメンの本数は8に限定されるものではなく、例えば4~12の範囲で適宜選択することができる。
 また、先端縮径部と、先端縮径部以外の部分との間に中間部材(液体を合流および/または分流する手段を内部に有する中間部材)を介在させることにより、先端縮径部の内部に形成された傾斜ルーメンの本数と、先端縮径部以外の部分の内部に形成されたルーメン(液体の流路となるルーメン)の本数とが異なるものとなっていてもよい。
 また、先端縮径部を含む先端部分の構成材料として、当該先端部分以外のシャフト部分の構成材料とは異なる材料(例えば、ポリエーテルエーテルケトン(PEEK)などの芳香族ポリエーテルケトン、セラミック材料など)を採用してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible.
For example, the number of inclined lumens formed inside the tip diameter-reduced portion is not limited to 8, and can be appropriately selected within a range of 4 to 12, for example.
Further, by interposing an intermediate member (an intermediate member having a means for joining and / or diverting liquid) between the tip reduced diameter portion and a portion other than the tip reduced diameter portion, the inside of the tip reduced diameter portion The number of the inclined lumens formed on the inner surface may be different from the number of the lumens (lumens serving as a liquid flow path) formed inside the portion other than the tip diameter-reduced portion.
In addition, as a constituent material of the tip portion including the tip reduced diameter portion, a material different from the constituent material of the shaft portion other than the tip portion (for example, an aromatic polyether ketone such as polyether ether ketone (PEEK), a ceramic material, etc. ) May be adopted.
<実施例1>
 図3および図4に示したような断面構成を有し、カテーテルシャフト10の外径(D)が2.4mm、前記距離(L)が2.63mm、先端縮径部10Aの傾斜角度(β)が10.0°、前記距離(L)が1.21mm、傾斜ルーメン111の傾斜角度(α)が5.0°であり、先端電極20の球状部分21の直径(D=D+2(L・tanα-L・tanβ)が1.68mm、(D/D)の値が0.70であるアブレーションカテーテル100について、この遠位端部分を血液中に浸漬した状態で生理食塩水を灌注する場合に、先端電極20の先端半球面21Aに接触する液体(血液および/または生理食塩水)中における生理食塩水の存在状況を、解析ソフト「SolidWorks Flow Simulation」(Dassault Systems SolidWorks Corporation社製)を用いてシュミレーションした。
 この結果、生理食塩水の存在率(液体中の生理食塩水の含有比率)が40%以上である液体が接触する電極表面の割合(先端半球面21Aの全面積に占める当該電極表面の割合)は95面積%以上であり、この実施例1の仕様によれば、先端半球面に対して生理食塩水を十分に接触させることができることが確認された。
 ここに、上記の解析ソフトにおける設定パラメータは下記のとおりである。
<Example 1>
3 and 4, the catheter shaft 10 has an outer diameter (D 1 ) of 2.4 mm, the distance (L 1 ) is 2.63 mm, and the inclination angle of the distal diameter reduced portion 10A. (Β) is 10.0 °, the distance (L 2 ) is 1.21 mm, the inclination angle (α) of the inclined lumen 111 is 5.0 °, and the diameter of the spherical portion 21 of the tip electrode 20 (D 2 = For the ablation catheter 100 in which D 1 +2 (L 2 · tan α−L 1 · tan β) is 1.68 mm and (D 2 / D 1 ) is 0.70, this distal end portion is immersed in blood. When the physiological saline is irrigated in the state, the presence state of the physiological saline in the liquid (blood and / or physiological saline) in contact with the distal hemispherical surface 21A of the distal electrode 20 is analyzed using the analysis software “SolidWorks Flow Simulation” ( D ssault was simulated by using the Systems SolidWorks Corporation Co., Ltd.).
As a result, the ratio of the electrode surface in contact with the liquid having a physiological saline abundance ratio (saline content ratio in the liquid) of 40% or more (the ratio of the electrode surface in the total area of the tip hemisphere 21A) Is 95 area% or more, and according to the specifications of Example 1, it was confirmed that physiological saline could be sufficiently brought into contact with the tip hemisphere.
Here, the setting parameters in the above analysis software are as follows.
(1)血液:
 ・粘度=7.6×10-3Pa・s
 ・温度=37℃(体温に相当)
 ・圧力=100mmHg(血圧に相当)
(1) Blood:
・ Viscosity = 7.6 × 10 −3 Pa · s
・ Temperature = 37 ℃ (equivalent to body temperature)
・ Pressure = 100mmHg (equivalent to blood pressure)
(2)生理食塩水
 ・温度=25℃
 ・噴射量=5~15cc/min
(2) Saline ・ Temperature = 25 ° C
・ Injection amount = 5 to 15 cc / min
<実施例2~15および比較例1~4>
 下記表1に従って、前記距離(L)、前記距離(L)、傾斜ルーメンの傾斜角度(α)および球状部分の直径(D)を変更したこと以外は実施例1と同様のアブレーションカテーテルについて、実施例1と同様にして先端電極の先端半球面に接触する液体中の生理食塩水の存在状況をシュミレーションした。結果(生理食塩水の存在率が40%以上である液体が接触する電極表面の割合)を併せて下記表1に示す。
<Examples 2 to 15 and Comparative Examples 1 to 4>
Ablation catheter similar to that of Example 1 except that the distance (L 1 ), the distance (L 2 ), the inclination angle (α) of the inclined lumen, and the diameter (D 2 ) of the spherical portion were changed according to Table 1 below. In the same manner as in Example 1, the presence of physiological saline in the liquid in contact with the tip hemisphere of the tip electrode was simulated. The results (the ratio of the electrode surface in contact with the liquid having an abundance of physiological saline of 40% or more) are also shown in Table 1 below.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 100 アブレーションカテーテル
 10  カテーテルシャフト
 10A 先端縮径部
 11  ルーメン(液体の流路)
 12  ルーメン(引張ワイヤの挿通路)
 13  中央ルーメン
 15  剛性体(針金)
 111 傾斜ルーメン
 112 灌注用開口
 20  先端電極
 21  先端膨出部
 22  頸部
 23  円筒状部分
 26  液体の案内溝
 31  引張ワイヤ
 32  引張ワイヤ
 40  リング状電極
 50  カテーテルシャフト
 50A 先端縮径部
 51  ルーメン(液体の流路)
 511 傾斜ルーメン
 512 灌注用開口
 70  制御ハンドル
 75  回転板
 80  液体の注入管
DESCRIPTION OF SYMBOLS 100 Ablation catheter 10 Catheter shaft 10A Tip diameter reducing part 11 Lumen (liquid flow path)
12 lumens (Tension wire insertion path)
13 Central lumen 15 Rigid body (wire)
111 Inclined lumen 112 Irrigation opening 20 Tip electrode 21 Tip bulging portion 22 Neck portion 23 Cylindrical portion 26 Liquid guide groove 31 Tension wire 32 Tension wire 40 Ring electrode 50 Catheter shaft 50A Tip diameter reduction portion 51 Lumen Flow path)
511 Inclined lumen 512 Irrigation opening 70 Control handle 75 Rotating plate 80 Liquid injection tube

Claims (6)

  1.  液体の流路となるルーメンを有するカテーテルシャフトと、
     このカテーテルシャフトの先端側に接続された、球状部分を有する先端電極とを備えてなり、
     前記カテーテルシャフトは、先端方向に向かってテーパ状に縮径する先端縮径部を有し、この先端縮径部には、前記先端電極の表面に液体を灌注するための複数の灌注用開口が配置され、
     前記カテーテルシャフトの先端縮径部の内部には、当該カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて前記灌注用開口の各々に至る複数の傾斜ルーメンが形成されている電極カテーテルであって、
     前記カテーテルシャフトの外径を(D)、前記先端電極の球状部分の直径を(D)、前記カテーテルシャフトの先端縮径部の後端から前記灌注用開口の先端縁までのシャフト軸方向の距離を(L)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記カテーテルシャフトの先端縮径部における傾斜角度を(β)、前記傾斜ルーメンの傾斜角度を(α)とするとき、式(I):
      0.95D≦D+2(L・tanα-L・tanβ)≦1.05D
    が成立し、かつ、
     前記傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることを特徴とする電極カテーテル。
    A catheter shaft having a lumen that serves as a liquid flow path;
    A tip electrode having a spherical portion connected to the tip side of the catheter shaft;
    The catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode. Arranged,
    In the inside of the reduced diameter portion of the distal end of the catheter shaft is an electrode catheter in which a plurality of inclined lumens are formed extending in the distal direction while inclining radially outward of the catheter shaft and reaching each of the irrigation openings. And
    The outer diameter of the catheter shaft is (D 1 ), the diameter of the spherical portion of the tip electrode is (D 2 ), and the axial direction from the rear end of the reduced diameter portion of the catheter shaft to the tip edge of the irrigation opening (L 1 ), the distance in the axial direction of the shaft from the tip edge of the irrigation opening to the maximum diameter portion of the tip electrode (L 2 ), and the inclination angle at the tip diameter-reduced portion of the catheter shaft (β ), When the inclination angle of the inclined lumen is (α), the formula (I):
    0.95D 2 ≦ D 1 +2 (L 2 tan α−L 1 tan β) ≦ 1.05 D 2
    Is established, and
    An electrode catheter, wherein the inclination angle (α) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
  2.  前記傾斜角度(α)が7.0~8.0°、9.4~9.9°または10.5~12.0°であることを特徴とする請求項1に記載の電極カテーテル。 2. The electrode catheter according to claim 1, wherein the inclination angle (α) is 7.0 to 8.0 °, 9.4 to 9.9 °, or 10.5 to 12.0 °.
  3.  前記傾斜角度(α)が9.4~9.9°または10.5~12.0°であることを特徴とする請求項1に記載の電極カテーテル。 The electrode catheter according to claim 1, wherein the inclination angle (α) is 9.4 to 9.9 ° or 10.5 to 12.0 °.
  4.  前記カテーテルシャフトの直径(D)が1.0~3.0mm、
     前記距離(L)が1.0~3.0mm、
     前記距離(L)が1.0~2.5mm、
     前記傾斜角度(β)が5.0~30.0°であることを特徴とする請求項1乃至請求項3の何れかに記載の電極カテーテル。
    The diameter (D 1 ) of the catheter shaft is 1.0 to 3.0 mm,
    The distance (L 1 ) is 1.0 to 3.0 mm,
    The distance (L 2 ) is 1.0 to 2.5 mm,
    The electrode catheter according to any one of claims 1 to 3, wherein the inclination angle (β) is 5.0 to 30.0 °.
  5.  液体の流路となるルーメンを有するカテーテルシャフトと、
     このカテーテルシャフトの先端側に接続された、球状部分を有する先端電極とを備えてなり、
     前記カテーテルシャフトは、先端方向に向かってテーパ状に縮径する先端縮径部を有し、この先端縮径部には、前記先端電極の表面に液体を灌注するための複数の灌注用開口が配置され、
     前記カテーテルシャフトの先端縮径部の内部には、当該カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて前記灌注用開口の各々に至る複数の傾斜ルーメンが形成されている電極カテーテルであって、
     前記先端電極の球状部分の直径を(D)、前記灌注用開口の先端縁における前記先端縮径部または前記先端電極の外径を(D)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記傾斜ルーメンの傾斜角度を(α)とするとき、
        式(II):0.95D≦D+2(L・tanα)≦1.05D
    が成立し、かつ、
     前記傾斜角度(α)が5.0~12.5°(但し、9.1~9.3°を除く。)であることを特徴とする電極カテーテル。
    A catheter shaft having a lumen that serves as a liquid flow path;
    A tip electrode having a spherical portion connected to the tip side of the catheter shaft;
    The catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode. Arranged,
    In the inside of the reduced diameter portion of the distal end of the catheter shaft is an electrode catheter in which a plurality of inclined lumens are formed extending in the distal direction while inclining radially outward of the catheter shaft and reaching each of the irrigation openings. And
    The diameter of the spherical portion of the tip electrode is (D 2 ), the tip diameter-reduced portion at the tip edge of the irrigation opening or the outer diameter of the tip electrode is (D 3 ), and the tip from the tip edge of the irrigation opening to the tip When the distance in the axial direction of the shaft to the maximum diameter portion of the electrode is (L 2 ) and the inclination angle of the inclined lumen is (α),
    Formula (II): 0.95D 2 ≦ D 3 +2 (L 2 · tan α) ≦ 1.05D 2
    Is established, and
    An electrode catheter, wherein the inclination angle (α) is 5.0 to 12.5 ° (excluding 9.1 to 9.3 °).
  6.  前記灌注用開口より先端側に温度センサが装着されていることを特徴とする請求項1または請求項5に記載の電極カテーテル。 The electrode catheter according to claim 1 or 5, wherein a temperature sensor is attached to the distal end side of the irrigation opening.
PCT/JP2013/058877 2012-05-30 2013-03-26 Electrode catheter WO2013179748A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380027075.2A CN104363847B (en) 2012-05-30 2013-03-26 Electrode catheter
KR1020147031296A KR101649062B1 (en) 2012-05-30 2013-03-26 Electrode catheter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012122598A JP5348675B1 (en) 2012-05-30 2012-05-30 Electrode catheter
JP2012-122598 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013179748A1 true WO2013179748A1 (en) 2013-12-05

Family

ID=49672956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058877 WO2013179748A1 (en) 2012-05-30 2013-03-26 Electrode catheter

Country Status (5)

Country Link
JP (1) JP5348675B1 (en)
KR (1) KR101649062B1 (en)
CN (1) CN104363847B (en)
TW (1) TWI477299B (en)
WO (1) WO2013179748A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105852858A (en) * 2016-03-28 2016-08-17 西安富德医疗电子有限公司 Disposable facial muscle needle electrode for medical use
JP2017507699A (en) * 2014-02-06 2017-03-23 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Elongated medical device with chamfered ring electrode and variable shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11565080B2 (en) 2019-02-11 2023-01-31 St. Jude Medical, Cardiology Division, Inc. Catheter tip assembly for a catheter shaft
JP7335439B2 (en) * 2019-10-28 2023-08-29 ボストン サイエンティフィック ニューロモデュレイション コーポレイション RF electrode cannula
CN112798823A (en) * 2020-12-17 2021-05-14 中国电子科技集团公司第十三研究所 COS fixture for burn-in power-up

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004506A1 (en) * 2001-06-28 2003-01-02 Scimed Life Systems, Inc. Catheter with an irrigated composite tip electrode
JP2007537838A (en) * 2004-05-17 2007-12-27 シー・アール・バード・インコーポレーテッド Irrigation catheter
US20080071267A1 (en) * 2005-05-16 2008-03-20 Huisun Wang Irrigated ablation electrode assembly and method for control of temperature
JP2010505596A (en) * 2006-10-10 2010-02-25 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Ablation electrode assembly with insulated distal outlet
US20100137859A1 (en) * 2008-12-02 2010-06-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter having a flexible manifold
JP2011507605A (en) * 2007-12-21 2011-03-10 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Medical catheter with flexible pull ring and distal tip attachment device
US20110257649A1 (en) * 2010-04-20 2011-10-20 Vascomed Gmbh Electrode For An Electrophysiological Ablation Catheter
WO2013024616A1 (en) * 2011-08-15 2013-02-21 日本ライフライン株式会社 Electrode catheter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562861A (en) 1991-09-05 1993-03-12 Hitachi Aic Inc Separator for electrolytic capacitor and electrolytic capacitor
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
WO1995010978A1 (en) * 1993-10-19 1995-04-27 Ep Technologies, Inc. Segmented electrode assemblies for ablation of tissue
US7918851B2 (en) 2005-02-14 2011-04-05 Biosense Webster, Inc. Irrigated tip catheter and method for manufacturing therefor
US7857809B2 (en) * 2005-12-30 2010-12-28 Biosense Webster, Inc. Injection molded irrigated tip electrode and catheter having the same
JP4993353B2 (en) * 2007-03-29 2012-08-08 日本ライフライン株式会社 Tip deflectable catheter
CN101888807B (en) * 2007-11-30 2014-02-19 圣朱德医疗有限公司房颤分公司 Irrigated ablation catheter having magnetic tip for magnetic field control and guidance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004506A1 (en) * 2001-06-28 2003-01-02 Scimed Life Systems, Inc. Catheter with an irrigated composite tip electrode
JP2007537838A (en) * 2004-05-17 2007-12-27 シー・アール・バード・インコーポレーテッド Irrigation catheter
US20080071267A1 (en) * 2005-05-16 2008-03-20 Huisun Wang Irrigated ablation electrode assembly and method for control of temperature
JP2010505596A (en) * 2006-10-10 2010-02-25 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Ablation electrode assembly with insulated distal outlet
JP2011507605A (en) * 2007-12-21 2011-03-10 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Medical catheter with flexible pull ring and distal tip attachment device
US20100137859A1 (en) * 2008-12-02 2010-06-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter having a flexible manifold
US20110257649A1 (en) * 2010-04-20 2011-10-20 Vascomed Gmbh Electrode For An Electrophysiological Ablation Catheter
WO2013024616A1 (en) * 2011-08-15 2013-02-21 日本ライフライン株式会社 Electrode catheter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507699A (en) * 2014-02-06 2017-03-23 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Elongated medical device with chamfered ring electrode and variable shaft
CN105852858A (en) * 2016-03-28 2016-08-17 西安富德医疗电子有限公司 Disposable facial muscle needle electrode for medical use

Also Published As

Publication number Publication date
TWI477299B (en) 2015-03-21
CN104363847B (en) 2017-04-05
KR101649062B1 (en) 2016-08-17
CN104363847A (en) 2015-02-18
TW201404421A (en) 2014-02-01
KR20150023247A (en) 2015-03-05
JP2013244382A (en) 2013-12-09
JP5348675B1 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2013179748A1 (en) Electrode catheter
JP5769303B2 (en) Electrode catheter
EP2197378B1 (en) Irrigated ablation catheter having parallel external flow and proximally tapered electrode
US7914528B2 (en) Ablation catheter tip for generating an angled flow
KR101830466B1 (en) Electrode catheter
KR20120044361A (en) Open-irrigated ablation catheter with turbulent flow
US11344240B2 (en) Electrode catheter
JP6282209B2 (en) Chemical ablation device and chemical ablation system
JP2012176119A (en) Electrode catheter
KR101760166B1 (en) Electrode catheter
JP6249789B2 (en) Percutaneous intramyocardial drug infusion catheter and catheter system
JP5881229B2 (en) Electrode catheter
KR101809318B1 (en) Electrode catheter
JP6071852B2 (en) Tip deflectable catheter
JP5283135B2 (en) Electrode catheter
JP3168428U (en) Bipolar electrical treatment instrument
JP5867917B2 (en) Electrode catheter
TWI768661B (en) Balloon type electrode catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031296

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797027

Country of ref document: EP

Kind code of ref document: A1