WO2013024616A1 - Electrode catheter - Google Patents

Electrode catheter Download PDF

Info

Publication number
WO2013024616A1
WO2013024616A1 PCT/JP2012/064279 JP2012064279W WO2013024616A1 WO 2013024616 A1 WO2013024616 A1 WO 2013024616A1 JP 2012064279 W JP2012064279 W JP 2012064279W WO 2013024616 A1 WO2013024616 A1 WO 2013024616A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
catheter
diameter
tip
distal
Prior art date
Application number
PCT/JP2012/064279
Other languages
French (fr)
Japanese (ja)
Inventor
謙二 森
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Publication of WO2013024616A1 publication Critical patent/WO2013024616A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1417Ball
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M2025/004Multi-lumen catheters with stationary elements characterized by lumina being arranged circumferentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0144Tip steering devices having flexible regions as a result of inner reinforcement means, e.g. struts or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires

Definitions

  • the present invention relates to an electrode catheter, and more particularly to an electrode catheter having an electrode attached to the tip of the catheter and a mechanism for irrigating a liquid such as physiological saline to the electrode.
  • the ablation catheter that is an electrode catheter
  • Those equipped with an irrigation mechanism are used.
  • the temperature sensor is excessive due to the saline flowing through the flow path.
  • the temperature of the tissue around the tip electrode cannot be accurately measured and is detected low, and as a result, the ablation temperature may be increased more than necessary.
  • a first object of the present invention is to provide an electrode catheter capable of irrigating a liquid from the rear end side with respect to the surface of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
  • a second object of the present invention is to provide an electrode catheter capable of irrigating a liquid over the entire surface of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
  • the third object of the present invention is that an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode during cauterization, and is excellent in the cooling effect of the tip electrode surface and the thrombus formation suppressing effect on the tip electrode surface. And it is providing the electrode catheter provided with the irrigation mechanism which can perform an efficient cauterization treatment.
  • a fourth object of the present invention is to provide an electrode catheter equipped with an irrigation mechanism that can accurately measure the temperature of the tissue around the tip electrode and can appropriately control the ablation temperature. It is in.
  • the electrode catheter of the present invention includes a catheter shaft having a lumen serving as a liquid flow path, Connected to the distal end side of this catheter shaft, comprising a tip electrode having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft,
  • the catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode.
  • a plurality of inclined lumens extending in the distal direction while being inclined radially outward of the catheter shaft and reaching each of the irrigation openings are formed inside the reduced diameter portion of the catheter shaft.
  • a plurality of irrigation openings are arranged in the reduced diameter portion of the catheter shaft, so that the liquid ejected from each of the plurality of irrigation openings is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode.
  • the liquid sprayed to the tip electrode from each of the plurality of irrigation openings flows in the tip direction along the surface of the tip electrode, so that the surface of the tip electrode is cooled compared to a conventional catheter having an irrigation mechanism.
  • the blood in the vicinity of the surface of the tip electrode is sufficiently agitated and diluted to exert an excellent thrombus formation suppressing effect.
  • a plurality of inclined lumens extending in the distal direction while being inclined radially outward of the catheter shaft and reaching each of the irrigation openings are formed inside the reduced diameter portion of the catheter shaft. Even if the diameter of the spherical part (the maximum diameter of the tip electrode) is equal to or larger than the outer diameter of the catheter shaft, the liquid ejected from the irrigation opening through this inclined lumen reaches the electrode surface at the maximum diameter part of the tip electrode. And irrigating the entire surface of the tip electrode including the maximum diameter portion and the tip side thereof.
  • the electrode catheter of the present invention is remarkably superior in the thrombus formation suppressing effect on the tip electrode surface as compared with a conventionally known catheter having an irrigation mechanism.
  • the diameter of the spherical portion of the tip electrode is equal to or larger than the outer diameter of the catheter shaft, and it is not necessary to form an opening in the tip electrode, a sufficient surface area can be secured, and an efficient cauterization as an ablation catheter Can be treated.
  • the ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion of the tip electrode to the outer diameter (D 1 ) of the catheter shaft is 1.0 to 1.2.
  • the distance in the axial direction from the rear end of the reduced diameter portion of the catheter shaft to the distal end edge of the irrigation opening (L 1 ), and the shaft from the distal end edge of the irrigation opening to the maximum diameter portion of the distal electrode When the axial distance is (L 2 ), the inclination angle at the reduced diameter portion of the catheter shaft is ( ⁇ ), and the inclination angle of the inclined lumen is ( ⁇ ), Formula: 0.8D 2 ⁇ D 1 +2 (L 2 tan ⁇ L 1 tan ⁇ ) ⁇ 1.2 D 2 Is preferably established.
  • the liquid ejected from the irrigation opening through the inclined lumen reaches the electrode surface at the maximum diameter portion of the tip electrode, and reliably covers the entire surface of the tip electrode.
  • the “irrigation opening” may be formed across the distal diameter-reduced portion of the catheter shaft and the rear end portion of the distal electrode, and the distal edge of the irrigation opening in such a case is the rear end portion of the distal electrode. Will exist.
  • the catheter shaft diameter (D 1 ) is 1.0 to 3.0 mm
  • the distance (L 1 ) is 0.5 to 5.0 mm
  • the distance (L 2 ) is 1.5 to 7.0 mm
  • the inclination angle ( ⁇ ) is 5.0 to 30.0 °
  • the inclination angle ( ⁇ ) is preferably 5.0 to 30.0 °.
  • the ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion of the tip electrode to the outer diameter (D 1 ) of the catheter shaft is 1.0 to 1.2.
  • the outer diameter of the tip diameter-reduced portion or the tip electrode (non-spherical portion) at the tip edge of the irrigation opening is (D 3 ), and the shaft axis from the tip edge of the irrigation opening to the maximum diameter portion of the tip electrode
  • the liquid ejected from the irrigation opening through the inclined lumen reaches the electrode surface at the maximum diameter portion of the tip electrode, and reliably covers the entire surface of the tip electrode. Can be irrigated.
  • a temperature sensor is attached to the distal end side of the irrigation opening, specifically, a temperature sensor is attached to the inside of the distal electrode.
  • the electrode catheter having such a configuration, since the liquid flow path is not formed inside the tip electrode to which the temperature sensor is attached, the temperature sensor is not excessively cooled, and the periphery of the tip electrode Therefore, the temperature of the tissue can be accurately measured, and appropriate control of the ablation temperature can be performed.
  • the catheter shaft is a multi-lumen structure having a central lumen and a plurality of sub-lumens arranged at equiangular intervals around the central lumen, Among the plurality of sub-lumens, two sub-lumens arranged opposite to each other are inserted with a pull wire for deflection operation of the shaft tip, and the other sub-lumens constitute a lumen serving as a liquid flow path.
  • the inclined lumen is preferably formed so as to communicate with each of the lumens serving as the liquid flow paths.
  • the electrode catheter of the present invention it is possible to irrigate the liquid from the rear end side over the entire surface of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft. According to the electrode catheter of the present invention, an abnormal temperature rise does not occur in a part of the tip electrode during cauterization, it is excellent in the effect of cooling the surface of the tip electrode and the effect of suppressing thrombus formation on the surface of the tip electrode, Can perform efficient cauterization treatment.
  • FIG. 2 is a transverse sectional view (II-II sectional view of FIG. 1) of a catheter shaft constituting the ablation catheter shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG.
  • FIGS. 1 to 4A is an ablation catheter used for the treatment of arrhythmia in the heart.
  • the ablation catheter 100 of this embodiment includes a central lumen 13 through which a lead wire and the like are passed, and 10 sub-lumens (eight serving as a liquid flow path) arranged at equiangular intervals (36 ° intervals) around the central lumen 13.
  • An injection tube 80 and a temperature sensor (thermocouple) 90 mounted inside the tip electrode 20 are provided.
  • the tip diameter-reduced portion 10A is tapered toward the tip direction, and eight irrigation openings 112 for irrigating the liquid on the surface of the tip electrode 20 are disposed in the tip diameter-reduced portion 10A.
  • the distal end diameter-reduced portion 10A of the catheter shaft 10 communicates with each of the eight lumens 11 on the rear end side, and extends in the distal direction while inclining radially outward of the catheter shaft 10 so as to open for irrigation.
  • Eight inclined lumens 111 extending to each of 112 are formed.
  • FIG. 3 and FIG. 4A have shown the longitudinal cross-section cut
  • liquid 1 is connected to the catheter shaft 10 through the inside of the control handle 70, and the liquid is supplied to the lumen 11 of the catheter shaft 10 through the injection tube 80.
  • liquid physiological saline can be exemplified.
  • the control handle 70 shown in FIG. 1 is connected to the rear end side of the catheter tube 10 and includes a rotating plate 75 for performing a tip deflection operation of the catheter.
  • the catheter shaft 10 constituting the ablation catheter 100 is provided with a central lumen 13 through which a conducting wire (not shown) connected to the tip electrode 20 and the ring electrode 40 is passed, and the central lumen.
  • Ten sub-lumens formed at equal intervals around the central lumen 13 have the same outer diameter.
  • Tensile wires 31 and 32 for performing a tip deflection operation of the catheter are inserted into two lumens 12 of the ten sub-lumens, respectively.
  • the eight lumens 11 through which the pulling wires 31 and 32 are not inserted constitute a liquid flow path.
  • the rear ends of the tension wires 31 and 32 are connected to the rotating plate 75 (see FIG. 1) of the control handle 70, and the distal ends of the tension wires 31 and 32 are, for example, the distal end portion of the catheter shaft 10.
  • the connection is fixed.
  • Reference numeral 15 denotes a rigid body embedded in the catheter shaft 10 in order to surely perform the deflection operation by the pulling wires 31 and 32.
  • the rigid body 15 is made of a metal bar spring such as a Ni—Ti alloy, and has different bending directions due to the rigid bodies 15 and 15 arranged in a direction perpendicular to the bending direction (the arrangement direction of the tension wires 31 and 32). The direction can be secured.
  • the catheter shaft 10 may be made of a material having the same characteristics along the axial direction, but is preferably formed integrally using materials having different rigidity (hardness) along the axial direction. Specifically, it is preferable that the constituent material on the proximal end side has relatively high rigidity, and the constituent material on the distal end side has relatively low rigidity.
  • the catheter shaft 10 is made of a synthetic resin such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon, or PEBAX (polyether block amide).
  • the proximal end side of the catheter shaft 10 may be a blade tube obtained by braiding a tube made of these synthetic resins with a stainless steel wire.
  • the outer diameter (D 1 ) of the catheter shaft 10 (the outer diameter of the portion other than the reduced diameter portion 10A) is preferably 1.0 to 3.0 mm, more preferably 1.3 to 3.0 mm, and particularly preferably. Is 1.6 to 2.7 mm.
  • the length of the catheter shaft 10 is preferably 600 to 1500 mm, and more preferably 900 to 1200 mm.
  • the catheter shaft 10 has a distal diameter-reducing portion 10A that is reduced in diameter toward the distal direction, and an inclined lumen 111 is formed inside the distal-diameter reduced portion 10A.
  • the inclined lumen 111 communicates with the lumen 11 that is a liquid flow path on the rear end side, extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10, and opens on the outer peripheral surface of the reduced diameter portion 10 ⁇ / b> A. is doing.
  • This opening is the irrigation opening 112, and eight irrigation openings 112 are formed along the outer periphery of the tip reduced diameter portion 10A.
  • the rear end side of the inclined lumen may extend to the inside of the shaft portion located on the rear end side from the tip reduced diameter portion.
  • Each of the inclined lumens 111 extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10. Thereby, the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is ejected toward the distal end side in the axial direction of the catheter shaft 10 and outward in the radial direction. For this reason, it is possible to irrigate the surface of the tip electrode (tip electrode 20 having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft 10) having a certain size.
  • the distal electrode 20 constituting the ablation catheter 100 has a spherical portion 21, a neck portion 22, and a cylindrical portion 23. As shown in FIGS. 3 and 4A, the distal electrode 20 is connected to the distal end side of the catheter shaft 10 by the cylindrical portion 23 being inserted and fixed inside the distal reduced diameter portion 10A.
  • the diameter (D 2 ) of the spherical portion 21 corresponding to the maximum diameter of the tip electrode 20 is preferably 1.0 to 3.6 mm, more preferably 1.3 to 3.0 mm, and particularly preferably 2.2 to 2.6 mm.
  • the ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 to the outer diameter (D 1 ) of the catheter shaft 10 is usually 1.0 or more, preferably 1.0 to 1.2.
  • the ablation catheter 100 has a constricted shape (the constricted portion of the reduced diameter portion 10A of the catheter shaft 10 and the neck portion 22 of the distal electrode 20). Become).
  • a temperature sensor 90 made of a thermocouple or the like for controlling the ablation temperature is mounted inside the tip electrode 20. Further, the conducting wire 95 connected to the temperature sensor 90 is drawn through the central lumen 13. When the ablation catheter 100 is used (at the time of ablation treatment), the temperature sensor 90 measures the temperature of the tissue around the tip electrode 20, and this measurement temperature is fed back to control the ablation temperature (adjustment of high-frequency energy). .
  • the distance in the axial direction of the shaft from the rear end of the diameter-reduced portion 10A of the catheter shaft 10 to the tip edge of the irrigation opening 112 (the portion of the opening edge closest to the tip). (L 1 ), the distance in the axial direction of the shaft from the distal edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 (L 2 ), and the inclination angle in the reduced diameter portion 10 A of the catheter shaft 10 ( ⁇ )
  • the inclination angle of the inclined lumen 111 is ( ⁇ )
  • the outer diameter (the diameter of a circle connecting each of the plurality of tip edges) of the tip reduced diameter portion 10A on the tip edge of the irrigation opening 112 can be expressed as D 1 -2 ⁇ L 1 ⁇ tan ⁇ .
  • the liquid ejected in the distal direction from the distal edge of the irrigation opening 112 at the ejection angle equal to the inclination angle ( ⁇ ) of the inclined lumen 111 moves the shaft axis while moving the distance (L 2 ) in the shaft axis direction.
  • the distance L 2 ⁇ tan ⁇ is moved in a direction perpendicular to the direction (radial direction of the shaft).
  • an extrapolated line EX obtained by extrapolating (extending) an inner straight line defining the inclined lumen 111 schematically shows a path of liquid ejected from the tip edge of the irrigation opening 112. .
  • the ejected liquid proceeds while diffusing.
  • the distance in the axial direction of the shaft from the rear end of the reduced diameter portion 10A of the catheter shaft 10 to the front end edge of the irrigation opening 112 is 0.5-5. It is preferably 0 mm, and more preferably 1.0 to 3.0 mm. If this distance (L 1 ) is too small, the tilt angle of the tilt lumen 111 cannot be designed to be small, and the ejected liquid will spread too much, so that the liquid reaches the tip electrode 20 sufficiently. There is a risk that it will not. On the other hand, when the distance (L 1 ) is excessive, the distance of the inclined lumen 111 becomes too long, and the processing becomes difficult.
  • the ring-shaped electrode 40 cannot be provided on the inclined lumen 111, the distance between the ring-shaped electrode 40 and the tip electrode 20 becomes excessive, and it becomes difficult to design in accordance with a request to reduce the distance between these electrodes. Also occurs.
  • the inclination angle ( ⁇ ) at the distal diameter reduced portion 10A of the catheter shaft 10 is preferably 5.0 to 30.0 °, and more preferably 7.0 to 20.0 °.
  • the distance in the shaft axis direction (projection distance onto the central axis of the catheter shaft 10) (L 2 ) from the distal edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 is 1.5 to 7.0 mm.
  • the thickness is preferably 3.0 to 5.0 mm.
  • the inclination angle ( ⁇ ) of the inclined lumen 111 is preferably 5.0 to 30.0 °, and more preferably 9.0 to 15.0 °.
  • the inclination angle
  • this inclination angle ( ⁇ ) is excessive, it becomes difficult to direct the liquid ejected from the irrigation opening toward the distal end, and it is possible to efficiently reach the electrode surface of the maximum diameter portion. become unable.
  • 2 ⁇ L 2 ⁇ tan ⁇ indicates the degree of spread of the liquid to be ejected.
  • 2 ⁇ L 2 ⁇ tan ⁇ is excessive, it is difficult to direct the liquid ejected from the irrigation opening toward the distal end, and it becomes impossible to efficiently reach the electrode surface of the maximum diameter portion. .
  • the outer diameter (D 1 ) is 2.3 mm
  • the diameter (D 2 ) is 2.6 mm
  • the value of (D 2 / D 1 ) is 1.1.
  • the distance (L 1 ) is 1.0 mm
  • the inclination angle ( ⁇ ) is 12.0 °
  • the distance (L 2 ) is 2.8 mm
  • the inclination angle ( ⁇ ) is 7.0 °
  • D 1 +2 (L 2 Tan ⁇ L 1 tan ⁇ ) 2.6 mm, which is almost equal to the diameter (D 2 ).
  • the eight irrigation openings 112 are arranged in the tapered distal diameter-reducing portion 10A, so that the liquid ejected from each of the irrigation openings 112 is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode 20.
  • the liquid ejected from the rear end side (each of the irrigation openings 112 arranged in the distal diameter-reduced portion 10A of the catheter shaft 10) with respect to the distal electrode 20 is the rear end portion (neck portion) of the distal electrode 20 22) from the tip portion (spherical portion 21) toward the tip direction along the surface of the tip electrode 20, and blood around the tip electrode 20 is sufficiently agitated / diluted so that an irrigation mechanism is provided.
  • the effect of cooling the surface of the tip electrode 20 is excellent, and an excellent effect of suppressing thrombus formation is also obtained by sufficiently stirring and diluting the blood near the surface of the tip electrode 20.
  • each of the irrigation openings 112 is formed inside the reduced diameter portion 10A of the catheter shaft 10. Therefore, the liquid ejected from each of the irrigation openings 112 is ejected toward the outer side in the distal direction (the distal side in the axial direction of the catheter shaft 10 and the outer side in the radial direction).
  • the liquid ejection angle coincides with the inclination angle ( ⁇ ) of the inclined lumen 111.
  • the spherical portion 21 of the tip electrode 20 is equal to or larger than the outer diameter of the catheter shaft 10 (in particular, the outer diameter (D 1 Even if the liquid has a diameter (D 2 ) that is 1.0 to 1.2 times larger than), the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is allowed to flow at the maximum diameter portion of the tip electrode 20.
  • the electrode surface can be reached, and the entire surface of the tip electrode 20 including the maximum diameter portion and the tip side can be reliably irrigated.
  • the irrigation opening 112 is formed in the insulating catheter shaft 10 (tip reduced diameter portion 10A) and the conductive tip electrode 20 has no edge, when the ablation catheter 100 is used (at the time of cauterization). In this case, an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode 20, and the formation of thrombus formed by contact of blood with such high temperature part is suppressed.
  • the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 is not less than the outer diameter (D 1 ) of the catheter shaft 10, particularly 1.0 to 1.2 times the outer diameter (D 1 ). Since it is not necessary to form an irrigation opening in the electrode 20, a sufficient surface area can be secured, and efficient ablation treatment can be performed as an ablation catheter.
  • the temperature sensor 90 is attached to the tip side of the irrigation opening 112, there is no need to form a liquid flow path inside the tip electrode 20 to which the temperature sensor 90 is attached. 90 is not excessively cooled, and the temperature of the tissue around the tip electrode 20 can be accurately measured.
  • the value of D 1 +2 (L 2 ⁇ tan ⁇ L 1 ⁇ tan ⁇ ) was substantially equal to D 2.
  • the range value of D 1 +2 (L 2 ⁇ tan ⁇ -L 1 ⁇ tan ⁇ ) of 0.8D 2 ⁇ 1.2D 2 the liquid ejected from the irrigation opening, the maximum diameter of the tip electrode It was confirmed that the electrode surface could be reached and that the entire surface of the tip electrode could be reliably irrigated.
  • the ablation catheter 101 shown in FIG. 4B includes a catheter shaft 50 having ten sub-lumens (eight lumens 11 serving as liquid flow paths and two lumens serving as insertion passages for the pulling wire).
  • the catheter shaft 50 has a distal diameter-reducing portion 50A that is tapered toward the distal direction, and the distal diameter-reduced portion 50A has eight irrigation for irrigating the surface of the distal electrode 20.
  • An opening for use 114 is arranged, and the inside of the reduced diameter portion 50A of the catheter shaft 50 communicates with each of the eight lumens 11 on the rear end side, and in the distal direction while inclining radially outward of the catheter shaft 10.
  • Eight inclined lumens 113 extending to each of the irrigation openings 114 are formed.
  • FIG. 4B the same reference numerals are used for the same components as those of the ablation catheter 100 shown in FIG. 4A. 4B, two lumens 11 of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 113 of “eight inclined lumens 113”, “eight irrigation” Two of the irrigation openings 114 "are shown.
  • the inclination angle ( ⁇ ) of the inclined lumen 113 formed inside the distal diameter reduced portion 50A of the catheter shaft 50 is equal to the inclination angle ( ⁇ ) of the inclined lumen 111 in the ablation catheter 100 shown in FIG. 4A. ) Is different.
  • the outer diameter (D 1 ) is 2.3 mm
  • the outer diameter (D 2 ) is 2.6 mm
  • the value of (D 2 / D 1 ) is 1.1
  • the distance (L 1 ) is 1.0 mm
  • the inclination angle ( ⁇ ) is 7.0 °
  • the distance (L 2 ) is 2.8 mm
  • the inclination angle ( ⁇ ) is 10.5 °
  • D 1 +2 (L 2 Tan ⁇ L 1 tan ⁇ ) 3.1 mm, which is approximately 1.2 times the diameter (D 2 ).
  • the liquid ejected from the tip edge of the irrigation opening 114 can reach the electrode surface at the maximum diameter portion of the tip electrode 20, and the entire surface of the tip electrode 20 can be obtained. Can be reliably irrigated.
  • the ablation catheter 102 shown in FIG. 4C includes a catheter shaft 60 having 10 sub-lumens (eight lumens 11 serving as liquid flow paths and two lumens serving as insertion passages for the tension wires).
  • the catheter shaft 60 has a distal diameter-reducing portion 60A that decreases in a taper shape toward the distal direction, and the distal diameter-reduced portion 60A includes eight irrigations for irrigating the surface of the distal electrode 20.
  • An opening 116 is disposed, and the inside of the reduced diameter portion 60A of the catheter shaft 60 communicates with each of the eight lumens 11 on the rear end side, and in the distal direction while inclining radially outward of the catheter shaft 10.
  • Eight inclined lumens 115 are formed extending to each of the irrigation openings 116.
  • FIG. 4C the same reference numerals are used for the same components as those of the ablation catheter 100 shown in FIG. 4A. 4C, two lumens 11 of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 115 of “eight inclined lumens 115”, “eight irrigation” Two of the irrigation openings 116 "are shown.
  • the rear end portion (neck portion 22) of the distal electrode 20 constituting the ablation catheter 102 is continuous with each of the inclined lumens 115 and is inclined at the same angle as the inclination angle ( ⁇ ) of the inclined lumen 115. Is formed. Accordingly, the irrigation opening 116 is formed across the distal diameter-reduced portion 60A of the catheter shaft 60 and the neck portion 22 of the distal electrode 20, and the distal edge of such an irrigation opening 116 is formed on the distal electrode 20. It exists in the neck part 22.
  • the spray angle of the liquid sprayed from the tip edge of the irrigation opening 116 located in the neck portion 22 of the tip electrode 20 coincides with the tilt angle ( ⁇ ) of the tilt lumen 115. Can be made.
  • the outer diameter of the distal electrode 20 (neck portion 22) at the distal edge of the irrigation opening 116 is (D 3 )
  • the maximum diameter portion of the distal electrode 20 from the distal edge of the irrigation opening 116 (L 2 ) and the inclination angle of the inclined lumen 115 is ( ⁇ )
  • the value of D 3 +2 (L 2 ⁇ tan ⁇ ) is approximately 0.8D 2 .
  • the inclination angle ( ⁇ ) of the inclined lumen 115 formed inside the distal diameter reduced portion 60A of the catheter shaft 60 is such that the inclined lumen 111 in the ablation catheter 100 shown in FIG. 4A and FIG. It differs from any inclination angle ( ⁇ ) of the inclined lumen 113 in the ablation catheter 101 shown in FIG.
  • the outer diameter (D 1 ) is 2.3 mm
  • the outer diameter (D 2 ) is 2.8 mm
  • the value of (D 2 / D 1 ) is 1.2
  • the irrigation opening The outer diameter (D 3 ) of the tip electrode 20 at the tip edge of 116 is 1.7 mm
  • the distance (L 1 ) is 2.4 mm
  • the inclination angle ( ⁇ ) is 7.0 °
  • the distance (L 2 ) is 1.4 mm.
  • the inclination angle ( ⁇ ) is 12.0 °
  • D 3 +2 (L 2 ⁇ tan ⁇ ) 2.3 mm, which is approximately 0.8 times the diameter (D 2 ).
  • the liquid ejected from the tip edge of the irrigation opening 116 can reach the electrode surface at the maximum diameter portion of the tip electrode 20, and the entire surface of the tip electrode 20 can be obtained. Can be reliably irrigated.
  • the number of inclined lumens formed inside the tip diameter-reduced portion is not limited to 8, and can be appropriately selected within a range of 4 to 12, for example.
  • an intermediate member an intermediate member having a means for joining and / or diverting liquid
  • the number of the inclined lumens formed on the inner surface may be different from the number of the lumens (lumens serving as a liquid flow path) formed inside the portion other than the tip diameter-reduced portion.
  • a material different from the constituent material of the shaft portion other than the tip reduced diameter portion for example, polyether ether
  • Aromatic polyether ketone such as ketone (PEEK), ceramic material, etc.
  • PEEK ketone

Abstract

An electrode catheter is provided with a catheter shaft (10) having a lumen (11) serving as a pathway for a fluid, and a tip electrode (20) which is connected to the tip side of the shaft (10) and has a spherical portion (21) of a diameter equal to or greater than the outer diameter of the shaft (10), the shaft (10) having a tip-end reduced diameter section (10A) where the diameter reduces in a tapered fashion toward the tip direction, a plurality of irrigation holes (112) for irrigating the surface of the tip electrode (20) with the fluid being arranged at the tip-end reduced diameter section (10A), and a plurality of tilted lumens (111) extending in the tip direction and reaching each of the irrigation openings (112) while also tilting radially outward of the shaft (10) being formed on the interior of the tip-end reduced diameter section (10A) of the shaft (10). According to this electrode catheter, the entire surface of the tip electrode having the spherical portion of a diameter equal to or greater than the outer diameter of the catheter shaft can be irrigated with the fluid from the rear-end side.

Description

電極カテーテルElectrode catheter
 本発明は、電極カテーテルに関し、更に詳しくは、カテーテルの先端に電極が装着されるとともに、この電極に生理食塩水などの液体を灌注する機構を備えた電極カテーテルに関する。 The present invention relates to an electrode catheter, and more particularly to an electrode catheter having an electrode attached to the tip of the catheter and a mechanism for irrigating a liquid such as physiological saline to the electrode.
 電極カテーテルであるアブレーションカテーテルにおいて、焼灼時に高温となった先端電極を冷却するとともに、先端電極の周辺の血液を攪拌・希釈して先端電極の表面に血栓が形成されることを防止するために、灌注機構を備えているものが使用されている。 In the ablation catheter that is an electrode catheter, in order to cool the tip electrode that has become hot during cauterization and to stir and dilute blood around the tip electrode to prevent thrombus formation on the tip electrode surface, Those equipped with an irrigation mechanism are used.
 灌注機構を備えた従来のカテーテルとしては、カテーテルシャフトを通って先端電極の内部に供給された生理食塩水を当該先端電極の表面に形成された複数の開口から噴射するタイプのものが紹介されている(例えば特許文献1および特許文献2参照)。 As a conventional catheter provided with an irrigation mechanism, a catheter that injects physiological saline supplied through the catheter shaft into the tip electrode from a plurality of openings formed on the surface of the tip electrode has been introduced. (For example, see Patent Document 1 and Patent Document 2).
特許第2562861号公報Japanese Patent No. 2566281 特開2006-239414号公報JP 2006-239414 A
 しかしながら、先端電極の表面に灌注用の開口が形成されてなる従来公知のカテーテルには、下記(1)~(4)のような問題がある。 However, conventionally known catheters in which an irrigation opening is formed on the surface of the tip electrode have the following problems (1) to (4).
(1)先端電極の表面に開口を設けると、開口縁などに不可避的にエッジが形成される。そして、このようなエッジが形成されている先端電極によって焼灼を行うと、エッジ部分の電流密度がきわめて高くなり、この部分で異常な温度上昇が起きて、血栓が急速に形成される虞がある。
(2)先端電極の表面に形成された開口から生理食塩水を噴射しても、先端電極の表面に対して十分な灌注を行うこと(表面を液体で覆うこと)ができないため、先端電極の表面を十分に冷却することができず、また、表面における血栓の形成を十分に防止・抑制することができない。特に、先端電極の軸に対して垂直方向に生理食塩水を噴射する上記特許文献1および特許文献2に記載のカテーテルにおいては、先端電極の表面に対して生理食塩水を十分に接触させることができないため、電極表面の冷却効果および血栓の形成抑制効果はきわめて低いものである。
(3)複数の開口を電極表面に形成することにより、先端電極の表面積を十分に確保することができなくなり、効率的な焼灼治療を行うことができない。
(4)アブレーションカテーテルを構成する先端電極の内部には、通常、焼灼温度の制御のために、熱電対などの温度センサが装着されている。然るに、先端電極の表面に灌注用の開口が形成されている(先端電極の内部に生理食塩水の流路が形成されている)場合には、流路を流れる生理食塩水により温度センサが過度に冷却される結果、先端電極の周囲にある組織の温度を正確に測定することができずに低く検出してしまい、この結果、焼灼温度を必要以上に上昇させてしまうことがある。
(1) When an opening is provided on the surface of the tip electrode, an edge is inevitably formed at the opening edge or the like. When cauterization is performed with the tip electrode having such an edge, the current density in the edge portion becomes extremely high, and an abnormal temperature rise occurs in this portion, so that a thrombus may be rapidly formed. .
(2) Even if physiological saline is injected from the opening formed on the surface of the tip electrode, sufficient irrigation cannot be performed on the surface of the tip electrode (the surface is covered with a liquid). The surface cannot be sufficiently cooled, and the formation of thrombus on the surface cannot be sufficiently prevented or suppressed. In particular, in the catheters described in Patent Document 1 and Patent Document 2 that inject physiological saline in a direction perpendicular to the axis of the tip electrode, the saline can be sufficiently brought into contact with the surface of the tip electrode. Therefore, the effect of cooling the electrode surface and the effect of suppressing thrombus formation are extremely low.
(3) By forming a plurality of openings on the electrode surface, it is impossible to ensure a sufficient surface area of the tip electrode, and efficient cauterization treatment cannot be performed.
(4) A temperature sensor such as a thermocouple is usually mounted inside the distal electrode constituting the ablation catheter in order to control the ablation temperature. However, when an opening for irrigation is formed on the surface of the tip electrode (a saline flow path is formed inside the tip electrode), the temperature sensor is excessive due to the saline flowing through the flow path. As a result of the cooling, the temperature of the tissue around the tip electrode cannot be accurately measured and is detected low, and as a result, the ablation temperature may be increased more than necessary.
 上記(1)~(4)のような問題を解決するために、先端電極の表面に対して外側(後端側)から液体を灌注することが考えられる。
 しかしながら、先端電極の表面に液体を灌注するための開口を、カテーテルシャフトの
先端面(シャフト軸に垂直な先端面)に形成する場合には、液体を灌注可能な先端電極はきわめて小さいもの(例えば、複数の開口が円周上に配置されている場合に、当該円周の内側に納まるサイズ)となり、そのような先端電極を備えたアブレーションカテーテルによっては、効率的な焼灼治療を行うことはできない。
 一方、灌注用開口をカテーテルシャフトの外周面に形成する場合には、開口からの液体はシャフト軸に垂直な方向に噴射され、先端電極に向けて噴射することはできない。
In order to solve the problems (1) to (4), it is conceivable to irrigate the liquid from the outside (rear end side) with respect to the surface of the tip electrode.
However, when an opening for irrigating liquid on the surface of the tip electrode is formed on the tip surface of the catheter shaft (tip surface perpendicular to the shaft axis), the tip electrode capable of irrigating the liquid is extremely small (for example, When a plurality of openings are arranged on the circumference, the size fits inside the circumference), and efficient ablation treatment cannot be performed by an ablation catheter equipped with such a tip electrode. .
On the other hand, when the irrigation opening is formed on the outer peripheral surface of the catheter shaft, the liquid from the opening is ejected in a direction perpendicular to the shaft axis and cannot be ejected toward the tip electrode.
 本発明は以上のような事情に基いてなされたものである。
 本発明の第1の目的は、カテーテルシャフトの外径以上の直径の球状部分を有する先端電極の表面に対して後端側から液体を灌注することができる電極カテーテルを提供することにある。
 本発明の第2の目的は、カテーテルシャフトの外径以上の直径の球状部分を有する先端電極の表面全域に対して液体を灌注することができる電極カテーテルを提供することにある。
 本発明の第3の目的は、焼灼時において先端電極の一部に異常な温度上昇(高温部)を生じることがなく、先端電極表面の冷却効果および先端電極表面における血栓の形成抑制効果に優れ、しかも、効率的な焼灼治療を行うことができる、灌注機構を備えた電極カテーテルを提供することにある。
 本発明の第4の目的は、先端電極の周囲にある組織の温度を正確に測定することができ、焼灼温度の制御を適正に行うことができる、灌注機構を備えた電極カテーテルを提供することにある。
The present invention has been made based on the above situation.
A first object of the present invention is to provide an electrode catheter capable of irrigating a liquid from the rear end side with respect to the surface of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
A second object of the present invention is to provide an electrode catheter capable of irrigating a liquid over the entire surface of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
The third object of the present invention is that an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode during cauterization, and is excellent in the cooling effect of the tip electrode surface and the thrombus formation suppressing effect on the tip electrode surface. And it is providing the electrode catheter provided with the irrigation mechanism which can perform an efficient cauterization treatment.
A fourth object of the present invention is to provide an electrode catheter equipped with an irrigation mechanism that can accurately measure the temperature of the tissue around the tip electrode and can appropriately control the ablation temperature. It is in.
(1)本発明の電極カテーテルは、液体の流路となるルーメンを有するカテーテルシャフトと、
 このカテーテルシャフトの先端側に接続され、前記カテーテルシャフトの外径以上の直径の球状部分を有する先端電極とを備えてなり、
 前記カテーテルシャフトは、先端方向に向かってテーパ状に縮径する先端縮径部を有し、この先端縮径部には、前記先端電極の表面に液体を灌注するための複数の灌注用開口が配置され、
 前記カテーテルシャフトの先端縮径部の内部には、当該カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて前記灌注用開口の各々に至る複数の傾斜ルーメンが形成されていることを特徴とする。
(1) The electrode catheter of the present invention includes a catheter shaft having a lumen serving as a liquid flow path,
Connected to the distal end side of this catheter shaft, comprising a tip electrode having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft,
The catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode. Arranged,
A plurality of inclined lumens extending in the distal direction while being inclined radially outward of the catheter shaft and reaching each of the irrigation openings are formed inside the reduced diameter portion of the catheter shaft. To do.
 このような構成の電極カテーテルによれば、カテーテルシャフトの先端縮径部に複数の灌注用開口が配置されていることにより、複数の灌注用開口の各々から噴射される液体を先端方向に向かわせることができるので、先端電極の表面に対して後端側から液体を噴射することができる。
 複数の灌注用開口の各々から先端電極に噴射された液体は、先端電極の表面に沿うようにして先端方向に流れるので、灌注機構を備えた従来のカテーテルと比較して先端電極の表面の冷却効果に優れるとともに、先端電極の表面付近の血液が十分に攪拌・希釈されることによっても優れた血栓形成抑制効果が奏される。
According to the electrode catheter having such a configuration, a plurality of irrigation openings are arranged in the reduced diameter portion of the catheter shaft, so that the liquid ejected from each of the plurality of irrigation openings is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode.
The liquid sprayed to the tip electrode from each of the plurality of irrigation openings flows in the tip direction along the surface of the tip electrode, so that the surface of the tip electrode is cooled compared to a conventional catheter having an irrigation mechanism. In addition to being excellent in effect, the blood in the vicinity of the surface of the tip electrode is sufficiently agitated and diluted to exert an excellent thrombus formation suppressing effect.
 さらに、カテーテルシャフトの先端縮径部の内部には、カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて灌注用開口の各々に至る複数の傾斜ルーメンが形成されているので、先端電極の球状部分の直径(先端電極の最大径)がカテーテルシャフトの外径以上であっても、この傾斜ルーメンを通って灌注用開口から噴射される液体を、先端電極の最大径部における電極表面に到達させ、最大径部およびその先端側を含む先端電極の表面全域に対して灌注することができる。 Further, a plurality of inclined lumens extending in the distal direction while being inclined radially outward of the catheter shaft and reaching each of the irrigation openings are formed inside the reduced diameter portion of the catheter shaft. Even if the diameter of the spherical part (the maximum diameter of the tip electrode) is equal to or larger than the outer diameter of the catheter shaft, the liquid ejected from the irrigation opening through this inclined lumen reaches the electrode surface at the maximum diameter part of the tip electrode. And irrigating the entire surface of the tip electrode including the maximum diameter portion and the tip side thereof.
 また、このような構成の電極カテーテルによれば、灌注用開口がカテーテルシャフトに形成されているので、先端電極には開口を形成する必要がない。これにより、先端電極には、開口の形成に伴うエッジが存在しないので、焼灼時において先端電極の一部に異常な温度上昇を生じることはなく、これにより、血栓の形成が抑制される。
 従って、本発明の電極カテーテルは、灌注機構を備えた従来公知のカテーテルと比較して、先端電極表面における血栓形成抑制効果が格段に優れている。
Further, according to the electrode catheter having such a configuration, since the irrigation opening is formed in the catheter shaft, it is not necessary to form an opening in the tip electrode. As a result, since there is no edge associated with the formation of the opening in the tip electrode, an abnormal temperature rise does not occur in a part of the tip electrode during cauterization, thereby suppressing thrombus formation.
Therefore, the electrode catheter of the present invention is remarkably superior in the thrombus formation suppressing effect on the tip electrode surface as compared with a conventionally known catheter having an irrigation mechanism.
 また、先端電極の球状部分の直径がカテーテルシャフトの外径以上であるとともに、先端電極には開口を形成する必要がないので、十分な表面積を確保することができ、アブレーションカテーテルとして効率的な焼灼治療を行うことができる。 In addition, since the diameter of the spherical portion of the tip electrode is equal to or larger than the outer diameter of the catheter shaft, and it is not necessary to form an opening in the tip electrode, a sufficient surface area can be secured, and an efficient cauterization as an ablation catheter Can be treated.
(2)本発明の電極カテーテルにおいて、前記カテーテルシャフトの外径(D)に対する前記先端電極の球状部分の直径(D)の比率(D/D)が1.0~1.2であり、
 前記カテーテルシャフトの先端縮径部の後端から前記灌注用開口の先端縁までのシャフト軸方向の距離を(L)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記カテーテルシャフトの先端縮径部における傾斜角度を(β)、前記傾斜ルーメンの傾斜角度を(α)とするとき、
  式:0.8D≦D+2(L・tanα-L・tanβ)≦1.2D
が成立することが好ましい。
(2) In the electrode catheter of the present invention, the ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion of the tip electrode to the outer diameter (D 1 ) of the catheter shaft is 1.0 to 1.2. And
The distance in the axial direction from the rear end of the reduced diameter portion of the catheter shaft to the distal end edge of the irrigation opening (L 1 ), and the shaft from the distal end edge of the irrigation opening to the maximum diameter portion of the distal electrode When the axial distance is (L 2 ), the inclination angle at the reduced diameter portion of the catheter shaft is (β), and the inclination angle of the inclined lumen is (α),
Formula: 0.8D 2 ≦ D 1 +2 (L 2 tan α−L 1 tan β) ≦ 1.2 D 2
Is preferably established.
 このような構成の電極カテーテルによれば、傾斜ルーメンを通って灌注用開口から噴射される液体を、先端電極の最大径部における電極表面に到達させて、先端電極の表面全域に対して確実に灌注することができる。
 なお、「灌注用開口」は、カテーテルシャフトの先端縮径部および先端電極の後端部にまたがって形成されていてもよく、かかる場合における灌注用開口の先端縁は、先端電極の後端部に存在することとなる。
According to the electrode catheter having such a configuration, the liquid ejected from the irrigation opening through the inclined lumen reaches the electrode surface at the maximum diameter portion of the tip electrode, and reliably covers the entire surface of the tip electrode. Can be irrigated.
The “irrigation opening” may be formed across the distal diameter-reduced portion of the catheter shaft and the rear end portion of the distal electrode, and the distal edge of the irrigation opening in such a case is the rear end portion of the distal electrode. Will exist.
(3)上記(2)の電極カテーテルにおいて、前記カテーテルシャフトの直径(D)が1.0~3.0mm、
 前記距離(L)が0.5~5.0mm、
 前記距離(L)が1.5~7.0mm、
 前記傾斜角度(β)が5.0~30.0°、
 前記傾斜角度(α)が5.0~30.0°であることが好ましい。
(3) In the electrode catheter of (2), the catheter shaft diameter (D 1 ) is 1.0 to 3.0 mm,
The distance (L 1 ) is 0.5 to 5.0 mm,
The distance (L 2 ) is 1.5 to 7.0 mm,
The inclination angle (β) is 5.0 to 30.0 °,
The inclination angle (α) is preferably 5.0 to 30.0 °.
(4)本発明の電極カテーテルにおいて、前記カテーテルシャフトの外径(D)に対する前記先端電極の球状部分の直径(D)の比率(D/D)が1.0~1.2であり、
 前記灌注用開口の先端縁における前記先端縮径部または前記先端電極(非球状部分)の外径を(D)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記傾斜ルーメンの傾斜角度を(α)とするとき、
  式:0.8D≦D+2(L・tanα)≦1.2D
が成立することが好ましい。
(4) In the electrode catheter of the present invention, the ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion of the tip electrode to the outer diameter (D 1 ) of the catheter shaft is 1.0 to 1.2. And
The outer diameter of the tip diameter-reduced portion or the tip electrode (non-spherical portion) at the tip edge of the irrigation opening is (D 3 ), and the shaft axis from the tip edge of the irrigation opening to the maximum diameter portion of the tip electrode When the direction distance is (L 2 ) and the inclination angle of the inclined lumen is (α),
Formula: 0.8D 2 ≦ D 3 +2 (L 2 · tan α) ≦ 1.2D 2
Is preferably established.
 このような構成の電極カテーテルによれば、傾斜ルーメンを通って灌注用開口から噴射される液体を、先端電極の最大径部における電極表面に到達させて、先端電極の表面全域に対して確実に灌注することができる。 According to the electrode catheter having such a configuration, the liquid ejected from the irrigation opening through the inclined lumen reaches the electrode surface at the maximum diameter portion of the tip electrode, and reliably covers the entire surface of the tip electrode. Can be irrigated.
(5)本発明の電極カテーテルにおいて、前記灌注用開口より先端側に温度センサが装着されていること、具体的には、前記先端電極の内部に温度センサが装着されていることが
好ましい。
(5) In the electrode catheter of the present invention, it is preferable that a temperature sensor is attached to the distal end side of the irrigation opening, specifically, a temperature sensor is attached to the inside of the distal electrode.
 このような構成の電極カテーテルによれば、温度センサが装着される先端電極の内部に、液体の流路が形成されていないので、温度センサが過度に冷却されることはなく、先端電極の周囲における組織の温度を正確に測定することができ、焼灼温度についての適正な制御を行うことができる。 According to the electrode catheter having such a configuration, since the liquid flow path is not formed inside the tip electrode to which the temperature sensor is attached, the temperature sensor is not excessively cooled, and the periphery of the tip electrode Therefore, the temperature of the tissue can be accurately measured, and appropriate control of the ablation temperature can be performed.
(6)本発明の電極カテーテルにおいて、前記カテーテルシャフトは、中央ルーメンと、この中央ルーメンの周囲に等角度間隔で配置された複数のサブルーメンとを有するマルチルーメン構造体であり、
 前記複数のサブルーメンのうち、対向配置された2本のサブルーメンには、シャフトの先端偏向操作用の引張ワイヤが挿通され、それ以外のサブルーメンにより、液体の流路となるルーメンが構成され、
 前記傾斜ルーメンは、前記液体の流路となるルーメンの各々と連通するように形成されていることが好ましい。
(6) In the electrode catheter of the present invention, the catheter shaft is a multi-lumen structure having a central lumen and a plurality of sub-lumens arranged at equiangular intervals around the central lumen,
Among the plurality of sub-lumens, two sub-lumens arranged opposite to each other are inserted with a pull wire for deflection operation of the shaft tip, and the other sub-lumens constitute a lumen serving as a liquid flow path. ,
The inclined lumen is preferably formed so as to communicate with each of the lumens serving as the liquid flow paths.
 本発明の電極カテーテルによれば、カテーテルシャフトの外径以上の直径の球状部分を有する先端電極の表面全域に対して後端側から液体を灌注することができる。
 本発明の電極カテーテルによれば、焼灼時において先端電極の一部に異常な温度上昇が生じることがなく、先端電極の表面の冷却効果および先端電極の表面における血栓の形成抑制効果に優れ、しかも、効率的な焼灼治療を行うことができる。
According to the electrode catheter of the present invention, it is possible to irrigate the liquid from the rear end side over the entire surface of the tip electrode having a spherical portion having a diameter equal to or larger than the outer diameter of the catheter shaft.
According to the electrode catheter of the present invention, an abnormal temperature rise does not occur in a part of the tip electrode during cauterization, it is excellent in the effect of cooling the surface of the tip electrode and the effect of suppressing thrombus formation on the surface of the tip electrode, Can perform efficient cauterization treatment.
本発明の電極カテーテルの一実施形態に係るアブレーションカテーテルの正面図である。It is a front view of the ablation catheter which concerns on one Embodiment of the electrode catheter of this invention. 図1に示したアブレーションカテーテルを構成するカテーテルシャフトの横断面図(図1のII-II断面図)である。FIG. 2 is a transverse sectional view (II-II sectional view of FIG. 1) of a catheter shaft constituting the ablation catheter shown in FIG. 図1に示したアブレーションカテーテルの先端部分の内部を示す縦断面図(図2の III-III 断面図)である。FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG. 図1に示したアブレーションカテーテルの先端部分の内部を示す縦断面図(図2の III-III 断面図)である。FIG. 3 is a longitudinal sectional view showing the inside of the distal end portion of the ablation catheter shown in FIG. 本発明の電極カテーテルの他の実施形態に係るアブレーションカテーテルの先端部分の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the front-end | tip part of the ablation catheter which concerns on other embodiment of the electrode catheter of this invention. 本発明の電極カテーテルの更に他の実施形態に係るアブレーションカテーテルの先端部分の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the front-end | tip part of the ablation catheter which concerns on other embodiment of the electrode catheter of this invention.
<第1実施形態>
 以下、本発明の電極カテーテルの一実施形態について図面を用いて説明する。
 図1乃至図4Aに示す電極カテーテルは、心臓における不整脈の治療に用いられるアブレーションカテーテルである。
<First Embodiment>
Hereinafter, an embodiment of an electrode catheter of the present invention will be described with reference to the drawings.
The electrode catheter shown in FIGS. 1 to 4A is an ablation catheter used for the treatment of arrhythmia in the heart.
 この実施形態のアブレーションカテーテル100は、リード線などが引き通される中央ルーメン13およびその周りに等角度間隔(36°間隔)で配置された10本のサブルーメン(液体の流路となる8本のルーメン11、および引張ワイヤ31,32の挿通路となる2本のルーメン12)を有するカテーテルシャフト10と、カテーテルシャフト10の先端側に接続され、カテーテルシャフト10の外径(D)以上の直径(D)の球状部分21を有する先端電極20と、カテーテルシャフト10の先端部分に装着されたリング状電極40と、カテーテルシャフト10の後端側に接続された制御ハンドル70と、液体
の注入管80と、先端電極20の内部に装着された温度センサ(熱電対)90とを備えてなり、カテーテルシャフト10は、先端方向に向かってテーパ状に縮径する先端縮径部10Aを有し、この先端縮径部10Aには、先端電極20の表面に液体を灌注するための8つの灌注用開口112が配置され、カテーテルシャフト10の先端縮径部10Aの内部には、後端側において8本のルーメン11の各々に連通し、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口112の各々に至る8本の傾斜ルーメン111が形成されている。
The ablation catheter 100 of this embodiment includes a central lumen 13 through which a lead wire and the like are passed, and 10 sub-lumens (eight serving as a liquid flow path) arranged at equiangular intervals (36 ° intervals) around the central lumen 13. A catheter shaft 10 having two lumens 12) serving as insertion passages for the lumen 11 and the pulling wires 31, 32, and a catheter shaft 10 connected to the distal end side of the catheter shaft 10 and having an outer diameter (D 1 ) or larger. A tip electrode 20 having a spherical portion 21 having a diameter (D 2 ), a ring electrode 40 attached to the tip portion of the catheter shaft 10, a control handle 70 connected to the rear end side of the catheter shaft 10, and a liquid An injection tube 80 and a temperature sensor (thermocouple) 90 mounted inside the tip electrode 20 are provided. The tip diameter-reduced portion 10A is tapered toward the tip direction, and eight irrigation openings 112 for irrigating the liquid on the surface of the tip electrode 20 are disposed in the tip diameter-reduced portion 10A. The distal end diameter-reduced portion 10A of the catheter shaft 10 communicates with each of the eight lumens 11 on the rear end side, and extends in the distal direction while inclining radially outward of the catheter shaft 10 so as to open for irrigation. Eight inclined lumens 111 extending to each of 112 are formed.
 ここに、図3および図4Aは、図2に示す中央ルーメン13および2本のルーメン11の中心軸を含む平面で切断した縦断面を示している。
 従って、図3および図4Aでは、「液体の流路となる8本のルーメン11」のうちの2本のルーメン11、「8本の傾斜ルーメン111」のうちの2本の傾斜ルーメン111、「8つの灌注用開口112」のうちの2つ灌注用開口112のみが示されている。
Here, FIG. 3 and FIG. 4A have shown the longitudinal cross-section cut | disconnected by the plane containing the central axis of the central lumen 13 and the two lumens 11 shown in FIG.
Therefore, in FIG. 3 and FIG. 4A, two lumens 11 of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 111 of “eight inclined lumens 111”, “ Only two irrigation openings 112 of the eight irrigation openings 112 "are shown.
 図1に示した注入管80は、制御ハンドル70の内部を通ってカテーテルシャフト10に接続されており、この注入管80を通って、カテーテルシャフト10のルーメン11に液体が供給される。ここに、「液体」としては、生理食塩水を例示することができる。 1 is connected to the catheter shaft 10 through the inside of the control handle 70, and the liquid is supplied to the lumen 11 of the catheter shaft 10 through the injection tube 80. Here, as the “liquid”, physiological saline can be exemplified.
 図1に示した制御ハンドル70は、カテーテルチューブ10の後端側に接続されており、カテーテルの先端偏向操作を行うための回転板75を備えている。 The control handle 70 shown in FIG. 1 is connected to the rear end side of the catheter tube 10 and includes a rotating plate 75 for performing a tip deflection operation of the catheter.
 図2に示すように、アブレーションカテーテル100を構成するカテーテルシャフト10には、先端電極20やリング状電極40に接続された導線等(図示省略)が引き通される中央ルーメン13と、この中央ルーメン13の周りに等角度(36°=360°/10)の間隔で配置された10本のサブルーメンが形成されている。 As shown in FIG. 2, the catheter shaft 10 constituting the ablation catheter 100 is provided with a central lumen 13 through which a conducting wire (not shown) connected to the tip electrode 20 and the ring electrode 40 is passed, and the central lumen. Ten sub-lumens arranged at equiangular intervals (36 ° = 360 ° / 10) around 13 are formed.
 中央ルーメン13の周りに等間隔で形成された10本のサブルーメンは、互いに同一の外径を有している。10本のサブルーメンのうちの2本のルーメン12には、カテーテルの先端偏向操作を行うための引張ワイヤ31,32がそれぞれ挿通されている。
 そして、引張ワイヤ31,32が挿通されていない8本のルーメン11によって液体の流路が構成されている。
Ten sub-lumens formed at equal intervals around the central lumen 13 have the same outer diameter. Tensile wires 31 and 32 for performing a tip deflection operation of the catheter are inserted into two lumens 12 of the ten sub-lumens, respectively.
The eight lumens 11 through which the pulling wires 31 and 32 are not inserted constitute a liquid flow path.
 図2に示す引張ワイヤ31,32は、それぞれの後端が、制御ハンドル70の回転板75(図1参照)に連結され、引張ワイヤ31,32の先端は、例えば、カテーテルシャフト10の先端部に接続固定されている。
 これにより、例えば、図1に示すA1方向に回転板75を回転させると、引張ワイヤ31が引っ張られ、アブレーションカテーテル100の先端部分が矢印A方向に偏向動作し、図1に示すB1方向に回転板75を回転させると、引張ワイヤ32が引っ張られ、アブレーションカテーテル100の先端部分が矢印B方向に偏向動作する。
2, the rear ends of the tension wires 31 and 32 are connected to the rotating plate 75 (see FIG. 1) of the control handle 70, and the distal ends of the tension wires 31 and 32 are, for example, the distal end portion of the catheter shaft 10. The connection is fixed.
Thereby, for example, when the rotating plate 75 is rotated in the A1 direction shown in FIG. 1, the pulling wire 31 is pulled, and the distal end portion of the ablation catheter 100 is deflected in the arrow A direction and rotated in the B1 direction shown in FIG. When the plate 75 is rotated, the pulling wire 32 is pulled, and the distal end portion of the ablation catheter 100 is deflected in the arrow B direction.
 15は、引張ワイヤ31,32による偏向操作を確実に行わせるためにカテーテルシャフト10内に埋め込まれた剛性体である。
 剛性体15は、Ni-Ti合金などの金属製の棒ばねからなり、曲げ方向(引張ワイヤ31,32の配列方向)に対して垂直方向に配列された剛性体15,15により曲げ方向の異方性を担保することができる。
Reference numeral 15 denotes a rigid body embedded in the catheter shaft 10 in order to surely perform the deflection operation by the pulling wires 31 and 32.
The rigid body 15 is made of a metal bar spring such as a Ni—Ti alloy, and has different bending directions due to the rigid bodies 15 and 15 arranged in a direction perpendicular to the bending direction (the arrangement direction of the tension wires 31 and 32). The direction can be secured.
 カテーテルシャフト10は、軸方向に沿って同じ特性の材料で構成してもよいが、軸方向に沿って剛性(硬度)の異なる材料を用いて一体的に形成することが好ましい。具体的には、近位端側の構成材料が相対的に高い剛性を有し、遠位端側の構成材料が相対的に低い剛性を有するものであることが好ましい。 The catheter shaft 10 may be made of a material having the same characteristics along the axial direction, but is preferably formed integrally using materials having different rigidity (hardness) along the axial direction. Specifically, it is preferable that the constituent material on the proximal end side has relatively high rigidity, and the constituent material on the distal end side has relatively low rigidity.
 カテーテルシャフト10は、例えばポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン、ナイロン、PEBAX(ポリエーテルブロックアミド)などの合成樹脂で構成される。また、カテーテルシャフト10の近位端側は、これらの合成樹脂からなるチューブをステンレス素線で編組したブレードチューブであってもよい。 The catheter shaft 10 is made of a synthetic resin such as polyolefin, polyamide, polyether polyamide, polyurethane, nylon, or PEBAX (polyether block amide). The proximal end side of the catheter shaft 10 may be a blade tube obtained by braiding a tube made of these synthetic resins with a stainless steel wire.
 カテーテルシャフト10の外径(D)(先端縮径部10A以外の部分の外径)は1.0~3.0mmであることが好ましく、更に好ましくは1.3~3.0mm、特に好ましくは1.6~2.7mmとされる。
 カテーテルシャフト10の長さは600~1500mmであることが好ましく、更に好ましくは900~1200mmとされる。
The outer diameter (D 1 ) of the catheter shaft 10 (the outer diameter of the portion other than the reduced diameter portion 10A) is preferably 1.0 to 3.0 mm, more preferably 1.3 to 3.0 mm, and particularly preferably. Is 1.6 to 2.7 mm.
The length of the catheter shaft 10 is preferably 600 to 1500 mm, and more preferably 900 to 1200 mm.
 図3および図4Aに示すように、カテーテルシャフト10は、先端方向に向かって縮径する先端縮径部10Aを有しており、この先端縮径部10Aの内部には傾斜ルーメン111が形成されている。
 傾斜ルーメン111は、その後端側において液体の流路であるルーメン11と連通しているとともに、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延び、先端縮径部10Aの外周面において開口している。この開口が灌注用開口112であり、先端縮径部10Aの外周に沿って8つの灌注用開口112が形成されている。
 なお、本発明において、傾斜ルーメンの後端側は、先端縮径部より後端側に位置するシャフト部分の内部まで延びていてもよい。
As shown in FIGS. 3 and 4A, the catheter shaft 10 has a distal diameter-reducing portion 10A that is reduced in diameter toward the distal direction, and an inclined lumen 111 is formed inside the distal-diameter reduced portion 10A. ing.
The inclined lumen 111 communicates with the lumen 11 that is a liquid flow path on the rear end side, extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10, and opens on the outer peripheral surface of the reduced diameter portion 10 </ b> A. is doing. This opening is the irrigation opening 112, and eight irrigation openings 112 are formed along the outer periphery of the tip reduced diameter portion 10A.
In the present invention, the rear end side of the inclined lumen may extend to the inside of the shaft portion located on the rear end side from the tip reduced diameter portion.
 傾斜ルーメン111の各々は、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びている。これにより、傾斜ルーメン111を通って灌注用開口112から噴射される液体は、カテーテルシャフト10の軸方向における先端側で、かつ半径方向における外側に向けて噴射される。このため、ある程度サイズの大きな先端電極(カテーテルシャフト10の外径以上の直径の球状部分を有する先端電極20)の表面に対しても灌注することが可能になる。 Each of the inclined lumens 111 extends in the distal direction while being inclined outward in the radial direction of the catheter shaft 10. Thereby, the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is ejected toward the distal end side in the axial direction of the catheter shaft 10 and outward in the radial direction. For this reason, it is possible to irrigate the surface of the tip electrode (tip electrode 20 having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft 10) having a certain size.
 アブレーションカテーテル100を構成する先端電極20は、球状部分21と、頸部22と、円筒状部分23とを有する。
 図3および図4Aに示すように、先端電極20は、その円筒状部分23が、先端縮径部10Aの内部に挿入固着されることにより、カテーテルシャフト10の先端側に接続される。
The distal electrode 20 constituting the ablation catheter 100 has a spherical portion 21, a neck portion 22, and a cylindrical portion 23.
As shown in FIGS. 3 and 4A, the distal electrode 20 is connected to the distal end side of the catheter shaft 10 by the cylindrical portion 23 being inserted and fixed inside the distal reduced diameter portion 10A.
 先端電極20の最大径に相当する球状部分21の直径(D)は1.0~3.6mmであることが好ましく、更に好ましくは1.3~3.0mm、特に好ましくは2.2~2.6mmとされる。 The diameter (D 2 ) of the spherical portion 21 corresponding to the maximum diameter of the tip electrode 20 is preferably 1.0 to 3.6 mm, more preferably 1.3 to 3.0 mm, and particularly preferably 2.2 to 2.6 mm.
 カテーテルシャフト10の外径(D)に対する先端電極20の球状部分21の直径(D)の比率(D/D)としては、通常1.0以上とされ、好ましくは1.0~1.2とされる。
 比率(D/D)が1.0以上であることにより、アブレーションカテーテル100は括れ形状を有するものとなる(カテーテルシャフト10の先端縮径部10Aおよび先端電極20の頸部22が括れ部分となる)。
The ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 to the outer diameter (D 1 ) of the catheter shaft 10 is usually 1.0 or more, preferably 1.0 to 1.2.
When the ratio (D 2 / D 1 ) is 1.0 or more, the ablation catheter 100 has a constricted shape (the constricted portion of the reduced diameter portion 10A of the catheter shaft 10 and the neck portion 22 of the distal electrode 20). Become).
 (D/D)の値が過小である場合には、そのような先端電極を備えたカテーテルによっては効率的な焼灼治療を行うことが困難となる。
 他方、(D/D)の値が過大である場合には、そのような先端電極の表面に対して十分な量の液体を灌注すること(十分に冷却効果・血栓の形成抑制効果を発現させること)が困難となる。
When the value of (D 2 / D 1 ) is too small, it becomes difficult to perform efficient cauterization treatment with a catheter provided with such a tip electrode.
On the other hand, when the value of (D 2 / D 1 ) is excessive, a sufficient amount of liquid is irrigated onto the surface of such a tip electrode (a sufficient cooling effect and thrombus formation suppressing effect is obtained). It is difficult to express).
 図3および図4Aに示すように、先端電極20の内部には、焼灼温度を制御するための熱電対等からなる温度センサ90が装着されている。また、温度センサ90に接続された導線95は、中央ルーメン13に引き通されている。
 アブレーションカテーテル100の使用時(焼灼治療時)に、温度センサ90によって、先端電極20の周辺組織の温度が測定され、この測定温度がフィードバックされて焼灼温度の制御(高周波エネルギーの調整)が行われる。
As shown in FIGS. 3 and 4A, a temperature sensor 90 made of a thermocouple or the like for controlling the ablation temperature is mounted inside the tip electrode 20. Further, the conducting wire 95 connected to the temperature sensor 90 is drawn through the central lumen 13.
When the ablation catheter 100 is used (at the time of ablation treatment), the temperature sensor 90 measures the temperature of the tissue around the tip electrode 20, and this measurement temperature is fed back to control the ablation temperature (adjustment of high-frequency energy). .
 この実施形態のアブレーションカテーテル100において、カテーテルシャフト10の先端縮径部10Aの後端から、灌注用開口112の先端縁(開口縁のうち、最も先端側にある部分)までのシャフト軸方向の距離を(L)、灌注用開口112の先端縁から先端電極20の最大径部までのシャフト軸方向の距離を(L)、カテーテルシャフト10の先端縮径部10Aにおける傾斜角度を(β)、傾斜ルーメン111の傾斜角度を(α)とするとき、下記の式が成立する。 In the ablation catheter 100 of this embodiment, the distance in the axial direction of the shaft from the rear end of the diameter-reduced portion 10A of the catheter shaft 10 to the tip edge of the irrigation opening 112 (the portion of the opening edge closest to the tip). (L 1 ), the distance in the axial direction of the shaft from the distal edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 (L 2 ), and the inclination angle in the reduced diameter portion 10 A of the catheter shaft 10 (β) When the inclination angle of the inclined lumen 111 is (α), the following equation is established.
 式:D+2(L・tanα-L・tanβ)≒D Formula: D 1 +2 (L 2 · tan α−L 1 · tan β) ≈D 2
 ここに、灌注用開口112の先端縁上での先端縮径部10Aの外径(複数の先端縁の各々を結ぶ円の直径)は、D-2・L・tanβで表すことができる。
 一方、傾斜ルーメン111の傾斜角度(α)と等しい噴射角度で、灌注用開口112の先端縁から先端方向に噴射された液体は、シャフト軸方向に距離(L)移動する間に、シャフト軸方向とは垂直な方向(シャフトの半径方向)に、L・tanαの距離を移動する。
 これにより、灌注用開口112の先端縁から噴射された液体が、シャフト軸方向に距離(L)移動したときに、当該液体が到達する位置を結ぶ仮想円の直径はD-2・L・tanβ+2・L・tanα=D+2(L・tanα-L・tanβ)となる。
 従って、上記の式が成立する(上記の仮想円の直径が、球状部分の直径(D)とほぼ一致する)この実施形態のアブレーションカテーテル100によれば、灌注用開口112の先端縁から噴射された液体を、先端電極20の最大径部における電極表面に到達させることができる。
 ここに、図4Aにおいて、傾斜ルーメン111を区画する内側の直線を外挿(延長)した外挿線EXが、灌注用開口112の先端縁から噴射される液体の行路を模式的に示している。
 なお、実際には、血液中にて液体が噴射されるため、噴射された液体は拡散しながら進行する。
Here, the outer diameter (the diameter of a circle connecting each of the plurality of tip edges) of the tip reduced diameter portion 10A on the tip edge of the irrigation opening 112 can be expressed as D 1 -2 · L 1 · tan β. .
On the other hand, the liquid ejected in the distal direction from the distal edge of the irrigation opening 112 at the ejection angle equal to the inclination angle (α) of the inclined lumen 111 moves the shaft axis while moving the distance (L 2 ) in the shaft axis direction. The distance L 2 · tan α is moved in a direction perpendicular to the direction (radial direction of the shaft).
As a result, when the liquid ejected from the leading edge of the irrigation opening 112 moves a distance (L 2 ) in the shaft axial direction, the diameter of the imaginary circle connecting the positions where the liquid reaches is D 1 -2 · L 1 · tan β + 2 · L 2 · tan α = D 1 +2 (L 2 · tan α−L 1 · tan β).
Therefore, according to the ablation catheter 100 of this embodiment, the above formula is satisfied (the diameter of the virtual circle substantially matches the diameter (D 2 ) of the spherical portion). The liquid thus made can reach the electrode surface at the maximum diameter portion of the tip electrode 20.
Here, in FIG. 4A, an extrapolated line EX obtained by extrapolating (extending) an inner straight line defining the inclined lumen 111 schematically shows a path of liquid ejected from the tip edge of the irrigation opening 112. .
Actually, since the liquid is ejected in the blood, the ejected liquid proceeds while diffusing.
 カテーテルシャフト10の先端縮径部10Aの後端から灌注用開口112の先端縁までのシャフト軸方向の距離(カテーテルシャフト10の中心軸への投影距離)(L)は0.5~5.0mmであることが好ましく、更に好ましくは1.0~3.0mmとされる。
 この距離(L)が過小である場合には、傾斜ルーメン111の傾斜角度を小さく設計することができなくなり、噴射される液体が広がり過ぎることになって、先端電極20に十分に液体が到達しなくなる虞がある。
 他方、この距離(L)が過大である場合には、傾斜ルーメン111の距離が長くなり過ぎて、加工が困難となる。また、リング状電極40は傾斜ルーメン111の上に設けることができないため、リング状電極40と先端電極20との間隔が過大となり、これらの電極間隔を小さくする要請に従う設計が困難となるという問題も生じる。
The distance in the axial direction of the shaft from the rear end of the reduced diameter portion 10A of the catheter shaft 10 to the front end edge of the irrigation opening 112 (projection distance to the central axis of the catheter shaft 10) (L 1 ) is 0.5-5. It is preferably 0 mm, and more preferably 1.0 to 3.0 mm.
If this distance (L 1 ) is too small, the tilt angle of the tilt lumen 111 cannot be designed to be small, and the ejected liquid will spread too much, so that the liquid reaches the tip electrode 20 sufficiently. There is a risk that it will not.
On the other hand, when the distance (L 1 ) is excessive, the distance of the inclined lumen 111 becomes too long, and the processing becomes difficult. Further, since the ring-shaped electrode 40 cannot be provided on the inclined lumen 111, the distance between the ring-shaped electrode 40 and the tip electrode 20 becomes excessive, and it becomes difficult to design in accordance with a request to reduce the distance between these electrodes. Also occurs.
 カテーテルシャフト10の先端縮径部10Aにおける傾斜角度(β)は5.0~30.0°であることが好ましく、更に好ましくは7.0~20.0°とされる。 The inclination angle (β) at the distal diameter reduced portion 10A of the catheter shaft 10 is preferably 5.0 to 30.0 °, and more preferably 7.0 to 20.0 °.
 この傾斜角度(β)が過小である場合には、傾斜ルーメン111の傾斜角度を得るために、距離(L)を過大に設計する必要が生じるため、上記と同様の問題を招く。
 他方、この傾斜角度(β)が過大である場合には、傾斜ルーメン111の距離、特に、灌注用開口112の後端縁までの距離(図4Aにおいて、傾斜ルーメン111を区画する外側の直線距離)が小さくなり、噴射される液体を先端方向に向けて押し出すガイド機能が損なわれる虞がある。そして、この場合には、噴射される液体がすぐに外径方向に拡がり過ぎることになり、拡散が過剰になってしまう。
When the inclination angle (β) is too small, it is necessary to design the distance (L 1 ) excessively in order to obtain the inclination angle of the inclined lumen 111, which causes the same problem as described above.
On the other hand, when the inclination angle (β) is excessive, the distance of the inclined lumen 111, in particular, the distance to the rear edge of the irrigation opening 112 (in FIG. 4A, the linear distance outside the section defining the inclined lumen 111). ) Becomes smaller, and the guide function of pushing the ejected liquid toward the tip may be impaired. In this case, the liquid to be ejected immediately spreads too much in the outer diameter direction, resulting in excessive diffusion.
 上記の式に係る-2・L・tanβは、灌注用開口112の先端縁に至るまでの先端縮径部10Aの縮径量に相当する。
 2・L・tanβが過大となる場合には、カテーテルシャフトの径が過大となるため、カテーテル全体の設計が困難となる。
−2 · L 1 · tan β according to the above expression corresponds to the amount of diameter reduction of the tip diameter reducing portion 10A up to the tip edge of the irrigation opening 112.
When 2 · L 1 · tan β is excessive, the diameter of the catheter shaft is excessive, which makes it difficult to design the entire catheter.
 灌注用開口112の先端縁から先端電極20の最大径部までのシャフト軸方向の距離(カテーテルシャフト10の中心軸への投影距離)(L)は1.5~7.0mmであることが好ましく、更に好ましくは3.0~5.0mmとされる。 The distance in the shaft axis direction (projection distance onto the central axis of the catheter shaft 10) (L 2 ) from the distal edge of the irrigation opening 112 to the maximum diameter portion of the distal electrode 20 is 1.5 to 7.0 mm. The thickness is preferably 3.0 to 5.0 mm.
 この距離(L)が過小である場合には、灌注用開口から噴射される液体が、球状部分の後端部分に遮られて最大径部に到達することが困難となる。
 他方、この距離(L)が過大である場合には、灌注用開口から噴射される液体が最大径部に到達することが困難となる。
When this distance (L 2 ) is too small, it becomes difficult for the liquid ejected from the irrigation opening to be blocked by the rear end portion of the spherical portion and reach the maximum diameter portion.
On the other hand, when this distance (L 2 ) is excessive, it becomes difficult for the liquid ejected from the irrigation opening to reach the maximum diameter portion.
 傾斜ルーメン111の傾斜角度(α)は5.0~30.0°であることが好ましく、更に好ましくは9.0~15.0°とされる。
 この傾斜角度(α)が過小である場合には、灌注用開口から噴射される液体が、球状部分の後端部分に遮られて最大径部に到達することが困難となる。
 他方、この傾斜角度(α)が過大である場合には、灌注用開口から噴射される液体を、先端方向に向かわせることが困難となり、最大径部の電極表面に効率的に到達させることができなくなる。
The inclination angle (α) of the inclined lumen 111 is preferably 5.0 to 30.0 °, and more preferably 9.0 to 15.0 °.
When the inclination angle (α) is too small, it becomes difficult for the liquid ejected from the irrigation opening to be blocked by the rear end portion of the spherical portion and reach the maximum diameter portion.
On the other hand, when this inclination angle (α) is excessive, it becomes difficult to direct the liquid ejected from the irrigation opening toward the distal end, and it is possible to efficiently reach the electrode surface of the maximum diameter portion. become unable.
 上記の式に係る2・L・tanαは、噴射される液体の拡がりの程度を示す。
 2・L・tanαが過大となる場合には、灌注用開口から噴射される液体を、先端方向に向かわせることが困難となり、最大径部の電極表面に効率的に到達させることができなくなる。
2 · L 2 · tan α according to the above formula indicates the degree of spread of the liquid to be ejected.
When 2 · L 2 · tan α is excessive, it is difficult to direct the liquid ejected from the irrigation opening toward the distal end, and it becomes impossible to efficiently reach the electrode surface of the maximum diameter portion. .
 この実施形態のアブレーションカテーテル100の好適な一例を示せば、外径(D)が2.3mm、直径(D)が2.6mm、(D/D)の値が1.1、距離(L)が1.0mm、傾斜角度(β)が12.0°、距離(L)が2.8mm、傾斜角度(α)が7.0°であり、D+2(L・tanα-L・tanβ)=2.6mmとなって直径(D)とほぼ等しくなる。 As a preferable example of the ablation catheter 100 of this embodiment, the outer diameter (D 1 ) is 2.3 mm, the diameter (D 2 ) is 2.6 mm, and the value of (D 2 / D 1 ) is 1.1. The distance (L 1 ) is 1.0 mm, the inclination angle (β) is 12.0 °, the distance (L 2 ) is 2.8 mm, the inclination angle (α) is 7.0 °, and D 1 +2 (L 2 Tan α−L 1 tan β) = 2.6 mm, which is almost equal to the diameter (D 2 ).
 この実施形態のアブレーションカテーテル100によれば、8つの灌注用開口112がテーパ状の先端縮径部10Aに配置されていることにより、灌注用開口112の各々から噴射される液体を先端方向に向かわせることができるので、先端電極20の表面に対して、後端側から液体を噴射することができる。
 そして、先端電極20に対して後端側(カテーテルシャフト10の先端縮径部10Aに配置されている灌注用開口112の各々)から噴射された液体は、先端電極20の後端部(頸部22)から先端部(球状部分21)に向かって、先端電極20の表面に沿うように先端方向に流れ、先端電極20の周辺の血液は十分に攪拌・希釈されるので、灌注機構を備えた従来のカテーテルと比較して先端電極20の表面の冷却効果に優れるとともに、先
端電極20の表面付近の血液が十分に攪拌・希釈されることによっても優れた血栓形成抑制効果が奏される。
According to the ablation catheter 100 of this embodiment, the eight irrigation openings 112 are arranged in the tapered distal diameter-reducing portion 10A, so that the liquid ejected from each of the irrigation openings 112 is directed in the distal direction. Therefore, the liquid can be ejected from the rear end side with respect to the surface of the tip electrode 20.
Then, the liquid ejected from the rear end side (each of the irrigation openings 112 arranged in the distal diameter-reduced portion 10A of the catheter shaft 10) with respect to the distal electrode 20 is the rear end portion (neck portion) of the distal electrode 20 22) from the tip portion (spherical portion 21) toward the tip direction along the surface of the tip electrode 20, and blood around the tip electrode 20 is sufficiently agitated / diluted so that an irrigation mechanism is provided. Compared to a conventional catheter, the effect of cooling the surface of the tip electrode 20 is excellent, and an excellent effect of suppressing thrombus formation is also obtained by sufficiently stirring and diluting the blood near the surface of the tip electrode 20.
 また、カテーテルシャフト10の先端縮径部10Aの内部には、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口112の各々に至る8本の傾斜ルーメン111が形成されているので、灌注用開口112の各々から噴射される液体は、先端方向外側(カテーテルシャフト10の軸方向における先端側で、かつ半径方向における外側)に向けて噴射される。ここに、液体の噴射角度は、傾斜ルーメン111の傾斜角度(α)と一致する。 In addition, eight inclined lumens 111 extending in the distal direction while being inclined outward in the radial direction of the catheter shaft 10 and reaching each of the irrigation openings 112 are formed inside the reduced diameter portion 10A of the catheter shaft 10. Therefore, the liquid ejected from each of the irrigation openings 112 is ejected toward the outer side in the distal direction (the distal side in the axial direction of the catheter shaft 10 and the outer side in the radial direction). Here, the liquid ejection angle coincides with the inclination angle (α) of the inclined lumen 111.
 また、式:D+2(L・tanα-L・tanβ)≒Dが成立することにより、先端電極20の球状部分21がカテーテルシャフト10の外径以上(特に、外径(D)の1.0~1.2倍)の直径(D)を有するものであっても、傾斜ルーメン111を通って灌注用開口112から噴射される液体を、先端電極20の最大径部における電極表面に到達させることができ、最大径部およびその先端側を含む先端電極20の表面全域に対して確実に灌注することができる。 Further, when the formula: D 1 +2 (L 2 · tan α−L 1 · tan β) ≈D 2 is established, the spherical portion 21 of the tip electrode 20 is equal to or larger than the outer diameter of the catheter shaft 10 (in particular, the outer diameter (D 1 Even if the liquid has a diameter (D 2 ) that is 1.0 to 1.2 times larger than), the liquid ejected from the irrigation opening 112 through the inclined lumen 111 is allowed to flow at the maximum diameter portion of the tip electrode 20. The electrode surface can be reached, and the entire surface of the tip electrode 20 including the maximum diameter portion and the tip side can be reliably irrigated.
 また、灌注用開口112が絶縁性のカテーテルシャフト10(先端縮径部10A)に形成されていて、導電性の先端電極20にはエッジが存在しないので、アブレーションカテーテル100の使用時(焼灼時)において先端電極20の一部に異常な温度上昇(高温部)を生じることはなく、そのような高温部に血液が接触して形成される血栓の形成が抑制される。 In addition, since the irrigation opening 112 is formed in the insulating catheter shaft 10 (tip reduced diameter portion 10A) and the conductive tip electrode 20 has no edge, when the ablation catheter 100 is used (at the time of cauterization). In this case, an abnormal temperature rise (high temperature part) does not occur in a part of the tip electrode 20, and the formation of thrombus formed by contact of blood with such high temperature part is suppressed.
 また、先端電極20の球状部分21の直径(D)がカテーテルシャフト10の外径(D)以上、特に、外径(D)の1.0~1.2倍であるとともに、先端電極20には灌注用の開口を形成する必要がないので、十分な表面積を確保することができ、アブレーションカテーテルとして効率的な焼灼治療を行うことができる。 The diameter (D 2 ) of the spherical portion 21 of the tip electrode 20 is not less than the outer diameter (D 1 ) of the catheter shaft 10, particularly 1.0 to 1.2 times the outer diameter (D 1 ). Since it is not necessary to form an irrigation opening in the electrode 20, a sufficient surface area can be secured, and efficient ablation treatment can be performed as an ablation catheter.
 また、灌注用開口112よりも先端側に温度センサ90が装着されていることにより、温度センサ90が装着されている先端電極20の内部に液体の流路を形成する必要はないので、温度センサ90が過度に冷却されることはなく、先端電極20の周囲にある組織の温度を正確に測定することができる。 In addition, since the temperature sensor 90 is attached to the tip side of the irrigation opening 112, there is no need to form a liquid flow path inside the tip electrode 20 to which the temperature sensor 90 is attached. 90 is not excessively cooled, and the temperature of the tissue around the tip electrode 20 can be accurately measured.
 図4Aに示したアブレーションカテーテル100においては、D+2(L・tanα-L・tanβ)の値が、Dにほぼ等しいものであったが、本発明者が鋭意検討を重ねた結果、D+2(L・tanα-L・tanβ)の値が0.8D~1.2Dの範囲にあれば、灌注用開口から噴射される液体を、先端電極の最大径部における電極表面に到達させることができ、先端電極の表面全域に対して確実に灌注することができることが確認された。 In the ablation catheter 100 shown in FIG. 4A, the value of D 1 +2 (L 2 · tan α−L 1 · tan β) was substantially equal to D 2. , if the range value of D 1 +2 (L 2 · tanα -L 1 · tanβ) of 0.8D 2 ~ 1.2D 2, the liquid ejected from the irrigation opening, the maximum diameter of the tip electrode It was confirmed that the electrode surface could be reached and that the entire surface of the tip electrode could be reliably irrigated.
 D+2(L・tanα-L・tanβ)の値が0.8D未満であると、灌注用開口から噴射される液体が、球状部分の後端部分に遮られて最大径部に到達することが困難となる場合がある。
 他方、D+2(L・tanα-L・tanβ)の値が1.2Dを超える場合には、灌注用開口から噴射される液体を、先端方向に向かわせることが困難となり、最大径部の電極表面に効率的に到達させることができなくなる場合がある。
When the value of D 1 +2 (L 2 · tan α−L 1 · tan β) is less than 0.8D 2 , the liquid ejected from the irrigation opening is blocked by the rear end portion of the spherical portion and reaches the maximum diameter portion. It may be difficult to reach.
On the other hand, when the value of D 1 +2 (L 2 · tan α−L 1 · tan β) exceeds 1.2D 2 , it becomes difficult to direct the liquid ejected from the irrigation opening toward the distal end. It may not be possible to efficiently reach the electrode surface of the diameter portion.
<第2実施形態>
 図4Bに示すアブレーションカテーテル101は、10本のサブルーメン(液体の流路となる8本のルーメン11、および引張ワイヤの挿通路となる2本のルーメン)を有する
カテーテルシャフト50を備えてなり、このカテーテルシャフト50は、先端方向に向かってテーパ状に縮径する先端縮径部50Aを有し、この先端縮径部50Aには、先端電極20の表面に液体を灌注するための8つの灌注用開口114が配置され、カテーテルシャフト50の先端縮径部50Aの内部には、後端側において8本のルーメン11の各々に連通し、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口114の各々に至る8本の傾斜ルーメン113が形成されている。
<Second Embodiment>
The ablation catheter 101 shown in FIG. 4B includes a catheter shaft 50 having ten sub-lumens (eight lumens 11 serving as liquid flow paths and two lumens serving as insertion passages for the pulling wire). The catheter shaft 50 has a distal diameter-reducing portion 50A that is tapered toward the distal direction, and the distal diameter-reduced portion 50A has eight irrigation for irrigating the surface of the distal electrode 20. An opening for use 114 is arranged, and the inside of the reduced diameter portion 50A of the catheter shaft 50 communicates with each of the eight lumens 11 on the rear end side, and in the distal direction while inclining radially outward of the catheter shaft 10. Eight inclined lumens 113 extending to each of the irrigation openings 114 are formed.
 なお、図4Bにおいて、図4Aに示したアブレーションカテーテル100と同一の構成要素には、同一の符号を用いている。
 また、図4Bでは、「液体の流路となる8本のルーメン11」のうちの2本のルーメン11、「8本の傾斜ルーメン113」のうちの2本の傾斜ルーメン113、「8つの灌注用開口114」のうちの2つ灌注用開口114が示されている。
In FIG. 4B, the same reference numerals are used for the same components as those of the ablation catheter 100 shown in FIG. 4A.
4B, two lumens 11 of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 113 of “eight inclined lumens 113”, “eight irrigation” Two of the irrigation openings 114 "are shown.
 このアブレーションカテーテル101は、カテーテルシャフト50の先端縮径部50Aの内部に形成されている傾斜ルーメン113の傾斜角度(α)が、図4Aに示したアブレーションカテーテル100における傾斜ルーメン111の傾斜角度(α)とは異なる。
 ここに、アブレーションカテーテル101の好適な一例を示せば、外径(D)が2.3mm、外径(D)が2.6mm、(D/D)の値が1.1、距離(L)が1.0mm、傾斜角度(β)が7.0°、距離(L)が2.8mm、傾斜角度(α)が10.5°であり、D+2(L・tanα-L・tanβ)=3.1mmとなって、直径(D)のほぼ1.2倍となる。
In this ablation catheter 101, the inclination angle (α) of the inclined lumen 113 formed inside the distal diameter reduced portion 50A of the catheter shaft 50 is equal to the inclination angle (α) of the inclined lumen 111 in the ablation catheter 100 shown in FIG. 4A. ) Is different.
Here, if a suitable example of the ablation catheter 101 is shown, the outer diameter (D 1 ) is 2.3 mm, the outer diameter (D 2 ) is 2.6 mm, and the value of (D 2 / D 1 ) is 1.1, The distance (L 1 ) is 1.0 mm, the inclination angle (β) is 7.0 °, the distance (L 2 ) is 2.8 mm, the inclination angle (α) is 10.5 °, and D 1 +2 (L 2 Tan α−L 1 tan β) = 3.1 mm, which is approximately 1.2 times the diameter (D 2 ).
 この実施形態のアブレーションカテーテル101によれば、灌注用開口114の先端縁から噴射された液体を、先端電極20の最大径部における電極表面に到達させることができ、先端電極20の表面全域に対して確実に灌注することができる。 According to the ablation catheter 101 of this embodiment, the liquid ejected from the tip edge of the irrigation opening 114 can reach the electrode surface at the maximum diameter portion of the tip electrode 20, and the entire surface of the tip electrode 20 can be obtained. Can be reliably irrigated.
<第3実施形態>
 図4Cに示すアブレーションカテーテル102は、10本のサブルーメン(液体の流路となる8本のルーメン11、および引張ワイヤの挿通路となる2本のルーメン)を有するカテーテルシャフト60を備えてなり、このカテーテルシャフト60は、先端方向に向かってテーパ状に縮径する先端縮径部60Aを有し、この先端縮径部60Aには、先端電極20の表面に液体を灌注するための8つの灌注用開口116が配置され、カテーテルシャフト60の先端縮径部60Aの内部には、後端側において8本のルーメン11の各々に連通し、カテーテルシャフト10の半径方向外側に傾斜しながら先端方向に延びて灌注用開口116の各々に至る8本の傾斜ルーメン115が形成されている。
<Third Embodiment>
The ablation catheter 102 shown in FIG. 4C includes a catheter shaft 60 having 10 sub-lumens (eight lumens 11 serving as liquid flow paths and two lumens serving as insertion passages for the tension wires). The catheter shaft 60 has a distal diameter-reducing portion 60A that decreases in a taper shape toward the distal direction, and the distal diameter-reduced portion 60A includes eight irrigations for irrigating the surface of the distal electrode 20. An opening 116 is disposed, and the inside of the reduced diameter portion 60A of the catheter shaft 60 communicates with each of the eight lumens 11 on the rear end side, and in the distal direction while inclining radially outward of the catheter shaft 10. Eight inclined lumens 115 are formed extending to each of the irrigation openings 116.
 なお、図4Cにおいて、図4Aに示したアブレーションカテーテル100と同一の構成要素には、同一の符号を用いている。
 また、図4Cでは、「液体の流路となる8本のルーメン11」のうちの2本のルーメン11、「8本の傾斜ルーメン115」のうちの2本の傾斜ルーメン115、「8つの灌注用開口116」のうちの2つ灌注用開口116が示されている。
In FIG. 4C, the same reference numerals are used for the same components as those of the ablation catheter 100 shown in FIG. 4A.
4C, two lumens 11 of “eight lumens 11 serving as liquid flow paths”, two inclined lumens 115 of “eight inclined lumens 115”, “eight irrigation” Two of the irrigation openings 116 "are shown.
 アブレーションカテーテル102を構成する先端電極20の後端部(頸部22)には、傾斜ルーメン115の各々に連続し、傾斜ルーメン115の傾斜角度(α)と同じ角度で傾斜する液体の案内溝26が形成されている。
 これにより、灌注用開口116は、カテーテルシャフト60の先端縮径部60Aと、先端電極20の頸部22とにまたがって形成され、そのような灌注用開口116の先端縁は、先端電極20の頸部22に存在することとなる。
 この案内溝26が形成されていることにより、先端電極20の頸部22に位置する灌注用開口116の先端縁から噴射される液体の噴射角度を、傾斜ルーメン115の傾斜角度
(α)と一致させることができる。
The rear end portion (neck portion 22) of the distal electrode 20 constituting the ablation catheter 102 is continuous with each of the inclined lumens 115 and is inclined at the same angle as the inclination angle (α) of the inclined lumen 115. Is formed.
Accordingly, the irrigation opening 116 is formed across the distal diameter-reduced portion 60A of the catheter shaft 60 and the neck portion 22 of the distal electrode 20, and the distal edge of such an irrigation opening 116 is formed on the distal electrode 20. It exists in the neck part 22.
By forming the guide groove 26, the spray angle of the liquid sprayed from the tip edge of the irrigation opening 116 located in the neck portion 22 of the tip electrode 20 coincides with the tilt angle (α) of the tilt lumen 115. Can be made.
 図4Cに示したアブレーションカテーテル102において、灌注用開口116の先端縁における先端電極20(頸部22)の外径を(D)、灌注用開口116の先端縁から先端電極20の最大径部までのシャフト軸方向の距離を(L)、傾斜ルーメン115の傾斜角度を(α)とするとき、D+2(L・tanα)の値はほぼ0.8Dである。
   
In the ablation catheter 102 shown in FIG. 4C, the outer diameter of the distal electrode 20 (neck portion 22) at the distal edge of the irrigation opening 116 is (D 3 ), and the maximum diameter portion of the distal electrode 20 from the distal edge of the irrigation opening 116 (L 2 ) and the inclination angle of the inclined lumen 115 is (α), the value of D 3 +2 (L 2 · tan α) is approximately 0.8D 2 .
 このアブレーションカテーテル102は、カテーテルシャフト60の先端縮径部60Aの内部に形成されている傾斜ルーメン115の傾斜角度(α)が、図4Aに示したアブレーションカテーテル100における傾斜ルーメン111、および、図4Bに示したアブレーションカテーテル101における傾斜ルーメン113の何れの傾斜角度(α)とも異なる。 In this ablation catheter 102, the inclination angle (α) of the inclined lumen 115 formed inside the distal diameter reduced portion 60A of the catheter shaft 60 is such that the inclined lumen 111 in the ablation catheter 100 shown in FIG. 4A and FIG. It differs from any inclination angle (α) of the inclined lumen 113 in the ablation catheter 101 shown in FIG.
 アブレーションカテーテル102の好適な一例を示せば、外径(D)が2.3mm、外径(D)が2.8mm、(D/D)の値が1.2、灌注用開口116の先端縁における先端電極20の外径(D)が1.7mm、距離(L)が2.4mm、傾斜角度(β)が7.0°、距離(L)が1.4mm、傾斜角度(α)が12.0°であり、D+2(L・tanα)=2.3mmとなって、直径(D)のほぼ0.8倍となる。 As a preferred example of the ablation catheter 102, the outer diameter (D 1 ) is 2.3 mm, the outer diameter (D 2 ) is 2.8 mm, the value of (D 2 / D 1 ) is 1.2, and the irrigation opening The outer diameter (D 3 ) of the tip electrode 20 at the tip edge of 116 is 1.7 mm, the distance (L 1 ) is 2.4 mm, the inclination angle (β) is 7.0 °, and the distance (L 2 ) is 1.4 mm. The inclination angle (α) is 12.0 °, and D 3 +2 (L 2 · tan α) = 2.3 mm, which is approximately 0.8 times the diameter (D 2 ).
 この実施形態のアブレーションカテーテル102によれば、灌注用開口116の先端縁から噴射された液体を、先端電極20の最大径部における電極表面に到達させることができ、先端電極20の表面全域に対して確実に灌注することができる。 According to the ablation catheter 102 of this embodiment, the liquid ejected from the tip edge of the irrigation opening 116 can reach the electrode surface at the maximum diameter portion of the tip electrode 20, and the entire surface of the tip electrode 20 can be obtained. Can be reliably irrigated.
 図4Cに示したアブレーションカテーテル102においては、D+2(L・tanα)の値が0.8Dにほぼ等しいものであったが、本発明者が鋭意検討を重ねた結果、D+2(L・tanα)の値が0.8D~1.2Dの範囲にあれば、灌注用開口から噴射される液体を、先端電極の最大径部における電極表面に到達させることができ、先端電極の表面全域に対して灌注することができることが確認された。 In the ablation catheter 102 shown in FIG. 4C, the value of D 3 +2 (L 2 · tan α) was almost equal to 0.8D 2 , but as a result of extensive studies by the present inventor, D 3 +2 If the value of (L 2 · tan α) is in the range of 0.8D 2 to 1.2D 2 , the liquid ejected from the irrigation opening can reach the electrode surface at the maximum diameter portion of the tip electrode, It was confirmed that the entire surface of the tip electrode can be irrigated.
 D+2(L・tanα)の値が0.8D未満であると、灌注用開口から噴射される液体が、球状部分の後端部分に遮られて最大径部に到達することが困難となる場合がある。
 他方、D+2(L・tanα)の値が1.2Dを超える場合には、灌注用開口から噴射される液体を、先端方向に向かわせることが困難となり、最大径部の電極表面に効率的に到達させることができなくなる場合がある。
When the value of D 3 +2 (L 2 · tan α) is less than 0.8D 2 , it is difficult for the liquid ejected from the irrigation opening to be blocked by the rear end portion of the spherical portion and reach the maximum diameter portion. It may become.
On the other hand, when the value of D 3 +2 (L 2 · tan α) exceeds 1.2D 2 , it becomes difficult to direct the liquid ejected from the irrigation opening toward the tip, and the electrode surface having the maximum diameter portion May not be able to be reached efficiently.
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、種々の変更が可能である。
 例えば、先端縮径部の内部に形成された傾斜ルーメンの本数は8に限定されるものではなく、例えば4~12の範囲で適宜選択することができる。
 また、先端縮径部と、先端縮径部以外の部分との間に中間部材(液体を合流および/または分流する手段を内部に有する中間部材)を介在させることにより、先端縮径部の内部に形成された傾斜ルーメンの本数と、先端縮径部以外の部分の内部に形成されたルーメン(液体の流路となるルーメン)の本数とが異なるものとなっていてもよい。
 また、傾斜ルーメンが形成されている先端縮径部(または先端縮径部を含む先端部分)の構成材料として、先端縮径部以外のシャフト部分の構成材料とは異なる材料(例えば、ポリエーテルエーテルケトン(PEEK)などの芳香族ポリエーテルケトン、セラミック材料など)を採用してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible.
For example, the number of inclined lumens formed inside the tip diameter-reduced portion is not limited to 8, and can be appropriately selected within a range of 4 to 12, for example.
Further, by interposing an intermediate member (an intermediate member having a means for joining and / or diverting liquid) between the tip reduced diameter portion and a portion other than the tip reduced diameter portion, the inside of the tip reduced diameter portion The number of the inclined lumens formed on the inner surface may be different from the number of the lumens (lumens serving as a liquid flow path) formed inside the portion other than the tip diameter-reduced portion.
Further, as a constituent material of the tip reduced diameter portion (or the tip portion including the tip reduced diameter portion) in which the inclined lumen is formed, a material different from the constituent material of the shaft portion other than the tip reduced diameter portion (for example, polyether ether) Aromatic polyether ketone such as ketone (PEEK), ceramic material, etc.) may be employed.
 100 アブレーションカテーテル
 10  カテーテルシャフト
 10A 先端縮径部
 11  ルーメン(液体の流路)
 12  ルーメン(引張ワイヤの挿通路)
 13  中央ルーメン
 15  剛性体(針金)
 111 傾斜ルーメン
 112 灌注用開口
 20  先端電極
 21  先端膨出部
 22  頸部
 23  円筒状部分
 26  液体の案内溝
 31  引張ワイヤ
 32  引張ワイヤ
 40  リング状電極
 50  カテーテルシャフト
 50A 先端縮径部
 113 傾斜ルーメン
 114 灌注用開口
 60  カテーテルシャフト
 60A 先端縮径部
 115 傾斜ルーメン
 116 灌注用開口
 70  制御ハンドル
 75  回転板
 80  液体の注入管
DESCRIPTION OF SYMBOLS 100 Ablation catheter 10 Catheter shaft 10A Tip diameter reducing part 11 Lumen (liquid flow path)
12 lumens (Tension wire insertion path)
13 Central lumen 15 Rigid body (wire)
111 Inclined lumen 112 Irrigation opening 20 Tip electrode 21 Tip bulging portion 22 Neck portion 23 Cylindrical portion 26 Liquid guide groove 31 Tension wire 32 Tension wire 40 Ring electrode 50 Catheter shaft 50A Tip diameter reduction portion 113 Tilted lumen 114 Irrigation Opening 60 catheter shaft 60A reduced diameter portion 115 inclined lumen 116 irrigation opening 70 control handle 75 rotating plate 80 liquid injection tube

Claims (6)

  1.  液体の流路となるルーメンを有するカテーテルシャフトと、
     このカテーテルシャフトの先端側に接続され、前記カテーテルシャフトの外径以上の直径の球状部分を有する先端電極とを備えてなり、
     前記カテーテルシャフトは、先端方向に向かってテーパ状に縮径する先端縮径部を有し、この先端縮径部には、前記先端電極の表面に液体を灌注するための複数の灌注用開口が配置され、
     前記カテーテルシャフトの先端縮径部の内部には、当該カテーテルシャフトの半径方向外側に傾斜しながら先端方向に延びて前記灌注用開口の各々に至る複数の傾斜ルーメンが形成されていることを特徴とする電極カテーテル。
    A catheter shaft having a lumen that serves as a liquid flow path;
    Connected to the distal end side of this catheter shaft, comprising a tip electrode having a spherical portion with a diameter equal to or larger than the outer diameter of the catheter shaft,
    The catheter shaft has a distal diameter-reduced portion that is tapered in the distal direction, and the distal diameter-reduced portion has a plurality of irrigation openings for irrigating liquid on the surface of the distal electrode. Arranged,
    A plurality of inclined lumens extending in the distal direction while being inclined radially outward of the catheter shaft and reaching each of the irrigation openings are formed inside the reduced diameter portion of the catheter shaft. Electrode catheter.
  2.  前記カテーテルシャフトの外径(D)に対する前記先端電極の球状部分の直径(D)の比率(D/D)が1.0~1.2であり、
     前記カテーテルシャフトの先端縮径部の後端から前記灌注用開口の先端縁までのシャフト軸方向の距離を(L)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記カテーテルシャフトの先端縮径部における傾斜角度を(β)、前記傾斜ルーメンの傾斜角度を(α)とするとき、
      式:0.8D≦D+2(L・tanα-L・tanβ)≦1.2D
    が成立することを特徴とする請求項1に記載の電極カテーテル。
    The ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion of the tip electrode to the outer diameter (D 1 ) of the catheter shaft is 1.0 to 1.2;
    The distance in the axial direction from the rear end of the reduced diameter portion of the catheter shaft to the distal end edge of the irrigation opening (L 1 ), and the shaft from the distal end edge of the irrigation opening to the maximum diameter portion of the distal electrode When the axial distance is (L 2 ), the inclination angle at the reduced diameter portion of the catheter shaft is (β), and the inclination angle of the inclined lumen is (α),
    Formula: 0.8D 2 ≦ D 1 +2 (L 2 tan α−L 1 tan β) ≦ 1.2 D 2
    The electrode catheter according to claim 1, wherein:
  3.  前記カテーテルシャフトの直径(D)が1.0~3.0mm、
     前記距離(L)が0.5~5.0mm、
     前記距離(L)が1.5~7.0mm、
     前記傾斜角度(β)が5.0~30.0°、
     前記傾斜角度(α)が5.0~30.0°であることを特徴とする請求項2に記載の電極カテーテル。
    The diameter (D 1 ) of the catheter shaft is 1.0 to 3.0 mm,
    The distance (L 1 ) is 0.5 to 5.0 mm,
    The distance (L 2 ) is 1.5 to 7.0 mm,
    The inclination angle (β) is 5.0 to 30.0 °,
    The electrode catheter according to claim 2, wherein the inclination angle (α) is 5.0 to 30.0 °.
  4.  前記カテーテルシャフトの外径(D)に対する前記先端電極の球状部分の直径(D)の比率(D/D)が1.0~1.2であり、
     前記灌注用開口の先端縁における前記先端縮径部または前記先端電極の外径を(D)、前記灌注用開口の先端縁から前記先端電極の最大径部までのシャフト軸方向の距離を(L)、前記傾斜ルーメンの傾斜角度を(α)とするとき、
      式:0.8D≦D+2(L・tanα)≦1.2D
    が成立することを特徴とする請求項1に記載の電極カテーテル。
    The ratio (D 2 / D 1 ) of the diameter (D 2 ) of the spherical portion of the tip electrode to the outer diameter (D 1 ) of the catheter shaft is 1.0 to 1.2;
    The distal diameter of the distal end of the irrigation opening or the outer diameter of the distal electrode is (D 3 ), and the distance in the shaft axial direction from the distal edge of the irrigation opening to the maximum diameter of the distal electrode is ( L 2 ), when the inclination angle of the inclined lumen is (α),
    Formula: 0.8D 2 ≦ D 3 +2 (L 2 · tan α) ≦ 1.2D 2
    The electrode catheter according to claim 1, wherein:
  5.  前記灌注用開口より先端側に温度センサが装着されていることを特徴とする請求項1乃至請求項4の何れかに記載の電極カテーテル。 The electrode catheter according to any one of claims 1 to 4, wherein a temperature sensor is attached to the distal end side of the irrigation opening.
  6.  前記カテーテルシャフトは、中央ルーメンと、この中央ルーメンの周囲に等角度間隔で配置された複数のサブルーメンとを有するマルチルーメン構造体であり、
     前記複数のサブルーメンのうち、対向配置された2本のサブルーメンには、シャフトの先端偏向操作用の引張ワイヤが挿通され、それ以外のサブルーメンにより、液体の流路となるルーメンが構成され、
     前記傾斜ルーメンは、前記液体の流路となるルーメンの各々と連通するように形成されていることを特徴とする請求項1乃至請求項5の何れかに記載の電極カテーテル。
    The catheter shaft is a multi-lumen structure having a central lumen and a plurality of sub-lumens arranged at equiangular intervals around the central lumen;
    Among the plurality of sub-lumens, two sub-lumens arranged opposite to each other are inserted with a pull wire for deflection operation of the shaft tip, and the other sub-lumens constitute a lumen serving as a liquid flow path. ,
    The electrode catheter according to any one of claims 1 to 5, wherein the inclined lumen is formed so as to communicate with each of the lumens serving as the liquid flow paths.
PCT/JP2012/064279 2011-08-15 2012-06-01 Electrode catheter WO2013024616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177781A JP5769303B2 (en) 2011-08-15 2011-08-15 Electrode catheter
JP2011-177781 2011-08-15

Publications (1)

Publication Number Publication Date
WO2013024616A1 true WO2013024616A1 (en) 2013-02-21

Family

ID=47714945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064279 WO2013024616A1 (en) 2011-08-15 2012-06-01 Electrode catheter

Country Status (2)

Country Link
JP (1) JP5769303B2 (en)
WO (1) WO2013024616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179748A1 (en) * 2012-05-30 2013-12-05 日本ライフライン株式会社 Electrode catheter
GB2571223A (en) * 2017-06-01 2019-08-21 Creo Medical Ltd Electrosurgical instrument for ablation and resection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
AU2014256841B2 (en) * 2013-04-22 2018-06-21 Cathrx Ltd An ablation catheter
CA2899073C (en) * 2014-09-24 2018-07-03 Covidien Lp Endoscopic ultrasound-guided biliary access system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502424A (en) * 2001-09-05 2005-01-27 ティシューリンク・メディカル・インコーポレーテッド Fluid-assisted medical device, system and method
US6923805B1 (en) * 1992-11-13 2005-08-02 Scimed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
US20080071267A1 (en) * 2005-05-16 2008-03-20 Huisun Wang Irrigated ablation electrode assembly and method for control of temperature
JP2008245765A (en) * 2007-03-29 2008-10-16 Japan Lifeline Co Ltd Catheter allowing distal end deflection
JP2011505193A (en) * 2007-11-30 2011-02-24 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Perfusion ablation catheter with magnetic tip for magnetic field control and guidance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6923805B1 (en) * 1992-11-13 2005-08-02 Scimed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
JP2005502424A (en) * 2001-09-05 2005-01-27 ティシューリンク・メディカル・インコーポレーテッド Fluid-assisted medical device, system and method
US20080071267A1 (en) * 2005-05-16 2008-03-20 Huisun Wang Irrigated ablation electrode assembly and method for control of temperature
JP2008245765A (en) * 2007-03-29 2008-10-16 Japan Lifeline Co Ltd Catheter allowing distal end deflection
JP2011505193A (en) * 2007-11-30 2011-02-24 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Perfusion ablation catheter with magnetic tip for magnetic field control and guidance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179748A1 (en) * 2012-05-30 2013-12-05 日本ライフライン株式会社 Electrode catheter
JP2013244382A (en) * 2012-05-30 2013-12-09 Japan Lifeline Co Ltd Electrode catheter
GB2571223A (en) * 2017-06-01 2019-08-21 Creo Medical Ltd Electrosurgical instrument for ablation and resection
GB2571223B (en) * 2017-06-01 2019-11-20 Creo Medical Ltd Electrosurgical instrument for ablation and resection

Also Published As

Publication number Publication date
JP5769303B2 (en) 2015-08-26
JP2013039219A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5769303B2 (en) Electrode catheter
EP2197378B1 (en) Irrigated ablation catheter having parallel external flow and proximally tapered electrode
US7914528B2 (en) Ablation catheter tip for generating an angled flow
WO2012086313A1 (en) Electrode catheter
CA2618538A1 (en) Multipolar, multi-lumen, virtual-electrode catheter with at least one surface electrode and method for ablation
JP5348675B1 (en) Electrode catheter
US8216225B2 (en) Irrigated ablation electrode assembly having a polygonal electrode
TWI710351B (en) Balloon type electrode catheter
KR101760166B1 (en) Electrode catheter
JP2012176119A (en) Electrode catheter
JP5881229B2 (en) Electrode catheter
JP5888783B2 (en) Electrode catheter
TW202130328A (en) Balloon type electrode catheter
WO2022201340A1 (en) Electrode catheter
TWI767334B (en) Balloon type electrode catheter
JP5283135B2 (en) Electrode catheter
JP3168428U (en) Bipolar electrical treatment instrument
JP5867917B2 (en) Electrode catheter
TWI768661B (en) Balloon type electrode catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823570

Country of ref document: EP

Kind code of ref document: A1