WO2013179658A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2013179658A1
WO2013179658A1 PCT/JP2013/003382 JP2013003382W WO2013179658A1 WO 2013179658 A1 WO2013179658 A1 WO 2013179658A1 JP 2013003382 W JP2013003382 W JP 2013003382W WO 2013179658 A1 WO2013179658 A1 WO 2013179658A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bearing
lower bearing
compressor
valve cover
Prior art date
Application number
PCT/JP2013/003382
Other languages
French (fr)
Japanese (ja)
Inventor
裕文 吉田
雄司 尾形
優 塩谷
大輔 船越
啓晶 中井
健 苅野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380002935.7A priority Critical patent/CN103782040B/en
Priority to EP13797774.0A priority patent/EP2857690B1/en
Priority to JP2014518284A priority patent/JP6176577B2/en
Publication of WO2013179658A1 publication Critical patent/WO2013179658A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a compressor used in an air conditioner, a refrigerator, a blower, a water heater, and the like.
  • the upper and lower cylinders 101 and 102, the upper and lower rolling pistons 103 and 104, and the vanes (not shown) are sandwiched between the upper bearing 105, the middle plate 106, and the lower bearing 107, thereby providing two suction chambers that are independent from each other.
  • 108a (108b (not shown)) and two compression chambers 109b (109a (not shown)) are formed.
  • the compression mechanism 111 and the electric element 112 are accommodated in the sealed container 113.
  • the compression mechanism 111 performs a compression operation by rotating the upper and lower rolling pistons 103 and 104 as the drive shaft 110 rotates.
  • the electric element 112 transmits a rotational force to the drive shaft 110.
  • the upper bearing 105 and the lower bearing 107 are each provided with a discharge port (not shown), and the working fluid compressed to a predetermined pressure in the compression chamber 109b (109a (not shown)) is a check valve (not shown). From the discharge port. Upper and lower discharge spaces 114 and 115 on the downstream side of the discharge port are formed by being surrounded by upper and lower bearings 105 and 107 and upper and lower valve covers 116 and 117. The working fluid in the lower discharge space 115 is guided to the upper discharge space 114 through an upper and lower communication path (not shown), and merges with the working fluid discharged from the discharge port of the upper bearing 105. Thereafter, the working fluid flows out into the lower space of the electric element 112 through the opening provided in the upper valve cover 116 and is discharged from the discharge pipe 118 at the upper part of the hermetic container 113 to the outside of the compressor.
  • the oil stored in the lower part of the hermetic container 113 is sucked up from the lower end of a hole provided in the axial direction inside the drive shaft 110, and an appropriate amount is supplied to various parts of the compression mechanism unit 111 to lubricate the sliding part and the compression chamber 109b (109a (not shown)) is used for a gap seal.
  • the inside of the lower discharge space 115 is filled with the discharge gas having the highest temperature among the compressors, so that the lower bearing 107 receives heat. Along with this, the low-temperature and low-pressure working fluid in the lower suction chamber 108b is also received heat, and volume efficiency reduction due to heat reception is a problem.
  • a stagnation space 119 is provided on the lower suction chamber 108b side in the lower discharge space 115 of the lower bearing 107 as shown in FIG.
  • the space 119 is communicated with the passage 120. Accordingly, the discharge gas of high temperature and high pressure is moved away from the lower suction chamber 108b to reduce heat reception and improve the volume efficiency.
  • the lower valve cover 117 is positively deformed to generate an axial contact force.
  • the lower bearing 107 is deformed by applying an axial load, so that a clearance with the rolling piston cannot be ensured, or the cylindricity or perpendicularity of the bearing portion is impaired, and the reliability is deteriorated. There is a case.
  • the present invention solves the above-mentioned conventional problems, wherein the oil holding part takes in a part of the oil stored in a closed container having an oil reservoir in the lower part, and the flow of the taken-in oil flows into the oil reservoir.
  • a compressor that is configured to be suppressed (restricted) rather than flow, and in which the oil retaining portion is arranged adjacent to the lower discharge space or through a partition region, the lower valve of the lower end surface of the boss at the center of the lower bearing By making it the same height as the lowermost surface of the cover or below it, the recess near the center portion of the lower bearing is eliminated, and gas engagement of the drive shaft is prevented. Accordingly, it is an object to provide a compressor having high volume efficiency due to the heat insulation effect and high reliability without gas biting.
  • a compressor according to the present invention includes a sealed container having an oil reservoir, an upper bearing that supports a drive shaft, and a lower bearing in the sealed container.
  • a bearing a discharge port that is provided in the lower bearing and discharges the working fluid compressed in a compression chamber, an oil holding portion that is provided in the lower bearing and takes in part of the oil in the oil reservoir, and the lower bearing
  • a lower valve cover provided in the lower bearing so as to independently separate a discharge space into which the compressed working fluid is discharged through the discharge port, and the oil holding portion and the discharge space.
  • the lower valve cover is attached to a fastening surface provided in the partition area, and a lower end surface of a central portion of a boss through which the drive shaft passes is the lower valve. Bottom of cover Or the same height as the, is characterized in that the position from the lower side thereto.
  • gas may stay in the lower end portion of the drive shaft that sucks up oil used for lubrication and sealing in the compression mechanism portion. Disappear. Therefore, it is possible to prevent deterioration in reliability and reduction in compressor efficiency due to gas biting.
  • gas is generated at the lower end portion of the drive shaft that sucks up oil used for lubrication and sealing in the compression mechanism portion.
  • a compressor that has both high efficiency and high reliability can be provided by preventing stagnation and preventing deterioration in reliability and reduction in compressor efficiency due to gas biting.
  • 1st invention discharges the working fluid which was provided in the airtight container which has an oil sump, the upper bearing and lower bearing which support a drive shaft in the airtight container, and the lower bearing, and was compressed by the compression chamber
  • a discharge port an oil holding portion that is provided in the lower bearing and takes in a part of the oil in the oil reservoir, the lower bearing and a lower valve cover, and is compressed through the discharge port
  • a compressor comprising: a discharge space from which the oil is discharged; and a partition region provided in the lower bearing so as to partition the oil holding portion and the discharge space independently, wherein the lower valve cover is A lower end surface of a central portion of a boss that is attached to a fastening surface provided in the partition region and through which the drive shaft passes is located at the same height as or below the lowermost surface of the lower valve cover.
  • the fastening surface of the lower bearing to which the lower valve cover is attached is the same plane perpendicular to the central axis of the lower bearing.
  • the fastening surface is constituted by a plurality of flat surfaces by providing a step or the like, the workability is high and the same effect can be obtained.
  • the central axis of the outer diameter of the boss does not coincide with the central axis of the inner diameter.
  • a sufficient seal length is secured on the fastening surface at the center of the fastening surface between the lower bearing and the lower valve cover, or the boss is thickened at a position where the load on the lower bearing is high.
  • a seal material is provided between the lower bearing and the lower valve cover.
  • the working fluid is compatible with the lubricating oil. Accordingly, the working fluid is dissolved in the lubricating oil discharged to the outside of the compressor to lower the lubricating oil viscosity and facilitate return to the inside of the compressor, thereby ensuring the oil level inside the compressor.
  • the compatibility is high, the lubricating oil is foamed under reduced pressure due to the pressure drop during the compressor operation transient, and a large amount of gas is released. Even in such a case, in the present invention, since gas does not stay at the lower end of the drive shaft, high reliability can be maintained.
  • FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1 of the present invention.
  • the compression mechanism unit 4 is driven by the vertical drive shaft 3 of the electric element 2.
  • the compression mechanism 4 includes an upper cylinder 5a, an upper rolling piston 6a, and an upper vane (not shown) sandwiched between an upper bearing 7 and an intermediate plate 8, and a lower cylinder 5b, a lower rolling piston 6b, and a lower vane (not shown). Is sandwiched between the middle plate 8 and the lower bearing 9. Accordingly, the upper and lower cylinders 5a and 5b form independent upper and lower suction chambers 10a and 10b and upper and lower compression chambers 11a and 11b, respectively, and perform a compression operation.
  • upper and lower eccentric parts 3a and 3b configured integrally with the drive shaft 3 are accommodated, and the upper and lower eccentric parts 3a and 3b are provided with upper and lower rolling pistons. 6a and 6b are rotatably mounted.
  • the upper and lower cylinders 5a and 5b are provided with vanes (not shown) in contact with the upper and lower rolling pistons 6a and 6b, and partition the suction chamber 10 and the compression chamber 11.
  • the upper and lower cylinders 5a and 5b are provided with upper and lower suction holes 12a and 12b adjacent to the upper suction chamber 10a (lower suction chamber 10b (not shown)).
  • the suction liners 13a and 13b are press-fitted into the upper and lower suction holes 12a and 12b.
  • the suction liners 13a and 13b receive the high-pressure refrigerant gas inside the sealed container 1 and the low-pressure refrigerant gas inside the upper and lower suction holes 12a and 12b. Partitioning.
  • An accumulator 14 is connected to the suction liners 13a and 13b while maintaining airtightness in order to prevent liquid compression of the compressor.
  • the upper and lower discharge spaces 15a and 15b are formed by fastening the upper bearing 7 and the upper valve cover 16a, and the lower bearing 9 and the lower valve cover 16b, respectively.
  • the gases compressed by the upper and lower cylinders 5a and 5b are discharged from discharge ports (not shown) provided in the upper bearing 7 and the lower bearing 9 to the upper and lower discharge spaces 15a and 15b.
  • the upper and lower communication passages (not shown) pass through the five parts of the upper bearing 7, the upper and lower cylinders 5 a and 5 b, the middle plate 8, and the lower bearing 9.
  • the discharge gas in the lower discharge space 15b is guided into the upper discharge space 15a through the upper and lower communication passages, merges with the discharge gas compressed by the upper cylinder 5a, and then passes through the discharge passage 17 and the lower part of the electric element 2 It flows out into space. Thereafter, the electric element 2 is guided to the upper space of the electric element 2 through the outer peripheral portion of the stator 2a, the gas passage provided inside the rotor 2b, and the gap between the stator 2a and the rotor 2b, and discharged. It is discharged from the pipe 18 to the outside of the compressor.
  • a hole is provided in the drive shaft 3, and the oil supply mechanism 20 is attached to the lower end of the drive shaft 3.
  • the oil in the oil reservoir 19 at the lower part of the sealed container 1 is sucked up from the oil suction port 21 by using the oil supply mechanism 20.
  • the sucked-up oil is supplied to various portions of the compression mechanism section 4 to lubricate the sliding section and seal the gap between the lower compression chamber 11b (11a (not shown)).
  • FIG. 2 is a cross-sectional view of the lower bearing in FIG. 1
  • FIG. 3 is a front view of the lower bearing.
  • the high-temperature and high-pressure discharge gas compressed by the lower cylinder 5b is discharged to the lower discharge space 15b through the discharge port 22.
  • a check valve (not shown) is attached to the discharge port 22 to prevent the discharge gas from flowing back into the lower compression chamber 11b.
  • the discharge gas in the lower discharge space 15b is guided from the vertical communication path 23 to the upper discharge space 15a.
  • An oil retaining portion 24 is provided on the lower suction hole 12b side, and a partition wall (partition region) 25 is in close contact with the lower valve cover 16b to seal the surface, thereby isolating the lower discharge space 15b and the oil retaining portion 24 from each other. . Further, the oil holding part 24 communicates with the oil reservoir 19 through a minute passage (not shown), but the oil hardly flows between the oil holding part 24 and the oil reservoir 19.
  • the lower end surface of the boss 9a at the center of the lower bearing 9 is below the lower surface of the lower valve cover 16b. Further, the center axis 9a1 of the outer diameter of the boss 9a and the center axis 9a2 of the inner diameter are shifted. The center length 9a1 of the outer diameter of the boss 9a and the center axis 9a2 of the inner diameter do not coincide with each other, so that the seal length of the fastening surface 26 between the lower bearing 9 and the lower valve cover 16b is particularly sufficient at the fastening surface 26 on the center side. It is possible to freely design the shape of the boss 9a, such as ensuring the thickness of the boss 9a at a position where the load of the lower bearing 9 is high, and ensuring high reliability.
  • the outer diameter center of the boss 9 a is eccentric to the lower right with respect to the center of the lower bearing 9.
  • the low-temperature and low-pressure gas enters the compression mechanism section 4 through the upper and lower suction holes 12a and 12b, is compressed and exits from the compression mechanism section 4, and is then discharged from the discharge pipe 18 to the outside of the compressor.
  • the gas inside the lower discharge space 15b that is, the discharge gas immediately after being discharged from the discharge port 22, is the highest temperature and pressure in most operation modes, and the upper bearing 7 and the lower bearing 9 are at this high temperature and pressure. Always exposed to the discharge gas.
  • the upper bearing 7 and the lower bearing 9 that function as one of the parts forming the upper suction chamber 10a (lower suction chamber 10b (not shown)) filled with the low-temperature and low-pressure suction gas are further exposed to the low-temperature and low-pressure suction gas.
  • the heat of the high-temperature and high-pressure discharge gas is transferred to the low-temperature and low-pressure suction gas by heat transfer and heat conduction, resulting in a deterioration in volumetric efficiency of the compressor due to a reduction in the density of the suction gas.
  • an oil holding portion 24 as a heat insulating layer is provided on the lower suction chamber 10b side of the lower bearing 9 to improve the volume efficiency.
  • the fastening surface 26 between the lower bearing 9 and the lower valve cover 16b is roughly divided into five seal portions (the following first to fifth seal portions 26a to 26e). Any of the seal portions 26a to 26e maintains the sealing performance by the face seal. The leakage risks at the respective seal portions 26a to 26e are different. It should be noted that a sealing material (not shown) is preferably provided on the fastening surface 26 between the lower bearing 9 and the lower valve cover 16b, that is, the seal portions 26a to 26e.
  • the first seal part 26a is a surface where the two partition walls 25 between the lower discharge space 15b and the oil holding part 24 come into contact with the lower valve cover 16b.
  • the lower discharge space 15b and the oil holding part 24 are partitioned.
  • the pressure in the lower discharge space 15b is slightly higher than that in the oil holding portion 24, the discharge gas in the lower discharge space 15b flows into the oil holding portion 24 when the sealing performance of the first seal portion 26a is impaired.
  • the oil retaining part 24 itself becomes high temperature, the function as the heat insulating layer cannot be performed, and the volume efficiency is deteriorated. Therefore, it is necessary to securely seal the first seal portion 26a.
  • the second seal portion 26b is a surface on the oil retaining portion 24 side of the fastening surface 26 on the outer periphery of the lower bearing 9.
  • the oil holding part 24 and the oil reservoir 19 are partitioned.
  • the minute passage is provided between the oil holding part 24 and the oil reservoir 19 as described above and is basically in a communicating state, even if the sealing performance of the second seal part 26b is slightly impaired, there is a particular problem. There is no. However, if the sealing performance is extremely deteriorated, the high-temperature oil in the oil reservoir 19 enters the oil retaining portion 24 and the heat insulation performance is deteriorated.
  • the third seal portion 26 c is a surface on the lower discharge space 15 b side of the fastening surface 26 on the outer periphery of the lower bearing 9.
  • the lower discharge space 15b and the oil reservoir 19 are partitioned.
  • the pressure in the lower discharge space 15 b is slightly higher than that in the oil reservoir 19, the discharge gas in the lower discharge space 15 b flows into the oil reservoir 19 when the sealing performance of the third seal portion 26 c is impaired. As a result, dissolution of the discharge gas in the oil is promoted, the oil viscosity is lowered, and the reliability of the compressor is lowered. Therefore, it is necessary to securely seal the third seal portion 26c.
  • the fourth seal portion 26d is a surface on the oil retaining portion 24 side of the fastening surface 26 on the center side of the lower bearing 9.
  • the oil holding part 24 and the oil reservoir 19 are partitioned.
  • the fourth seal portion 26d has no particular problem even if the sealing performance is slightly impaired.
  • the fifth seal portion 26e is a surface on the lower discharge space 15b side of the fastening surface 26 on the center side of the lower bearing 9.
  • the lower discharge space 15b and the oil reservoir 19 are partitioned.
  • the key point for realizing high reliability and efficiency of the compressor is not to generate gas at the oil suction port 21 of the drive shaft 3.
  • the lower valve cover 16b is made of a relatively thick material, so that the radial deformation and circumferential deformation of the lower valve cover 16b due to bolt fastening are suppressed. This improves the sealing performance at the first seal portion 26a, the third seal portion 26c, and the fifth seal portion 26e that need to be reliably sealed.
  • the deformation due to the pressure difference between the lower discharge space 15b and the oil reservoir 19 can be minimized because the lower valve cover 16b is relatively thick, and the deterioration of the sealing performance of the fifth seal portion 26e due to the curvature of the central portion of the lower valve cover 16b is suppressed. can do.
  • the seal length of the fifth seal portion 26e can be set relatively long, so that the sealing performance of the fifth seal portion 26e is further improved. To do.
  • the thickness of the boss 9a in the eccentric direction can be made relatively thick, by making the load direction due to the compression load and the eccentric direction substantially coincide with each other, the deformation of the boss 9a due to the bearing load is suppressed, It is also possible to prevent abnormal wear.
  • a two-cylinder rotary compressor having two cylinders at the top and bottom has been described as an example, but the same effect can be obtained with a one-cylinder rotary compressor in which the lower bearing 9 includes the discharge port 22. Further, if the fifth seal portion 26e and the oil suction port 21 are close to each other, the same effect can be obtained even with a scroll compressor.
  • the compressor according to the present invention is used for lubrication and sealing in the compression mechanism portion in the configuration using the lower bearing having the oil retaining portion having a high heat insulating effect and the lower valve cover having a relatively large thickness. Gas no longer stays at the lower end of the drive shaft that sucks up oil. Accordingly, it is possible to realize a compressor having both high efficiency and high reliability by preventing deterioration in reliability and reduction in compressor efficiency due to gas biting.
  • the present invention can also be applied to applications such as air conditioners and heat pump water heaters using HFC refrigerants, HCFC refrigerants, or HFO refrigerants, or air conditioners and heat pump water heaters using natural refrigerant carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

A compressor has a drive shaft (3) supported by an upper bearing (7) and a lower bearing (9), a discharge port (22) provided in the lower bearing (9), and a lower discharge space (15b) composed of the lower bearing (9) and a lower valve cover (16b) for receiving hydraulic fluid compressed in a lower compression chamber (11b) and discharged from the discharge port (22). An oil holding unit (24) is provided adjacent to the lower discharge space (15b) which has a configuration that receives some of the oil stored in a sealed container (1) with an oil reservoir (19) in the bottom portion but suppresses the flow of the received oil more than the flow of the oil in the oil reservoir (19). Because the lower end surface of a boss (9a) in the central portion of the lower bearing (9) has a height which is equal to or lower than the lowest surface of the lower valve cover (16b), gas does not accumulate in the lower end portion of the drive shaft (3) which draws in the oil used to lubricate and seal the compression mechanism internally, thereby providing a compressor that is both highly efficient and highly reliable.

Description

圧縮機Compressor
 本発明は、空調機、冷凍機、ブロワ、給湯機等に使用される圧縮機に関するものである。 The present invention relates to a compressor used in an air conditioner, a refrigerator, a blower, a water heater, and the like.
 従来の構成の一例として図4に示す2シリンダロータリ方式の高圧タイプ密閉型圧縮機の縦断面図を参照しながら説明する。 An example of a conventional configuration will be described with reference to a longitudinal sectional view of a two-cylinder rotary type high-pressure hermetic compressor shown in FIG.
 図4において、上下シリンダ101、102、上下ローリングピストン103、104、及びベーン(図示せず)を、上軸受105、中板106、及び下軸受107で挟み込むことで、上下独立した二つの吸入室108a(108b(図示せず))と二つの圧縮室109b(109a(図示せず))を形成する。そして、圧縮機構部111と電動要素112とが、密閉容器113内に収納されている。圧縮機構部111は、駆動軸110の回転に伴って上下ローリングピストン103、104が回転することで圧縮動作を行う。電動要素112は、駆動軸110に回転力を伝える。 In FIG. 4, the upper and lower cylinders 101 and 102, the upper and lower rolling pistons 103 and 104, and the vanes (not shown) are sandwiched between the upper bearing 105, the middle plate 106, and the lower bearing 107, thereby providing two suction chambers that are independent from each other. 108a (108b (not shown)) and two compression chambers 109b (109a (not shown)) are formed. The compression mechanism 111 and the electric element 112 are accommodated in the sealed container 113. The compression mechanism 111 performs a compression operation by rotating the upper and lower rolling pistons 103 and 104 as the drive shaft 110 rotates. The electric element 112 transmits a rotational force to the drive shaft 110.
 上軸受105と下軸受107には吐出ポート(図示せず)が各々設けられ、圧縮室109b(109a(図示せず))で所定の圧力まで圧縮された作動流体が、逆止弁(図示せず)を介して吐出ポートから吐出される。吐出ポート下流側の上下吐出空間114、115は、上下軸受105、107と上下バルブカバー116、117とで囲まれて形成されている。下吐出空間115内の作動流体は、上下連通路(図示せず)を通って上吐出空間114へと導かれ、上軸受105の吐出ポートから吐出された作動流体と合流する。その後、作動流体は、上バルブカバー116に設けられた開口部を通じて電動要素112下部空間に流出し、密閉容器113上部の吐出管118から圧縮機外部へ吐出される。 The upper bearing 105 and the lower bearing 107 are each provided with a discharge port (not shown), and the working fluid compressed to a predetermined pressure in the compression chamber 109b (109a (not shown)) is a check valve (not shown). From the discharge port. Upper and lower discharge spaces 114 and 115 on the downstream side of the discharge port are formed by being surrounded by upper and lower bearings 105 and 107 and upper and lower valve covers 116 and 117. The working fluid in the lower discharge space 115 is guided to the upper discharge space 114 through an upper and lower communication path (not shown), and merges with the working fluid discharged from the discharge port of the upper bearing 105. Thereafter, the working fluid flows out into the lower space of the electric element 112 through the opening provided in the upper valve cover 116 and is discharged from the discharge pipe 118 at the upper part of the hermetic container 113 to the outside of the compressor.
 密閉容器113下部に貯留されたオイルは、駆動軸110内部に軸方向に設けられた穴の下端から吸い上げられ、圧縮機構部111の各所に適量が供給されて、摺動部の潤滑と圧縮室109b(109a(図示せず))の隙間シールに利用される。 The oil stored in the lower part of the hermetic container 113 is sucked up from the lower end of a hole provided in the axial direction inside the drive shaft 110, and an appropriate amount is supplied to various parts of the compression mechanism unit 111 to lubricate the sliding part and the compression chamber 109b (109a (not shown)) is used for a gap seal.
 下吐出空間115内部には、圧縮機の中で最も温度が高い吐出ガスが全域に充満しているため、下軸受107が受熱される。そして、それに伴って下吸入室108b内の低温低圧の作動流体も受熱されるため、受熱による体積効率低下が課題となっている。 The inside of the lower discharge space 115 is filled with the discharge gas having the highest temperature among the compressors, so that the lower bearing 107 receives heat. Along with this, the low-temperature and low-pressure working fluid in the lower suction chamber 108b is also received heat, and volume efficiency reduction due to heat reception is a problem.
 この課題を解決するため、特許文献1に示す圧縮機では、図5に示すとおり、下軸受107の下吐出空間115内の下吸入室108b側に淀み空間119を設け、下吐出空間115と淀み空間119とを通路120によって連通させる。それにより、高温高圧の吐出ガスを下吸入室108bから遠ざけて受熱を低減し、体積効率を向上させている。 In order to solve this problem, in the compressor shown in Patent Document 1, a stagnation space 119 is provided on the lower suction chamber 108b side in the lower discharge space 115 of the lower bearing 107 as shown in FIG. The space 119 is communicated with the passage 120. Accordingly, the discharge gas of high temperature and high pressure is moved away from the lower suction chamber 108b to reduce heat reception and improve the volume efficiency.
 しかし、この構成では、吐出ポートから吐出直後の最も高温のガスが充満する下吐出空間115と淀み空間119とが連通しているため、少なからず淀み空間119内外のガスの交換が生じるため、断熱効果は限定的なものとなる。 However, in this configuration, since the lower discharge space 115 filled with the hottest gas immediately after discharge from the discharge port and the stagnation space 119 communicate with each other, the exchange of gas inside and outside the stagnation space 119 occurs. The effect is limited.
 ここで、下軸受107の中心部における下バルブカバー117とのシール性が悪いと、下吐出空間115のガスがシール部から外部へ漏れ出して駆動軸下端からオイルとともに吸い上げられてしまう。そのため、オイル供給不足による摺動部の潤滑悪化と圧縮室109bのシール性悪化も課題となっている。 Here, if the sealing performance with the lower valve cover 117 at the center of the lower bearing 107 is poor, the gas in the lower discharge space 115 leaks out from the sealing portion and is sucked up together with oil from the lower end of the drive shaft. Therefore, the lubrication deterioration of the sliding part due to insufficient oil supply and the sealing performance of the compression chamber 109b are also problems.
 この課題を解決するため、特許文献2に示す圧縮機では、図6に示すとおり、下軸受107と下バルブカバー117との締結面122において、外周側締結面122aに対して中心側締結面122bを高さL1だけ突出する。よって、中心側締結面122bでの接触力を増加させてシール性を向上し、駆動軸110下端からのガスの吸い込みを防止して信頼性を向上させている。 In order to solve this problem, in the compressor shown in Patent Document 2, as shown in FIG. 6, in the fastening surface 122 between the lower bearing 107 and the lower valve cover 117, the center side fastening surface 122b with respect to the outer circumferential side fastening surface 122a. Protrudes by a height L1. Therefore, the contact force at the center side fastening surface 122b is increased to improve the sealing performance, and the suction of gas from the lower end of the drive shaft 110 is prevented to improve the reliability.
特開2009-2299号公報JP 2009-2299 A 特開2009-127608号公報JP 2009-127608 A
 しかし、この構成では、下バルブカバー117を積極的に変形させて軸方向接触力を発生させている。そのため、下軸受107には軸方向荷重が加わって変形することでローリングピストンとの隙間が確保できなくなる、又は、軸受部の円筒度や直角度が損なわれること等によって逆に信頼性が悪化する場合がある。 However, in this configuration, the lower valve cover 117 is positively deformed to generate an axial contact force. For this reason, the lower bearing 107 is deformed by applying an axial load, so that a clearance with the rolling piston cannot be ensured, or the cylindricity or perpendicularity of the bearing portion is impaired, and the reliability is deteriorated. There is a case.
 また、下バルブカバー117はある程度薄くする必要があるため、締結面122の各所に隙間が生じやすい。 Further, since the lower valve cover 117 needs to be thinned to some extent, gaps are likely to be generated at various locations on the fastening surface 122.
 更に、エッジ部でシールしている中心側締結面122bとボルトが締結される外周側締結面122aとの中間付近に、隙間が生じる場合もある。 Further, there may be a gap near the middle between the center side fastening surface 122b sealed at the edge and the outer side fastening surface 122a to which the bolt is fastened.
 本発明は、前記従来の課題を解決するもので、オイル保持部が、下部にオイル溜まりを有する密閉容器に貯留されたオイルの一部を取り込み、取り込まれたオイルの流れがオイル溜まりにおけるオイルの流れよりも抑制(規制)されるように構成され、オイル保持部を下吐出空間と隣接、あるいは区画領域を介して配置された圧縮機において、下軸受の中心部のボスの下端面を下バルブカバーの最下面と同一高さか、それより下側にすることにより、下軸受中心部付近の凹部を無くして駆動軸のガス噛みを防止する。したがって、断熱効果による高い体積効率とガス噛みの無い高い信頼性を持つ圧縮機を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, wherein the oil holding part takes in a part of the oil stored in a closed container having an oil reservoir in the lower part, and the flow of the taken-in oil flows into the oil reservoir. In a compressor that is configured to be suppressed (restricted) rather than flow, and in which the oil retaining portion is arranged adjacent to the lower discharge space or through a partition region, the lower valve of the lower end surface of the boss at the center of the lower bearing By making it the same height as the lowermost surface of the cover or below it, the recess near the center portion of the lower bearing is eliminated, and gas engagement of the drive shaft is prevented. Accordingly, it is an object to provide a compressor having high volume efficiency due to the heat insulation effect and high reliability without gas biting.
 そこで、前記従来の課題を解決するために、本発明の圧縮機は、請求項1記載のとおり、オイル溜りを有する密閉容器と、前記密閉容器内で、駆動軸を支持する上軸受、及び下軸受と、前記下軸受に設けられ、圧縮室で圧縮された作動流体を吐出する吐出ポートと、前記下軸受に設けられ、前記オイル溜りのオイルの一部を取り込むオイル保持部と、前記下軸受と下バルブカバーとで構成され、前記吐出ポートを介して圧縮された作動流体が吐出される吐出空間と、前記オイル保持部と前記吐出空間とを独立的に区画すべく、前記下軸受に設けられた区画領域と、を具備する圧縮機であって、前記下バルブカバーは前記区画領域に設けられた締結面に取り付けられ、前記駆動軸が貫通するボスの中心部の下端面は前記下バルブカバーの最下面と同一高さか、それより下側に位置することを特徴とするものである。 Therefore, in order to solve the conventional problem, a compressor according to the present invention includes a sealed container having an oil reservoir, an upper bearing that supports a drive shaft, and a lower bearing in the sealed container. A bearing, a discharge port that is provided in the lower bearing and discharges the working fluid compressed in a compression chamber, an oil holding portion that is provided in the lower bearing and takes in part of the oil in the oil reservoir, and the lower bearing And a lower valve cover, provided in the lower bearing so as to independently separate a discharge space into which the compressed working fluid is discharged through the discharge port, and the oil holding portion and the discharge space. The lower valve cover is attached to a fastening surface provided in the partition area, and a lower end surface of a central portion of a boss through which the drive shaft passes is the lower valve. Bottom of cover Or the same height as the, is characterized in that the position from the lower side thereto.
 これによって、断熱効果の高いオイル保持部を有する下軸受と下バルブカバーを用いた構成において、圧縮機構部内の潤滑やシールに利用されるオイルを吸い上げる駆動軸の下端部にガスが滞留することがなくなる。よって、ガス噛みによる信頼性の悪化と圧縮機効率の低下を防止することが可能である。 As a result, in a configuration using a lower bearing and a lower valve cover having an oil retaining portion having a high heat insulating effect, gas may stay in the lower end portion of the drive shaft that sucks up oil used for lubrication and sealing in the compression mechanism portion. Disappear. Therefore, it is possible to prevent deterioration in reliability and reduction in compressor efficiency due to gas biting.
 本発明の圧縮機は、断熱効果の高いオイル保持部を有する下軸受と下バルブカバーを用いた構成において、圧縮機構部内の潤滑やシールに利用されるオイルを吸い上げる駆動軸の下端部にガスが滞留することがなくなり、ガス噛みによる信頼性の悪化と圧縮機効率の低下を防止して、高効率と高信頼性を併せ持つ圧縮機を提供することができる。 In the compressor according to the present invention, in the configuration using the lower bearing and the lower valve cover having an oil holding portion having a high heat insulating effect, gas is generated at the lower end portion of the drive shaft that sucks up oil used for lubrication and sealing in the compression mechanism portion. A compressor that has both high efficiency and high reliability can be provided by preventing stagnation and preventing deterioration in reliability and reduction in compressor efficiency due to gas biting.
本発明の実施の形態1における圧縮機の縦断面図The longitudinal cross-sectional view of the compressor in Embodiment 1 of this invention 本発明の実施の形態1における下軸受の断面図Sectional drawing of the lower bearing in Embodiment 1 of this invention 本発明の実施の形態1における下軸受の正面図The front view of the lower bearing in Embodiment 1 of this invention 従来の圧縮機における圧縮機の縦断面図A longitudinal sectional view of a compressor in a conventional compressor 特許文献1の従来の圧縮機における下軸受の正面図Front view of lower bearing in conventional compressor of Patent Document 1 特許文献2の従来の圧縮機における下軸受の断面図Sectional view of lower bearing in conventional compressor of Patent Document 2
 1 密閉容器
 3 駆動軸
 4 圧縮機構部
 7 上軸受
 9 下軸受
 9a ボス
 11a 上圧縮室
 11b 下圧縮室
 15a 上吐出空間
 15b 下吐出空間(吐出空間)
 16b 下バルブカバー
 19 オイル溜り
 22 吐出ポート
 24 オイル保持部
 25 隔壁(区画領域)
 26 締結面
DESCRIPTION OF SYMBOLS 1 Airtight container 3 Drive shaft 4 Compression mechanism part 7 Upper bearing 9 Lower bearing 9a Boss 11a Upper compression chamber 11b Lower compression chamber 15a Upper discharge space 15b Lower discharge space (discharge space)
16b Lower valve cover 19 Oil reservoir 22 Discharge port 24 Oil holding part 25 Bulkhead (partition area)
26 Fastening surface
 第1の発明は、オイル溜りを有する密閉容器と、前記密閉容器内で、駆動軸を支持する上軸受、及び下軸受と、前記下軸受に設けられ、圧縮室で圧縮された作動流体を吐出する吐出ポートと、前記下軸受に設けられ、前記オイル溜りのオイルの一部を取り込むオイル保持部と、前記下軸受と下バルブカバーとで構成され、前記吐出ポートを介して圧縮された作動流体が吐出される吐出空間と、前記オイル保持部と前記吐出空間とを独立的に区画すべく、前記下軸受に設けられた区画領域と、を具備する圧縮機であって、前記下バルブカバーは前記区画領域に設けられた締結面に取り付けられ、前記駆動軸が貫通するボスの中心部の下端面は前記下バルブカバーの最下面と同一高さか、それより下側に位置するものである。それにより、駆動軸下端部のオイル吸い込み口付近におけるガスの滞留が無くなり、ガス噛みによる軸受部の潤滑悪化や圧縮室のシール悪化を防止して、高い信頼性を実現することが可能である。 1st invention discharges the working fluid which was provided in the airtight container which has an oil sump, the upper bearing and lower bearing which support a drive shaft in the airtight container, and the lower bearing, and was compressed by the compression chamber A discharge port, an oil holding portion that is provided in the lower bearing and takes in a part of the oil in the oil reservoir, the lower bearing and a lower valve cover, and is compressed through the discharge port Is a compressor comprising: a discharge space from which the oil is discharged; and a partition region provided in the lower bearing so as to partition the oil holding portion and the discharge space independently, wherein the lower valve cover is A lower end surface of a central portion of a boss that is attached to a fastening surface provided in the partition region and through which the drive shaft passes is located at the same height as or below the lowermost surface of the lower valve cover. As a result, there is no gas stagnation in the vicinity of the oil suction port at the lower end of the drive shaft, and it is possible to prevent the deterioration of the lubrication of the bearing portion and the deterioration of the seal of the compression chamber due to gas biting, thereby realizing high reliability.
 第2の発明は、特に、第1の発明の圧縮機において、下バルブカバーが取り付けられる下軸受の締結面を、下軸受の中心軸に対して直角な同一平面とするものである。それにより、下軸受の形状がシンプルになるため、加工性が向上して加工コストを低減することができる。また、その結果、締結面の加工精度が向上して締結面におけるシール性が向上し、ガス噛みによる信頼性悪化を抑制することが可能である。 In the second invention, in particular, in the compressor of the first invention, the fastening surface of the lower bearing to which the lower valve cover is attached is the same plane perpendicular to the central axis of the lower bearing. Thereby, since the shape of a lower bearing becomes simple, workability can be improved and processing cost can be reduced. As a result, the processing accuracy of the fastening surface is improved, the sealing performance on the fastening surface is improved, and deterioration of reliability due to gas biting can be suppressed.
 なお、段差を付ける等によって締結面を複数の平面で構成しても加工性は高く、同様の効果が得られる。 In addition, even if the fastening surface is constituted by a plurality of flat surfaces by providing a step or the like, the workability is high and the same effect can be obtained.
 第3の発明は、特に、第1又は2の発明の圧縮機において、ボスの外径の中心軸と内径の中心軸とが一致しないものである。それにより、下軸受と下バルブカバーとの締結面の中心側締結面において、必要な箇所のシール長を十分に確保したり、下軸受の負荷の高い位置でのボスの厚みを厚く設定するように、ボスの形状を自由に設計することが可能となり、高い信頼性を確保することが可能である。 In the third invention, in particular, in the compressor of the first or second invention, the central axis of the outer diameter of the boss does not coincide with the central axis of the inner diameter. As a result, a sufficient seal length is secured on the fastening surface at the center of the fastening surface between the lower bearing and the lower valve cover, or the boss is thickened at a position where the load on the lower bearing is high. In addition, it is possible to freely design the shape of the boss, and it is possible to ensure high reliability.
 第4の発明は、特に、第1から第3のいずれかの発明の圧縮機において、下軸受と下バルブカバーとの間にシール材を設けるものである。それにより、下軸受と下バルブカバーの締結面の平面度や表面粗さ等の部品精度ばらつきを吸収して、確実にシール性を向上させることができ、信頼性を確保することが可能である。 In the fourth invention, in particular, in the compressor according to any one of the first to third inventions, a seal material is provided between the lower bearing and the lower valve cover. As a result, variations in component accuracy such as flatness and surface roughness of the fastening surfaces of the lower bearing and the lower valve cover can be absorbed, sealing performance can be improved reliably, and reliability can be ensured. .
 第5の発明は、特に、第1から第4のいずれかの発明の圧縮機において、作動流体が潤滑油と相溶するものである。それにより、圧縮機外部へ吐出された潤滑油に作動流体を溶解させて潤滑油粘度を下げ、圧縮機内部へ戻りやすくすることで、圧縮機内部の油面確保ができる。しかし、相溶性が高いと、圧縮機運転過渡時の圧力低下によって潤滑油が減圧発泡してガスを大量に放出する。このような場合でも、本発明では駆動軸下端部にガスが滞留しないため、高い信頼性を維持することが可能である。 In the compressor according to any one of the first to fourth inventions, the working fluid is compatible with the lubricating oil. Accordingly, the working fluid is dissolved in the lubricating oil discharged to the outside of the compressor to lower the lubricating oil viscosity and facilitate return to the inside of the compressor, thereby ensuring the oil level inside the compressor. However, if the compatibility is high, the lubricating oil is foamed under reduced pressure due to the pressure drop during the compressor operation transient, and a large amount of gas is released. Even in such a case, in the present invention, since gas does not stay at the lower end of the drive shaft, high reliability can be maintained.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1における圧縮機の縦断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1 of the present invention.
 図1において、密閉容器1内に電動要素2が収納されている。電動要素2の鉛直方向の駆動軸3で圧縮機構部4が駆動される。この圧縮機構部4は、上シリンダ5a、上ローリングピストン6a、及び上ベーン(図示せず)を上軸受7と中板8で挟み込み、下シリンダ5b、下ローリングピストン6b、及び下ベーン(図示せず)を中板8と下軸受9で挟み込む。それによって、上・下シリンダ5a、5b各々が独立した上・下吸入室10a、10bと上・下圧縮室11a、11bを形成して圧縮動作を行う。上・下シリンダ5a、5b内には、駆動軸3と一体的に構成された上下偏芯部3a、3bが収納されており、この上・下偏芯部3a、3bに上・下ローリングピストン6a、6bが回転自在に装着されている。上・下シリンダ5a、5bには、ベーン(図示せず)が上・下ローリングピストン6a、6bに当接して設けられ、吸入室10と圧縮室11とを仕切っている。上・下シリンダ5a、5bには、上吸入室10a(下吸入室10b(図示せず))と隣接して上・下吸入穴12a、12bが設けられている。上・下吸入穴12a、12bには吸入ライナー13a、13bが圧入され、吸入ライナー13a、13bは、密閉容器1内部の高圧冷媒ガスと上・下吸入穴12a、12b内部の低圧冷媒ガスとを仕切っている。吸入ライナー13a、13bには、圧縮機の液圧縮を防止するためにアキュームレータ14が気密を保ちながら接続されている。 In FIG. 1, the electric element 2 is accommodated in the sealed container 1. The compression mechanism unit 4 is driven by the vertical drive shaft 3 of the electric element 2. The compression mechanism 4 includes an upper cylinder 5a, an upper rolling piston 6a, and an upper vane (not shown) sandwiched between an upper bearing 7 and an intermediate plate 8, and a lower cylinder 5b, a lower rolling piston 6b, and a lower vane (not shown). Is sandwiched between the middle plate 8 and the lower bearing 9. Accordingly, the upper and lower cylinders 5a and 5b form independent upper and lower suction chambers 10a and 10b and upper and lower compression chambers 11a and 11b, respectively, and perform a compression operation. In the upper and lower cylinders 5a and 5b, upper and lower eccentric parts 3a and 3b configured integrally with the drive shaft 3 are accommodated, and the upper and lower eccentric parts 3a and 3b are provided with upper and lower rolling pistons. 6a and 6b are rotatably mounted. The upper and lower cylinders 5a and 5b are provided with vanes (not shown) in contact with the upper and lower rolling pistons 6a and 6b, and partition the suction chamber 10 and the compression chamber 11. The upper and lower cylinders 5a and 5b are provided with upper and lower suction holes 12a and 12b adjacent to the upper suction chamber 10a (lower suction chamber 10b (not shown)). The suction liners 13a and 13b are press-fitted into the upper and lower suction holes 12a and 12b. The suction liners 13a and 13b receive the high-pressure refrigerant gas inside the sealed container 1 and the low-pressure refrigerant gas inside the upper and lower suction holes 12a and 12b. Partitioning. An accumulator 14 is connected to the suction liners 13a and 13b while maintaining airtightness in order to prevent liquid compression of the compressor.
 電動要素2を通電して駆動軸3を回転させると、上・下偏芯部3a、3bが上・下シリンダ5a、5b内において偏芯回転し、上・下ローリングピストン6a、6bがベーンに当接しながら回転運動し、冷媒ガスの吸入、圧縮が繰り返される。 When the electric element 2 is energized and the drive shaft 3 is rotated, the upper and lower eccentric parts 3a and 3b rotate eccentrically in the upper and lower cylinders 5a and 5b, and the upper and lower rolling pistons 6a and 6b become vanes. Rotating motion while abutting, refrigerant gas suction and compression are repeated.
 上・下吐出空間15a、15bはそれぞれ、上軸受7と上バルブカバー16a、下軸受9と下バルブカバー16bが締結されることによって形成される。上・下シリンダ5a、5bで各々圧縮されたガスは上軸受7と下軸受9に設けられた吐出ポート(図示せず)から上・下吐出空間15a、15bへ吐出される。上下連通路(図示せず)は、上軸受7、上・下シリンダ5a、5b、中板8、下軸受9の5部品を貫通する。下吐出空間15b内の吐出ガスは、上下連通路を通って上吐出空間15a内に導かれ、上シリンダ5aにて圧縮された吐出ガスと合流した後、吐出通路17を通って電動要素2下部空間へと流出する。その後、電動要素2の固定子2a外周部、回転子2b内部に設けられたガス通路、及び固定子2aと回転子2bとの間の隙間を通って電動要素2上部空間へと導かれ、吐出管18から圧縮機外部へと吐出される。 The upper and lower discharge spaces 15a and 15b are formed by fastening the upper bearing 7 and the upper valve cover 16a, and the lower bearing 9 and the lower valve cover 16b, respectively. The gases compressed by the upper and lower cylinders 5a and 5b are discharged from discharge ports (not shown) provided in the upper bearing 7 and the lower bearing 9 to the upper and lower discharge spaces 15a and 15b. The upper and lower communication passages (not shown) pass through the five parts of the upper bearing 7, the upper and lower cylinders 5 a and 5 b, the middle plate 8, and the lower bearing 9. The discharge gas in the lower discharge space 15b is guided into the upper discharge space 15a through the upper and lower communication passages, merges with the discharge gas compressed by the upper cylinder 5a, and then passes through the discharge passage 17 and the lower part of the electric element 2 It flows out into space. Thereafter, the electric element 2 is guided to the upper space of the electric element 2 through the outer peripheral portion of the stator 2a, the gas passage provided inside the rotor 2b, and the gap between the stator 2a and the rotor 2b, and discharged. It is discharged from the pipe 18 to the outside of the compressor.
 駆動軸3内部には穴を設け、駆動軸3下端に給油機構20が取り付けられる。密閉容器1下部のオイル溜り19のオイルは、給油機構20を利用してオイル吸い込み口21から吸い上げられる。吸い上げられたオイルは、圧縮機構部4各所に供給され、摺動部の潤滑及び下圧縮室11b(11a(図示せず))の隙間をシールする。 A hole is provided in the drive shaft 3, and the oil supply mechanism 20 is attached to the lower end of the drive shaft 3. The oil in the oil reservoir 19 at the lower part of the sealed container 1 is sucked up from the oil suction port 21 by using the oil supply mechanism 20. The sucked-up oil is supplied to various portions of the compression mechanism section 4 to lubricate the sliding section and seal the gap between the lower compression chamber 11b (11a (not shown)).
 図2は図1における下軸受の断面図、図3は同下軸受の正面図である。 2 is a cross-sectional view of the lower bearing in FIG. 1, and FIG. 3 is a front view of the lower bearing.
 下シリンダ5bで圧縮された高温高圧の吐出ガスは、吐出ポート22を通って下吐出空間15bに吐出される。吐出ポート22には逆止弁(図示せず)が取り付けられ、下圧縮室11bに吐出ガスが逆流することを防止する。 The high-temperature and high-pressure discharge gas compressed by the lower cylinder 5b is discharged to the lower discharge space 15b through the discharge port 22. A check valve (not shown) is attached to the discharge port 22 to prevent the discharge gas from flowing back into the lower compression chamber 11b.
 下吐出空間15b内の吐出ガスは上下連通路23から上吐出空間15aへと導かれる。 The discharge gas in the lower discharge space 15b is guided from the vertical communication path 23 to the upper discharge space 15a.
 下吸入穴12b側にはオイル保持部24が設けられ、隔壁(区画領域)25が下バルブカバー16bと密着することで面シールし、下吐出空間15bとオイル保持部24とを隔離している。また、オイル保持部24は微小な通路(図示せず)によってオイル溜り19と連通しているが、オイルは、オイル保持部24とオイル溜り19との間をほとんど流動しない。 An oil retaining portion 24 is provided on the lower suction hole 12b side, and a partition wall (partition region) 25 is in close contact with the lower valve cover 16b to seal the surface, thereby isolating the lower discharge space 15b and the oil retaining portion 24 from each other. . Further, the oil holding part 24 communicates with the oil reservoir 19 through a minute passage (not shown), but the oil hardly flows between the oil holding part 24 and the oil reservoir 19.
 下軸受9の中心部のボス9aの下端面は下バルブカバー16bの下面よりも下側にある。
また、ボス9aの外径の中心軸9a1と内径の中心軸9a2とをずらしている。ボス9aの外径の中心軸9a1と内径の中心軸9a2とを一致させないことにより、下軸受9と下バルブカバー16bとの締結面26において、特に中心側の締結面26でのシール長を十分に確保したり、下軸受9の負荷の高い位置でのボス9aを厚くするなど、ボス9aの形状を自由に設計することが可能となり、高い信頼性を確保することが可能である。
The lower end surface of the boss 9a at the center of the lower bearing 9 is below the lower surface of the lower valve cover 16b.
Further, the center axis 9a1 of the outer diameter of the boss 9a and the center axis 9a2 of the inner diameter are shifted. The center length 9a1 of the outer diameter of the boss 9a and the center axis 9a2 of the inner diameter do not coincide with each other, so that the seal length of the fastening surface 26 between the lower bearing 9 and the lower valve cover 16b is particularly sufficient at the fastening surface 26 on the center side. It is possible to freely design the shape of the boss 9a, such as ensuring the thickness of the boss 9a at a position where the load of the lower bearing 9 is high, and ensuring high reliability.
 図3において、ボス9aの外径中心は、下軸受9の中心に対して右下に偏芯している。 3, the outer diameter center of the boss 9 a is eccentric to the lower right with respect to the center of the lower bearing 9.
 以上のように構成された圧縮機について、以下その動作、作用を説明する。 About the compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 低温低圧のガスは、上・下吸入穴12a、12bから圧縮機構部4へ入り、圧縮されて圧縮機構部4の外へ出た後、吐出管18から圧縮機外部へ吐出される。その過程の中で、下吐出空間15b内部のガス、すなわち、吐出ポート22から吐出された直後の吐出ガスがほとんどの運転モードにおいて最も高温高圧であり、上軸受7と下軸受9はこの高温高圧の吐出ガスに常にさらされている。 The low-temperature and low-pressure gas enters the compression mechanism section 4 through the upper and lower suction holes 12a and 12b, is compressed and exits from the compression mechanism section 4, and is then discharged from the discharge pipe 18 to the outside of the compressor. In the process, the gas inside the lower discharge space 15b, that is, the discharge gas immediately after being discharged from the discharge port 22, is the highest temperature and pressure in most operation modes, and the upper bearing 7 and the lower bearing 9 are at this high temperature and pressure. Always exposed to the discharge gas.
 一方、低温低圧の吸入ガスが充満する上吸入室10a(下吸入室10b(図示せず))を形成する部品のひとつとして機能する上軸受7及び下軸受9は低温低圧の吸入ガスにもさらされている。 On the other hand, the upper bearing 7 and the lower bearing 9 that function as one of the parts forming the upper suction chamber 10a (lower suction chamber 10b (not shown)) filled with the low-temperature and low-pressure suction gas are further exposed to the low-temperature and low-pressure suction gas. Has been.
 したがって、高温高圧の吐出ガスの熱が熱伝達及び熱伝導によって低温低圧の吸入ガスへと移動し、吸入ガスの密度低下による圧縮機の体積効率悪化を招く。 Therefore, the heat of the high-temperature and high-pressure discharge gas is transferred to the low-temperature and low-pressure suction gas by heat transfer and heat conduction, resulting in a deterioration in volumetric efficiency of the compressor due to a reduction in the density of the suction gas.
 この熱の移動を抑制するため、下軸受9の下吸入室10b側に断熱層としのオイル保持部24を設けて、体積効率を向上させている。 In order to suppress this heat transfer, an oil holding portion 24 as a heat insulating layer is provided on the lower suction chamber 10b side of the lower bearing 9 to improve the volume efficiency.
 下軸受9と下バルブカバー16bとの締結面26には大きく分けて5つのシール部(下記第1~第5シール部26a~26e)がある。いずれのシール部26a~26eも面シールによってシール性が維持されている。そして、それぞれのシール部26a~26eでの漏れリスクが異なる。
なお、下軸受9と下バルブカバー16bとの締結面26、すなわちシール部26a~26eにはシール材(図示せず)を設けることが好ましい。
The fastening surface 26 between the lower bearing 9 and the lower valve cover 16b is roughly divided into five seal portions (the following first to fifth seal portions 26a to 26e). Any of the seal portions 26a to 26e maintains the sealing performance by the face seal. The leakage risks at the respective seal portions 26a to 26e are different.
It should be noted that a sealing material (not shown) is preferably provided on the fastening surface 26 between the lower bearing 9 and the lower valve cover 16b, that is, the seal portions 26a to 26e.
 第1シール部26aは、下吐出空間15bとオイル保持部24との間の2箇所の隔壁25と下バルブカバー16bとが接する面である。下吐出空間15bとオイル保持部24とを仕切っている。 The first seal part 26a is a surface where the two partition walls 25 between the lower discharge space 15b and the oil holding part 24 come into contact with the lower valve cover 16b. The lower discharge space 15b and the oil holding part 24 are partitioned.
 下吐出空間15bの圧力はオイル保持部24よりも若干高めであるため、第1シール部26aのシール性が損なわれた場合、下吐出空間15bの吐出ガスがオイル保持部24へと流れ込む。その結果、オイル保持部24自体が高温となるため、断熱層としての機能を果たせなくなって体積効率の悪化を招く。したがって、第1シール部26aは確実にシールする必要がある。 Since the pressure in the lower discharge space 15b is slightly higher than that in the oil holding portion 24, the discharge gas in the lower discharge space 15b flows into the oil holding portion 24 when the sealing performance of the first seal portion 26a is impaired. As a result, since the oil retaining part 24 itself becomes high temperature, the function as the heat insulating layer cannot be performed, and the volume efficiency is deteriorated. Therefore, it is necessary to securely seal the first seal portion 26a.
 第2シール部26bは、下軸受9外周の締結面26のうちオイル保持部24側の面である。オイル保持部24とオイル溜り19とを仕切っている。 The second seal portion 26b is a surface on the oil retaining portion 24 side of the fastening surface 26 on the outer periphery of the lower bearing 9. The oil holding part 24 and the oil reservoir 19 are partitioned.
 オイル保持部24とオイル溜り19との間には前述のとおり微小な通路が設けられており、基本的に連通状態であるため、第2シール部26bのシール性が少々損なわれても特に問題はない。但し、極端にシール性が悪化するとオイル溜り19の高温のオイルがオイル保持部24内に入り込み、断熱性能が悪化する。 Since the minute passage is provided between the oil holding part 24 and the oil reservoir 19 as described above and is basically in a communicating state, even if the sealing performance of the second seal part 26b is slightly impaired, there is a particular problem. There is no. However, if the sealing performance is extremely deteriorated, the high-temperature oil in the oil reservoir 19 enters the oil retaining portion 24 and the heat insulation performance is deteriorated.
 第3シール部26cは、下軸受9外周の締結面26のうち下吐出空間15b側の面である。下吐出空間15bとオイル溜り19とを仕切っている。 The third seal portion 26 c is a surface on the lower discharge space 15 b side of the fastening surface 26 on the outer periphery of the lower bearing 9. The lower discharge space 15b and the oil reservoir 19 are partitioned.
 下吐出空間15bの圧力はオイル溜り19よりも若干高めであるため、第3シール部26cのシール性が損なわれた場合、下吐出空間15bの吐出ガスがオイル溜り19へと流れ込む。その結果、吐出ガスのオイルへの溶解が促進されてオイル粘度が低下し、圧縮機の信頼性の低下を招く。したがって、第3シール部26cは確実にシールする必要がある。 Since the pressure in the lower discharge space 15 b is slightly higher than that in the oil reservoir 19, the discharge gas in the lower discharge space 15 b flows into the oil reservoir 19 when the sealing performance of the third seal portion 26 c is impaired. As a result, dissolution of the discharge gas in the oil is promoted, the oil viscosity is lowered, and the reliability of the compressor is lowered. Therefore, it is necessary to securely seal the third seal portion 26c.
 第4シール部26dは、下軸受9中心側の締結面26のうちオイル保持部24側の面である。オイル保持部24とオイル溜り19とを仕切っている。 The fourth seal portion 26d is a surface on the oil retaining portion 24 side of the fastening surface 26 on the center side of the lower bearing 9. The oil holding part 24 and the oil reservoir 19 are partitioned.
 第4シール部26dは第2シール部26bと同様、シール性が少々損なわれても特に問題はない。 As with the second seal portion 26b, the fourth seal portion 26d has no particular problem even if the sealing performance is slightly impaired.
 第5シール部26eは、下軸受9中心側の締結面26のうち下吐出空間15b側の面である。下吐出空間15bとオイル溜り19とを仕切っている。 The fifth seal portion 26e is a surface on the lower discharge space 15b side of the fastening surface 26 on the center side of the lower bearing 9. The lower discharge space 15b and the oil reservoir 19 are partitioned.
 第5シール部26eのシール性が損なわれた場合、第3シール部26cの場合と同様、吐出ガスがオイルへ溶解することによるオイル粘度低下のリスクがある。更に、第5シール部26eから流出したガスが駆動軸3のオイル吸い込み口21から直接吸い込まれる、いわゆるガス噛みが生じる。その結果、給油量不足による摺動部の潤滑不良や圧縮室11のシール不足が発生し、極端な信頼性悪化と圧縮機効率低下を招く。したがって、第5シール部26eは特に注意してシール性を確保する必要がある。 When the sealing performance of the fifth seal portion 26e is impaired, there is a risk of a decrease in oil viscosity due to the discharge gas being dissolved in the oil as in the case of the third seal portion 26c. Furthermore, so-called gas biting occurs in which the gas flowing out from the fifth seal portion 26 e is directly sucked from the oil suction port 21 of the drive shaft 3. As a result, the lubrication of the sliding portion due to the insufficient amount of oil supply or the seal of the compression chamber 11 is insufficient, resulting in an extreme deterioration in reliability and a reduction in compressor efficiency. Therefore, it is necessary to pay special attention to the sealing property of the fifth seal portion 26e.
 つまり、駆動軸3のオイル吸い込み口21でのガス噛みを発生させないことが、圧縮機の高い信頼性と効率を実現するキーポイントとなる。 That is, the key point for realizing high reliability and efficiency of the compressor is not to generate gas at the oil suction port 21 of the drive shaft 3.
 下バルブカバー16bは比較的厚みのあるものを使用することにより、ボルト締結による下バルブカバー16bの径方向及び周方向の変形を抑制する。それにより、確実にシールする必要のある第1シール部26a、第3シール部26c及び第5シール部26eでのシール性を向上させている。 The lower valve cover 16b is made of a relatively thick material, so that the radial deformation and circumferential deformation of the lower valve cover 16b due to bolt fastening are suppressed. This improves the sealing performance at the first seal portion 26a, the third seal portion 26c, and the fifth seal portion 26e that need to be reliably sealed.
 下吐出空間15bとオイル溜り19との圧力差による変形も下バルブカバー16bが比較的厚みがあるため極小化でき、下バルブカバー16b中心部の反り返りによる第5シール部26eのシール性低下を抑制することができる。 The deformation due to the pressure difference between the lower discharge space 15b and the oil reservoir 19 can be minimized because the lower valve cover 16b is relatively thick, and the deterioration of the sealing performance of the fifth seal portion 26e due to the curvature of the central portion of the lower valve cover 16b is suppressed. can do.
 万が一、第5シール部26eのシール性が損なわれてガスが放出されたとしても、駆動軸3のオイル吸い込み口21よりも高い位置に放出される。したがって、ガスは、気泡の浮力によってオイル溜り19の油面側へと流れて行き、オイル吸い込み口21から吸い込まれることはない。 Even if the sealing performance of the fifth seal portion 26e is impaired and gas is released, it is discharged to a position higher than the oil suction port 21 of the drive shaft 3. Therefore, the gas flows to the oil surface side of the oil reservoir 19 due to the buoyancy of the bubbles, and is not sucked from the oil suction port 21.
 加えて、ボス9aの外径中心を下軸受9の中心から偏芯させることで、第5シール部26eでのシール長を比較的長く設定できるため、第5シール部26eのシール性がさらに向上する。 In addition, by decentering the outer diameter center of the boss 9a from the center of the lower bearing 9, the seal length of the fifth seal portion 26e can be set relatively long, so that the sealing performance of the fifth seal portion 26e is further improved. To do.
 また、偏芯方向のボス9aの厚みを比較的厚くできるため、圧縮荷重による負荷方向と偏芯方向とを概ね一致させることで、ボス9aの軸受荷重による変形を抑制してボス9aの破損や異常磨耗を防止することも可能である。 Further, since the thickness of the boss 9a in the eccentric direction can be made relatively thick, by making the load direction due to the compression load and the eccentric direction substantially coincide with each other, the deformation of the boss 9a due to the bearing load is suppressed, It is also possible to prevent abnormal wear.
 なお、下軸受9を焼結材とすることにより、偏芯したボス9aの加工が容易になり、加工コストの増加を抑えることができる。 In addition, by using the lower bearing 9 as a sintered material, it becomes easy to process the eccentric boss 9a, and an increase in processing cost can be suppressed.
 本実施の形態ではシリンダが上下二つある2シリンダロータリ圧縮機を1例として説明したが、下軸受9に吐出ポート22を備えた1シリンダロータリ圧縮機でも同様の効果が得られる。また、第5シール部26eとオイル吸い込み口21が近接していれば、スクロール圧縮機であっても同様の効果が得られる。 In the present embodiment, a two-cylinder rotary compressor having two cylinders at the top and bottom has been described as an example, but the same effect can be obtained with a one-cylinder rotary compressor in which the lower bearing 9 includes the discharge port 22. Further, if the fifth seal portion 26e and the oil suction port 21 are close to each other, the same effect can be obtained even with a scroll compressor.
 以上のように、本発明にかかる圧縮機は、断熱効果の高いオイル保持部を有する下軸受と比較的厚みのある下バルブカバーを用いた構成において、圧縮機構部内の潤滑やシールに利用されるオイルを吸い上げる駆動軸の下端部にガスが滞留することがなくなる。したがって、ガス噛みによる信頼性の悪化と圧縮機効率の低下を防止して、高効率と高信頼性を併せ持つ圧縮機が実現可能である。HFC系冷媒、HCFC系冷媒、又はHFO系冷媒を用いたエアーコンディショナーやヒートポンプ式給湯機、又は、自然冷媒の二酸化炭素を用いたエアーコンディショナーやヒートポンプ式給湯機などの用途にも適用できる。 As described above, the compressor according to the present invention is used for lubrication and sealing in the compression mechanism portion in the configuration using the lower bearing having the oil retaining portion having a high heat insulating effect and the lower valve cover having a relatively large thickness. Gas no longer stays at the lower end of the drive shaft that sucks up oil. Accordingly, it is possible to realize a compressor having both high efficiency and high reliability by preventing deterioration in reliability and reduction in compressor efficiency due to gas biting. The present invention can also be applied to applications such as air conditioners and heat pump water heaters using HFC refrigerants, HCFC refrigerants, or HFO refrigerants, or air conditioners and heat pump water heaters using natural refrigerant carbon dioxide.

Claims (5)

  1.  オイル溜りを有する密閉容器と、
    前記密閉容器内で、駆動軸を支持する上軸受、及び下軸受と、
    前記下軸受に設けられ、圧縮室で圧縮された作動流体を吐出する吐出ポートと、
    前記下軸受に設けられ、前記オイル溜りのオイルの一部を取り込むオイル保持部と、
    前記下軸受と下バルブカバーとで構成され、前記吐出ポートを介して圧縮された作動流体が吐出される吐出空間と、
    前記オイル保持部と前記吐出空間とを独立的に区画すべく、前記下軸受に設けられた区画領域と、
    を具備する圧縮機であって、
    前記下バルブカバーは前記区画領域に設けられた締結面に取り付けられ、前記駆動軸が貫通するボスの中心部の下端面は前記下バルブカバーの最下面と同一高さか、それより下側に位置することを特徴とする圧縮機。
    An airtight container having an oil sump;
    An upper bearing and a lower bearing for supporting the drive shaft in the sealed container;
    A discharge port that is provided in the lower bearing and discharges the working fluid compressed in the compression chamber;
    An oil holding portion that is provided in the lower bearing and takes in part of the oil in the oil reservoir;
    A discharge space configured by the lower bearing and the lower valve cover, in which the compressed working fluid is discharged through the discharge port;
    A partition region provided in the lower bearing in order to partition the oil holding portion and the discharge space independently;
    A compressor comprising:
    The lower valve cover is attached to a fastening surface provided in the partition region, and the lower end surface of the central portion of the boss through which the drive shaft passes is the same height as the lowermost surface of the lower valve cover or positioned below it. The compressor characterized by doing.
  2.  前記下バルブカバーが取り付けられる前記下軸受の締結面は、前記下軸受の中心軸に対して直角な同一平面であることを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein a fastening surface of the lower bearing to which the lower valve cover is attached is the same plane perpendicular to the central axis of the lower bearing.
  3.  前記ボスの外径の中心軸は内径の中心軸と一致しないことを特徴とする請求項1又は請求項2に記載の圧縮機。 3. The compressor according to claim 1, wherein a central axis of the outer diameter of the boss does not coincide with a central axis of the inner diameter.
  4.  前記下軸受と前記下バルブカバーとの間にシール材を設けたことを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein a sealing material is provided between the lower bearing and the lower valve cover.
  5.  前記作動流体が潤滑油と相溶することを特徴とする請求項1から請求項4のいずれかに記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the working fluid is compatible with lubricating oil.
PCT/JP2013/003382 2012-05-29 2013-05-29 Compressor WO2013179658A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380002935.7A CN103782040B (en) 2012-05-29 2013-05-29 Compressor
EP13797774.0A EP2857690B1 (en) 2012-05-29 2013-05-29 Compressor
JP2014518284A JP6176577B2 (en) 2012-05-29 2013-05-29 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012121537 2012-05-29
JP2012-121537 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013179658A1 true WO2013179658A1 (en) 2013-12-05

Family

ID=49672874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003382 WO2013179658A1 (en) 2012-05-29 2013-05-29 Compressor

Country Status (4)

Country Link
EP (1) EP2857690B1 (en)
JP (1) JP6176577B2 (en)
CN (1) CN103782040B (en)
WO (1) WO2013179658A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177633A (en) * 2005-12-27 2007-07-12 Daikin Ind Ltd Rotary compressor
JP2007309146A (en) * 2006-05-17 2007-11-29 Daikin Ind Ltd Compressor
JP2009002299A (en) 2007-06-25 2009-01-08 Daikin Ind Ltd Rotary compressor
JP2009127608A (en) 2007-11-28 2009-06-11 Daikin Ind Ltd Seal structure and compressor unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768004B2 (en) * 1990-11-21 1998-06-25 松下電器産業株式会社 Rotary multi-stage gas compressor
JP3389539B2 (en) * 1999-08-31 2003-03-24 三洋電機株式会社 Internal intermediate pressure type two-stage compression type rotary compressor
JP3370027B2 (en) * 1999-09-09 2003-01-27 三洋電機株式会社 2-stage compression type rotary compressor
CN1532409A (en) * 2003-03-25 2004-09-29 乐金电子(天津)电器有限公司 Exhaust gas quide structure of closed compressor
KR100629873B1 (en) * 2004-08-06 2006-09-29 엘지전자 주식회사 Capacity variable type rotary compressor and driving method thereof and driving method for airconditioner with this
CN101144477A (en) * 2006-09-14 2008-03-19 乐金电子(天津)电器有限公司 Double-cylinder compressor lower-bearing seal groove structure
CN101328892A (en) * 2007-06-20 2008-12-24 乐金电子(天津)电器有限公司 Rotary type duplex-cylinder compressor
KR101418289B1 (en) * 2008-07-15 2014-07-10 엘지전자 주식회사 Variable capacity type rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177633A (en) * 2005-12-27 2007-07-12 Daikin Ind Ltd Rotary compressor
JP2007309146A (en) * 2006-05-17 2007-11-29 Daikin Ind Ltd Compressor
JP2009002299A (en) 2007-06-25 2009-01-08 Daikin Ind Ltd Rotary compressor
JP2009127608A (en) 2007-11-28 2009-06-11 Daikin Ind Ltd Seal structure and compressor unit

Also Published As

Publication number Publication date
CN103782040A (en) 2014-05-07
CN103782040B (en) 2016-08-24
EP2857690A1 (en) 2015-04-08
JP6176577B2 (en) 2017-08-09
JPWO2013179658A1 (en) 2016-01-18
EP2857690B1 (en) 2018-10-24
EP2857690A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
EP2770212B1 (en) Rotary compressor having two cylinders
JP2008240667A (en) Rotary compressor
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2007315261A (en) Hermetic compressor
JP2010031785A (en) Refrigerant compressor
JPWO2008139680A1 (en) Fluid machine and refrigeration cycle apparatus including the same
JP6134903B2 (en) Positive displacement compressor
JP6206426B2 (en) Hermetic compressor
JP2005207306A (en) Two cylinder rotary compressor
JP2010031733A (en) Rotary compressor
JP6176577B2 (en) Compressor
JP2008138572A (en) Scroll type fluid machine
JP2013072362A (en) Compressor
EP2589810B1 (en) Rotary compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
WO2019146031A1 (en) Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor
JP2015028330A (en) Rotary compressor
JP6043949B2 (en) Compressor
WO2023139829A1 (en) Rotary compressor
JP2014238062A (en) Rotary compressor
JP5927407B2 (en) Rotary compressor
JP5677196B2 (en) Rotary compressor
JPWO2010064377A1 (en) Rotary fluid machinery
JP2010174675A (en) Hermetically-sealed compressor
JP2002371974A (en) Hermetically sealed type rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013797774

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014518284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE