WO2019146031A1 - Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor - Google Patents

Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor Download PDF

Info

Publication number
WO2019146031A1
WO2019146031A1 PCT/JP2018/002229 JP2018002229W WO2019146031A1 WO 2019146031 A1 WO2019146031 A1 WO 2019146031A1 JP 2018002229 W JP2018002229 W JP 2018002229W WO 2019146031 A1 WO2019146031 A1 WO 2019146031A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
oil
rotary compressor
cylinder
rotary
Prior art date
Application number
PCT/JP2018/002229
Other languages
French (fr)
Japanese (ja)
Inventor
香曽我部 弘勝
坪野 勇
康弘 岸
直洋 土屋
謙治 竹澤
宏介 鈴木
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/002229 priority Critical patent/WO2019146031A1/en
Publication of WO2019146031A1 publication Critical patent/WO2019146031A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a hermetic rotary compressor and a refrigeration air conditioning system equipped with the hermetic rotary compressor.
  • Patent Document 1 discloses a vane in order to prevent the amount of oil supplied to the low pressure side (suction chamber side) in the cylinder from being excessive and to increase the amount of oil supplied to the high pressure side (compression chamber side).
  • a closed type rotary groove in which the amount of oil supply to the compression chamber is increased by forming a wedge type through groove on the side of the high pressure side vane housing where the cylinder moves back and forth and supplying oil to the wedge type through groove from the spring insertion hole for pressing the vane.
  • a compressor is disclosed.
  • the upper and lower end face portions of the vane have a long seal distance, and the time and surface area exposed to the atmosphere in the sealed container are relatively small.
  • An object of the present invention is to provide a closed type rotary compressor which solves the above-mentioned problems and improves oil film sealability of the vane sliding portion to improve performance and reliability, and a refrigeration air conditioner provided with the closed type rotary compressor. It is to do.
  • the present invention is characterized in that an airtight container, an electric motor provided in the airtight container for rotating a vertically extending rotary shaft, and provided below the electric motor
  • a sealed rotary compressor comprising: a rotary compression element driven by rotation of a rotary shaft, wherein the rotary compression element comprises a cylinder having a cylinder chamber in communication with a suction pipe via a suction passage; and the cylinder chamber A roller rotatably housed in an eccentric manner, a vane whose leading end abuts against the outer periphery of the roller to divide the cylinder chamber into a suction chamber and a compression chamber, and closing openings at both ends of the cylinder chamber; An upper bearing and a lower bearing supported by a shaft, and a discharge valve device for discharging working fluid compressed in the cylinder chamber into the sealed container, and a vane storage groove of the cylinder in which the vane reciprocates and slides A vane oil holder communicating with the upper bearing and the end face of the lower bearing so
  • the present invention it is possible to provide a hermetic rotary compressor having improved performance and reliability by enhancing oil film sealability of the vane sliding portion, and a refrigeration air conditioner provided with the hermetic rotary compressor.
  • FIG. 1 is a longitudinal sectional view of a hermetic rotary compressor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. It is a partial expanded sectional view of FIG. It is a principal part enlarged view of FIG.
  • FIG. 5 is a VV cross-sectional view of FIG. 4; It is a principal part enlarged view of FIG. It is VII-VII sectional drawing of FIG. It is a principal part expanded sectional view of the sealed type rotary compressor concerning a 2nd example of the present invention. It is IX-IX sectional drawing of FIG. It is a principal part expanded sectional view of the sealed type rotary compressor concerning a 3rd example of the present invention.
  • FIG. 1 is a longitudinal sectional view of a hermetic rotary compressor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. It is a partial expanded sectional
  • FIG. 11 is a cross-sectional view taken along line XI-XI of FIG. It is a longitudinal cross-sectional view of the hermetic type rotary compressor based on 4th Example of this invention. It is a principal part expanded sectional view of FIG. It is XIV-XIV sectional drawing of FIG. It is a schematic diagram of the refrigerating cycle of the refrigerating air-conditioning apparatus provided with the closed type rotary compressor based on this invention 5 Example.
  • FIGS. 1 to 7 A hermetic rotary compressor according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7.
  • 1 is a longitudinal sectional view of a hermetic rotary compressor according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a partially enlarged sectional view of FIG.
  • reference numeral 1 denotes a closed container, in which a rotary compression element 2 is housed in the lower part of the closed container 1, a motor part 3 for driving it is housed in the upper part Are connected via the rotating shaft 4.
  • the motor unit 3 includes a stator 3 a fixed to the inner surface of the sealed container 1 and a rotor 3 b fixed to the rotating shaft 4 and disposed inside the stator 3 a with a predetermined gap.
  • the motor unit 3 is electrically connected to an inverter (not shown) that controls an operating frequency.
  • the rotary compression element 2 includes a cylinder 6, and the upper end surface of the cylinder 6 is superimposed on the lower end surface of the upper bearing 7 fixed to the inner surface of the closed container 1, and the lower bearing 8 is attached to the lower end surface of the cylinder 6.
  • the rotating shaft 4 is rotatably supported by an upper bearing 7 and a lower bearing 8 which extend vertically and are arranged vertically.
  • An eccentric portion 4 a is integrally provided at a position inside the cylinder 6 of the rotation shaft 4.
  • a roller 9 is rotatably fitted on the outer periphery of the eccentric portion 4a.
  • a cylinder chamber 10 which is an operation space is formed.
  • a discharge cover 7 a forming a discharge space of the compressed working fluid is attached to the upper bearing 7, and covers the discharge valve device 7 b attached to the end plate of the upper bearing 7.
  • the discharge valve device 7b of the upper bearing 7 communicates with the cylinder chamber 10, opens when the pressure in the cylinder chamber 10 rises to a predetermined pressure by the compression action, and the compressed working fluid is discharged through the discharge port 7c into the discharge cover 7a. It is exhaled.
  • annular groove 7d is formed in the end face of the upper bearing 7 on the cylinder 6 side in order to relieve local partial contact between the rotary shaft 4 and the bearing, and similarly, the end face on the cylinder 6 side of the lower bearing 8
  • An annular groove 8d is formed in the
  • a vane storage groove 6a is formed in the cylinder 6, and a vane 11 disposed so as to be capable of reciprocating in the cylinder chamber 10 is stored.
  • a vane spring mounting hole 6b is formed at the rear end of the vane 11, and the vane spring 12 is accommodated.
  • the vane spring 12 elastically urges the tip arc portion of the vane 11 into contact with the outer periphery of the roller 9.
  • a discharge notch 6c is formed in the cylinder 6 in such a manner as to be engaged with the discharge port 7c of the discharge valve device 7b of the upper bearing 7.
  • the lower end of the rotating shaft 4 is exposed below the lower bearing 8 and is immersed in the lubricating oil 19 stored at the bottom of the closed container 1.
  • An oil supply pump 4b is attached to the lower end surface of the rotary shaft 4, and lubricating oil 19 supplied from this is attached to each of the slide members of the rotary compression element 2 via an oil supply passage 4c formed in the rotary shaft 4. It is designed to supply moving parts.
  • the suction pipe 16 communicates with the inside of the cylinder chamber 10 via a suction passage 17 formed in the cylinder 6.
  • Reference numeral 18 denotes a discharge pipe which causes the high pressure working fluid in the closed container 1 to flow out to the external refrigeration circuit.
  • Reference numeral 24 denotes a fixing bolt for assembling the compression element.
  • FIGS. 4 is an enlarged view of an essential part of FIG. 3
  • FIG. 5 is a VV cross-sectional view of FIG. 4
  • FIG. 6 is an enlarged view of an essential part of FIG. 5
  • FIG. 7 is a VII-VII sectional view of FIG.
  • the vane oil holding portion 20 is a high pressure side slot oil groove 21H and a low pressure side slot having a symmetrical structure with respect to the center of the vane housing groove 6a formed in the vane housing groove 6a of the cylinder 6 at the reciprocating sliding portion of the vane 11.
  • a communication hole 8 e for guiding the lubricating oil 19 to the vane oil holding portion 20 is formed to penetrate the end plate of the lower bearing 8.
  • the inlet opening position of the communication hole 8 e for introducing the lubricating oil 19 is the lowermost surface of the rotary compression element 2.
  • the vane oil holding portion 20 has a sealed structure, so the pressure in the vane oil holding portion 20 is The pressure leaks into the cylinder 6 to a lower pressure than that in the closed container 1.
  • the pressure difference causes the inside of the vane oil holding portion 20 to be filled with the lubricating oil 19, and the inside of the vane oil holding portion 20 is always filled with oil by the liquid sealing function.
  • the high pressure side slot oil groove 21H and the low pressure side slot oil groove 21L, and the upper end face oil groove 22 and the lower end face oil groove 23 are formed to be symmetrical with each other through the vanes 11 respectively. Therefore, the load acting on the vanes 11 is perfectly balanced, and the formation of the vane oil holding portion 20 does not exert an extra load on the vanes. As a result, the oil film sealability of the sliding portion of the vane 11 is improved, and the lubricating performance of the sliding portion is also improved, so that a sealed rotary compressor excellent in performance and reliability can be realized.
  • the operation of the hermetic rotary compressor configured as described above will be described.
  • the stator 3a of the motor unit 3 is energized, the rotor 3b is driven, and the rotary shaft 4 axially supported by the upper bearing 7 and the lower bearing 8 is rotationally driven.
  • the roller 9 rotatably fitted on the outer periphery of the eccentric portion 4a of the rotating shaft 4 performs eccentric rotational movement in the cylinder 6 to perform the compression operation of the working fluid.
  • the low pressure working fluid is introduced into the cylinder chamber 10 of the cylinder 6 through the suction pipe 16 and compressed.
  • the compressed high-pressure working fluid flows out into the discharge cover 7a through the discharge valve device 7b mounted on the upper bearing 7 end plate, and from there enters the closed container 1 from the closed container 1 through the discharge pipe 18 It is discharged to the external refrigeration circuit.
  • Lubrication of each sliding part of the hermetic type rotary compressor was stored at the bottom of the hermetic container 1 by centrifugal pump action by the oil supply pump 4b attached to the lower end face of the rotary shaft 4 by driving the rotary shaft 4
  • the lubricating oil 19 is pumped up and supplied to the sliding portion of the rotary compression element 2 through an oil supply passage 4 c formed in the rotary shaft 4.
  • a sealed rotary compressor in which the oil film sealability in the vane sliding portion is improved, the lubricating performance of the sliding portion is improved, and the performance and reliability are improved.
  • FIG. 8 is an enlarged sectional view of an essential part of a hermetic rotary compressor according to a second embodiment of the present invention
  • FIG. 9 is a sectional view taken along the line IX-IX of FIG.
  • a connecting pipe 8f is provided in the communication hole 8e for guiding the lubricating oil 19 to the vane oil holding portion 20 which is formed to penetrate the end plate of the lower bearing 8.
  • the joint pipe 8 f extends downward from the end plate of the lower bearing 8, that is, toward the lubricating oil 19.
  • means such as press-fitting, welding, or adhesion.
  • the inlet opening position of the communication hole 8e for guiding the lubricating oil 19 to the vane oil holding portion 20 can be lowered relative to the end plate surface, so the oil surface of the lubricating oil 19 in the sealed container 1 Even if the oil level decreases, the oil film sealability of the vane oil holding portion 20 can be stably secured until the oil level position cuts the lower end of the connecting pipe.
  • the lubricating oil can be stably supplied, and the oil film sealability of the vane oil holding portion can be secured.
  • FIG. 10 is an enlarged sectional view of an essential part of a hermetic rotary compressor according to a third embodiment of the present invention
  • FIG. 11 is a sectional view taken along the line XI-XI of FIG.
  • the communication hole 8e provided in the end plate of the lower bearing 8 for guiding the lubricating oil 19 to the vane oil holding portion 20 is connected to the communication lateral hole 8g formed to traverse the inside of the end plate. It is connected to eight annular grooves 8d. Further, the end of the communication cross hole 8g is closed by a closing plug 8h.
  • the inlet opening of the communication hole 8e for guiding the lubricating oil 19 to the vane oil holding portion 20 is connected to the oil feeding path of the rotary compression element, so the rotary shaft is in operation during operation of the hermetic rotary compressor.
  • the lubricating oil 19 stored at the bottom of the closed container 1 is pumped up by the centrifugal pump action of the feed pump 4 b of the rotary shaft 4.
  • the lubricating oil 19 is supplied to the sliding portion of the rotary compression element 2 through an oil supply passage 4 c formed in the rotary shaft 4.
  • the lubricating oil 19 accumulated in the inner circumferential space of the roller 9 is guided from the annular groove 8d of the lower bearing 8 to the vane oil holding portion 20 through the communication lateral hole 8g and the communication hole 8e. For this reason, regardless of the oil level position of the lubricating oil 19 in the closed container, the lubricating oil 19 can always be stably secured in the vane oil holding portion 20, so that gas leakage from the vane sliding gap As a result, the oil film sealability can be improved, and this can contribute to the improvement of the performance and reliability of the hermetic type rotary compressor.
  • the lubricating oil can be stably supplied without being affected by the oil surface position of the lubricating oil, and the oil film sealability of the vane oil holding portion can be secured. .
  • FIGS. 12 is a longitudinal sectional view of a hermetic rotary compressor according to a fourth embodiment of the present invention
  • FIG. 13 is an enlarged sectional view of an essential part of FIG. 12
  • FIG. 14 is a sectional view taken along line XIV-XIV of FIG.
  • the fourth embodiment is a case where the present invention is applied to a two-cylinder type hermetic rotary compressor provided with two sets of cylinders that are rotary compression elements. 12 to 14, the same parts as in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof will be omitted. The same parts have the same function.
  • the rotary compression element 2 is vertically disposed via the partition plate 5 and includes an upper first cylinder 6A and a lower second cylinder 6B.
  • the first cylinder 6A is superimposed on the lower surface of the upper bearing 7 fixed to the inner surface of the hermetic container 1, and the lower bearing 8 is attached to the lower surface of the second cylinder 6B.
  • the rotating shaft 4 is rotatably supported by the upper bearing 7 and the lower bearing 8 and integrally integrates the two eccentric parts 4a at a position on the inner side of the first and second cylinders 6A and 6B with a phase difference of about 180 °.
  • a roller 9 is rotatably fitted on the outer periphery of each eccentric portion 4a.
  • a discharge cover 8 a is attached to the lower bearing 8 and covers the discharge valve device 8 b attached to the end plate of the lower bearing 8.
  • the first cylinder 6 ⁇ / b> A and the second cylinder 6 ⁇ / b> B accommodate therein vanes 11 which can be reciprocated in the respective cylinder chambers 10.
  • a vane spring 12 is accommodated at the rear end of each vane, and the tip end of each vane is urged against the outer periphery of the roller 9 by an elastic force.
  • the lower end of the rotating shaft 4 is exposed below the lower bearing 8 and is immersed in the lubricating oil 19 stored at the bottom of the closed container 1.
  • An oil supply pump 4b is attached to the lower end surface of the rotary shaft 4, and the oil is formed in the rotary shaft 4 at each sliding portion of the components constituting the lower rotary compression element 2 and the upper rotary compression element 2 from here.
  • the lubricating oil 19 is supplied through the passage 4c.
  • the first suction pipe 16A communicates with the inside of the cylinder chamber 10 through a suction passage 17A formed in the first cylinder 6A.
  • the second suction pipe 16B communicates with the inside of the cylinder chamber 10 through a suction passage 17B formed in the second cylinder 6B. Due to the rotation of the rotary shaft 4, the compression process proceeds independently with a phase difference of about 180 ° between the upper and lower two rotary compression elements.
  • a discharge passage 25 guides the working fluid discharged into the lower discharge cover 8a into the upper discharge cover 7a.
  • the vane oil holding portion 20 is a high pressure side slot oil groove having a symmetrical structure with respect to the vane storage groove center formed in the vane storage grooves of the cylinders 6A and 6B in the reciprocating sliding portions of the vanes 11 positioned vertically.
  • a lower end surface oil groove 23 is disposed in a range where each vane 11 is not exposed in the cylinder chamber 10 and the closed container 1 (including the vane spring mounting hole 6b), and forms a sealed structure so as to partially surround the outer periphery of the vane. .
  • the communication holes 5e for guiding the lubricating oil 19 to the vane oil holding portions 20 located at the upper and lower positions are formed to penetrate the end plate of the partition plate 5 at a position connecting the both, and the communication holes 5e are formed inside the partition plate 5 It is connected to the through hole 5a which is the inner peripheral side space of the connecting horizontal hole 5f and the connecting partition plate 5 which were formed so that it might cross.
  • the end on the outer peripheral side of the communication horizontal hole 5 f is closed by the closing plug 5 g.
  • the inlet opening of the communication hole for guiding the lubricating oil to the vane oil holding portions 20 present at the two upper and lower positions is a space in the through hole 5 a of the partition plate 5, that is, an oil supply path of the rotary compression element 2 Since it is connected, the lubricating oil 19 stored in the bottom of the sealed container 1 is pumped up by the centrifugal pump action of the feed pump 4b of the rotating shaft 4 by driving the rotating shaft 4 during operation of the closed type rotary compressor. .
  • the lubricating oil 19 is supplied to the sliding portion of the rotary compression element 2 through the oil supply passage 4 c formed in the rotary shaft 4, and therefore, is collected in the through hole 5 a which is the inner peripheral space of the partition plate 5. From there, the lubricating oil 19 is led to the upper and lower vane oil holding portions 20 through the communication horizontal hole 5f and the communication hole 5e. For this reason, regardless of the oil surface position of the lubricating oil 19 in the closed container, the lubricating oil 19 can always be stably secured in the vane oil holding portion 20, so that gas leakage from the vane sliding gap As a result, the oil film sealability can be improved, and this can contribute to the improvement of the performance and reliability of the hermetic type rotary compressor.
  • lubricating oil can be stably supplied in a two-cylinder type hermetic rotary compressor, and the oil film sealability of the vane oil holding portion can be secured.
  • FIG. 15 is a schematic view of a refrigeration cycle provided with a hermetic rotary compressor according to a fifth embodiment of the present invention.
  • a refrigeration cycle using R32 as a refrigerant as a working fluid will be described as an example.
  • R32 is a refrigerant that has a global warming potential (GWP) smaller than that of a refrigerant R410A conventionally used in a refrigeration air conditioning system, and has been attracting attention in recent years from the viewpoint of preventing global warming.
  • GWP global warming potential
  • a suction pipe 14 into which the working fluid flows is provided in a suction tank 15 having a gas-liquid separation function from the refrigeration circuit.
  • a suction pipe 16, which is a suction passage for the compressor, is connected to the bottom of the suction tank 15.
  • the reference numeral 32 denotes a condenser
  • 33 denotes an expansion valve
  • 34 denotes an evaporator, which are connected sequentially by a refrigerant pipe 35 to constitute a refrigeration cycle 31.
  • the flow of the refrigerant will be described.
  • the high-temperature high-pressure refrigerant discharged from the hermetic rotary compressor 30 enters the condenser 32, and the temperature thereof is reduced to radiate and liquefy.
  • the liquid refrigerant from the condenser 32 enters the expansion valve 33 and is discharged as a low temperature, low pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant leaving the expansion valve 33 enters the evaporator 34, is absorbed and gasified, returns to the closed rotary compressor 30, is compressed again, and the same cycle is repeated.
  • the evaporator 34 cools the object to be cooled.
  • room air is cooled by the evaporator 34 and cooling operation is performed, or room air is heated by the condenser 32 and heating operation is performed.
  • the hermetic type rotary compressor 30 described in the first to fourth embodiments by providing the hermetic type rotary compressor 30 described in the first to fourth embodiments, the oil film holding of the vane sliding portion is ensured, so that performance and reliability can be improved. It becomes possible to provide an excellent closed type rotary compressor, and the performance and reliability of the refrigeration air conditioning system can be improved.

Abstract

The objective of the present invention is to provide a sealed rotary compressor which achieves a reduction in leakage loss into a cylinder from sliding gaps along which a vane that abuts an outer circumference of a roller which rotates eccentrically within the cylinder and that partitions the inside of the cylinder into a suction chamber and a compression chamber reciprocates, and which also achieves a reduction in mechanical losses of the vane. To this end, according to the present invention there are formed a vane accommodating groove (6a) of a cylinder (6) in which a vane (11) slides in a reciprocating manner, and a vane oil holding portion (20) having a sealed construction which communicates with end surfaces of an upper bearing (7) and a lower bearing (8) while partially enclosing a vane outer circumference, wherein the vane oil holding portion (20) is made to communicate with lubricating oil (19) stored in a hermetically sealed container (1). According to the present invention, since lubricating oil (119) is always maintained in the vane oil holding portion (20) when the compressor is operating, it is possible to achieve a reduction in leakage of refrigerant from vane (11) sliding gaps and a reduction in mechanical losses, thereby improving the performance and reliability of the compressor.

Description

密閉形回転圧縮機及びこの密閉形回転圧縮機を備えた冷凍空調装置Sealed rotary compressor and refrigeration air-conditioning apparatus provided with the sealed rotary compressor
 本発明は、密閉形回転圧縮機及びこの密閉形回転圧縮機を備えた冷凍空調装置に関するものである。 The present invention relates to a hermetic rotary compressor and a refrigeration air conditioning system equipped with the hermetic rotary compressor.
 家庭用ルームエアコンに搭載されている圧縮機としてはコスト面で有利なロータリ圧縮機が主流となっているが、地球環境保全の観点から更なる高効率化が要求されている。また、現在主流であるR410A冷媒に対して代替候補とされるCO2やR32等の冷媒をロータリ圧縮機に採用する場合には、使用時の圧力差拡大や吐出温度上昇による冷凍機油(潤滑油)の粘度低下が生じやすく、シール性が低下する恐れがあり、ベーンとローラ間のシール性向上及び信頼性向上を実現するために圧縮室への給油を改善した密閉形回転圧縮機が開示されている(特許文献1)。 As a compressor mounted on a room air conditioner for home use, a rotary compressor that is advantageous in terms of cost is mainstream, but from the viewpoint of global environmental protection, further improvement in efficiency is required. In addition, when using a refrigerant such as CO2 or R32 as an alternative candidate for the currently mainstream R410A refrigerant for a rotary compressor, refrigeration oil (lubricating oil) due to pressure difference expansion and discharge temperature rise during use In the closed type rotary compressor, oil supply to the compression chamber is improved in order to reduce the viscosity of the oil and to reduce the sealability, and to improve the sealability between the vane and the roller and to improve the reliability. (Patent Document 1).
 特許文献1には、シリンダ内の低圧側(吸込室側)への油の供給量を過剰とさせず、且つ、高圧側(圧縮室側)への油の供給量を増加させるために、ベーンが往復運動する高圧側のベーン収納部側面にクサビ型貫通溝を形成し、ベーンを押圧するスプリング挿入穴からクサビ型貫通溝に給油することにより圧縮室への給油量を増加させた密閉形回転圧縮機が開示されている。 Patent Document 1 discloses a vane in order to prevent the amount of oil supplied to the low pressure side (suction chamber side) in the cylinder from being excessive and to increase the amount of oil supplied to the high pressure side (compression chamber side). A closed type rotary groove in which the amount of oil supply to the compression chamber is increased by forming a wedge type through groove on the side of the high pressure side vane housing where the cylinder moves back and forth and supplying oil to the wedge type through groove from the spring insertion hole for pressing the vane. A compressor is disclosed.
特開2015-28330号公報JP, 2015-28330, A
 特許文献1に記載の密閉形回転圧縮機は、ベーンが往復運動する摺動部の潤滑は密閉容器底部に貯留された潤滑油中にベーンが露出することによりベーン表面に油を付着させることで賄われていた。このため、ベーンの運動によって引き起こされる油面変動が伴うことから油膜保持の確実性に欠け、一部ガス漏れを引き起こして漏れ損失が増加する要因になっていた。さらに高圧側のベーン収納部側面に形成したクサビ型貫通溝により常時ベーンに測圧が加わるようになるため、ベーン摺動の機械損失が増加する課題があった。 In the hermetic type rotary compressor described in Patent Document 1, the lubrication of the sliding portion in which the vane reciprocates is caused by the oil adhering to the surface of the vane by exposing the vane in the lubricating oil stored at the bottom of the hermetic container. I was scolded. For this reason, since the oil level fluctuation caused by the motion of the vane is accompanied, the oil film retention is lacking in certainty, which causes a gas leakage and causes an increase in the leakage loss. Furthermore, pressure sensing is always applied to the vane by the wedge-shaped through groove formed on the side surface of the vane housing on the high pressure side, so there is a problem that mechanical loss of the vane sliding increases.
 また、ベーン摺動部の油膜シール性向上の観点から見ると、ベーン上下端面部はシール距離が長く、密閉容器内の雰囲気に暴露される時間や表面積が小さいことから比較的油膜形成が難しい領域に属するが、このベーン上下端面の油膜シール性改善に関しては何ら考慮されておらず、課題として認識されていなかった。 In addition, from the viewpoint of oil film sealability improvement of the vane sliding portion, the upper and lower end face portions of the vane have a long seal distance, and the time and surface area exposed to the atmosphere in the sealed container are relatively small. However, no consideration was given to the improvement of the oil film sealability of the upper and lower end surfaces of the vane, and it was not recognized as a problem.
 本発明の目的は、前記課題を解決し、ベーン摺動部の油膜シール性を高めて性能・信頼性を向上した密閉形回転圧縮機及びこの密閉形回転圧縮機を備えた冷凍空調装置を提供することにある。 An object of the present invention is to provide a closed type rotary compressor which solves the above-mentioned problems and improves oil film sealability of the vane sliding portion to improve performance and reliability, and a refrigeration air conditioner provided with the closed type rotary compressor. It is to do.
 前記目的を達成するために本発明の特徴とするところは、密閉容器と、前記密閉容器内に設けられ、垂直方向に延びた回転軸を回転させる電動機と、前記電動機の下方に設けられ、前記回転軸の回転により駆動される回転圧縮要素とを備えた密閉形回転圧縮機であって、前記回転圧縮要素は吸入通路を介して吸入パイプと連通するシリンダ室を備えたシリンダと、前記シリンダ室に偏心回転自在に収納されたローラと、先端部が前記ローラの外周に当接し前記シリンダ室を吸込室と圧縮室に区画するベーンと、前記シリンダ室の両端開口部を閉塞し前記回転軸を軸支する上軸受及び下軸受と、前記シリンダ室で圧縮された作動流体を前記密閉容器内に吐き出す吐出弁装置とを有し、前記ベーンが往復摺動する前記シリンダのベーン収納溝と、前記上軸受及び前記下軸受の端面とには、前記ベーンの外周を一部分包囲する形で連通したベーン油保持部を形成し、前記ベーン油保持部と前記密閉容器内に貯留された潤滑油とを連通する連通穴を備えたことにある。 In order to achieve the above object, the present invention is characterized in that an airtight container, an electric motor provided in the airtight container for rotating a vertically extending rotary shaft, and provided below the electric motor A sealed rotary compressor comprising: a rotary compression element driven by rotation of a rotary shaft, wherein the rotary compression element comprises a cylinder having a cylinder chamber in communication with a suction pipe via a suction passage; and the cylinder chamber A roller rotatably housed in an eccentric manner, a vane whose leading end abuts against the outer periphery of the roller to divide the cylinder chamber into a suction chamber and a compression chamber, and closing openings at both ends of the cylinder chamber; An upper bearing and a lower bearing supported by a shaft, and a discharge valve device for discharging working fluid compressed in the cylinder chamber into the sealed container, and a vane storage groove of the cylinder in which the vane reciprocates and slides A vane oil holder communicating with the upper bearing and the end face of the lower bearing so as to partially surround the outer periphery of the vane is formed, and the vane oil holder and lubricating oil stored in the sealed container And a communication hole for communicating the
 本発明によれば、ベーン摺動部の油膜シール性を高めて性能・信頼性を向上した密閉形回転圧縮機及びこの密閉形回転圧縮機を備えた冷凍空調装置を提供することができる。 According to the present invention, it is possible to provide a hermetic rotary compressor having improved performance and reliability by enhancing oil film sealability of the vane sliding portion, and a refrigeration air conditioner provided with the hermetic rotary compressor.
本発明の第1実施例に係る密閉形回転圧縮機の縦断面図である。FIG. 1 is a longitudinal sectional view of a hermetic rotary compressor according to a first embodiment of the present invention. 図1のII-II横断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 図1の部分拡大断面図である。It is a partial expanded sectional view of FIG. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 図4のV-V横断面図である。FIG. 5 is a VV cross-sectional view of FIG. 4; 図5の要部拡大図である。It is a principal part enlarged view of FIG. 図6のVII-VII断面図である。It is VII-VII sectional drawing of FIG. 本発明の第2実施例に係る密閉形回転圧縮機の要部拡大断面図である。It is a principal part expanded sectional view of the sealed type rotary compressor concerning a 2nd example of the present invention. 図8のIX-IX断面図である。It is IX-IX sectional drawing of FIG. 本発明の第3実施例に係る密閉形回転圧縮機の要部拡大断面図である。It is a principal part expanded sectional view of the sealed type rotary compressor concerning a 3rd example of the present invention. 図10のXI-XI断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI of FIG. 本発明の第4実施例に係る密閉形回転圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the hermetic type rotary compressor based on 4th Example of this invention. 図12の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 図13のXIV-XIV断面図である。It is XIV-XIV sectional drawing of FIG. 本発明第5実施例に係る密閉形回転圧縮機を備えた冷凍空調装置の冷凍サイクルの模式図である。It is a schematic diagram of the refrigerating cycle of the refrigerating air-conditioning apparatus provided with the closed type rotary compressor based on this invention 5 Example.
 以下、本発明の実施例について図を用いて詳細に説明する。本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments, and includes various modifications and applications within the technical concept of the present invention.
 本発明の第1実施例に係る密閉形回転圧縮機を図1から図7を用いて説明する。図1は本発明の第1実施例に係る密閉形回転圧縮機の縦断面図、図2は図1のII-II横断面図、図3は図1の部分拡大断面図である。 A hermetic rotary compressor according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7. 1 is a longitudinal sectional view of a hermetic rotary compressor according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is a partially enlarged sectional view of FIG.
 図1~図3において、1は密閉容器で、この密閉容器1の下部に回転圧縮要素2が収納され、上部にはこれを駆動する電動機部3が収納され、電動機部3と回転圧縮要素2は回転軸4を介して連結される。電動機部3は、密閉容器1の内面に固定されたステータ3aとこのステータ3aの内側に所定の間隙を保って配設され、回転軸4に固定されたロータ3bから構成される。また、電動機部3は運転周波数を制御するインバータ(図示せず)に電気的に接続される。 In FIG. 1 to FIG. 3, reference numeral 1 denotes a closed container, in which a rotary compression element 2 is housed in the lower part of the closed container 1, a motor part 3 for driving it is housed in the upper part Are connected via the rotating shaft 4. The motor unit 3 includes a stator 3 a fixed to the inner surface of the sealed container 1 and a rotor 3 b fixed to the rotating shaft 4 and disposed inside the stator 3 a with a predetermined gap. In addition, the motor unit 3 is electrically connected to an inverter (not shown) that controls an operating frequency.
 回転圧縮要素2は、シリンダ6を備え、シリンダ6の上端面は密閉容器1の内面に固定された上軸受7の下端面に重ね合わされ、シリンダ6の下端面には下軸受8が取り付けられる。回転軸4は、垂直方向に延びており上下に並んで配置された上軸受7と下軸受8によって回転可能に軸支されている。回転軸4のシリンダ6の内側の位置には偏心部4aを一体に備えている。偏心部4aの外周にはローラ9が回転可能に嵌合されている。 The rotary compression element 2 includes a cylinder 6, and the upper end surface of the cylinder 6 is superimposed on the lower end surface of the upper bearing 7 fixed to the inner surface of the closed container 1, and the lower bearing 8 is attached to the lower end surface of the cylinder 6. The rotating shaft 4 is rotatably supported by an upper bearing 7 and a lower bearing 8 which extend vertically and are arranged vertically. An eccentric portion 4 a is integrally provided at a position inside the cylinder 6 of the rotation shaft 4. A roller 9 is rotatably fitted on the outer periphery of the eccentric portion 4a.
 シリンダ6内には作動空間であるシリンダ室10が形成される。上軸受7には、圧縮された作動流体の吐出空間を形成する吐出カバー7aが取り付けられ、上軸受7の端板に装着された吐出弁装置7bを覆っている。上軸受7の吐出弁装置7bはシリンダ室10に連通し、圧縮作用によりシリンダ室10内が所定の圧力に上昇したときに開放して、圧縮された作動流体は吐出ポート7cを通して吐出カバー7a内に吐き出される。 In the cylinder 6, a cylinder chamber 10 which is an operation space is formed. A discharge cover 7 a forming a discharge space of the compressed working fluid is attached to the upper bearing 7, and covers the discharge valve device 7 b attached to the end plate of the upper bearing 7. The discharge valve device 7b of the upper bearing 7 communicates with the cylinder chamber 10, opens when the pressure in the cylinder chamber 10 rises to a predetermined pressure by the compression action, and the compressed working fluid is discharged through the discharge port 7c into the discharge cover 7a. It is exhaled.
 第1実施例では、回転軸4と軸受との局部的な片当りを緩和するために上軸受7のシリンダ6側端面に環状溝7dが形成され、同様に、下軸受8のシリンダ6側端面に環状溝8dが形成されている。 In the first embodiment, an annular groove 7d is formed in the end face of the upper bearing 7 on the cylinder 6 side in order to relieve local partial contact between the rotary shaft 4 and the bearing, and similarly, the end face on the cylinder 6 side of the lower bearing 8 An annular groove 8d is formed in the
 シリンダ6には、ベーン収納溝6aが形成され、シリンダ室10内を往復運動可能に配設されたベーン11が収納される。ベーン11の後端部にはベーンばね装着穴6bが形成され、ベーンばね12が収納されている。ベーンばね12は弾性力でベーン11の先端円弧部をローラ9外周に当接付勢している。6cは上軸受7の吐出弁装置7bの吐出ポート7cに係合する形でシリンダ6に形成された吐出切欠きである。 A vane storage groove 6a is formed in the cylinder 6, and a vane 11 disposed so as to be capable of reciprocating in the cylinder chamber 10 is stored. A vane spring mounting hole 6b is formed at the rear end of the vane 11, and the vane spring 12 is accommodated. The vane spring 12 elastically urges the tip arc portion of the vane 11 into contact with the outer periphery of the roller 9. A discharge notch 6c is formed in the cylinder 6 in such a manner as to be engaged with the discharge port 7c of the discharge valve device 7b of the upper bearing 7.
 回転軸4の下端は下軸受8の下方に露出しており、密閉容器1の底部に溜められた潤滑油19中に侵漬している。回転軸4の下端面には給油ポンプ4bが取り付けられ、ここから給油された潤滑油19が回転軸4内に形成された給油通路4cを介して、回転圧縮要素2を構成する部品の各摺動部に供給するようになっている。吸入パイプ16はシリンダ6に形成された吸入通路17を介してシリンダ室10内に連通する。18は密閉容器1内の高圧の作動流体を外部の冷凍回路に流出させる吐出管である。なお、24は圧縮要素部を組立てる固定ボルトである。 The lower end of the rotating shaft 4 is exposed below the lower bearing 8 and is immersed in the lubricating oil 19 stored at the bottom of the closed container 1. An oil supply pump 4b is attached to the lower end surface of the rotary shaft 4, and lubricating oil 19 supplied from this is attached to each of the slide members of the rotary compression element 2 via an oil supply passage 4c formed in the rotary shaft 4. It is designed to supply moving parts. The suction pipe 16 communicates with the inside of the cylinder chamber 10 via a suction passage 17 formed in the cylinder 6. Reference numeral 18 denotes a discharge pipe which causes the high pressure working fluid in the closed container 1 to flow out to the external refrigeration circuit. Reference numeral 24 denotes a fixing bolt for assembling the compression element.
 図4~図7により本発明に係る第1実施例の特徴であるベーン摺動部の油膜シールを実現するベーン油保持部の構造について説明する。図4は図3の要部拡大図、図5は図4のV-V横断面図、図6は図5の要部拡大図、図7は図6のVII-VII断面図である。 The structure of the vane oil holding portion for realizing the oil film seal of the vane sliding portion, which is a feature of the first embodiment according to the present invention, will be described with reference to FIGS. 4 is an enlarged view of an essential part of FIG. 3, FIG. 5 is a VV cross-sectional view of FIG. 4, FIG. 6 is an enlarged view of an essential part of FIG. 5, and FIG. 7 is a VII-VII sectional view of FIG.
 図において、ベーン油保持部20は、ベーン11の往復摺動部でシリンダ6のベーン収納溝6aに形成されたベーン収納溝6a中心に対して対称構造の高圧側スロット油溝21H及び低圧側スロット油溝21Lと、上軸受7及び下軸受8の端面のそれぞれに形成され高圧側スロット油溝21H及び低圧側スロット油溝21Lに連通する上下対称構造の上端面油溝22及び下端面油溝23からなる。またその位置は、ベーン11がシリンダ室10及び密閉容器1内(ベーンばね装着穴6bも含む)に露出しない範囲に配設され、ベーン外周を一部分包囲する形で連通した密封構造を形成している。このベーン油保持部20に潤滑油19を導く連通穴8eが下軸受8の端板を貫通する形で形成されている。本実施例では、潤滑油19を導く連通穴8eの入口開口位置は回転圧縮要素2の最下面としている。 In the figure, the vane oil holding portion 20 is a high pressure side slot oil groove 21H and a low pressure side slot having a symmetrical structure with respect to the center of the vane housing groove 6a formed in the vane housing groove 6a of the cylinder 6 at the reciprocating sliding portion of the vane 11. Upper end oil groove 22 and lower end oil groove 23 of upper and lower symmetrical structure formed in oil groove 21L and end faces of upper bearing 7 and lower bearing 8 respectively and communicating with high pressure side slot oil groove 21H and low pressure side slot oil groove 21L It consists of Further, the position thereof is disposed in a range where the vanes 11 are not exposed in the cylinder chamber 10 and the sealed container 1 (including the vane spring mounting hole 6b), and forms a sealed structure communicating partially surrounding the vane outer periphery There is. A communication hole 8 e for guiding the lubricating oil 19 to the vane oil holding portion 20 is formed to penetrate the end plate of the lower bearing 8. In this embodiment, the inlet opening position of the communication hole 8 e for introducing the lubricating oil 19 is the lowermost surface of the rotary compression element 2.
 このような構成により、連通穴8eの入口開口が潤滑油19中に浸かった状態で圧縮機を起動するとベーン油保持部20は密封構造になっているため、ベーン油保持部20内の圧力はシリンダ6内への圧力漏れにより密閉容器1内より低圧となる。この圧力差によりベーン油保持部20内は潤滑油19で満たされ、液封作用によりベーン油保持部20内は常に油で満たされるようになるためベーン11摺動部の油膜シール性を高めることができる。 With such a configuration, when the compressor is started up while the inlet opening of the communication hole 8e is immersed in the lubricating oil 19, the vane oil holding portion 20 has a sealed structure, so the pressure in the vane oil holding portion 20 is The pressure leaks into the cylinder 6 to a lower pressure than that in the closed container 1. The pressure difference causes the inside of the vane oil holding portion 20 to be filled with the lubricating oil 19, and the inside of the vane oil holding portion 20 is always filled with oil by the liquid sealing function. Can.
 また、高圧側スロット油溝21H及び低圧側スロット油溝21Lと、上端面油溝22及び下端面油溝23とは各々ベーン11を介して対向する位置に対称構造となるように形成されているため、ベーン11に作用する荷重は完全にバランスし、ベーン油保持部20の形成により余分な荷重がベーンに働くことはない。これより、ベーン11摺動部の油膜シール性が向上するとともに摺動部の潤滑性能も改善されることから、性能、信頼性に優れた密閉形回転圧縮機が実現できる。 Further, the high pressure side slot oil groove 21H and the low pressure side slot oil groove 21L, and the upper end face oil groove 22 and the lower end face oil groove 23 are formed to be symmetrical with each other through the vanes 11 respectively. Therefore, the load acting on the vanes 11 is perfectly balanced, and the formation of the vane oil holding portion 20 does not exert an extra load on the vanes. As a result, the oil film sealability of the sliding portion of the vane 11 is improved, and the lubricating performance of the sliding portion is also improved, so that a sealed rotary compressor excellent in performance and reliability can be realized.
 次に、このように構成された密閉形回転圧縮機の動作を説明する。電動機部3のステータ3aに通電するとロータ3bが駆動され、上軸受7と下軸受8に軸支された回転軸4が回転駆動される。そして、回転軸4の偏心部4aの外周に回転可能に嵌合されたローラ9がシリンダ6内を偏心回転運動し作動流体の圧縮運転を行う。 Next, the operation of the hermetic rotary compressor configured as described above will be described. When the stator 3a of the motor unit 3 is energized, the rotor 3b is driven, and the rotary shaft 4 axially supported by the upper bearing 7 and the lower bearing 8 is rotationally driven. Then, the roller 9 rotatably fitted on the outer periphery of the eccentric portion 4a of the rotating shaft 4 performs eccentric rotational movement in the cylinder 6 to perform the compression operation of the working fluid.
 低圧の作動流体は、吸入パイプ16よりシリンダ6のシリンダ室10に導入されて圧縮される。圧縮された高圧の作動流体は上軸受7端板に装着された吐出弁装置7bを通って吐出カバー7a内に流出し、そこから密閉容器1内に入り密閉容器1から吐出管18を通って外部の冷凍回路に吐き出される。密閉形回転圧縮機の各摺動部の潤滑は、回転軸4が駆動されることにより、回転軸4の下端面に取り付けられた給油ポンプ4bによる遠心ポンプ作用で密閉容器1底部に貯留された潤滑油19が汲み上げられ、回転軸4内に形成された給油通路4cを通って、回転圧縮要素2の摺動部に潤滑油19を供給するようになっている。 The low pressure working fluid is introduced into the cylinder chamber 10 of the cylinder 6 through the suction pipe 16 and compressed. The compressed high-pressure working fluid flows out into the discharge cover 7a through the discharge valve device 7b mounted on the upper bearing 7 end plate, and from there enters the closed container 1 from the closed container 1 through the discharge pipe 18 It is discharged to the external refrigeration circuit. Lubrication of each sliding part of the hermetic type rotary compressor was stored at the bottom of the hermetic container 1 by centrifugal pump action by the oil supply pump 4b attached to the lower end face of the rotary shaft 4 by driving the rotary shaft 4 The lubricating oil 19 is pumped up and supplied to the sliding portion of the rotary compression element 2 through an oil supply passage 4 c formed in the rotary shaft 4.
 本発明の第1実施例によれば、ベーン摺動部における油膜シール性が向上するとともに摺動部の潤滑性能が向上し、性能、信頼性を向上させた密閉形回転圧縮機を提供することができる。 According to a first embodiment of the present invention, there is provided a sealed rotary compressor in which the oil film sealability in the vane sliding portion is improved, the lubricating performance of the sliding portion is improved, and the performance and reliability are improved. Can.
 次に図8、図9を用いて本発明の第2実施例について説明する。図8は本発明の第2実施例に係る密閉形回転圧縮機の要部拡大断面図、図9は図8のIX-IX断面図である。 Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is an enlarged sectional view of an essential part of a hermetic rotary compressor according to a second embodiment of the present invention, and FIG. 9 is a sectional view taken along the line IX-IX of FIG.
 図において、図1~7と同一の部品については同一符号を付しており、その説明は省略する。また同一部品については同一の作用を有する。第2実施例では、下軸受8の端板を貫通する形で形成されたベーン油保持部20に潤滑油19を導く連通穴8eに継パイプ8fを設けている。継パイプ8fは下軸受8の端板から、下方すなわち潤滑油19の方に向かって延びている。継パイプ8fの固定方法は、圧入や溶接、接着等の手段を用いると良い。このような構成にすることにより、ベーン油保持部20に潤滑油19を導く連通穴8eの入口開口位置を端板面よりも下げることができるため、密閉容器1内の潤滑油19の油面が低下した場合でも油面位置が継パイプの下端を切るまでは、安定してベーン油保持部20の油膜シール性を確保することができる。 In the figure, the same components as those in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted. The same parts have the same function. In the second embodiment, a connecting pipe 8f is provided in the communication hole 8e for guiding the lubricating oil 19 to the vane oil holding portion 20 which is formed to penetrate the end plate of the lower bearing 8. The joint pipe 8 f extends downward from the end plate of the lower bearing 8, that is, toward the lubricating oil 19. As a method of fixing the joint pipe 8f, it is preferable to use means such as press-fitting, welding, or adhesion. With such a configuration, the inlet opening position of the communication hole 8e for guiding the lubricating oil 19 to the vane oil holding portion 20 can be lowered relative to the end plate surface, so the oil surface of the lubricating oil 19 in the sealed container 1 Even if the oil level decreases, the oil film sealability of the vane oil holding portion 20 can be stably secured until the oil level position cuts the lower end of the connecting pipe.
 本発明の第2実施例によれば、潤滑油の油面が低下した場合でも、安定して潤滑油を供給することができ、ベーン油保持部の油膜シール性を確保することができる。 According to the second embodiment of the present invention, even when the oil level of the lubricating oil decreases, the lubricating oil can be stably supplied, and the oil film sealability of the vane oil holding portion can be secured.
 次に図10、図11を用いて本発明の第3実施例について説明する。図10は本発明の第3実施例に係る密閉形回転圧縮機の要部拡大断面図、図11は図10のXI-XI断面図である。第3実施例では、ベーン油保持部20に潤滑油19を導く下軸受8の端板に設けられた連通穴8eは、端板内部を横断するように形成された連通横穴8gと繋がり下軸受8の環状溝8dに接続されている。また、連通横穴8gの端部は閉止栓8hにより閉鎖されている。このような構成にすることにより、ベーン油保持部20に潤滑油19を導く連通穴8eの入口開口が回転圧縮要素の給油経路に接続されるため、密閉形回転圧縮機の運転中は回転軸4が駆動されることにより、回転軸4の給油ポンプ4bによる遠心ポンプ作用で密閉容器1底部に貯留された潤滑油19が汲み上げられる。潤滑油19は、回転軸4内に形成された給油通路4cを通って、回転圧縮要素2の摺動部に供給される。ローラ9の内周側空間に溜まった潤滑油19は下軸受8の環状溝8dから連通横穴8g、連通穴8eを通ってベーン油保持部20に導かれるようになる。このため、密閉容器内の潤滑油19の油面位置に依らず、ベーン油保持部20に常に安定して潤滑油19を確保することが可能になることから、ベーン摺動すき間からのガス漏れを防止し油膜シール性を向上することができるため密閉形回転圧縮機の性能・信頼性向上に寄与することができる。 Next, a third embodiment of the present invention will be described using FIGS. 10 and 11. FIG. FIG. 10 is an enlarged sectional view of an essential part of a hermetic rotary compressor according to a third embodiment of the present invention, and FIG. 11 is a sectional view taken along the line XI-XI of FIG. In the third embodiment, the communication hole 8e provided in the end plate of the lower bearing 8 for guiding the lubricating oil 19 to the vane oil holding portion 20 is connected to the communication lateral hole 8g formed to traverse the inside of the end plate. It is connected to eight annular grooves 8d. Further, the end of the communication cross hole 8g is closed by a closing plug 8h. With such a configuration, the inlet opening of the communication hole 8e for guiding the lubricating oil 19 to the vane oil holding portion 20 is connected to the oil feeding path of the rotary compression element, so the rotary shaft is in operation during operation of the hermetic rotary compressor. By driving 4, the lubricating oil 19 stored at the bottom of the closed container 1 is pumped up by the centrifugal pump action of the feed pump 4 b of the rotary shaft 4. The lubricating oil 19 is supplied to the sliding portion of the rotary compression element 2 through an oil supply passage 4 c formed in the rotary shaft 4. The lubricating oil 19 accumulated in the inner circumferential space of the roller 9 is guided from the annular groove 8d of the lower bearing 8 to the vane oil holding portion 20 through the communication lateral hole 8g and the communication hole 8e. For this reason, regardless of the oil level position of the lubricating oil 19 in the closed container, the lubricating oil 19 can always be stably secured in the vane oil holding portion 20, so that gas leakage from the vane sliding gap As a result, the oil film sealability can be improved, and this can contribute to the improvement of the performance and reliability of the hermetic type rotary compressor.
 本発明の第3実施例によれば、潤滑油の油面位置の影響を受けることなく、安定して潤滑油を供給することができ、ベーン油保持部の油膜シール性を確保することができる。 According to the third embodiment of the present invention, the lubricating oil can be stably supplied without being affected by the oil surface position of the lubricating oil, and the oil film sealability of the vane oil holding portion can be secured. .
 次に図12~14を用いて本発明の第4実施例を説明する。図12は本発明の第4実施例に係る密閉形回転圧縮機の縦断面図、図13は図12の要部拡大断面図、図14は図13のXIV-XIV断面図である。 Next, a fourth embodiment of the present invention will be described with reference to FIGS. 12 is a longitudinal sectional view of a hermetic rotary compressor according to a fourth embodiment of the present invention, FIG. 13 is an enlarged sectional view of an essential part of FIG. 12, and FIG. 14 is a sectional view taken along line XIV-XIV of FIG.
 第4実施例は、回転圧縮要素であるシリンダを2セット備えた2シリンダタイプの密閉形回転圧縮機に適用した場合である。図12~14において、図1~7と同一の部品については同一符号を付しており、その説明は省略する。また同一部品については同一の作用を有する。 The fourth embodiment is a case where the present invention is applied to a two-cylinder type hermetic rotary compressor provided with two sets of cylinders that are rotary compression elements. 12 to 14, the same parts as in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof will be omitted. The same parts have the same function.
 回転圧縮要素2は、仕切り板5を介して上下に配設され、上側の第1のシリンダ6Aと、下側の第2のシリンダ6Bを備えている。第1のシリンダ6Aは密閉容器1の内面に固定された上軸受7の下面に重ね合わされ、第2のシリンダ6Bの下面には下軸受8が取り付けられる。回転軸4は、上軸受7と下軸受8に回転可能に軸支され、第1、第2のシリンダ6A,6Bの内側の位置に略180゜の位相差で2つの偏心部4aを一体に備えている。各偏心部4aの外周には、ローラ9が回転可能に嵌合されている。 The rotary compression element 2 is vertically disposed via the partition plate 5 and includes an upper first cylinder 6A and a lower second cylinder 6B. The first cylinder 6A is superimposed on the lower surface of the upper bearing 7 fixed to the inner surface of the hermetic container 1, and the lower bearing 8 is attached to the lower surface of the second cylinder 6B. The rotating shaft 4 is rotatably supported by the upper bearing 7 and the lower bearing 8 and integrally integrates the two eccentric parts 4a at a position on the inner side of the first and second cylinders 6A and 6B with a phase difference of about 180 °. Have. A roller 9 is rotatably fitted on the outer periphery of each eccentric portion 4a.
 第1のシリンダ6Aと第2のシリンダ6Bには、仕切り板5と上軸受7及び下軸受8で上下面が区画され、作動空間となる各シリンダ6A、6B内にシリンダ室10が形成される。下軸受8には吐出カバー8aが取り付けられ、下軸受8の端板に装着された吐出弁装置8bを覆っている。 Upper and lower surfaces of the first cylinder 6A and the second cylinder 6B are divided by the partition plate 5, the upper bearing 7 and the lower bearing 8, and cylinder chambers 10 are formed in the cylinders 6A and 6B serving as working spaces. . A discharge cover 8 a is attached to the lower bearing 8 and covers the discharge valve device 8 b attached to the end plate of the lower bearing 8.
 第1のシリンダ6Aと第2のシリンダ6Bには、各シリンダ室10内に往復運動可能に配設されたベーン11が収納されている。各ベーンの後端部にはベーンばね12が収納され、弾性力で各ベーン先端部をローラ9外周に当接付勢している。回転軸4の下端は下軸受8下方に露出しており、密閉容器1底部に溜められた潤滑油19中に侵漬している。回転軸4の下端面には給油ポンプ4bが取り付けられ、ここから下側の回転圧縮要素2と上側の回転圧縮要素2を構成する部品の各摺動部に回転軸4内に形成された給油通路4cを介して潤滑油19を供給するようになっている。 The first cylinder 6 </ b> A and the second cylinder 6 </ b> B accommodate therein vanes 11 which can be reciprocated in the respective cylinder chambers 10. A vane spring 12 is accommodated at the rear end of each vane, and the tip end of each vane is urged against the outer periphery of the roller 9 by an elastic force. The lower end of the rotating shaft 4 is exposed below the lower bearing 8 and is immersed in the lubricating oil 19 stored at the bottom of the closed container 1. An oil supply pump 4b is attached to the lower end surface of the rotary shaft 4, and the oil is formed in the rotary shaft 4 at each sliding portion of the components constituting the lower rotary compression element 2 and the upper rotary compression element 2 from here. The lubricating oil 19 is supplied through the passage 4c.
 16A、16Bは外部の冷凍回路から作動流体が流入する吸入パイプであり、第1の吸入パイプ16Aは第1のシリンダ6Aに形成された吸入通路17Aを介してシリンダ室10内に連通し、第2の吸入パイプ16Bは第2のシリンダ6Bに形成された吸入通路17Bを介してシリンダ室10内に連通する。回転軸4の回転により上下2つの回転圧縮要素で各々独立して略180゜の位相差で圧縮過程が進行することになる。25は下側の吐出カバー8a内に吐出された作動流体を上側の吐出カバー7a内に導く吐出通路である。 The first suction pipe 16A communicates with the inside of the cylinder chamber 10 through a suction passage 17A formed in the first cylinder 6A. The second suction pipe 16B communicates with the inside of the cylinder chamber 10 through a suction passage 17B formed in the second cylinder 6B. Due to the rotation of the rotary shaft 4, the compression process proceeds independently with a phase difference of about 180 ° between the upper and lower two rotary compression elements. A discharge passage 25 guides the working fluid discharged into the lower discharge cover 8a into the upper discharge cover 7a.
 図において、ベーン油保持部20は、上下に位置する各ベーン11の往復摺動部でシリンダ6A及び6Bのベーン収納溝に形成されたベーン収納溝中心に対して対称構造の高圧側スロット油溝21H及び低圧側スロット油溝21Lと上軸受7、仕切り板5及び下軸受8の端面に形成され高圧側スロット油溝21H及び低圧側スロット油溝21Lに連通する上下対称構造の上端面油溝22及び下端面油溝23からなる。またその位置は、各ベーン11がシリンダ室10及び密閉容器1内(ベーンばね装着穴6bも含む)に露出しない範囲に配設され、ベーン外周を一部分包囲する形で密封構造を形成している。この上下に位置する各ベーン油保持部20に潤滑油19を導く連通穴5eが両者を連結する位置に仕切り板5の端板を貫通する形で形成され、この連通穴5eは仕切り板5内部を横断するように形成された連通横穴5fと繋がり仕切り板5の内周側空間である貫通穴5aに接続されている。 In the figure, the vane oil holding portion 20 is a high pressure side slot oil groove having a symmetrical structure with respect to the vane storage groove center formed in the vane storage grooves of the cylinders 6A and 6B in the reciprocating sliding portions of the vanes 11 positioned vertically. 21H and low pressure side slot oil groove 21L, upper bearing 7, partition plate 5 and end face of lower bearing 8 and communicating with high pressure side slot oil groove 21H and low pressure side slot oil groove 21L And a lower end surface oil groove 23. Further, the position thereof is disposed in a range where each vane 11 is not exposed in the cylinder chamber 10 and the closed container 1 (including the vane spring mounting hole 6b), and forms a sealed structure so as to partially surround the outer periphery of the vane. . The communication holes 5e for guiding the lubricating oil 19 to the vane oil holding portions 20 located at the upper and lower positions are formed to penetrate the end plate of the partition plate 5 at a position connecting the both, and the communication holes 5e are formed inside the partition plate 5 It is connected to the through hole 5a which is the inner peripheral side space of the connecting horizontal hole 5f and the connecting partition plate 5 which were formed so that it might cross.
 また、連通横穴5fの外周側の端部は閉止栓5gにより閉鎖されている。このような構成にすることにより、上下2箇所に存在するベーン油保持部20に潤滑油を導く連通穴の入口開口が仕切り板5の貫通穴5a内の空間すなわち回転圧縮要素2の給油経路に接続されるため、密閉形回転圧縮機の運転中は回転軸4が駆動されることにより、回転軸4の給油ポンプ4bによる遠心ポンプ作用で密閉容器1底部に貯留された潤滑油19が汲み上げられる。潤滑油19は、回転軸4内に形成された給油通路4cを通って、回転圧縮要素2の摺動部に供給されるため、仕切り板5の内周側空間である貫通穴5a内に溜まった潤滑油19はここから連通横穴5f、連通穴5eを通って上下のベーン油保持部20に導かれるようになる。このため、密閉容器内の潤滑油19の油面位置に依らず、ベーン油保持部20に常に安定して潤滑油19を確保することが可能になることから、ベーン摺動すき間からのガス漏れを防止し油膜シール性を向上することができるため密閉形回転圧縮機の性能・信頼性向上に寄与することができる。 Further, the end on the outer peripheral side of the communication horizontal hole 5 f is closed by the closing plug 5 g. With such a configuration, the inlet opening of the communication hole for guiding the lubricating oil to the vane oil holding portions 20 present at the two upper and lower positions is a space in the through hole 5 a of the partition plate 5, that is, an oil supply path of the rotary compression element 2 Since it is connected, the lubricating oil 19 stored in the bottom of the sealed container 1 is pumped up by the centrifugal pump action of the feed pump 4b of the rotating shaft 4 by driving the rotating shaft 4 during operation of the closed type rotary compressor. . The lubricating oil 19 is supplied to the sliding portion of the rotary compression element 2 through the oil supply passage 4 c formed in the rotary shaft 4, and therefore, is collected in the through hole 5 a which is the inner peripheral space of the partition plate 5. From there, the lubricating oil 19 is led to the upper and lower vane oil holding portions 20 through the communication horizontal hole 5f and the communication hole 5e. For this reason, regardless of the oil surface position of the lubricating oil 19 in the closed container, the lubricating oil 19 can always be stably secured in the vane oil holding portion 20, so that gas leakage from the vane sliding gap As a result, the oil film sealability can be improved, and this can contribute to the improvement of the performance and reliability of the hermetic type rotary compressor.
 本発明の第4実施例によれば、2シリンダタイプの密閉形回転圧縮機において、安定して潤滑油を供給することができ、ベーン油保持部の油膜シール性を確保することができる。 According to the fourth embodiment of the present invention, lubricating oil can be stably supplied in a two-cylinder type hermetic rotary compressor, and the oil film sealability of the vane oil holding portion can be secured.
 次に、図15を用いて本発明の第5実施例について説明する。図15は本発明の第5実施例に係る密閉形回転圧縮機を備えた冷凍サイクルの模式図である。第5実施例では作動流体としてR32を冷媒として用いた冷凍サイクルを例に挙げて説明する。 Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a schematic view of a refrigeration cycle provided with a hermetic rotary compressor according to a fifth embodiment of the present invention. In the fifth embodiment, a refrigeration cycle using R32 as a refrigerant as a working fluid will be described as an example.
 R32は、地球温暖化係数(GWP)が冷凍空調システムにおいて従来から用いられてきた冷媒R410Aより小さく、地球温暖化防止の観点から近年注目されてきている冷媒である。 R32 is a refrigerant that has a global warming potential (GWP) smaller than that of a refrigerant R410A conventionally used in a refrigeration air conditioning system, and has been attracting attention in recent years from the viewpoint of preventing global warming.
 図15において、図1と同一符号を付したものは同一部品であり同一の作用を有する。冷凍回路から気液分離機能を有する吸入タンク15には作動流体が流入する吸入管14が設けられている。吸入タンク15の底部には圧縮機に対する吸入通路である吸入パイプ16が接続される。32は凝縮器、33は膨張弁、34は蒸発器であり、これらは冷媒配管35により順次接続されることにより、冷凍サイクル31を構成している。 In FIG. 15, the parts assigned the same reference numerals as in FIG. 1 are the same parts and have the same functions. A suction pipe 14 into which the working fluid flows is provided in a suction tank 15 having a gas-liquid separation function from the refrigeration circuit. A suction pipe 16, which is a suction passage for the compressor, is connected to the bottom of the suction tank 15. The reference numeral 32 denotes a condenser, 33 denotes an expansion valve, and 34 denotes an evaporator, which are connected sequentially by a refrigerant pipe 35 to constitute a refrigeration cycle 31.
 冷媒の流れを説明する。密閉形回転圧縮機30から吐出された高温・高圧の冷媒は、凝縮器32に入って温度低下し、放熱・液化する。この凝縮器32から出た液冷媒は膨張弁33に入り低温、低圧の気液二相冷媒となって吐出される。この膨張弁33を出た気液二相冷媒は、前記蒸発器34に入って吸熱・ガス化して前記密閉形回転圧縮機30に戻り、再び圧縮されて、以下同様のサイクルが繰り返される。これにより、冷凍装置であれば、蒸発器34で被冷却物が冷却される。空調装置であれば、蒸発器34で室内空気が冷却されて冷房運転されるか、或いは凝縮器32で室内空気を加熱して暖房運転がなされる。 The flow of the refrigerant will be described. The high-temperature high-pressure refrigerant discharged from the hermetic rotary compressor 30 enters the condenser 32, and the temperature thereof is reduced to radiate and liquefy. The liquid refrigerant from the condenser 32 enters the expansion valve 33 and is discharged as a low temperature, low pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant leaving the expansion valve 33 enters the evaporator 34, is absorbed and gasified, returns to the closed rotary compressor 30, is compressed again, and the same cycle is repeated. As a result, in the case of a refrigeration apparatus, the evaporator 34 cools the object to be cooled. In the case of an air conditioner, room air is cooled by the evaporator 34 and cooling operation is performed, or room air is heated by the condenser 32 and heating operation is performed.
 本発明の第5実施例によれば、第1乃至第4実施例で説明した密閉形回転圧縮機30を備えることにより、ベーン摺動部の油膜保持が確保されることから性能・信頼性に優れた密閉形回転圧縮機を提供することが可能となり、冷凍空調装置の性能及び信頼性の向上を図ることができる。 According to the fifth embodiment of the present invention, by providing the hermetic type rotary compressor 30 described in the first to fourth embodiments, the oil film holding of the vane sliding portion is ensured, so that performance and reliability can be improved. It becomes possible to provide an excellent closed type rotary compressor, and the performance and reliability of the refrigeration air conditioning system can be improved.
 1 密閉容器、2 回転圧縮要素、3 電動機部、3a ステータ、3b ロータ、4 回転軸、4a 偏心部、4b 給油ポンプ、4c 給油経路、5 仕切り板、5a 貫通穴、5e 連通穴、5f 連通横穴、5g 閉止栓、6 シリンダ、6A 第一のシリンダ、6B 第2のシリンダ、6a ベーン収納溝、6b ベーンばね装着穴、6c 吐出切欠き、7 上軸受、7a 吐出カバー、7b 吐出弁装置、7c 吐出ポート、7d 環状溝、8 下軸受、8a 吐出カバー、8b 吐出弁装置、8c 吐出ポート、8d 環状溝、8e 連通穴、8f 継パイプ、8g 連通横穴、8h 閉止栓、9 ローラ、10 シリンダ室、11 ベーン、12 ベーンばね、14 吸入管、15 吸入タンク、16 吸入パイプ、16A 第1の吸入パイプ、16B 第2の吸入パイプ、17 吸入通路、17A 第1の吸入通路、17B 第2の吸入通路、18 吐出管、19 潤滑油、20 ベーン油保持部、21H 高圧側スロット油溝、21L 低圧側スロット油溝、22 上端面油溝、23 下端面油溝、24 固定ボルト、25 吐出通路、30 密閉形回転圧縮機、31 冷凍サイクル、32 凝縮器、33 膨張弁、34 蒸発器、35 冷媒配管 DESCRIPTION OF SYMBOLS 1 sealed container, 2 rotation compression element, 3 motor part, 3a stator, 3b rotor, 4 rotation shaft, 4a eccentric part, 4b oil supply pump, 4c oil supply path, 5 partition plate, 5a through hole, 5e communication hole, 5f communication side hole , 5g stopper plug, 6 cylinder, 6A first cylinder, 6B second cylinder, 6a vane housing groove, 6b vane spring mounting hole, 6c discharge notch, 7 upper bearing, 7a discharge cover, 7b discharge valve device, 7c Discharge port, 7d annular groove, 8 lower bearing, 8a discharge cover, 8b discharge valve device, 8c discharge port, 8d annular groove, 8e communicating hole, 8f connecting pipe, 8g communicating lateral hole, 8h closing plug, 9 roller, 10 cylinder chamber , 11 vanes, 12 vane springs, 14 suction pipes, 15 suction tanks, 16 suction pipes, 16 First suction pipe, 16B second suction pipe, 17 suction passage, 17A first suction passage, 17B second suction passage, 18 discharge pipe, 19 lubricating oil, 20 vane oil holding portion, 21H high pressure side slot oil Groove, 21L low pressure side slot oil groove, 22 upper end surface oil groove, 23 lower end oil groove, 24 fixed bolt, 25 discharge passage, 30 sealed rotary compressor, 31 refrigeration cycle, 32 condenser, 33 expansion valve, 34 evaporation , 35 refrigerant piping

Claims (11)

  1.  密閉容器と、前記密閉容器内に設けられ、垂直方向に延びた回転軸を回転させる電動機と、前記電動機の下方に設けられ、前記回転軸の回転により駆動される回転圧縮要素とを備えた密閉形回転圧縮機であって、
     前記回転圧縮要素は吸入通路を介して吸入パイプと連通するシリンダ室を備えたシリンダと、前記シリンダ室に偏心回転自在に収納されたローラと、先端部が前記ローラの外周に当接し前記シリンダ室を吸込室と圧縮室に区画するベーンと、前記シリンダ室の両端開口部を閉塞し前記回転軸を軸支する上軸受及び下軸受と、前記シリンダ室で圧縮された作動流体を前記密閉容器内に吐き出す吐出弁装置とを有し、
     前記ベーンが往復摺動する前記シリンダのベーン収納溝と、前記上軸受及び前記下軸受の端面とには、前記ベーンの外周を一部分包囲する形で連通したベーン油保持部を形成し、前記ベーン油保持部と前記密閉容器内に貯留された潤滑油とを連通する連通穴を備えたことを特徴とする密閉形回転圧縮機。
    A sealed container, a motor provided in the sealed container and rotating a vertically extending rotary shaft, and a rotary compression element provided below the motor and driven by rotation of the rotary shaft Type rotary compressor,
    The rotary compression element includes a cylinder having a cylinder chamber communicating with a suction pipe via a suction passage, a roller rotatably accommodated in the cylinder chamber so as to be eccentrically rotatable, and a tip end abuts against the outer periphery of the roller The upper and lower bearings that close the openings at both ends of the cylinder chamber and axially support the rotary shaft, and the working fluid compressed in the cylinder chamber inside the sealed container And a discharge valve device for discharging
    A vane oil holding portion is formed in communication with the vane housing groove of the cylinder in which the vane slides back and forth, and the end faces of the upper bearing and the lower bearing so as to partially surround the outer periphery of the vane. A sealed rotary compressor comprising a communication hole communicating an oil holding portion with a lubricating oil stored in the sealed container.
  2.  密閉容器と、前記密閉容器内に設けられ、垂直方向に延びた回転軸を回転させる電動機と、前記電動機の下方に設けられ、前記回転軸の回転により駆動される回転圧縮要素とを備えた密閉形回転圧縮機であって、
     前記回転圧縮要素は吸入通路を介して吸入パイプと連通するシリンダ室を備えたシリンダと、前記シリンダ室に偏心回転自在に収納されたローラと、先端部が前記ローラの外周に当接し前記シリンダ室を吸込室と圧縮室に区画するベーンと、前記シリンダ室の両端開口部を閉塞し前記回転軸を軸支する上軸受及び下軸受と、前記シリンダ室で圧縮された作動流体を前記密閉容器内に吐き出す吐出弁装置とを有し、
     前記ベーンが往復摺動する前記シリンダのベーン収納溝と、前記上軸受及び前記下軸受の端面とには、前記ベーンの外周が前記シリンダ室及び前記密閉容器内に露出しない位置にベーン油保持部を形成し、前記ベーン油保持部と前記密閉容器内に貯留された潤滑油とを連通する連通穴を備えたことを特徴とする密閉形回転圧縮機。
    A sealed container, a motor provided in the sealed container and rotating a vertically extending rotary shaft, and a rotary compression element provided below the motor and driven by rotation of the rotary shaft Type rotary compressor,
    The rotary compression element includes a cylinder having a cylinder chamber communicating with a suction pipe via a suction passage, a roller rotatably accommodated in the cylinder chamber so as to be eccentrically rotatable, and a tip end abuts against the outer periphery of the roller The upper and lower bearings that close the openings at both ends of the cylinder chamber and axially support the rotary shaft, and the working fluid compressed in the cylinder chamber inside the sealed container And a discharge valve device for discharging
    A vane oil holding portion at a position where the outer periphery of the vane is not exposed to the inside of the cylinder chamber and the sealed container in the vane housing groove of the cylinder in which the vane slides back and forth, and the end face of the upper bearing and the lower bearing And a communicating hole for communicating the vane oil holding portion and the lubricating oil stored in the sealed container.
  3.  請求項1又は2において、
     前記ベーン油保持部は、前記ベーン収納溝に形成された高圧側スロット油溝及び低圧側スロット油溝と、前記上軸受及び前記下軸受の端面のそれぞれに形成され前記高圧側スロット油溝及び低圧側スロット油溝と連通する端面油溝とからなることを特徴とする密閉形回転圧縮機。
    In claim 1 or 2,
    The vane oil holding portion is formed in each of a high pressure side slot oil groove and a low pressure side slot oil groove formed in the vane housing groove, and an end face of the upper bearing and the lower bearing, and the high pressure side slot oil groove and low pressure A sealed rotary compressor comprising an end surface oil groove communicating with a side slot oil groove.
  4.  請求項3において、
     前記高圧側スロット油溝及び前記低圧側スロット油溝は対称構造であることを特徴とする密閉形回転圧縮機。
    In claim 3,
    The closed type rotary compressor, wherein the high pressure side slot oil groove and the low pressure side slot oil groove have a symmetrical structure.
  5.  請求項1又は2において、
     前記連通穴の入口開口位置は前記回転圧縮要素の最下面としたことを特徴とする密閉形回転圧縮機。
    In claim 1 or 2,
    The sealing type rotary compressor characterized in that the inlet opening position of the communication hole is the lowermost surface of the rotary compression element.
  6.  請求項1又は2において、
     前記連通穴には、下方に向かって延びた継パイプを設けたことを特徴とする密閉形回転圧縮機。
    In claim 1 or 2,
    The sealing type rotary compressor characterized in that a connecting pipe extending downward is provided in the communication hole.
  7.  請求項1又は2において、
     前記連通穴の入口開口を前記回転圧縮要素の給油経路に接続したことを特徴とする密閉形回転圧縮機。
    In claim 1 or 2,
    A hermetic rotary compressor characterized in that an inlet opening of the communication hole is connected to an oil feeding path of the rotary compression element.
  8.  請求項7において、
     前記回転軸には前記給油経路に前記潤滑油を給油する給油ポンプが設けられていることを特徴とする密閉形回転圧縮機。
    In claim 7,
    The rotary type rotary compressor is characterized in that the rotary shaft is provided with an oil supply pump for supplying the lubricating oil to the oil supply path.
  9.  請求項1又は2において、
     前記回転圧縮要素は、仕切り板を介して上下に配置された第1のシリンダ及び第2シリンダとから構成されたことを特徴とする密閉形回転圧縮機。
    In claim 1 or 2,
    The sealed rotary compressor according to claim 1, wherein the rotary compression element comprises a first cylinder and a second cylinder arranged above and below via a partition plate.
  10.  請求項1又は2において、
     作動流体として、R32を冷媒とする冷凍サイクルに接続されることを特徴とする密閉形回転圧縮機。
    In claim 1 or 2,
    A closed type rotary compressor connected to a refrigeration cycle using R32 as a refrigerant as a working fluid.
  11.  密閉形回転圧縮機、凝縮器、膨張装置、及び蒸発器を冷媒配管で接続した冷凍サイクルを備え、前記冷凍サイクルの冷媒としてR32を用いるとともに、前記密閉形回転圧縮機は、請求項1又は2に記載の密閉形回転圧縮機であることを特徴とする冷凍空調装置。 A refrigeration cycle comprising a hermetic rotary compressor, a condenser, an expansion device, and an evaporator connected by a refrigerant pipe, wherein R32 is used as a refrigerant of the refrigeration cycle, and the hermetic rotary compressor is claimed in claim 1 or 2 A refrigeration air conditioner characterized by being a closed type rotary compressor according to claim 1.
PCT/JP2018/002229 2018-01-25 2018-01-25 Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor WO2019146031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002229 WO2019146031A1 (en) 2018-01-25 2018-01-25 Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002229 WO2019146031A1 (en) 2018-01-25 2018-01-25 Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor

Publications (1)

Publication Number Publication Date
WO2019146031A1 true WO2019146031A1 (en) 2019-08-01

Family

ID=67395392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002229 WO2019146031A1 (en) 2018-01-25 2018-01-25 Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor

Country Status (1)

Country Link
WO (1) WO2019146031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023551A (en) * 2020-01-29 2022-09-06 富士通将军股份有限公司 Rotary compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106992A (en) * 1984-10-31 1986-05-24 Hitachi Ltd Rotary compressor
JPS61145388A (en) * 1984-12-19 1986-07-03 Hitachi Ltd Rotary compressor
JPH02163489A (en) * 1988-12-16 1990-06-22 Matsushita Refrig Co Ltd Rotary compressor
JPH04191491A (en) * 1990-11-22 1992-07-09 Matsushita Refrig Co Ltd Closed type compressor
JPH08277792A (en) * 1995-04-04 1996-10-22 Matsushita Refrig Co Ltd Low pressure type rotary refrigerant compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106992A (en) * 1984-10-31 1986-05-24 Hitachi Ltd Rotary compressor
JPS61145388A (en) * 1984-12-19 1986-07-03 Hitachi Ltd Rotary compressor
JPH02163489A (en) * 1988-12-16 1990-06-22 Matsushita Refrig Co Ltd Rotary compressor
JPH04191491A (en) * 1990-11-22 1992-07-09 Matsushita Refrig Co Ltd Closed type compressor
JPH08277792A (en) * 1995-04-04 1996-10-22 Matsushita Refrig Co Ltd Low pressure type rotary refrigerant compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023551A (en) * 2020-01-29 2022-09-06 富士通将军股份有限公司 Rotary compressor
US11959480B2 (en) 2020-01-29 2024-04-16 Fujitsu General Limited Rotary compressor including a plurality of recessed portions for retaining lubricating oil

Similar Documents

Publication Publication Date Title
JP4837049B2 (en) Fluid machinery and refrigeration cycle equipment
WO2005103496A1 (en) Rotating fluid machine
JP2011012629A (en) Scroll compressor
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
CN108240332B (en) Closed rotary compressor and refrigerating air conditioner
WO2019146031A1 (en) Sealed rotary compressor, and refrigeration and air conditioning device provided with said sealed rotary compressor
JP6057535B2 (en) Refrigerant compressor
CN109154296B (en) Hermetic rotary compressor and refrigerating and air-conditioning apparatus
JP2008196415A (en) Compressor
JP2008008165A (en) Compressor
JP2008138572A (en) Scroll type fluid machine
JP6704555B1 (en) Compressor and refrigeration cycle device
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JPH06167287A (en) Rotary compressor
EP2589810B1 (en) Rotary compressor
JP2000179472A (en) Rotary compressor
JP2010223088A (en) Rotary compressor and air conditioner
JP2005171819A (en) Refrigerating compressor
JP2001050179A (en) Rotary compressor, refrigerating cycle using the compressor, and refrigerator using the compressor
WO2023139829A1 (en) Rotary compressor
US11933305B2 (en) Rotary compressor with an oil groove facing the vane and exposed to a gap between the vane and the piston
WO2022004027A1 (en) Rotary compressor and refrigeration cycle device
JP2012067712A (en) Scroll compressor
JP2011163257A (en) Hermetic compressor
JP4359164B2 (en) 2-stage rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP