WO2013179623A1 - Led module - Google Patents

Led module Download PDF

Info

Publication number
WO2013179623A1
WO2013179623A1 PCT/JP2013/003300 JP2013003300W WO2013179623A1 WO 2013179623 A1 WO2013179623 A1 WO 2013179623A1 JP 2013003300 W JP2013003300 W JP 2013003300W WO 2013179623 A1 WO2013179623 A1 WO 2013179623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
led chip
led module
led
Prior art date
Application number
PCT/JP2013/003300
Other languages
French (fr)
Japanese (ja)
Inventor
浦野 洋二
暁史 中村
隼人 井岡
良治 今井
純 合田
平野 徹
鈴木 雅教
秀明 日向
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014518271A priority Critical patent/JP6145945B2/en
Publication of WO2013179623A1 publication Critical patent/WO2013179623A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to an LED module.
  • This light-emitting device includes a metal plate 203 having both a heat dissipation function and a light reflection function, a wiring board 201 having a through-hole 207 through which light passes, an adhesive sheet 202 that bonds the wiring board 201 and the metal plate 203, and It has.
  • a light emitting element 214 made of an LED chip is mounted on a metal plate 203 just below the through hole 207 of the wiring board 201, and the light emitting element 214 and the land 206 on the upper surface of the wiring board 201 are made of metal.
  • the wire 215 is connected by wire bonding.
  • the present invention has been made in view of the above reasons, and an object thereof is to provide an LED module capable of improving the light extraction efficiency.
  • the LED module of the present invention includes a light-transmitting light diffusing substrate, an LED chip bonded to one surface side of the light diffusing substrate via a transparent first bonding portion, and the one surface side of the light diffusing substrate. And a color conversion unit that covers the LED chip, and a mounting substrate disposed on the other surface side of the light diffusion substrate, and the color conversion unit is excited by light emitted from the LED chip and the LED
  • the mounting substrate is made of a transparent material containing a phosphor that emits light of a color different from that of the chip, and the mounting substrate is electrically connected to the insulating member embedded in the insulating member.
  • the insulating member is a non-translucent member having diffuse reflectivity.
  • the LED chip is provided with a first electrode and a second electrode on one surface side in the thickness direction, and each of the first electrode and the second electrode has the wiring pattern and the wire. It is preferable that a part of the wiring pattern is provided in a vertical projection region to the mounting substrate side of the light diffusion substrate.
  • the light diffusing substrate is embedded in the insulating member, and a side surface and the other surface are in contact with the insulating member.
  • the mounting substrate has the wiring pattern that is the one of the light diffusing substrates. A portion provided on the surface, and the wiring pattern is formed by bonding the other end portion of each of the wires, each of which is bonded to the first electrode and the second electrode, and the portion,
  • the color conversion unit preferably covers the LED chip and the wires on the one surface side of the light diffusion substrate.
  • the LED module of the present invention it is possible to improve the light extraction efficiency by including a light diffusion substrate and a non-translucent member having diffuse reflection properties.
  • FIG. 1A is a schematic plan view of the LED module of Embodiment 1.
  • FIG. 1B is a schematic cross-sectional view of the LED module of Embodiment 1.
  • FIG. 2A and 2B are explanatory diagrams of light traveling paths in the structure of Reference Example 1.
  • FIG. 3A to 3D are explanatory diagrams of structural parameters in the structure of Reference Example 1.
  • FIG. 4 is a diagram showing a simulation result of the relationship between the absorption rate in the light emitting layer of the LED chip and the light extraction efficiency in the structure of Reference Example 1.
  • FIG. 5 is a diagram showing the relationship between the absorption rate in the light emitting layer of the LED chip and the light extraction efficiency ratio in the structure of Reference Example 1.
  • FIG. 6 is a diagram showing a simulation result of the breakdown of the light extraction efficiency in the structure of Reference Example 1.
  • FIG. FIG. 7 is an explanatory diagram of the measurement results of the light fluxes of Reference Examples 2, 3 and 4.
  • FIG. 8 is an explanatory diagram of the measurement results of the light fluxes of Reference Examples 2, 3 and 4.
  • FIG. 9 is an explanatory diagram of the measurement results of the light fluxes of Reference Examples 2, 3 and 4.
  • FIG. 10 is an explanatory diagram of the relationship between the total reflectance and the wavelength.
  • FIG. 11A is a schematic plan view of the LED module of Embodiment 2.
  • FIG. 11B is a schematic cross-sectional view of the LED module of Embodiment 2.
  • FIG. 12A is a schematic plan view of the LED module of Embodiment 3.
  • FIG. FIG. 12B is a schematic cross-sectional view of the LED module of Embodiment 3.
  • FIG. 13 is a schematic perspective view of a light diffusion substrate in the LED module of the third embodiment.
  • FIG. 14 is an explanatory diagram of the relationship between the particle diameter of the alumina particles and the reflectance.
  • FIG. 15 is a reflectance-wavelength characteristic diagram of a light diffusion substrate and an alumina substrate in an example of the LED module of Embodiment 3.
  • FIG. 16 is a schematic explanatory view of a light diffusion substrate in the LED module of Embodiment 3.
  • FIG. 17 is an explanatory diagram of the relationship between the glass mixture ratio of the light diffusion substrate and the integrated intensity of the integrating sphere in the LED module of Embodiment 1.
  • FIG. 18 is a reflectance-wavelength characteristic diagram of the light diffusion substrate and the alumina substrate in the example of the third embodiment.
  • FIG. 19 is an estimation mechanism diagram for explaining the principle relating to the improvement of the light extraction efficiency of the LED module of the third embodiment.
  • 20A to 20C are estimation mechanism diagrams for explaining the principle relating to the improvement of the light extraction efficiency of the LED module of Embodiment 3.
  • FIG. 21 is a schematic cross-sectional view of a first modification of the LED module of Embodiment 3.
  • FIG. 22 is a schematic perspective view of a second modification of the LED module of the third embodiment.
  • FIG. 23A is a schematic perspective view in which the lighting fixture of Embodiment 3 is partially broken.
  • FIG. 23B is an enlarged view of a main part of FIG. 23A.
  • FIG. 24A is a schematic perspective view in which the straight tube LED lamp of Embodiment 3 is partially broken.
  • FIG. 24B is an enlarged view of a main part of FIG. 24A.
  • FIG. 25 is a schematic perspective view of a first modification of the lighting fixture according to the third embodiment.
  • FIG. 26 is a partially broken schematic perspective view of a first modification of the lighting apparatus of Embodiment 3.
  • FIG. 27 is a cross-sectional view showing a conventional light emitting device.
  • the LED module 1 includes a translucent light diffusing substrate 2, an LED chip 4 bonded to the one surface 2 sa side of the light diffusing substrate 2 via a transparent first bonding portion 3, and one surface of the light diffusing substrate 2. And a color conversion unit 5 that covers the LED chip 4 on the 2sa side.
  • the color conversion unit 5 is formed of a transparent material containing a phosphor that is excited by light emitted from the LED chip 4 and emits light of a color different from that of the LED chip 4.
  • the LED module 1 includes a mounting substrate 7 disposed on the other surface 2sb side of the light diffusion substrate 2.
  • the mounting substrate 7 includes an insulating member 72 having electrical insulation, and a wiring pattern 71 embedded in the insulating member 72 and electrically connected to the LED chip 4.
  • the insulating member 72 has diffuse reflectivity. It consists of a non-light-transmissive member.
  • the LED module 1 emits light from the light emitting layer 43 (see FIGS. 2A and 2B) of the LED chip 4, and a part of the light that has passed through the LED chip 4 and the first joint portion 3 is within the light diffusion substrate 2. It is diffused or taken out from the side surface 2sc of the light diffusion substrate 2. Therefore, the LED module 1 includes a light transmissive light diffusing substrate 2 and a non-light transmissive member (insulating member 72) that is disposed on the other surface 2sb side of the light diffusing substrate 2 and has diffuse reflectivity. As a result, the light extraction efficiency can be improved.
  • the LED chip 4 is provided with a first electrode (not shown) as an anode electrode and a second electrode (not shown) as a cathode electrode on one surface side in the thickness direction of the LED chip 4. .
  • the LED chip 4 includes an LED structure section 40 having an n-type semiconductor layer 42, a light emitting layer 43, and a p-type semiconductor layer 44 on the main surface 41a side of the substrate 41.
  • the stacking order of the n-type semiconductor layer 42, the light-emitting layer 43, and the p-type semiconductor layer 44 is the n-type semiconductor layer 42, the light-emitting layer 43, and the p-type semiconductor layer 44 in this order from the side closer to the substrate 41.
  • the p-type semiconductor layer 44, the light emitting layer 43, and the n-type semiconductor layer 42 may be arranged in this order.
  • the LED chip 4 preferably has a structure in which a buffer layer is provided between the LED structure portion 40 and the substrate 41.
  • the light emitting layer 43 preferably has a single quantum well structure or a multiple quantum well structure, but is not limited thereto.
  • the n-type semiconductor layer 42, the light emitting layer 43, and the p-type semiconductor layer 44 may form a double heterostructure.
  • the structure of the LED chip 4 is not particularly limited.
  • the LED chip 4 for example, a GaN blue LED chip that emits blue light can be adopted.
  • the LED chip 4 includes a sapphire substrate as the substrate 41.
  • the substrate 41 of the LED chip 4 is not limited to the sapphire substrate, and may be any substrate that is transparent to the light emitted from the light emitting layer 43, for example.
  • the chip size of the LED chip 4 is not particularly limited.
  • the LED chip 4 for example, one having a chip size of 0.3 mm ⁇ (0.3 mm ⁇ 0.3 mm), 0.45 mm ⁇ (0.45 mm ⁇ 0.45 mm), 1 mm ⁇ (1 mm ⁇ 1 mm), etc. Can be used.
  • the planar shape of the LED chip 4 is not limited to a square shape, and may be, for example, a rectangular shape. When the planar shape of the LED chip 4 is rectangular, the LED chip 4 having, for example, a chip size of 0.5 mm ⁇ 0.24 mm can be used.
  • the LED chip 4 does not particularly limit the material and the emission color of the light emitting layer 43. That is, the LED chip 4 is not limited to a blue LED chip, and for example, a violet light LED chip, an ultraviolet light LED chip, a red LED chip, a green LED chip, or the like may be used.
  • a silicone resin, an epoxy resin, a hybrid material of a silicone resin and an epoxy resin, or the like can be employed as the material of the first joint portion 3 that joins the LED chip 4 and the light diffusion substrate 2.
  • translucent ceramics alumina, barium sulfate, etc.
  • the translucent ceramics can adjust the transmittance, reflectance, and thermal conductivity depending on the type and concentration of the binder, additive, and the like.
  • an LED chip 4 is bonded to a central portion on the one surface 2 sa side of the light diffusion substrate 2 via a transparent first bonding portion 3.
  • the LED module 1 makes it easier for light emitted from the light emitting layer 43 of the LED chip 4 to the other side in the thickness direction of the LED chip 4 to be extracted from the side surface of the LED chip 4. And is easily taken out from the peripheral portion of one surface 2sa of the light diffusion substrate 2. Therefore, the LED module 1 can improve the light extraction efficiency.
  • the light diffusion substrate 2 is formed in a rectangular plate shape, but is not limited thereto, and may be, for example, a circular shape or a polygonal shape.
  • the planar size of the light diffusion substrate 2 is set larger than the planar size of the LED chip 4. Thereby, the LED module 1 can improve the light extraction efficiency.
  • the light diffusion substrate 2 is configured to have a linear expansion coefficient close to that of the LED chip 4, thereby relieving stress acting on the LED chip 4 due to the difference in linear expansion coefficient between the LED chip 4 and the mounting substrate 7. It preferably has a stress relaxation function. Thereby, the LED module 1 can relieve the stress acting on the LED chip 4 due to the difference in linear expansion coefficient between the LED chip 4 and the mounting substrate 7.
  • the light diffusion substrate 2 has a heat conduction function for transferring heat generated by the LED chip 4 to the mounting substrate 7 side.
  • the light diffusing substrate 2 preferably has a heat conduction function for transferring heat generated by the LED chip 4 to a range wider than the chip size of the LED chip 4. Thereby, the LED module 1 can efficiently dissipate the heat generated in the LED chip 4 through the light diffusion substrate 2 and the mounting substrate 7.
  • the shape of the color conversion unit 5 may be set as appropriate based on the planar shape of the LED chip 4 and the like.
  • the color conversion unit 5 has a semi-elliptical spherical shape, and the major axis direction and the minor axis direction of the color conversion unit 5 in plan view are determined in plan view. It is preferable to align with the longitudinal direction and the lateral direction of the LED chip 4.
  • the planar shape of the LED chip 4 is a square shape, it is preferable that the shape of the color conversion unit 5 be a hemispherical shape.
  • the shape of the color conversion unit 5 is not particularly limited, and may be set as appropriate based on desired light distribution characteristics of the LED module 1.
  • the color conversion unit 5 covers not only the LED chip 4 but also a part of each wire 8 connected to the LED chip 4.
  • the color conversion unit 5 is in contact with the one surface side and the side surface of the LED chip 4 and the peripheral portion of the one surface 2sa of the light diffusion substrate 2.
  • the color conversion unit 5 can be formed by a molding method, for example.
  • Silicone resin is used as the transparent material that is the material of the color conversion section 5.
  • the transparent material is not limited to a silicone resin, and for example, an epoxy resin, an acrylic resin, glass, an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or molecular level, and the like can also be employed.
  • the phosphor that is the material of the color conversion unit 5 functions as a wavelength conversion material that converts light emitted from the LED chip 4 into light having a longer wavelength than the light. Thereby, the LED module 1 can obtain mixed color light of the light emitted from the LED chip 4 and the light emitted from the phosphor.
  • the LED module 1 when the LED module 1 employs a blue LED chip as the LED chip 4 and a yellow phosphor as the phosphor of the wavelength conversion material, white light can be obtained. That is, the LED module 1 can emit the blue light emitted from the LED chip 4 and the light emitted from the yellow phosphor through the surface of the color conversion unit 5 and obtain white light.
  • the phosphor that is the wavelength conversion material is not limited to the yellow phosphor, and for example, a yellow phosphor and a red phosphor, or a red phosphor and a green phosphor may be employed. Further, the phosphor as the wavelength conversion material is not limited to one type of yellow phosphor, and two types of yellow phosphors having different emission peak wavelengths may be employed.
  • the LED module 1 can improve the color rendering properties by adopting a plurality of kinds of phosphors as the wavelength conversion material.
  • the other surface 2sb side of the light diffusion substrate 2 is bonded to the wiring pattern 71 via a transparent second bonding portion (not shown).
  • the light diffusion substrate 2 and the mounting substrate 7 are bonded via the transparent second bonding portion.
  • a silicone resin, an epoxy resin, a hybrid material of a silicone resin and an epoxy resin, or the like can be employed.
  • the mounting substrate 7 includes a non-translucent wiring pattern 71 to which the LED chip 4 is electrically connected, and an insulating member 72 in which the wiring pattern 71 is embedded and having electrical insulation.
  • the wiring pattern 71 is a conductor pattern for supplying power to the LED chip 4.
  • the conductor pattern means a patterned conductor portion.
  • the insulating member 72 covers most of the main surface side of the wiring pattern 71 as well as the back surface side of the wiring pattern 71.
  • the mounting substrate 7 On the main surface side of the wiring pattern 71, the mounting substrate 7 has a hole 73 through which the other end portion of each wire 8 having one end portion bonded to each of the first electrode and the second electrode of the LED chip 4 is passed to the insulating member 72. Is formed.
  • the wiring pattern 71 for example, aluminum, aluminum alloy, silver, copper, phosphor bronze, copper alloy (for example, 42 alloy), nickel alloy, or the like can be used.
  • the wiring pattern 71 can be formed using, for example, a lead frame, a metal foil, a metal film, or the like.
  • the lead frame is a metal frame and is formed from a strip-shaped metal hoop material.
  • the thickness of the metal hoop material is preferably set in the range of about 100 ⁇ m to 1500 ⁇ m, for example.
  • the lead frame may be appropriately provided with a surface treatment layer (not shown) having a higher reflectance with respect to light from the LED chip 4 than the metal hoop material on the main surface side.
  • a surface treatment layer for example, an Ag film, a laminated film of Ni film, Pd film and Au film, a laminated film of Ni film and Au film, a laminated film of Ag film, Pd film and AuAg alloy film are adopted. can do.
  • the surface treatment layer is a laminate of a Ni film, a Pd film, and an Au film rather than an Ag film from the viewpoint of long-term reliability (for example, oxidation resistance, corrosion resistance, adhesion to the insulating member 72, etc.).
  • a film, a laminated film of an Ni film and an Au film, an Ag film, a Pd film, and an AuAg alloy film are more preferable.
  • the surface treatment layer is preferably composed of a plating layer or the like. In short, the surface treatment layer is preferably formed by a plating method.
  • the lead frame is not limited to the main surface side, and a surface treatment layer may be formed on the whole. Further, the surface treatment layer on the main surface side of the lead frame may be partially formed by spot plating or the like.
  • the metal hoop material an aluminum film having a purity higher than that of the aluminum plate is laminated on one surface side of the aluminum plate as a base material, and the dielectric film is composed of two kinds of dielectric films having different refractive indexes. It is also possible to use a highly reflective substrate on which an increased reflection film is laminated.
  • the two types of dielectric films for example, an SiO 2 film and a TiO 2 film are preferably employed.
  • the highly reflective substrate for example, MIRO2 and MIRO (registered trademark) manufactured by alanod can be used.
  • an anodized surface may be used.
  • the wiring pattern 71 includes a first conductor portion (first pattern) 71a in which one of the first electrode and the second electrode of the LED chip 4 is electrically connected via the wire 8, a first electrode, A second conductor portion (second pattern) 71b electrically connected to the other of the second electrodes via the wire 8.
  • first electrode is electrically connected to the first conductor portion 71 a via the wire 8
  • second electrode is electrically connected to the second conductor portion 71 b via the wire 8. Yes.
  • a surface treatment layer whose outermost layer is an Au film is formed on the main surface side of a region other than the region covered with the insulating member 72 in the wiring pattern 71.
  • the material of the surface treatment layer is preferably a material having higher oxidation resistance and corrosion resistance than the material of the wiring pattern 71.
  • the surface treatment layer is, for example, a laminated film of a Ni film, a Pd film, and an Au film when the wiring pattern 71 is formed using the above-described lead frame and the material of the wiring pattern 71 is Cu. It is preferably made of a laminated film of a Ni film and an Au film.
  • the surface treatment layer has high oxidation resistance and corrosion resistance, and it is possible to increase the bonding strength with the gold wire constituting the wire 8, and the surface of the wiring pattern 71 is made of Cu. It becomes possible to suppress the diffusion into the Au film of the treatment layer.
  • the planar shape of the mounting substrate 7 is a rectangular shape.
  • the first conductor portion 71a and the second conductor portion 71b are arranged in parallel in the specified direction (the left-right direction in FIG. 1A), and the first conductor portion 71a and the second conductor portion 71b
  • the virtual quadrangle including both of them is slightly smaller than the outer peripheral shape of the insulating member 72 and is formed to be a rectangle similar to the outer peripheral shape.
  • the outer dimensions of the wiring pattern 71 are set so that the first conductor portion 71a and the second conductor portion 71b occupy most of the virtual quadrangle.
  • the first conductor portion 71a has a rectangular outer peripheral shape, and the length dimension in the prescribed direction is greater than three-quarters of the side length along the prescribed direction of the virtual quadrangle. It is set to a slightly smaller dimension, and the length dimension in the direction perpendicular to the prescribed direction is set to the same dimension as the side length along the direction perpendicular to the prescribed direction of the virtual quadrangle.
  • the length of the second conductor portion 71b in the specified direction is set to be slightly smaller than a quarter of the length of the side along the specified direction of the virtual quadrangle.
  • the length dimension in the orthogonal direction is set to the same dimension as the length of the side along the direction orthogonal to the prescribed direction of the virtual quadrangle.
  • the mounting substrate 7 does not particularly limit the shape and size of each of the first conductor portion 71a and the second conductor portion 71b, but it is preferable that the plane area of the wiring pattern 71 is close to the plane area of the insulating member 72. Thereby, the LED module 1 can improve heat dissipation.
  • the sizes of the first conductor portion 71a and the second conductor portion 71b may be reversed.
  • the wiring pattern 71 includes the first conductor portion 71a so that the light diffusion substrate 2 is accommodated in one of the projection regions of the first conductor portion 71a and the second conductor portion 71b in the thickness direction of the wiring pattern 71. It is preferable that the outer dimensions of the second conductor portion 71b are set.
  • the LED module 1 can spread the heat generated in the LED chip 4 in the thickness direction and the lateral direction (in-plane direction) of the wiring pattern 71 and transfer the heat to the back surface side of the insulating member 72. Therefore, the LED module 1 can improve heat dissipation and suppress an increase in temperature of the LED chip 4, and can further increase the light output.
  • the mounting substrate 7 is provided with a part of the first conductor portion 71a of the wiring pattern 71 over the entire vertical projection region of the light diffusion substrate 2 on the mounting substrate 7 side. It is more preferable that it is provided over the entire area of the defined area larger than the vertical projection area.
  • the planar shape of the mounting substrate 7 is not limited to a rectangular shape, and may be, for example, a circular shape, an elliptical shape, a triangular shape, or a polygonal shape other than a rectangular shape.
  • the insulating member 72 is a non-translucent member having diffuse reflectivity.
  • the insulating member 72 is formed of a material obtained by adding a filler for increasing the reflectance to a resin.
  • the insulating member 72 can employ unsaturated polyester as a resin and titania as a filler.
  • the resin of the insulating member 72 is not limited to unsaturated polyester, and for example, vinyl ester can be used.
  • a filler not only titania but magnesium oxide, boron nitride, aluminum hydroxide etc. can be used, for example.
  • the insulating member 72 has a hole 73 that exposes one location of each of the first conductor portion 71 a and the second conductor portion 71 b in the vicinity of the light diffusion substrate 2, and the first conductor portion 71 a in the outer peripheral portion of the mounting substrate 7.
  • the second conductor portion 71b is patterned to have an opening (not shown) that exposes one location.
  • the first conductor portion 71a and the second conductor portion 71b have portions exposed in the vicinity of the light diffusion substrate 2 constituting a connecting portion to which the wire 8 is connected, and portions exposed at the outer peripheral portion of the mounting substrate 7. Constitutes a terminal portion for external connection.
  • the hole 73 has a circular opening shape.
  • the inner diameter of the hole 73 is set to 0.5 mm, but this value is an example and is not particularly limited.
  • the shape of the hole 73 is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape.
  • One hole 73 is formed on each side of the LED chip 4 in plan view.
  • a method for forming the mounting substrate 7 for example, first, a lead frame having the wiring pattern 71 is prepared, and then a surface treatment layer is formed on the wiring pattern 71 by an electrolytic plating method. Thus, the insulating member 72 in which the wiring pattern 71 is embedded may be formed, and then unnecessary portions of the lead frame may be cut.
  • the method for forming the mounting substrate 7 is an example.
  • the forming method of the mounting substrate may be another forming method.
  • the number of LED chips 4 arranged on the one surface 7sa side of the mounting substrate 7 is not limited to one and may be plural.
  • the number of LED chips 4 and the number of light diffusion substrates 2 may be the same, or the number of light diffusion substrates 2 may be smaller than the number of LED chips 4.
  • the LED module 1 may have, for example, a configuration in which one LED chip 4 is bonded to one light diffusion substrate 2 via the first bonding portion 3 by the number of LED chips 4.
  • a structure in which each of the plurality of LED chips 4 is bonded to one light diffusion substrate 2 via the first bonding portion 3 may be used.
  • the LED module 1 may have a configuration in which, for example, the planar shape of the mounting substrate 7 is long, and a plurality of LED chips 4 are arranged along the longitudinal direction of the mounting substrate 7.
  • the wiring pattern 71 may be configured such that a plurality of LED chips 4 can be connected in series, connected in parallel, or configured to be connected in series-parallel.
  • the wire 8 is not limited to a gold wire, and for example, an aluminum wire can be employed.
  • the LED module 1 can efficiently diffuse and reflect the light emitted from the LED chip 4 and the light emitted from the phosphor on the surface of the insulating member 72. Therefore, the LED module 1 has a configuration in which the planar size of the mounting substrate 7 is larger than the planar size of the light diffusion substrate 2, but the light emitted from the LED chip 4 and the light emitted from the phosphor are the insulating member 72. It is possible to prevent the LED module 1 from being diffusely reflected and absorbed by the mounting substrate 7, thereby improving the light extraction efficiency.
  • the LED module 1 includes the light diffusing substrate 2
  • the insulating member 72 directly below the light diffusing substrate 2 does not come into contact with air, so that the insulating member 72 is less likely to deteriorate over time, and the influence due to deterioration over time is reduced. It becomes possible to do.
  • the LED module 1 diffuses and reflects a light transmissive light diffusing substrate 2, light emitted from the LED chip 4 and light emitted from the phosphor disposed on the other surface 2 sb side of the light diffusing substrate 2.
  • a non-translucent member insulating member 72 having diffuse reflection property, it is possible to improve the light extraction efficiency and to increase the light output (light flux). It becomes.
  • the LED module 1 preferably includes a color converter 5 and a cover (not shown) made of a transparent material that covers each wire 8 exposed from the color converter 5 on the one surface 7sa side of the mounting substrate 7.
  • a cover portion the same material as the transparent material that is the material of the color conversion portion 5 can be used. That is, as the cover material, for example, silicone resin, epoxy resin, epoxy resin, acrylic resin, glass, organic / inorganic hybrid materials in which organic and inorganic components are mixed and combined at the nm level or molecular level are used. can do.
  • the light emission surface of the cover part has a shape along the light emission surface of the color conversion unit 5.
  • the holes 73 are filled with the material of the cover unit so that the wires 8 do not contact the light diffusion substrate 2. Then, what is necessary is just to form a cover part.
  • the inventors of the present application particularly attach the LED chip 4 to the submount member 20 (see FIGS. 2A, 2B, 3A to 3D, 7 to 9), Focusing on the support member 170 (see FIGS. 7 to 9) disposed on the side opposite to the LED chip 4 side in the submount member 20, intensive research was conducted.
  • the inventors of the present application relate to a structure (Reference Example 1) in which the LED chip 4 is mounted on the submount member 20 by bonding the LED chip 4 to the submount member 20 via the first joint portion 3.
  • the difference in the light extraction efficiency due to the difference in the material of the member 20 was examined.
  • the LED chip 4 a GaN-based blue LED chip was prepared in which the substrate 41 was a sapphire substrate and the light emitted from the light emitting layer 43 was blue light.
  • the submount member 20 a translucent ceramic substrate (translucent alumina substrate) and a metal plate (Ag substrate, Al substrate) having a higher reflectance than the translucent ceramic substrate were prepared.
  • the material of the 1st junction part 3 was made into the silicone resin.
  • FIG. 2A schematically shows the travel path of light emitted from an arbitrary point of the light emitting layer 43 with an arrow when the submount member 20 is a translucent ceramic substrate in the structure of Reference Example 1.
  • FIG. 2B schematically shows the travel path of light emitted from an arbitrary point of the light emitting layer 43 with an arrow when the submount member 20 is an Ag substrate in the structure of Reference Example 1.
  • the light extraction efficiency in the structure of Reference Example 1 was 8 to 10% higher when the submount member 20 was a translucent ceramic substrate than when the submount member 20 was an Ag substrate. .
  • the structure parameters shown in FIGS. 3A to 3D were set.
  • the planar shape was rectangular, the long side length dimension H41 was 0.5 mm, and the short side length dimension H42 was 0.24 mm.
  • the combined thickness 41 of the substrate 41 and the LED structure 40 is 0.14 mm, the thickness t5 of the LED structure 40 is 0.0004 mm, and the light emitting layer 43 is formed from the one surface of the LED chip 4.
  • the thickness dimension t6 was set to 0.0003 mm.
  • the material of the substrate 41 is sapphire having a refractive index of 1.77, and the LED structure 40 is GaN having a refractive index of 2.5.
  • the thickness dimension t3 was 0.005 mm, and the material was a silicone resin having a refractive index of 1.41.
  • the planar shape was rectangular, and the lengths H1 and H2 of two adjacent sides were set to 3.75 mm and 3.75 mm, respectively. Therefore, the distance L1 between the LED chip 4 and the outer peripheral line of the submount member 20 in the direction along the longitudinal direction of the LED chip 4 is 1.625 mm, and the LED chip 4 in the direction along the short side direction of the LED chip 4 is used. And the distance L2 between the outer peripheral line of the submount member 20 was 1.755 mm.
  • the inventors of the present application mix spherical particles having a refractive index different from that of the base material into the base material made of ceramics as shown in FIG. 3D.
  • the refractive index of the base material is 1.77
  • the refractive index of the particle is 1.0
  • the particle size is 3.0 ⁇ m
  • the particle size is calculated so that the values of the reflectance and transmittance described above can be obtained.
  • the concentration was assumed to be 16.5%.
  • the light extraction efficiency in the structure of Reference Example 1 is 72.5% when the submount member 20 is a translucent ceramic substrate.
  • the light extraction efficiency when the mount member 20 is an Al substrate was 68.7%.
  • FIG. 4 shows the result of simulating the relationship between the absorption rate in the light emitting layer 43 and the overall light extraction efficiency in the structure of Reference Example 1.
  • D1 in FIG. 4 indicates a simulation result when the submount member 20 is a translucent ceramic substrate.
  • D2 in FIG. 4 shows a simulation result when the submount member 20 is an Al substrate. In this simulation, it is assumed that only the Fresnel loss occurs on the side surface of the LED chip 4. Further, this simulation is a geometric optical simulation based on a ray tracing method using the Monte Carlo method.
  • FIG. 5 defines the ratio of the light extraction efficiency of the translucent ceramic substrate to the light extraction efficiency when the submount member 20 is an Al substrate in the structure of Reference Example 1 as the light extraction efficiency ratio. The relationship between the light absorption rate of the light emitting layer 43 and light extraction efficiency ratio is shown.
  • FIG. 5 shows that the light extraction efficiency ratio is larger than 1 regardless of the light absorption rate of the light emitting layer 43. That is, from FIG. 5, if the light absorption rate of the light emitting layer 43 is the same, the submount member 20 is made of a translucent ceramic substrate compared to the case where the submount member 20 is made of an Al substrate in the structure of Reference Example 1. It can be seen that the light extraction efficiency is higher in the case of. In the structure of Reference Example 1, the light extraction efficiency is higher when the submount member 20 is a translucent ceramic substrate than when the submount member 20 is an Al substrate. It is the same.
  • FIG. 6 shows the result of simulating the breakdown of the light extraction efficiency when the submount member 20 is made of a translucent ceramic substrate and an Al substrate in the structure of Reference Example 1.
  • the case where the substrate material is ceramic corresponds to the case where the submount member 20 is a translucent ceramic substrate
  • the case where the substrate material is aluminum corresponds to the case where the submount member 20 is an Al substrate.
  • I 1 in FIG. 6 is the light extraction efficiency from the one surface of the LED chip 4.
  • I2 in FIG. 6 is the light extraction efficiency from the side surface of the LED chip 4.
  • I3 in FIG. 6 is the light extraction efficiency from the exposed surface (upper surface) of the submount member 20 on the LED chip 4 side.
  • I4 in FIG. 6 is the light extraction efficiency from the side surface of the submount member 20 and the exposed surface (lower surface) opposite to the LED chip 4 side.
  • the structure of Reference Example 2 is a structure in which a support member 170 disposed on the side opposite to the LED chip 4 side in the submount member 20 is added to the structure of Reference Example 1.
  • the structure of Reference Example 3 is a structure in which a sealing portion 150 made of a silicone resin that seals the LED chip 4 is added to the structure of Reference Example 2.
  • the structure of Reference Example 4 is a structure in which a color conversion unit 5 that covers the LED chip 4 is added to the structure of Reference Example 2.
  • the color conversion unit 5 employs a silicone resin as a transparent material and a yellow phosphor as a wavelength conversion material.
  • the difference between FIG. 7 and FIG. 8 is only that the support member 170 in FIG. 7 is an Al substrate, whereas the support member 170 in FIG. 8 is an Ag substrate.
  • the reflectances of the Al substrate and the Ag substrate are about 78% and about 98%, respectively.
  • E1, E2, E3, and E4 in FIG. 7 are light flux ratios when the thickness dimensions of the submount member 20 are 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm, respectively.
  • F1, F2, F3, and F4 in FIG. 8 are light flux ratios when the thickness dimension of the submount member 20 is 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm, respectively.
  • the luminous flux ratio is the same as that of the structure of Reference Example 2, the structure of Reference Example 3 and the structure of Reference Example 4, and a high-purity alumina substrate having a thickness dimension of 1.0 mm is used as the submount member 20 and the support member 170 is eliminated. Relative value of the luminous flux in the reference structure.
  • the results of FIGS. 7 and 8 mean that the luminous flux ratio is larger than 1, meaning that the luminous flux is larger than that of the reference structure, and if the luminous flux ratio is smaller than 1, it means that the luminous flux is smaller than that of the reference structure. is doing.
  • the inventors of the present invention can emit a light beam more than the reference structure if the thickness dimension of the submount member 20 is 0.8 mm or more. I thought it was possible to make it bigger. Further, from the results of FIG. 8, when the support member 170 is an Ag substrate in the structure of Reference Example 4, if the thickness dimension of the submount member 20 is 0.8 mm or more, the inventors of the present invention have a structure that is higher than that of the reference structure. We thought that it was possible to increase the luminous flux.
  • the support member 170 is a metal plate such as an Al substrate or an Ag substrate in the structure of Reference Example 4, the inventors of the present invention have the thickness of the submount member 20 from the viewpoint of improving the light extraction efficiency. We thought that thinning of dimensions would be limited.
  • the inventors of the present application use a white diffuse reflection substrate as the support member 170 in order to reduce the light returning to the LED chip 4 by diffusely reflecting the light reaching the support member 170 from the LED chip 4. It was investigated.
  • FIG. 9 shows a case where the planar size of the submount member 20 is constant at 2 mm ⁇ and the thickness dimension is 0.4 mm for each of the structure of Reference Example 2, the structure of Reference Example 3, and the structure of Reference Example 4. It is the figure which put together the result of having measured the light beam with the integrating sphere.
  • E1 in FIG. 9 is a luminous flux ratio when the support member 170 is an Al substrate.
  • F1 in FIG. 9 is a luminous flux ratio when the support member 170 is an Ag substrate.
  • G1 in FIG. 9 is a luminous flux ratio when the support member 170 is a white-type diffuse reflection substrate (a substrate coated with white paint). The reflectance of the diffuse reflection substrate is about 92%.
  • FIG. 10 shows the wavelength dependence of the total reflectance of each of the Ag substrate, MIRO2, and the ceramic substrate (the above-described high-purity alumina substrate) that were compared and examined by the inventors of the present application.
  • the light beam ratio in FIG. 9 is obtained by using a light beam of each of the structure of Reference Example 2, the structure of Reference Example 3, and the structure of Reference Example 4 and a high-purity alumina substrate having a thickness dimension of 1.0 mm as the submount member 20. This is a relative value with respect to the luminous flux in the reference structure without 170. Therefore, the result of FIG. 9 means that when the luminous flux ratio is larger than 1, it means that the luminous flux is larger than that of the reference structure, and when the luminous flux ratio is smaller than 1, it means that the luminous flux is smaller than that of the reference structure. Yes.
  • the inventors of the present invention employ a diffuse reflection substrate as the support member 170, so that the light extraction efficiency is higher than when a metal substrate such as an Al substrate or an Ag substrate is employed as the support member 170. We obtained knowledge that it would be possible to improve.
  • the inventors of the present application have come to recall the LED module 1 of the present embodiment based on this knowledge.
  • the LED module 1 includes the light-transmitting light diffusion substrate 2, the LED chip 4 bonded to the one surface 2sa side of the light diffusion substrate 2 via the transparent first bonding portion 3, and the light diffusion. And a color conversion unit 5 that covers the LED chip 4 on the one surface 2sa side of the substrate 2.
  • the color conversion unit 5 is formed of a transparent material containing a phosphor that is excited by light emitted from the LED chip 4 and emits light of a color different from that of the LED chip 4.
  • the LED module 1 includes a mounting substrate 7 provided with an insulating member 72 disposed on the other surface 2sb side of the light diffusion substrate 2.
  • the insulating member 72 is made of a non-translucent member having diffuse reflectivity that diffusely reflects light emitted from the LED chip 4 and light emitted from the phosphor.
  • the LED module 1 includes a translucent light diffusing substrate 2 and an insulating member 72 that is disposed on the other surface 2sb side of the light diffusing substrate 2 and constitutes a non-translucent member having diffuse reflectivity. As a result, the light extraction efficiency can be improved, and the light output (light flux) can be increased.
  • the LED module 1 can improve the light extraction efficiency by the light guiding effect of the light diffusion substrate 2, and is emitted from the LED chip 4 to the other surface from the one surface 2sa side of the light diffusion substrate 2. It is assumed that the light that is transmitted to the 2sb side is diffusely reflected by the insulating member 72, thereby improving the conversion efficiency of the phosphor of the color conversion unit 5 and improving the light extraction efficiency.
  • the wiring pattern 71 of the mounting substrate 7 may be extended to the position of the outer peripheral line in a plan view of the insulating member 72, but the member (for example, the fixture body of the lighting fixture) on which the LED module 1 is mounted is formed of a conductive material. In such a case, it is preferable that the desired creepage distance with the member can be ensured only by extending the position to the inner side of the outer peripheral line.
  • the LED module 1 is made of a metal member (for example, a metal fixture body or a heat dissipation member in a lighting fixture). When installed and used, lightning surge resistance can be improved.
  • a metal member for example, a metal fixture body or a heat dissipation member in a lighting fixture.
  • the LED module 1 according to the present embodiment is different from the LED module according to the first embodiment in that the light diffusing substrate 2 is embedded in the insulating member 72 and the side surface 2sc and the other surface 2sb of the light diffusing substrate 2 are in contact with the insulating member 72. Different from module 1.
  • symbol is attached
  • the mounting substrate 7 includes a portion where the wiring pattern 71 is provided on one surface 2sa of the light diffusion substrate 2.
  • the wiring pattern 71 includes a portion where the first conductor portion 71 a and the second conductor portion 71 b are provided on the one surface 2 sa of the light diffusion substrate 2.
  • a first extending portion 71ab which is a combination of a portion formed along the thickness direction of the mounting substrate 7 in the first conductor portion 71a and a portion provided on the one surface 2sa of the light diffusion substrate 2, is represented by L It has a letter shape.
  • a second extending portion 71bb which is a combination of the portion formed along the thickness direction of the mounting substrate 7 in the second conductor portion 71b and the portion provided on the one surface 2sa of the light diffusion substrate 2, is represented by L It has a letter shape.
  • the other end portion of the wire 8 whose one end portion is bonded to the first electrode and the portion provided on the one surface 2sa of the light diffusion substrate 2 in the first conductor portion 71a are bonded.
  • the wiring pattern 71 has the other end of the wire 8 whose one end is bonded to the second electrode and the portion provided on the one surface 2sa of the light diffusion substrate 2 in the second conductor 71b. ing. That is, in the wiring pattern 71, the other end of the wire 8 is joined to the tip of each of the first extending part 71ab and the second extending part 71bb.
  • the wiring pattern 71 is formed using one lead frame.
  • the first extension part 71ab and the second extension part 71bb are, for example, rectangular regions that become the first extension part 71ab and the second extension part 71bb, respectively, in the metal hoop material that is the source of the lead frame.
  • the U-shaped slits along the three sides can be formed by pressing the metal hoop material, and then the rectangular region can be bent.
  • the wiring pattern 71 is not limited to being formed using a lead frame, and may be formed using a metal film, a metal foil, or the like. When the wiring pattern 71 is formed using a metal film or a metal foil, it is possible to form the wiring pattern 71 including the entire projection area of the light diffusion substrate 2 in the thickness direction of the light diffusion substrate 2. .
  • the color conversion unit 5 covers the LED chip 4 and each wire 8 on the one surface 2sa side of the light diffusion substrate 2.
  • the light diffusion substrate 2 is embedded in the insulating member 72, the side surface 2sc and the other surface 2sb of the light diffusion substrate 2 are in contact with the insulating member 72, and the color conversion unit 5 Since the LED chip 4 and each wire 8 are covered on the one surface 2sa side of the diffusion substrate 2, the reliability can be improved without forming a cover portion like the LED module 1 of the first embodiment. . Thereby, the LED module 1 of this embodiment can achieve cost reduction compared with the LED module 1 of Embodiment 1.
  • the LED module 1 of the present embodiment is different from the LED module 1 of the first embodiment in that the light diffusion substrate 2 is composed of two ceramic layers 2a and 2b that overlap in the thickness direction.
  • symbol is attached
  • the optical characteristics of the ceramic layers 2a and 2b are different from each other, and the ceramic layer 2a far from the LED chip 4 has a higher reflectance with respect to the light emitted from the LED chip 4.
  • the optical characteristics include reflectance, transmittance, absorption rate, and the like.
  • the light diffusing substrate 2 is composed of a plurality of ceramic layers that overlap in the thickness direction, and the optical characteristics of the ceramic layers are different from each other, and the ceramic layer farther from the LED chip 4 has a higher reflectivity with respect to light emitted from the LED chip 4. As long as it has.
  • the LED module 1 Accordingly, in the LED module 1, light emitted from the light emitting layer 43 (see FIG. 2A) of the LED chip 4 to the other surface side in the thickness direction of the LED chip 4 is diffused at the interface between the ceramic layer 2b and the ceramic layer 2a. It becomes easy to be reflected. Thereby, the LED module 1 can suppress the light emitted from the LED chip 4 to the light diffusion substrate 2 side from returning to the LED chip 4 and can be incident on the one surface 7sa of the mounting substrate 7. It becomes possible to suppress light, and it becomes easy to extract light from the one surface 2sa and the side surface 2sc of the light diffusion substrate 2. Therefore, the LED module 1 can improve the light extraction efficiency, and can reduce the influence of the reflectance of the mounting substrate 7 on the light extraction efficiency, thereby suppressing the temporal change of the light extraction efficiency. It becomes possible to do.
  • the uppermost ceramic layer 2b closest to the LED chip 4 is referred to as a first ceramic layer 2b
  • the lowermost ceramic layer 2a farthest from the LED chip 4 is referred to as a second ceramic layer 2a.
  • the material of the first ceramic layer 2b for example, alumina (Al 2 O 3 ) can be employed.
  • the 1st ceramic layer 2b can be comprised with an alumina substrate, for example.
  • the particle diameter of the alumina particles is preferably 1 ⁇ m to 30 ⁇ m.
  • the first ceramic layer 2b can reduce the reflectance when the particle diameter of the alumina particles is large, and can increase the scattering effect when the particle diameter of the alumina particles is small. In short, reducing the reflectivity and increasing the scattering effect are in a trade-off relationship.
  • the above-mentioned particle size is a value obtained from a number-based particle size distribution curve.
  • the number-based particle size distribution curve is obtained by measuring the particle size distribution by an image imaging method. Specifically, the SEM image is obtained by observing with a scanning electron microscope (SEM), and the SEM image is obtained. Is obtained from the size (biaxial average diameter) and number of particles obtained by image processing. In this number-based particle size distribution curve, the particle size value when the integrated value is 50% is called the median diameter (d 50 ), and the above-mentioned particle size means the median diameter.
  • the relationship between the particle size of the spherical alumina particles on the alumina substrate and the reflectance is as shown in FIG. 14, and the reflectance increases as the particle size decreases.
  • the relationship between the median diameter (d 50 ) of the first ceramic layer 2b and the measured value of the reflectance was substantially the same as the theoretical value of FIG.
  • the measured value of reflectance is a value measured using a spectrophotometer and an integrating sphere.
  • the second ceramic layer 2a As a material of the second ceramic layer 2a, for example, SiO 2 , Al 2 O 3 and Al 2 O 3 having a higher refractive index (for example, ZrO 2 , TiO 2, etc.), CaO and BaO are included as components. Composite materials can be employed.
  • the second ceramic layer 2a preferably has an Al 2 O 3 particle diameter of 0.1 ⁇ m to 1 ⁇ m.
  • the second ceramic layer 2a can adjust optical characteristics (reflectance, transmittance, absorptivity, etc.) by adjusting the composition, composition, particle size, thickness, and the like of the composite material.
  • the particle size of the first ceramic layer 2b may be larger than the particle size of the second ceramic layer 2a.
  • the thickness Hs of the light diffusion substrate 2 is 0.5 mm
  • the thickness Hsa of the second ceramic layer 2a is 0.1 mm
  • the reflectance of the second ceramic layer 2a with respect to light having a wavelength of 450 nm is set. 96%
  • the thickness Hsb of the first ceramic layer 2b is 0.4 mm
  • the reflectance of the first ceramic layer 2b with respect to light having a wavelength of 450 nm is 80%.
  • these numerical values are only examples and are particularly limited. is not.
  • the planar size of the light diffusion substrate 2 is 2 mm ⁇ (2 mm ⁇ 2 mm), but it is not particularly limited.
  • the reflectance-wavelength characteristics of the light diffusion substrate 2 used in the example of the LED module 1 are as indicated by A1 in FIG. Further, the reflectance-wavelength characteristic of the single layer alumina substrate having a thickness of 0.4 mm was as indicated by A2 in FIG.
  • the reflectance-wavelength characteristics in FIG. 15 are the results of measurement using a spectrophotometer and an integrating sphere.
  • the first ceramic layer 2b is a first dense layer made of ceramics fired at a high temperature of about 1500 ° C. to 1600 ° C.
  • ceramic particles are firmly bonded by high-temperature firing, and the first ceramic layer 2b has better rigidity than the second ceramic layer 2a.
  • good rigidity means that the bending strength is relatively high.
  • alumina is preferable.
  • the second ceramic layer 2a is a ceramic fired at 1000 ° C. or less (for example, 850 ° C. to 1000 ° C.), which is a relatively low temperature compared to the first ceramic layer 2b.
  • the ceramic constituting the second ceramic layer 2a is, for example, a second dense layer containing a ceramic filler (ceramic fine particles) and a glass component, or a porous layer containing a ceramic filler (ceramic fine particles) and a glass component. It can be.
  • the second dense layer is a ceramic in which the ceramic fillers are bonded together by sintering, and the glass component is arranged around the ceramic filler as a matrix.
  • the ceramic filler mainly exhibits a light reflecting function.
  • a material in which a ceramic filler is mixed with glass ceramics containing borosilicate glass, zinc borosilicate glass and alumina, glass ceramics containing soda lime glass and alumina, or the like can be used.
  • the glass content contained in the glass ceramic is preferably set in the range of about 35 to 60 wt%.
  • the content of the ceramic contained in the glass ceramic is preferably set in the range of about 40 to 60 wt%.
  • the second dense layer can also increase the refractive index of the glass ceramic by replacing the zinc component of the borosilicate glass with titanium oxide or tantalum oxide.
  • the material of the ceramic filler is preferably a material having a higher refractive index than glass ceramics, for example, tantalum pentoxide, niobium pentoxide, titanium oxide, barium oxide, barium sulfate, magnesium oxide, calcium oxide, strontium oxide, zinc oxide, Zirconium oxide, silicate oxide (zircon), or the like can be used.
  • the second ceramic layer 2a is composed of a porous layer (hereinafter, the "second ceramic layer 2a" in this case is also referred to as “porous layer 2a"), as shown in the schematic diagram of FIG.
  • the first glass layer 20aa is interposed between the porous layer 2a having a large number of pores 20c and the first ceramic layer 2b, and the second glass layer 20ab on the opposite side of the porous layer 2a from the first ceramic layer 2b side.
  • the porosity of the porous layer 2a is set to about 40%, but is not particularly limited.
  • Each of the first glass layer 20aa and the second glass layer 20ab is a transparent layer made of a glass component and transmits visible light.
  • the thicknesses of the first glass layer 20aa and the second glass layer 20ab may be set to, for example, about 10 ⁇ m, but are not particularly limited. About half of each glass component of the first glass layer 20aa and the second glass layer 20ab is composed of SiO 2 , but is not particularly limited.
  • the first glass layer 20aa is disposed so as to be interposed between the porous layer 2a and the first ceramic layer 2b, and is in close contact with the surface of the porous layer 2a and the surface of the first ceramic layer 2b by firing during manufacturing. ing.
  • the second glass layer 20ab is disposed on the opposite side of the porous layer 2a from the first ceramic layer 2b side, and protects the porous layer 2a. Thereby, the pores 20c existing on the surface of the porous layer 2a opposite to the first ceramic layer 2b side are sealed by the second glass layer 20ab.
  • the porous layer 2a includes a ceramic filler (ceramic fine particles) and a glass component.
  • ceramic fillers are bonded by sintering to form a cluster, and a porous structure is formed.
  • the glass component serves as a binder for the ceramic filler.
  • the ceramic filler and the numerous pores 20c exhibit the main light reflecting function.
  • the porous layer 2a can be formed, for example, according to the package manufacturing process disclosed in paragraphs [0023]-[0026] and [FIG. 4] of International Publication No. WO2012 / 039442 A1.
  • the porous layer 2a can change the reflectance by changing the weight ratio of the glass component and the ceramic component (alumina, zirconia, etc.), for example. That is, the reflectance of the porous layer 2a can be changed by changing the glass blending ratio.
  • the horizontal axis represents the glass mixture ratio
  • the vertical axis represents the integrated intensity by the integrating sphere for the reflected light when light is incident on the porous layer 2 a.
  • reflected light having a wavelength of 380 to 780 nm was integrated. From FIG. 17, it can be seen that the reflectance can be increased by lowering the glass blending ratio.
  • the first ceramic layer 2b is formed by firing alumina at 1600 ° C.
  • the porous layer 2a is formed by a weight ratio of 20:80 between the glass component and the ceramic component. It forms by baking the material mix
  • borosilicate glass having a median diameter of about 3 ⁇ m is used as the glass component, and alumina having a median diameter of about 0.5 ⁇ m and a median diameter of about 2 ⁇ m is used.
  • zirconia a median diameter of about 0.2 ⁇ m is used.
  • the thickness of the first ceramic layer 2b is 0.38 mm
  • the thickness of the porous layer 2a is 0.10 mm.
  • the reflectance-wavelength characteristics of the light diffusion substrate 2 in the example were as indicated by A3 in FIG. Further, the reflectance-wavelength characteristic of a single layer alumina substrate having a thickness of 0.38 mm was as indicated by A4 in FIG.
  • the weight ratio between the glass component and the ceramic component in the porous layer 2a and the particle size (median diameter) of each material are not particularly limited.
  • the porous layer 2a has a gradient composition in which the concentration of the glass component gradually decreases from both sides in the thickness direction to the inside when the glass components of the first glass layer 20aa and the second glass layer 20ab penetrate during manufacturing. have.
  • the unit Glass occupies an area of 70% or more per area, and there is a dense layer of glass.
  • the glass occupies an area of about 20% per unit area, and the glass and the ceramic filler are in a certain ratio to each other. There are sparse mixed layers.
  • the light diffusion substrate 2 is composed of two ceramic layers 2 a and 2 b having different optical characteristics, and the ceramic layer 2 a farther from the LED chip 4 is closer to the LED chip 4.
  • emitted from LED chip 4 is high.
  • the LED module 1 of this embodiment can improve light extraction efficiency compared with the case where the light-diffusion board
  • the light absorption rate (approximately 0%) in the light diffusion substrate 2 is made lower than the light absorption rate (for example, about 2 to 8%) in the mounting substrate 7.
  • a part of the light incident on one surface 2sa of the light diffusion substrate 2 is scattered in the first ceramic layer 2b or reflected at the interface between the first ceramic layer 2b and the second ceramic layer 2a. It becomes possible to do. Therefore, the LED module 1 can reduce the light that passes through the light diffusion substrate 2 and reaches the one surface 7sa of the mounting substrate 7, and can reduce the absorption loss in the mounting substrate 7. The light extraction efficiency can be improved.
  • the first ceramic layer 2b and the second ceramic layer 2a relatively increase the light transmittance of the first ceramic layer 2b, and the second ceramic layer 2a The light scattering rate is increased.
  • the LED module 1 can diffuse light by the second ceramic layer 2a far from the LED chip 4, and is diffused before reaching the mounting substrate 7 as compared with the case of only the first ceramic layer 2b. It is assumed that there will be more light. Further, in the LED module 1, it is assumed that the light reflected by the mounting substrate 7 immediately below the light diffusion substrate 2 is likely to be diffused without returning to the LED chip 4.
  • the LED module 1 when the light diffusion substrate 2 is configured only by the second ceramic layer 2a, the light emitted from the LED chip 4 toward the light diffusion substrate 2 is highly likely to be scattered near the LED chip 4. Therefore, it is estimated that the possibility that the light scattered near the LED chip 4 returns to the LED chip 4 is increased. Therefore, it is conceivable that the LED module 1 can reduce the light returning to the LED chip 4 as compared with the case where the light diffusion substrate 2 is configured only by the second ceramic layer 2a. Further, in the LED module 1, the thickness of the light diffusing substrate 2 required to obtain the same reflectance as the light diffusing substrate 2 is reduced as compared with the case where the light diffusing substrate 2 is configured by only the first ceramic layer 2b. It becomes possible.
  • the color converter 5 is formed in a hemispherical shape covering the LED chip 4 and a part of each wire 8 on the one surface 2sa of the light diffusion substrate 2. For this reason, in LED module 1, it is preferable to provide the sealing part (not shown) which covers each remaining part of each wire 8, and the color conversion part 5.
  • FIG. The sealing portion is preferably made of a transparent material.
  • an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or the molecular level, such as silicone resin, epoxy resin, acrylic resin, glass, or the like may be employed. it can.
  • the transparent material of the sealing part is preferably a material having a small difference in linear expansion coefficient from the transparent material of the color conversion part 5, and more preferably a material having the same linear expansion coefficient.
  • a sealing part for example in a hemispherical shape
  • shapes such as a semi-elliptical spherical shape and a semi-cylindrical shape.
  • LED module 1 The principle of improving the light extraction efficiency of the LED module 1 will be described with reference to the estimation mechanism diagrams of FIGS. 19, 20A, 20B, and 20C. Note that the LED module 1 of the present embodiment is within the scope of the present invention even if the estimation mechanism is different.
  • 19, 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C schematically show the travel path of light emitted from the light emitting layer 43 (see FIG. 2A) of the LED chip 4.
  • 19, 20 ⁇ / b> A, and 20 ⁇ / b> B schematically show the traveling path of the light emitted from the light emitting layer 43 and reflected by the one surface 2sa of the light diffusion substrate 2.
  • 19, 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C each schematically shows a traveling path of light emitted from the light emitting layer 43 and entering the light diffusion substrate 2.
  • the inventors of the present application in the first ceramic layer 2b, due to the difference in refractive index between the ceramic particles and the grain boundary phase (glass component is the main component), It was estimated that reflection and refraction occurred at the interface with the grain boundary phase. Further, as shown in FIGS. 19 and 20C, the inventors of the present application caused a difference in the refractive index between ceramic particles and pores or grain boundary phases (mainly glass components) in the second ceramic layer 2a. It was estimated that reflection and refraction occurred at the interface between the particle and the pore or grain boundary phase. Further, as shown in FIGS.
  • the inventors of the present application reflected on the interface between the pores and the grain boundary phase due to the difference in refractive index between the pores and the grain boundary phase in the second ceramic layer 2a. It was estimated that refraction occurred.
  • the ceramic plate material the inventors of the present invention, if the plate thickness is the same, the larger the particle size of the ceramic particles, the fewer the number of interfaces, and the case where the ceramic particles and Since the probability of passing through the interface with the grain boundary phase is reduced, it is estimated that the reflectance is reduced and the transmittance is increased.
  • the inventors of the present application can improve the light extraction efficiency of the LED module 1 by transmitting the light emitted from the LED chip 4 as much as possible in the first ceramic layer 2b and reflecting it as much as possible in the second ceramic layer 2a. I guessed it. For this reason, in the light diffusion substrate 2, it is preferable that the first ceramic layer 2b and the second ceramic layer 2a have a relatively large particle size of the ceramic particles in the first ceramic layer 2b. It is preferable that the ceramic particles have a relatively small particle size and the second ceramic layer 2a includes pores.
  • the light diffusion substrate 2 is composed of the two ceramic layers 2a and 2b that are overlapped in the thickness direction, whereby the light extraction efficiency can be improved.
  • a plurality of ceramic layers (first ceramic layer 2b and second ceramic layer 2a) in the light diffusion substrate 2 constitute light-transmitting layers having different optical characteristics.
  • the light diffusion substrate 2 includes a plurality of light-transmitting layers that overlap in the thickness direction, and the optical characteristics of the light-transmitting layers are different from each other, and the light-transmitting layers that are farther from the LED chip 4 are radiated from the LED chip 4. What is necessary is just to have a property with the high reflectance with respect to light.
  • the uppermost light transmitting layer closest to the LED chip 4 may be referred to as a first light transmitting layer
  • the lowermost light transmitting layer farthest from the LED chip 4 may be referred to as a second light transmitting layer.
  • the first light transmissive layer is preferably made of a material having a high transmittance of light emitted from the LED chip 4 and a refractive index close to the refractive index of the LED chip 4. That the refractive index of the first light transmissive layer is close to the refractive index of the LED chip 4 is that the difference between the refractive index of the first light transmissive layer and the refractive index of the substrate 41 (see FIGS. 2A and 2B) in the LED chip 4 is. It means 0.1 or less, and the difference in refractive index is more preferably 0.
  • the first light transmissive layer is preferably made of a material having high heat resistance.
  • the material of the first light transmissive layer is not limited to ceramic, and for example, glass, SiC, GaN, GaP, sapphire, epoxy resin, silicone resin, unsaturated polyester, and the like can be employed.
  • the ceramic material is not limited to Al 2 O 3 , but may be other metal oxides (eg, magnesia, zirconia, titania), metal nitride (eg, aluminum nitride).
  • the material of the first light transmissive layer is preferably ceramic rather than single crystal from the viewpoint of forward scattering the light emitted from the LED chip 4.
  • Lumicera registered trademark
  • Hi-Serum product name of NGK Co., Ltd.
  • High serum is a translucent alumina ceramic.
  • the particle size is preferably about 1 ⁇ m to 5 ⁇ m.
  • the first light-transmitting layer may be formed by forming a void or a modified portion with a changed refractive index inside the single crystal.
  • the voids and modified portions can be formed, for example, by condensing and irradiating laser light from a femtosecond laser to the formation regions of the voids and modified portions in the single crystal.
  • the wavelength of the laser light of the femtosecond laser, the irradiation conditions, and the like may be appropriately changed depending on the material of the single crystal, the object to be formed (gap, modified portion), the size of the object to be formed, and the like.
  • the first light-transmitting layer is made of a base resin (for example, epoxy resin, silicone resin, unsaturated polyester, etc.) with a filler having a refractive index different from that of the base resin (hereinafter referred to as “first base resin”).
  • first base resin for example, epoxy resin, silicone resin, unsaturated polyester, etc.
  • first filler a filler having a refractive index different from that of the base resin
  • first filler preferably has a smaller refractive index difference from the first base resin.
  • the first filler preferably has a higher thermal conductivity.
  • the first light transmissive layer preferably has a higher filling density of the first filler from the viewpoint of increasing the thermal conductivity.
  • the shape of the first filler is preferably spherical from the viewpoint of suppressing total reflection of incident light.
  • the first filler has less reflection and refraction as the particle size is larger.
  • the first light-transmitting layer has a first filler having a relatively large particle size on the side close to the LED chip 4 in the thickness direction of the first light-transmitting layer, and particles relatively on the side far from the LED chip 4. You may comprise so that there may be a 1st filler with a small diameter.
  • the first light transmissive layer may be formed by multilayering a plurality of layers having different particle sizes of the first filler.
  • the light diffusing substrate is radiated from the LED chip 4 to the light diffusing substrate 2 around the LED chip 4 mounting region. It is preferable that a fine concavo-convex structure portion for suppressing the total reflection of the light reflected or refracted inside 2 is formed.
  • the concavo-convex structure portion may be formed by roughening the surface of the first light-transmitting layer by, for example, sandblasting.
  • the surface roughness of the concavo-convex structure portion for example, the arithmetic average roughness Ra defined by JIS B 0601-2001 (ISO 4287-1997) is preferably about 0.05 ⁇ m.
  • the light diffusing substrate 2 is a substrate in which a resin layer having a refractive index smaller than that of the first light-transmitting layer is formed around the LED chip 4 mounting area on the surface of the first light-transmitting layer on the LED chip 4 side. It may be adopted.
  • a resin layer for example, a silicone resin, an epoxy resin, or the like can be employed.
  • a resin containing a phosphor may be used.
  • the second light transmissive layer is preferably configured to diffusely reflect the light radiated from the LED chip 4 rather than the light transmissive layer.
  • the material of the second light transmissive layer is not limited to ceramic, and for example, glass, SiC, GaN, GaP, sapphire, epoxy resin, silicone resin, unsaturated polyester, and the like can be employed.
  • the ceramic material is not limited to Al 2 O 3 , but may be other metal oxides (eg, magnesia, zirconia, titania), metal nitride (eg, aluminum nitride).
  • the material of the second light transmissive layer preferably has a particle size of 1 ⁇ m or less, more preferably about 0.1 ⁇ m to 0.3 ⁇ m.
  • the second light transmissive layer can be constituted by, for example, the porous layer 2a described above.
  • the first light-transmitting layer was constituted by the first ceramic layer 2b made of alumina having a purity of 99.5%
  • the bulk density was 3.8 to 3.95 g / cm 3
  • the first light-transmitting layer had a bulk density of 3.7 to 3.8 g / cm 3 when constituted by the first ceramic layer 2b made of alumina having a purity of 96%.
  • the bulk density was 3.7 to 3.8 g / cm 3 .
  • the above-described bulk density is a value estimated by observing with an SEM, obtaining an SEM image, and performing image processing on the SEM image.
  • the second light transmissive layer may be formed by forming a void, a modified portion in which the refractive index is changed, or the like inside the single crystal.
  • the voids and modified portions can be formed, for example, by condensing and irradiating laser light from a femtosecond laser to the formation regions of the voids and modified portions in the single crystal.
  • the wavelength of the laser beam of the femtosecond laser, the irradiation conditions, and the like may be changed as appropriate depending on the material of the single crystal, the formation target (gap, modified portion), the size of the formation target, and the like.
  • the second light transmissive layer is made of a base resin (for example, epoxy resin, silicone resin, unsaturated polyester, fluororesin, etc.) and has a refractive index different from that of the base resin (hereinafter referred to as “second base resin”).
  • a different filler hereinafter referred to as “second filler”
  • the second light-transmitting layer has a second filler having a relatively large particle size on the side close to the LED chip 4 in the thickness direction of the second light-transmitting layer, and the particle on the side far from the LED chip 4 is relatively small. You may comprise so that there may be a 2nd filler with a small diameter.
  • the material of the second filler for example, white inorganic materials are preferred, for example, can be employed metal oxides such as TiO 2 or ZnO.
  • the particle size of the second filler is preferably about 0.1 ⁇ m to 0.3 ⁇ m, for example.
  • the filling rate of the second filler is preferably about 50 to 75 wt%, for example.
  • the silicone resin of the second base resin for example, methyl silicone or phenyl silicone can be employed.
  • the second filler preferably has a larger refractive index difference from the second base resin.
  • KER-3200-T1 manufactured by Shin-Etsu Chemical Co., Ltd. can be used as a material containing the second filler in the second base resin.
  • the second filler core-shell particles or hollow particles can be employed.
  • the refractive index of the core can be arbitrarily set, but is preferably smaller than the refractive index of the second base resin.
  • the hollow particles are preferably gas (for example, air, inert gas) or a vacuum inside and have a refractive index smaller than that of the second base resin.
  • the second light transmissive layer may be composed of a light diffusion sheet.
  • a white polyethylene terephthalate sheet containing a large number of bubbles can be employed.
  • the light diffusing substrate 2 is formed by superposing and sintering ceramic green sheets for forming each of them. be able to.
  • the first light-transmitting layer may also include bubbles, but the first light-transmitting layer is more than the second light-transmitting layer. It is preferable that the number of bubbles is small and the bulk density is large.
  • the first light-transmitting layer and the second light-transmitting layer are preferably made of a material having high resistance to light and heat from the LED chip 4 and the phosphor.
  • the LED module 1 may include a reflective layer that reflects light from the LED chip 4 or the like on the other surface 2 sb side of the light diffusion substrate 2.
  • a reflective layer that reflects light from the LED chip 4 or the like on the other surface 2 sb side of the light diffusion substrate 2.
  • silver, aluminum, a silver-aluminum alloy, other silver alloys, aluminum alloys, or the like can be employed.
  • the reflective layer can be composed of, for example, a thin film, metal foil, solder resist (solder), or the like.
  • the reflective layer may be provided on the light diffusion substrate 2 or may be provided on the mounting substrate 7.
  • the LED module 1 may have a shape in which the color conversion unit 5 covers the LED chip 4, the wires 8, and the light diffusion substrate 2 as in the first modification shown in FIG. 21. Thereby, the LED module 1 can suppress the disconnection of each wire 8, and can improve the reliability.
  • the shape of the color conversion unit 5 is hemispherical, but is not limited thereto, and may be, for example, a semi-elliptical spherical shape or a semi-cylindrical shape.
  • the mounting substrate 7 has a long shape, and includes a plurality of LED chips 4 (see FIG. 21).
  • symbol is attached
  • a plurality of LED chips 4 are arranged in a specified direction on the one surface 7 sa side of the mounting substrate 7.
  • the LED chips 4 arranged in the specified direction and the wires 8 (see FIG. 21) connected to the LED chips 4 are covered with a line-shaped color conversion unit 5.
  • the color conversion unit 5 is preferably provided with a recess 5b that suppresses total reflection of light emitted from the adjacent LED chips 4 between the adjacent LED chips 4 in the prescribed direction.
  • the first conductor portion 71a and the second conductor portion 71b are provided one by one for a group of LED chips 4 arranged in the specified direction.
  • each of the first conductor portion 71a and the second conductor portion 71b is formed in a comb shape.
  • the first conductor portion 71 a and the second conductor portion 71 b are arranged so as to be intertwined with each other in the direction along the short direction of the mounting substrate 7.
  • the first comb portion 71a1 of the first conductor portion 71a and the second comb portion 71b1 of the second conductor portion 71b are opposed to each other.
  • the first comb teeth 71a2 of the first conductor portion 71a and the second comb teeth 71b2 of the second conductor portion 71b are alternately arranged in the direction along the longitudinal direction of the mounting substrate 7 with a gap. Are lined up.
  • the LED module 1 has a plurality of (for example, nine) LED chips 4 arranged in the longitudinal direction of the mounting substrate 7 (the prescribed direction) connected in parallel.
  • the LED module 1 can supply power to a parallel circuit in which the plurality of LED chips 4 are connected in parallel.
  • the LED module 1 can supply power to all the LED chips 4 by supplying power between the first conductor portion 71a and the second conductor portion 71b.
  • adjacent LED modules 1 are connected to each other by, for example, a conductive member, an electric wire for feed wiring (not shown), a connector (not shown), or the like. May be electrically connected. In this case, it is possible to supply power from a single power supply unit to the plurality of LED modules 1 to cause all LED chips 4 of each LED module 1 to emit light.
  • the color conversion unit 5 is provided with the recess 5b that suppresses total reflection of light emitted from the adjacent LED chips 4 between the adjacent LED chips 4 in the prescribed direction.
  • the LED module 1 can suppress total reflection of light emitted from the LED chip 4 and incident on the boundary surface between the color conversion unit 5 and air. Therefore, since the LED module 1 can reduce the light confined due to the total reflection as compared with the case where the color conversion unit 5 has a semi-cylindrical shape, the light extraction efficiency can be improved. In short, the LED module 1 can reduce the total reflection loss, and can improve the light extraction efficiency.
  • the color converter 5 is formed in a cross-sectional shape reflecting a step between the one surface of each LED chip 4 and the one surface 7sa of the mounting substrate 7. Therefore, in the color conversion unit 5, the cross-sectional shape orthogonal to the arrangement direction of the LED chips 4 is convex, and the cross-sectional shape along the arrangement direction of the LED chips 4 is uneven. In short, in the LED module 1, a concavo-convex structure for improving the light extraction efficiency is formed in the line-shaped color conversion unit 5.
  • the period of this uneven structure is the same as the arrangement pitch of the LED chips 4.
  • the period of the concavo-convex structure is the arrangement pitch of the convex portions 5a covering each of the LED chips 4.
  • the shape of the surface of the color conversion unit 5 is designed so that the angle formed by the normal of the point where the light rays from the LED chip 4 intersect on the surface of the color conversion unit 5 and the light ray is smaller than the critical angle.
  • the LED module 1 is arranged so that the incident angle (light incident angle) of the light beam from the LED chip 4 is smaller than the critical angle over substantially the entire surface of each convex portion 5a of the color conversion unit 5. It is preferable to design the shape of the surface of the converter 5.
  • each convex part 5a covering each LED chip 4 is formed in a hemispherical shape.
  • Each of the convex portions 5 a is designed such that the optical axis of the convex portion 5 a overlapping in the thickness direction of the light diffusion substrate 2 coincides with the optical axis of the LED chip 4.
  • the LED module 1 can make the optical path length from the LED chip 4 to the surface of the convex portion 5a substantially uniform regardless of the light emission direction from the LED chip 4, and can further suppress color unevenness. Become.
  • Each convex part 5a of the color conversion part 5 is not limited to a hemispherical shape, and may be, for example, a semi-elliptical spherical shape.
  • Each of the convex portions 5a may have a semi-cylindrical shape or a rectangular parallelepiped shape.
  • the mounting substrate 7 is prepared. Thereafter, the light diffusion substrate 2 associated with each LED chip 4 is bonded onto the mounting substrate 7. Thereafter, each LED chip 4 is die-bonded to the one surface 2sa side of the corresponding light diffusion substrate 2 by a die-bonding apparatus or the like. Thereafter, the first electrode and the second electrode of each LED chip 4 are connected to the wiring pattern 71 via the wire 8 by a wire bonding apparatus or the like. Thereafter, the color conversion unit 5 is formed using a dispenser system or the like.
  • the material of the color conversion unit 5 is discharged from the nozzle and applied while moving the dispenser head along the arrangement direction of the LED chips 4.
  • the material when applying the material of the color conversion unit 5 by the dispenser system so as to have an application shape based on the surface shape of the color conversion unit 5, for example, the material may be applied by discharging the material while moving the dispenser head. That's fine.
  • the application amount is changed, and by moving the dispenser head up and down, the distance between the nozzle and one surface 7sa of the mounting substrate 7 immediately below the nozzle is changed. Yes. More specifically, when the material is applied to the base of each convex portion 5a of the color conversion unit 5 and the material is applied to the base of the portion between the adjacent convex portions 5a of the color conversion unit 5 In this case, the movement speed is relatively different.
  • the movement speed is reduced, and in the latter case, the movement speed is increased. Further, the dispenser head is moved up and down based on the surface shape of the color converter 5.
  • the application shape may be set in consideration of shrinkage when the material is cured.
  • the dispenser system includes a moving mechanism including a robot that moves the dispenser head, a sensor unit that measures the height of each surface 7sa of the mounting substrate 7 and the nozzle from the table, and the amount of material discharged from the moving mechanism and the nozzle. And a controller for controlling.
  • the controller can be realized, for example, by mounting an appropriate program on a microcomputer.
  • the dispenser system corresponds to a plurality of different types of products such as the arrangement pitch of the LED chips 4, the number of LED chips 4, and the line width of the color conversion unit 5 by appropriately changing the program installed in the controller. It becomes possible.
  • the surface shape of the color conversion unit 5 can be controlled, for example, by adjusting the viscosity of the material.
  • the curvature of each surface (convex curved surface) of each convex portion 5a can be designed by the viscosity and surface tension of the material, the height of the wire 8, and the like. Increasing the curvature can be realized by increasing the viscosity of the material, increasing the surface tension, or increasing the height of the wire 8. Further, it is possible to reduce the width (line width) of the line-shaped color conversion unit 5 by increasing the viscosity of the material or increasing the surface tension.
  • the viscosity of the material is preferably set in the range of about 100 to 2000 mPa ⁇ s.
  • As the viscosity value for example, a value measured at room temperature using a conical plate type rotational viscometer can be adopted.
  • the dispenser system may also include a heater that heats the uncured material to a desired viscosity. Thereby, the dispenser system can improve the reproducibility of the application shape of the material, and can improve the reproducibility of the surface shape of the color conversion unit 5.
  • the LED module 1 can be used as a light source of various illumination devices.
  • the illuminating device provided with the LED module 1 for example, an illuminating device in which the LED module 1 is used as a light source and a lamp (for example, a straight tube LED lamp, a light bulb-shaped lamp, etc.) arranged in the apparatus main body can be cited.
  • a lamp for example, a straight tube LED lamp, a light bulb-shaped lamp, etc.
  • other lighting devices may be used.
  • the LED module 1 includes a desired creepage distance between the wiring pattern 71 and the instrument main body by including the insulating member 72 even when the instrument main body is made of metal and has conductivity. Can be secured. In the lighting fixture, if the fixture body is made of metal, the heat generated in the LED module 1 can be radiated more efficiently.
  • the material of the instrument body is preferably a material having a high thermal conductivity, and more preferably a material having a higher thermal conductivity than the insulating member 72.
  • a metal having a high thermal conductivity such as aluminum or copper as the material of the instrument body.
  • thermosetting sheet adhesive As a means for attaching the LED module 1 to the appliance main body, for example, an attachment such as a screw may be employed, or an epoxy resin layer of a thermosetting sheet adhesive is provided between the appliance main body and the LED module 1. It may be interposed between and joined.
  • a sheet adhesive in which a film (PET film) is laminated can be used.
  • An example of such a sheet-like adhesive is an adhesive sheet TSA manufactured by Toray Industries, Inc.
  • an electrically insulating material having higher thermal conductivity than the epoxy resin that is a thermosetting resin may be used.
  • the thickness of the epoxy resin layer described above is set to 100 ⁇ m, but this value is merely an example, and is not particularly limited. For example, the thickness may be appropriately set in the range of about 50 ⁇ m to 150 ⁇ m.
  • the thermal conductivity of the epoxy resin layer is preferably 4 W / m ⁇ K or more.
  • the epoxy resin layer of the above-mentioned sheet-like adhesive has properties of being electrically insulating and having high thermal conductivity, high fluidity during heating, and high adhesion to the uneven surface. Therefore, the lighting fixture can prevent the generation of a gap between the insulating layer formed from the above-described epoxy resin layer, the LED module 1 and the fixture body, and can improve the adhesion reliability. In addition, it is possible to suppress the increase in thermal resistance and the occurrence of variations due to insufficient adhesion.
  • the insulating layer has electrical insulation and thermal conductivity, and has a function of thermally coupling the LED module 1 and the instrument body.
  • the lighting fixture has a rubber sheet shape such as Sarcon (registered trademark) or a silicone gel-like heat dissipation sheet (heat conductive sheet) between the LED module 1 and the fixture body, respectively. It becomes possible to reduce the thermal resistance from the LED chip 4 to the appliance body, and to reduce the variation in thermal resistance. As a result, the lighting fixture has improved heat dissipation and can suppress the temperature rise of the junction temperature of each LED chip 4, so that the input power can be increased and the light output can be increased. It becomes possible to plan.
  • the thickness of the epoxy resin layer described above is set to 100 ⁇ m, but this value is merely an example, and is not particularly limited. For example, the thickness may be appropriately set in the range of about 50 ⁇ m to 150 ⁇ m. Note that the thermal conductivity of the epoxy resin layer is preferably 4 W / m ⁇ K or more.
  • a straight tubular tube body formed of a translucent material (for example, milky white glass, milky white resin, etc.) and a longitudinal direction of the tube body.
  • a first base and a second base are provided at one end and the other end, respectively, and the mounting substrate 7 is elongated in the tube body, and a plurality of LED chips 4 are arranged in the longitudinal direction of the mounting substrate 7. What is necessary is just to set it as the structure which accommodated the LED module 1 arranged.
  • the lighting fixture 50 provided with the LED module 1 of the 2nd modification as a light source is demonstrated based on FIG. 23A and 23B.
  • the lighting fixture 50 is an LED lighting fixture, and includes a fixture main body 51 and an LED module 1 that is a light source held by the fixture main body 51.
  • the appliance body 51 is formed in a long shape (here, a rectangular plate shape) having a larger planar size than the LED module 1.
  • the LED module 1 is arrange
  • the LED module 1 is arranged with respect to the fixture body 51 so that the longitudinal direction of the LED module 1 and the longitudinal direction of the fixture body 51 are aligned.
  • a cover 52 that covers the LED module 1 is disposed on the one surface 51 b side of the fixture body 51.
  • the cover 52 has a function of transmitting light emitted from the LED module 1.
  • the lighting fixture 50 includes a lighting device 53 that supplies DC power to the LED module 1 to light (emit) each LED chip 4 (see FIG. 21).
  • the lighting device 53 and the LED module 1 are electrically connected via an electric wire 54 such as a lead wire.
  • the luminaire 50 has a recess 51 a that houses the lighting device 53 on the other surface 51 c side in the thickness direction of the fixture body 51.
  • the recess 51 a is formed along the longitudinal direction of the instrument body 51.
  • a through hole (not shown) through which the electric wire 54 is inserted is formed in the instrument body 51 through a thin portion between the one surface 51b and the inner bottom surface of the recess 51a.
  • the LED module 1 can connect the electric wire 54 at the exposed part of the wiring pattern 71.
  • a connection portion made of a conductive bonding material such as solder, a connection portion made of a male connector and a female connector, or the like can be adopted.
  • the luminaire 50 can turn on the LED module 1 by supplying DC power from the lighting device 53 to the LED module 1.
  • the lighting device 53 may have a configuration in which power is supplied from an AC power source such as a commercial power source, or may have a configuration in which power is supplied from a DC power source such as a solar battery or a storage battery.
  • the light source of the luminaire 50 is not limited to the LED module 1 of the second modified example, and is mounted in the LED module 1 of any one of the first to third embodiments and the first modified example of the third embodiment in the same manner as the second modified example.
  • a configuration in which the substrate 7 has a long shape and includes a plurality of LED chips 4 with respect to one mounting substrate 7 may be used.
  • the material of the instrument body 51 is preferably a material having a high thermal conductivity, and more preferably a material having a higher thermal conductivity than the mounting substrate 7.
  • a material of the instrument main body 51 it is preferable to employ a metal having high thermal conductivity such as aluminum or copper.
  • the lighting fixture 50 can improve heat dissipation by making the material of the fixture main body 51 a metal.
  • an attachment such as a screw may be employed, or an epoxy resin layer of a thermosetting sheet adhesive is used as the appliance main body 51, the LED module 1, and the like. They may be joined by interposing them.
  • acrylic resin for example, acrylic resin, polycarbonate resin, silicone resin, glass or the like can be employed.
  • the cover 52 is integrally provided with a lens portion (not shown) that controls the light distribution of the light emitted from the LED module 1.
  • the lighting fixture 50 can achieve cost reduction as compared with a configuration in which a lens separate from the cover 52 is attached to the cover 52.
  • the light extraction efficiency can be improved, and the cost can be reduced and the light output can be increased. Become.
  • the straight tube LED lamp 60 includes a straight tube (cylindrical) tube body 61 formed of a light-transmitting material, and a first base 62 provided at one end and the other end of the tube body 61 in the longitudinal direction.
  • the second base 63, and the LED module 1 of the second modification is housed in the tube body 61.
  • the LED module 1 is not limited to the LED module 1 of the second modification example, and the LED module 1 of any one of the first to third embodiments and the first modification example of the third embodiment is similar to the second modification example in the mounting substrate 7. May be configured to have a plurality of LED chips 4 with respect to one mounting substrate 7.
  • the material of the tube body 61 for example, transparent glass, milky white glass, transparent resin, milky white resin, or the like can be used.
  • the first base 62 is provided with two power supply terminals (hereinafter referred to as “first lamp pins”) 64 and 64 electrically connected to the LED module 1. These two first lamp pins 64 and 64 are configured to be electrically connectable to the two power supply contacts of the power supply lamp socket held in the main body of the lighting equipment (not shown). Has been.
  • the second base 63 is provided with one ground terminal (hereinafter referred to as “second lamp pin”) 65 for grounding.
  • the one second lamp pin 65 is configured to be electrically connectable to a grounding contact of a grounding lamp socket held in the instrument body.
  • Each of the first lamp pins 64 is formed in an L shape, and protrudes along the longitudinal direction of the tube main body 61, and from the tip of the pin main body 64a to one radial direction of the tube main body 61. And a key part 64b extending along the line. The two key parts 64b are extended in directions away from each other.
  • Each first lamp pin 64 is formed by bending an elongated metal plate.
  • the second lamp pin 65 protrudes from the end face (base reference surface) of the second base 63 to the side opposite to the tube body 61.
  • the second lamp pin 65 is formed in a T shape.
  • the straight tube LED lamp 60 is, for example, a “straight tube LED lamp system with an L-shaped pin cap GX16t-5 (for general illumination)” (JEL 801: 2010) standardized by the Japan Light Bulb Industry Association. ) And the like.
  • the above-described LED module 1 is provided in the tube main body 61, so that it is possible to improve the light extraction efficiency, thereby reducing the cost and increasing the light output. Can be achieved.
  • the lamp provided with the LED module 1 is not limited to the straight tube LED lamp described above.
  • a straight tube LED having a configuration in which the LED module 1 and a lighting device for lighting the LED module 1 are provided in the tube body.
  • a lamp may be used.
  • the lighting device is supplied with power from an external power source via a lamp pin.
  • the mounting substrate 7 has an elongated shape and includes a plurality of LED chips 4.
  • the shape of the mounting substrate 7 and wiring The shape of the pattern 71, the number of LED chips 4, the arrangement, and the like can be changed as appropriate.
  • the lighting fixture 90 is an LED lighting fixture that can be used as a downlight, and includes a fixture main body 91a and an LED module 1 that is a light source held by the fixture main body 91a.
  • the lighting fixture 90 includes a rectangular box-shaped case 98 in which a lighting device for lighting the LED module 1 is housed. The lighting device and the LED module 1 are electrically connected by an electric wire (not shown).
  • the lighting fixture 90 has a fixture main body 91 formed in a disk shape, and the LED module 1 is disposed on one surface side of the fixture main body 91a.
  • the lighting fixture 90 includes a plurality of fins 91ab protruding from the other surface of the fixture body 91.
  • the instrument main body 91 and each fin 91ab are integrally formed.
  • the planar shape of the mounting substrate 7 is a square shape, and a plurality of (for example, 48) LED chips 4 (see FIG. 21) are arranged in a two-dimensional array.
  • the LED module 1 includes a group (for example, eight) of LED chips 4 arranged on a virtual line connected in series.
  • the LED module 1 assumes a specified number (for example, six) of virtual lines, and includes the specified number of series circuits in which a group of LED chips 4 are connected in series, and the specified number of series circuits are in parallel.
  • the wiring pattern 71 is designed to be connected.
  • planar shape of the mounting substrate 7 is not limited to a square shape, and may be, for example, a polygonal shape or a circular shape other than a square shape.
  • electrical connection relationship of the plurality of LED chips 4 arranged on the one surface 7sa side of the mounting substrate 7 is not particularly limited.
  • the LED module 1 may include the same number of light diffusion substrates 2 (see FIG. 21) as the LED chips 4, or one light diffusion substrate 2 for a group of LED chips 4. Also good.
  • the lighting fixture 90 includes a first reflector 93 that reflects light emitted from the LED module 1 to the side, a cover 92, and a second reflector 94 that controls the light distribution of the light emitted from the cover 92. ing.
  • the lighting fixture 90 includes the fixture main body 91 and the second reflector 94 to form a fixture outline that houses the LED module 1, the first reflector 93, and the cover 92.
  • the instrument main body 91 is provided with two projecting base portions 91a facing each other on the one surface side. And as for the lighting fixture 90, the plate-shaped fixing member 95 which fixes the LED module 1 is constructed by the two protrusion parts 91a.
  • the fixing member 95 is formed of sheet metal, and is fixed to each of the projecting base portions 91a by screws 97.
  • the first reflector 93 is fixed to the instrument main body 91.
  • the LED module 1 may be sandwiched between the first reflector 93 and the fixing member 95.
  • the first reflector 93 is made of a white synthetic resin.
  • the fixing member 95 is formed with an opening 95a that exposes a part of the mounting substrate 7 of the LED module 1.
  • a heat conducting portion 96 is interposed between the mounting substrate 7 and the device main body 91.
  • the heat conduction unit 96 has a function of transferring heat from the mounting substrate 7 to the instrument main body 91.
  • the heat conductive part 96 is formed with heat conductive grease, it is not restricted to this, For example, you may use a heat conductive sheet.
  • a silicone gel sheet having electrical insulation and thermal conductivity can be used as the thermally conductive sheet.
  • the silicone gel sheet used as the heat conductive sheet is preferably soft.
  • Sarcon registered trademark
  • the material of the heat conductive sheet is not limited to silicone gel, and may be, for example, an elastomer as long as it has electrical insulation and heat conductivity.
  • the lighting fixture 90 can efficiently transfer the heat generated in the LED module 1 to the fixture main body 91 through the heat conducting portion 96. Therefore, the lighting fixture 90 can efficiently dissipate heat generated in the LED module 1 from the fixture main body 91 and the fins 91ab.
  • the material of the instrument main body 91 and the fin 91ab is preferably a material having a high thermal conductivity, and more preferably a material having a higher thermal conductivity than the mounting substrate 7.
  • a material of the instrument main body 91 and the fin 91ab it is preferable to employ a metal having high thermal conductivity such as aluminum or copper.
  • the material of the cover 92 for example, acrylic resin, polycarbonate resin, silicone resin, glass, or the like can be employed.
  • the cover 92 may be integrally provided with a lens unit (not shown) that controls the light distribution of the light emitted from the LED module 1.
  • the material of the second reflector 94 for example, aluminum, stainless steel, resin, ceramic or the like can be used.
  • the fixture main body 91 is good also as a structure which serves as the mounting substrate 7 of the LED module 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

An LED module is provided with a translucent light-diffusing substrate, an LED chip that is joined via a transparent first joining section to one of the surface sides of the light-diffusing substrate, and a color conversion section that covers the LED chip at the one surface side of the light-diffusing substrate. The color conversion section is formed from a transparent material containing a fluorescent substance that is excited by light emitted from the LED chip and that emits light of a different color than that of the LED chip. The LED module comprises a mounting substrate that is arranged on the other surface side of the light-diffusing substrate. The mounting substrate comprises an insulating member having electrical insulating properties, and a wiring pattern that is embedded in the insulating member and electrically connected with the LED chip. The insulating member is made of a non-translucent member having diffuse reflection properties.

Description

LEDモジュールLED module
 本発明は、LEDモジュールに関するものである。 The present invention relates to an LED module.
 従来から、白色系の発光が要求される発光装置としては、図27に示す構成の発光装置が提案されている(日本国特許出願公開番号2007-109701:特許文献1)。この発光装置は、放熱機能と光反射機能とを兼ね備えた金属板203と、光を通過させる貫通孔207を有する配線板201と、配線板201と金属板203とを張り合わせる接着シート202と、を備えている。そして、この発光装置は、LEDチップからなる発光素子214が、配線板201の貫通孔207直下にある金属板203に搭載され、発光素子214と配線板201の上面にあるランド206とが、金属線215でワイヤーボンディング接続されている。 Conventionally, as a light emitting device that requires white light emission, a light emitting device having a configuration shown in FIG. 27 has been proposed (Japanese Patent Application Publication No. 2007-109701: Patent Document 1). This light-emitting device includes a metal plate 203 having both a heat dissipation function and a light reflection function, a wiring board 201 having a through-hole 207 through which light passes, an adhesive sheet 202 that bonds the wiring board 201 and the metal plate 203, and It has. In this light emitting device, a light emitting element 214 made of an LED chip is mounted on a metal plate 203 just below the through hole 207 of the wiring board 201, and the light emitting element 214 and the land 206 on the upper surface of the wiring board 201 are made of metal. The wire 215 is connected by wire bonding.
 上述の発光装置では、金属板203として、アルミニウム板などを用いる旨が記載されている。 In the above-described light emitting device, it is described that an aluminum plate or the like is used as the metal plate 203.
 図27に示した構成の発光装置では、発光素子214の発光層から放射された光の一部が、発光素子214中を透過して金属板203で反射されるものと推考される。しかしながら、この発光装置では、金属板203で全反射された光が、発光素子214内で吸収されたり、多重反射されること、などに起因して、光取り出し効率が低下してしまうと推考される。 27, it is assumed that a part of the light emitted from the light emitting layer of the light emitting element 214 is transmitted through the light emitting element 214 and reflected by the metal plate 203 in the light emitting device having the configuration shown in FIG. However, in this light emitting device, it is estimated that the light extraction efficiency is reduced due to the fact that the light totally reflected by the metal plate 203 is absorbed in the light emitting element 214 or multiple reflected. The
 本発明は上記事由に鑑みて為されたものであり、その目的は、光取り出し効率を向上させることが可能なLEDモジュールを提供することにある。 The present invention has been made in view of the above reasons, and an object thereof is to provide an LED module capable of improving the light extraction efficiency.
 本発明のLEDモジュールは、透光性の光拡散基板と、前記光拡散基板の一表面側に透明な第1接合部を介して接合されたLEDチップと、前記光拡散基板の前記一表面側で前記LEDチップを覆う色変換部と、前記光拡散基板の他表面側に配置された実装基板と、を備え、前記色変換部は、前記LEDチップから放射される光によって励起されて前記LEDチップとは異なる色の光を放射する蛍光体を含有する透明材料により形成され、前記実装基板は、電気絶縁性を有する絶縁部材と、前記絶縁部材に埋設され前記LEDチップが電気的に接続される配線パターンと、を備え、前記絶縁部材は、拡散反射性を有する非透光性部材であることを特徴とする。 The LED module of the present invention includes a light-transmitting light diffusing substrate, an LED chip bonded to one surface side of the light diffusing substrate via a transparent first bonding portion, and the one surface side of the light diffusing substrate. And a color conversion unit that covers the LED chip, and a mounting substrate disposed on the other surface side of the light diffusion substrate, and the color conversion unit is excited by light emitted from the LED chip and the LED The mounting substrate is made of a transparent material containing a phosphor that emits light of a color different from that of the chip, and the mounting substrate is electrically connected to the insulating member embedded in the insulating member. And the insulating member is a non-translucent member having diffuse reflectivity.
 このLEDモジュールにおいて、前記LEDチップは、厚み方向の一面側に第1電極と第2電極とが設けられたものであり、前記第1電極および前記第2電極の各々が前記配線パターンとワイヤを介して電気的に接続されており、前記配線パターンの一部が、前記光拡散基板の前記実装基板側への垂直投影領域に設けられていることが好ましい。 In this LED module, the LED chip is provided with a first electrode and a second electrode on one surface side in the thickness direction, and each of the first electrode and the second electrode has the wiring pattern and the wire. It is preferable that a part of the wiring pattern is provided in a vertical projection region to the mounting substrate side of the light diffusion substrate.
 このLEDモジュールにおいて、前記光拡散基板は、前記絶縁部材に埋設されて側面と前記他表面とが前記絶縁部材に接しており、前記実装基板は、前記配線パターンが、前記光拡散基板の前記一表面上に設けられた部位を備え、前記配線パターンは、前記第1電極および前記第2電極に一端部がそれぞれ接合された各前記ワイヤの他端部と前記部位とが接合されており、前記色変換部は、前記光拡散基板の前記一表面側において前記LEDチップおよび各前記ワイヤを覆っていることが好ましい。 In this LED module, the light diffusing substrate is embedded in the insulating member, and a side surface and the other surface are in contact with the insulating member. The mounting substrate has the wiring pattern that is the one of the light diffusing substrates. A portion provided on the surface, and the wiring pattern is formed by bonding the other end portion of each of the wires, each of which is bonded to the first electrode and the second electrode, and the portion, The color conversion unit preferably covers the LED chip and the wires on the one surface side of the light diffusion substrate.
 本発明のLEDモジュールにおいては、光拡散基板と、拡散反射性を有する非透光性部材と、を備えていることにより、光取り出し効率を向上させることが可能となる。 In the LED module of the present invention, it is possible to improve the light extraction efficiency by including a light diffusion substrate and a non-translucent member having diffuse reflection properties.
図1Aは、実施形態1のLEDモジュールの概略平面図である。図1Bは、実施形態1のLEDモジュールの概略断面図である。1A is a schematic plan view of the LED module of Embodiment 1. FIG. 1B is a schematic cross-sectional view of the LED module of Embodiment 1. FIG. 図2A、2Bは、参考例1の構造における光の進行経路の説明図である。2A and 2B are explanatory diagrams of light traveling paths in the structure of Reference Example 1. FIG. 図3A~3Dは、参考例1の構造における構造パラメータの説明図である。3A to 3D are explanatory diagrams of structural parameters in the structure of Reference Example 1. FIG. 図4は、参考例1の構造におけるLEDチップの発光層での吸収率と光取り出し効率との関係のシミュレーション結果を示す図である。FIG. 4 is a diagram showing a simulation result of the relationship between the absorption rate in the light emitting layer of the LED chip and the light extraction efficiency in the structure of Reference Example 1. 図5は、参考例1の構造におけるLEDチップの発光層での吸収率と光取り出し効率比との関係を示す図である。FIG. 5 is a diagram showing the relationship between the absorption rate in the light emitting layer of the LED chip and the light extraction efficiency ratio in the structure of Reference Example 1. 図6は、参考例1の構造における光取り出し効率の内訳のシミュレーション結果を示す図である。6 is a diagram showing a simulation result of the breakdown of the light extraction efficiency in the structure of Reference Example 1. FIG. 図7は、参考例2、3および4それぞれの光束の測定結果の説明図である。FIG. 7 is an explanatory diagram of the measurement results of the light fluxes of Reference Examples 2, 3 and 4. 図8は、参考例2、3および4それぞれの光束の測定結果の説明図である。FIG. 8 is an explanatory diagram of the measurement results of the light fluxes of Reference Examples 2, 3 and 4. 図9は、参考例2、3および4それぞれの光束の測定結果の説明図である。FIG. 9 is an explanatory diagram of the measurement results of the light fluxes of Reference Examples 2, 3 and 4. 図10は、全反射率と波長との関係説明図である。FIG. 10 is an explanatory diagram of the relationship between the total reflectance and the wavelength. 図11Aは、実施形態2のLEDモジュールの概略平面図である。図11Bは、実施形態2のLEDモジュールの概略断面図である。FIG. 11A is a schematic plan view of the LED module of Embodiment 2. FIG. FIG. 11B is a schematic cross-sectional view of the LED module of Embodiment 2. 図12Aは、実施形態3のLEDモジュールの概略平面図である。図12Bは、実施形態3のLEDモジュールの概略断面図である。FIG. 12A is a schematic plan view of the LED module of Embodiment 3. FIG. FIG. 12B is a schematic cross-sectional view of the LED module of Embodiment 3. 図13は、実施形態3のLEDモジュールにおける光拡散基板の概略斜視図である。FIG. 13 is a schematic perspective view of a light diffusion substrate in the LED module of the third embodiment. 図14は、アルミナ粒子の粒径と反射率との関係説明図である。FIG. 14 is an explanatory diagram of the relationship between the particle diameter of the alumina particles and the reflectance. 図15は、実施形態3のLEDモジュールの実施例における光拡散基板およびアルミナ基板の反射率-波長特性図である。FIG. 15 is a reflectance-wavelength characteristic diagram of a light diffusion substrate and an alumina substrate in an example of the LED module of Embodiment 3. 図16は、実施形態3のLEDモジュールにおける光拡散基板の模式説明図である。FIG. 16 is a schematic explanatory view of a light diffusion substrate in the LED module of Embodiment 3. 図17は、実施形態1のLEDモジュールにおける光拡散基板のガラス配合率と積分球の積分強度との関係説明図である。FIG. 17 is an explanatory diagram of the relationship between the glass mixture ratio of the light diffusion substrate and the integrated intensity of the integrating sphere in the LED module of Embodiment 1. 図18は、実施形態3の実施例における光拡散基板およびアルミナ基板の反射率-波長特性図である。FIG. 18 is a reflectance-wavelength characteristic diagram of the light diffusion substrate and the alumina substrate in the example of the third embodiment. 図19は、実施形態3のLEDモジュールの光取り出し効率の向上に関する原理を説明するための推定メカニズム図である。FIG. 19 is an estimation mechanism diagram for explaining the principle relating to the improvement of the light extraction efficiency of the LED module of the third embodiment. 図20A~20Cは、実施形態3のLEDモジュールの光取り出し効率の向上に関する原理を説明するための推定メカニズム図である。20A to 20C are estimation mechanism diagrams for explaining the principle relating to the improvement of the light extraction efficiency of the LED module of Embodiment 3. FIG. 図21は、実施形態3のLEDモジュールの第1変形例の概略断面図である。FIG. 21 is a schematic cross-sectional view of a first modification of the LED module of Embodiment 3. 図22は、実施形態3のLEDモジュールの第2変形例の概略斜視図である。FIG. 22 is a schematic perspective view of a second modification of the LED module of the third embodiment. 図23Aは、実施形態3の照明器具の一部破断した概略斜視図である。図23Bは、図23Aの要部拡大図である。FIG. 23A is a schematic perspective view in which the lighting fixture of Embodiment 3 is partially broken. FIG. 23B is an enlarged view of a main part of FIG. 23A. 図24Aは、実施形態3の直管形LEDランプの一部破断した概略斜視図である。図24Bは、図24Aの要部拡大図である。FIG. 24A is a schematic perspective view in which the straight tube LED lamp of Embodiment 3 is partially broken. FIG. 24B is an enlarged view of a main part of FIG. 24A. 図25は、実施形態3の照明器具の第1変形例の概略斜視図である。FIG. 25 is a schematic perspective view of a first modification of the lighting fixture according to the third embodiment. 図26は、実施形態3の照明器具の第1変形例の一部破断した概略斜視図である。FIG. 26 is a partially broken schematic perspective view of a first modification of the lighting apparatus of Embodiment 3. 図27は、従来例の発光装置を示す断面図である。FIG. 27 is a cross-sectional view showing a conventional light emitting device.
 (実施形態1)
 以下では、本実施形態のLEDモジュール1について図1A、1Bに基いて説明する。
(Embodiment 1)
Below, the LED module 1 of this embodiment is demonstrated based on FIG. 1A and 1B.
 LEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の一表面2sa側に透明な第1接合部3を介して接合されたLEDチップ4と、光拡散基板2の一表面2sa側でLEDチップ4を覆う色変換部5と、を備えている。色変換部5は、LEDチップ4から放射される光によって励起されてLEDチップ4とは異なる色の光を放射する蛍光体を含有する透明材料により形成されている。また、LEDモジュール1は、光拡散基板2の他表面2sb側に配置された実装基板7を備えている。実装基板7は、電気絶縁性を有する絶縁部材72と、絶縁部材72に埋設されLEDチップ4が電気的に接続される配線パターン71と、を備えており、絶縁部材72が、拡散反射性を有する非透光性部材からなる。 The LED module 1 includes a translucent light diffusing substrate 2, an LED chip 4 bonded to the one surface 2 sa side of the light diffusing substrate 2 via a transparent first bonding portion 3, and one surface of the light diffusing substrate 2. And a color conversion unit 5 that covers the LED chip 4 on the 2sa side. The color conversion unit 5 is formed of a transparent material containing a phosphor that is excited by light emitted from the LED chip 4 and emits light of a color different from that of the LED chip 4. In addition, the LED module 1 includes a mounting substrate 7 disposed on the other surface 2sb side of the light diffusion substrate 2. The mounting substrate 7 includes an insulating member 72 having electrical insulation, and a wiring pattern 71 embedded in the insulating member 72 and electrically connected to the LED chip 4. The insulating member 72 has diffuse reflectivity. It consists of a non-light-transmissive member.
 これにより、LEDモジュール1は、LEDチップ4の発光層43(図2A、2B参照)で発光し、LEDチップ4内および第1接合部3を通過した光の一部が光拡散基板2内で拡散されたり、光拡散基板2の側面2scから取り出されることとなる。よって、LEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の他表面2sb側に配置され拡散反射性を有する非透光性部材(絶縁部材72)と、を備えていることにより、光取り出し効率を向上させることが可能となる。 Accordingly, the LED module 1 emits light from the light emitting layer 43 (see FIGS. 2A and 2B) of the LED chip 4, and a part of the light that has passed through the LED chip 4 and the first joint portion 3 is within the light diffusion substrate 2. It is diffused or taken out from the side surface 2sc of the light diffusion substrate 2. Therefore, the LED module 1 includes a light transmissive light diffusing substrate 2 and a non-light transmissive member (insulating member 72) that is disposed on the other surface 2sb side of the light diffusing substrate 2 and has diffuse reflectivity. As a result, the light extraction efficiency can be improved.
 以下、LEDモジュール1の各構成要素について詳細に説明する。 Hereinafter, each component of the LED module 1 will be described in detail.
 LEDチップ4は、このLEDチップ4の厚み方向の一面側に、アノード電極である第1電極(図示せず)と、カソード電極である第2電極(図示せず)と、が設けられている。 The LED chip 4 is provided with a first electrode (not shown) as an anode electrode and a second electrode (not shown) as a cathode electrode on one surface side in the thickness direction of the LED chip 4. .
 LEDチップ4は、図2A、2Bに示すように、n形半導体層42、発光層43およびp形半導体層44を有するLED構造部40を、基板41の主表面41a側に備えている。n形半導体層42、発光層43およびp形半導体層44の積層順は、基板41に近い側から順に、n形半導体層42、発光層43、p形半導体層44としてあるが、これに限らず、p形半導体層44、発光層43、n形半導体層42の順でもよい。LEDチップ4は、LED構造部40と基板41との間に、バッファ層を設けてある構造が、より好ましい。発光層43は、単一量子井戸構造や多重量子井戸構造を有することが好ましいが、これに限らない。例えば、LEDチップ4は、n形半導体層42と発光層43とp形半導体層44とでダブルヘテロ構造を構成するようにしてもよい。なお、LEDチップ4の構造は、特に限定するものではない。LEDモジュール1としては、LEDチップ4として内部に反射層(例えば、ブラッグ反射器などの反射部)を備えていない構造のLEDチップを採用する場合に、内部に反射層を備えたLEDチップを採用する場合に比べて、光拡散基板2と、拡散反射性を有する非透光性部材からなる絶縁部材72と、を備えたことによる光取り出し効率の向上効果が大きい。 2A and 2B, the LED chip 4 includes an LED structure section 40 having an n-type semiconductor layer 42, a light emitting layer 43, and a p-type semiconductor layer 44 on the main surface 41a side of the substrate 41. The stacking order of the n-type semiconductor layer 42, the light-emitting layer 43, and the p-type semiconductor layer 44 is the n-type semiconductor layer 42, the light-emitting layer 43, and the p-type semiconductor layer 44 in this order from the side closer to the substrate 41. Alternatively, the p-type semiconductor layer 44, the light emitting layer 43, and the n-type semiconductor layer 42 may be arranged in this order. The LED chip 4 preferably has a structure in which a buffer layer is provided between the LED structure portion 40 and the substrate 41. The light emitting layer 43 preferably has a single quantum well structure or a multiple quantum well structure, but is not limited thereto. For example, in the LED chip 4, the n-type semiconductor layer 42, the light emitting layer 43, and the p-type semiconductor layer 44 may form a double heterostructure. The structure of the LED chip 4 is not particularly limited. As the LED module 1, when an LED chip having a structure that does not include a reflective layer (for example, a reflective part such as a Bragg reflector) is employed as the LED chip 4, an LED chip that includes a reflective layer is employed. Compared with the case where it does, the improvement effect of the light extraction efficiency by having the light-diffusion board | substrate 2 and the insulating member 72 which consists of a non-light-transmissive member which has diffuse reflection property is large.
 LEDチップ4としては、例えば、青色光を放射するGaN系青色LEDチップを採用することができる。この場合、LEDチップ4は、基板41としてサファイア基板を備えている。ただし、LEDチップ4の基板41は、サファイア基板に限らず、例えば、発光層43で発光する光に対して透明な基板であればよい。 As the LED chip 4, for example, a GaN blue LED chip that emits blue light can be adopted. In this case, the LED chip 4 includes a sapphire substrate as the substrate 41. However, the substrate 41 of the LED chip 4 is not limited to the sapphire substrate, and may be any substrate that is transparent to the light emitted from the light emitting layer 43, for example.
 LEDチップ4のチップサイズは、特に限定するものではない。LEDチップ4としては、例えば、チップサイズが0.3mm□(0.3mm×0.3mm)や0.45mm□(0.45mm×0.45mm)や1mm□(1mm×1mm)のものなどを用いることができる。また、LEDチップ4の平面形状は、正方形状に限らず、例えば、長方形状などでもよい。LEDチップ4の平面形状が、長方形状の場合、LEDチップ4としては、例えば、チップサイズが0.5mm×0.24mmのものなどを用いることができる。 The chip size of the LED chip 4 is not particularly limited. As the LED chip 4, for example, one having a chip size of 0.3 mm □ (0.3 mm × 0.3 mm), 0.45 mm □ (0.45 mm × 0.45 mm), 1 mm □ (1 mm × 1 mm), etc. Can be used. Further, the planar shape of the LED chip 4 is not limited to a square shape, and may be, for example, a rectangular shape. When the planar shape of the LED chip 4 is rectangular, the LED chip 4 having, for example, a chip size of 0.5 mm × 0.24 mm can be used.
 また、LEDチップ4は、発光層43の材料や発光色を特に限定するものではない。すなわち、LEDチップ4としては、青色LEDチップに限らず、例えば、紫色光LEDチップ、紫外光LEDチップ、赤色LEDチップ、緑色LEDチップなどを用いてもよい。 Further, the LED chip 4 does not particularly limit the material and the emission color of the light emitting layer 43. That is, the LED chip 4 is not limited to a blue LED chip, and for example, a violet light LED chip, an ultraviolet light LED chip, a red LED chip, a green LED chip, or the like may be used.
 LEDチップ4と光拡散基板2とを接合する第1接合部3の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、シリコーン樹脂とエポキシ樹脂とのハイブリッド材料などを採用することができる。 As the material of the first joint portion 3 that joins the LED chip 4 and the light diffusion substrate 2, for example, a silicone resin, an epoxy resin, a hybrid material of a silicone resin and an epoxy resin, or the like can be employed.
 光拡散基板2の材質としては、例えば、透光性セラミックス(アルミナ、硫酸バリウムなど)を採用することができる。透光性セラミックスは、バインダ、添加物などの種類や濃度によって、透過率、反射率および熱伝導率を調整することが可能である。LEDモジュール1は、光拡散基板2の一表面2sa側の中央部に、透明な第1接合部3を介してLEDチップ4が接合されている。これにより、LEDモジュール1は、LEDチップ4の発光層43からLEDチップ4の厚み方向の他面側へ放射された光がLEDチップ4の側面から取り出されやすくなり、また、光拡散基板2内で拡散され光拡散基板2の一表面2saの周部から取り出されやすくなる。よって、LEDモジュール1は、光取り出し効率の向上を図ることが可能となる。 As the material of the light diffusion substrate 2, for example, translucent ceramics (alumina, barium sulfate, etc.) can be employed. The translucent ceramics can adjust the transmittance, reflectance, and thermal conductivity depending on the type and concentration of the binder, additive, and the like. In the LED module 1, an LED chip 4 is bonded to a central portion on the one surface 2 sa side of the light diffusion substrate 2 via a transparent first bonding portion 3. As a result, the LED module 1 makes it easier for light emitted from the light emitting layer 43 of the LED chip 4 to the other side in the thickness direction of the LED chip 4 to be extracted from the side surface of the LED chip 4. And is easily taken out from the peripheral portion of one surface 2sa of the light diffusion substrate 2. Therefore, the LED module 1 can improve the light extraction efficiency.
 光拡散基板2は、矩形板状に形成してあるが、これに限らず、例えば、円形状、多角形状などでもよい。光拡散基板2の平面サイズは、LEDチップ4の平面サイズよりも大きく設定してある。これにより、LEDモジュール1は、光取り出し効率を向上させることが可能となる。 The light diffusion substrate 2 is formed in a rectangular plate shape, but is not limited thereto, and may be, for example, a circular shape or a polygonal shape. The planar size of the light diffusion substrate 2 is set larger than the planar size of the LED chip 4. Thereby, the LED module 1 can improve the light extraction efficiency.
 光拡散基板2は、LEDチップ4に近い線膨張率を持つように構成することで、LEDチップ4と実装基板7との線膨張率の差に起因してLEDチップ4に働く応力を緩和する応力緩和機能を有することが好ましい。これにより、LEDモジュール1は、LEDチップ4と実装基板7との線膨張率の差に起因してLEDチップ4に働く応力を緩和することが可能となる。 The light diffusion substrate 2 is configured to have a linear expansion coefficient close to that of the LED chip 4, thereby relieving stress acting on the LED chip 4 due to the difference in linear expansion coefficient between the LED chip 4 and the mounting substrate 7. It preferably has a stress relaxation function. Thereby, the LED module 1 can relieve the stress acting on the LED chip 4 due to the difference in linear expansion coefficient between the LED chip 4 and the mounting substrate 7.
 また、光拡散基板2は、LEDチップ4で発生した熱を実装基板7側へ伝熱させる熱伝導機能を有していることが好ましい。また、光拡散基板2は、LEDチップ4で発生した熱をLEDチップ4のチップサイズよりも広い範囲に伝熱させる熱伝導機能を有していることが好ましい。これにより、LEDモジュール1は、LEDチップ4で発生した熱を光拡散基板2および実装基板7を介して効率良く放熱させることが可能となる。 Moreover, it is preferable that the light diffusion substrate 2 has a heat conduction function for transferring heat generated by the LED chip 4 to the mounting substrate 7 side. The light diffusing substrate 2 preferably has a heat conduction function for transferring heat generated by the LED chip 4 to a range wider than the chip size of the LED chip 4. Thereby, the LED module 1 can efficiently dissipate the heat generated in the LED chip 4 through the light diffusion substrate 2 and the mounting substrate 7.
 色変換部5の形状は、LEDチップ4の平面形状などに基いて適宜設定すればよい。例えば、LEDチップ4の平面形状が長方形状の場合には、色変換部5を半楕円球状の形状とし、平面視での色変換部5の長軸方向、短軸方向を、平面視でのLEDチップ4の長手方向、短手方向それぞれと揃えることが好ましい。また、LEDチップ4の平面形状が正方形状の場合には、色変換部5の形状を半球状の形状とすることが好ましい。ただし、色変換部5の形状は、特に限定するものではなく、LEDモジュール1の所望の配光特性に基いて適宜設定すればよい。色変換部5は、LEDチップ4だけでなくLEDチップ4に接続された各ワイヤ8の各々の一部を覆っている。色変換部5は、LEDチップ4の上記一面側および側面と、光拡散基板2の一表面2saの周部とに接している。色変換部5は、例えば、成形法により形成することができる。 The shape of the color conversion unit 5 may be set as appropriate based on the planar shape of the LED chip 4 and the like. For example, when the planar shape of the LED chip 4 is rectangular, the color conversion unit 5 has a semi-elliptical spherical shape, and the major axis direction and the minor axis direction of the color conversion unit 5 in plan view are determined in plan view. It is preferable to align with the longitudinal direction and the lateral direction of the LED chip 4. Moreover, when the planar shape of the LED chip 4 is a square shape, it is preferable that the shape of the color conversion unit 5 be a hemispherical shape. However, the shape of the color conversion unit 5 is not particularly limited, and may be set as appropriate based on desired light distribution characteristics of the LED module 1. The color conversion unit 5 covers not only the LED chip 4 but also a part of each wire 8 connected to the LED chip 4. The color conversion unit 5 is in contact with the one surface side and the side surface of the LED chip 4 and the peripheral portion of the one surface 2sa of the light diffusion substrate 2. The color conversion unit 5 can be formed by a molding method, for example.
 色変換部5の材料である透明材料としては、シリコーン樹脂を採用している。透明材料は、シリコーン樹脂に限らず、例えば、エポキシ樹脂、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用することもできる。 シ リ コ ー ン Silicone resin is used as the transparent material that is the material of the color conversion section 5. The transparent material is not limited to a silicone resin, and for example, an epoxy resin, an acrylic resin, glass, an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or molecular level, and the like can also be employed.
 色変換部5の材料である蛍光体は、LEDチップ4から放射される光を当該光よりも長波長の光に変換する波長変換材料として機能する。これにより、LEDモジュール1は、LEDチップ4から放射される光と蛍光体から放射される光との混色光を得ることが可能となる。 The phosphor that is the material of the color conversion unit 5 functions as a wavelength conversion material that converts light emitted from the LED chip 4 into light having a longer wavelength than the light. Thereby, the LED module 1 can obtain mixed color light of the light emitted from the LED chip 4 and the light emitted from the phosphor.
 LEDモジュール1は、例えば、LEDチップ4として青色LEDチップを採用し、波長変換材料の蛍光体として黄色蛍光体を採用すれば、白色光を得ることが可能となる。すなわち、LEDモジュール1は、LEDチップ4から放射された青色光と黄色蛍光体から放射された光とが色変換部5の表面を通して放射可能となり、白色光を得ることが可能となる。 For example, when the LED module 1 employs a blue LED chip as the LED chip 4 and a yellow phosphor as the phosphor of the wavelength conversion material, white light can be obtained. That is, the LED module 1 can emit the blue light emitted from the LED chip 4 and the light emitted from the yellow phosphor through the surface of the color conversion unit 5 and obtain white light.
 波長変換材料である蛍光体としては、黄色蛍光体だけに限らず、例えば、黄色蛍光体と赤色蛍光体とを採用したり、赤色蛍光体と緑色蛍光体とを採用してもよい。また、波長変換材料である蛍光体は、1種類の黄色蛍光体に限らず、発光ピーク波長の異なる2種類の黄色蛍光体を採用してもよい。LEDモジュール1は、波長変換材料として複数種の蛍光体を採用することにより、演色性を高めることが可能となる。 The phosphor that is the wavelength conversion material is not limited to the yellow phosphor, and for example, a yellow phosphor and a red phosphor, or a red phosphor and a green phosphor may be employed. Further, the phosphor as the wavelength conversion material is not limited to one type of yellow phosphor, and two types of yellow phosphors having different emission peak wavelengths may be employed. The LED module 1 can improve the color rendering properties by adopting a plurality of kinds of phosphors as the wavelength conversion material.
 本実施形態のLEDモジュール1は、光拡散基板2の他表面2sb側が、透明な第2接合部(図示せず)を介して配線パターン71に接合されている。要するに、光拡散基板2と実装基板7とは、透明な第2接合部を介して接合されている。第2接合部の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、シリコーン樹脂とエポキシ樹脂とのハイブリッド材料などを採用することができる。 In the LED module 1 of the present embodiment, the other surface 2sb side of the light diffusion substrate 2 is bonded to the wiring pattern 71 via a transparent second bonding portion (not shown). In short, the light diffusion substrate 2 and the mounting substrate 7 are bonded via the transparent second bonding portion. As the material of the second joint portion, for example, a silicone resin, an epoxy resin, a hybrid material of a silicone resin and an epoxy resin, or the like can be employed.
 実装基板7は、LEDチップ4が電気的に接続された非透光性の配線パターン71と、配線パターン71が埋設され電気絶縁性を有する絶縁部材72と、を備えている。配線パターン71は、LEDチップ4への給電用の導体パターンである。導体パターンとは、パターン化された導体部を意味する。 The mounting substrate 7 includes a non-translucent wiring pattern 71 to which the LED chip 4 is electrically connected, and an insulating member 72 in which the wiring pattern 71 is embedded and having electrical insulation. The wiring pattern 71 is a conductor pattern for supplying power to the LED chip 4. The conductor pattern means a patterned conductor portion.
 実装基板7は、絶縁部材72が、配線パターン71の裏面側だけでなく、配線パターン71の主表面側の大部分を覆っている。実装基板7は、配線パターン71の主表面側において、絶縁部材72に、LEDチップ4の第1電極および第2電極の各々に一端部が接合された各ワイヤ8の他端部を通す穴73が形成されている。 In the mounting substrate 7, the insulating member 72 covers most of the main surface side of the wiring pattern 71 as well as the back surface side of the wiring pattern 71. On the main surface side of the wiring pattern 71, the mounting substrate 7 has a hole 73 through which the other end portion of each wire 8 having one end portion bonded to each of the first electrode and the second electrode of the LED chip 4 is passed to the insulating member 72. Is formed.
 配線パターン71の材質としては、例えば、アルミニウム、アルミニウム合金、銀、銅、リン青銅、銅合金(例えば、42アロイなど)、ニッケル合金などを採用することができる。配線パターン71は、例えば、リードフレーム、金属箔、金属膜などを利用して形成することができる。リードフレームは、金属フレームであり、帯状の金属フープ材から形成されている。金属フープ材の厚みは、例えば、100μm~1500μm程度の範囲で設定することが好ましい。 As the material of the wiring pattern 71, for example, aluminum, aluminum alloy, silver, copper, phosphor bronze, copper alloy (for example, 42 alloy), nickel alloy, or the like can be used. The wiring pattern 71 can be formed using, for example, a lead frame, a metal foil, a metal film, or the like. The lead frame is a metal frame and is formed from a strip-shaped metal hoop material. The thickness of the metal hoop material is preferably set in the range of about 100 μm to 1500 μm, for example.
 リードフレームは、主表面側に、金属フープ材に比べてLEDチップ4からの光に対する反射率の高い表面処理層(図示せず)を適宜設けてもよい。表面処理層としては、例えば、Ag膜、Ni膜とPd膜とAu膜との積層膜、Ni膜とAu膜との積層膜、Ag膜とPd膜とAuAg合金膜との積層膜などを採用することができる。表面処理層は、長期的な信頼性(例えば、耐酸化性、耐腐食性、絶縁部材72との密着性など)の観点から、Ag膜よりも、Ni膜とPd膜とAu膜との積層膜、Ni膜とAu膜との積層膜、Ag膜とPd膜とAuAg合金膜などのほうが好ましい。表面処理層は、めっき層などにより構成することが好ましい。要するに、表面処理層は、めっき法により形成することが好ましい。リードフレームは、主表面側に限らず、全体に表面処理層を形成してあってもよい。また、リードフレームの主表面側の表面処理層は、スポットめっき法などによって部分的に形成するようにしてもよい。 The lead frame may be appropriately provided with a surface treatment layer (not shown) having a higher reflectance with respect to light from the LED chip 4 than the metal hoop material on the main surface side. As the surface treatment layer, for example, an Ag film, a laminated film of Ni film, Pd film and Au film, a laminated film of Ni film and Au film, a laminated film of Ag film, Pd film and AuAg alloy film are adopted. can do. The surface treatment layer is a laminate of a Ni film, a Pd film, and an Au film rather than an Ag film from the viewpoint of long-term reliability (for example, oxidation resistance, corrosion resistance, adhesion to the insulating member 72, etc.). A film, a laminated film of an Ni film and an Au film, an Ag film, a Pd film, and an AuAg alloy film are more preferable. The surface treatment layer is preferably composed of a plating layer or the like. In short, the surface treatment layer is preferably formed by a plating method. The lead frame is not limited to the main surface side, and a surface treatment layer may be formed on the whole. Further, the surface treatment layer on the main surface side of the lead frame may be partially formed by spot plating or the like.
 なお、金属フープ材としては、母材であるアルミニウム板の一表面側にアルミニウム板よりも高純度のアルミニウム膜が積層され、このアルミニウム膜上に、屈折率の異なる2種類の誘電体膜からなる増反射膜が積層された高反射基板を用いることもできる。ここで、2種類の誘電体膜としては、例えば、SiO2膜とTiO2膜とを採用することが好ましい。高反射基板としては、例えば、アラノッド(alanod)社のMIRO2、MIRO(登録商標)を用いることができる。上述のアルミニウム板としては、表面が陽極酸化処理されたものを用いてもよい。金属フープ材として、上述のような高反射基板を用いる場合には、各ワイヤ8それぞれとの電気的接続のための導電膜をめっき法などによって形成するか、増反射膜をパターニングする必要がある。 As the metal hoop material, an aluminum film having a purity higher than that of the aluminum plate is laminated on one surface side of the aluminum plate as a base material, and the dielectric film is composed of two kinds of dielectric films having different refractive indexes. It is also possible to use a highly reflective substrate on which an increased reflection film is laminated. Here, as the two types of dielectric films, for example, an SiO 2 film and a TiO 2 film are preferably employed. As the highly reflective substrate, for example, MIRO2 and MIRO (registered trademark) manufactured by alanod can be used. As the above-mentioned aluminum plate, an anodized surface may be used. When the above-described highly reflective substrate is used as the metal hoop material, it is necessary to form a conductive film for electrical connection with each wire 8 by a plating method or to pattern the reflective film. .
 配線パターン71は、LEDチップ4の第1電極と第2電極とのうちの一方が、ワイヤ8を介して電気的に接続される第1導体部(第1パターン)71aと、第1電極と第2電極とのうちの他方がワイヤ8を介して電気的に接続される第2導体部(第2パターン)71bと、を備えている。なお、図1の例では、第1電極がワイヤ8を介して第1導体部71aと電気的に接続され、第2電極がワイヤ8を介して第2導体部71bと電気的に接続されている。 The wiring pattern 71 includes a first conductor portion (first pattern) 71a in which one of the first electrode and the second electrode of the LED chip 4 is electrically connected via the wire 8, a first electrode, A second conductor portion (second pattern) 71b electrically connected to the other of the second electrodes via the wire 8. In the example of FIG. 1, the first electrode is electrically connected to the first conductor portion 71 a via the wire 8, and the second electrode is electrically connected to the second conductor portion 71 b via the wire 8. Yes.
 実装基板7は、配線パターン71において絶縁部材72により覆われた領域以外の領域の主表面側に、最表層がAu膜からなる表面処理層が形成されていることが好ましい。この表面処理層の材料は、配線パターン71の材料に比べて、耐酸化性および耐腐食性が高い材料が好ましい。ここにおいて、表面処理層は、例えば、配線パターン71が上述のリードフレームを利用して形成されていて配線パターン71の材料がCuである場合、Ni膜とPd膜とAu膜との積層膜もしくはNi膜とAu膜との積層膜からなることが好ましい。これにより、表面処理層は、耐酸化性および耐腐食性が高く、また、ワイヤ8を構成する金ワイヤとの接合強度を高めることが可能となり、また、配線パターン71の材料であるCuが表面処理層のAu膜中へ拡散するのを抑制することが可能となる。 In the mounting substrate 7, it is preferable that a surface treatment layer whose outermost layer is an Au film is formed on the main surface side of a region other than the region covered with the insulating member 72 in the wiring pattern 71. The material of the surface treatment layer is preferably a material having higher oxidation resistance and corrosion resistance than the material of the wiring pattern 71. Here, the surface treatment layer is, for example, a laminated film of a Ni film, a Pd film, and an Au film when the wiring pattern 71 is formed using the above-described lead frame and the material of the wiring pattern 71 is Cu. It is preferably made of a laminated film of a Ni film and an Au film. As a result, the surface treatment layer has high oxidation resistance and corrosion resistance, and it is possible to increase the bonding strength with the gold wire constituting the wire 8, and the surface of the wiring pattern 71 is made of Cu. It becomes possible to suppress the diffusion into the Au film of the treatment layer.
 実装基板7の平面形状は、矩形状としてある。これに対し、配線パターン71は、第1導体部71aと第2導体部71bとが規定方向(図1Aの左右方向)に並設され、且つ、第1導体部71aと第2導体部71bとの両方を包含する仮想四角形が、絶縁部材72の外周形状よりもやや小さく当該外周形状に相似な矩形となるように形成されている。ここで、配線パターン71は、第1導体部71aと第2導体部71bとで、上記仮想四角形の大部分を占めるように外形寸法が設定されている。具体的には、第1導体部71aは、外周形状が矩形状であり、上記規定方向における長さ寸法が、上記仮想四角形の上記規定方向に沿った辺の長さの4分の3よりもやや小さな寸法に設定され、上記規定方向に直交する方向における長さ寸法が、上記仮想四角形の上記規定方向に直交する方向に沿った辺の長さと同じ寸法に設定してある。また、第2導体部71bは、上記規定方向における長さ寸法が、上記仮想四角形の上記規定方向に沿った辺の長さの4分の1よりもやや小さな寸法に設定され、上記規定方向に直交する方向における長さ寸法が、上記仮想四角形の上記規定方向に直交する方向に沿った辺の長さと同じ寸法に設定してある。実装基板7は、第1導体部71aおよび第2導体部71bそれぞれの形状や大きさを特に限定するものではないが、配線パターン71の平面積が絶縁部材72の平面積に近いほうが、好ましい。これにより、LEDモジュール1は、放熱性を向上させることが可能となる。配線パターン71は、第1導体部71aと第2導体部71bとの大きさが逆でもよい。また、配線パターン71は、配線パターン71の厚み方向への第1導体部71aと第2導体部71bとのいずれか一方の投影領域内に光拡散基板2が収まるように、第1導体部71aおよび第2導体部71bそれぞれの外形寸法が設定されていることが好ましい。 The planar shape of the mounting substrate 7 is a rectangular shape. On the other hand, in the wiring pattern 71, the first conductor portion 71a and the second conductor portion 71b are arranged in parallel in the specified direction (the left-right direction in FIG. 1A), and the first conductor portion 71a and the second conductor portion 71b The virtual quadrangle including both of them is slightly smaller than the outer peripheral shape of the insulating member 72 and is formed to be a rectangle similar to the outer peripheral shape. Here, the outer dimensions of the wiring pattern 71 are set so that the first conductor portion 71a and the second conductor portion 71b occupy most of the virtual quadrangle. Specifically, the first conductor portion 71a has a rectangular outer peripheral shape, and the length dimension in the prescribed direction is greater than three-quarters of the side length along the prescribed direction of the virtual quadrangle. It is set to a slightly smaller dimension, and the length dimension in the direction perpendicular to the prescribed direction is set to the same dimension as the side length along the direction perpendicular to the prescribed direction of the virtual quadrangle. The length of the second conductor portion 71b in the specified direction is set to be slightly smaller than a quarter of the length of the side along the specified direction of the virtual quadrangle. The length dimension in the orthogonal direction is set to the same dimension as the length of the side along the direction orthogonal to the prescribed direction of the virtual quadrangle. The mounting substrate 7 does not particularly limit the shape and size of each of the first conductor portion 71a and the second conductor portion 71b, but it is preferable that the plane area of the wiring pattern 71 is close to the plane area of the insulating member 72. Thereby, the LED module 1 can improve heat dissipation. In the wiring pattern 71, the sizes of the first conductor portion 71a and the second conductor portion 71b may be reversed. In addition, the wiring pattern 71 includes the first conductor portion 71a so that the light diffusion substrate 2 is accommodated in one of the projection regions of the first conductor portion 71a and the second conductor portion 71b in the thickness direction of the wiring pattern 71. It is preferable that the outer dimensions of the second conductor portion 71b are set.
 実装基板7は、配線パターン71の一部が、光拡散基板2の実装基板7側への垂直投影領域に設けられているのが好ましい。これにより、LEDモジュール1は、LEDチップ4で発生した熱を、配線パターン71の厚み方向および横方向(面内方向)へ広げて絶縁部材72の裏面側へ伝熱させることが可能となる。よって、LEDモジュール1は、放熱性が向上してLEDチップ4の温度上昇を抑制することが可能となり、光出力のより一層の高出力化を図ることが可能となる。実装基板7は、放熱性を向上させる観点から、配線パターン71の第1導体部71aの一部が、光拡散基板2の実装基板7側への垂直投影領域の全域に亘って設けられているのが好ましく、この垂直投影領域よりも大きな規定領域の全域に亘って設けられているのが、より好ましい。 It is preferable that a part of the wiring pattern 71 is provided in the vertical projection region of the light diffusing substrate 2 on the mounting substrate 7 side of the mounting substrate 7. Thereby, the LED module 1 can spread the heat generated in the LED chip 4 in the thickness direction and the lateral direction (in-plane direction) of the wiring pattern 71 and transfer the heat to the back surface side of the insulating member 72. Therefore, the LED module 1 can improve heat dissipation and suppress an increase in temperature of the LED chip 4, and can further increase the light output. From the viewpoint of improving heat dissipation, the mounting substrate 7 is provided with a part of the first conductor portion 71a of the wiring pattern 71 over the entire vertical projection region of the light diffusion substrate 2 on the mounting substrate 7 side. It is more preferable that it is provided over the entire area of the defined area larger than the vertical projection area.
 実装基板7の平面形状は、矩形状に限らず、例えば、円形状、楕円形状、三角形状、矩形以外の多角形状などの形状としてもよい。 The planar shape of the mounting substrate 7 is not limited to a rectangular shape, and may be, for example, a circular shape, an elliptical shape, a triangular shape, or a polygonal shape other than a rectangular shape.
 絶縁部材72は、拡散反射性を有する非透光性部材である。絶縁部材72は、樹脂に反射率を高めるためのフィラーを添加した材料から形成されている。一例として、絶縁部材72は、樹脂として不飽和ポリエステルを採用し、フィラーとしてチタニアを採用することができる。絶縁部材72の樹脂としては、不飽和ポリエステルに限らず、例えば、ビニルエステルなどを採用することができる。また、フィラーとしては、チタニアに限らず、例えば、酸化マグネシウム、窒化ホウ素、水酸化アルミニウムなどを用いることができる。 The insulating member 72 is a non-translucent member having diffuse reflectivity. The insulating member 72 is formed of a material obtained by adding a filler for increasing the reflectance to a resin. As an example, the insulating member 72 can employ unsaturated polyester as a resin and titania as a filler. The resin of the insulating member 72 is not limited to unsaturated polyester, and for example, vinyl ester can be used. Moreover, as a filler, not only titania but magnesium oxide, boron nitride, aluminum hydroxide etc. can be used, for example.
 絶縁部材72は、光拡散基板2の近傍において第1導体部71a、第2導体部71bそれぞれの1箇所を露出させる穴73を有し、且つ、実装基板7の外周部において第1導体部71a、第2導体部71bそれぞれの1箇所を露出させる開孔部(図示せず)を有するように、パターニングされている。これにより、第1導体部71a、第2導体部71bは、光拡散基板2の近傍において露出した部位が、ワイヤ8が接続される接続部を構成し、実装基板7の外周部において露出した部位が外部接続用の端子部を構成している。 The insulating member 72 has a hole 73 that exposes one location of each of the first conductor portion 71 a and the second conductor portion 71 b in the vicinity of the light diffusion substrate 2, and the first conductor portion 71 a in the outer peripheral portion of the mounting substrate 7. The second conductor portion 71b is patterned to have an opening (not shown) that exposes one location. As a result, the first conductor portion 71a and the second conductor portion 71b have portions exposed in the vicinity of the light diffusion substrate 2 constituting a connecting portion to which the wire 8 is connected, and portions exposed at the outer peripheral portion of the mounting substrate 7. Constitutes a terminal portion for external connection.
 穴73は、開口形状を円形状としてある。穴73の内径は、0.5mmに設定してあるが、この値は一例であり、特に限定するものではない。穴73の形状は、円形状に限らず、例えば、矩形状、楕円形状などでもよい。穴73は、平面視においてLEDチップ4の両側に1つずつ形成されている。 The hole 73 has a circular opening shape. The inner diameter of the hole 73 is set to 0.5 mm, but this value is an example and is not particularly limited. The shape of the hole 73 is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape. One hole 73 is formed on each side of the LED chip 4 in plan view.
 実装基板7の形成方法の一例としては、例えば、まず、配線パターン71を有するリードフレームを準備してから、配線パターン71に対して表面処理層を電解めっき法により形成し、その後、インサート成形法によって、配線パターン71が埋設された絶縁部材72を成形し、その後、リードフレームの不要部分を切断するようにすればよい。この実装基板7の形成方法は、一例である。実装基板の形成方法は、他の形成方法でもよい。 As an example of a method for forming the mounting substrate 7, for example, first, a lead frame having the wiring pattern 71 is prepared, and then a surface treatment layer is formed on the wiring pattern 71 by an electrolytic plating method. Thus, the insulating member 72 in which the wiring pattern 71 is embedded may be formed, and then unnecessary portions of the lead frame may be cut. The method for forming the mounting substrate 7 is an example. The forming method of the mounting substrate may be another forming method.
 実装基板7の一表面7sa側に配置するLEDチップ4の個数は、1個に限らず、複数個でもよい。LEDチップ4の個数が複数個の場合には、LEDチップ4の個数と光拡散基板2の個数とは同じでもよいし、LEDチップ4の個数よりも光拡散基板2の個数が少なくてもよい。要するに、LEDモジュール1は、例えば、1個の光拡散基板2に1個のLEDチップ4が第1接合部3を介して接合された構成を、LEDチップ4の個数だけ備えた構成でもよいし、1個の光拡散基板2に複数個のLEDチップ4の各々が第1接合部3を介して接合された構成を備えたものでもよい。 The number of LED chips 4 arranged on the one surface 7sa side of the mounting substrate 7 is not limited to one and may be plural. When the number of LED chips 4 is plural, the number of LED chips 4 and the number of light diffusion substrates 2 may be the same, or the number of light diffusion substrates 2 may be smaller than the number of LED chips 4. . In short, the LED module 1 may have, for example, a configuration in which one LED chip 4 is bonded to one light diffusion substrate 2 via the first bonding portion 3 by the number of LED chips 4. A structure in which each of the plurality of LED chips 4 is bonded to one light diffusion substrate 2 via the first bonding portion 3 may be used.
 また、LEDモジュール1は、例えば、実装基板7の平面形状を長尺状として、実装基板7の長手方向に沿って複数個のLEDチップ4を配列した構成としてもよい。この場合、配線パターン71は、複数個のLEDチップ4を直列接続可能に構成してもよいし、並列接続可能に構成してもよいし、直並列接続可能に構成してもよい。 The LED module 1 may have a configuration in which, for example, the planar shape of the mounting substrate 7 is long, and a plurality of LED chips 4 are arranged along the longitudinal direction of the mounting substrate 7. In this case, the wiring pattern 71 may be configured such that a plurality of LED chips 4 can be connected in series, connected in parallel, or configured to be connected in series-parallel.
 ワイヤ8としては、金ワイヤに限らず、例えば、アルミニウムワイヤなどを採用することができる。 The wire 8 is not limited to a gold wire, and for example, an aluminum wire can be employed.
 LEDモジュール1は、LEDチップ4から放射された光および蛍光体から放射された光を効率良く絶縁部材72の表面で拡散反射させることが可能となる。したがって、LEDモジュール1は、実装基板7の平面サイズを光拡散基板2の平面サイズよりも大きくした構成でありながら、LEDチップ4から放射された光および蛍光体から放射された光が絶縁部材72の表面で拡散反射され、実装基板7に吸収されるのを抑制することが可能となる、これにより、LEDモジュール1は、光取り出し効率の向上を図ることが可能となる。また、LEDモジュール1は、光拡散基板2を備えていることにより、光拡散基板2直下の絶縁部材72が空気に触れないので、絶縁部材72が経年劣化しにくくなり、経年劣化による影響を低減することが可能となる。 The LED module 1 can efficiently diffuse and reflect the light emitted from the LED chip 4 and the light emitted from the phosphor on the surface of the insulating member 72. Therefore, the LED module 1 has a configuration in which the planar size of the mounting substrate 7 is larger than the planar size of the light diffusion substrate 2, but the light emitted from the LED chip 4 and the light emitted from the phosphor are the insulating member 72. It is possible to prevent the LED module 1 from being diffusely reflected and absorbed by the mounting substrate 7, thereby improving the light extraction efficiency. Further, since the LED module 1 includes the light diffusing substrate 2, the insulating member 72 directly below the light diffusing substrate 2 does not come into contact with air, so that the insulating member 72 is less likely to deteriorate over time, and the influence due to deterioration over time is reduced. It becomes possible to do.
 本実施形態のLEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の他表面2sb側に配置されLEDチップ4から放射される光および蛍光体から放射される光を拡散反射する拡散反射性を有する非透光性部材(絶縁部材72)と、を備えていることにより、光取り出し効率を向上させることが可能となり、光出力(光束)の高出力化を図ることが可能となる。 The LED module 1 according to the present embodiment diffuses and reflects a light transmissive light diffusing substrate 2, light emitted from the LED chip 4 and light emitted from the phosphor disposed on the other surface 2 sb side of the light diffusing substrate 2. By providing a non-translucent member (insulating member 72) having diffuse reflection property, it is possible to improve the light extraction efficiency and to increase the light output (light flux). It becomes.
 LEDモジュール1は、実装基板7の一表面7sa側において色変換部5および色変換部5から露出している各ワイヤ8を覆う透明材料からなるカバー部(図示せず)を備えることが好ましい。カバー部の材料としては、色変換部5の材料である透明材料と同じ材料などを採用することができる。すなわち、カバー部の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、エポキシ樹脂、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用することができる。なお、カバー部の光出射面は、色変換部5の光出射面に沿った形状であることが好ましい。また、LEDモジュール1の製造時には、色変換部5を形成した後に、例えば、ディスペンサなどにより、各穴73にカバー部の材料を充填して各ワイヤ8が光拡散基板2に接触しないようにし、その後、カバー部を形成すればよい。 The LED module 1 preferably includes a color converter 5 and a cover (not shown) made of a transparent material that covers each wire 8 exposed from the color converter 5 on the one surface 7sa side of the mounting substrate 7. As the material of the cover portion, the same material as the transparent material that is the material of the color conversion portion 5 can be used. That is, as the cover material, for example, silicone resin, epoxy resin, epoxy resin, acrylic resin, glass, organic / inorganic hybrid materials in which organic and inorganic components are mixed and combined at the nm level or molecular level are used. can do. In addition, it is preferable that the light emission surface of the cover part has a shape along the light emission surface of the color conversion unit 5. In addition, when the LED module 1 is manufactured, after forming the color conversion unit 5, for example, by using a dispenser or the like, the holes 73 are filled with the material of the cover unit so that the wires 8 do not contact the light diffusion substrate 2. Then, what is necessary is just to form a cover part.
 ところで、本願発明者らは、光取り出し効率の向上を図るという課題を解決するために、特にLEDチップ4を搭載するサブマウント部材20(図2A、2B、3A~3D、7~9参照)、サブマウント部材20におけるLEDチップ4側とは反対側に配置される支持部材170(図7~9参照)に着目し、鋭意研究を行った。 Incidentally, in order to solve the problem of improving the light extraction efficiency, the inventors of the present application particularly attach the LED chip 4 to the submount member 20 (see FIGS. 2A, 2B, 3A to 3D, 7 to 9), Focusing on the support member 170 (see FIGS. 7 to 9) disposed on the side opposite to the LED chip 4 side in the submount member 20, intensive research was conducted.
 まず、本願発明者らは、LEDチップ4をサブマウント部材20に第1接合部3を介して接合することでLEDチップ4をサブマウント部材20に搭載した構造(参考例1)に関して、サブマウント部材20の材質の違いによる光取り出し効率の違いについて検討した。LEDチップ4としては、基板41がサファイア基板であり、発光層43から放射される光が青色光であるGaN系青色LEDチップを準備した。また、サブマウント部材20としては、透光性セラミックス基板(透光性アルミナ基板)、透光性セラミックス基板に比べて反射率の高い金属板(Ag基板、Al基板)を準備した。また、第1接合部3の材料は、シリコーン樹脂とした。 First, the inventors of the present application relate to a structure (Reference Example 1) in which the LED chip 4 is mounted on the submount member 20 by bonding the LED chip 4 to the submount member 20 via the first joint portion 3. The difference in the light extraction efficiency due to the difference in the material of the member 20 was examined. As the LED chip 4, a GaN-based blue LED chip was prepared in which the substrate 41 was a sapphire substrate and the light emitted from the light emitting layer 43 was blue light. Further, as the submount member 20, a translucent ceramic substrate (translucent alumina substrate) and a metal plate (Ag substrate, Al substrate) having a higher reflectance than the translucent ceramic substrate were prepared. Moreover, the material of the 1st junction part 3 was made into the silicone resin.
 図2Aには、参考例1の構造においてサブマウント部材20を透光性セラミックス基板とした場合について、発光層43の任意の点から放射された光の進行経路を矢印で模式的に示してある。また、図2Bには、参考例1の構造においてサブマウント部材20をAg基板とした場合について、発光層43の任意の点から放射された光の進行経路を矢印で模式的に示してある。参考例1の構造での光取り出し効率については、サブマウント部材20を透光性セラミックス基板とした場合の方が、サブマウント部材20をAg基板とした場合よりも、8~10%、高かった。 FIG. 2A schematically shows the travel path of light emitted from an arbitrary point of the light emitting layer 43 with an arrow when the submount member 20 is a translucent ceramic substrate in the structure of Reference Example 1. . FIG. 2B schematically shows the travel path of light emitted from an arbitrary point of the light emitting layer 43 with an arrow when the submount member 20 is an Ag substrate in the structure of Reference Example 1. The light extraction efficiency in the structure of Reference Example 1 was 8 to 10% higher when the submount member 20 was a translucent ceramic substrate than when the submount member 20 was an Ag substrate. .
 参考例1の構造については、図3A~3Dに示す構造パラメータを設定した。LEDチップ4については、平面形状を長方形とし、長辺の長さ寸法H41を0.5mm、短辺の長さ寸法H42を0.24mmとした。また、LEDチップ4については、基板41とLED構造部40とを合わせた厚み寸法t4を0.14mm、LED構造部40の厚み寸法t5を0.0004mm、LEDチップ4の上記一面から発光層43までの厚み寸法t6を0.0003mmとした。また、LEDチップ4については、基板41の材料を屈折率が1.77のサファイアとし、LED構造部40を屈折率が2.5のGaNとした。 For the structure of Reference Example 1, the structure parameters shown in FIGS. 3A to 3D were set. For the LED chip 4, the planar shape was rectangular, the long side length dimension H41 was 0.5 mm, and the short side length dimension H42 was 0.24 mm. For the LED chip 4, the combined thickness 41 of the substrate 41 and the LED structure 40 is 0.14 mm, the thickness t5 of the LED structure 40 is 0.0004 mm, and the light emitting layer 43 is formed from the one surface of the LED chip 4. The thickness dimension t6 was set to 0.0003 mm. For the LED chip 4, the material of the substrate 41 is sapphire having a refractive index of 1.77, and the LED structure 40 is GaN having a refractive index of 2.5.
 また、発光層43については、発光層43の全点いずれからも、全方向に等方的に均一な強度の光が放射されるものと仮定した。 In addition, regarding the light emitting layer 43, it is assumed that light of isotropically uniform intensity is radiated from all points of the light emitting layer 43 in all directions.
 また、第1接合部3については、厚み寸法t3を0.005mmとし、材料を屈折率が1.41のシリコーン樹脂とした。 For the first joint portion 3, the thickness dimension t3 was 0.005 mm, and the material was a silicone resin having a refractive index of 1.41.
 サブマウント部材20については、平面形状を矩形状とし、隣り合う2つの辺の長さ寸法H1、H2それぞれを3.75mm、3.75mmとした。したがって、LEDチップ4の長手方向に沿った方向におけるLEDチップ4とサブマウント部材20の外周線との距離L1は、1.625mmとし、LEDチップ4の短手方向に沿った方向におけるLEDチップ4とサブマウント部材20の外周線との距離L2は、1.755mmとした。 For the submount member 20, the planar shape was rectangular, and the lengths H1 and H2 of two adjacent sides were set to 3.75 mm and 3.75 mm, respectively. Therefore, the distance L1 between the LED chip 4 and the outer peripheral line of the submount member 20 in the direction along the longitudinal direction of the LED chip 4 is 1.625 mm, and the LED chip 4 in the direction along the short side direction of the LED chip 4 is used. And the distance L2 between the outer peripheral line of the submount member 20 was 1.755 mm.
 また、サブマウント部材20の光学特性については、透光性セラミックス基板の場合、反射率を92%、透過率を8%と仮定した。そして、本願発明者らは、サブマウント部材20が透光性セラミックス基板の場合について、図3Dに示すように、セラミックスからなる母材中に母材とは屈折率の異なる球状の粒子が混入されている構造モデルを考え、上述の反射率、透過率それぞれの値が得られるように、母材の屈折率を1.77、粒子の屈折率を1.0、粒子サイズを3.0μm、粒子濃度を16.5%と仮定した。 Also, regarding the optical characteristics of the submount member 20, in the case of a translucent ceramic substrate, it was assumed that the reflectance was 92% and the transmittance was 8%. Then, in the case where the submount member 20 is a translucent ceramic substrate, the inventors of the present application mix spherical particles having a refractive index different from that of the base material into the base material made of ceramics as shown in FIG. 3D. The refractive index of the base material is 1.77, the refractive index of the particle is 1.0, the particle size is 3.0 μm, and the particle size is calculated so that the values of the reflectance and transmittance described above can be obtained. The concentration was assumed to be 16.5%.
 また、参考例1の構造から放射される全光束は、参考例1の構造が無限遠にあると見なすファーフィールド(far field)受光器で検出するものと仮定した。 Also, it was assumed that the total luminous flux radiated from the structure of Reference Example 1 was detected by a far field receiver that the structure of Reference Example 1 considered to be at infinity.
 光取り出し効率の実測値については、参考例1の構造においてサブマウント部材20を透光性セラミックス基板とした場合の光取り出し効率が72.5%であるのに対し、参考例1の構造においてサブマウント部材20をAl基板とした場合の光取り出し効率が68.7%であった。 Regarding the actual measurement value of the light extraction efficiency, the light extraction efficiency in the structure of Reference Example 1 is 72.5% when the submount member 20 is a translucent ceramic substrate. The light extraction efficiency when the mount member 20 is an Al substrate was 68.7%.
 図4は、参考例1の構造において発光層43での吸収率と全体での光取り出し効率との関係をシミュレーションした結果を示す。図4中のD1は、サブマウント部材20を透光性セラミックス基板とした場合のシミュレーション結果を示す。図4中のD2は、サブマウント部材20をAl基板とした場合のシミュレーション結果を示す。なお、このシミュレーションでは、LEDチップ4の側面ではフレネル損失のみが生じると仮定した。また、このシミュレーションは、モンテカルロ法を用いた光線追跡法による幾何光学シミュレーションである。 FIG. 4 shows the result of simulating the relationship between the absorption rate in the light emitting layer 43 and the overall light extraction efficiency in the structure of Reference Example 1. D1 in FIG. 4 indicates a simulation result when the submount member 20 is a translucent ceramic substrate. D2 in FIG. 4 shows a simulation result when the submount member 20 is an Al substrate. In this simulation, it is assumed that only the Fresnel loss occurs on the side surface of the LED chip 4. Further, this simulation is a geometric optical simulation based on a ray tracing method using the Monte Carlo method.
 図4に示したシミュレーション結果からは、発光層43での光吸収率が約0.2%のときにD1、D2とも光取り出し効率が約70%となり、実測値に近い値が得られた。 From the simulation results shown in FIG. 4, when the light absorption rate in the light emitting layer 43 is about 0.2%, the light extraction efficiency is about 70% for both D1 and D2, and a value close to the actual measurement value is obtained.
 図5は、参考例1の構造においてサブマウント部材20をAl基板とした場合の光取り出し効率に対するサブマウント部材20を透光性セラミックス基板の光取り出し効率の比を光取り出し効率比として定義し、発光層43の光吸収率と光取り出し効率比との関係を示したものである。 FIG. 5 defines the ratio of the light extraction efficiency of the translucent ceramic substrate to the light extraction efficiency when the submount member 20 is an Al substrate in the structure of Reference Example 1 as the light extraction efficiency ratio. The relationship between the light absorption rate of the light emitting layer 43 and light extraction efficiency ratio is shown.
 図5からは、発光層43の光吸収率の大小にかかわらず光取り出し効率比が1よりも大きな値となっていることが分かる。すなわち、図5からは、発光層43の光吸収率が同一条件であれば、参考例1の構造においてサブマウント部材20をAl基板とした場合よりも、サブマウント部材20を透光性セラミックス基板とした場合のほうが、光取り出し効率が高くなることが分かる。参考例1の構造においてサブマウント部材20をAl基板とした場合よりも、サブマウント部材20を透光性セラミックス基板とした場合のほうが、光取り出し効率が高くなるという結果は、実測値の場合と同様である。 FIG. 5 shows that the light extraction efficiency ratio is larger than 1 regardless of the light absorption rate of the light emitting layer 43. That is, from FIG. 5, if the light absorption rate of the light emitting layer 43 is the same, the submount member 20 is made of a translucent ceramic substrate compared to the case where the submount member 20 is made of an Al substrate in the structure of Reference Example 1. It can be seen that the light extraction efficiency is higher in the case of. In the structure of Reference Example 1, the light extraction efficiency is higher when the submount member 20 is a translucent ceramic substrate than when the submount member 20 is an Al substrate. It is the same.
 図6は、参考例1の構造においてサブマウント部材20を透光性セラミックス基板、Al基板とした場合、それぞれの光取り出し効率の内訳をシミュレーションした結果である。図6では、基板材質がセラミックスの場合が、サブマウント部材20が透光性セラミックス基板の場合に対応し、基板材質がアルミニウムの場合が、サブマウント部材20がAl基板の場合に対応している。光取り出し効率の内訳に関して、図6中のI1は、LEDチップ4の上記一面からの光取り出し効率である。また、図6中のI2は、LEDチップ4の側面からの光取り出し効率である。また、図6中のI3は、サブマウント部材20におけるLEDチップ4側の露出表面(上面)からの光取り出し効率である。また、図6中のI4は、サブマウント部材20の側面とLEDチップ4側とは反対側の露出表面(下面)とからの光取り出し効率である。 FIG. 6 shows the result of simulating the breakdown of the light extraction efficiency when the submount member 20 is made of a translucent ceramic substrate and an Al substrate in the structure of Reference Example 1. In FIG. 6, the case where the substrate material is ceramic corresponds to the case where the submount member 20 is a translucent ceramic substrate, and the case where the substrate material is aluminum corresponds to the case where the submount member 20 is an Al substrate. . Regarding the breakdown of the light extraction efficiency, I 1 in FIG. 6 is the light extraction efficiency from the one surface of the LED chip 4. Further, I2 in FIG. 6 is the light extraction efficiency from the side surface of the LED chip 4. Further, I3 in FIG. 6 is the light extraction efficiency from the exposed surface (upper surface) of the submount member 20 on the LED chip 4 side. Moreover, I4 in FIG. 6 is the light extraction efficiency from the side surface of the submount member 20 and the exposed surface (lower surface) opposite to the LED chip 4 side.
 図6から、参考例1の構造においてサブマウント部材20をAl基板とした場合には、I3およびI4が0であるのに対して、サブマウント部材20を透光性セラミックス基板とした場合には、I1およびI2それぞれが若干減少するものの、I3とI4とを合わせて9.3%の光取り出し効率が得られ、トータルとしての光取り出し効率が向上することが分かる。 From FIG. 6, when the submount member 20 is an Al substrate in the structure of Reference Example 1, I3 and I4 are 0, whereas when the submount member 20 is a translucent ceramic substrate. Although I1 and I2 are slightly reduced, it is understood that the light extraction efficiency of 9.3% is obtained by combining I3 and I4, and the total light extraction efficiency is improved.
 図7、8は、各々の左下に示す参考例2の構造、各々の中央下に示す参考例3の構造、各々の右下に示す参考例4の構造それぞれについて、サブマウント部材20の平面サイズを2mm□(2mm×2mm)で一定とし厚み寸法を種々変化させた場合について、光束を積分球により測定した結果をまとめた図である。参考例2の構造は、参考例1の構造に対して、サブマウント部材20におけるLEDチップ4側とは反対側に配置される支持部材170を追加した構造である。参考例3の構造は、参考例2の構造にLEDチップ4を封止するシリコーン樹脂からなる封止部150を追加した構造である。参考例4の構造は、参考例2の構造にLEDチップ4を覆う色変換部5を追加した構造である。色変換部5は、透明材料としてシリコーン樹脂を採用し、波長変換材料として黄色蛍光体を採用した。図7と図8との相違点は、図7の支持部材170がAl基板であるのに対し、図8の支持部材170がAg基板である点のみである。なお、Al基板、Ag基板の反射率は、それぞれ、約78%、約98%である。 7 and 8 show the planar size of the submount member 20 for each of the structure of Reference Example 2 shown at the lower left of each, the structure of Reference Example 3 shown at the lower center of each, and the structure of Reference Example 4 shown at the lower right of each. It is the figure which put together the result of having measured the light beam with the integrating sphere about the case where the thickness is changed variously while the thickness is constant at 2 mm □ (2 mm × 2 mm). The structure of Reference Example 2 is a structure in which a support member 170 disposed on the side opposite to the LED chip 4 side in the submount member 20 is added to the structure of Reference Example 1. The structure of Reference Example 3 is a structure in which a sealing portion 150 made of a silicone resin that seals the LED chip 4 is added to the structure of Reference Example 2. The structure of Reference Example 4 is a structure in which a color conversion unit 5 that covers the LED chip 4 is added to the structure of Reference Example 2. The color conversion unit 5 employs a silicone resin as a transparent material and a yellow phosphor as a wavelength conversion material. The difference between FIG. 7 and FIG. 8 is only that the support member 170 in FIG. 7 is an Al substrate, whereas the support member 170 in FIG. 8 is an Ag substrate. The reflectances of the Al substrate and the Ag substrate are about 78% and about 98%, respectively.
 また、図7のE1、E2、E3およびE4は、サブマウント部材20の厚み寸法を、それぞれ、0.4mm、0.6mm、0.8mmおよび1.0mmとしたときの光束比である。また、図8のF1、F2、F3およびF4は、サブマウント部材20の厚み寸法を、それぞれ、0.4mm、0.6mm、0.8mmおよび1.0mmとしたときの光束比である。光束比は、参考例2の構造、参考例3の構造および参考例4の構造それぞれの光束と、サブマウント部材20として厚み寸法が1.0mmの高純度アルミナ基板を採用し支持部材170をなくした基準構造での光束と、の相対値である。したがって、図7、8の結果は、光束比が1よりも大きい場合、基準構造よりも光束が大きいことを意味し、光束比が1よりも小さい場合、基準構造よりも光束が小さいことを意味している。 Further, E1, E2, E3, and E4 in FIG. 7 are light flux ratios when the thickness dimensions of the submount member 20 are 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm, respectively. Further, F1, F2, F3, and F4 in FIG. 8 are light flux ratios when the thickness dimension of the submount member 20 is 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm, respectively. The luminous flux ratio is the same as that of the structure of Reference Example 2, the structure of Reference Example 3 and the structure of Reference Example 4, and a high-purity alumina substrate having a thickness dimension of 1.0 mm is used as the submount member 20 and the support member 170 is eliminated. Relative value of the luminous flux in the reference structure. Therefore, the results of FIGS. 7 and 8 mean that the luminous flux ratio is larger than 1, meaning that the luminous flux is larger than that of the reference structure, and if the luminous flux ratio is smaller than 1, it means that the luminous flux is smaller than that of the reference structure. is doing.
 図7の結果から、本願発明者らは、参考例4の構造において支持部材170をAl基板とした場合、サブマウント部材20の厚み寸法を0.8mm以上とすれば、基準構造よりも光束を大きくすることが可能であると考えた。また、図8の結果から、本願発明者らは、参考例4の構造において支持部材170をAg基板とした場合、サブマウント部材20の厚み寸法を0.8mm以上とすれば、基準構造よりも光束を大きくすることが可能であると考えた。逆に言えば、本願発明者らは、参考例4の構造において支持部材170をAl基板やAg基板などの金属板とした場合、光取り出し効率を向上させるという観点から、サブマウント部材20の厚み寸法の薄型化が制限されると考えた。 From the result of FIG. 7, when the support member 170 is an Al substrate in the structure of Reference Example 4, the inventors of the present invention can emit a light beam more than the reference structure if the thickness dimension of the submount member 20 is 0.8 mm or more. I thought it was possible to make it bigger. Further, from the results of FIG. 8, when the support member 170 is an Ag substrate in the structure of Reference Example 4, if the thickness dimension of the submount member 20 is 0.8 mm or more, the inventors of the present invention have a structure that is higher than that of the reference structure. We thought that it was possible to increase the luminous flux. Conversely, when the support member 170 is a metal plate such as an Al substrate or an Ag substrate in the structure of Reference Example 4, the inventors of the present invention have the thickness of the submount member 20 from the viewpoint of improving the light extraction efficiency. We thought that thinning of dimensions would be limited.
 また、本願発明者らは、LEDチップ4から支持部材170に到達した光を拡散反射させることでLEDチップ4へ戻る光を低減するために、支持部材170として白色系の拡散反射基板を用いることを検討した。 Further, the inventors of the present application use a white diffuse reflection substrate as the support member 170 in order to reduce the light returning to the LED chip 4 by diffusely reflecting the light reaching the support member 170 from the LED chip 4. It was investigated.
 図9は、参考例2の構造、参考例3の構造および参考例4の構造の各々について、サブマウント部材20の平面サイズを2mm□で一定とし、厚み寸法を0.4mmとした場合について、光束を積分球により測定した結果をまとめた図である。 FIG. 9 shows a case where the planar size of the submount member 20 is constant at 2 mm □ and the thickness dimension is 0.4 mm for each of the structure of Reference Example 2, the structure of Reference Example 3, and the structure of Reference Example 4. It is the figure which put together the result of having measured the light beam with the integrating sphere.
 図9のE1は、支持部材170をAl基板とした場合の光束比である。図9のF1は、支持部材170をAg基板とした場合の光束比である。図9のG1は、支持部材170を白色系の拡散反射基板(白色塗装を施した基板)とした場合の光束比である。拡散反射基板の反射率は、約92%である。なお、図10には、本願発明者らが比較検討したAg基板、MIRO2およびセラミックス基板(上述の高純度アルミナ基板)それぞれの全反射率の波長依存性を示す。 E1 in FIG. 9 is a luminous flux ratio when the support member 170 is an Al substrate. F1 in FIG. 9 is a luminous flux ratio when the support member 170 is an Ag substrate. G1 in FIG. 9 is a luminous flux ratio when the support member 170 is a white-type diffuse reflection substrate (a substrate coated with white paint). The reflectance of the diffuse reflection substrate is about 92%. FIG. 10 shows the wavelength dependence of the total reflectance of each of the Ag substrate, MIRO2, and the ceramic substrate (the above-described high-purity alumina substrate) that were compared and examined by the inventors of the present application.
 図9の光束比は、参考例2の構造、参考例3の構造および参考例4の構造それぞれの光束と、サブマウント部材20として厚み寸法が1.0mmの高純度アルミナ基板を採用し支持部材170をなくした基準構造での光束と、の相対値である。したがって、図9の結果は、光束比が1よりも大きい場合、基準構造よりも光束が大きいことを意味し、光束比が1よりも小さい場合、基準構造よりも光束が小さいことを意味している。 The light beam ratio in FIG. 9 is obtained by using a light beam of each of the structure of Reference Example 2, the structure of Reference Example 3, and the structure of Reference Example 4 and a high-purity alumina substrate having a thickness dimension of 1.0 mm as the submount member 20. This is a relative value with respect to the luminous flux in the reference structure without 170. Therefore, the result of FIG. 9 means that when the luminous flux ratio is larger than 1, it means that the luminous flux is larger than that of the reference structure, and when the luminous flux ratio is smaller than 1, it means that the luminous flux is smaller than that of the reference structure. Yes.
 本願発明者らは、図9の結果から、支持部材170として拡散反射基板を採用することにより、支持部材170としてAl基板やAg基板などの金属基板を採用する場合に比べて、光取り出し効率の向上を図ることが可能となるという知見を得た。 From the results shown in FIG. 9, the inventors of the present invention employ a diffuse reflection substrate as the support member 170, so that the light extraction efficiency is higher than when a metal substrate such as an Al substrate or an Ag substrate is employed as the support member 170. We obtained knowledge that it would be possible to improve.
 そして、本願発明者らは、この知見に基いて、本実施形態のLEDモジュール1を想起するに至った。 The inventors of the present application have come to recall the LED module 1 of the present embodiment based on this knowledge.
 LEDモジュール1は、上述のように、透光性の光拡散基板2と、光拡散基板2の一表面2sa側に透明な第1接合部3を介して接合されたLEDチップ4と、光拡散基板2の一表面2sa側でLEDチップ4を覆う色変換部5と、を備えている。ここで、色変換部5は、LEDチップ4から放射される光によって励起されてLEDチップ4とは異なる色の光を放射する蛍光体を含有する透明材料により形成されている。また、LEDモジュール1は、光拡散基板2の他表面2sb側に配置される絶縁部材72が設けられた実装基板7を備えている。絶縁部材72は、LEDチップ4から放射される光および蛍光体から放射される光を拡散反射する拡散反射性を有する非透光性部材からなる。LEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の他表面2sb側に配置され拡散反射性を有する非透光性部材を構成する絶縁部材72と、を備えていることにより、光取り出し効率を向上させることが可能となり、光出力(光束)の高出力化を図ることが可能となる。LEDモジュール1は、光拡散基板2による光の導光効果により、光取り出し効率の向上を図ることが可能となり、また、LEDチップ4から放射されて光拡散基板2の一表面2sa側から他表面2sb側に透過する光を絶縁部材72により拡散反射することにより、色変換部5の蛍光体の変換効率を向上させて光取り出し効率を向上させることが可能となるものと推考される。 As described above, the LED module 1 includes the light-transmitting light diffusion substrate 2, the LED chip 4 bonded to the one surface 2sa side of the light diffusion substrate 2 via the transparent first bonding portion 3, and the light diffusion. And a color conversion unit 5 that covers the LED chip 4 on the one surface 2sa side of the substrate 2. Here, the color conversion unit 5 is formed of a transparent material containing a phosphor that is excited by light emitted from the LED chip 4 and emits light of a color different from that of the LED chip 4. In addition, the LED module 1 includes a mounting substrate 7 provided with an insulating member 72 disposed on the other surface 2sb side of the light diffusion substrate 2. The insulating member 72 is made of a non-translucent member having diffuse reflectivity that diffusely reflects light emitted from the LED chip 4 and light emitted from the phosphor. The LED module 1 includes a translucent light diffusing substrate 2 and an insulating member 72 that is disposed on the other surface 2sb side of the light diffusing substrate 2 and constitutes a non-translucent member having diffuse reflectivity. As a result, the light extraction efficiency can be improved, and the light output (light flux) can be increased. The LED module 1 can improve the light extraction efficiency by the light guiding effect of the light diffusion substrate 2, and is emitted from the LED chip 4 to the other surface from the one surface 2sa side of the light diffusion substrate 2. It is assumed that the light that is transmitted to the 2sb side is diffusely reflected by the insulating member 72, thereby improving the conversion efficiency of the phosphor of the color conversion unit 5 and improving the light extraction efficiency.
 実装基板7の配線パターン71は、絶縁部材72の平面視における外周線の位置まで広げてもよいが、LEDモジュール1を搭載する部材(例えば、照明器具の器具本体など)が導電性材料により形成されているような場合には、上述の外周線よりも内側の位置まで広げるにとどめて、この部材との所望の沿面距離を確保できるようすることが好ましい。 The wiring pattern 71 of the mounting substrate 7 may be extended to the position of the outer peripheral line in a plan view of the insulating member 72, but the member (for example, the fixture body of the lighting fixture) on which the LED module 1 is mounted is formed of a conductive material. In such a case, it is preferable that the desired creepage distance with the member can be ensured only by extending the position to the inner side of the outer peripheral line.
 また、LEDモジュール1は、実装基板7における配線パターン71の裏面側が絶縁部材72で覆われているので、金属製の部材(例えば、照明器具における金属製の器具本体や放熱部材など)に対して設置して用いるような場合に、耐雷サージ性を高めることが可能となる。 Moreover, since the back surface side of the wiring pattern 71 in the mounting substrate 7 is covered with the insulating member 72, the LED module 1 is made of a metal member (for example, a metal fixture body or a heat dissipation member in a lighting fixture). When installed and used, lightning surge resistance can be improved.
 (実施形態2)
 以下では、本実施形態のLEDモジュール1について図11に基いて説明する。
(Embodiment 2)
Below, the LED module 1 of this embodiment is demonstrated based on FIG.
 本実施形態のLEDモジュール1は、光拡散基板2が、絶縁部材72に埋設されて光拡散基板2の側面2scと他表面2sbとが絶縁部材72に接している点などが実施形態1のLEDモジュール1と相違する。なお、実施形態1と同様の構成要素については、同様の符号を付して説明を省略する。 The LED module 1 according to the present embodiment is different from the LED module according to the first embodiment in that the light diffusing substrate 2 is embedded in the insulating member 72 and the side surface 2sc and the other surface 2sb of the light diffusing substrate 2 are in contact with the insulating member 72. Different from module 1. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 また、実装基板7は、配線パターン71が、光拡散基板2の一表面2sa上に設けられた部位を備えている。ここで、配線パターン71は、第1導体部71aおよび第2導体部71bそれぞれが、光拡散基板2の一表面2sa上に設けられた部位を備えている。なお、第1導体部71aのうち実装基板7の厚み方向に沿って形成された部位と光拡散基板2の一表面2sa上に設けられた部位とを合わせた第1延設部位71abを、L字状の形状としてある。また、第2導体部71bのうち実装基板7の厚み方向に沿って形成された部位と光拡散基板2の一表面2sa上に設けられた部位とを合わせた第2延設部位71bbを、L字状の形状としてある。 Further, the mounting substrate 7 includes a portion where the wiring pattern 71 is provided on one surface 2sa of the light diffusion substrate 2. Here, the wiring pattern 71 includes a portion where the first conductor portion 71 a and the second conductor portion 71 b are provided on the one surface 2 sa of the light diffusion substrate 2. A first extending portion 71ab, which is a combination of a portion formed along the thickness direction of the mounting substrate 7 in the first conductor portion 71a and a portion provided on the one surface 2sa of the light diffusion substrate 2, is represented by L It has a letter shape. Further, a second extending portion 71bb, which is a combination of the portion formed along the thickness direction of the mounting substrate 7 in the second conductor portion 71b and the portion provided on the one surface 2sa of the light diffusion substrate 2, is represented by L It has a letter shape.
 配線パターン71は、第1電極に一端部が接合されたワイヤ8の他端部と、第1導体部71aにおいて光拡散基板2の一表面2sa上に設けられた部位とが、接合されている。また、配線パターン71は、第2電極に一端部が接合されたワイヤ8の他端部と、第2導体部71bにおいて光拡散基板2の一表面2sa上に設けられた部位とが、接合されている。すなわち、配線パターン71は、第1延設部位71ab、第2延設部位71bbの各々の先端部にワイヤ8の他端部が接合されている。配線パターン71は、1つのリードフレームを利用して形成してある。ここで、第1延設部位71ab、第2延設部位71bbは、例えば、リードフレームの元となる金属フープ材において第1延設部位71ab、第2延設部位71bbそれぞれとなる長方形状の領域の3辺に沿ったU字状のスリットを、金属フープ材に対してプレス加工を施すことで形成し、その後で、上記長方形状の領域を折り曲げ加工することにより形成することができる。配線パターン71は、リードフレームを利用して形成してあるものに限らず、金属膜や金属箔などを利用して形成してもよい。配線パターン71を金属膜や金属箔を利用して形成する場合には、光拡散基板2の厚み方向への光拡散基板2の投影領域の全域を含む配線パターン71を形成することが可能となる。 In the wiring pattern 71, the other end portion of the wire 8 whose one end portion is bonded to the first electrode and the portion provided on the one surface 2sa of the light diffusion substrate 2 in the first conductor portion 71a are bonded. . In addition, the wiring pattern 71 has the other end of the wire 8 whose one end is bonded to the second electrode and the portion provided on the one surface 2sa of the light diffusion substrate 2 in the second conductor 71b. ing. That is, in the wiring pattern 71, the other end of the wire 8 is joined to the tip of each of the first extending part 71ab and the second extending part 71bb. The wiring pattern 71 is formed using one lead frame. Here, the first extension part 71ab and the second extension part 71bb are, for example, rectangular regions that become the first extension part 71ab and the second extension part 71bb, respectively, in the metal hoop material that is the source of the lead frame. The U-shaped slits along the three sides can be formed by pressing the metal hoop material, and then the rectangular region can be bent. The wiring pattern 71 is not limited to being formed using a lead frame, and may be formed using a metal film, a metal foil, or the like. When the wiring pattern 71 is formed using a metal film or a metal foil, it is possible to form the wiring pattern 71 including the entire projection area of the light diffusion substrate 2 in the thickness direction of the light diffusion substrate 2. .
 色変換部5は、光拡散基板2の一表面2sa側においてLEDチップ4および各ワイヤ8を覆っている。 The color conversion unit 5 covers the LED chip 4 and each wire 8 on the one surface 2sa side of the light diffusion substrate 2.
 本実施形態のLEDモジュール1は、光拡散基板2が、絶縁部材72に埋設されて光拡散基板2の側面2scと他表面2sbとが絶縁部材72に接しており、色変換部5が、光拡散基板2の一表面2sa側においてLEDチップ4および各ワイヤ8を覆っているので、実施形態1のLEDモジュール1のようなカバー部を形成することなく、信頼性を向上させることが可能となる。これにより、本実施形態のLEDモジュール1は、実施形態1のLEDモジュール1に比べて低コスト化を図ることが可能となる。 In the LED module 1 of this embodiment, the light diffusion substrate 2 is embedded in the insulating member 72, the side surface 2sc and the other surface 2sb of the light diffusion substrate 2 are in contact with the insulating member 72, and the color conversion unit 5 Since the LED chip 4 and each wire 8 are covered on the one surface 2sa side of the diffusion substrate 2, the reliability can be improved without forming a cover portion like the LED module 1 of the first embodiment. . Thereby, the LED module 1 of this embodiment can achieve cost reduction compared with the LED module 1 of Embodiment 1.
 (実施形態3)
 以下では、本実施形態のLEDモジュール1について図12、13に基いて説明する。
(Embodiment 3)
Below, the LED module 1 of this embodiment is demonstrated based on FIG.
 本実施形態のLEDモジュール1は、光拡散基板2が厚み方向において重なる二層のセラミック層2a、2bからなる点が、実施形態1のLEDモジュール1と相違する。なお、実施形態1のLEDモジュール1と同様の構成要素については、同様の符号を付して説明を省略する。 The LED module 1 of the present embodiment is different from the LED module 1 of the first embodiment in that the light diffusion substrate 2 is composed of two ceramic layers 2a and 2b that overlap in the thickness direction. In addition, about the component similar to the LED module 1 of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 光拡散基板2は、各セラミック層2a、2bの光学特性が互いに異なり、LEDチップ4から遠いセラミック層2aの方が、LEDチップ4から放射される光に対する反射率が高くなっている。ここで、光学特性とは、反射率、透過率、吸収率などである。光拡散基板2は、厚み方向において重なる複数のセラミック層からなり、各セラミック層の光学特性が互いに異なり、LEDチップ4から遠いセラミック層ほど、LEDチップ4から放射される光に対する反射率が高い性質を有していればよい。 In the light diffusion substrate 2, the optical characteristics of the ceramic layers 2a and 2b are different from each other, and the ceramic layer 2a far from the LED chip 4 has a higher reflectance with respect to the light emitted from the LED chip 4. Here, the optical characteristics include reflectance, transmittance, absorption rate, and the like. The light diffusing substrate 2 is composed of a plurality of ceramic layers that overlap in the thickness direction, and the optical characteristics of the ceramic layers are different from each other, and the ceramic layer farther from the LED chip 4 has a higher reflectivity with respect to light emitted from the LED chip 4. As long as it has.
 これにより、LEDモジュール1は、LEDチップ4の発光層43(図2A参照)からLEDチップ4の厚み方向の他面側へ放射された光が、セラミック層2bとセラミック層2aとの界面で拡散反射されやすくなる。これにより、LEDモジュール1は、LEDチップ4から光拡散基板2側へ出射した光がLEDチップ4へ戻るのを抑制することが可能となるとともに、実装基板7の一表面7saへ入射するのを抑制することが可能となり、光拡散基板2の一表面2saや側面2scから光を取り出しやすくなる。よって、LEDモジュール1は、光取り出し効率の向上を図ることが可能となり、且つ、実装基板7の反射率が光取り出し効率に与える影響を低減することが可能となり、光取り出し効率の経時変化を抑制することが可能となる。 Accordingly, in the LED module 1, light emitted from the light emitting layer 43 (see FIG. 2A) of the LED chip 4 to the other surface side in the thickness direction of the LED chip 4 is diffused at the interface between the ceramic layer 2b and the ceramic layer 2a. It becomes easy to be reflected. Thereby, the LED module 1 can suppress the light emitted from the LED chip 4 to the light diffusion substrate 2 side from returning to the LED chip 4 and can be incident on the one surface 7sa of the mounting substrate 7. It becomes possible to suppress light, and it becomes easy to extract light from the one surface 2sa and the side surface 2sc of the light diffusion substrate 2. Therefore, the LED module 1 can improve the light extraction efficiency, and can reduce the influence of the reflectance of the mounting substrate 7 on the light extraction efficiency, thereby suppressing the temporal change of the light extraction efficiency. It becomes possible to do.
 光拡散基板2については、説明の便宜上、LEDチップ4に最も近い最上層のセラミック層2bを第1セラミック層2bと称し、LEDチップ4から最も遠い最下層のセラミック層2aを第2セラミック層2aと称することもある。 For the light diffusion substrate 2, for convenience of explanation, the uppermost ceramic layer 2b closest to the LED chip 4 is referred to as a first ceramic layer 2b, and the lowermost ceramic layer 2a farthest from the LED chip 4 is referred to as a second ceramic layer 2a. Sometimes called.
 第1セラミック層2bの材料としては、例えば、アルミナ(Al23)を採用することができる。ここで、第1セラミック層2bは、例えば、アルミナ基板により構成することができる。第1セラミック層2bは、アルミナ基板により構成する場合、アルミナ粒子の粒径が、1μm~30μmであることが好ましい。第1セラミック層2bは、アルミナ粒子の粒径が大きい方が、反射率を小さくでき、アルミナ粒子の粒径が小さいほうが散乱効果を大きくできる。要するに、反射率を小さくすることと、散乱効果を大きくすることとは、トレードオフの関係にある。 As the material of the first ceramic layer 2b, for example, alumina (Al 2 O 3 ) can be employed. Here, the 1st ceramic layer 2b can be comprised with an alumina substrate, for example. When the first ceramic layer 2b is composed of an alumina substrate, the particle diameter of the alumina particles is preferably 1 μm to 30 μm. The first ceramic layer 2b can reduce the reflectance when the particle diameter of the alumina particles is large, and can increase the scattering effect when the particle diameter of the alumina particles is small. In short, reducing the reflectivity and increasing the scattering effect are in a trade-off relationship.
 上述の粒径とは、個数基準粒度分布曲線により得られる値である。個数基準粒度分布曲線は、画像イメージング法により粒度分布を測定し得られるもので、具体的には、走査型電子顕微鏡(scanning electron microscope:SEM)によって観察してSEM画像を取得し、そのSEM画像を画像処理して求めた粒子の大きさ(二軸平均径)と個数とから得られるものである。この個数基準粒度分布曲線において積算値が50%のときの粒径値をメディアン径(d50)といい、上述の粒径は、メディアン径を意味している。 The above-mentioned particle size is a value obtained from a number-based particle size distribution curve. The number-based particle size distribution curve is obtained by measuring the particle size distribution by an image imaging method. Specifically, the SEM image is obtained by observing with a scanning electron microscope (SEM), and the SEM image is obtained. Is obtained from the size (biaxial average diameter) and number of particles obtained by image processing. In this number-based particle size distribution curve, the particle size value when the integrated value is 50% is called the median diameter (d 50 ), and the above-mentioned particle size means the median diameter.
 なお、理論上、アルミナ基板における球形のアルミナ粒子の粒径と反射率との関係は、図14に示すような関係にあり、粒径が小さくなるほど反射率が高くなる。第1セラミック層2bのメディアン径(d50)と反射率の測定値との関係は、図14の理論値と略同じであった。反射率の測定値は、分光光度計および積分球を用いて測定した値である。 Theoretically, the relationship between the particle size of the spherical alumina particles on the alumina substrate and the reflectance is as shown in FIG. 14, and the reflectance increases as the particle size decreases. The relationship between the median diameter (d 50 ) of the first ceramic layer 2b and the measured value of the reflectance was substantially the same as the theoretical value of FIG. The measured value of reflectance is a value measured using a spectrophotometer and an integrating sphere.
 第2セラミック層2aの材料としては、例えば、SiO2とAl23とAl23よりも高屈折率の材料(例えば、ZrO2、TiO2など)とCaOとBaOとを成分として含む複合材料を採用することができる。第2セラミック層2aは、Al23粒子の粒径が、0.1μm~1μmであることが好ましい。第2セラミック層2aは、複合材料の成分、組成、粒径、厚さなどを調整することで、光学特性(反射率、透過率、吸収率など)を調整することが可能である。光拡散基板2は、第1セラミック層2bと第2セラミック層2aとで同じ材料を採用する場合、第1セラミック層2bの粒径を第2セラミック層2aの粒径よりも大きくすればよい。 As a material of the second ceramic layer 2a, for example, SiO 2 , Al 2 O 3 and Al 2 O 3 having a higher refractive index (for example, ZrO 2 , TiO 2, etc.), CaO and BaO are included as components. Composite materials can be employed. The second ceramic layer 2a preferably has an Al 2 O 3 particle diameter of 0.1 μm to 1 μm. The second ceramic layer 2a can adjust optical characteristics (reflectance, transmittance, absorptivity, etc.) by adjusting the composition, composition, particle size, thickness, and the like of the composite material. When the light diffusion substrate 2 employs the same material for the first ceramic layer 2b and the second ceramic layer 2a, the particle size of the first ceramic layer 2b may be larger than the particle size of the second ceramic layer 2a.
 LEDモジュール1の実施例は、光拡散基板2の厚さHsを0.5mm、第2セラミック層2aの厚さHsaを0.1mm、波長が450nmの光に対する第2セラミック層2aの反射率を96%、第1セラミック層2bの厚さHsbを0.4mm、波長が450nmの光に対する第1セラミック層2bの反射率を80%としてあるが、これらの数値は一例であり、特に限定するものではない。また、LEDモジュール1の実施例は、光拡散基板2の平面サイズを、2mm□(2mm×2mm)としてあるが、特に限定するものではない。 In the embodiment of the LED module 1, the thickness Hs of the light diffusion substrate 2 is 0.5 mm, the thickness Hsa of the second ceramic layer 2a is 0.1 mm, and the reflectance of the second ceramic layer 2a with respect to light having a wavelength of 450 nm is set. 96%, the thickness Hsb of the first ceramic layer 2b is 0.4 mm, and the reflectance of the first ceramic layer 2b with respect to light having a wavelength of 450 nm is 80%. However, these numerical values are only examples and are particularly limited. is not. In the embodiment of the LED module 1, the planar size of the light diffusion substrate 2 is 2 mm □ (2 mm × 2 mm), but it is not particularly limited.
 LEDモジュール1の実施例に用いた光拡散基板2の反射率-波長特性は、図15中のA1に示した通りである。また、厚さが0.4mmの単一層のアルミナ基板の反射率-波長特性は、図15中のA2に示した通りであった。なお、図15の反射率-波長特性は、分光光度計および積分球を用いて測定した結果である。 The reflectance-wavelength characteristics of the light diffusion substrate 2 used in the example of the LED module 1 are as indicated by A1 in FIG. Further, the reflectance-wavelength characteristic of the single layer alumina substrate having a thickness of 0.4 mm was as indicated by A2 in FIG. The reflectance-wavelength characteristics in FIG. 15 are the results of measurement using a spectrophotometer and an integrating sphere.
 第1セラミック層2bは、1500℃~1600℃程度の高温で焼成されたセラミックスからなる第1の緻密質層である。第1セラミック層2bは、高温焼成によってセラミック粒子同士が強固に結合されており、第2セラミック層2aよりも良好な剛性を有している。ここで、良好な剛性とは、相対的に抗折強度が高いことを意味する。第1セラミック層2bの材料としては、アルミナが好ましい。 The first ceramic layer 2b is a first dense layer made of ceramics fired at a high temperature of about 1500 ° C. to 1600 ° C. In the first ceramic layer 2b, ceramic particles are firmly bonded by high-temperature firing, and the first ceramic layer 2b has better rigidity than the second ceramic layer 2a. Here, good rigidity means that the bending strength is relatively high. As a material of the first ceramic layer 2b, alumina is preferable.
 また、第2セラミック層2aは、第1セラミック層2bに比べて比較的低温である1000℃以下(例えば、850℃~1000℃)で焼成されたセラミックスである。第2セラミック層2aを構成するセラミックスは、例えば、セラミックフィラー(セラミックの微粒子)とガラス成分を含んだ第2の緻密質層や、セラミックフィラー(セラミックの微粒子)とガラス成分を含んだ多孔質層とすることができる。 Further, the second ceramic layer 2a is a ceramic fired at 1000 ° C. or less (for example, 850 ° C. to 1000 ° C.), which is a relatively low temperature compared to the first ceramic layer 2b. The ceramic constituting the second ceramic layer 2a is, for example, a second dense layer containing a ceramic filler (ceramic fine particles) and a glass component, or a porous layer containing a ceramic filler (ceramic fine particles) and a glass component. It can be.
 第2の緻密質層は、セラミックフィラー同士が焼結により結合し、ガラス成分がセラミックフィラーの周りにマトリックス(matrix)となり配置され、緻密質セラミックとなったものである。第2の緻密質層では、主に、セラミックフィラーが光反射機能を発揮する。第2の緻密質層は、例えば、硼珪酸ガラス、硼珪酸亜鉛ガラスおよびアルミナを含むガラスセラミックス、ソーダ石灰ガラスおよびアルミナを含むガラスセラミックスなどにセラミックフィラーを混合した材料を採用することができる。ガラスセラミックスに含まれるガラスの含有量は、35~60wt%程度の範囲で設定するのが好ましい。また、ガラスセラミックスに含まれるセラミックスの含有量は、40~60wt%程度の範囲で設定するのが好ましい。なお、第2の緻密質層は、硼珪酸亜鉛ガラスの亜鉛成分を酸化チタンや酸化タンタルに置換してガラスセラミックスの屈折率を高くすることもできる。セラミックフィラーの材料としては、ガラスセラミックスよりも屈折率の高い材料が好ましく、例えば、五酸化タンタル、五酸化ニオブ、酸化チタン、酸化バリウム、硫酸バリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化亜鉛、酸化ジルコニウム、ケイ酸塩酸化物(ジルコン)などを採用することができる。 The second dense layer is a ceramic in which the ceramic fillers are bonded together by sintering, and the glass component is arranged around the ceramic filler as a matrix. In the second dense layer, the ceramic filler mainly exhibits a light reflecting function. For the second dense layer, for example, a material in which a ceramic filler is mixed with glass ceramics containing borosilicate glass, zinc borosilicate glass and alumina, glass ceramics containing soda lime glass and alumina, or the like can be used. The glass content contained in the glass ceramic is preferably set in the range of about 35 to 60 wt%. The content of the ceramic contained in the glass ceramic is preferably set in the range of about 40 to 60 wt%. Note that the second dense layer can also increase the refractive index of the glass ceramic by replacing the zinc component of the borosilicate glass with titanium oxide or tantalum oxide. The material of the ceramic filler is preferably a material having a higher refractive index than glass ceramics, for example, tantalum pentoxide, niobium pentoxide, titanium oxide, barium oxide, barium sulfate, magnesium oxide, calcium oxide, strontium oxide, zinc oxide, Zirconium oxide, silicate oxide (zircon), or the like can be used.
 第2セラミック層2aを多孔質層により構成する場合(以下、この場合の「第2セラミック層2a」を「多孔質層2a」とも称する。)には、図16に示す模式図のように、多数の気孔20cを有する多孔質層2aと第1セラミック層2bとの間に第1ガラス層20aaを介在させ、多孔質層2aにおける第1セラミック層2b側とは反対側に第2ガラス層20abを積層してあるのが好ましい。多孔質層2aの気孔率は、40%程度に設定してあるが、特に限定するものではない。第1ガラス層20aaおよび第2ガラス層20abは、いずれも、ガラス成分からなる透明層であり、可視光を透過する。第1ガラス層20aaおよび第2ガラス層20abの厚みは、例えば10μm程度に設定すればよいが、特に限定するものではない。第1ガラス層20aaおよび第2ガラス層20abの各ガラス成分は、いずれも、約半分がSiO2で構成されているが、特に限定するものではない。 When the second ceramic layer 2a is composed of a porous layer (hereinafter, the "second ceramic layer 2a" in this case is also referred to as "porous layer 2a"), as shown in the schematic diagram of FIG. The first glass layer 20aa is interposed between the porous layer 2a having a large number of pores 20c and the first ceramic layer 2b, and the second glass layer 20ab on the opposite side of the porous layer 2a from the first ceramic layer 2b side. Are preferably laminated. The porosity of the porous layer 2a is set to about 40%, but is not particularly limited. Each of the first glass layer 20aa and the second glass layer 20ab is a transparent layer made of a glass component and transmits visible light. The thicknesses of the first glass layer 20aa and the second glass layer 20ab may be set to, for example, about 10 μm, but are not particularly limited. About half of each glass component of the first glass layer 20aa and the second glass layer 20ab is composed of SiO 2 , but is not particularly limited.
 第1ガラス層20aaは、多孔質層2aと第1セラミック層2bとの間に介在するように配され、製造時の焼成によって多孔質層2aの表面および第1セラミック層2bの表面と密着している。 The first glass layer 20aa is disposed so as to be interposed between the porous layer 2a and the first ceramic layer 2b, and is in close contact with the surface of the porous layer 2a and the surface of the first ceramic layer 2b by firing during manufacturing. ing.
 第2ガラス層20abは、多孔質層2aにおける第1セラミック層2b側とは反対側に配され、多孔質層2aを保護する。これにより、多孔質層2aにおける第1セラミック層2b側とは反対側の表面に存在する気孔20cは、第2ガラス層20abにより封孔されている。 The second glass layer 20ab is disposed on the opposite side of the porous layer 2a from the first ceramic layer 2b side, and protects the porous layer 2a. Thereby, the pores 20c existing on the surface of the porous layer 2a opposite to the first ceramic layer 2b side are sealed by the second glass layer 20ab.
 多孔質層2aは、セラミックフィラー(セラミックの微粒子)とガラス成分を含んでなる。多孔質層2aは、セラミックフィラー同士が焼結により結合してクラスターとなり、多孔質構造が形成されている。ガラス成分はセラミックフィラーのバインダとなる。多孔質層2aでは、セラミックフィラーと多数の気孔20cが主たる光反射機能を発揮する。なお、多孔質層2aは、例えば、国際公開番号WO2012/039442 A1の段落〔0023〕-〔0026〕および〔図4〕に開示されているパッケージの製造工程に準じて形成することができる。 The porous layer 2a includes a ceramic filler (ceramic fine particles) and a glass component. In the porous layer 2a, ceramic fillers are bonded by sintering to form a cluster, and a porous structure is formed. The glass component serves as a binder for the ceramic filler. In the porous layer 2a, the ceramic filler and the numerous pores 20c exhibit the main light reflecting function. The porous layer 2a can be formed, for example, according to the package manufacturing process disclosed in paragraphs [0023]-[0026] and [FIG. 4] of International Publication No. WO2012 / 039442 A1.
 多孔質層2aは、例えば、ガラス成分とセラミック成分(アルミナ、ジルコニアなど)との重量比率を変えることにより、反射率を変えることが可能である。つまり、多孔質層2aは、ガラス配合率を変えることにより、反射率を変えることが可能である。図17は、横軸がガラス配合率、縦軸が多孔質層2aに光を入射したときの反射光についての積分球による積分強度である。積分球では、波長が380~780nmの反射光を積分した。図17からは、ガラス配合率を低くすることにより、反射率を高めることが可能となることが分かる。 The porous layer 2a can change the reflectance by changing the weight ratio of the glass component and the ceramic component (alumina, zirconia, etc.), for example. That is, the reflectance of the porous layer 2a can be changed by changing the glass blending ratio. In FIG. 17, the horizontal axis represents the glass mixture ratio, and the vertical axis represents the integrated intensity by the integrating sphere for the reflected light when light is incident on the porous layer 2 a. In the integrating sphere, reflected light having a wavelength of 380 to 780 nm was integrated. From FIG. 17, it can be seen that the reflectance can be increased by lowering the glass blending ratio.
 本実施形態のLEDモジュール1の実施例では、第1セラミック層2bを、アルミナを1600℃で焼成することによって形成し、多孔質層2aを、ガラス成分とセラミック成分とを20:80の重量比率となるように配合した材料を850℃で焼成することによって形成している。また、実施例では、ガラス成分としてメディアン径が約3μmの硼珪酸ガラスを採用し、アルミナとして、メディアン径が約0.5μmのものとメディアン径が約2μmのものとを配合したものを採用し、ジルコニアとしてメディアン径が約0.2μmのものを採用している。また、実施例では、第1セラミック層2bの厚さを0.38mm、多孔質層2aの厚さを0.10mmとしている。実施例における光拡散基板2の反射率-波長特性は、図18中のA3に示した通りであった。また、厚さが0.38mmの単一層のアルミナ基板の反射率-波長特性は、図18中のA4に示した通りであった。なお、多孔質層2aにおけるガラス成分とセラミック成分との重量比率や、各材料の粒径(メディアン径)は、特に限定するものではない。 In the example of the LED module 1 of the present embodiment, the first ceramic layer 2b is formed by firing alumina at 1600 ° C., and the porous layer 2a is formed by a weight ratio of 20:80 between the glass component and the ceramic component. It forms by baking the material mix | blended so that it may become at 850 degreeC. In the examples, borosilicate glass having a median diameter of about 3 μm is used as the glass component, and alumina having a median diameter of about 0.5 μm and a median diameter of about 2 μm is used. As zirconia, a median diameter of about 0.2 μm is used. In the embodiment, the thickness of the first ceramic layer 2b is 0.38 mm, and the thickness of the porous layer 2a is 0.10 mm. The reflectance-wavelength characteristics of the light diffusion substrate 2 in the example were as indicated by A3 in FIG. Further, the reflectance-wavelength characteristic of a single layer alumina substrate having a thickness of 0.38 mm was as indicated by A4 in FIG. The weight ratio between the glass component and the ceramic component in the porous layer 2a and the particle size (median diameter) of each material are not particularly limited.
 多孔質層2aは、製造時において第1ガラス層20aa、第2ガラス層20abの各ガラス成分が浸み込むことにより、厚み方向の両面から内部に向けて、ガラス成分の濃度が漸減する傾斜組成を有している。 The porous layer 2a has a gradient composition in which the concentration of the glass component gradually decreases from both sides in the thickness direction to the inside when the glass components of the first glass layer 20aa and the second glass layer 20ab penetrate during manufacturing. have.
 具体的には、厚みが100μm程度の多孔質層2aの厚み方向に沿った断面を顕微鏡で観察した結果、多孔質層2aの厚み方向の両面から深さが約20μmまでの各領域では、単位面積当たりでガラスが70%以上の面積を占め、ガラスの緻密質層が存在している。これに対し、多孔質層2aの厚み方向の両面から深さが20μmよりも深い内部領域では、単位面積当たりでガラスが20%程度の面積を占め、ガラスとセラミックフィラーとが互いにある程度の割合で混在する疎な層が存在している。 Specifically, as a result of observing a cross section along the thickness direction of the porous layer 2a having a thickness of about 100 μm with a microscope, in each region having a depth of about 20 μm from both sides in the thickness direction of the porous layer 2a, the unit Glass occupies an area of 70% or more per area, and there is a dense layer of glass. On the other hand, in the inner region where the depth from both sides in the thickness direction of the porous layer 2a is deeper than 20 μm, the glass occupies an area of about 20% per unit area, and the glass and the ceramic filler are in a certain ratio to each other. There are sparse mixed layers.
 本実施形態のLEDモジュール1は、光拡散基板2が、互いに光学特性が異なる二層のセラミック層2a、2bからなり、LEDチップ4から遠いセラミック層2aの方が、LEDチップ4に近いセラミック層2bに比べて、LEDチップ4から放射される光に対する反射率が高い。これにより、本実施形態のLEDモジュール1は、光拡散基板2が単一層のアルミナ基板のみにより構成されている場合に比べて、光取り出し効率を向上させることが可能となる。本実施形態のLEDモジュール1では、光拡散基板2の一表面2saで反射される光を低減することが可能となってLEDチップ4での吸収損失を低減することが可能となる。更に、本実施形態のLEDモジュール1では、光拡散基板2での光の吸収率(略0%)を実装基板7での光の吸収率(例えば、2~8%程度)よりも低下させることが可能であり、光拡散基板2の一表面2saに入射した光の一部が第1セラミック層2b内で散乱されたり、第1セラミック層2bと第2セラミック層2aとの界面で反射されたりすることが可能となる。よって、LEDモジュール1は、光拡散基板2を透過して実装基板7の一表面7saに達する光を低減することが可能となって、実装基板7での吸収損失を低減することが可能となり、光取り出し効率の向上が可能となる。 In the LED module 1 of the present embodiment, the light diffusion substrate 2 is composed of two ceramic layers 2 a and 2 b having different optical characteristics, and the ceramic layer 2 a farther from the LED chip 4 is closer to the LED chip 4. Compared with 2b, the reflectance with respect to the light radiated | emitted from LED chip 4 is high. Thereby, the LED module 1 of this embodiment can improve light extraction efficiency compared with the case where the light-diffusion board | substrate 2 is comprised only by the single layer alumina substrate. In the LED module 1 of the present embodiment, it is possible to reduce the light reflected by the one surface 2sa of the light diffusion substrate 2 and to reduce the absorption loss in the LED chip 4. Furthermore, in the LED module 1 of this embodiment, the light absorption rate (approximately 0%) in the light diffusion substrate 2 is made lower than the light absorption rate (for example, about 2 to 8%) in the mounting substrate 7. A part of the light incident on one surface 2sa of the light diffusion substrate 2 is scattered in the first ceramic layer 2b or reflected at the interface between the first ceramic layer 2b and the second ceramic layer 2a. It becomes possible to do. Therefore, the LED module 1 can reduce the light that passes through the light diffusion substrate 2 and reaches the one surface 7sa of the mounting substrate 7, and can reduce the absorption loss in the mounting substrate 7. The light extraction efficiency can be improved.
 ところで、本実施形態のLEDモジュール1では、第1セラミック層2bと第2セラミック層2aとで、相対的に、第1セラミック層2bの光の透過率を高くし、第2セラミック層2aでの光の散乱率を高くしている。これにより、LEDモジュール1は、LEDチップ4から遠い第2セラミック層2aで光を拡散させることが可能となり、第1セラミック層2bのみの場合に比べて、実装基板7に到達する前に拡散される光が多くなると推考される。また、LEDモジュール1は、光拡散基板2直下で実装基板7に反射された光がLEDチップ4に戻らずに拡散される可能性も高くなると推考される。また、LEDモジュール1は、光拡散基板2を第2セラミック層2aのみにより構成すると、LEDチップ4から光拡散基板2側へ放射された光がLEDチップ4の近くで散乱される可能性が高くなるので、LEDチップ4の近くで散乱された光がLEDチップ4に戻ってしまう可能性が高くなると推考される。よって、LEDモジュール1は、光拡散基板2を第2セラミック層2aのみにより構成する場合に比べて、LEDチップ4に戻る光を少なくできるものと推考される。また、LEDモジュール1は、光拡散基板2を第1セラミック層2bのみにより構成する場合に比べて、光拡散基板2として同じ反射率を得るために必要な光拡散基板2の厚さを薄くすることが可能となる。 By the way, in the LED module 1 of the present embodiment, the first ceramic layer 2b and the second ceramic layer 2a relatively increase the light transmittance of the first ceramic layer 2b, and the second ceramic layer 2a The light scattering rate is increased. Thereby, the LED module 1 can diffuse light by the second ceramic layer 2a far from the LED chip 4, and is diffused before reaching the mounting substrate 7 as compared with the case of only the first ceramic layer 2b. It is assumed that there will be more light. Further, in the LED module 1, it is assumed that the light reflected by the mounting substrate 7 immediately below the light diffusion substrate 2 is likely to be diffused without returning to the LED chip 4. Further, in the LED module 1, when the light diffusion substrate 2 is configured only by the second ceramic layer 2a, the light emitted from the LED chip 4 toward the light diffusion substrate 2 is highly likely to be scattered near the LED chip 4. Therefore, it is estimated that the possibility that the light scattered near the LED chip 4 returns to the LED chip 4 is increased. Therefore, it is conceivable that the LED module 1 can reduce the light returning to the LED chip 4 as compared with the case where the light diffusion substrate 2 is configured only by the second ceramic layer 2a. Further, in the LED module 1, the thickness of the light diffusing substrate 2 required to obtain the same reflectance as the light diffusing substrate 2 is reduced as compared with the case where the light diffusing substrate 2 is configured by only the first ceramic layer 2b. It becomes possible.
 色変換部5は、光拡散基板2の一表面2sa上でLEDチップ4と各ワイヤ8の各々の一部とを覆う半球状に形成されている。このため、LEDモジュール1では、各ワイヤ8の各々の残りの部分と色変換部5とを覆う封止部(図示せず)を設けることが好ましい。封止部は、透明材料からなることが好ましい。封止部の透明材料としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用することができる。封止部の透明材料は、色変換部5の透明材料との線膨張率差が小さい材料が好ましく、線膨張率が同じ材料がより好ましい。これにより、LEDモジュール1は、封止部と色変換部5との線膨張率差に起因して封止部と色変換部5との界面付近で各ワイヤ8の各々に応力が集中するのを抑制することが可能となる。よって、LEDモジュール1は、各ワイヤ8の断線が発生するのを抑制することが可能となる。さらに、LEDモジュール1は、封止部と色変換部5との線膨張率差に起因して封止部または色変換部5にクラックが発生するのを抑制することが可能となる。また、封止部は、例えば、半球状に形成することが好ましいが、これに限らず、例えば、半楕円球状や半円柱状などの形状としてもよい。 The color converter 5 is formed in a hemispherical shape covering the LED chip 4 and a part of each wire 8 on the one surface 2sa of the light diffusion substrate 2. For this reason, in LED module 1, it is preferable to provide the sealing part (not shown) which covers each remaining part of each wire 8, and the color conversion part 5. FIG. The sealing portion is preferably made of a transparent material. As the transparent material of the sealing portion, for example, an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or the molecular level, such as silicone resin, epoxy resin, acrylic resin, glass, or the like may be employed. it can. The transparent material of the sealing part is preferably a material having a small difference in linear expansion coefficient from the transparent material of the color conversion part 5, and more preferably a material having the same linear expansion coefficient. Thereby, in the LED module 1, stress concentrates on each of the wires 8 near the interface between the sealing portion and the color conversion portion 5 due to the difference in linear expansion coefficient between the sealing portion and the color conversion portion 5. Can be suppressed. Therefore, the LED module 1 can suppress the disconnection of each wire 8. Furthermore, the LED module 1 can suppress the occurrence of cracks in the sealing part or the color conversion part 5 due to the difference in linear expansion coefficient between the sealing part and the color conversion part 5. Moreover, although it is preferable to form a sealing part, for example in a hemispherical shape, it is not restricted to this, For example, it is good also as shapes, such as a semi-elliptical spherical shape and a semi-cylindrical shape.
 LEDモジュール1の光取り出し効率が向上する原理については、図19、20A、20Bおよび20Cの推定メカニズム図で説明する。なお、本実施形態のLEDモジュール1は、仮に推定メカニズムが別であっても、本発明の範囲内である。 The principle of improving the light extraction efficiency of the LED module 1 will be described with reference to the estimation mechanism diagrams of FIGS. 19, 20A, 20B, and 20C. Note that the LED module 1 of the present embodiment is within the scope of the present invention even if the estimation mechanism is different.
 図19、20A、20Bおよび20Cに示した矢印は、LEDチップ4の発光層43(図2A参照)から放射された光の進行経路を模式的に示したものである。図19、20Aおよび20Bにおける実線の矢印は、発光層43から放射され光拡散基板2の一表面2saで反射された光の進行経路を模式的に示している。また、図19、20A、20Bおよび20Cの各々における破線の矢印は、発光層43から放射され光拡散基板2内に進入した光の進行経路を模式的に示している。 19, 20 </ b> A, 20 </ b> B, and 20 </ b> C schematically show the travel path of light emitted from the light emitting layer 43 (see FIG. 2A) of the LED chip 4. 19, 20 </ b> A, and 20 </ b> B schematically show the traveling path of the light emitted from the light emitting layer 43 and reflected by the one surface 2sa of the light diffusion substrate 2. 19, 20 </ b> A, 20 </ b> B, and 20 </ b> C each schematically shows a traveling path of light emitted from the light emitting layer 43 and entering the light diffusion substrate 2.
 本願発明者らは、図19、20Aおよび20Bに示すように、第1セラミック層2bにおいて、セラミック粒子と粒界相(ガラス成分が主成分)との屈折率差に起因して、セラミック粒子と粒界相との界面で、反射や屈折が生じる、と推定した。また、本願発明者らは、図19、20Cに示すように、第2セラミック層2aにおいて、セラミック粒子と気孔や粒界相(ガラス成分が主成分)との屈折率差に起因して、セラミック粒子と気孔や粒界相との界面で、反射や屈折が生じる、と推定した。また、本願発明者らは、図19、20Cに示すように、第2セラミック層2aにおいて、気孔と粒界相との屈折率差に起因して、気孔と粒界相との界面で、反射や屈折が生じる、と推定した。また、本願発明者らは、セラミックの板材に関して、板厚が同じであれば、セラミック粒子の粒径が大きいほど、界面の数が少なくなり、光が単位長さだけ進行する場合にセラミック粒子と粒界相との界面を通る確率が小さくなるため、反射率が小さくなり透過率が大きくなる、と推定した。 As shown in FIGS. 19, 20A and 20B, the inventors of the present application, in the first ceramic layer 2b, due to the difference in refractive index between the ceramic particles and the grain boundary phase (glass component is the main component), It was estimated that reflection and refraction occurred at the interface with the grain boundary phase. Further, as shown in FIGS. 19 and 20C, the inventors of the present application caused a difference in the refractive index between ceramic particles and pores or grain boundary phases (mainly glass components) in the second ceramic layer 2a. It was estimated that reflection and refraction occurred at the interface between the particle and the pore or grain boundary phase. Further, as shown in FIGS. 19 and 20C, the inventors of the present application reflected on the interface between the pores and the grain boundary phase due to the difference in refractive index between the pores and the grain boundary phase in the second ceramic layer 2a. It was estimated that refraction occurred. In addition, regarding the ceramic plate material, the inventors of the present invention, if the plate thickness is the same, the larger the particle size of the ceramic particles, the fewer the number of interfaces, and the case where the ceramic particles and Since the probability of passing through the interface with the grain boundary phase is reduced, it is estimated that the reflectance is reduced and the transmittance is increased.
 そして、本願発明者らは、LEDチップ4から放射された光を、第1セラミック層2bにおいてできるだけ透過させ、第2セラミック層2aにおいてできるだけ反射させることにより、LEDモジュール1の光取り出し効率を向上できるものと推考した。このため、光拡散基板2は、第1セラミック層2bと第2セラミック層2aとで、第1セラミック層2bにおけるセラミック粒子の粒径を相対的に大きくすることが好ましく、第2セラミック層2aにおけるセラミック粒子の粒径を相対的に小さくし、かつ第2セラミック層2aが気孔を含んだ構成とすることが好ましい。 The inventors of the present application can improve the light extraction efficiency of the LED module 1 by transmitting the light emitted from the LED chip 4 as much as possible in the first ceramic layer 2b and reflecting it as much as possible in the second ceramic layer 2a. I guessed it. For this reason, in the light diffusion substrate 2, it is preferable that the first ceramic layer 2b and the second ceramic layer 2a have a relatively large particle size of the ceramic particles in the first ceramic layer 2b. It is preferable that the ceramic particles have a relatively small particle size and the second ceramic layer 2a includes pores.
 本実施形態のLEDモジュール1では、光拡散基板2が厚み方向において重なる二層のセラミック層2a、2bからなることにより、光取り出し効率の向上を図ることが可能となる。 In the LED module 1 of the present embodiment, the light diffusion substrate 2 is composed of the two ceramic layers 2a and 2b that are overlapped in the thickness direction, whereby the light extraction efficiency can be improved.
 本実施形態のLEDモジュール1では、光拡散基板2における複数のセラミック層(第1セラミック層2b、第2セラミック層2a)が、互いに光学特性の異なる透光層を構成している。 In the LED module 1 of the present embodiment, a plurality of ceramic layers (first ceramic layer 2b and second ceramic layer 2a) in the light diffusion substrate 2 constitute light-transmitting layers having different optical characteristics.
 要するに、光拡散基板2は、厚み方向において重なる複数の透光層からなり、当該複数の透光層の光学特性が互いに異なり、LEDチップ4から遠い透光層ほど、LEDチップ4から放射される光に対する反射率が高い性質を有していればよい。以下では、LEDチップ4に最も近い最上層の透光層を第1透光層と称し、LEDチップ4から最も遠い最下層の透光層を第2透光層と称することもある。 In short, the light diffusion substrate 2 includes a plurality of light-transmitting layers that overlap in the thickness direction, and the optical characteristics of the light-transmitting layers are different from each other, and the light-transmitting layers that are farther from the LED chip 4 are radiated from the LED chip 4. What is necessary is just to have a property with the high reflectance with respect to light. Hereinafter, the uppermost light transmitting layer closest to the LED chip 4 may be referred to as a first light transmitting layer, and the lowermost light transmitting layer farthest from the LED chip 4 may be referred to as a second light transmitting layer.
 第1透光層は、LEDチップ4から放射される光の透過率が高く、屈折率がLEDチップ4の屈折率に近い材料が好ましい。第1透光層の屈折率がLEDチップ4の屈折率に近いとは、第1透光層の屈折率と、LEDチップ4における基板41(図2A、2B参照)の屈折率との差が0.1以下であることを意味し、屈折率差が0であるのがより好ましい。また、第1透光層は、耐熱性が高い材料が好ましい。 The first light transmissive layer is preferably made of a material having a high transmittance of light emitted from the LED chip 4 and a refractive index close to the refractive index of the LED chip 4. That the refractive index of the first light transmissive layer is close to the refractive index of the LED chip 4 is that the difference between the refractive index of the first light transmissive layer and the refractive index of the substrate 41 (see FIGS. 2A and 2B) in the LED chip 4 is. It means 0.1 or less, and the difference in refractive index is more preferably 0. The first light transmissive layer is preferably made of a material having high heat resistance.
 第1透光層の材料は、セラミックに限らず、例えば、ガラス、SiC、GaN、GaP、サファイア、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどを採用することもできる。セラミックの材料としては、Al23に限らず、他の金属酸化物(例えば、マグネシア、ジルコニア、チタニアなど)や、金属窒化物(例えば、窒化アルミニウムなど)などでもよい。第1透光層の材料は、LEDチップ4から放射された光を前方散乱させる観点から、単結晶よりもセラミックのほうが好ましい。 The material of the first light transmissive layer is not limited to ceramic, and for example, glass, SiC, GaN, GaP, sapphire, epoxy resin, silicone resin, unsaturated polyester, and the like can be employed. The ceramic material is not limited to Al 2 O 3 , but may be other metal oxides (eg, magnesia, zirconia, titania), metal nitride (eg, aluminum nitride). The material of the first light transmissive layer is preferably ceramic rather than single crystal from the viewpoint of forward scattering the light emitted from the LED chip 4.
 透光性セラミックスとしては、例えば、株式会社村田製作所の製品であるルミセラ(登録商標)、日本ガイシ株式会社のハイセラム(製品名)などを採用することもできる。ルミセラ(登録商標)は、Ba(Mg,Ta)O3系の複合ペロブスカイト構造を主結晶相としている。ハイセラムは、透光性アルミナセラミックスである。 As the translucent ceramic, for example, Lumicera (registered trademark), which is a product of Murata Manufacturing Co., Ltd., Hi-Serum (product name) of NGK Co., Ltd., and the like can be employed. Lumisera (registered trademark) has a Ba (Mg, Ta) O 3 -based composite perovskite structure as a main crystal phase. High serum is a translucent alumina ceramic.
 第1透光層の材料は、セラミックの場合、粒径が1μm~5μm程度であるのが好ましい。 When the material of the first light transmitting layer is ceramic, the particle size is preferably about 1 μm to 5 μm.
 第1透光層は、単結晶の内部に空隙や、屈折率を変化させた改質部などを形成したものでもよい。空隙や改質部などは、例えば、フェムト秒レーザからのレーザ光を、単結晶における空隙や改質部の形成予定領域に集光照射することで形成することができる。フェムト秒レーザのレーザ光の波長や照射条件などは、単結晶の材料や、形成対象(空隙、改質部)、形成対象の大きさなどによって、適宜変更すればよい。また、第1透光層は、ベース樹脂(例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなど)に、このベース樹脂(以下、「第1ベース樹脂」という。)とは屈折率の異なるフィラー(以下、「第1フィラー」という。)を含有させたものでもよい。第1フィラーは、第1ベース樹脂との屈折率差が小さいほうが好ましい。また、第1フィラーは、熱伝導率が高いほうが好ましい。また、第1透光層は、熱伝導性を高める観点では第1フィラーの充填密度が高いほうが好ましい。第1フィラーの形状は、入射する光の全反射を抑制する観点から、球状であるのが好ましい。第1フィラーは、粒径が大きいほうが、反射、屈折が少ない。第1透光層は、この第1透光層の厚み方向においてLEDチップ4に近い側に、相対的に粒径の大きな第1フィラーがあり、LEDチップ4から遠い側に、相対的に粒径の小さな第1フィラーがあるように構成してもよい。この場合には、第1透光層を、互いに第1フィラーの粒径の異なる複数の層を多層化して構成してもよい。 The first light-transmitting layer may be formed by forming a void or a modified portion with a changed refractive index inside the single crystal. The voids and modified portions can be formed, for example, by condensing and irradiating laser light from a femtosecond laser to the formation regions of the voids and modified portions in the single crystal. The wavelength of the laser light of the femtosecond laser, the irradiation conditions, and the like may be appropriately changed depending on the material of the single crystal, the object to be formed (gap, modified portion), the size of the object to be formed, and the like. The first light-transmitting layer is made of a base resin (for example, epoxy resin, silicone resin, unsaturated polyester, etc.) with a filler having a refractive index different from that of the base resin (hereinafter referred to as “first base resin”). Hereinafter, it may be referred to as “first filler”). The first filler preferably has a smaller refractive index difference from the first base resin. The first filler preferably has a higher thermal conductivity. In addition, the first light transmissive layer preferably has a higher filling density of the first filler from the viewpoint of increasing the thermal conductivity. The shape of the first filler is preferably spherical from the viewpoint of suppressing total reflection of incident light. The first filler has less reflection and refraction as the particle size is larger. The first light-transmitting layer has a first filler having a relatively large particle size on the side close to the LED chip 4 in the thickness direction of the first light-transmitting layer, and particles relatively on the side far from the LED chip 4. You may comprise so that there may be a 1st filler with a small diameter. In this case, the first light transmissive layer may be formed by multilayering a plurality of layers having different particle sizes of the first filler.
 第1透光層におけるLEDチップ4側の表面(光拡散基板2の一表面2sa)のうちLEDチップ4の搭載領域の周囲には、LEDチップ4から光拡散基板2側へ放射され光拡散基板2の内部で反射されたり屈折された光が全反射するのを抑制するための微細な凹凸構造部が形成されているのが好ましい。凹凸構造部は、第1透光層の表面を例えばサンドブラスト加工などによって粗面化することにより形成してもよい。凹凸構造部の表面粗さは、例えば、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaが、0.05μm程度であるのが好ましい。 Of the surface on the LED chip 4 side (one surface 2sa of the light diffusing substrate 2) in the first light transmissive layer, the light diffusing substrate is radiated from the LED chip 4 to the light diffusing substrate 2 around the LED chip 4 mounting region. It is preferable that a fine concavo-convex structure portion for suppressing the total reflection of the light reflected or refracted inside 2 is formed. The concavo-convex structure portion may be formed by roughening the surface of the first light-transmitting layer by, for example, sandblasting. As for the surface roughness of the concavo-convex structure portion, for example, the arithmetic average roughness Ra defined by JIS B 0601-2001 (ISO 4287-1997) is preferably about 0.05 μm.
 また、光拡散基板2は、第1透光層におけるLEDチップ4側の表面のうちLEDチップ4の搭載領域の周囲に、第1透光層よりも屈折率の小さな樹脂層を形成したものを採用してもよい。樹脂層の材料としては、例えば、シリコーン樹脂、エポキシ樹脂などを採用することができる。樹脂層の材料としては、蛍光体を含有させた樹脂を採用してもよい。 The light diffusing substrate 2 is a substrate in which a resin layer having a refractive index smaller than that of the first light-transmitting layer is formed around the LED chip 4 mounting area on the surface of the first light-transmitting layer on the LED chip 4 side. It may be adopted. As a material for the resin layer, for example, a silicone resin, an epoxy resin, or the like can be employed. As a material for the resin layer, a resin containing a phosphor may be used.
 第2透光層は、LEDチップ4から放射された光を正反射させるように構成されたものよりも、拡散反射させるように構成されたものが好ましい。 The second light transmissive layer is preferably configured to diffusely reflect the light radiated from the LED chip 4 rather than the light transmissive layer.
 第2透光層の材料は、セラミックに限らず、例えば、ガラス、SiC、GaN、GaP、サファイア、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどを採用することもできる。セラミックの材料としては、Al23に限らず、他の金属酸化物(例えば、マグネシア、ジルコニア、チタニアなど)や、金属窒化物(例えば、窒化アルミニウムなど)などでもよい。 The material of the second light transmissive layer is not limited to ceramic, and for example, glass, SiC, GaN, GaP, sapphire, epoxy resin, silicone resin, unsaturated polyester, and the like can be employed. The ceramic material is not limited to Al 2 O 3 , but may be other metal oxides (eg, magnesia, zirconia, titania), metal nitride (eg, aluminum nitride).
 第2透光層の材料は、セラミックの場合、粒径が、1μm以下であるのが好ましく、0.1μm~0.3μm程度あるのがより好ましい。また、第2透光層は、例えば、上述の多孔質層2aにより構成することができる。第1透光層は、純度が99.5%のアルミナからなる第1セラミック層2bにより構成した場合、嵩密度が、3.8~3.95g/cm3であった。また、第1透光層は、純度が96%のアルミナからなる第1セラミック層2bにより構成した場合、嵩密度が、3.7~3.8g/cm3であった。これに対し、第2透光層は、多孔質層2aにより構成した場合、嵩密度が、3.7~3.8g/cm3であった。なお、上述の嵩密度は、SEMによって観察してSEM画像を取得し、そのSEM画像を画像処理して推定した値である。 In the case of ceramic, the material of the second light transmissive layer preferably has a particle size of 1 μm or less, more preferably about 0.1 μm to 0.3 μm. Further, the second light transmissive layer can be constituted by, for example, the porous layer 2a described above. When the first light-transmitting layer was constituted by the first ceramic layer 2b made of alumina having a purity of 99.5%, the bulk density was 3.8 to 3.95 g / cm 3 . The first light-transmitting layer had a bulk density of 3.7 to 3.8 g / cm 3 when constituted by the first ceramic layer 2b made of alumina having a purity of 96%. On the other hand, when the second light-transmitting layer was composed of the porous layer 2a, the bulk density was 3.7 to 3.8 g / cm 3 . The above-described bulk density is a value estimated by observing with an SEM, obtaining an SEM image, and performing image processing on the SEM image.
 第2透光層は、単結晶の内部に空隙や、屈折率を変化させた改質部などを形成したものでもよい。空隙や改質部などは、例えば、フェムト秒レーザからのレーザ光を、単結晶における空隙や改質部の形成予定領域に集光照射することで形成することができる。フェムト秒レーザのレーザ光の波長や照射条件などは、単結晶の材料や、形成対象(空隙、改質部)、形成対象の大きさなどによって、適宜変更すればよい。また、第2透光層は、ベース樹脂(例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル、フッ素樹脂など)に、このベース樹脂(以下、「第2ベース樹脂」という。)とは屈折率の異なるフィラー(以下、「第2フィラー」という。)を含有させたものでもよい。第2透光層は、この第2透光層の厚み方向においてLEDチップ4に近い側に、相対的に粒径の大きな第2フィラーがあり、LEDチップ4から遠い側に、相対的に粒径の小さな第2フィラーがあるように構成してもよい。また、第2フィラーの材料としては、例えば、白色の無機材料が好ましく、例えば、TiO2やZnOなどの金属酸化物を採用することができる。また、第2フィラーの粒径は、例えば、0.1μm~0.3μm程度が好ましい。また、第2フィラーの充填率は、例えば、50~75wt%程度が好ましい。また、第2ベース樹脂のシリコーン樹脂としては、例えば、メチルシリコーンや、フェニルシリコーンなどを採用することができる。第2フィラーは、中実粒子の場合、第2ベース樹脂との屈折率差が大きいほうが好ましい。第2ベース樹脂に第2フィラーを含有させた材料としては、例えば、信越化学工業株式会社のKER-3200-T1などを採用することもできる。 The second light transmissive layer may be formed by forming a void, a modified portion in which the refractive index is changed, or the like inside the single crystal. The voids and modified portions can be formed, for example, by condensing and irradiating laser light from a femtosecond laser to the formation regions of the voids and modified portions in the single crystal. The wavelength of the laser beam of the femtosecond laser, the irradiation conditions, and the like may be changed as appropriate depending on the material of the single crystal, the formation target (gap, modified portion), the size of the formation target, and the like. The second light transmissive layer is made of a base resin (for example, epoxy resin, silicone resin, unsaturated polyester, fluororesin, etc.) and has a refractive index different from that of the base resin (hereinafter referred to as “second base resin”). A different filler (hereinafter referred to as “second filler”) may be included. The second light-transmitting layer has a second filler having a relatively large particle size on the side close to the LED chip 4 in the thickness direction of the second light-transmitting layer, and the particle on the side far from the LED chip 4 is relatively small. You may comprise so that there may be a 2nd filler with a small diameter. The material of the second filler, for example, white inorganic materials are preferred, for example, can be employed metal oxides such as TiO 2 or ZnO. The particle size of the second filler is preferably about 0.1 μm to 0.3 μm, for example. The filling rate of the second filler is preferably about 50 to 75 wt%, for example. Further, as the silicone resin of the second base resin, for example, methyl silicone or phenyl silicone can be employed. In the case of solid particles, the second filler preferably has a larger refractive index difference from the second base resin. As a material containing the second filler in the second base resin, for example, KER-3200-T1 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 また、第2フィラーとしては、コアシェル粒子(core-shell particle)や中空粒子(hollow particle)などを採用することもできる。コアシェル粒子については、コアの屈折率を任意に設定できるが、第2ベース樹脂の屈折率よりも小さいほうが好ましい。中空粒子については、内部が気体(例えば、空気、不活性ガスなど)もしくは真空で、第2ベース樹脂よりも屈折率が小さいほうが好ましい。 Also, as the second filler, core-shell particles or hollow particles can be employed. For the core-shell particles, the refractive index of the core can be arbitrarily set, but is preferably smaller than the refractive index of the second base resin. The hollow particles are preferably gas (for example, air, inert gas) or a vacuum inside and have a refractive index smaller than that of the second base resin.
 また、第2透光層は、光拡散シートにより構成してもよい。光拡散シートとしては、例えば、多数の気泡の入った白色のポリエチレンテレフタレートシートなどを採用することができる。 Further, the second light transmissive layer may be composed of a light diffusion sheet. As the light diffusion sheet, for example, a white polyethylene terephthalate sheet containing a large number of bubbles can be employed.
 光拡散基板2は、第1透光層と第2透光層との両方がセラミックの場合、それぞれを形成するためのセラミックグリーンシート(ceramic green sheet)を重ね合わせて焼結させることで形成することができる。なお、光拡散基板2は、第2透光層が気泡を備えている場合、第1透光層も気泡を備えていてもよいが、第1透光層のほうが第2透光層よりも気泡の数が少なく、嵩密度が大きいことが好ましい。 When both the first light-transmitting layer and the second light-transmitting layer are ceramic, the light diffusing substrate 2 is formed by superposing and sintering ceramic green sheets for forming each of them. be able to. In the light diffusion substrate 2, when the second light-transmitting layer includes bubbles, the first light-transmitting layer may also include bubbles, but the first light-transmitting layer is more than the second light-transmitting layer. It is preferable that the number of bubbles is small and the bulk density is large.
 第1透光層および第2透光層は、いずれも、LEDチップ4や蛍光体からの光や熱に対する耐性の高い材料が好ましい。 The first light-transmitting layer and the second light-transmitting layer are preferably made of a material having high resistance to light and heat from the LED chip 4 and the phosphor.
 LEDモジュール1は、光拡散基板2の他表面2sb側に、LEDチップ4などからの光を反射する反射層を備えていてもよい。反射層の材料としては、銀、アルミニウム、銀アルミニウム合金、それ以外の銀合金またはアルミニウム合金などを採用することができる。反射層は、例えば、薄膜、金属箔、ソルダーレジスト(半田)などにより構成することができる。反射層は、光拡散基板2に設けてもよいし、実装基板7に設けてもよい。 The LED module 1 may include a reflective layer that reflects light from the LED chip 4 or the like on the other surface 2 sb side of the light diffusion substrate 2. As a material for the reflective layer, silver, aluminum, a silver-aluminum alloy, other silver alloys, aluminum alloys, or the like can be employed. The reflective layer can be composed of, for example, a thin film, metal foil, solder resist (solder), or the like. The reflective layer may be provided on the light diffusion substrate 2 or may be provided on the mounting substrate 7.
 LEDモジュール1は、図21に示す第1変形例のように、色変換部5が、LEDチップ4、各ワイヤ8および光拡散基板2を覆う形状であってもよい。これにより、LEDモジュール1は、各ワイヤ8の断線を抑制することが可能となり、信頼性の向上を図ることが可能となる。 The LED module 1 may have a shape in which the color conversion unit 5 covers the LED chip 4, the wires 8, and the light diffusion substrate 2 as in the first modification shown in FIG. 21. Thereby, the LED module 1 can suppress the disconnection of each wire 8, and can improve the reliability.
 色変換部5の形状は、半球状としてあるが、これに限らず、例えば、半楕円球状や、半円柱状などの形状でもよい。 The shape of the color conversion unit 5 is hemispherical, but is not limited thereto, and may be, for example, a semi-elliptical spherical shape or a semi-cylindrical shape.
 以下では、本実施形態のLEDモジュール1の第2変形例について図22に基いて説明する。 Below, the 2nd modification of the LED module 1 of this embodiment is demonstrated based on FIG.
 第2変形例のLEDモジュール1は、実装基板7が長尺状の形状であり、複数個のLEDチップ4(図21参照)を備えている。なお、第1変形例のLEDモジュール1と同様の構成要素については、同様の符号を付して説明を省略する。 In the LED module 1 of the second modified example, the mounting substrate 7 has a long shape, and includes a plurality of LED chips 4 (see FIG. 21). In addition, about the component similar to the LED module 1 of a 1st modification, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 LEDモジュール1は、複数個のLEDチップ4が実装基板7の一表面7sa側で規定方向に配列されている。また、LEDモジュール1は、上記規定方向に配列された各LEDチップ4及び各LEDチップ4の各々に接続された各ワイヤ8(図21参照)がライン状の色変換部5で覆われている。色変換部5は、上記規定方向において隣り合うLEDチップ4同士の間に、隣り合うLEDチップ4から放射される光の全反射を抑制する凹部5bが設けられているのが好ましい。 In the LED module 1, a plurality of LED chips 4 are arranged in a specified direction on the one surface 7 sa side of the mounting substrate 7. In the LED module 1, the LED chips 4 arranged in the specified direction and the wires 8 (see FIG. 21) connected to the LED chips 4 are covered with a line-shaped color conversion unit 5. . The color conversion unit 5 is preferably provided with a recess 5b that suppresses total reflection of light emitted from the adjacent LED chips 4 between the adjacent LED chips 4 in the prescribed direction.
 第1導体部71aおよび第2導体部71bは、上記規定方向に配列されたLEDチップ4の一群に対して1つずつ設けられている。 The first conductor portion 71a and the second conductor portion 71b are provided one by one for a group of LED chips 4 arranged in the specified direction.
 第1導体部71aおよび第2導体部71bの各々の平面形状は、櫛形状に形成されている。第1導体部71aと第2導体部71bとは、実装基板7の短手方向に沿った方向において互いに入り組むように配置されている。ここで、配線パターン71は、第1導体部71aの第1櫛骨部71a1と第2導体部71bの第2櫛骨部71b1とが対向している。配線パターン71は、実装基板7の長手方向に沿った方向において、第1導体部71aの第1櫛歯部71a2と第2導体部71bの第2櫛歯部71b2とが隙間を介して交互に並んでいる。 The planar shape of each of the first conductor portion 71a and the second conductor portion 71b is formed in a comb shape. The first conductor portion 71 a and the second conductor portion 71 b are arranged so as to be intertwined with each other in the direction along the short direction of the mounting substrate 7. Here, in the wiring pattern 71, the first comb portion 71a1 of the first conductor portion 71a and the second comb portion 71b1 of the second conductor portion 71b are opposed to each other. In the wiring pattern 71, the first comb teeth 71a2 of the first conductor portion 71a and the second comb teeth 71b2 of the second conductor portion 71b are alternately arranged in the direction along the longitudinal direction of the mounting substrate 7 with a gap. Are lined up.
 LEDモジュール1は、実装基板7の長手方向(上記規定方向)に配列された複数個(例えば、9個)のLEDチップ4が並列接続されている。LEDモジュール1は、これら複数個のLEDチップ4が並列接続された並列回路に対して給電可能となっている。要するに、LEDモジュール1は、第1導体部71aと第2導体部71bとの間に給電することにより、全てのLEDチップ4に対して給電することができる。また、複数個のLEDモジュール1を並べて用いるような場合には、隣り合うLEDモジュール1同士を、例えば、導電性部材や、送り配線用の電線(図示せず)やコネクタ(図示せず)などにより電気的に接続するようにすればよい。この場合には、複数個のLEDモジュール1に対して、1つの電源ユニットから電力を供給して、各LEDモジュール1の全てのLEDチップ4を発光させることが可能となる。 The LED module 1 has a plurality of (for example, nine) LED chips 4 arranged in the longitudinal direction of the mounting substrate 7 (the prescribed direction) connected in parallel. The LED module 1 can supply power to a parallel circuit in which the plurality of LED chips 4 are connected in parallel. In short, the LED module 1 can supply power to all the LED chips 4 by supplying power between the first conductor portion 71a and the second conductor portion 71b. When a plurality of LED modules 1 are used side by side, adjacent LED modules 1 are connected to each other by, for example, a conductive member, an electric wire for feed wiring (not shown), a connector (not shown), or the like. May be electrically connected. In this case, it is possible to supply power from a single power supply unit to the plurality of LED modules 1 to cause all LED chips 4 of each LED module 1 to emit light.
 色変換部5は、上述のように、上記規定方向において隣り合うLEDチップ4同士の間に、隣り合うLEDチップ4から放射される光の全反射を抑制する凹部5bが設けられているのが好ましい。これにより、LEDモジュール1は、LEDチップ4から放射され色変換部5と空気との境界面に入射する光の全反射を抑制することが可能となる。よって、LEDモジュール1は、色変換部5が半円柱状である場合に比べて、全反射に起因して閉じ込められる光を低減できるから、光取り出し効率の向上を図ることが可能となる。要するに、LEDモジュール1は、全反射損失を低減することが可能となり、光取り出し効率の向上を図ることが可能となる。 As described above, the color conversion unit 5 is provided with the recess 5b that suppresses total reflection of light emitted from the adjacent LED chips 4 between the adjacent LED chips 4 in the prescribed direction. preferable. Thereby, the LED module 1 can suppress total reflection of light emitted from the LED chip 4 and incident on the boundary surface between the color conversion unit 5 and air. Therefore, since the LED module 1 can reduce the light confined due to the total reflection as compared with the case where the color conversion unit 5 has a semi-cylindrical shape, the light extraction efficiency can be improved. In short, the LED module 1 can reduce the total reflection loss, and can improve the light extraction efficiency.
 色変換部5は、各LEDチップ4の上記一面と実装基板7の一表面7saとの段差を反映した断面形状に形成されている。よって、色変換部5は、LEDチップ4の配列方向に直交する断面形状が凸形状であり、LEDチップ4の配列方向に沿った断面形状が凹凸形状となっている。要するに、LEDモジュール1は、ライン状の色変換部5に、光取り出し効率を向上させる凹凸構造が形成されている。 The color converter 5 is formed in a cross-sectional shape reflecting a step between the one surface of each LED chip 4 and the one surface 7sa of the mounting substrate 7. Therefore, in the color conversion unit 5, the cross-sectional shape orthogonal to the arrangement direction of the LED chips 4 is convex, and the cross-sectional shape along the arrangement direction of the LED chips 4 is uneven. In short, in the LED module 1, a concavo-convex structure for improving the light extraction efficiency is formed in the line-shaped color conversion unit 5.
 この凹凸構造の周期は、LEDチップ4の配列ピッチと同じである。凹凸構造の周期とは、各LEDチップ4の各々を覆う凸部5aの配列ピッチである。 The period of this uneven structure is the same as the arrangement pitch of the LED chips 4. The period of the concavo-convex structure is the arrangement pitch of the convex portions 5a covering each of the LED chips 4.
 色変換部5の表面の形状は、色変換部5の上記表面においてLEDチップ4からの光線が交わる点の法線と上記光線とのなす角が臨界角よりも小さくなるように設計するのが好ましい。ここで、LEDモジュール1は、色変換部5の各凸部5aの表面の略全面で、LEDチップ4からの上記光線の入射角(光入射角度)が臨界角よりも小さくなるように、色変換部5の上記表面の形状を設計することが好ましい。 The shape of the surface of the color conversion unit 5 is designed so that the angle formed by the normal of the point where the light rays from the LED chip 4 intersect on the surface of the color conversion unit 5 and the light ray is smaller than the critical angle. preferable. Here, the LED module 1 is arranged so that the incident angle (light incident angle) of the light beam from the LED chip 4 is smaller than the critical angle over substantially the entire surface of each convex portion 5a of the color conversion unit 5. It is preferable to design the shape of the surface of the converter 5.
 このため、色変換部5は、各LEDチップ4の各々を覆う各凸部5aが、半球状に形成されているのが好ましい。各凸部5aの各々は、光拡散基板2の厚み方向において重なる凸部5aの光軸とLEDチップ4の光軸とが一致するように設計されている。これにより、LEDモジュール1は、色変換部5の上記表面(色変換部5と空気との境界面)での全反射を抑制することが可能となるだけでなく、色むらを抑制することが可能となる。色むらとは、光の照射方向によって色度が変化している状態である。LEDモジュール1は、色むらを視認できない程度に抑制することが可能となる。 For this reason, in the color conversion part 5, it is preferable that each convex part 5a covering each LED chip 4 is formed in a hemispherical shape. Each of the convex portions 5 a is designed such that the optical axis of the convex portion 5 a overlapping in the thickness direction of the light diffusion substrate 2 coincides with the optical axis of the LED chip 4. Thereby, the LED module 1 can not only suppress total reflection on the surface of the color conversion unit 5 (the boundary surface between the color conversion unit 5 and air) but also suppress color unevenness. It becomes possible. Color unevenness is a state in which chromaticity changes depending on the light irradiation direction. The LED module 1 can suppress color unevenness to such an extent that it cannot be visually recognized.
 LEDモジュール1は、LEDチップ4から凸部5aの表面までの光路長をLEDチップ4からの光の放射方向によらず略均一化することが可能となり、色むらをより抑制することが可能となる。色変換部5の各凸部5aは、半球状に限らず、例えば、半楕円球状の形状でもよい。なお、各凸部5aの各々は、半円柱状や、直方体状などの形状でもよい。 The LED module 1 can make the optical path length from the LED chip 4 to the surface of the convex portion 5a substantially uniform regardless of the light emission direction from the LED chip 4, and can further suppress color unevenness. Become. Each convex part 5a of the color conversion part 5 is not limited to a hemispherical shape, and may be, for example, a semi-elliptical spherical shape. Each of the convex portions 5a may have a semi-cylindrical shape or a rectangular parallelepiped shape.
 LEDモジュール1の製造にあたっては、まず、実装基板7を準備する。その後には、実装基板7上に各LEDチップ4の各々に対応付けられた光拡散基板2を接合する。その後には、ダイボンド装置などにより、各LEDチップ4を対応する光拡散基板2の一表面2sa側にダイボンドする。その後には、ワイヤボンディング装置などにより、各LEDチップ4の第1電極および第2電極それぞれと配線パターン71とをワイヤ8を介して接続する。その後には、ディスペンサシステム(dispenser system)などを利用して色変換部5を形成する。 In manufacturing the LED module 1, first, the mounting substrate 7 is prepared. Thereafter, the light diffusion substrate 2 associated with each LED chip 4 is bonded onto the mounting substrate 7. Thereafter, each LED chip 4 is die-bonded to the one surface 2sa side of the corresponding light diffusion substrate 2 by a die-bonding apparatus or the like. Thereafter, the first electrode and the second electrode of each LED chip 4 are connected to the wiring pattern 71 via the wire 8 by a wire bonding apparatus or the like. Thereafter, the color conversion unit 5 is formed using a dispenser system or the like.
 ディスペンサシステムにより色変換部5を形成する際には、例えば、ディスペンサヘッドをLEDチップ4の配列方向に沿って移動させつつ、ノズルから色変換部5の材料を吐出させて塗布する。 When the color conversion unit 5 is formed by the dispenser system, for example, the material of the color conversion unit 5 is discharged from the nozzle and applied while moving the dispenser head along the arrangement direction of the LED chips 4.
 ここで、色変換部5の材料を色変換部5の表面形状に基づく塗布形状となるようにディスペンサシステムにより塗布する場合には、例えば、ディスペンサヘッドを移動させながら、材料を吐出させて塗布すればよい。例としては、ディスペンサヘッドの移動速度を変化させることにより、塗布量を変化させ、また、ディスペンサヘッドを上下させることにより、ノズルとノズル直下の実装基板7の一表面7saとの距離を変化させている。より具体的には、色変換部5の各凸部5aの元になる箇所に材料を塗布する場合と、色変換部5の隣り合う凸部5a間の部分の元になる箇所に材料を塗布する場合とで、移動速度を相対的に異ならせてあり、前者の場合に移動速度を遅くし、後者の場合に移動速度を速くしている。また、色変換部5の表面形状に基づいてディスペンサヘッドを上下させている。これらにより、ディスペンサシステムにより色変換部5を形成する方法では、材料を色変換部5の表面形状に基づく塗布形状とすることが可能となる。塗布形状は、材料を硬化させるときの収縮を考慮して設定すればよい。 Here, when applying the material of the color conversion unit 5 by the dispenser system so as to have an application shape based on the surface shape of the color conversion unit 5, for example, the material may be applied by discharging the material while moving the dispenser head. That's fine. As an example, by changing the moving speed of the dispenser head, the application amount is changed, and by moving the dispenser head up and down, the distance between the nozzle and one surface 7sa of the mounting substrate 7 immediately below the nozzle is changed. Yes. More specifically, when the material is applied to the base of each convex portion 5a of the color conversion unit 5 and the material is applied to the base of the portion between the adjacent convex portions 5a of the color conversion unit 5 In this case, the movement speed is relatively different. In the former case, the movement speed is reduced, and in the latter case, the movement speed is increased. Further, the dispenser head is moved up and down based on the surface shape of the color converter 5. By these, in the method of forming the color conversion part 5 with a dispenser system, it becomes possible to make the material into a coating shape based on the surface shape of the color conversion part 5. The application shape may be set in consideration of shrinkage when the material is cured.
 ディスペンサシステムは、ディスペンサヘッドを移動させるロボットからなる移動機構と、実装基板7の一表面7saおよびノズルそれぞれのテーブルからの高さを測定するセンサ部と、移動機構およびノズルからの材料の吐出量を制御するコントローラと、を備えているのが好ましい。コントローラは、例えば、マイクロコンピュータに適宜のプログラムを搭載することにより実現することができる。また、ディスペンサシステムは、コントローラに搭載されたプログラムを適宜変更することにより、LEDチップ4の配列ピッチや、LEDチップ4の個数、色変換部5のライン幅などの異なる複数種の品種に対応することが可能となる。 The dispenser system includes a moving mechanism including a robot that moves the dispenser head, a sensor unit that measures the height of each surface 7sa of the mounting substrate 7 and the nozzle from the table, and the amount of material discharged from the moving mechanism and the nozzle. And a controller for controlling. The controller can be realized, for example, by mounting an appropriate program on a microcomputer. In addition, the dispenser system corresponds to a plurality of different types of products such as the arrangement pitch of the LED chips 4, the number of LED chips 4, and the line width of the color conversion unit 5 by appropriately changing the program installed in the controller. It becomes possible.
 また、色変換部5の表面形状は、例えば、材料の粘度などを調整することで制御することも可能である。各凸部5aの各々の表面(凸曲面)の曲率は、材料の粘度や表面張力、ワイヤ8の高さなどによって設計可能である。曲率を大きくするには、材料の粘度を高くしたり、表面張力を大きくしたり、ワイヤ8の高さを高くすることで実現可能となる。また、ライン状の色変換部5の幅(ライン幅)を狭くするには、材料の粘度を高くしたり、表面張力を大きくしたりすることで実現可能となる。材料の粘度は、100~2000mPa・s程度の範囲に設定するのが好ましい。なお、粘度の値は、例えば、円錐平板型回転粘度計を用いて常温下で測定した値を採用することができる。 Also, the surface shape of the color conversion unit 5 can be controlled, for example, by adjusting the viscosity of the material. The curvature of each surface (convex curved surface) of each convex portion 5a can be designed by the viscosity and surface tension of the material, the height of the wire 8, and the like. Increasing the curvature can be realized by increasing the viscosity of the material, increasing the surface tension, or increasing the height of the wire 8. Further, it is possible to reduce the width (line width) of the line-shaped color conversion unit 5 by increasing the viscosity of the material or increasing the surface tension. The viscosity of the material is preferably set in the range of about 100 to 2000 mPa · s. As the viscosity value, for example, a value measured at room temperature using a conical plate type rotational viscometer can be adopted.
 また、ディスペンサシステムは、未硬化の材料が所望の粘度になるように加熱するヒータを備えていてもよい。これにより、ディスペンサシステムは、材料の塗布形状の再現性を向上させることが可能となり、色変換部5の表面形状の再現性を向上させることが可能となる。 The dispenser system may also include a heater that heats the uncured material to a desired viscosity. Thereby, the dispenser system can improve the reproducibility of the application shape of the material, and can improve the reproducibility of the surface shape of the color conversion unit 5.
 ところで、LEDモジュール1は、種々の照明装置の光源として用いることが可能である。LEDモジュール1を備えた照明装置の一例としては、例えば、LEDモジュール1を光源として器具本体に配置した照明器具や、ランプ(例えば、直管形LEDランプ、電球形ランプなど)などを好適に挙げることができるが、これら以外の照明装置でもよい。ここにおいて、LEDモジュール1は、器具本体が金属製で導電性を有しているような場合でも、絶縁部材72を備えていることにより、配線パターン71と器具本体との間の所望の沿面距離を確保することが可能となる。照明器具では、器具本体を金属製とすれば、LEDモジュール1で発生した熱をより効率良く放熱させることが可能となる。 By the way, the LED module 1 can be used as a light source of various illumination devices. As an example of the illuminating device provided with the LED module 1, for example, an illuminating device in which the LED module 1 is used as a light source and a lamp (for example, a straight tube LED lamp, a light bulb-shaped lamp, etc.) arranged in the apparatus main body can be cited. However, other lighting devices may be used. Here, the LED module 1 includes a desired creepage distance between the wiring pattern 71 and the instrument main body by including the insulating member 72 even when the instrument main body is made of metal and has conductivity. Can be secured. In the lighting fixture, if the fixture body is made of metal, the heat generated in the LED module 1 can be radiated more efficiently.
 器具本体の材料としては、熱伝導率の高い材料が好ましく、絶縁部材72よりも熱伝導率の高い材料がより好ましい。ここで、器具本体の材料としては、アルミニウム、銅などの熱伝導率の高い金属を採用することが好ましい。 The material of the instrument body is preferably a material having a high thermal conductivity, and more preferably a material having a higher thermal conductivity than the insulating member 72. Here, it is preferable to employ a metal having a high thermal conductivity such as aluminum or copper as the material of the instrument body.
 器具本体へのLEDモジュール1の取り付け手段としては、例えば、螺子などの取付具を採用してもよいし、熱硬化型のシート状接着剤のエポキシ樹脂層を器具本体とLEDモジュール1との間に介在させて接合してもよい。シート状接着剤としては、シリカやアルミナなどのフィラーからなる充填材を含有し且つ加熱時に低粘度化するとともに流動性が高くなる性質を有するBステージのエポキシ樹脂層(熱硬化性樹脂)とプラスチックフィルム(PETフィルム)とが積層されたシート状接着剤を用いることができる。このようなシート状接着剤としては、例えば、東レ株式会社製の接着剤シートTSAなどがある。フィラーとしては、熱硬化性樹脂であるエポキシ樹脂よりも熱伝導率の高い電気絶縁性材料を用いればよい。上述のエポキシ樹脂層の厚みは、100μmに設定してあるが、この値は一例であり、特に限定するものではなく、例えば、50μm~150μm程度の範囲で適宜設定すればよい。上述のエポキシ樹脂層の熱伝導率は、4W/m・K以上であることが好ましい。 As a means for attaching the LED module 1 to the appliance main body, for example, an attachment such as a screw may be employed, or an epoxy resin layer of a thermosetting sheet adhesive is provided between the appliance main body and the LED module 1. It may be interposed between and joined. B-stage epoxy resin layer (thermosetting resin) and plastic containing fillers such as silica and alumina as the sheet-like adhesive and having a property of lowering viscosity and increasing fluidity upon heating A sheet adhesive in which a film (PET film) is laminated can be used. An example of such a sheet-like adhesive is an adhesive sheet TSA manufactured by Toray Industries, Inc. As the filler, an electrically insulating material having higher thermal conductivity than the epoxy resin that is a thermosetting resin may be used. The thickness of the epoxy resin layer described above is set to 100 μm, but this value is merely an example, and is not particularly limited. For example, the thickness may be appropriately set in the range of about 50 μm to 150 μm. The thermal conductivity of the epoxy resin layer is preferably 4 W / m · K or more.
 上述のシート状接着剤のエポキシ樹脂層は、電気絶縁性を有するとともに熱伝導率が高く加熱時の流動性が高く凹凸面への密着性が高いという性質を有している。したがって、照明器具は、上述のエポキシ樹脂層から形成される絶縁層とLEDモジュール1および器具本体との間に空隙が発生するのを防止することができて密着信頼性を向上させることが可能となり、また、密着不足による熱抵抗の増大やばらつきの発生を抑制することが可能となる。絶縁層は、電気絶縁性および熱伝導性を有し、LEDモジュール1と器具本体とを熱結合する機能を有している。 The epoxy resin layer of the above-mentioned sheet-like adhesive has properties of being electrically insulating and having high thermal conductivity, high fluidity during heating, and high adhesion to the uneven surface. Therefore, the lighting fixture can prevent the generation of a gap between the insulating layer formed from the above-described epoxy resin layer, the LED module 1 and the fixture body, and can improve the adhesion reliability. In addition, it is possible to suppress the increase in thermal resistance and the occurrence of variations due to insufficient adhesion. The insulating layer has electrical insulation and thermal conductivity, and has a function of thermally coupling the LED module 1 and the instrument body.
 しかして、照明器具は、LEDモジュール1と器具本体との間に例えばサーコン(登録商標)のようなゴムシート状やシリコーンゲル状の放熱シート(熱伝導シート)などを挟む場合に比べて、各LEDチップ4から器具本体までの熱抵抗を低減することが可能となるとともに、熱抵抗のばらつきを低減することが可能となる。これにより、照明器具は、放熱性が向上し、各LEDチップ4のジャンクション温度の温度上昇を抑制することが可能となるから、入力電力を大きくすることが可能となり、光出力の高出力化を図ることが可能となる。上述のエポキシ樹脂層の厚みは、100μmに設定してあるが、この値は一例であり、特に限定するものではなく、例えば、50μm~150μm程度の範囲で適宜設定すればよい。なお、上述のエポキシ樹脂層の熱伝導率は、4W/m・K以上であることが好ましい。 Thus, the lighting fixture has a rubber sheet shape such as Sarcon (registered trademark) or a silicone gel-like heat dissipation sheet (heat conductive sheet) between the LED module 1 and the fixture body, respectively. It becomes possible to reduce the thermal resistance from the LED chip 4 to the appliance body, and to reduce the variation in thermal resistance. As a result, the lighting fixture has improved heat dissipation and can suppress the temperature rise of the junction temperature of each LED chip 4, so that the input power can be increased and the light output can be increased. It becomes possible to plan. The thickness of the epoxy resin layer described above is set to 100 μm, but this value is merely an example, and is not particularly limited. For example, the thickness may be appropriately set in the range of about 50 μm to 150 μm. Note that the thermal conductivity of the epoxy resin layer is preferably 4 W / m · K or more.
 また、直管形LEDランプについては、例えば、社団法人日本電球工業会により、「L型ピン口金GX16t-5付直管形LEDランプシステム(一般照明用)」(JEL 801:2010)が規格化されている。 For straight tube LED lamps, for example, the Japan Light Bulb Industry Association has standardized “Straight tube LED lamp system with L-type pin cap GX16t-5 (for general lighting)” (JEL 801: 2010). Has been.
 このような直管形LEDランプを構成する場合には、例えば、透光性材料(例えば、乳白色のガラス、乳白色の樹脂など)により形成された直管状の管本体と、管本体の長手方向の一端部および他端部それぞれに設けられた第1口金、第2口金とを備え、管本体内に、実装基板7が長尺状であり複数個のLEDチップ4が実装基板7の長手方向に配列されたLEDモジュール1を収納した構成とすればよい。 When configuring such a straight tube type LED lamp, for example, a straight tubular tube body formed of a translucent material (for example, milky white glass, milky white resin, etc.) and a longitudinal direction of the tube body. A first base and a second base are provided at one end and the other end, respectively, and the mounting substrate 7 is elongated in the tube body, and a plurality of LED chips 4 are arranged in the longitudinal direction of the mounting substrate 7. What is necessary is just to set it as the structure which accommodated the LED module 1 arranged.
 以下では、第2変形例のLEDモジュール1を光源として備えた照明器具50について、図23A、23Bに基いて説明する。 Below, the lighting fixture 50 provided with the LED module 1 of the 2nd modification as a light source is demonstrated based on FIG. 23A and 23B.
 照明器具50は、LED照明器具であり、器具本体51と、器具本体51に保持された光源であるLEDモジュール1と、を備えている。 The lighting fixture 50 is an LED lighting fixture, and includes a fixture main body 51 and an LED module 1 that is a light source held by the fixture main body 51.
 器具本体51は、LEDモジュール1よりも平面サイズの大きな長尺状(ここでは、矩形板状)に形成されている。照明器具50は、器具本体51の厚み方向の一表面51b側にLEDモジュール1が配置されている。照明器具50は、LEDモジュール1の長手方向と器具本体51の長手方向とが揃うように、器具本体51に対してLEDモジュール1が配置されている。また、照明器具50は、器具本体51の一表面51b側に、LEDモジュール1を覆うカバー52が配置されている。カバー52は、LEDモジュール1から放射された光を透過させる機能を有する。 The appliance body 51 is formed in a long shape (here, a rectangular plate shape) having a larger planar size than the LED module 1. As for the lighting fixture 50, the LED module 1 is arrange | positioned at the one surface 51b side of the thickness direction of the fixture main body 51. As shown in FIG. In the lighting fixture 50, the LED module 1 is arranged with respect to the fixture body 51 so that the longitudinal direction of the LED module 1 and the longitudinal direction of the fixture body 51 are aligned. In the lighting fixture 50, a cover 52 that covers the LED module 1 is disposed on the one surface 51 b side of the fixture body 51. The cover 52 has a function of transmitting light emitted from the LED module 1.
 また、照明器具50は、LEDモジュール1へ直流電力を供給して各LEDチップ4(図21参照)を点灯(発光)させる点灯装置53を備えている。照明器具50は、点灯装置53とLEDモジュール1とが、リード線などの電線54を介して電気的に接続されている。 Moreover, the lighting fixture 50 includes a lighting device 53 that supplies DC power to the LED module 1 to light (emit) each LED chip 4 (see FIG. 21). In the lighting fixture 50, the lighting device 53 and the LED module 1 are electrically connected via an electric wire 54 such as a lead wire.
 照明器具50は、器具本体51の厚み方向の他表面51c側に、点灯装置53を収納する凹所51aが形成されている。凹所51aは、器具本体51の長手方向に沿って形成されている。また、器具本体51には、一表面51bと凹所51aの内底面との間の薄肉部を貫通し電線54が挿通される貫通孔(図示せず)が形成されている。 The luminaire 50 has a recess 51 a that houses the lighting device 53 on the other surface 51 c side in the thickness direction of the fixture body 51. The recess 51 a is formed along the longitudinal direction of the instrument body 51. In addition, a through hole (not shown) through which the electric wire 54 is inserted is formed in the instrument body 51 through a thin portion between the one surface 51b and the inner bottom surface of the recess 51a.
 LEDモジュール1は、配線パターン71の露出した部位において電線54を接続することが可能となっている。配線パターン71と電線54との接続部は、例えば、半田などの導電性接合材からなる接続部や、雄型のコネクタと雌型のコネクタとからなる接続部などを採用することができる。 The LED module 1 can connect the electric wire 54 at the exposed part of the wiring pattern 71. As the connection portion between the wiring pattern 71 and the electric wire 54, for example, a connection portion made of a conductive bonding material such as solder, a connection portion made of a male connector and a female connector, or the like can be adopted.
 照明器具50は、点灯装置53からLEDモジュール1へ直流電力を供給してLEDモジュール1を点灯させることができる。なお、点灯装置53は、例えば、商用電源のような交流電源から電力供給される構成のものでもよいし、太陽電池や蓄電池などの直流電源から電力供給される構成のものでもよい。 The luminaire 50 can turn on the LED module 1 by supplying DC power from the lighting device 53 to the LED module 1. Note that the lighting device 53 may have a configuration in which power is supplied from an AC power source such as a commercial power source, or may have a configuration in which power is supplied from a DC power source such as a solar battery or a storage battery.
 照明器具50の光源は、第2変形例のLEDモジュール1に限らず、実施形態1~3、実施形態3の第1変形例のいずれかのLEDモジュール1において、第2変形例と同様に実装基板7を長尺状の形状とし1つの実装基板7に対して複数のLEDチップ4を備えた構成としたものでもよい。 The light source of the luminaire 50 is not limited to the LED module 1 of the second modified example, and is mounted in the LED module 1 of any one of the first to third embodiments and the first modified example of the third embodiment in the same manner as the second modified example. A configuration in which the substrate 7 has a long shape and includes a plurality of LED chips 4 with respect to one mounting substrate 7 may be used.
 器具本体51の材料としては、熱伝導率の高い材料が好ましく、実装基板7よりも熱伝導率の高い材料がより好ましい。ここで、器具本体51の材料としては、アルミニウム、銅などの熱伝導率の高い金属を採用することが好ましい。照明器具50は、器具本体51の材料を金属とすることにより、放熱性を向上させることが可能となる。 The material of the instrument body 51 is preferably a material having a high thermal conductivity, and more preferably a material having a higher thermal conductivity than the mounting substrate 7. Here, as a material of the instrument main body 51, it is preferable to employ a metal having high thermal conductivity such as aluminum or copper. The lighting fixture 50 can improve heat dissipation by making the material of the fixture main body 51 a metal.
 器具本体51へのLEDモジュール1の取り付け手段としては、例えば、螺子などの取付具を採用してもよいし、熱硬化型のシート状接着剤のエポキシ樹脂層を器具本体51とLEDモジュール1との間に介在させて接合してもよい。 As a means for attaching the LED module 1 to the appliance main body 51, for example, an attachment such as a screw may be employed, or an epoxy resin layer of a thermosetting sheet adhesive is used as the appliance main body 51, the LED module 1, and the like. They may be joined by interposing them.
 カバー52の材料としては、例えば、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ガラスなどを採用することができる。 As the material of the cover 52, for example, acrylic resin, polycarbonate resin, silicone resin, glass or the like can be employed.
 カバー52は、LEDモジュール1から放射された光の配光を制御するレンズ部(図示せず)を一体に備えていることが好ましい。これにより、照明器具50は、カバー52と別体のレンズをカバー52に取り付けた構成に比べて、低コスト化を図ることが可能となる。 It is preferable that the cover 52 is integrally provided with a lens portion (not shown) that controls the light distribution of the light emitted from the LED module 1. Thereby, the lighting fixture 50 can achieve cost reduction as compared with a configuration in which a lens separate from the cover 52 is attached to the cover 52.
 以上説明した照明器具50では、光源として上述のLEDモジュール1を備えていることにより、光取り出し効率の向上を図ることが可能となり、低コスト化および光出力の高出力化を図ることが可能となる。 In the luminaire 50 described above, since the above-described LED module 1 is provided as a light source, the light extraction efficiency can be improved, and the cost can be reduced and the light output can be increased. Become.
 以下では、第2変形例のLEDモジュール1を光源として備えた直管形LEDランプ60について図24A、24Bに基いて説明する。 Hereinafter, a straight tube LED lamp 60 including the LED module 1 of the second modification as a light source will be described with reference to FIGS. 24A and 24B.
 直管形LEDランプ60は、透光性材料により形成された直管状(円筒状)の管本体61と、管本体61の長手方向の一端部、他端部それぞれに設けられた第1口金62、第2口金63と、を備え、管本体61内に第2変形例のLEDモジュール1が収納されている。LEDモジュール1は、第2変形例のLEDモジュール1に限らず、実施形態1~3、実施形態3の第1変形例のいずれかのLEDモジュール1において、第2変形例と同様に実装基板7を長尺状の形状とし1つの実装基板7に対して複数のLEDチップ4を備えた構成としたものでもよい。 The straight tube LED lamp 60 includes a straight tube (cylindrical) tube body 61 formed of a light-transmitting material, and a first base 62 provided at one end and the other end of the tube body 61 in the longitudinal direction. The second base 63, and the LED module 1 of the second modification is housed in the tube body 61. The LED module 1 is not limited to the LED module 1 of the second modification example, and the LED module 1 of any one of the first to third embodiments and the first modification example of the third embodiment is similar to the second modification example in the mounting substrate 7. May be configured to have a plurality of LED chips 4 with respect to one mounting substrate 7.
 管本体61の材料としては、例えば、透明なガラス、乳白色のガラス、透明な樹脂、乳白色の樹脂などを採用することができる。 As the material of the tube body 61, for example, transparent glass, milky white glass, transparent resin, milky white resin, or the like can be used.
 第1口金62には、LEDモジュール1に電気的に接続された2本の給電端子(以下、「第1ランプピン」という。)64、64が設けられている。これら2本の第1ランプピン64、64は、照明器具(図示せず)の器具本体に保持された給電用のランプソケットの2つの給電用接触子それぞれに電気的に接続可能となるように構成されている。 The first base 62 is provided with two power supply terminals (hereinafter referred to as “first lamp pins”) 64 and 64 electrically connected to the LED module 1. These two first lamp pins 64 and 64 are configured to be electrically connectable to the two power supply contacts of the power supply lamp socket held in the main body of the lighting equipment (not shown). Has been.
 第2口金63には、アース用の1本の接地端子(以下、「第2ランプピン」という。)65が設けられている。この1本の第2ランプピン65は、器具本体に保持された接地用のランプソケットの接地用接触子に電気的に接続可能となるように構成されている。 The second base 63 is provided with one ground terminal (hereinafter referred to as “second lamp pin”) 65 for grounding. The one second lamp pin 65 is configured to be electrically connectable to a grounding contact of a grounding lamp socket held in the instrument body.
 各第1ランプピン64の各々は、L字状に形成されており、管本体61の長手方向に沿って突出したピン本体64aと、ピン本体64aの先端部から管本体61の1つの径方向に沿って延設された鍵部64bと、で構成されている。2つの鍵部64bは、互いに離れる向きに延設されている。なお、各第1ランプピン64は、細長の金属板を折曲することにより形成されている。 Each of the first lamp pins 64 is formed in an L shape, and protrudes along the longitudinal direction of the tube main body 61, and from the tip of the pin main body 64a to one radial direction of the tube main body 61. And a key part 64b extending along the line. The two key parts 64b are extended in directions away from each other. Each first lamp pin 64 is formed by bending an elongated metal plate.
 第2ランプピン65は、第2口金63の端面(口金基準面)から管本体61とは反対側へ突出している。また、第2ランプピン65は、T字状に形成されている。なお、直管形LEDランプ60は、例えば、社団法人日本電球工業会により規格化されている「L型ピン口金GX16t-5付直管形LEDランプシステム(一般照明用)」(JEL 801:2010)の規格などを満たすように構成されていることが好ましい。 The second lamp pin 65 protrudes from the end face (base reference surface) of the second base 63 to the side opposite to the tube body 61. The second lamp pin 65 is formed in a T shape. The straight tube LED lamp 60 is, for example, a “straight tube LED lamp system with an L-shaped pin cap GX16t-5 (for general illumination)” (JEL 801: 2010) standardized by the Japan Light Bulb Industry Association. ) And the like.
 以上説明した直管形LEDランプ60では、管本体61内に上述のLEDモジュール1を備えていることにより、光取り出し効率の向上を図ることが可能となり、低コスト化および光出力の高出力化を図ることが可能となる。 In the straight tube type LED lamp 60 described above, the above-described LED module 1 is provided in the tube main body 61, so that it is possible to improve the light extraction efficiency, thereby reducing the cost and increasing the light output. Can be achieved.
 LEDモジュール1を備えたランプは、上述の直管形LEDランプに限らず、例えば、管本体内に、LEDモジュール1と、LEDモジュール1を点灯させる点灯装置とを備えた構成の直管形LEDランプとしてもよい。なお、点灯装置は、外部電源からランプピンを介して給電される。 The lamp provided with the LED module 1 is not limited to the straight tube LED lamp described above. For example, a straight tube LED having a configuration in which the LED module 1 and a lighting device for lighting the LED module 1 are provided in the tube body. A lamp may be used. The lighting device is supplied with power from an external power source via a lamp pin.
 第2変形例のLEDモジュール1は、実装基板7が長尺状の形状であり、複数個のLEDチップ4を備えているが、適用する照明器具の種別などによって実装基板7の形状や、配線パターン71の形状、LEDチップ4の個数、配置などを適宜変更することが可能である。 In the LED module 1 of the second modification, the mounting substrate 7 has an elongated shape and includes a plurality of LED chips 4. However, depending on the type of lighting fixture to be applied, the shape of the mounting substrate 7 and wiring The shape of the pattern 71, the number of LED chips 4, the arrangement, and the like can be changed as appropriate.
 以下では、LEDモジュール1を備えた照明器具90の一形態について図25、26に基いて説明する。なお、第2変形例と同様の構成要素には、同一の符号を付して説明を適宜省略する。 Below, one form of the lighting fixture 90 provided with the LED module 1 is demonstrated based on FIG. In addition, the same code | symbol is attached | subjected to the component similar to a 2nd modification, and description is abbreviate | omitted suitably.
 照明器具90は、ダウンライトとして使用可能なLED照明器具であり、器具本体91aと、器具本体91aに保持された光源であるLEDモジュール1と、を備えている。また、照明器具90は、LEDモジュール1を点灯させる点灯装置が収納された矩形箱状のケース98を備えている。点灯装置とLEDモジュール1とは、図示しない電線などにより電気的に接続されている。 The lighting fixture 90 is an LED lighting fixture that can be used as a downlight, and includes a fixture main body 91a and an LED module 1 that is a light source held by the fixture main body 91a. The lighting fixture 90 includes a rectangular box-shaped case 98 in which a lighting device for lighting the LED module 1 is housed. The lighting device and the LED module 1 are electrically connected by an electric wire (not shown).
 照明器具90は、器具本体91が円板状に形成されており、器具本体91aの一面側にLEDモジュール1が配置されている。また、照明器具90は、器具本体91の他面から突出する複数のフィン91abを備えている。器具本体91と各フィン91abとは一体に形成されている。 The lighting fixture 90 has a fixture main body 91 formed in a disk shape, and the LED module 1 is disposed on one surface side of the fixture main body 91a. The lighting fixture 90 includes a plurality of fins 91ab protruding from the other surface of the fixture body 91. The instrument main body 91 and each fin 91ab are integrally formed.
 LEDモジュール1は、実装基板7の平面形状が正方形状の形状であり、複数(例えば、48個)のLEDチップ4(図21参照)が2次元アレイ状に配列されている。また、LEDモジュール1は、仮想線上に並ぶ一群(例えば、8個)のLEDチップ4が直列接続されている。LEDモジュール1は、規定数(例えば、6つ)の仮想線を想定しており、一群のLEDチップ4を直列接続した直列回路を上記規定数だけ備えており、上記規定数の直列回路が並列接続されるように配線パターン71を設計してある。なお、実装基板7の平面形状は、正方形状に限らず、例えば、正方形以外の多角形状や円形状などでもよい。また、実装基板7の一表面7sa側に配置する複数のLEDチップ4の電気的な接続関係も特に限定するものではない。LEDモジュール1は、LEDチップ4と同じ数の光拡散基板2(図21参照)を備えていてもよいし、一群のLEDチップ4に対して1つの光拡散基板2を備えているようにしてもよい。 In the LED module 1, the planar shape of the mounting substrate 7 is a square shape, and a plurality of (for example, 48) LED chips 4 (see FIG. 21) are arranged in a two-dimensional array. In addition, the LED module 1 includes a group (for example, eight) of LED chips 4 arranged on a virtual line connected in series. The LED module 1 assumes a specified number (for example, six) of virtual lines, and includes the specified number of series circuits in which a group of LED chips 4 are connected in series, and the specified number of series circuits are in parallel. The wiring pattern 71 is designed to be connected. Note that the planar shape of the mounting substrate 7 is not limited to a square shape, and may be, for example, a polygonal shape or a circular shape other than a square shape. Further, the electrical connection relationship of the plurality of LED chips 4 arranged on the one surface 7sa side of the mounting substrate 7 is not particularly limited. The LED module 1 may include the same number of light diffusion substrates 2 (see FIG. 21) as the LED chips 4, or one light diffusion substrate 2 for a group of LED chips 4. Also good.
 また、照明器具90は、LEDモジュール1から側方へ放射された光を反射する第1リフレクタ93と、カバー92と、カバー92から出射する光の配光を制御する第2リフレクタ94とを備えている。なお、照明器具90は、器具本体91と、第2リフレクタ94とで、LEDモジュール1、第1リフレクタ93およびカバー92を収納する器具外郭を構成している。 The lighting fixture 90 includes a first reflector 93 that reflects light emitted from the LED module 1 to the side, a cover 92, and a second reflector 94 that controls the light distribution of the light emitted from the cover 92. ing. In addition, the lighting fixture 90 includes the fixture main body 91 and the second reflector 94 to form a fixture outline that houses the LED module 1, the first reflector 93, and the cover 92.
 器具本体91は、上記一面側に、2つの突台部91aが互いに対向して設けられている。そして、照明器具90は、LEDモジュール1を固定する板状の固定部材95が2つの突台部91aに架設されている。固定部材95は、板金により形成されており、各突台部91aの各々に螺子97により固定されている。第1リフレクタ93は、器具本体91に固定されている。LEDモジュール1は、第1リフレクタ93と固定部材95とで挟持されるようにしてもよい。第1リフレクタ93は、白色の合成樹脂により形成してある。 The instrument main body 91 is provided with two projecting base portions 91a facing each other on the one surface side. And as for the lighting fixture 90, the plate-shaped fixing member 95 which fixes the LED module 1 is constructed by the two protrusion parts 91a. The fixing member 95 is formed of sheet metal, and is fixed to each of the projecting base portions 91a by screws 97. The first reflector 93 is fixed to the instrument main body 91. The LED module 1 may be sandwiched between the first reflector 93 and the fixing member 95. The first reflector 93 is made of a white synthetic resin.
 固定部材95は、LEDモジュール1の実装基板7の一部を露出させる開孔部95aが形成されている。照明器具90は、実装基板7と器具本体91との間に、熱伝導部96を介在させてある。熱伝導部96は、実装基板7から器具本体91へ熱を伝熱させる機能を有する。熱伝導部96は、熱伝導性グリースにより形成してあるが、これに限らず、例えば、熱伝導性シートを用いてもよい。 The fixing member 95 is formed with an opening 95a that exposes a part of the mounting substrate 7 of the LED module 1. In the lighting device 90, a heat conducting portion 96 is interposed between the mounting substrate 7 and the device main body 91. The heat conduction unit 96 has a function of transferring heat from the mounting substrate 7 to the instrument main body 91. Although the heat conductive part 96 is formed with heat conductive grease, it is not restricted to this, For example, you may use a heat conductive sheet.
 熱伝導性シートとしては、電気絶縁性および熱伝導性を有するシリコーンゲルのシートを用いることができる。また、熱伝導性シートとして用いるシリコーンゲルのシートは、軟質なものが好ましい。この種のシリコーンゲルのシートとしては、例えば、サーコン(登録商標)などを用いることができる。 As the thermally conductive sheet, a silicone gel sheet having electrical insulation and thermal conductivity can be used. The silicone gel sheet used as the heat conductive sheet is preferably soft. For example, Sarcon (registered trademark) can be used as this type of silicone gel sheet.
 また、熱伝導性シートの材料は、シリコーンゲルに限らず、電気絶縁性および熱伝導性を有していれば、例えば、エラストマーでもよい。 Further, the material of the heat conductive sheet is not limited to silicone gel, and may be, for example, an elastomer as long as it has electrical insulation and heat conductivity.
 照明器具90は、LEDモジュール1で発生した熱を、熱伝導部96を通して器具本体91へ効率よく伝熱させることが可能となる。よって、照明器具90は、LEDモジュール1で発生した熱を器具本体91およびフィン91abから効率良く放熱させることが可能となる。 The lighting fixture 90 can efficiently transfer the heat generated in the LED module 1 to the fixture main body 91 through the heat conducting portion 96. Therefore, the lighting fixture 90 can efficiently dissipate heat generated in the LED module 1 from the fixture main body 91 and the fins 91ab.
 器具本体91およびフィン91abの材料としては、熱伝導率の高い材料が好ましく、実装基板7よりも熱伝導率の高い材料がより好ましい。ここで、器具本体91およびフィン91abの材料としては、アルミニウム、銅などの熱伝導率の高い金属を採用することが好ましい。 The material of the instrument main body 91 and the fin 91ab is preferably a material having a high thermal conductivity, and more preferably a material having a higher thermal conductivity than the mounting substrate 7. Here, as a material of the instrument main body 91 and the fin 91ab, it is preferable to employ a metal having high thermal conductivity such as aluminum or copper.
 カバー92の材料としては、例えば、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ガラスなどを採用することができる。 As the material of the cover 92, for example, acrylic resin, polycarbonate resin, silicone resin, glass, or the like can be employed.
 カバー92は、LEDモジュール1から放射された光の配光を制御するレンズ部(図示せず)を一体に備えていてもよい。 The cover 92 may be integrally provided with a lens unit (not shown) that controls the light distribution of the light emitted from the LED module 1.
 第2リフレクタ94の材料としては、例えば、アルミニウム、ステンレス、樹脂、セラミックなどを採用することができる。 As the material of the second reflector 94, for example, aluminum, stainless steel, resin, ceramic or the like can be used.
 以上説明した照明器具90では、光源として上述のLEDモジュール1を備えていることにより、低コスト化および光出力の高出力化を図ることが可能となる。また、照明器具90では、器具本体91が、LEDモジュール1の実装基板7を兼ねる構成としてもよい。 In the luminaire 90 described above, since the above-described LED module 1 is provided as a light source, it is possible to reduce the cost and increase the light output. Moreover, in the lighting fixture 90, the fixture main body 91 is good also as a structure which serves as the mounting substrate 7 of the LED module 1. FIG.

Claims (3)

  1.  透光性の光拡散基板と、前記光拡散基板の一表面側に透明な第1接合部を介して接合されたLEDチップと、前記光拡散基板の前記一表面側で前記LEDチップを覆う色変換部と、前記光拡散基板の他表面側に配置された実装基板と、を備え、前記色変換部は、前記LEDチップから放射される光によって励起されて前記LEDチップとは異なる色の光を放射する蛍光体を含有する透明材料により形成され、前記実装基板は、電気絶縁性を有する絶縁部材と、前記絶縁部材に埋設され前記LEDチップが電気的に接続される配線パターンと、を備え、前記絶縁部材は、拡散反射性を有する非透光性部材であることを特徴とするLEDモジュール。 A translucent light diffusing substrate, an LED chip bonded to one surface side of the light diffusing substrate via a transparent first bonding portion, and a color covering the LED chip on the one surface side of the light diffusing substrate A conversion unit and a mounting substrate disposed on the other surface side of the light diffusion substrate, and the color conversion unit is excited by the light emitted from the LED chip and has a color different from that of the LED chip. The mounting substrate includes an insulating member having electrical insulation, and a wiring pattern embedded in the insulating member and electrically connected to the LED chip. The LED module is a non-translucent member having diffuse reflectivity.
  2.  前記LEDチップは、厚み方向の一面側に第1電極と第2電極とが設けられたものであり、前記第1電極および前記第2電極の各々が前記配線パターンとワイヤを介して電気的に接続されており、前記配線パターンの一部が、前記光拡散基板の前記実装基板側への垂直投影領域に設けられていることを特徴とする請求項1記載のLEDモジュール。 The LED chip is provided with a first electrode and a second electrode on one surface side in the thickness direction, and each of the first electrode and the second electrode is electrically connected via the wiring pattern and a wire. The LED module according to claim 1, wherein the LED module is connected and a part of the wiring pattern is provided in a vertical projection region of the light diffusion substrate toward the mounting substrate.
  3.  前記光拡散基板は、前記絶縁部材に埋設されて側面と前記他表面とが前記絶縁部材に接しており、前記実装基板は、前記配線パターンが、前記光拡散基板の前記一表面上に設けられた部位を備え、前記配線パターンは、前記第1電極および前記第2電極に一端部がそれぞれ接合された各前記ワイヤの他端部と前記部位とが接合されており、前記色変換部は、前記光拡散基板の前記一表面側において前記LEDチップおよび各前記ワイヤを覆っていることを特徴とする請求項2記載のLEDモジュール。 The light diffusing substrate is embedded in the insulating member, and a side surface and the other surface are in contact with the insulating member. The mounting substrate has the wiring pattern provided on the one surface of the light diffusing substrate. The wiring pattern has the other end of each wire joined to the first electrode and the second electrode, and the part is joined, and the color converter is The LED module according to claim 2, wherein the LED chip and each of the wires are covered on the one surface side of the light diffusion substrate.
PCT/JP2013/003300 2012-05-31 2013-05-24 Led module WO2013179623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518271A JP6145945B2 (en) 2012-05-31 2013-05-24 LED module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-125018 2012-05-31
JP2012125018 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013179623A1 true WO2013179623A1 (en) 2013-12-05

Family

ID=49672849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003300 WO2013179623A1 (en) 2012-05-31 2013-05-24 Led module

Country Status (2)

Country Link
JP (1) JP6145945B2 (en)
WO (1) WO2013179623A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017303A (en) * 2012-07-06 2014-01-30 Citizen Holdings Co Ltd Led light source device and light reflective substrate
JP2015002232A (en) * 2013-06-14 2015-01-05 株式会社ディスコ Light-emitting device
JP2018148094A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148095A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148096A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148093A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182167A (en) * 2017-04-18 2018-11-15 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182166A (en) * 2017-04-18 2018-11-15 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182170A (en) * 2017-04-18 2018-11-15 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449247A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor light emitting device
JP2001284656A (en) * 2000-03-31 2001-10-12 Okaya Electric Ind Co Ltd Led lamp
JP2005209958A (en) * 2004-01-23 2005-08-04 Kyocera Corp Light emitting storage package and light emitting device
JP2007059781A (en) * 2005-08-26 2007-03-08 Toyoda Gosei Co Ltd Submount-attached light emitting element and light emitting device
JP2007287713A (en) * 2006-04-12 2007-11-01 Showa Denko Kk Light-emitting device, and manufacturing method thereof
JP2009032850A (en) * 2007-07-26 2009-02-12 Toyoda Gosei Co Ltd Light-emitting device
JP2009123908A (en) * 2007-11-14 2009-06-04 Mitsubishi Chemicals Corp Light-emitting device
JP2011114006A (en) * 2009-11-24 2011-06-09 Seiko Epson Corp Light emitting device and projector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109079A (en) * 2006-09-26 2008-05-08 Kyocera Corp Wiring board for surface mounting type light-emitting element, and light-emitting device
JP2009099771A (en) * 2007-10-17 2009-05-07 Rohm Co Ltd Semiconductor light-emitting module
JP2011249768A (en) * 2010-04-27 2011-12-08 Mitsubishi Chemicals Corp Semiconductor light-emitting element support member and semiconductor light-emitting device
JP5745970B2 (en) * 2011-08-08 2015-07-08 シチズンホールディングス株式会社 Light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449247A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor light emitting device
JP2001284656A (en) * 2000-03-31 2001-10-12 Okaya Electric Ind Co Ltd Led lamp
JP2005209958A (en) * 2004-01-23 2005-08-04 Kyocera Corp Light emitting storage package and light emitting device
JP2007059781A (en) * 2005-08-26 2007-03-08 Toyoda Gosei Co Ltd Submount-attached light emitting element and light emitting device
JP2007287713A (en) * 2006-04-12 2007-11-01 Showa Denko Kk Light-emitting device, and manufacturing method thereof
JP2009032850A (en) * 2007-07-26 2009-02-12 Toyoda Gosei Co Ltd Light-emitting device
JP2009123908A (en) * 2007-11-14 2009-06-04 Mitsubishi Chemicals Corp Light-emitting device
JP2011114006A (en) * 2009-11-24 2011-06-09 Seiko Epson Corp Light emitting device and projector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017303A (en) * 2012-07-06 2014-01-30 Citizen Holdings Co Ltd Led light source device and light reflective substrate
JP2015002232A (en) * 2013-06-14 2015-01-05 株式会社ディスコ Light-emitting device
JP2018148094A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148095A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148096A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148093A (en) * 2017-03-07 2018-09-20 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182167A (en) * 2017-04-18 2018-11-15 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182166A (en) * 2017-04-18 2018-11-15 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018182170A (en) * 2017-04-18 2018-11-15 株式会社ディスコ Method for manufacturing light-emitting diode chip and light-emitting diode chip

Also Published As

Publication number Publication date
JP6145945B2 (en) 2017-06-14
JPWO2013179623A1 (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP5997766B2 (en) LED module
JP5861115B2 (en) LED module, manufacturing method thereof, and lighting apparatus
JP6229953B2 (en) Light emitting device
JP6145945B2 (en) LED module
JP6170495B2 (en) Light emitting module, lamp, lighting fixture and display device
US20120300430A1 (en) Light-emitting module and lighting apparatus
US20150016107A1 (en) Led module having a highly reflective carrier
JP2010263242A (en) Lighting device
US20120001215A1 (en) Light-emitting module and illumination device
JP2010251805A (en) Illumination device
WO2011024861A1 (en) Light-emitting device and illuminating device
JP2015103561A (en) Light emitting device
JP2014049625A (en) Led module
JP2015103714A (en) Light-emitting device
JP2012009696A (en) Light emitting device and led illuminating equipment
JP2006049715A (en) Luminous light source, illuminating unit, and display unit
JP2014120660A (en) Light-emitting module
JP2013201380A (en) Reflecting material and lighting device
JP2015103673A (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796543

Country of ref document: EP

Kind code of ref document: A1