WO2013179583A1 - Contactless power-feeding device and contactless power-feeding system - Google Patents

Contactless power-feeding device and contactless power-feeding system Download PDF

Info

Publication number
WO2013179583A1
WO2013179583A1 PCT/JP2013/003020 JP2013003020W WO2013179583A1 WO 2013179583 A1 WO2013179583 A1 WO 2013179583A1 JP 2013003020 W JP2013003020 W JP 2013003020W WO 2013179583 A1 WO2013179583 A1 WO 2013179583A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
detection
power
frequency
receiving coil
Prior art date
Application number
PCT/JP2013/003020
Other languages
French (fr)
Japanese (ja)
Inventor
聡 兵頭
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013179583A1 publication Critical patent/WO2013179583A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices

Definitions

  • the present invention relates to a non-contact power feeding device, and a non-contact power feeding system including a power-supplied device to which power is supplied from the non-contact power feeding device and the non-contact power feeding device.
  • a non-contact power supply system that supplies power from a power supply coil of a non-contact power supply device to a power reception coil of a power supply device by using an electromagnetic induction phenomenon is known. And the detection process which detects whether the secondary side apparatus (power-supplied apparatus) containing a secondary side coil (power receiving coil) is arrange
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power supply apparatus and a non-contact power supply system that can reduce power consumed when the power receiving coil is not disposed opposite to the power supply coil. Is to provide.
  • the presence / absence of the power receiving coil which is repeatedly executed, is detected based on the presence / absence of the power receiving coil that is fed by the electromagnetic induction phenomenon from the power feeding coil.
  • the execution frequency of the detection process is adjusted. For this reason, such a non-contact electric power feeder and a non-contact electric power feeding system can reduce the electric power consumed when the receiving coil is not arrange
  • FIG. 1 it is a graph which shows an example of the relationship between the facing area of a feeding coil and a receiving coil, and the inductance of a feeding coil.
  • FIG. 1 it is explanatory drawing for demonstrating the relationship between the presence or absence of the receiving coil arrange
  • FIG. 1 It is a flowchart which shows an example of operation
  • FIG. 1 It is a block diagram which shows an example of a structure of the non-contact electric power feeder in 3rd Embodiment of this invention. It is the first half of the flowchart which shows an example of operation
  • Drawing 1 is an explanatory view for explaining an example of composition of a non-contact electric supply system in a 1st embodiment.
  • a non-contact power supply system 1 shown in FIG. 1 includes a non-contact power supply device 2 and a power-supplied device 3 and is configured by combining them.
  • the non-contact power supply device 2 and the power supplied device 3 are configured to be separable.
  • the non-contact power supply device 2 includes a substantially box-shaped housing 21, and the power-supplied device 3 includes a substantially box-shaped housing 31.
  • the upper surface of the housing 21 of the non-contact power feeding device 2 is a mounting surface (first facing surface) 22 for mounting the power supplied device 3.
  • the portion forming the upper surface of the housing 21 is an example of a placement member.
  • the lower surface of the casing 31 of the power supplied device 3 is a placement surface (second facing surface) 32 that faces and contacts the placement surface 22.
  • the casing 21 of the non-contact power feeding device 2 is larger than the casing 31 of the power supplied device 3, and the placement surface 22 is wider than the placement surface.
  • a plurality of power supply coils 23 are two-dimensionally arranged so that the upper surface of the coil is substantially parallel to the mounting surface 22 inside (directly below) the mounting surface 22 in the housing 21. Arranged in an array.
  • the plurality of power supply coils 23 are closely arranged so that the distance between the power supply coils 23 is substantially zero. That is, the plurality of power supply coils 23 are arranged so that the coil peripheral surfaces are in contact with each other.
  • a plurality of power receiving coils 33 are arranged on the power supplied device 3 so that the upper surface of the coil is substantially parallel to the placement surface 32 inside the placement surface 32 in the housing 31 (directly above). Established.
  • the power receiving coil 33 is a power supply target that is fed by the power feeding coil 23 due to an electromagnetic induction phenomenon.
  • the power supplied device 3 includes a load (not shown). The power received by the power receiving coil 33 is supplied to the load (not shown).
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the non-contact power supply apparatus 2 in the non-contact power supply system 1 shown in FIG.
  • the non-contact power feeding device 2 illustrated in FIG. 2 includes a plurality of coil drive blocks B and a control unit 4.
  • the coil drive block B includes a power supply coil 23, and the plurality of coil drive blocks B are provided corresponding to the plurality of power supply coils 23, respectively.
  • the coil drive block B includes a feeding coil 23, a current detection unit 24, and a power supply unit 25.
  • the power supply unit 25 is a circuit that selectively supplies a high-frequency voltage to the plurality of power supply coils 23, and includes, for example, a gate driver circuit 251, FETs (Field Effect Transistors) Q 1 and Q 2, and a capacitor C.
  • FETQ1 is, for example, a P-channel FET
  • FETQ2 is, for example, an N-channel FET.
  • the power supply voltage VDD supplied from a power supply circuit is applied to the source of the FET Q1, the drain of the FET Q1 is connected to the drain of the FET Q2, and the source of the FET Q2 is connected to the circuit ground.
  • a connection point P1 between the FET Q1 and the FET Q2 is connected to the circuit ground via the capacitor C, the current detection unit 24, and the feeding coil 23.
  • the gate driver circuit 251 turns on and off the FET Q1 and the FET Q2 approximately alternately at a high frequency so that when one is turned on, the other is turned off. Thereby, a high frequency voltage is generated at the connection point P1 by the FETs Q1 and Q2.
  • the capacitor C cuts a direct current component from the high frequency voltage generated by the FETs Q 1 and Q 2 and supplies the remaining high frequency component to the power supply coil 23.
  • the current detection unit 24 detects the coil current I flowing through the power feeding coil 23 according to the high frequency voltage supplied by the power supply unit 25. Then, the current detection unit 24 outputs a signal indicating the current value of the detected coil current I to the control unit 4.
  • the current detection unit 24 is a current sensor such as a shunt resistor or a Hall element.
  • the non-contact power supply device 2 includes the same number of coil drive blocks B configured as described above as the power supply coil 23.
  • the control unit 4 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a nonvolatile ROM (Read Only Memory) in which a predetermined control program is stored, and a volatile that temporarily stores data. It comprises a RAM (Random Access Memory) and peripheral circuits thereof. And the control part 4 is equipped with the detection part 41, the detection control part 42, the coil selection part 43, and the coil control part 44 functionally, for example by executing the control program memorize
  • ROM Random Access Memory
  • the detection unit 41 repeatedly executes a detection process for detecting the presence or absence of the power reception coil 33 arranged at a position facing the plurality of power supply coils 23 at an execution interval set by the detection control unit 42. More specifically, for example, the detection unit 41 causes the power supply unit 25 of each coil drive block B to supply a high-frequency voltage to the power supply coil 23 (Process A). The detection unit 41 detects the coil current I of each power supply coil 23 during the period in which the current detection unit 24 of each coil drive block B supplies a high-frequency voltage to the corresponding power supply coil 23. 24 (process B). And the detection part 41 determines with a receiving coil existing in the position facing the electric power feeding coil 23 corresponding to the current detection part 24 which detected the coil current I exceeding the preset determination value (process C).
  • the detection unit 41 executes the detection process including the process A, the process B, and the process C corresponding to the plurality of power supply coils 23. In this way, the detection unit 41 detects the presence / absence of the power receiving coil 33 arranged at a position facing each of the plurality of power feeding coils 23. Then, the detection unit 41 repeatedly executes such detection processing corresponding to each power supply coil 23 at an execution interval corresponding to each power supply coil 23.
  • FIG. 3 is an explanatory diagram for explaining the inductance of the power feeding coil 23 when the power feeding coil 23 and the power receiving coil 33 are arranged to face each other in the non-contact power feeding system 1 shown in FIG.
  • the feeding coil 23 and the receiving coil 33 are arranged to face each other so as to completely overlap in the example shown in FIG.
  • a voltage is output from the power supply unit 25 and a coil current flows through the feeding coil 23 (FIG. 3B).
  • a coil current flows through the power supply coil 23
  • an interlinkage magnetic flux is generated by the power supply coil 23 so as to penetrate the power supply coil 23 and the power reception coil 33 (FIG. 3C).
  • the power feeding coil 23 and the power receiving coil 33 are arranged to face each other so as to overlap each other, the power feeding coil 23 alone is caused by the interaction of the magnetic circuit formed by the power feeding coil 23 and the power receiving coil 33.
  • the current flowing through the power supply coil 23 differs between the case where the power supply coil 23 and the power reception coil 33 are arranged to face each other. Therefore, the apparent inductance of the power feeding coil 23 changes between the case where the power feeding coil 23 is a single unit and the case where the power feeding coil 23 and the power receiving coil 33 are arranged to face each other.
  • FIG. 4 is an explanatory diagram for explaining an interaction due to the positional relationship between the power feeding coil 23 and the power receiving coil 33 in the non-contact power feeding system shown in FIG.
  • FIG. 5 is a graph showing an example of the relationship between the facing area of the feeding coil 23 and the receiving coil 33 and the inductance of the feeding coil 23 in the non-contact power feeding system shown in FIG.
  • FIG. 4A is an explanatory diagram showing a case where the position of the power feeding coil 23 and the position of the power receiving coil 33 coincide with each other on the coil axes. That is, FIG. 4A shows an example in which the power feeding coil 23 and the power receiving coil 33 are arranged to face each other so as to completely overlap each other, and the facing area between the power feeding coil 23 and the power receiving coil 33 is maximized. It is explanatory drawing.
  • Each coil surface of the power feeding coil 23 and the power receiving coil 33 is a plane surrounded by the outermost windings of the power feeding coil 23 and the power receiving coil 33 and is orthogonal to the interlinkage magnetic flux of the power feeding coil 23 and the power receiving coil 33. It is a plane that expands in the direction of the movement.
  • the area of the power feeding coil 23 is the area of the coil surface of the power feeding coil 23, and the area of the power receiving coil 33 is the area of the coil surface of the power receiving coil 33.
  • the facing area between the power feeding coil 23 and the power receiving coil 33 is an area of a portion where the coil surface of the power feeding coil 23 and the coil surface of the power receiving coil 33 face each other and overlap each other.
  • the facing area of the power feeding coil 23 and the power receiving coil 33 is maximized.
  • the facing area between the feeding coil 23 and the receiving coil 33 is maximized, the number of interlinkage magnetic fluxes linked to the feeding coil 23 and the receiving coil 33 is maximized, and the interaction between the feeding coil 23 and the receiving coil 33 is increased. Maximum. As a result, the inductance of the feeding coil 23 is minimized.
  • the facing area between the feeding coil 23 and the receiving coil 33 and the inductance of the feeding coil 23 have a predetermined relationship. For example, as shown in FIG. 5, the larger the coil facing area, the smaller the inductance. . Since the inductance of the feeding coil 23 and the coil facing area are in a one-to-one correspondence as shown in FIG. 5, the inductance of the feeding coil 23 is information indicating the coil facing area, and is an example of the information. It is.
  • FIG. 6 is an explanatory diagram for explaining the relationship between the presence / absence of a power receiving coil arranged at a position facing the power feeding coil and the coil current of the power feeding coil in the non-contact power feeding system shown in FIG. .
  • the power receiving coil 33 is opposed across the power feeding coil 23b and the power feeding coil 23c adjacent to each other. Has been placed.
  • the respective inductances of the power feeding coils 23a and 23d are large values from the graph shown in FIG. .
  • the inductance of the feeding coil 23 is L
  • the voltage of the high frequency voltage output from the power supply unit 25 is V
  • the frequency is f
  • the coil current I of the feeding coil 23 is expressed by the following equation (1).
  • the coil current I increases as the inductance decreases. Since the coil current I and the inductance have a one-to-one correspondence, the coil current I detected by the current detection unit 24 is information indicating the inductance of the feeding coil 23 and is an example of the information.
  • the coil current I becomes larger as the facing area is larger. Since the coil current I and the facing area have a one-to-one correspondence, the coil current I detected by the current detecting unit 24 is also information indicating the facing area of the feeding coil 23, and the information It is also an example.
  • the coil current I flowing in the feeding coils 23a and 23d having the facing area of zero is smaller as shown in FIG. 6B.
  • the power supply coil 23 facing the power receiving coil 33 so that a slightly larger current value than the coil current I flowing in the power supply coils 23a and 23d having zero facing area overlaps the coil surface? It is set in advance as a determination value for determining whether or not.
  • the coil current I flowing through the power feeding coils 23b and 23c facing the power receiving coil 33 so as to overlap the coil surface is larger than the coil current I flowing through the power feeding coils 23a and 23d and larger than the determination value.
  • the detection part 41 showed the example which detects the receiving coil 33 based on the electric current value of the coil current I, it is not necessarily the example which detects the receiving coil 33 based on the coil current I.
  • an optical sensor is provided in the vicinity of each power supply coil 23, and the detection unit 41 has the power-supplied device 3 (power reception coil 33) at a position facing each power supply coil 23 by the plurality of optical sensors. It may be configured to detect whether or not to do so.
  • the power-supplied device 3 is placed on the placement surface 22, the amount of light received by the optical sensor is reduced. Therefore, the presence or absence of placement of the power-supplied device 3 is detected by the plurality of optical sensors. The position of the power-supplied device 3 placed can be detected.
  • the detection unit 41 may be configured to measure the inductance of each feeding coil 23 by, for example, a known inductance measuring unit. In such a case, the detection unit 41 determines that the power receiving coil 33 is present at a position facing the power feeding coil 23 where the inductance less than the inductance value corresponding to the determination value is detected.
  • the inductance measurement process of the optical sensor and the feeding coil 23 consumes power.
  • the detection unit 41 detects the power receiving coil based on the optical sensor and the inductance measurement
  • the power consumption is reduced by reducing the frequency of execution of the detection process. Can be reduced.
  • the detection control unit 42 causes the detection unit 41 to repeat the detection process while increasing the execution interval of the detection process by the detection unit 41 until the detection unit 41 detects the presence of the power receiving coil 33.
  • the coil selection unit 43 selects one or a plurality of power supply coils 23 determined by the detection unit 41 that the power reception coil 33 is present at the facing position as the excitation target coil from the plurality of power supply coils 23.
  • the coil control unit 44 causes the power supply unit 25 to supply a high-frequency voltage to the power supply coil selected as the excitation target coil by the coil selection unit 43, which is the power supply coils 23b and 23c in the example illustrated in FIG. Accordingly, in the example illustrated in FIG. 6, power is supplied to the power receiving coil 33 from the plurality of power feeding coils 23 b and 23 c.
  • the coil selector 43 can receive the power-receiving coil without accurately positioning the power-feeding coil 23 and the power-receiving coil 33.
  • One or a plurality of power supply coils 23 that oppose each other so as to overlap with the coil surface are selected as excitation target coils. Then, a high frequency voltage is supplied to the excitation target coil, and power is supplied from the excitation target coil to the power receiving coil 33. Accordingly, even if the power feeding coil and the power receiving coil are misaligned without accurately positioning the power feeding coil 23 and the power receiving coil 33, power can be supplied from the non-contact power feeding device 2 to the power supplied device 3. it can.
  • the number of feeding coils 23 is n.
  • the n feeding coils 23 are assigned 1 to n coil numbers.
  • the feeding coil 23 having the coil number i is represented as a feeding coil 23 (i).
  • the coil driving block B including the feeding coil 23 (i) is denoted as a coil driving block B (i).
  • the current detection unit 24 and the power supply unit 25 included in the coil drive block B (i), that is, the current detection unit 24 and the power supply unit 25 corresponding to the feeding coil 23 (i) are respectively the current detection unit 24 (i) and the power supply unit. 25 (i).
  • the coil current I detected by the current detector 24 (i), that is, the coil current I flowing through the feeding coil 23 (i) is denoted as coil current I (i).
  • the timer 45 corresponding to the feeding coil 23 (i) is expressed as a timer 45 (i)
  • the timer set value TM of the timer 45 (i) is expressed as a timer set value TM (i).
  • FIG. 7 is a flowchart showing an example of the operation of the non-contact power feeding device 2 shown in FIG.
  • the flowchart shown in FIG. 7 shows an operation corresponding to the feeding coil 23 (i).
  • the control unit 4 performs the same operation as the flowchart shown in FIG. 7 in parallel on all the power supply coils 23 (1) to 23 (n).
  • the detection control unit 42 sets an initial value set in advance as the timer set value TM (i) as an initial process (step S1).
  • the initial value is set to a predetermined time, for example, 1 second.
  • the initial value is a lower limit value of the timer set value TM (execution interval).
  • the detection unit 41 sets the timer set value TM (i) in the timer 45 (i), and causes the timer 45 (i) to start measuring time (step S2).
  • the timer 45 (i) times up when the time of the timer set value TM (i) has elapsed since the start of timing.
  • the detection unit 41 determines whether or not the timer 45 (i) has expired (step S3).
  • the detection unit 41 supplies the power supply coil 23 (i) with a high-frequency voltage to the power supply unit 25 (i) so as to start the detection process. (Step S4).
  • the detection unit 41 compares the coil current I (i) detected by the current detection unit 24 (i) with the determination value (step S5). As a result of this comparison, when the coil current I (i) is equal to or smaller than the determination value (NO in step S5), the detection unit 41 determines that the power reception coil 33 does not exist at a position facing the power supply coil 23 (i). (Step S6). On the other hand, as a result of the comparison, when the coil current I (i) exceeds the determination value (YES in step S5), the detection unit 41 indicates that the power receiving coil 33 is present at a position facing the power feeding coil 23 (i). Determine (step S9).
  • the above steps S4 to S6 and S9 correspond to an example of detection processing.
  • step S6 when the detection unit 41 determines that the power reception coil 33 does not exist at a position facing the power supply coil 23 (i), the coil control unit 44 determines the high-frequency voltage applied to the power supply coil 23 (i). Supply is stopped by the power supply unit 25 (i) (step S7).
  • the detection control unit 42 increases the timer setting value TM (i) by adding, for example, 1 second to the timer setting value TM (i) (step S8). And the detection control part 42 transfers to step S2 to repeat the detection process by the detection part 41.
  • the detection unit 41 repeats the detection process at the time interval of the timer set value TM (i), the timer set value TM (i) corresponds to an example of an execution interval.
  • the coil selection unit 43 selects the power supply coil 23 (i) as an excitation target coil. To do. And the coil control part 44 supplies a high frequency voltage to the power supply part 25 (i) to the electric power feeding coil 23 (i) which is an excitation object coil (step S10).
  • the non-contact power feeding device 2 can supply power to the power-supplied device 3 in a non-contact manner.
  • the detection control unit 42 proceeds to step S2 to repeat the detection process by the detection unit 41 without increasing the value of the timer set value TM (i).
  • Table 1 shows an example in which the power receiving coil 33 is not detected in the first to fourth detection processes. According to steps S1 to S10, as shown in Table 1, the timer set value TM increases by 1 second in correspondence with the first to fourth detection processes in which the power receiving coil 33 is not detected. When the power receiving coil 33 is detected in the fifth detection process (YES in step S5, step S9), the timer set value TM corresponding to the fifth detection process does not increase.
  • the detection control unit 42 detects the detection process while increasing the execution interval of the detection process by the detection unit 41 until the detection unit 41 detects the presence of the power receiving coil 33 by the processes of steps S2 to S10. Let unit 41 repeat. As a result, as shown in Table 1, the timer set value TM (execution interval) increases as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 (the first to fourth detection processing times) continues longer. .
  • the detection control unit 42 decreases the detection processing execution frequency as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 continues longer.
  • the frequency of use of the non-contact power feeding device 2 in which the user performs non-contact power feeding by placing the power fed device 3 opposite to the non-contact power feeding device 2 depends on the circumstances of the user, the non-contact power feeding device 2 and the It varies greatly depending on the nature of the power feeding device 3. Therefore, if the frequency of use of the non-contact power supply device 2 is low and high, and the detection process is performed at the same frequency, the power receiving coil 33 faces the power supply coil 23 when the frequency of use of the non-contact power supply device 2 is low. Unnecessary power consumed when not arranged increases.
  • the user can supply the power-supplied device 3 near the center of the placement surface 22. Is likely to be placed. As a result, there is a difference in the frequency of use between the feeding coil 23 arranged near the center of the placement surface 22 and the feeding coil 23 arranged near the end of the placement surface 22. Thus, there may be a difference in the frequency of use among the plurality of power supply coils 23.
  • the power reception coil 33 feeds power in the power supply coil 23 with low use frequency. Unnecessary power consumed when the coil 23 is not disposed opposite to the coil 23 increases.
  • the power supply coil 23 in which the period during which the presence of the power reception coil 33 is not detected by the detection unit 41 has continued for a long time that is, the frequency of use by the user.
  • the frequency of execution of detection processing corresponding to the feeding coil 23 that is considered to be low is reduced.
  • control part 4 showed the example which performs the detection process corresponding to each electric power feeding coil 23 in parallel, the non-contact electric power feeder 2 may be provided with two or more control parts 4 corresponding to each electric power feeding coil 23. .
  • step S8 the detection control unit 42 increases the timer set value TM (execution interval) by 1 second. However, the detection control unit 42 increases the timer set value TM (execution interval). , Not limited. For example, the detection control unit 42 may be configured to increase the timer set value TM (execution interval) by multiplying a preset magnification.
  • the detection control part 42 increases the value of timer setting value TM (i), when the detection part 41 determines with the receiving coil 33 existing in the position facing the electric power feeding coil 23 (i) (step S9).
  • the detection control part 42 is step. It may be configured to proceed to S1 and set an initial value as the timer set value TM (i).
  • the frequency with which the user uses the non-contact power feeding device 2 may change. Therefore, when the detection unit 41 determines that the power reception coil 33 is present at a position facing the power supply coil 23 (i) (step S9), the detection control unit 42 sets an initial value, that is, a timer, as the timer set value TM (i). It is preferable to set a lower limit value of the set value TM (execution interval). That is, when the presence of the power receiving coil 33 is detected by the detection unit 41, the detection control unit 42 sets the execution interval to an initial value set in advance as a lower limit value of the execution interval. After initialization, it is preferable to cause the detection unit 41 to repeat the detection process. Thereby, when a user's usage frequency increases, the timer setting value TM (execution interval) can be shortened and the detection processing execution frequency can be increased.
  • the detection control unit 42 42 may be configured to proceed to step S1 and set an initial value as the timer set value TM (i). That is, the detection control unit 42 initializes the execution interval when the detection unit 41 continuously detects the presence of the power receiving coil 33 while repeatedly executing the detection process a preset number of times. May be configured.
  • the detection unit 41 determines that the power reception coil 33 is continuously present at a position facing the power supply coil 23 (i) in the preset number of detection processes, it can be determined that the use frequency of the user has increased. High nature. Therefore, when it can be determined with high certainty that the use frequency of the user has increased, the timer set value TM (execution interval) can be shortened, and the execution frequency of the detection process can be increased.
  • the non-contact power supply system 1a includes a non-contact power supply device 2a and a power supplied device 3 (FIG. 1).
  • the non-contact power feeding system 1a of the second embodiment is different from the non-contact power feeding system 1 of the first embodiment in the configuration of the non-contact power feeding device 2a.
  • FIG. 8 is a block diagram illustrating an example of the configuration of the non-contact power feeding device 2a.
  • the non-contact power feeding device 2a shown in FIG. 8 is different from the non-contact power feeding device 2 shown in FIG. 2 in the configuration of the control unit 4a.
  • the control unit 4a in the non-contact power feeding device 2a of the second embodiment is different from the control unit 4 in the non-contact power feeding device 2 of the first embodiment in that the operation of the detection control unit 42a and further a counter 46 are provided.
  • a plurality of counters 46 are provided corresponding to the plurality of power feeding coils 23.
  • the counter 46 corresponding to the feeding coil 23 (i) is represented as a counter 46 (i)
  • the counter value CT of the counter 46 (i) is represented as a counter value CT (i).
  • the detection control unit 42 a causes the detection unit 41 to repeat the detection process until the detection unit 41 detects the presence of the power receiving coil 33.
  • the detection control unit 42a increases the detection process execution interval every time the detection process is repeated for a predetermined number of determinations Cj that the presence of the power receiving coil 33 is not detected. That is, the detection control unit 42a increases the execution interval every time the number of times that the presence of the power receiving coil 33 is not detected by the detection process reaches a preset number of determinations.
  • the counter 46 counts the number of times determined by the detection unit 41 that the power receiving coil 33 is not present.
  • FIG. 9 is a flowchart showing an example of the operation of the non-contact power feeding apparatus 2a shown in FIG.
  • the detection control unit 42a operates in the same manner as the detection control unit 42 except for the processes in steps S101, S102, and S103.
  • the detection control unit 42a initializes the counter value CT (i) of the counter 46 (i) to 0, and proceeds to the process of step S2 (step S101).
  • the detection control unit 42a adds 1 to the counter value CT (i) of the counter 46 (i) after the process of step S7 (step S102). Thereby, the detection control part 42a makes the counter 46 (i) count the frequency
  • the detection control unit 42a compares the counter value CT (i) of the counter 46 (i) with the number of determinations Cj (step S103). If the counter value CT (i) is equal to the determination count Cj (YES in step S103), the detection control unit 42a proceeds to the process in step S8 and increases the timer set value TM (i). On the other hand, when the counter value CT (i) is less than the number of determinations Cj and is not equal (NO in step S103), the detection control unit 42a proceeds to the process of step S2 without increasing the timer set value TM (i). And the detection process by the detection unit 41 is repeated.
  • Table 2 shows an example of the operation of the non-contact power feeding device 2a when the number of determinations Cj is 2.
  • the timer set value TM is increased.
  • the timer set value TM execution interval
  • the detection control unit 42a decreases the execution frequency of the detection process as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 continues longer. Thereby, the non-contact electric power feeder 2a has the same effect as the non-contact electric power feeder 2.
  • the user may rarely use the non-contact power feeding device 2a (power feeding coil 23 (i)) for a long time.
  • the timer setting value TM (i) execution interval
  • the detection process execution frequency is high despite the high use frequency of the user. Becomes lower.
  • the response time from when the user places the power receiving coil 33 to the power feeding coil 23 (i) to the time when power feeding is started increases. This is not desirable from the viewpoint of ensuring convenience for users with high use frequency.
  • the timer set value TM (i) (execution interval) is increased only when the detection unit 41 does not detect the power receiving coil 33 a plurality of times. For this reason, even when a frequently used user rarely uses the non-contact power feeding device 2a (power feeding coil 23 (i)) for a long time, an increase in the timer set value TM (i) (execution interval) is suppressed.
  • the determination number Cj may be 10 or 100, for example, and the numerical value is not limited.
  • the determination number Cj may be changed. For example, each time the counter value CT becomes equal to the determination number Cj, the determination number Cj may increase.
  • the non-contact power supply system 1b includes a non-contact power supply device 2b and a power supplied device 3 (FIG. 1).
  • the non-contact power feeding system 1b of the third embodiment is different from the non-contact power feeding system 1 of the first embodiment in the configuration of the non-contact power feeding device 2b.
  • FIG. 10 is a block diagram illustrating an example of the configuration of the non-contact power feeding device 2b.
  • the non-contact power feeding device 2b shown in FIG. 10 is different from the non-contact power feeding device 2 shown in FIG. 2 in the configuration of the control unit 4b.
  • the control unit 4b according to the third embodiment differs from the control unit 4 in the non-contact power feeding device 2 according to the first embodiment in that the configuration and operation of the detection control unit 42b are different and that the storage unit 47 is further provided. .
  • the detection control unit 42b includes a detection frequency acquisition unit 421 and an execution frequency adjustment unit 422.
  • the detection frequency acquisition unit 421 determines whether the detection unit 41 detects the power receiving coil 33 in the detection process (based on whether the power reception coil 33 is present by the detection unit 41). The frequency at which this is detected is acquired as a detection frequency value.
  • the execution frequency adjustment unit 422 decreases the detection process execution frequency as the detection frequency decreases.
  • the storage unit 47 stores the detection frequency value acquired by the detection frequency acquisition unit 421.
  • the storage unit 47 is a non-volatile storage element such as EEPROM (Electrically Erasable and Programmable Read Only Memory) or FeRAM (Ferroelectric Random Access Memory).
  • FIGS. 11 and 12 are flowcharts showing an example of the operation of the non-contact power feeding device 2b.
  • the same processes as those in FIG. 7 are denoted by the same step numbers as those in FIG. That is, the detection control unit 42b operates in the same manner as the detection control unit 42 except for the processes of steps S201 to S204 and S211 to S215.
  • the frequency count value Cf (i) is counted for a preset reference time ts.
  • the timer set value TM (i) is a fixed value (for example, 1 second).
  • the frequency count value Cf (i) is the number of times that the detection unit 41 determines that the power receiving coil 33 is present at a position facing the power feeding coil 23 (i) during the reference time ts. That is, the frequency count value Cf (i) is an example of information representing the detection frequency at which the detection unit 41 detects the power reception coil 33 at a position facing the power supply coil 23 (i).
  • the reference time ts is the execution time of the process for acquiring the detection frequency, and for example, a time such as one day or one month is used.
  • the detection frequency acquisition unit 421 initializes the frequency count value Cf (i) to 0 after the process of step S1 (step S201). Next, the detection frequency acquisition unit 421 starts counting the elapsed time tw by using, for example, a software timer (step S202). This elapsed time tw is the time that has elapsed since the start of the frequency acquisition process.
  • steps S2 to S10 is the same as that in the case of excluding the processing in step S8 from FIG.
  • the detection frequency acquisition unit 421 compares the elapsed time tw with the reference time ts after the process of step S7 when there is no power receiving coil 33 at a position facing the power feeding coil 23 (i) (step S6) (step S6). S204). If the elapsed time tw is less than or equal to the reference time ts (NO in step S204), the detection frequency acquisition unit 421 performs the process of step S2 to repeat the detection process while fixing the timer set value TM (i) to the initial value. Migrate to
  • the detection frequency acquisition unit 421 sets 1 to the frequency count value Cf (i) after the process of step S10. Addition (step S203), the process proceeds to step S204. Then, as described above, the detection frequency acquisition unit 421 compares the elapsed time tw with the reference time ts (step S204). When the elapsed time tw is equal to or less than the reference time ts (NO in step S204), the detection frequency The acquisition unit 421 proceeds to step S2 to repeat the detection process while the timer setting value TM (i) is fixed to the initial value.
  • step S204 when the elapsed time tw exceeds the reference time ts (YES in step S204), the detection frequency acquisition unit 421 uses the frequency count value Cf (i) at that time as information indicating the detection frequency. It memorize
  • the execution frequency adjusting unit 422 is based on the frequency count value Cf (i) stored in the storage unit 47 and the preset frequency reference values Ref1 and Ref2.
  • a timer set value TM (i) is set.
  • the frequency reference value Ref1 is set to a value smaller than the frequency reference value Ref2.
  • the execution frequency adjusting unit 422 compares the frequency count value Cf (i) with the frequency reference value Ref1. As a result of the comparison, when the frequency count value Cf (i) is equal to or less than the frequency reference value Ref1 (NO in step S211), the execution frequency adjusting unit 422 determines that the detection frequency is low and sets the timer set value TM (i). For example, 10 seconds is set (step S212). Thereafter, the execution frequency adjusting unit 422 proceeds to the process of step S2.
  • the execution frequency adjustment unit 422 compares the frequency count value Cf (i) with the frequency reference value Ref2. . As a result of the comparison, when the frequency count value Cf (i) is less than or equal to the frequency reference value Ref2, that is, when the frequency count value Cf (i) exceeds the frequency reference value Ref1 and is less than or equal to the frequency reference value Ref2 ( In step S213, NO, the execution frequency adjusting unit 422 determines that the detection frequency is medium, and sets, for example, 5 seconds as the timer set value TM (i) (step S214). Thereafter, the execution frequency adjusting unit 422 proceeds to the process of step S2.
  • step S213 When the frequency count value Cf (i) exceeds the frequency reference value Ref2 as a result of the comparison in step S213, that is, the frequency count value Cf (i) exceeds the frequency reference value Ref1, and the frequency reference value If Ref2 is exceeded (YES in step S213), the execution frequency adjustment unit 422 determines that the detection frequency is high, and sets, for example, 1 second as the timer setting value TM (i) (step S215). Thereafter, the execution frequency adjusting unit 422 proceeds to the process of step S2.
  • the execution frequency adjustment unit 422 increases the timer setting value TM (i) as the detection frequency decreases by the processing in steps S211 to S215. That is, the execution frequency adjustment unit 422 decreases the detection processing execution frequency as the detection frequency decreases.
  • the detection process is repeated based on the timer set value TM (i) set by the execution frequency adjusting unit 422 by the processes of steps S2 to S7, S9, and S10.
  • the frequency of detection processing is reduced when the frequency of use of the non-contact power feeding device 2 by the user is low, as in the non-contact power feeding device 2 shown in FIG. For this reason, it becomes easy to reduce the electric power consumed when the receiving coil 33 is not disposed opposite to the feeding coil 23. Even if there is only one feeding coil 23, the same effect can be obtained.
  • the user when a plurality of power feeding coils 23 are arranged in a matrix along the table-like placement surface 22, the user can perform the same as in the non-contact power feeding device 2 shown in FIG. 2.
  • the execution frequency of the detection process corresponding to the power feeding coil 23 with low usage frequency can be reduced. As a result, it becomes easy to reduce the electric power consumed by the detection process corresponding to the power receiving coil 33 in which the power feeding coil 23 is not opposed.
  • a non-contact power feeding device is a non-contact power feeding device that supplies power to a power receiving coil that is a power feeding target by an electromagnetic induction phenomenon, the power feeding coil capable of opposingly arranging the power receiving coil, and the power coil facing the power feeding coil
  • the detection unit executes the detection process based on whether or not the detection unit that repeatedly detects the presence of the power reception coil at the position to be detected and whether the detection unit detects the presence of the power reception coil
  • a detection control unit that adjusts the execution frequency.
  • the non-contact power feeding device includes a power feeding coil for feeding power to the power receiving coil by an electromagnetic induction phenomenon, and a detection process for detecting the presence or absence of the power receiving coil at a position facing the power feeding coil.
  • Such a non-contact power supply device can adjust the frequency of execution of the detection process by the detection unit based on the presence or absence of the power receiving coil by the detection unit. Therefore, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
  • the detection control unit decreases the execution frequency as the period during which the detection unit does not detect the presence of the power receiving coil continues longer.
  • the detection processing execution frequency Decrease As a result, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
  • the detection control unit increases the detection processing execution interval to the detection unit until the detection unit detects the presence of the power receiving coil. Repeat the detection process.
  • the detection processing execution interval increases as the period during which the detection unit does not detect the presence of the power receiving coil continues longer.
  • the detection processing execution frequency decreases. Therefore, in such a non-contact power supply device, when the period during which the presence of the power receiving coil is not detected by the detection unit continues for a long time, that is, when it is considered that the frequency at which the power receiving coil is disposed opposite the power feeding coil is low, the detection process Execution frequency can be reduced. As a result, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
  • each time the detection control unit is repeated a predetermined number of times that the detection control unit is not detected to detect the presence of the power receiving coil in the detection process A process for increasing the execution interval is executed. That is, the detection control unit increases the execution interval each time the number of times that the presence of the power receiving coil is not detected by the detection process reaches a predetermined number of determinations.
  • the process of increasing the execution interval is not executed unless the preset number of determinations that the presence of the power receiving coil is not detected in the detection process is repeated. Therefore, in such a non-contact power supply device, for example, when a user who uses the non-contact power supply device frequently does not use the non-contact power supply device (the receiving coil is not disposed opposite to the power supply coil). The possibility that the execution interval is increased is reduced.
  • the detection control unit sets an initial value preset as a lower limit value of the execution interval when the presence of the power receiving coil is detected by the detection unit. After the execution interval is initialized by setting the execution interval, the detection unit is newly made to repeat the detection process.
  • the detection control unit when the detection control unit continuously detects the presence of the power receiving coil in the detection process a predetermined number of times, It is initialized. That is, the detection control unit initializes the execution interval when the detection unit continuously detects the presence of the power receiving coil while repeatedly executing the detection process a preset number of times.
  • the initialization interval can be shortened and the execution frequency of the detection process can be increased.
  • the detection control unit detects the frequency at which the detection unit detects the presence of the power reception coil based on the presence or absence of the power reception coil by the detection unit.
  • a detection frequency acquisition unit that acquires the frequency and an execution frequency adjustment unit that decreases the execution frequency as the detection frequency decreases.
  • the detection frequency acquisition unit acquires the frequency at which the detection unit detects the presence of the power receiving coil, that is, the usage frequency of the user as the detection frequency.
  • the execution frequency adjusting unit decreases the detection process execution frequency as the detection frequency decreases, that is, as the user usage frequency decreases. Therefore, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
  • the power supply coil includes a plurality of coils
  • the detection unit performs the detection process for each of the plurality of coils
  • the detection control unit includes: The execution frequency of each detection process corresponding to each coil is adjusted.
  • a non-contact power feeding system includes any of the above-described non-contact power feeding devices and a power-supplied device including the power receiving coil.
  • the present invention it is possible to provide a non-contact power supply system, a non-contact power supply device, and a power supplied device.

Abstract

In this contactless power-feeding device and contactless power-feeding system, the execution frequency of a repeatedly executed detection process, which detects the presence or absence of a power-reception coil that is fed power by a power-feeding coil via electromagnetic induction, is adjusted on the basis of the presence or absence of said power-reception coil. Contactless power-feeding devices and contactless power-feeding systems such as these can thus reduce the amount of power consumed when the power-reception coil and the power-feeding coil are not positioned opposite each other.

Description

非接触給電装置および非接触給電システムNon-contact power supply device and non-contact power supply system
 本発明は、非接触給電装置、および、非接触給電装置から電力が供給される被給電装置と前記非接触給電装置とを含む非接触給電システムに関する。 The present invention relates to a non-contact power feeding device, and a non-contact power feeding system including a power-supplied device to which power is supplied from the non-contact power feeding device and the non-contact power feeding device.
 従来から、電磁誘導現象を利用することで、非接触給電装置の給電コイルから、被給電装置の受電コイルへ電力を供給する非接触給電システムが知られている。そして、一次側コイル(給電コイル)と対向する位置に、二次側コイル(受電コイル)を含む二次側機器(被給電装置)が配置されているか否かを検出する検知処理を実行し、二次側機器が配置されていた場合に給電コイルを駆動する非接触給電システムが知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, a non-contact power supply system that supplies power from a power supply coil of a non-contact power supply device to a power reception coil of a power supply device by using an electromagnetic induction phenomenon is known. And the detection process which detects whether the secondary side apparatus (power-supplied apparatus) containing a secondary side coil (power receiving coil) is arrange | positioned in the position facing a primary side coil (power feeding coil), A non-contact power feeding system that drives a power feeding coil when a secondary device is arranged is known (see, for example, Patent Document 1).
 この特許文献1に開示の技術では、一次側コイルに交流の励磁電流を供給した場合における一次側コイルの駆動回路への入力電流値に基づいて、二次側機器(受電コイル)の有無が検出される。また、このような二次側機器の検知処理は、周期的に実行されている。 In the technique disclosed in Patent Document 1, the presence or absence of a secondary device (power receiving coil) is detected based on the input current value to the drive circuit of the primary coil when an alternating excitation current is supplied to the primary coil. Is done. Such secondary device detection processing is periodically executed.
 しかしながら、上述の技術では、受電コイルを検出するために給電コイルを駆動する必要がある。このため、二次側機器(受電コイル)が非接触給電装置(給電コイル)に対向配置されていない場合も、検知処理を実行するために電力が消費されてしまう。特に、非接触給電装置が給電コイルを複数備えている場合、給電コイルの数分、検知処理を実行する必要がある。そのため、検知処理のために消費される電力の増大が顕著となる。 However, in the above-described technique, it is necessary to drive the feeding coil in order to detect the receiving coil. For this reason, even when the secondary side device (power receiving coil) is not arranged to face the non-contact power feeding device (power feeding coil), power is consumed to execute the detection process. In particular, when the non-contact power supply apparatus includes a plurality of power supply coils, it is necessary to execute detection processing for the number of power supply coils. For this reason, the increase in power consumed for the detection process becomes significant.
特開2011-30284号公報JP 2011-30284 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減できる非接触給電装置および非接触給電システムを提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power supply apparatus and a non-contact power supply system that can reduce power consumed when the power receiving coil is not disposed opposite to the power supply coil. Is to provide.
 本発明にかかる非接触給電装置および非接触給電システムでは、給電コイルから電磁誘導現象によって給電される受電コイルの存在の有無に基づいて、繰り返し実行される、前記受電コイルの存在の有無を検知する検知処理の実行頻度が調節される。このため、このような非接触給電装置および非接触給電システムは、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減することができる。 In the non-contact power feeding device and the non-contact power feeding system according to the present invention, the presence / absence of the power receiving coil, which is repeatedly executed, is detected based on the presence / absence of the power receiving coil that is fed by the electromagnetic induction phenomenon from the power feeding coil. The execution frequency of the detection process is adjusted. For this reason, such a non-contact electric power feeder and a non-contact electric power feeding system can reduce the electric power consumed when the receiving coil is not arrange | positioned facing the electric power feeding coil.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の第1実施形態における非接触給電システムの構成の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of the non-contact electric power feeding system in 1st Embodiment of this invention. 図1に示す非接触給電システムにおける非接触給電装置の電気的構成の一例を示すブロック図である。It is a block diagram which shows an example of the electrical constitution of the non-contact electric power feeder in the non-contact electric power feeding system shown in FIG. 図1に示す非接触給電システムにおいて、給電コイルと受電コイルとが重なるように対向配置された場合の給電コイルのインダクタンス(相互作用)について説明するための説明図である。In the non-contact electric power feeding system shown in FIG. 1, it is explanatory drawing for demonstrating the inductance (interaction) of a feeding coil at the time of opposing arrangement | positioning so that a feeding coil and a receiving coil may overlap. 図1に示す非接触給電システムにおいて、給電コイルと受電コイルの位置関係による相互作用を説明するための説明図である。In the non-contact electric power feeding system shown in FIG. 1, it is explanatory drawing for demonstrating the interaction by the positional relationship of a feeding coil and a receiving coil. 図1に示す非接触給電システムにおいて、給電コイルと受電コイルの正対面積と、給電コイルのインダクタンスとの関係の一例を示すグラフである。In the non-contact electric power feeding system shown in FIG. 1, it is a graph which shows an example of the relationship between the facing area of a feeding coil and a receiving coil, and the inductance of a feeding coil. 図1に示す非接触給電システムにおいて、給電コイルに重なるように対向する位置に配置される受電コイルの有無と、給電コイルのコイル電流との関係を説明するための説明図である。In the non-contact electric power feeding system shown in FIG. 1, it is explanatory drawing for demonstrating the relationship between the presence or absence of the receiving coil arrange | positioned in the position which opposes so that it may overlap with a feeding coil, and the coil current of a feeding coil. 図2に示す非接触給電装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the non-contact electric power supply shown in FIG. 本発明の第2実施形態における非接触給電装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the non-contact electric power feeder in 2nd Embodiment of this invention. 図8に示す非接触給電装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the non-contact electric power supply shown in FIG. 本発明の第3実施形態における非接触給電装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the non-contact electric power feeder in 3rd Embodiment of this invention. 図10に示す非接触給電装置の動作の一例を示すフローチャートの前半である。It is the first half of the flowchart which shows an example of operation | movement of the non-contact electric power supply shown in FIG. 図10に示す非接触給電装置の動作の一例を示すフローチャートの後半である。It is the latter half of the flowchart which shows an example of operation | movement of the non-contact electric power supply shown in FIG.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 (第1実施形態)
 図1は、第1実施形態における非接触給電システムの構成の一例を説明するための説明図である。図1に示す非接触給電システム1は、非接触給電装置2と、被給電装置3とを備え、これらが組み合わされて、構成される。非接触給電装置2と、被給電装置3とは、離間可能に構成される。
(First embodiment)
Drawing 1 is an explanatory view for explaining an example of composition of a non-contact electric supply system in a 1st embodiment. A non-contact power supply system 1 shown in FIG. 1 includes a non-contact power supply device 2 and a power-supplied device 3 and is configured by combining them. The non-contact power supply device 2 and the power supplied device 3 are configured to be separable.
 非接触給電装置2は、略箱状の筐体21を備え、被給電装置3は、略箱状の筐体31を備える。図1において、非接触給電装置2の筐体21の上面は、被給電装置3を載置させるための載置面(第1対向面)22とされる。筐体21の上面を形成する部分は、載置部材の一例である。被給電装置3の筐体31の下面は、載置面22と対向、接触させるための被載置面(第2対向面)32とされる。図1に示す例では、非接触給電装置2の筐体21は、被給電装置3の筐体31より大きく、載置面22は、被載置面より広い。 The non-contact power supply device 2 includes a substantially box-shaped housing 21, and the power-supplied device 3 includes a substantially box-shaped housing 31. In FIG. 1, the upper surface of the housing 21 of the non-contact power feeding device 2 is a mounting surface (first facing surface) 22 for mounting the power supplied device 3. The portion forming the upper surface of the housing 21 is an example of a placement member. The lower surface of the casing 31 of the power supplied device 3 is a placement surface (second facing surface) 32 that faces and contacts the placement surface 22. In the example illustrated in FIG. 1, the casing 21 of the non-contact power feeding device 2 is larger than the casing 31 of the power supplied device 3, and the placement surface 22 is wider than the placement surface.
 非接触給電装置2には、筐体21内である載置面22の内側(直下)であってコイル上面が略平行に載置面22に沿うように、複数の給電コイル23が、二次元アレイ状に、配設される。複数の給電コイル23は、給電コイル23相互間の間隔が略ゼロになるように、密接に配設される。すなわち、コイル周面が互いに接するように、複数の給電コイル23が配設される。 In the non-contact power supply device 2, a plurality of power supply coils 23 are two-dimensionally arranged so that the upper surface of the coil is substantially parallel to the mounting surface 22 inside (directly below) the mounting surface 22 in the housing 21. Arranged in an array. The plurality of power supply coils 23 are closely arranged so that the distance between the power supply coils 23 is substantially zero. That is, the plurality of power supply coils 23 are arranged so that the coil peripheral surfaces are in contact with each other.
 被給電装置3には、筐体31内である被載置面32の内側(直上)であってコイル上面が略平行に被載置面32に沿うように、複数の受電コイル33が、配設される。受電コイル33は、電磁誘導現象により給電コイル23によって給電される給電対象である。被給電装置3は、図略の負荷を備える。そして、受電コイル33で受電された電力は、前記図略の負荷へ供給される。 A plurality of power receiving coils 33 are arranged on the power supplied device 3 so that the upper surface of the coil is substantially parallel to the placement surface 32 inside the placement surface 32 in the housing 31 (directly above). Established. The power receiving coil 33 is a power supply target that is fed by the power feeding coil 23 due to an electromagnetic induction phenomenon. The power supplied device 3 includes a load (not shown). The power received by the power receiving coil 33 is supplied to the load (not shown).
 図2は、図1に示す非接触給電システム1における非接触給電装置2の電気的構成の一例を示すブロック図である。図2に示す非接触給電装置2は、複数のコイル駆動ブロックBと、制御部4とを備える。コイル駆動ブロックBは、給電コイル23を含み、これら複数のコイル駆動ブロックBは、複数の給電コイル23にそれぞれ対応して設けられる。 FIG. 2 is a block diagram showing an example of the electrical configuration of the non-contact power supply apparatus 2 in the non-contact power supply system 1 shown in FIG. The non-contact power feeding device 2 illustrated in FIG. 2 includes a plurality of coil drive blocks B and a control unit 4. The coil drive block B includes a power supply coil 23, and the plurality of coil drive blocks B are provided corresponding to the plurality of power supply coils 23, respectively.
 コイル駆動ブロックBは、給電コイル23と、電流検出部24と、電源部25とを含む。電源部25は、複数の給電コイル23へ、選択的に高周波電圧を供給する回路であり、例えば、ゲートドライバ回路251と、FET(Field Effect Transistor)Q1、Q2と、キャパシタCとを備える。 The coil drive block B includes a feeding coil 23, a current detection unit 24, and a power supply unit 25. The power supply unit 25 is a circuit that selectively supplies a high-frequency voltage to the plurality of power supply coils 23, and includes, for example, a gate driver circuit 251, FETs (Field Effect Transistors) Q 1 and Q 2, and a capacitor C.
 なお、給電コイル23は、一つであってもよく、コイル駆動ブロックBも一つであってもよい。 Note that there may be one feeding coil 23 and one coil drive block B.
 FETQ1は、例えばPチャネルFETであり、FETQ2は、例えばNチャネルFETである。そして、FETQ1のソースに、図略の電源回路から供給された電源電圧VDDが印加され、FETQ1のドレインがFETQ2のドレインに接続され、FETQ2のソースが回路グラウンドに接続される。FETQ1とFETQ2の接続点P1は、キャパシタC、電流検出部24および給電コイル23を介して回路グラウンドに接続される。 FETQ1 is, for example, a P-channel FET, and FETQ2 is, for example, an N-channel FET. The power supply voltage VDD supplied from a power supply circuit (not shown) is applied to the source of the FET Q1, the drain of the FET Q1 is connected to the drain of the FET Q2, and the source of the FET Q2 is connected to the circuit ground. A connection point P1 between the FET Q1 and the FET Q2 is connected to the circuit ground via the capacitor C, the current detection unit 24, and the feeding coil 23.
 ゲートドライバ回路251は、制御部4からの制御信号に応じて、FETQ1とFETQ2とを、一方をオンさせる場合は他方をオフさせるように、略交互に高周波でオン、オフさせる。これにより、FETQ1、Q2によって、接続点P1に高周波電圧が生成される。キャパシタCは、FETQ1、Q2によって生成された高周波電圧から直流成分をカットし、残りの高周波成分を給電コイル23へ供給する。 In response to a control signal from the control unit 4, the gate driver circuit 251 turns on and off the FET Q1 and the FET Q2 approximately alternately at a high frequency so that when one is turned on, the other is turned off. Thereby, a high frequency voltage is generated at the connection point P1 by the FETs Q1 and Q2. The capacitor C cuts a direct current component from the high frequency voltage generated by the FETs Q 1 and Q 2 and supplies the remaining high frequency component to the power supply coil 23.
 電流検出部24は、電源部25によって供給された高周波電圧に応じて給電コイル23に流れるコイル電流Iを検出する。そして、電流検出部24は、検出されたコイル電流Iの電流値を示す信号を、制御部4へ出力する。電流検出部24は、例えばシャント抵抗やホール素子等の電流センサである。 The current detection unit 24 detects the coil current I flowing through the power feeding coil 23 according to the high frequency voltage supplied by the power supply unit 25. Then, the current detection unit 24 outputs a signal indicating the current value of the detected coil current I to the control unit 4. The current detection unit 24 is a current sensor such as a shunt resistor or a Hall element.
 非接触給電装置2は、このように構成されたコイル駆動ブロックBを、給電コイル23と同じ数だけ備えている。 The non-contact power supply device 2 includes the same number of coil drive blocks B configured as described above as the power supply coil 23.
 制御部4は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶された不揮発性のROM(Read Only Memory)と、データを一時的に記憶する揮発性のRAM(Random Access Memory)と、これらの周辺回路等とを備えて構成される。そして、制御部4は、例えばROMに記憶された制御プログラムを実行することにより、検知部41、検知制御部42、コイル選択部43およびコイル制御部44を機能的に備え、検知部41、検知制御部42、コイル選択部43およびコイル制御部44として機能する。 The control unit 4 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a nonvolatile ROM (Read Only Memory) in which a predetermined control program is stored, and a volatile that temporarily stores data. It comprises a RAM (Random Access Memory) and peripheral circuits thereof. And the control part 4 is equipped with the detection part 41, the detection control part 42, the coil selection part 43, and the coil control part 44 functionally, for example by executing the control program memorize | stored in ROM, the detection part 41, detection It functions as the control unit 42, the coil selection unit 43, and the coil control unit 44.
 検知部41は、複数の給電コイル23とそれぞれ重なるように対向する位置に配置される受電コイル33の存在の有無を検知する検知処理を、検知制御部42が設定した実行間隔で繰り返し実行する。より具体的には、検知部41は、例えば、各コイル駆動ブロックBの電源部25によって、それぞれ給電コイル23へ高周波電圧を供給させる(処理A)。そして、検知部41は、各コイル駆動ブロックBの電流検出部24によって、それぞれ対応する給電コイル23に高周波電圧が供給されている期間中に、各給電コイル23のコイル電流Iを各電流検出部24によって検出させる(処理B)。そして、検知部41は、予め設定された判定値を超えるコイル電流Iを検出した電流検出部24に対応する給電コイル23と対向する位置に、受電コイルが存在すると判定する(処理C)。 The detection unit 41 repeatedly executes a detection process for detecting the presence or absence of the power reception coil 33 arranged at a position facing the plurality of power supply coils 23 at an execution interval set by the detection control unit 42. More specifically, for example, the detection unit 41 causes the power supply unit 25 of each coil drive block B to supply a high-frequency voltage to the power supply coil 23 (Process A). The detection unit 41 detects the coil current I of each power supply coil 23 during the period in which the current detection unit 24 of each coil drive block B supplies a high-frequency voltage to the corresponding power supply coil 23. 24 (process B). And the detection part 41 determines with a receiving coil existing in the position facing the electric power feeding coil 23 corresponding to the current detection part 24 which detected the coil current I exceeding the preset determination value (process C).
 検知部41は、上記処理A、処理Bおよび処理Cを含む検知処理を、複数の給電コイル23に対応してそれぞれ実行する。このようにして、検知部41は、複数の給電コイル23とそれぞれ対向する位置に配置される受電コイル33の存在の有無を検知する。そして、検知部41は、このような検知処理を、各給電コイル23にそれぞれ対応する実行間隔で、各給電コイル23に対応してそれぞれ繰り返し実行する。 The detection unit 41 executes the detection process including the process A, the process B, and the process C corresponding to the plurality of power supply coils 23. In this way, the detection unit 41 detects the presence / absence of the power receiving coil 33 arranged at a position facing each of the plurality of power feeding coils 23. Then, the detection unit 41 repeatedly executes such detection processing corresponding to each power supply coil 23 at an execution interval corresponding to each power supply coil 23.
 図3は、図1に示す非接触給電システム1において、給電コイル23と受電コイル33とが重なるように対向配置された場合の給電コイル23のインダクタンスについて説明するための説明図である。まず、図3Aに示すように、給電コイル23と受電コイル33とが互いの後述のコイル面で重なるように、図3Aに示す例では完全に重なるように対向配置されている。 FIG. 3 is an explanatory diagram for explaining the inductance of the power feeding coil 23 when the power feeding coil 23 and the power receiving coil 33 are arranged to face each other in the non-contact power feeding system 1 shown in FIG. First, as shown in FIG. 3A, the feeding coil 23 and the receiving coil 33 are arranged to face each other so as to completely overlap in the example shown in FIG.
 次に、電源部25から電圧が出力されて給電コイル23にコイル電流が流れる(図3B)。給電コイル23にコイル電流が流れると、給電コイル23と受電コイル33とを貫通するように給電コイル23によって鎖交磁束が生じる(図3C)。 Next, a voltage is output from the power supply unit 25 and a coil current flows through the feeding coil 23 (FIG. 3B). When a coil current flows through the power supply coil 23, an interlinkage magnetic flux is generated by the power supply coil 23 so as to penetrate the power supply coil 23 and the power reception coil 33 (FIG. 3C).
 受電コイル33に鎖交磁束が貫通すると、受電コイル33には、電磁誘導現象によって、給電コイル23と逆回転のコイル電流が流れる。この逆回転のコイル電流によって、受電コイル33には、給電コイル23で発生した磁束とは、逆方向の鎖交磁束が発生する。このため、給電コイル23には、受電コイル33で発生した鎖交磁束を妨げるように電流が流れる(図3D)。 When the flux linkage passes through the power receiving coil 33, a coil current that rotates in the reverse direction to the power feeding coil 23 flows through the power receiving coil 33 due to an electromagnetic induction phenomenon. Due to this reverse rotation coil current, an interlinkage magnetic flux in the direction opposite to the magnetic flux generated in the power feeding coil 23 is generated in the power receiving coil 33. For this reason, a current flows through the power feeding coil 23 so as to prevent the interlinkage magnetic flux generated in the power receiving coil 33 (FIG. 3D).
 このように、給電コイル23と受電コイル33とが互いのコイル面で重なるように対向配置されると、給電コイル23と受電コイル33とで形成された磁気回路による相互作用によって、給電コイル23単体の場合と、給電コイル23と受電コイル33とが対向配置された場合とでは、給電コイル23に流れる電流が異なる。したがって、給電コイル23単体の場合と、給電コイル23と受電コイル33とが対向配置された場合とでは、給電コイル23の見かけ上のインダクタンスが変化する。 As described above, when the power feeding coil 23 and the power receiving coil 33 are arranged to face each other so as to overlap each other, the power feeding coil 23 alone is caused by the interaction of the magnetic circuit formed by the power feeding coil 23 and the power receiving coil 33. In this case, the current flowing through the power supply coil 23 differs between the case where the power supply coil 23 and the power reception coil 33 are arranged to face each other. Therefore, the apparent inductance of the power feeding coil 23 changes between the case where the power feeding coil 23 is a single unit and the case where the power feeding coil 23 and the power receiving coil 33 are arranged to face each other.
 図4は、図1に示す非接触給電システムにおいて、給電コイル23と受電コイル33の位置関係による相互作用を説明するための説明図である。図5は、図1に示す非接触給電システムにおいて、給電コイル23と受電コイル33の正対面積と、給電コイル23のインダクタンスとの関係の一例を示すグラフである。 FIG. 4 is an explanatory diagram for explaining an interaction due to the positional relationship between the power feeding coil 23 and the power receiving coil 33 in the non-contact power feeding system shown in FIG. FIG. 5 is a graph showing an example of the relationship between the facing area of the feeding coil 23 and the receiving coil 33 and the inductance of the feeding coil 23 in the non-contact power feeding system shown in FIG.
 図4Aは、給電コイル23の位置と受電コイル33の位置とが互いのコイル軸で一致している場合を示す説明図である。すなわち、図4Aは、給電コイル23と受電コイル33とが互いのコイル面で完全に重なるように対向配置され、給電コイル23と受電コイル33との正対面積が最大となる場合の例を示す説明図である。 FIG. 4A is an explanatory diagram showing a case where the position of the power feeding coil 23 and the position of the power receiving coil 33 coincide with each other on the coil axes. That is, FIG. 4A shows an example in which the power feeding coil 23 and the power receiving coil 33 are arranged to face each other so as to completely overlap each other, and the facing area between the power feeding coil 23 and the power receiving coil 33 is maximized. It is explanatory drawing.
 給電コイル23および受電コイル33の各コイル面とは、給電コイル23および受電コイル33の最外周の巻線で囲まれた平面であって、かつ給電コイル23および受電コイル33の鎖交磁束と直交する方向に拡がる平面である。給電コイル23の面積とは、給電コイル23のコイル面の面積であり、受電コイル33の面積とは、受電コイル33のコイル面の面積である。そして、給電コイル23と受電コイル33との正対面積とは、給電コイル23のコイル面と受電コイル33のコイル面とが相対向して互いに重なっている部分の面積である。 Each coil surface of the power feeding coil 23 and the power receiving coil 33 is a plane surrounded by the outermost windings of the power feeding coil 23 and the power receiving coil 33 and is orthogonal to the interlinkage magnetic flux of the power feeding coil 23 and the power receiving coil 33. It is a plane that expands in the direction of the movement. The area of the power feeding coil 23 is the area of the coil surface of the power feeding coil 23, and the area of the power receiving coil 33 is the area of the coil surface of the power receiving coil 33. The facing area between the power feeding coil 23 and the power receiving coil 33 is an area of a portion where the coil surface of the power feeding coil 23 and the coil surface of the power receiving coil 33 face each other and overlap each other.
 図4Aに示すように、給電コイル23の位置と受電コイル33の位置とが互いのコイル軸で一致した場合に、給電コイル23と受電コイル33の正対面積は、最大となる。この給電コイル23と受電コイル33の正対面積が最大となった場合、給電コイル23および受電コイル33に鎖交する鎖交磁束数は、最大となり、給電コイル23および受電コイル33の相互作用が最大となる。この結果、給電コイル23のインダクタンスは、最少となる。 As shown in FIG. 4A, when the position of the power feeding coil 23 and the position of the power receiving coil 33 coincide with each other on the coil axis, the facing area of the power feeding coil 23 and the power receiving coil 33 is maximized. When the facing area between the feeding coil 23 and the receiving coil 33 is maximized, the number of interlinkage magnetic fluxes linked to the feeding coil 23 and the receiving coil 33 is maximized, and the interaction between the feeding coil 23 and the receiving coil 33 is increased. Maximum. As a result, the inductance of the feeding coil 23 is minimized.
 図4Bに示すように、給電コイル23の位置と受電コイル33の位置とが互いのコイル軸で一致せずに、各コイル軸の各位置にずれがある場合、給電コイル23と受電コイル33の正対面積は、図4Aに示す場合よりも小さくなる。したがって、給電コイル23および受電コイル33に鎖交する鎖交磁束数は、減少する。このため、給電コイル23および受電コイル33の相互作用が小さくなり、この結果、給電コイル23のインダクタンスは、図4Aに示す場合よりも大きくなる。 As shown in FIG. 4B, when the position of the power supply coil 23 and the position of the power reception coil 33 do not coincide with each other and the positions of the respective coil axes are shifted, The facing area is smaller than that shown in FIG. 4A. Therefore, the number of interlinkage magnetic fluxes linked to the power feeding coil 23 and the power receiving coil 33 decreases. For this reason, the interaction between the power feeding coil 23 and the power receiving coil 33 is reduced, and as a result, the inductance of the power feeding coil 23 is larger than that shown in FIG. 4A.
 図4Cに示すように、給電コイル23の位置と受電コイル33の位置とが互いのコイル面で重なることなく完全にずれている場合、給電コイル23と受電コイル33の正対面積は、ゼロとなる。したがって、給電コイル23および受電コイル33の相互作用は、無く、給電コイル23のインダクタンスは、最大となる。 As shown in FIG. 4C, when the position of the power feeding coil 23 and the position of the power receiving coil 33 are completely deviated without overlapping each other on the coil surface, the facing area of the power feeding coil 23 and the power receiving coil 33 is zero. Become. Therefore, there is no interaction between the feeding coil 23 and the receiving coil 33, and the inductance of the feeding coil 23 is maximized.
 以上より、給電コイル23と受電コイル33の正対面積と、給電コイル23のインダクタンスとは、所定の関係にあり、例えば図5に示すように、コイル正対面積が大きいほど、インダクタンスが小さくなる。給電コイル23のインダクタンスとコイル正対面積とは、図5に示すように1対1で対応する関係にあるので、給電コイル23のインダクタンスは、コイル正対面積を示す情報となり、前記情報の一例である。 From the above, the facing area between the feeding coil 23 and the receiving coil 33 and the inductance of the feeding coil 23 have a predetermined relationship. For example, as shown in FIG. 5, the larger the coil facing area, the smaller the inductance. . Since the inductance of the feeding coil 23 and the coil facing area are in a one-to-one correspondence as shown in FIG. 5, the inductance of the feeding coil 23 is information indicating the coil facing area, and is an example of the information. It is.
 図6は、図1に示す非接触給電システムにおいて、給電コイルに重なるように対向する位置に配置される受電コイルの有無と、給電コイルのコイル電流との関係を説明するための説明図である。例えば、図6Aに示すように、四つの給電コイル23a、23b、23c、23dが一列に配置されている場合に、受電コイル33が、互いに隣接する給電コイル23bと給電コイル23cとに跨って対向配置されている。 6 is an explanatory diagram for explaining the relationship between the presence / absence of a power receiving coil arranged at a position facing the power feeding coil and the coil current of the power feeding coil in the non-contact power feeding system shown in FIG. . For example, as shown in FIG. 6A, when four power feeding coils 23a, 23b, 23c, and 23d are arranged in a line, the power receiving coil 33 is opposed across the power feeding coil 23b and the power feeding coil 23c adjacent to each other. Has been placed.
 この図6Aに示す状態では、受電コイル33に対する給電コイル23a、23dの各正対面積は、ゼロであるから、図5に示すグラフから、給電コイル23a、23dの各インダクタンスは、大きな値になる。給電コイル23のインダクタンスをLとし、電源部25から出力される高周波電圧の電圧をVとし、周波数をfとする場合、給電コイル23のコイル電流Iは、下記の式(1)で表される。 In the state shown in FIG. 6A, since the respective facing areas of the power feeding coils 23a and 23d with respect to the power receiving coil 33 are zero, the respective inductances of the power feeding coils 23a and 23d are large values from the graph shown in FIG. . When the inductance of the feeding coil 23 is L, the voltage of the high frequency voltage output from the power supply unit 25 is V, and the frequency is f, the coil current I of the feeding coil 23 is expressed by the following equation (1). .
 I=V/(2πfL) ・・・(1) I = V / (2πfL) (1)
 したがって、コイル電流Iは、インダクタンスが小さいほど大きくなる。コイル電流Iとインダクタンスとは、1対1で対応する関係にあるから、電流検出部24によって検出されたコイル電流Iは、給電コイル23のインダクタンスを示す情報となり、前記情報の一例である。 Therefore, the coil current I increases as the inductance decreases. Since the coil current I and the inductance have a one-to-one correspondence, the coil current I detected by the current detection unit 24 is information indicating the inductance of the feeding coil 23 and is an example of the information.
 また、コイル電流Iは、正対面積が大きいほど大きい値になる。コイル電流Iと、正対面積とは、1対1で対応する関係にあるから、電流検出部24によって検出されたコイル電流Iは、給電コイル23の正対面積を示す情報ともなり、前記情報の一例でもある。 Further, the coil current I becomes larger as the facing area is larger. Since the coil current I and the facing area have a one-to-one correspondence, the coil current I detected by the current detecting unit 24 is also information indicating the facing area of the feeding coil 23, and the information It is also an example.
 以上のように、コイル電流Iは、正対面積が小さいほど小さい値になるから、正対面積がゼロの給電コイル23a、23dに流れるコイル電流Iは、図6Bに示すように、小さな値となる。このように、正対面積がゼロの給電コイル23a、23dに流れるコイル電流Iよりも、わずかに大きな電流値が、受電コイル33とコイル面で重なるように対向している給電コイル23であるか否かを判定するための判定値として予め設定される。一方、受電コイル33とコイル面で重なるように対向する給電コイル23b、23cに流れるコイル電流Iは、給電コイル23a、23dに流れるコイル電流Iよりも大きく、かつ、判定値よりも大きい。 As described above, since the coil current I becomes smaller as the facing area is smaller, the coil current I flowing in the feeding coils 23a and 23d having the facing area of zero is smaller as shown in FIG. 6B. Become. In this way, is the power supply coil 23 facing the power receiving coil 33 so that a slightly larger current value than the coil current I flowing in the power supply coils 23a and 23d having zero facing area overlaps the coil surface? It is set in advance as a determination value for determining whether or not. On the other hand, the coil current I flowing through the power feeding coils 23b and 23c facing the power receiving coil 33 so as to overlap the coil surface is larger than the coil current I flowing through the power feeding coils 23a and 23d and larger than the determination value.
 なお、検知部41が、コイル電流Iの電流値に基づき受電コイル33を検出する例を示したが、必ずしもコイル電流Iに基づき受電コイル33を検出する例に限らない。例えば、各給電コイル23の近傍にそれぞれ光センサが配設され、検知部41は、これらの複数の光センサによって、各給電コイル23と対向する位置に被給電装置3(受電コイル33)が存在するか否かを検出するように、構成されてもよい。載置面22上に被給電装置3が載置されると光センサの受光量が減るので、これら複数の光センサによって被給電装置3の載置の有無が検出され、載置面22上に載置された被給電装置3の位置が検出できる。 In addition, although the detection part 41 showed the example which detects the receiving coil 33 based on the electric current value of the coil current I, it is not necessarily the example which detects the receiving coil 33 based on the coil current I. For example, an optical sensor is provided in the vicinity of each power supply coil 23, and the detection unit 41 has the power-supplied device 3 (power reception coil 33) at a position facing each power supply coil 23 by the plurality of optical sensors. It may be configured to detect whether or not to do so. When the power-supplied device 3 is placed on the placement surface 22, the amount of light received by the optical sensor is reduced. Therefore, the presence or absence of placement of the power-supplied device 3 is detected by the plurality of optical sensors. The position of the power-supplied device 3 placed can be detected.
 また、検知部41は、例えば公知のインダクタンス測定手段によって、各給電コイル23のインダクタンスを測定するように構成されてもよい。そして、このような場合に、検知部41は、上記判定値と対応するインダクタンス値に満たないインダクタンスが検出された給電コイル23と対向する位置に、受電コイル33が存在すると判定する。 Further, the detection unit 41 may be configured to measure the inductance of each feeding coil 23 by, for example, a known inductance measuring unit. In such a case, the detection unit 41 determines that the power receiving coil 33 is present at a position facing the power feeding coil 23 where the inductance less than the inductance value corresponding to the determination value is detected.
 光センサや、給電コイル23のインダクタンス測定処理は、電力を消費するが、検知部41が光センサやインダクタンス測定に基づき受電コイルを検知する場合、検知処理の実行頻度を少なくすることによって、消費電力が低減できる。 The inductance measurement process of the optical sensor and the feeding coil 23 consumes power. However, when the detection unit 41 detects the power receiving coil based on the optical sensor and the inductance measurement, the power consumption is reduced by reducing the frequency of execution of the detection process. Can be reduced.
 検知制御部42は、検知部41によって受電コイル33の存在が検知されるまで、検知部41による検知処理の実行間隔を増大させながら検知部41に検知処理を繰り返させる。 The detection control unit 42 causes the detection unit 41 to repeat the detection process while increasing the execution interval of the detection process by the detection unit 41 until the detection unit 41 detects the presence of the power receiving coil 33.
 コイル選択部43は、検知部41によって、その対向する位置に受電コイル33が存在すると判定された1または複数の給電コイル23を、励磁対象コイルとして、複数の給電コイル23の中から選択する。 The coil selection unit 43 selects one or a plurality of power supply coils 23 determined by the detection unit 41 that the power reception coil 33 is present at the facing position as the excitation target coil from the plurality of power supply coils 23.
 コイル制御部44は、コイル選択部43によって励磁対象コイルとして選択された給電コイル、図6に示す例では給電コイル23b、23cへ、電源部25によって高周波電圧を供給させる。これにより、この図6に示す例では、受電コイル33に対し、複数の給電コイル23b、23cから電力が供給される。 The coil control unit 44 causes the power supply unit 25 to supply a high-frequency voltage to the power supply coil selected as the excitation target coil by the coil selection unit 43, which is the power supply coils 23b and 23c in the example illustrated in FIG. Accordingly, in the example illustrated in FIG. 6, power is supplied to the power receiving coil 33 from the plurality of power feeding coils 23 b and 23 c.
 これにより、ユーザは、図1に示す載置面22上に被給電装置3を載置すれば、給電コイル23と受電コイル33とを正確に位置決めしなくても、コイル選択部43によって受電コイル33とコイル面で重なるように対向する1または複数の給電コイル23が励磁対象コイルとして選択される。そして、その励磁対象コイルに高周波電圧が供給されて、励磁対象コイルから受電コイル33へ電力が供給される。したがって、給電コイル23と受電コイル33とを正確に位置決めせずに、給電コイルと受電コイルの位置ずれが生じた場合であっても、非接触給電装置2から被給電装置3へ給電することができる。 Thus, if the user places the power-supplied device 3 on the placement surface 22 shown in FIG. 1, the coil selector 43 can receive the power-receiving coil without accurately positioning the power-feeding coil 23 and the power-receiving coil 33. One or a plurality of power supply coils 23 that oppose each other so as to overlap with the coil surface are selected as excitation target coils. Then, a high frequency voltage is supplied to the excitation target coil, and power is supplied from the excitation target coil to the power receiving coil 33. Accordingly, even if the power feeding coil and the power receiving coil are misaligned without accurately positioning the power feeding coil 23 and the power receiving coil 33, power can be supplied from the non-contact power feeding device 2 to the power supplied device 3. it can.
 以下、上述のように構成された非接触給電システム1の動作について説明する。まず、給電コイル23の個数は、n個とする。そして、n個の給電コイル23には、1~nのコイル番号が付されている。以下、コイル番号iの給電コイル23は、給電コイル23(i)と表記される。給電コイル23(i)を含むコイル駆動ブロックBは、コイル駆動ブロックB(i)と表記される。コイル駆動ブロックB(i)に含まれる電流検出部24および電源部25、すなわち給電コイル23(i)と対応する電流検出部24および電源部25は、それぞれ電流検出部24(i)および電源部25(i)と表記される。電流検出部24(i)によって検出されたコイル電流I、すなわち給電コイル23(i)に流れるコイル電流Iは、コイル電流I(i)と表記される。また、給電コイル23(i)と対応するタイマ45は、タイマ45(i)と表記され、タイマ45(i)のタイマ設定値TMは、タイマ設定値TM(i)と表記される。 Hereinafter, the operation of the non-contact power feeding system 1 configured as described above will be described. First, the number of feeding coils 23 is n. The n feeding coils 23 are assigned 1 to n coil numbers. Hereinafter, the feeding coil 23 having the coil number i is represented as a feeding coil 23 (i). The coil driving block B including the feeding coil 23 (i) is denoted as a coil driving block B (i). The current detection unit 24 and the power supply unit 25 included in the coil drive block B (i), that is, the current detection unit 24 and the power supply unit 25 corresponding to the feeding coil 23 (i) are respectively the current detection unit 24 (i) and the power supply unit. 25 (i). The coil current I detected by the current detector 24 (i), that is, the coil current I flowing through the feeding coil 23 (i) is denoted as coil current I (i). Further, the timer 45 corresponding to the feeding coil 23 (i) is expressed as a timer 45 (i), and the timer set value TM of the timer 45 (i) is expressed as a timer set value TM (i).
 図7は、図2に示す非接触給電装置2の動作の一例を示すフローチャートである。図7に示すフローチャートは、給電コイル23(i)に対応する動作を示している。制御部4は、すべての給電コイル23(1)~23(n)に対して、図7に示すフローチャートと同様の動作を、並行して実行する。 FIG. 7 is a flowchart showing an example of the operation of the non-contact power feeding device 2 shown in FIG. The flowchart shown in FIG. 7 shows an operation corresponding to the feeding coil 23 (i). The control unit 4 performs the same operation as the flowchart shown in FIG. 7 in parallel on all the power supply coils 23 (1) to 23 (n).
 まず、検知制御部42は、初期処理として、タイマ設定値TM(i)に予め設定された初期値を設定する(ステップS1)。初期値は、所定の時間、例えば1秒にされている。また、初期値は、タイマ設定値TM(実行間隔)の下限値である。 First, the detection control unit 42 sets an initial value set in advance as the timer set value TM (i) as an initial process (step S1). The initial value is set to a predetermined time, for example, 1 second. The initial value is a lower limit value of the timer set value TM (execution interval).
 次に、検知部41は、タイマ45(i)にタイマ設定値TM(i)を設定し、タイマ45(i)に計時を開始させる(ステップS2)。タイマ45(i)は、計時開始からタイマ設定値TM(i)の時間が経過した場合にタイムアップする。 Next, the detection unit 41 sets the timer set value TM (i) in the timer 45 (i), and causes the timer 45 (i) to start measuring time (step S2). The timer 45 (i) times up when the time of the timer set value TM (i) has elapsed since the start of timing.
 次に、検知部41は、タイマ45(i)がタイムアップしたか否かを判定する(ステップS3)。そして、タイマ45(i)がタイムアップした場合(ステップS3でYES)、検知部41は、検知処理を開始するべく、給電コイル23(i)へ高周波電圧を電源部25(i)に供給させる(ステップS4)。 Next, the detection unit 41 determines whether or not the timer 45 (i) has expired (step S3). When the timer 45 (i) times out (YES in step S3), the detection unit 41 supplies the power supply coil 23 (i) with a high-frequency voltage to the power supply unit 25 (i) so as to start the detection process. (Step S4).
 次に、検知部41は、電流検出部24(i)によって検出されたコイル電流I(i)と、判定値とを比較する(ステップS5)。この比較の結果、コイル電流I(i)が判定値以下である場合(ステップS5でNO)、検知部41は、給電コイル23(i)と対向する位置に受電コイル33が存在しないと判定する(ステップS6)。一方、前記比較の結果、コイル電流I(i)が判定値を超えている場合(ステップS5でYES)、検知部41は、給電コイル23(i)と対向する位置に受電コイル33が存在すると判定する(ステップS9)。以上のステップS4~S6、S9が、検知処理の一例に相当する。 Next, the detection unit 41 compares the coil current I (i) detected by the current detection unit 24 (i) with the determination value (step S5). As a result of this comparison, when the coil current I (i) is equal to or smaller than the determination value (NO in step S5), the detection unit 41 determines that the power reception coil 33 does not exist at a position facing the power supply coil 23 (i). (Step S6). On the other hand, as a result of the comparison, when the coil current I (i) exceeds the determination value (YES in step S5), the detection unit 41 indicates that the power receiving coil 33 is present at a position facing the power feeding coil 23 (i). Determine (step S9). The above steps S4 to S6 and S9 correspond to an example of detection processing.
 そして、ステップS6において、検知部41が、給電コイル23(i)と対向する位置に受電コイル33が存在しないと判定した場合、コイル制御部44は、給電コイル23(i)への高周波電圧の供給を電源部25(i)に停止させる(ステップS7)。次に、検知制御部42は、タイマ設定値TM(i)に例えば1秒を加算することによってタイマ設定値TM(i)を増大する(ステップS8)。そして、検知制御部42は、検知部41による検知処理を繰り返すべくステップS2へ移行する。 In step S6, when the detection unit 41 determines that the power reception coil 33 does not exist at a position facing the power supply coil 23 (i), the coil control unit 44 determines the high-frequency voltage applied to the power supply coil 23 (i). Supply is stopped by the power supply unit 25 (i) (step S7). Next, the detection control unit 42 increases the timer setting value TM (i) by adding, for example, 1 second to the timer setting value TM (i) (step S8). And the detection control part 42 transfers to step S2 to repeat the detection process by the detection part 41. FIG.
 これにより、検知部41は、タイマ設定値TM(i)の時間間隔で検知処理を繰り返すから、タイマ設定値TM(i)は、実行間隔の一例に相当する。 Thereby, since the detection unit 41 repeats the detection process at the time interval of the timer set value TM (i), the timer set value TM (i) corresponds to an example of an execution interval.
 一方、ステップS9において、検知部41が、給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した場合、コイル選択部43は、給電コイル23(i)を励磁対象コイルとして選択する。そして、コイル制御部44は、励磁対象コイルである給電コイル23(i)へ高周波電圧を電源部25(i)に供給させる(ステップS10)。これにより、非接触給電装置2は、被給電装置3へ非接触で電力を供給することが可能となる。 On the other hand, when the detection unit 41 determines in step S9 that the power reception coil 33 is present at a position facing the power supply coil 23 (i), the coil selection unit 43 selects the power supply coil 23 (i) as an excitation target coil. To do. And the coil control part 44 supplies a high frequency voltage to the power supply part 25 (i) to the electric power feeding coil 23 (i) which is an excitation object coil (step S10). As a result, the non-contact power feeding device 2 can supply power to the power-supplied device 3 in a non-contact manner.
 この場合、検知制御部42は、タイマ設定値TM(i)の値を増大させることなく、検知部41による検知処理を繰り返すべくステップS2へ移行する。 In this case, the detection control unit 42 proceeds to step S2 to repeat the detection process by the detection unit 41 without increasing the value of the timer set value TM (i).
 表1は、1回目~4回目の検知処理において、受電コイル33が検知されなかった場合の例を示している。ステップS1~S10によれば、表1に示すように、受電コイル33が検知されなかった1回目~4回目の検知処理に対応して、タイマ設定値TMは、1秒ずつ増加する。そして、5回目の検知処理において受電コイル33が検知されると(ステップS5でYES、ステップS9)、5回目の検知処理に対応するタイマ設定値TMは、増加しない。 Table 1 shows an example in which the power receiving coil 33 is not detected in the first to fourth detection processes. According to steps S1 to S10, as shown in Table 1, the timer set value TM increases by 1 second in correspondence with the first to fourth detection processes in which the power receiving coil 33 is not detected. When the power receiving coil 33 is detected in the fifth detection process (YES in step S5, step S9), the timer set value TM corresponding to the fifth detection process does not increase.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、ステップS2~S10の処理によって、検知制御部42は、検知部41によって受電コイル33の存在が検知されるまで、検知部41による検知処理の実行間隔を増大させながら検知処理を検知部41に繰り返させる。その結果、表1に示すように、検知部41によって受電コイル33の存在が検知されない期間(検知処理回数1回目~4回目)が長く継続するほど、タイマ設定値TM(実行間隔)が増大する。 As described above, the detection control unit 42 detects the detection process while increasing the execution interval of the detection process by the detection unit 41 until the detection unit 41 detects the presence of the power receiving coil 33 by the processes of steps S2 to S10. Let unit 41 repeat. As a result, as shown in Table 1, the timer set value TM (execution interval) increases as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 (the first to fourth detection processing times) continues longer. .
 検知処理の実行間隔の増大は、検知処理の実行頻度を減少させることになる。したがって、検知制御部42は、検知部41によって受電コイル33の存在が検知されない期間が長く継続するほど、検知処理の実行頻度を減少させることになる。 Increase in the detection process execution interval decreases the detection process execution frequency. Therefore, the detection control unit 42 decreases the detection processing execution frequency as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 continues longer.
 ユーザが、非接触給電装置2に被給電装置3を対向配置することによって非接触給電を行う非接触給電装置2(給電コイル23)の使用頻度は、ユーザの事情や非接触給電装置2および被給電装置3の性質によって大きく異なる。そのため、非接触給電装置2の使用頻度が低い場合と高い場合とで、検知処理の実行頻度を等しくすると、非接触給電装置2の使用頻度が低い場合に、受電コイル33が給電コイル23に対向配置されていないときに消費される無駄な電力が増大する。 The frequency of use of the non-contact power feeding device 2 (power feeding coil 23) in which the user performs non-contact power feeding by placing the power fed device 3 opposite to the non-contact power feeding device 2 depends on the circumstances of the user, the non-contact power feeding device 2 and the It varies greatly depending on the nature of the power feeding device 3. Therefore, if the frequency of use of the non-contact power supply device 2 is low and high, and the detection process is performed at the same frequency, the power receiving coil 33 faces the power supply coil 23 when the frequency of use of the non-contact power supply device 2 is low. Unnecessary power consumed when not arranged increases.
 そこで、ステップS2~S10の処理によれば、検知部41によって受電コイル33の存在が検知されない期間が長く継続した場合、すなわちユーザによる非接触給電装置2の使用頻度が低いと考えられる場合に、検知処理の実行頻度は、減少する。このため、受電コイル33が給電コイル23に対向配置されていない場合に消費される電力を低減することが容易である。給電コイル23が一つの場合であっても同様の効果が得られる。 Therefore, according to the processing in steps S2 to S10, when the period during which the presence of the power receiving coil 33 is not detected by the detection unit 41 continues for a long time, that is, when the frequency of use of the non-contact power feeding device 2 by the user is considered to be low, The execution frequency of the detection process decreases. For this reason, it is easy to reduce the power consumed when the receiving coil 33 is not disposed opposite to the feeding coil 23. Even if there is only one feeding coil 23, the same effect can be obtained.
 また、図1に示すように、複数の給電コイル23がテーブル状の載置面22に沿って、マトリクス状に配置されている場合、ユーザは、載置面22の中央付近に被給電装置3を載置する可能性が高い。その結果、載置面22の中央付近に配置された給電コイル23と、載置面22の端部付近に配置された給電コイル23とでは、使用される頻度に差が生じる。このように、複数の給電コイル23相互間で、使用される頻度に差が生じる場合がある。 As shown in FIG. 1, when the plurality of power supply coils 23 are arranged in a matrix along the table-like placement surface 22, the user can supply the power-supplied device 3 near the center of the placement surface 22. Is likely to be placed. As a result, there is a difference in the frequency of use between the feeding coil 23 arranged near the center of the placement surface 22 and the feeding coil 23 arranged near the end of the placement surface 22. Thus, there may be a difference in the frequency of use among the plurality of power supply coils 23.
 複数の給電コイル23相互間で、使用される頻度に差がある場合に、各給電コイル23に対応する検知処理の実行頻度を等しくすると、使用頻度が低い給電コイル23において、受電コイル33が給電コイル23に対向配置されていない場合に消費される無駄な電力が増大する。 If there is a difference in the frequency of use among the plurality of power supply coils 23, if the detection processing corresponding to each power supply coil 23 is made equal in frequency, the power reception coil 33 feeds power in the power supply coil 23 with low use frequency. Unnecessary power consumed when the coil 23 is not disposed opposite to the coil 23 increases.
 そこで、ステップS2~S10の処理を、各給電コイル23に対応してそれぞれ実行することで、検知部41によって受電コイル33の存在が検知されない期間が長く継続した給電コイル23、すなわちユーザによる使用頻度が低いと考えられる給電コイル23に対応する検知処理の実行頻度が減少する。その結果、給電コイル23が対向配置されていない受電コイル33に対応する検知処理で消費される電力を低減することが容易である。 Therefore, by performing the processing of steps S2 to S10 for each of the power supply coils 23, the power supply coil 23 in which the period during which the presence of the power reception coil 33 is not detected by the detection unit 41 has continued for a long time, that is, the frequency of use by the user. The frequency of execution of detection processing corresponding to the feeding coil 23 that is considered to be low is reduced. As a result, it is easy to reduce the power consumed by the detection process corresponding to the power receiving coil 33 in which the power feeding coil 23 is not disposed oppositely.
 なお、制御部4が、各給電コイル23に対応する検知処理を並列実行する例を示したが、非接触給電装置2は、各給電コイル23に対応して制御部4を複数備えてもよい。 In addition, although the control part 4 showed the example which performs the detection process corresponding to each electric power feeding coil 23 in parallel, the non-contact electric power feeder 2 may be provided with two or more control parts 4 corresponding to each electric power feeding coil 23. .
 また、ステップS8において、検知制御部42は、タイマ設定値TM(実行間隔)を1秒ずつ増加させる例を示したが、検知制御部42がタイマ設定値TM(実行間隔)を増加する態様は、限定されない。検知制御部42は、例えば、予め設定された倍率を乗算することによって、タイマ設定値TM(実行間隔)を増加させるように、構成されてもよい。 In step S8, the detection control unit 42 increases the timer set value TM (execution interval) by 1 second. However, the detection control unit 42 increases the timer set value TM (execution interval). , Not limited. For example, the detection control unit 42 may be configured to increase the timer set value TM (execution interval) by multiplying a preset magnification.
 なお、検知制御部42は、検知部41が、給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した場合(ステップS9)、タイマ設定値TM(i)の値を増大させることなくステップS2へ移行する例を示したが、検知部41が、給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した場合(ステップS9)、検知制御部42は、ステップS1へ移行して、タイマ設定値TM(i)として初期値を設定するように、構成されてもよい。 In addition, the detection control part 42 increases the value of timer setting value TM (i), when the detection part 41 determines with the receiving coil 33 existing in the position facing the electric power feeding coil 23 (i) (step S9). Although the example which transfers to step S2 without showing was shown, when the detection part 41 determines with the receiving coil 33 existing in the position facing the feed coil 23 (i) (step S9), the detection control part 42 is step. It may be configured to proceed to S1 and set an initial value as the timer set value TM (i).
 ユーザが非接触給電装置2(給電コイル23)を使用する頻度は、変化する場合がある。そこで、検知部41が、給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した場合(ステップS9)、検知制御部42がタイマ設定値TM(i)として初期値、すなわちタイマ設定値TM(実行間隔)の下限値を設定することが好ましい。すなわち、検知制御部42は、検知部41によって受電コイル33の存在が検知された場合に、前記実行間隔の下限値として予め設定された初期値に前記実行間隔を設定することによって前記実行間隔を初期化した後、新たに検知部41に検知処理を繰り返させることが好ましい。これにより、ユーザの使用頻度が増加した場合には、タイマ設定値TM(実行間隔)を短縮し、検知処理の実行頻度を増大させることができる。 The frequency with which the user uses the non-contact power feeding device 2 (power feeding coil 23) may change. Therefore, when the detection unit 41 determines that the power reception coil 33 is present at a position facing the power supply coil 23 (i) (step S9), the detection control unit 42 sets an initial value, that is, a timer, as the timer set value TM (i). It is preferable to set a lower limit value of the set value TM (execution interval). That is, when the presence of the power receiving coil 33 is detected by the detection unit 41, the detection control unit 42 sets the execution interval to an initial value set in advance as a lower limit value of the execution interval. After initialization, it is preferable to cause the detection unit 41 to repeat the detection process. Thereby, when a user's usage frequency increases, the timer setting value TM (execution interval) can be shortened and the detection processing execution frequency can be increased.
 また、検知制御部42は、検知部41が、予め設定された回数の検知処理において、連続して給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した場合、検知制御部42は、ステップS1へ移行して、タイマ設定値TM(i)として初期値を設定するように、構成されてもよい。すなわち、検知制御部42は、検知処理を予め設定された回数繰り返し実行する間に、検知部41によって受電コイル33の存在が連続して検知された場合に、前記実行間隔を初期化するように、構成されてもよい。 In addition, when the detection unit 41 determines that the power reception coil 33 is continuously present at a position facing the power supply coil 23 (i) in the detection process of the preset number of times, the detection control unit 42 42 may be configured to proceed to step S1 and set an initial value as the timer set value TM (i). That is, the detection control unit 42 initializes the execution interval when the detection unit 41 continuously detects the presence of the power receiving coil 33 while repeatedly executing the detection process a preset number of times. May be configured.
 検知部41が、予め設定された回数の検知処理において、連続して給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した場合、ユーザの使用頻度が増加したと判断できる確実性が高い。したがって、ユーザの使用頻度が増加したと高い確実性で判断できる場合に、タイマ設定値TM(実行間隔)を短縮し、検知処理の実行頻度を増大させることができる。 If the detection unit 41 determines that the power reception coil 33 is continuously present at a position facing the power supply coil 23 (i) in the preset number of detection processes, it can be determined that the use frequency of the user has increased. High nature. Therefore, when it can be determined with high certainty that the use frequency of the user has increased, the timer set value TM (execution interval) can be shortened, and the execution frequency of the detection process can be increased.
 (第2実施形態)
 次に、第2実施形態に係る非接触給電システム1aについて説明する。非接触給電システム1aは、非接触給電装置2aと、被給電装置3とを含む(図1)。第2実施形態の非接触給電システム1aは、第1実施形態の非接触給電システム1とは、非接触給電装置2aの構成が異なる。
(Second Embodiment)
Next, the non-contact electric power feeding system 1a which concerns on 2nd Embodiment is demonstrated. The non-contact power supply system 1a includes a non-contact power supply device 2a and a power supplied device 3 (FIG. 1). The non-contact power feeding system 1a of the second embodiment is different from the non-contact power feeding system 1 of the first embodiment in the configuration of the non-contact power feeding device 2a.
 図8は、非接触給電装置2aの構成の一例を示すブロック図である。図8に示す非接触給電装置2aは、図2に示す非接触給電装置2とは、制御部4aの構成が異なる。第2実施形態の非接触給電装置2aにおける制御部4aは、第1実施形態の非接触給電装置2における制御部4とは、検知制御部42aの動作およびさらにカウンタ46を備える点で異なる。カウンタ46は、複数の給電コイル23と対応して複数設けられる。以下、給電コイル23(i)に対応するカウンタ46は、カウンタ46(i)と表され、カウンタ46(i)のカウンタ値CTは、カウンタ値CT(i)と表される。 FIG. 8 is a block diagram illustrating an example of the configuration of the non-contact power feeding device 2a. The non-contact power feeding device 2a shown in FIG. 8 is different from the non-contact power feeding device 2 shown in FIG. 2 in the configuration of the control unit 4a. The control unit 4a in the non-contact power feeding device 2a of the second embodiment is different from the control unit 4 in the non-contact power feeding device 2 of the first embodiment in that the operation of the detection control unit 42a and further a counter 46 are provided. A plurality of counters 46 are provided corresponding to the plurality of power feeding coils 23. Hereinafter, the counter 46 corresponding to the feeding coil 23 (i) is represented as a counter 46 (i), and the counter value CT of the counter 46 (i) is represented as a counter value CT (i).
 その他の構成は、図2に示す非接触給電装置2と同様であるのでその説明を省略し、以下、本実施形態の特徴的な点について主に説明する。 Other configurations are the same as those of the non-contact power feeding device 2 shown in FIG. 2, and thus the description thereof will be omitted.
 検知制御部42aは、検知部41が受電コイル33の存在を検知するまで、検知部41に検知処理を繰り返させる。この検知処理の繰り返しの際に、検知制御部42aは、検知処理において受電コイル33の存在が検知されないことが予め設定された判定回数Cj回繰り返される都度、検知処理の実行間隔を増大させる。すなわち、検知制御部42aは、前記検知処理によって受電コイル33の存在が検知されない回数が予め設定された判定回数に到達する都度、前記実行間隔を増大させる。 The detection control unit 42 a causes the detection unit 41 to repeat the detection process until the detection unit 41 detects the presence of the power receiving coil 33. When the detection process is repeated, the detection control unit 42a increases the detection process execution interval every time the detection process is repeated for a predetermined number of determinations Cj that the presence of the power receiving coil 33 is not detected. That is, the detection control unit 42a increases the execution interval every time the number of times that the presence of the power receiving coil 33 is not detected by the detection process reaches a preset number of determinations.
 カウンタ46は、検知部41によって受電コイル33が存在しないと判定された回数を計数する。 The counter 46 counts the number of times determined by the detection unit 41 that the power receiving coil 33 is not present.
 次に、図8に示す非接触給電装置2aの動作について説明する。図9は、図8に示す非接触給電装置2aの動作の一例を示すフローチャートである。 Next, the operation of the non-contact power feeding device 2a shown in FIG. 8 will be described. FIG. 9 is a flowchart showing an example of the operation of the non-contact power feeding apparatus 2a shown in FIG.
 図9に示すフローチャートにおいて、図7と同様の処理は、図7と同じステップ番号を付してその説明を省略する。すなわち、検知制御部42aは、ステップS101,S102,S103の各処理を除く他の処理は、検知制御部42と同様に動作する。 In the flowchart shown in FIG. 9, the same steps as those in FIG. 7 are denoted by the same step numbers as those in FIG. That is, the detection control unit 42a operates in the same manner as the detection control unit 42 except for the processes in steps S101, S102, and S103.
 まず、検知制御部42aは、ステップS1の処理の後、カウンタ46(i)のカウンタ値CT(i)を0に初期化し、ステップS2の処理へ移行する(ステップS101)。 First, after the process of step S1, the detection control unit 42a initializes the counter value CT (i) of the counter 46 (i) to 0, and proceeds to the process of step S2 (step S101).
 また、検知制御部42aは、ステップS7の処理の後、カウンタ46(i)のカウンタ値CT(i)に1を加算する(ステップS102)。これにより、検知制御部42aは、検知部41が給電コイル23(i)と対向する位置に受電コイル33が存在しないと判定した回数をカウンタ46(i)に計数させる。 Further, the detection control unit 42a adds 1 to the counter value CT (i) of the counter 46 (i) after the process of step S7 (step S102). Thereby, the detection control part 42a makes the counter 46 (i) count the frequency | count that the detection part 41 determined with the receiving coil 33 not existing in the position facing the electric power feeding coil 23 (i).
 そして、検知制御部42aは、このステップS102の処理の後、カウンタ46(i)のカウンタ値CT(i)と、判定回数Cjとを比較する(ステップS103)。そして、カウンタ値CT(i)と、判定回数Cjとが等しい場合(ステップS103でYES)、検知制御部42aは、ステップS8の処理へ移行してタイマ設定値TM(i)を増大する。一方、カウンタ値CT(i)が、判定回数Cjに満たず、等しくない場合(ステップS103でNO)、検知制御部42aは、タイマ設定値TM(i)を増大せずにステップS2の処理へ移行し、検知部41による検知処理を繰り返す。 Then, after the processing of step S102, the detection control unit 42a compares the counter value CT (i) of the counter 46 (i) with the number of determinations Cj (step S103). If the counter value CT (i) is equal to the determination count Cj (YES in step S103), the detection control unit 42a proceeds to the process in step S8 and increases the timer set value TM (i). On the other hand, when the counter value CT (i) is less than the number of determinations Cj and is not equal (NO in step S103), the detection control unit 42a proceeds to the process of step S2 without increasing the timer set value TM (i). And the detection process by the detection unit 41 is repeated.
 表2は、判定回数Cjが2であった場合における非接触給電装置2aの動作の一例が示されている。 Table 2 shows an example of the operation of the non-contact power feeding device 2a when the number of determinations Cj is 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、ステップS1~S10の各処理およびS101~S103の各処理によれば、表2に示すように、1回目の検知処理で、ステップS6の処理で受電コイル33無しと判定された場合でも、カウンタ値CTが判定回数Cj(=2)に満たないので、タイマ設定値TMは、増大しない。2回目の検知処理で、ステップS6の処理で受電コイル33無しと判定され、かつ、カウンタ値CTが判定回数Cj(=2)と等しくなるので、タイマ設定値TMが1秒から2秒に増大する。 As described above, according to the processes in steps S1 to S10 and the processes in S101 to S103, as shown in Table 2, even if it is determined that the receiving coil 33 is not present in the process of step S6 in the first detection process, Since the counter value CT is less than the determination number Cj (= 2), the timer set value TM does not increase. In the second detection process, it is determined in step S6 that the power receiving coil 33 is absent, and the counter value CT is equal to the determination count Cj (= 2), so the timer set value TM increases from 1 second to 2 seconds. To do.
 したがって、受電コイル33の存在が検知されないことが判定回数Cj回繰り返される都度、タイマ設定値TMが増大される。その結果、表2に示すように、検知部41によって受電コイル33の存在が検知されない期間(検知処理回数1回目~4回目)が長く継続するほど、タイマ設定値TM(実行間隔)が増大する。 Therefore, each time the determination that the presence of the power receiving coil 33 is not detected is repeated Cj times, the timer set value TM is increased. As a result, as shown in Table 2, the timer set value TM (execution interval) increases as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 (the first to fourth detection processing times) continues longer. .
 検知処理の実行間隔の増大は、検知処理の実行頻度を減少させることになる。したがって、検知制御部42aは、検知部41によって受電コイル33の存在が検知されない期間が長く継続するほど、検知処理の実行頻度を減少させることになる。これにより、非接触給電装置2aは、非接触給電装置2と同様の効果が得られる。 Increase in the detection process execution interval decreases the detection process execution frequency. Therefore, the detection control unit 42a decreases the execution frequency of the detection process as the period during which the detection unit 41 does not detect the presence of the power receiving coil 33 continues longer. Thereby, the non-contact electric power feeder 2a has the same effect as the non-contact electric power feeder 2.
 また、ユーザの使用頻度が高い場合であっても、稀に、ユーザが長時間非接触給電装置2a(給電コイル23(i))を使用しない場合がある。このような場合に、検知部41が受電コイル33を検知しない都度、タイマ設定値TM(i)(実行間隔)を増大させると、ユーザの使用頻度が高いにもかかわらず、検知処理の実行頻度が低くなる。検知処理の実行頻度が低くなると、ユーザが給電コイル23(i)に受電コイル33を対向配置した後に給電が開始されるまでの応答時間が、延びる。これは、使用頻度が高いユーザに対する利便性を確保する観点で望ましくない。 In addition, even if the frequency of use by the user is high, the user may rarely use the non-contact power feeding device 2a (power feeding coil 23 (i)) for a long time. In such a case, if the timer setting value TM (i) (execution interval) is increased each time the detection unit 41 does not detect the power receiving coil 33, the detection process execution frequency is high despite the high use frequency of the user. Becomes lower. When the detection process is performed less frequently, the response time from when the user places the power receiving coil 33 to the power feeding coil 23 (i) to the time when power feeding is started increases. This is not desirable from the viewpoint of ensuring convenience for users with high use frequency.
 一方、ステップS102,S103の各処理によれば、検知部41が受電コイル33を検知しないことが、複数回繰り返された場合に初めて、タイマ設定値TM(i)(実行間隔)が増大する。このため、使用頻度の高いユーザが稀に長時間非接触給電装置2a(給電コイル23(i))を使用しなかった場合でも、タイマ設定値TM(i)(実行間隔)の増大が抑制される。 On the other hand, according to each process of steps S102 and S103, the timer set value TM (i) (execution interval) is increased only when the detection unit 41 does not detect the power receiving coil 33 a plurality of times. For this reason, even when a frequently used user rarely uses the non-contact power feeding device 2a (power feeding coil 23 (i)) for a long time, an increase in the timer set value TM (i) (execution interval) is suppressed. The
 なお、判定回数Cjが2の場合を例示したが、判定回数Cjは、例えば10であってもよく、100であってもよく、数値は、限定されない。また、上述では、判定回数Cjが固定値である例が、示めされたが、判定回数Cjは、変化してもよい。例えば、カウンタ値CTが判定回数Cjと等しくなる都度、判定回数Cjが増加してもよい。 In addition, although the case where the determination number Cj is 2 is illustrated, the determination number Cj may be 10 or 100, for example, and the numerical value is not limited. In the above description, an example in which the determination number Cj is a fixed value has been shown. However, the determination number Cj may be changed. For example, each time the counter value CT becomes equal to the determination number Cj, the determination number Cj may increase.
 (第3実施形態)
 次に、第3実施形態に係る非接触給電システム1bについて説明する。非接触給電システム1bは、非接触給電装置2bと、被給電装置3とを含む(図1)。第3実施形態の非接触給電システム1bは、第1実施形態の非接触給電システム1とは、非接触給電装置2bの構成が異なる。
(Third embodiment)
Next, the non-contact electric power feeding system 1b which concerns on 3rd Embodiment is demonstrated. The non-contact power supply system 1b includes a non-contact power supply device 2b and a power supplied device 3 (FIG. 1). The non-contact power feeding system 1b of the third embodiment is different from the non-contact power feeding system 1 of the first embodiment in the configuration of the non-contact power feeding device 2b.
 図10は、非接触給電装置2bの構成の一例を示すブロック図である。図10に示す非接触給電装置2bは、図2に示す非接触給電装置2とは、制御部4bの構成が異なる。第3実施形態の制御部4bは、第1実施形態の非接触給電装置2における制御部4とは、検知制御部42bの構成および動作が異なる点、そして、さらに記憶部47を備える点で異なる。 FIG. 10 is a block diagram illustrating an example of the configuration of the non-contact power feeding device 2b. The non-contact power feeding device 2b shown in FIG. 10 is different from the non-contact power feeding device 2 shown in FIG. 2 in the configuration of the control unit 4b. The control unit 4b according to the third embodiment differs from the control unit 4 in the non-contact power feeding device 2 according to the first embodiment in that the configuration and operation of the detection control unit 42b are different and that the storage unit 47 is further provided. .
 その他の構成は、図2に示す非接触給電装置2と同様であるのでその説明を省略し、以下本実施形態の特徴的な点について主に説明する。 Other configurations are the same as those of the non-contact power feeding device 2 shown in FIG. 2, and thus description thereof will be omitted.
 検知制御部42bは、検出頻度取得部421と、実行頻度調節部422とを含む。検出頻度取得部421は、検知処理において検知部41が受電コイル33を検知したか否かに基づいて(検知部41による受電コイル33の存在の有無に基づいて)、検知部41が受電コイル33を検知した頻度を検知頻度値として取得する。実行頻度調節部422は、検知頻度が少ないほど、検知処理の実行頻度を減少させる。 The detection control unit 42b includes a detection frequency acquisition unit 421 and an execution frequency adjustment unit 422. The detection frequency acquisition unit 421 determines whether the detection unit 41 detects the power receiving coil 33 in the detection process (based on whether the power reception coil 33 is present by the detection unit 41). The frequency at which this is detected is acquired as a detection frequency value. The execution frequency adjustment unit 422 decreases the detection process execution frequency as the detection frequency decreases.
 記憶部47は、検出頻度取得部421によって取得された検知頻度値を記憶する。記憶部47は、例えばEEPROM(Electrically Erasable and Programmable Read Only Memory)やFeRAM(Ferroelectric Random Access Memory)等の不揮発性の記憶素子である。 The storage unit 47 stores the detection frequency value acquired by the detection frequency acquisition unit 421. The storage unit 47 is a non-volatile storage element such as EEPROM (Electrically Erasable and Programmable Read Only Memory) or FeRAM (Ferroelectric Random Access Memory).
 次に、図10に示す非接触給電装置2bの動作について説明する。図11および図12は、非接触給電装置2bの動作の一例を示すフローチャートである。図11および図12に示すフローチャートにおいて、図7と同様の処理は、図7と同じステップ番号を付してその説明を省略する。すなわち、検知制御部42bは、ステップS201~S204,S211~S215の各処理を除く他の処理は、検知制御部42と同様に動作する。 Next, the operation of the non-contact power feeding device 2b shown in FIG. 10 will be described. 11 and 12 are flowcharts showing an example of the operation of the non-contact power feeding device 2b. In the flowcharts shown in FIGS. 11 and 12, the same processes as those in FIG. 7 are denoted by the same step numbers as those in FIG. That is, the detection control unit 42b operates in the same manner as the detection control unit 42 except for the processes of steps S201 to S204 and S211 to S215.
 図11に示すステップS1~S7、S9、S10、S201~S204において、まず、予め設定された基準時間tsの間、頻度計数値Cf(i)の計数が実行される。頻度計数値Cf(i)の計数が実行される期間中は、タイマ設定値TM(i)は、固定値(例えば1秒)とされる。頻度計数値Cf(i)は、基準時間tsの間に検知部41が給電コイル23(i)と対向する位置に受電コイル33が存在すると判定した回数である。すなわち、頻度計数値Cf(i)は、検知部41が給電コイル23(i)と対向する位置において受電コイル33を検知した検出頻度を表す情報の一例である。 In steps S1 to S7, S9, S10, and S201 to S204 shown in FIG. 11, first, the frequency count value Cf (i) is counted for a preset reference time ts. During the period in which the frequency count value Cf (i) is counted, the timer set value TM (i) is a fixed value (for example, 1 second). The frequency count value Cf (i) is the number of times that the detection unit 41 determines that the power receiving coil 33 is present at a position facing the power feeding coil 23 (i) during the reference time ts. That is, the frequency count value Cf (i) is an example of information representing the detection frequency at which the detection unit 41 detects the power reception coil 33 at a position facing the power supply coil 23 (i).
 基準時間tsは、検出頻度を取得する処理の実行時間であり、例えば1日、あるいは1ヶ月等の時間が用いられる。 The reference time ts is the execution time of the process for acquiring the detection frequency, and for example, a time such as one day or one month is used.
 検出頻度取得部421は、ステップS1の処理の後、頻度計数値Cf(i)を0に初期化する(ステップS201)。次に、検出頻度取得部421は、例えばソフトウェアタイマを用いることによって、経過時間twの計時を開始する(ステップS202)。この経過時間twは、頻度取得処理を開始してから経過した時間である。 The detection frequency acquisition unit 421 initializes the frequency count value Cf (i) to 0 after the process of step S1 (step S201). Next, the detection frequency acquisition unit 421 starts counting the elapsed time tw by using, for example, a software timer (step S202). This elapsed time tw is the time that has elapsed since the start of the frequency acquisition process.
 以下、ステップS2~S10の処理は、図7からステップS8の処理を除いた場合と同様であるのでその説明を省略する。 Hereinafter, the processing in steps S2 to S10 is the same as that in the case of excluding the processing in step S8 from FIG.
 検出頻度取得部421は、給電コイル23(i)と対向する位置に受電コイル33が無かった場合(ステップS6)、ステップS7の処理の後、経過時間twと基準時間tsとを比較する(ステップS204)。そして、経過時間twが基準時間ts以下である場合(ステップS204でNO)、検出頻度取得部421は、タイマ設定値TM(i)を初期値に固定したまま検知処理を繰り返すべくステップS2の処理へ移行する。 The detection frequency acquisition unit 421 compares the elapsed time tw with the reference time ts after the process of step S7 when there is no power receiving coil 33 at a position facing the power feeding coil 23 (i) (step S6) (step S6). S204). If the elapsed time tw is less than or equal to the reference time ts (NO in step S204), the detection frequency acquisition unit 421 performs the process of step S2 to repeat the detection process while fixing the timer set value TM (i) to the initial value. Migrate to
 一方、検出頻度取得部421は、給電コイル23(i)と対向する位置に受電コイル33が有った場合(ステップS9)、ステップS10の処理の後、頻度計数値Cf(i)に1を加算し(ステップS203)、ステップS204の処理のへ移行する。そして、検出頻度取得部421は、上述のように、経過時間twと基準時間tsとを比較し(ステップS204)、経過時間twが基準時間ts以下である場合(ステップS204でNO)、検出頻度取得部421は、タイマ設定値TM(i)を初期値に固定したまま検知処理を繰り返すべくステップS2処理のへ移行する。 On the other hand, when the power receiving coil 33 is present at a position facing the power feeding coil 23 (i) (step S9), the detection frequency acquisition unit 421 sets 1 to the frequency count value Cf (i) after the process of step S10. Addition (step S203), the process proceeds to step S204. Then, as described above, the detection frequency acquisition unit 421 compares the elapsed time tw with the reference time ts (step S204). When the elapsed time tw is equal to or less than the reference time ts (NO in step S204), the detection frequency The acquisition unit 421 proceeds to step S2 to repeat the detection process while the timer setting value TM (i) is fixed to the initial value.
 そして、ステップS204において、経過時間twが基準時間tsを超えている場合(ステップS204でYES)、検出頻度取得部421は、そのときの頻度計数値Cf(i)を、検知頻度を表す情報として記憶部47に記憶させ、ステップS211の処理のへ移行する。 In step S204, when the elapsed time tw exceeds the reference time ts (YES in step S204), the detection frequency acquisition unit 421 uses the frequency count value Cf (i) at that time as information indicating the detection frequency. It memorize | stores in the memory | storage part 47, and transfers to the process of step S211.
 次に、ステップS211~S215の各処理において、実行頻度調節部422は、記憶部47に記憶された頻度計数値Cf(i)と、予め設定された頻度基準値Ref1,Ref2とに基づいて、タイマ設定値TM(i)を設定する。頻度基準値Ref1は、頻度基準値Ref2よりも小さな値に設定されている。 Next, in each process of steps S211 to S215, the execution frequency adjusting unit 422 is based on the frequency count value Cf (i) stored in the storage unit 47 and the preset frequency reference values Ref1 and Ref2. A timer set value TM (i) is set. The frequency reference value Ref1 is set to a value smaller than the frequency reference value Ref2.
 まず、ステップS211の処理において、実行頻度調節部422は、頻度計数値Cf(i)と頻度基準値Ref1とを比較する。比較の結果、頻度計数値Cf(i)が頻度基準値Ref1以下である場合(ステップS211でNO)、実行頻度調節部422は、検知頻度が低いと判定し、タイマ設定値TM(i)として例えば10秒を設定する(ステップS212)。その後、実行頻度調節部422は、ステップS2の処理へ移行する。 First, in the process of step S211, the execution frequency adjusting unit 422 compares the frequency count value Cf (i) with the frequency reference value Ref1. As a result of the comparison, when the frequency count value Cf (i) is equal to or less than the frequency reference value Ref1 (NO in step S211), the execution frequency adjusting unit 422 determines that the detection frequency is low and sets the timer set value TM (i). For example, 10 seconds is set (step S212). Thereafter, the execution frequency adjusting unit 422 proceeds to the process of step S2.
 一方、頻度計数値Cf(i)が、頻度基準値Ref1を超えている場合(ステップS211でYES)、実行頻度調節部422は、頻度計数値Cf(i)と頻度基準値Ref2とを比較する。比較の結果、頻度計数値Cf(i)が頻度基準値Ref2以下である場合、すなわち、頻度計数値Cf(i)が、頻度基準値Ref1を超え、かつ、頻度基準値Ref2以下である場合(ステップS213でNO)、実行頻度調節部422は、検知頻度が中程度と判定し、タイマ設定値TM(i)として例えば5秒を設定する(ステップS214)。その後、実行頻度調節部422は、ステップS2の処理へ移行する。 On the other hand, when the frequency count value Cf (i) exceeds the frequency reference value Ref1 (YES in step S211), the execution frequency adjustment unit 422 compares the frequency count value Cf (i) with the frequency reference value Ref2. . As a result of the comparison, when the frequency count value Cf (i) is less than or equal to the frequency reference value Ref2, that is, when the frequency count value Cf (i) exceeds the frequency reference value Ref1 and is less than or equal to the frequency reference value Ref2 ( In step S213, NO, the execution frequency adjusting unit 422 determines that the detection frequency is medium, and sets, for example, 5 seconds as the timer set value TM (i) (step S214). Thereafter, the execution frequency adjusting unit 422 proceeds to the process of step S2.
 また、処理S213の比較の結果、頻度計数値Cf(i)が頻度基準値Ref2を超えている場合、すなわち、頻度計数値Cf(i)が、頻度基準値Ref1を超え、かつ、頻度基準値Ref2を超えている場合(ステップS213でYES)、実行頻度調節部422は、検知頻度が高いと判定し、タイマ設定値TM(i)として例えば1秒を設定する(ステップS215)。その後、実行頻度調節部422は、ステップS2の処理へ移行する。 When the frequency count value Cf (i) exceeds the frequency reference value Ref2 as a result of the comparison in step S213, that is, the frequency count value Cf (i) exceeds the frequency reference value Ref1, and the frequency reference value If Ref2 is exceeded (YES in step S213), the execution frequency adjustment unit 422 determines that the detection frequency is high, and sets, for example, 1 second as the timer setting value TM (i) (step S215). Thereafter, the execution frequency adjusting unit 422 proceeds to the process of step S2.
 以上、ステップS211~S215の処理により、実行頻度調節部422は、検知頻度が少ないほど、タイマ設定値TM(i)を大きくする。すなわち、実行頻度調節部422は、検知頻度が少ないほど、検知処理の実行頻度を減少させる。 As described above, the execution frequency adjustment unit 422 increases the timer setting value TM (i) as the detection frequency decreases by the processing in steps S211 to S215. That is, the execution frequency adjustment unit 422 decreases the detection processing execution frequency as the detection frequency decreases.
 以下、ステップS2~S7、S9、S10の各処理によって、実行頻度調節部422が設定したタイマ設定値TM(i)に基づいて、検知処理が繰り返される。 Hereinafter, the detection process is repeated based on the timer set value TM (i) set by the execution frequency adjusting unit 422 by the processes of steps S2 to S7, S9, and S10.
 以上、図11および図12に示す処理によれば、図2に示す非接触給電装置2と同様、ユーザによる非接触給電装置2の使用頻度が低い場合に、検知処理の実行頻度が減少する。このため、受電コイル33が給電コイル23に対向配置されていない場合に消費される電力を低減することが容易となる。給電コイル23が一つの場合であっても同様の効果が得られる。 As described above, according to the processing shown in FIGS. 11 and 12, the frequency of detection processing is reduced when the frequency of use of the non-contact power feeding device 2 by the user is low, as in the non-contact power feeding device 2 shown in FIG. For this reason, it becomes easy to reduce the electric power consumed when the receiving coil 33 is not disposed opposite to the feeding coil 23. Even if there is only one feeding coil 23, the same effect can be obtained.
 また、図1に示すように、複数の給電コイル23がテーブル状の載置面22に沿って、マトリクス状に配置されている場合、図2に示す非接触給電装置2と同様に、ユーザによる使用頻度が低い給電コイル23に対応する検知処理の実行頻度が減少できる。その結果、給電コイル23が対向配置されていない受電コイル33に対応する検知処理で消費される電力を低減することが容易となる。 Further, as shown in FIG. 1, when a plurality of power feeding coils 23 are arranged in a matrix along the table-like placement surface 22, the user can perform the same as in the non-contact power feeding device 2 shown in FIG. 2. The execution frequency of the detection process corresponding to the power feeding coil 23 with low usage frequency can be reduced. As a result, it becomes easy to reduce the electric power consumed by the detection process corresponding to the power receiving coil 33 in which the power feeding coil 23 is not opposed.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる非接触給電装置は、給電対象となる受電コイルへ電磁誘導現象により電力を供給する非接触給電装置であって、前記受電コイルを対向配置可能な給電コイルと、前記給電コイルと対向する位置における前記受電コイルの存在を検知する検知処理を繰り返し実行する検知部と、前記検知部によって前記受電コイルの存在が検知されたか否かに基づいて、前記検知部が前記検知処理を実行する実行頻度を調節する検知制御部とを備える。また、他の一態様にかかる非接触給電装置は、電磁誘導現象によって受電コイルに給電するための給電コイルと、前記給電コイルと対向する位置に前記受電コイルの存在の有無を検知する検知処理を繰り返し実行する検知部と、前記検知部による前記受電コイルの存在の有無に基づいて、前記検知部によって繰り返し実行される前記検知処理の実行頻度を調節する検知制御部とを備える。 A non-contact power feeding device according to one aspect is a non-contact power feeding device that supplies power to a power receiving coil that is a power feeding target by an electromagnetic induction phenomenon, the power feeding coil capable of opposingly arranging the power receiving coil, and the power coil facing the power feeding coil The detection unit executes the detection process based on whether or not the detection unit that repeatedly detects the presence of the power reception coil at the position to be detected and whether the detection unit detects the presence of the power reception coil A detection control unit that adjusts the execution frequency. Further, the non-contact power feeding device according to another aspect includes a power feeding coil for feeding power to the power receiving coil by an electromagnetic induction phenomenon, and a detection process for detecting the presence or absence of the power receiving coil at a position facing the power feeding coil. A detection unit that repeatedly executes and a detection control unit that adjusts an execution frequency of the detection process that is repeatedly executed by the detection unit based on the presence or absence of the power receiving coil by the detection unit.
 このような非接触給電装置は、検知部による受電コイルの存在の有無に基づいて、検知部が検知処理を実行する実行頻度を調節することができる。したがって、このような非接触給電装置では、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減することが容易となる。 Such a non-contact power supply device can adjust the frequency of execution of the detection process by the detection unit based on the presence or absence of the power receiving coil by the detection unit. Therefore, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
 他の一態様では、上述の非接触給電装置において、前記検知制御部は、前記検知部によって前記受電コイルの存在が検知されない期間が長く継続するほど、前記実行頻度を減少させる。 In another aspect, in the above-described contactless power supply device, the detection control unit decreases the execution frequency as the period during which the detection unit does not detect the presence of the power receiving coil continues longer.
 このような非接触給電装置では、検知部によって受電コイルの存在が検知されない期間が長く継続し、すなわち受電コイルが給電コイルに対向配置される頻度が低いと考えられる場合に、検知処理の実行頻度が減少する。その結果、このような非接触給電装置では、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減することが容易となる。 In such a non-contact power supply device, when the detection unit does not detect the presence of the power receiving coil for a long period of time, that is, when it is considered that the frequency at which the power receiving coil is disposed opposite to the power feeding coil is low, the detection processing execution frequency Decrease. As a result, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
 他の一態様では、上述の非接触給電装置において、前記検知制御部は、前記検知部によって前記受電コイルの存在が検知されるまで、前記検知処理の実行間隔を増大させながら前記検知部に前記検知処理を繰り返させる。 In another aspect, in the above-described contactless power supply device, the detection control unit increases the detection processing execution interval to the detection unit until the detection unit detects the presence of the power receiving coil. Repeat the detection process.
 このような非接触給電装置では、検知部によって受電コイルの存在が検知されない期間が長く継続するほど、検知処理の実行間隔が増大される。検知処理の実行間隔が増大されると、検知処理の実行頻度が減少する。したがって、このような非接触給電装置では、検知部によって受電コイルの存在が検知されない期間が長く継続し、すなわち、受電コイルが給電コイルに対向配置される頻度が低いと考えられる場合に、検知処理の実行頻度を減少させることができる。その結果、このような非接触給電装置では、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減することが容易となる。 In such a non-contact power feeding device, the detection processing execution interval increases as the period during which the detection unit does not detect the presence of the power receiving coil continues longer. When the detection processing execution interval is increased, the detection processing execution frequency decreases. Therefore, in such a non-contact power supply device, when the period during which the presence of the power receiving coil is not detected by the detection unit continues for a long time, that is, when it is considered that the frequency at which the power receiving coil is disposed opposite the power feeding coil is low, the detection process Execution frequency can be reduced. As a result, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
 他の一態様では、上述の非接触給電装置において、前記検知制御部は、前記検知制御部は、前記検知処理において前記受電コイルの存在が検知されないことが予め設定された判定回数繰り返される都度、前記実行間隔を増大させる処理を実行する。すなわち、前記検知制御部は、前記検知処理によって前記受電コイルの存在が検知されない回数が予め設定された判定回数に到達する都度、前記実行間隔を増大させる。 In another aspect, in the above-described contactless power supply device, each time the detection control unit is repeated a predetermined number of times that the detection control unit is not detected to detect the presence of the power receiving coil in the detection process, A process for increasing the execution interval is executed. That is, the detection control unit increases the execution interval each time the number of times that the presence of the power receiving coil is not detected by the detection process reaches a predetermined number of determinations.
 このような非接触給電装置では、検知処理において受電コイルの存在が検知されないことが予め設定された判定回数繰り返されなければ、実行間隔を増大させる処理が実行されない。したがって、このような非接触給電装置では、例えば非接触給電装置の使用頻度が高いユーザが、稀に非接触給電装置を使用しなかった(受電コイルを給電コイルに対向配置しなかった)場合に、実行間隔が増大されるおそれが低減される。 In such a non-contact power supply device, the process of increasing the execution interval is not executed unless the preset number of determinations that the presence of the power receiving coil is not detected in the detection process is repeated. Therefore, in such a non-contact power supply device, for example, when a user who uses the non-contact power supply device frequently does not use the non-contact power supply device (the receiving coil is not disposed opposite to the power supply coil). The possibility that the execution interval is increased is reduced.
 他の一態様では、上述の非接触給電装置において、前記検知制御部は、前記検知部によって前記受電コイルの存在が検知された場合に、前記実行間隔の下限値として予め設定された初期値に前記実行間隔を設定することによって前記実行間隔を初期化した後、新たに前記検知部に前記検知処理を繰り返させる。 In another aspect, in the above-described non-contact power feeding device, the detection control unit sets an initial value preset as a lower limit value of the execution interval when the presence of the power receiving coil is detected by the detection unit. After the execution interval is initialized by setting the execution interval, the detection unit is newly made to repeat the detection process.
 このような非接触給電装置では、検知部によって受電コイルの存在が検知された場合、実行間隔が初期値に戻され、再び受電コイルの存在が検知されるまで、検知処理の実行間隔を増大させながら検知部による検知処理が繰り返される。したがって、このような非接触給電装置では、ユーザの使用頻度が増加した場合には、実行間隔を短縮して検知処理の実行頻度を増大させることが可能になる。 In such a non-contact power feeding device, when the detection unit detects the presence of the power receiving coil, the execution interval is reset to the initial value, and the detection processing execution interval is increased until the presence of the power receiving coil is detected again. However, the detection process by the detection unit is repeated. Therefore, in such a non-contact power supply device, when the usage frequency of the user increases, it is possible to shorten the execution interval and increase the execution frequency of the detection process.
 他の一態様では、上述の非接触給電装置において、前記検知制御部は、予め設定された回数の前記検知処理において、連続して前記検知部によって前記受電コイルの存在が検知された場合に、初期化される。すなわち、前記検知制御部は、前記検知処理を予め設定された回数繰り返し実行する間に、前記検知部によって前記受電コイルの存在が連続して検知された場合に、前記実行間隔を初期化する。 In another aspect, in the above-described contactless power supply device, when the detection control unit continuously detects the presence of the power receiving coil in the detection process a predetermined number of times, It is initialized. That is, the detection control unit initializes the execution interval when the detection unit continuously detects the presence of the power receiving coil while repeatedly executing the detection process a preset number of times.
 予め設定された回数の検知処理において、連続して給電コイルと対向する位置に受電コイルの存在が検知された場合、ユーザの使用頻度が増加したと判断できる確実性が高い。したがって、このような非接触給電装置では、ユーザの使用頻度が増加したと高い確実性で判断できる場合に、初期化して実行間隔を短縮し、検知処理の実行頻度を増大させることができる。 In the detection process of the preset number of times, when the presence of the power receiving coil is continuously detected at the position facing the power feeding coil, there is a high degree of certainty that it can be determined that the use frequency of the user has increased. Therefore, in such a non-contact power supply device, when it can be determined with high certainty that the usage frequency of the user has increased, the initialization interval can be shortened and the execution frequency of the detection process can be increased.
 他の一態様では、上述の非接触給電装置において、前記検知制御部は、前記検知部による前記受電コイルの存在の有無に基づいて、前記検知部が前記受電コイルの存在を検知した頻度を検知頻度として取得する検出頻度取得部と、前記検知頻度が少ないほど、前記実行頻度を減少させる実行頻度調節部とを含む。 In another aspect, in the above-described contactless power supply device, the detection control unit detects the frequency at which the detection unit detects the presence of the power reception coil based on the presence or absence of the power reception coil by the detection unit. A detection frequency acquisition unit that acquires the frequency and an execution frequency adjustment unit that decreases the execution frequency as the detection frequency decreases.
 このような非接触給電装置では、検出頻度取得部によって、検知部が受電コイルの存在を検知した頻度、すなわちユーザの使用頻度が検知頻度として取得される。そして、実行頻度調節部によって、検知頻度が少ないほど、すなわちユーザの使用頻度が少ないほど、検知処理の実行頻度が減少される。したがって、このような非接触給電装置では、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減することが容易となる。 In such a non-contact power supply device, the detection frequency acquisition unit acquires the frequency at which the detection unit detects the presence of the power receiving coil, that is, the usage frequency of the user as the detection frequency. The execution frequency adjusting unit decreases the detection process execution frequency as the detection frequency decreases, that is, as the user usage frequency decreases. Therefore, in such a non-contact power feeding device, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
 他の一態様では、上述の非接触給電装置において、前記給電コイルは、複数のコイルを備え、前記検知部は、前記検知処理を、前記複数のコイルそれぞれ対し実行し、前記検知制御部は、前記各コイルに対応する各検知処理の実行頻度をそれぞれ調節する。 In another aspect, in the above-described contactless power supply device, the power supply coil includes a plurality of coils, the detection unit performs the detection process for each of the plurality of coils, and the detection control unit includes: The execution frequency of each detection process corresponding to each coil is adjusted.
 このような非接触給電装置では、複数のコイル相互間で使用される頻度に差がある場合においても、各コイルに対応してそれぞれ検知処理の実行頻度が調節される。その結果、このような非接触給電装置では、受電コイルが対向配置されていないコイルに対応する検知処理において、消費される電力を低減することが容易となる。 In such a non-contact power supply device, even when there is a difference in the frequency of use among a plurality of coils, the execution frequency of the detection process is adjusted corresponding to each coil. As a result, in such a non-contact power supply device, it is easy to reduce the power consumed in the detection process corresponding to the coil in which the power receiving coil is not disposed opposite to the power receiving coil.
 また、他の一態様にかかる非接触給電システムは、上述のいずれかの非接触給電装置と、前記受電コイルを備えた被給電装置とを備える。 Further, a non-contact power feeding system according to another aspect includes any of the above-described non-contact power feeding devices and a power-supplied device including the power receiving coil.
 このような非接触給電システムでは、受電コイルが給電コイルに対向配置されていない場合に消費される電力を低減することが容易となる。 In such a non-contact power feeding system, it is easy to reduce the power consumed when the power receiving coil is not disposed opposite to the power feeding coil.
 この出願は、2012年6月1日に出願された日本国特許出願特願2012-125947を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-125947 filed on June 1, 2012, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and fully described above with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、非接触給電システム、非接触給電装置および被給電装置を提供することができる。 According to the present invention, it is possible to provide a non-contact power supply system, a non-contact power supply device, and a power supplied device.

Claims (9)

  1.  電磁誘導現象によって受電コイルに給電するための給電コイルと、
     前記給電コイルと対向する位置に前記受電コイルの存在の有無を検知する検知処理を繰り返し実行する検知部と、
     前記検知部による前記受電コイルの存在の有無に基づいて、前記検知部によって繰り返し実行される前記検知処理の実行頻度を調節する検知制御部とを備えること
     を特徴とする非接触給電装置。
    A power supply coil for supplying power to the power receiving coil by electromagnetic induction;
    A detection unit that repeatedly executes a detection process for detecting the presence or absence of the power receiving coil at a position facing the power feeding coil;
    A non-contact power feeding apparatus comprising: a detection control unit that adjusts an execution frequency of the detection process that is repeatedly executed by the detection unit based on presence or absence of the power receiving coil by the detection unit.
  2.  前記検知制御部は、前記検知部によって前記受電コイルの存在が検知されない期間が長く継続するほど、前記実行頻度を減少させること
     を特徴とする請求項1に記載の非接触給電装置。
    The contactless power supply device according to claim 1, wherein the detection control unit decreases the execution frequency as a period during which the presence of the power reception coil is not detected by the detection unit continues longer.
  3.  前記検知制御部は、前記検知部によって前記受電コイルの存在が検知されるまで、前記検知処理の実行間隔を増大させながら前記検知部に前記検知処理を繰り返させること
     を特徴とする請求項2に記載の非接触給電装置。
    The detection control unit causes the detection unit to repeat the detection process while increasing an execution interval of the detection process until the detection unit detects the presence of the power receiving coil. The non-contact electric power feeder of description.
  4.  前記検知制御部は、前記検知処理によって前記受電コイルの存在が検知されない回数が予め設定された判定回数に到達する都度、前記実行間隔を増大させること
     を特徴とする請求項3に記載の非接触給電装置。
    4. The non-contact according to claim 3, wherein the detection control unit increases the execution interval each time the number of times that the presence of the power receiving coil is not detected by the detection processing reaches a predetermined number of determinations. Power supply device.
  5.  前記検知制御部は、前記検知部によって前記受電コイルの存在が検知された場合に、前記実行間隔の下限値として予め設定された初期値に前記実行間隔を設定することによって前記実行間隔を初期化した後、新たに前記検知部に前記検知処理を繰り返させること
     を特徴とする請求項3または請求項4に記載の非接触給電装置。
    The detection control unit initializes the execution interval by setting the execution interval to an initial value preset as a lower limit value of the execution interval when the detection unit detects the presence of the power receiving coil. The contactless power supply device according to claim 3, wherein the detection unit is newly made to repeat the detection process after the detection.
  6.  前記検知制御部は、前記検知処理を予め設定された回数繰り返し実行する間に、前記検知部によって前記受電コイルの存在が連続して検知された場合に、前記実行間隔を初期化すること
     を特徴とする請求項5に記載の非接触給電装置。
    The detection control unit initializes the execution interval when the detection unit continuously detects the presence of the power receiving coil while repeatedly executing the detection process a preset number of times. The contactless power feeding device according to claim 5.
  7.  前記検知制御部は、
     前記検知部による前記受電コイルの存在の有無に基づいて、前記検知部が前記受電コイルの存在を検知した頻度を検知頻度として取得する検出頻度取得部と、
     前記検知頻度が少ないほど、前記実行頻度を減少させる実行頻度調節部とを含むこと
     を特徴とする請求項1に記載の非接触給電装置。
    The detection control unit
    Based on the presence or absence of the power reception coil by the detection unit, a detection frequency acquisition unit that acquires, as a detection frequency, the frequency at which the detection unit detects the presence of the power reception coil;
    The contactless power supply device according to claim 1, further comprising: an execution frequency adjusting unit that decreases the execution frequency as the detection frequency decreases.
  8.  前記給電コイルは、複数のコイルを備え、
     前記検知部は、前記検知処理を、前記複数のコイルそれぞれに実行し、
     前記検知制御部は、前記各コイルに対応する各検知処理の実行頻度をそれぞれ調節すること
     を特徴とする請求項1ないし請求項7のいずれか1項に記載の非接触給電装置。
    The feeding coil includes a plurality of coils,
    The detection unit performs the detection process on each of the plurality of coils,
    The contactless power supply device according to any one of claims 1 to 7, wherein the detection control unit adjusts an execution frequency of each detection process corresponding to each coil.
  9.  請求項1ないし請求項8のいずれか1項に記載の非接触給電装置と、
     受電コイルを備えた被給電装置とを備えること
     を特徴とする非接触給電システム。
    The non-contact power feeding device according to any one of claims 1 to 8,
    A non-contact power feeding system comprising: a power supplied device including a power receiving coil.
PCT/JP2013/003020 2012-06-01 2013-05-10 Contactless power-feeding device and contactless power-feeding system WO2013179583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-125947 2012-06-01
JP2012125947A JP2013252011A (en) 2012-06-01 2012-06-01 Noncontact power supply apparatus and noncontact power supply system

Publications (1)

Publication Number Publication Date
WO2013179583A1 true WO2013179583A1 (en) 2013-12-05

Family

ID=49672812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003020 WO2013179583A1 (en) 2012-06-01 2013-05-10 Contactless power-feeding device and contactless power-feeding system

Country Status (3)

Country Link
JP (1) JP2013252011A (en)
TW (1) TW201401709A (en)
WO (1) WO2013179583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141064A (en) * 2021-04-28 2021-07-20 维沃移动通信有限公司 NFC wireless charging control method and device and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308429B2 (en) * 2014-04-25 2018-04-11 パナソニックIpマネジメント株式会社 Non-contact power supply device detection method and non-contact power supply device
WO2017149600A1 (en) * 2016-02-29 2017-09-08 三菱電機エンジニアリング株式会社 Wireless power transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064724A (en) * 1992-06-19 1994-01-14 Nippon Signal Co Ltd:The Contactless ic card
JP2010076536A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Electronic control unit, intelligent sensor, control system for vehicle, signal sampling method
JP2011030284A (en) * 2009-07-21 2011-02-10 Sanyo Electric Co Ltd Non-contact charger
JP2011176939A (en) * 2010-02-24 2011-09-08 Seiko Epson Corp Protecting circuit and electronic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235960A (en) * 2003-01-30 2004-08-19 Sony Corp Controller and control method, recording medium, and program
US8502774B2 (en) * 2007-08-08 2013-08-06 Sony Corporation Input apparatus, control apparatus, control system, control method, and handheld apparatus
JP5556002B2 (en) * 2008-01-09 2014-07-23 セイコーエプソン株式会社 Power transmission control device, power transmission device, non-contact power transmission system, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064724A (en) * 1992-06-19 1994-01-14 Nippon Signal Co Ltd:The Contactless ic card
JP2010076536A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Electronic control unit, intelligent sensor, control system for vehicle, signal sampling method
JP2011030284A (en) * 2009-07-21 2011-02-10 Sanyo Electric Co Ltd Non-contact charger
JP2011176939A (en) * 2010-02-24 2011-09-08 Seiko Epson Corp Protecting circuit and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141064A (en) * 2021-04-28 2021-07-20 维沃移动通信有限公司 NFC wireless charging control method and device and electronic equipment

Also Published As

Publication number Publication date
TW201401709A (en) 2014-01-01
JP2013252011A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
EP3080825B1 (en) Transmitter for inductive power transfer systems
JP6732779B2 (en) Inductive power transmitter
CN108351195B (en) Displacement detection device
WO2013179583A1 (en) Contactless power-feeding device and contactless power-feeding system
JP5948676B2 (en) Non-contact power supply system, non-contact power supply device, and power supplied device
EP3186131B1 (en) Low-height sensor for measuring torque angle
US9689723B2 (en) Batteryless signal transmitter having a wiegand sensor for gas or water meters
US11728712B2 (en) Magnet temperature information output device and rotating electrical machine
JP2016033512A5 (en)
US9973061B2 (en) DC motor including a rotation detection unit
CN108885124A (en) rotation angle detector and torque sensor
US20220099507A1 (en) Arrangement and method for measuring a mechanical load on a test object, with the detection of changes in the magnetic field
US20170115135A1 (en) Motion detecting apparatus
WO2013171942A1 (en) Non-contact power supply device and non-contact power supply system
CN108141117B (en) Method and apparatus for manufacturing rotor of motor
JP4312438B2 (en) Wire wound type magnetic sensor
JP2018054574A (en) Encoder device, driving device, stage device, and robot device
JP2008167582A (en) Non-contact power transmission device
JP2018059875A (en) Encoder device, driving device, stage device, and robot apparatus
US20200185967A1 (en) Power feed device
US20210157277A1 (en) Hand driving device, electronic watch, hand driving method, and recording medium
WO2016111266A1 (en) Position detecting device
JP7434670B2 (en) Pulsed eddy current system
JP7347100B2 (en) rotating electric machine
US20200225620A1 (en) Timepiece and timepiece motor control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798161

Country of ref document: EP

Kind code of ref document: A1