JP2008167582A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2008167582A
JP2008167582A JP2006354344A JP2006354344A JP2008167582A JP 2008167582 A JP2008167582 A JP 2008167582A JP 2006354344 A JP2006354344 A JP 2006354344A JP 2006354344 A JP2006354344 A JP 2006354344A JP 2008167582 A JP2008167582 A JP 2008167582A
Authority
JP
Japan
Prior art keywords
power transmission
power
charging
support base
portable device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354344A
Other languages
Japanese (ja)
Inventor
Hideki Kojima
秀樹 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2006354344A priority Critical patent/JP2008167582A/en
Publication of JP2008167582A publication Critical patent/JP2008167582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power transmission device capable of preventing a metallic piece such as a coin from generating heat without affecting charging of a portable apparatus. <P>SOLUTION: In this non-contact power transmission device which includes a charging device body 10 in which a power transmission coil L1 for charging is built in, and a support base formed at a part of the body for detachably mounting the portable apparatus 20 in which a power receiving coil L2 for charging is built in to transmit power without contact by using electromagnetic induction from the power transmitting coil L1 to the power receiving coil L2, permanent magnets M1, M2 are provided with the portable apparatus, magnet detecting devices IC1, IC2 are provided at a position of the support base so as to face the permanent magnet, and the permanent magnet and the magnet detecting device are made to be a pair, forming a plurality of pairs thereof. Only when the plurality of magnet detecting devices detect the magnetic field of the permanent magnet, the portable apparatus detects that the support base is correctly placed at the predetermined position, and power is transmitted from the power transmitting coil to the power receiving coil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、携帯機器等の電子機器に内蔵された二次電池を無接点で充電するための非接触電力伝送装置に関する。 The present invention relates to a non-contact power transmission device for charging a secondary battery built in an electronic device such as a portable device without contact.

非接触電力伝送システムにおいて、充電用の送電コイルを内蔵した充電装置本体と、充電用の受電コイルを内蔵した携帯機器を着脱自在に搭載するための本体の一部に形成された支持台において、充電装置は携帯機器が支持台の所定の位置に搭載されたことをを認識してから電力伝送を開始しないと安全上好ましくない。例えば、図6(a)に示すようにコイン等の金属片が送電コイルL1上の近傍にある場合、常に電力伝送していたら、電磁誘導の原理で金属片が発熱して危険である。   In a non-contact power transmission system, in a support base formed in a part of a main body for detachably mounting a charging device main body incorporating a power transmission coil for charging and a portable device incorporating a power receiving coil for charging, If the charging device does not start power transmission after recognizing that the portable device is mounted at a predetermined position of the support base, it is not preferable for safety. For example, as shown in FIG. 6A, when a metal piece such as a coin is in the vicinity of the power transmission coil L1, if the electric power is always transmitted, the metal piece generates heat due to the principle of electromagnetic induction, which is dangerous.

このような金属片による発熱を回避するため特許文献1は、図6(b)に示すように、携帯機器20の据置型充電装置10における支持台11の形状を工夫して、金属片が支持台上に金属片xが載ったとしても、送受電コイルL1、L2の配置が斜めになるように携帯機器20を搭載することによって回避するようにしていた。しかしながら、金属片xが載ったことにより送電コイルL1と受電コイルL2の位置ずれにより充電効率が悪くなると共に充電時間が長くなると言う問題がある、また、充電装置の設計上の制約が増えて、設計が困難となる問題があった。   In order to avoid such heat generation by the metal piece, Patent Document 1 discloses that the metal piece is supported by devising the shape of the support base 11 in the stationary charging device 10 of the portable device 20 as shown in FIG. Even if the metal piece x is placed on the table, it is avoided by mounting the portable device 20 so that the power transmitting and receiving coils L1 and L2 are arranged obliquely. However, there is a problem that the charging efficiency is deteriorated due to the displacement of the power transmission coil L1 and the power receiving coil L2 due to the placement of the metal piece x, and the charging time becomes long. There was a problem that made it difficult to design.

また、特許文献2は送電側回路に送電コイルと検出コイル備え、検出コイルに発生する起電力により充電負荷の変動を検知し、充電負荷が所定のパターンで変動したことを検知したときに限り、送電コイルの出力を強磁界に変化させる。受電側回路は受電コイルと二次電池を充電するための制御素子を備え、充電開始時に制御素子をオンオフして、充電負荷を所定のパターンで変動させる機能を備えたもので、金属片等の異物が載った状態の充電負荷を認識し、充電コイルの出力を制御するようにしていた。しかしながら、携帯機器等に用いられる受電側回路に複雑な回路を設けると共に不要なエネルギーを消費するため電池寿命を短くする等経済的でない。   Further, Patent Document 2 includes a power transmission coil and a detection coil in a power transmission side circuit, detects a change in charging load by an electromotive force generated in the detection coil, and only when it is detected that the charging load has changed in a predetermined pattern. The output of the power transmission coil is changed to a strong magnetic field. The power receiving side circuit includes a power receiving coil and a control element for charging the secondary battery, and has a function of turning the control element on and off at the start of charging to vary the charging load in a predetermined pattern. The charging load in a state where a foreign object is placed is recognized, and the output of the charging coil is controlled. However, it is not economical to shorten the battery life because a complicated circuit is provided in a power receiving side circuit used for a portable device or the like and unnecessary energy is consumed.

特開2000−37047号公報JP 2000-37047 A 特開2002−34169号公報JP 2002-34169 A

このように、引用文献1では携帯機器を斜めに搭載するだけであり、金属片が送電コイル近辺に付着し場合、やはり、金属片が発熱して危険である。また、引用文献2では、携帯機器側に複雑な回路を設けるために無駄なエネルギーを消費するといった課題がある。   Thus, in Cited Document 1, the portable device is only mounted obliquely, and if the metal piece adheres to the vicinity of the power transmission coil, the metal piece is still heated and dangerous. Further, the cited document 2 has a problem that wasteful energy is consumed in order to provide a complicated circuit on the portable device side.

本発明は、上記課題を解決するために成されたもので、携帯機器側には複雑な回路を設けることなく、携帯機器の充電には支障なく、しかも、コイン等の金属片を発熱させることのない。また、携帯機器が載置されていないときの待機電力を抑制した非接触電力伝送装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and does not provide a complicated circuit on the portable device side, does not hinder charging of the portable device, and heats a metal piece such as a coin. There is no. Moreover, it aims at providing the non-contact electric power transmission apparatus which suppressed the standby | standby electric power when the portable apparatus is not mounted.

本発明に係る非接触電力伝送装置は、充電用の送電コイルを内蔵した充電装置本体と、充電用の受電コイルを内蔵した携帯機器を着脱自在に搭載するための前記本体の一部に形成された支持台とを備え、前記送電コイルから前記受電コイルに電磁誘導を用いて非接触で電力伝送する非接触電力伝送装置において、前記携帯機器に永久磁石を設け、前記支持台に前記永久磁石と対向する位置に磁界検出素子を設け、前記永久磁石と前記磁界検出素子を1組とし、複数組設け、複数の磁界検出素子が永久磁石の磁界を検出した時のみ、即ち、携帯機器が支持台の所定の位置に正しく載置されたことを検出し、前記送電コイルから前記受電コイルに電力伝送することを特徴とする。
また、前記複数の永久磁石を携帯機器の底面および底面以外の他面に間隔を置いて配置し、前記支持台側には前記携帯機器の永久磁石と対向した位置に磁界検出素子を複数配置する。また、前記磁界検出素子はホール素子を内蔵したホールICからなることを特徴とする。
A non-contact power transmission device according to the present invention is formed in a part of the main body for detachably mounting a charging device main body incorporating a charging power transmission coil and a portable device incorporating a charging power receiving coil. A non-contact power transmission device that transmits power from the power transmission coil to the power reception coil in a non-contact manner using electromagnetic induction, wherein a permanent magnet is provided in the portable device, and the permanent magnet is mounted on the support base. A magnetic field detection element is provided at an opposing position, the permanent magnet and the magnetic field detection element are set as one set, and a plurality of sets are provided, and only when the plurality of magnetic field detection elements detect the magnetic field of the permanent magnet, It is detected that the device is correctly placed at a predetermined position, and power is transmitted from the power transmission coil to the power reception coil.
Further, the plurality of permanent magnets are arranged at intervals on the bottom surface of the portable device and other surfaces other than the bottom surface, and a plurality of magnetic field detection elements are arranged on the support base at positions facing the permanent magnets of the portable device. . Further, the magnetic field detection element is composed of a Hall IC incorporating a Hall element.

本発明に係る非接触電力伝送装置においては、充電装置本体の支持台にコイン等の金属片が付着したとき、即ち、携帯機器が正常な状態で載置できない状態では、複数組の磁界検出素子と永久磁石との関係により一部または複数の永久磁石の磁界を検知できないことから、磁界検出素子に接続されたスイッチ回路が動作せず、送電コイルから受電コイルに電力を伝送することがない。そのため発熱の危険はない。また、携帯機器が載置されてない場合は、1つ目の磁界検出素子のみの駆動に必要な微弱な待機電力であるから経済的である。さらに、携帯機器側においては微小で軽い複数の永久磁石を用いることで不要な電力を必要とせず、内蔵された二次電池を有効に用いることができる。   In the non-contact power transmission device according to the present invention, when a metal piece such as a coin adheres to the support base of the charging device body, that is, when the portable device cannot be placed in a normal state, a plurality of sets of magnetic field detection elements Since the magnetic field of some or a plurality of permanent magnets cannot be detected due to the relationship between the magnetic field detecting element and the permanent magnet, the switch circuit connected to the magnetic field detecting element does not operate and power is not transmitted from the power transmitting coil to the power receiving coil. Therefore there is no danger of heat generation. Further, when no portable device is placed, it is economical because it is weak standby power necessary for driving only the first magnetic field detection element. Further, on the mobile device side, by using a plurality of minute and light permanent magnets, unnecessary power is not required, and the built-in secondary battery can be used effectively.

以下、図1、図2に示した実施形態を参照して、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in FIGS.

図1、図2は、本発明に係る非接触電力伝送装置の一実施形態を示すブロック図である。
図1、図2に示す非接触電力伝送装置は、充電用の送電コイルL1を内蔵した充電装置本体10と、充電用の受電コイルL2を内蔵した携帯機器20を着脱自在に搭載するための支持台11(図6参照)が形成されている。
ここで、図6(b)に示すように携帯機器の受電コイルL2は背面に設設されているが、図6(a)に示すように底面に配設してもよい。同様に、送電コイルL1は携帯機器20の受電コイルL2と対向する支持台上に配設される。
1 and 2 are block diagrams showing an embodiment of a non-contact power transmission apparatus according to the present invention.
The contactless power transmission device shown in FIG. 1 and FIG. 2 is a support for detachably mounting a charging device body 10 incorporating a charging power transmission coil L1 and a portable device 20 incorporating a charging power receiving coil L2. A table 11 (see FIG. 6) is formed.
Here, the power receiving coil L2 of the portable device is provided on the back as shown in FIG. 6B, but may be provided on the bottom as shown in FIG. 6A. Similarly, the power transmission coil L1 is disposed on a support base that faces the power reception coil L2 of the mobile device 20.

図1に示す非接触電力伝送装置は、充電装置本体10に、充電用の送電コイルL1を含む電力伝送回路1と電力伝送回路1に入力電源Vinをオンオフする第1のスイッチ回路S1と第2のスイッチ回路S2とが直列に接続されている。第1のスイッチ回路S1は磁界検出素子であるホール素子を内蔵した第1のホールIC IC1の出力端子Outからの出力信号によりオンオフ制御される。第2のスイッチ回路S2は磁界検出素子であるホール素子を内蔵した第2のホールIC IC2の出力端子Outからの出力信号によりオンオフ制御される。この第1のホールIC IC1および第2のホールIC IC2は携帯機器20の底面を支える支持台11面上(図6(b)のa、b)または背面(図6(b)のc)に組み込んである。なお、電力伝送回路1は送受信コイルL1、L2と並列に共振コンデンサC1、C2を備えている。   The contactless power transmission device shown in FIG. 1 includes a charging device main body 10, a power transmission circuit 1 including a charging power transmission coil L <b> 1, a first switch circuit S <b> 1 that turns on and off an input power source Vin for the power transmission circuit 1, and a second switch circuit S <b> 1. The switch circuit S2 is connected in series. The first switch circuit S1 is ON / OFF controlled by an output signal from the output terminal Out of the first Hall IC IC1 incorporating a Hall element as a magnetic field detection element. The second switch circuit S2 is ON / OFF controlled by an output signal from the output terminal Out of the second Hall IC IC2 incorporating a Hall element as a magnetic field detection element. The first Hall IC IC1 and the second Hall IC IC2 are arranged on the surface of the support 11 that supports the bottom surface of the portable device 20 (a and b in FIG. 6B) or on the back surface (c in FIG. 6B). It is incorporated. The power transmission circuit 1 includes resonance capacitors C1 and C2 in parallel with the transmission and reception coils L1 and L2.

携帯機器20には、送電コイルL1から電力を電磁誘導によって受電する受電コイルL2を備え、二次電池Bを充電する充電回路2を備えると共に主目的とする他の回路(図示せず)を備えている。さらに、携帯機器20には、充電装置本体10である支持台11に組み込まれた第1、第2のホールIC IC1、IC2と対向する携帯機器20の筐体の底面(図6(b)のa、b)または背面(図6(b)のc)に永久磁石M1、M2を組み込んである。
充電器本体10の支持台11に組み込まれた2箇所のホールIC IC1、IC2と携帯機器に組み込まれた2箇所の永久磁石M1、M2が近接したとき、即ち、携帯機器20が支持台11に所定の状態で正しく載置されたとき2箇所のホールICは永久磁石の磁界を検出し、第1、第2のスイッチ回路S1、S2をオン状態にし、電力伝送回路1を動作させ送電コイルから受電コイルに電力を供給し、平滑回路を介して内蔵された二次電池を充電する。
The portable device 20 includes a power receiving coil L2 that receives power from the power transmitting coil L1 by electromagnetic induction, a charging circuit 2 that charges the secondary battery B, and another circuit (not shown) that is a main purpose. ing. Furthermore, the portable device 20 includes a bottom surface (see FIG. 6B) of the casing of the portable device 20 that faces the first and second Hall ICs IC1 and IC2 incorporated in the support base 11 that is the charging device body 10. Permanent magnets M1 and M2 are incorporated in a, b) or the back surface (c in FIG. 6B).
When the two Hall ICs IC1 and IC2 incorporated in the support base 11 of the charger body 10 and the two permanent magnets M1 and M2 incorporated in the portable device are close to each other, that is, the portable device 20 is attached to the support base 11. When correctly placed in a predetermined state, the two Hall ICs detect the magnetic field of the permanent magnet, turn on the first and second switch circuits S1 and S2, operate the power transmission circuit 1, and operate from the power transmission coil. Electric power is supplied to the power receiving coil, and the built-in secondary battery is charged through the smoothing circuit.

図2に示す非接触電力伝送装置は、充電装置本体10に、充電用の送電コイルL1を含む電力伝送回路1と電力伝送回路1に入力電源Vinをオンオフする第1のスイッチ回路S1と電力伝送回路1のスイッチング素子Q1をオンオフする第2のスイッチ回路S2を備えている。第1のスイッチ回路S1は磁界検出素子であるホール素子を内蔵した第1のホールIC IC1の出力端子Outからの出力信号によりオンオフ制御される。第2のスイッチ回路S2は磁界検出素子であるホール素子を内蔵した第2のホールIC IC2の出力端子Outからの出力信号によりオンオフ制御される。この第1のホールIC IC1および第2のホールIC IC2は携帯機器20の底面を支える支持台11面上(図6(b)のa、b)または背面(図6(b)のc)に組み込んである。なお、電力伝送回路1は送受信コイルL1、L2と並列に共振コンデンサC1、C2を備えている。   The non-contact power transmission device shown in FIG. 2 includes a power transmission circuit 1 including a charging coil L1 for charging, a first switch circuit S1 for turning on / off an input power source Vin in the power transmission circuit 1, and power transmission. A second switch circuit S2 for turning on / off the switching element Q1 of the circuit 1 is provided. The first switch circuit S1 is ON / OFF controlled by an output signal from the output terminal Out of the first Hall IC IC1 incorporating a Hall element as a magnetic field detection element. The second switch circuit S2 is ON / OFF controlled by an output signal from the output terminal Out of the second Hall IC IC2 incorporating a Hall element as a magnetic field detection element. The first Hall IC IC1 and the second Hall IC IC2 are arranged on the surface of the support 11 that supports the bottom surface of the portable device 20 (a and b in FIG. 6B) or on the back surface (c in FIG. 6B). It is incorporated. The power transmission circuit 1 includes resonance capacitors C1 and C2 in parallel with the transmission and reception coils L1 and L2.

携帯機器20には、送電コイルL1から電力を電磁誘導によって受電する受電コイルL2を備え、二次電池Bを充電する充電回路2を備えると共に主目的とする他の回路(図示せず)を備えている。さらに、携帯機器20には、充電装置本体10である支持台11に組み込まれた第1、第2のホールIC IC1、IC2と対向する携帯機器20の筐体の底面(図6(b)のa、b)または背面(図6(b)のc)に永久磁石M1、M2を組み込んである。
充電器本体10の支持台11に組み込まれた2箇所のホールIC IC1、IC2と携帯機器に組み込まれた2箇所の永久磁石M1、M2が近接したとき、即ち、携帯機器20が支持台11に所定の状態で正しく載置されたとき2箇所のホールICは永久磁石の磁界を検出し、第1、第2のスイッチ回路S1、S2をオン状態にし、電力伝送回路1を動作させ送電コイルから受電コイルに電力を供給し、平滑回路を介して内蔵された二次電池を充電する。
The portable device 20 includes a power receiving coil L2 that receives power from the power transmitting coil L1 by electromagnetic induction, a charging circuit 2 that charges the secondary battery B, and another circuit (not shown) that is a main purpose. ing. Furthermore, the portable device 20 includes a bottom surface (see FIG. 6B) of the casing of the portable device 20 that faces the first and second Hall ICs IC1 and IC2 incorporated in the support base 11 that is the charging device body 10. Permanent magnets M1 and M2 are incorporated in a, b) or the back surface (c in FIG. 6B).
When the two Hall ICs IC1 and IC2 incorporated in the support base 11 of the charger body 10 and the two permanent magnets M1 and M2 incorporated in the portable device are close to each other, that is, the portable device 20 is attached to the support base 11. When correctly placed in a predetermined state, the two Hall ICs detect the magnetic field of the permanent magnet, turn on the first and second switch circuits S1 and S2, operate the power transmission circuit 1, and operate from the power transmission coil. Electric power is supplied to the power receiving coil, and the built-in secondary battery is charged through the smoothing circuit.

ここで、例えば、コイン等の金属片が支持台に付着した場合、付着したことにより支持台と携帯機器間に隙間ができ、即ち、携帯機器が浮いた状態となり、1箇所または2箇所のホールICが永久磁石の磁界を検出できず、充電器本体から携帯機器に電力伝送されることはない。
このように、本発明に係る非接触電力伝送装置では、複数のホールICと永久磁石を組み合わせて複数のスイッチ回路をオンオフすることにより、1箇所のホールICが永久磁石の磁界を検知したとしても他の箇所のホールICが永久磁石の磁界を検知しない限り、複数のスイッチ回路はオンせず、電力伝送回路は動作を開始しない。そのために、不要な電力を供給することなく、金属片による発熱も起こらない。なお、ホールICと永久磁石の組み合わせを増やすことは誤作動の危険性は少なくなるが、支持台と携帯機器との載置による実用性が低くなることから、2組または3組程度が好ましく回路構成および用途によってはさらに組数を増やしてもよい。
Here, for example, when a metal piece such as a coin adheres to the support base, the attachment causes a gap between the support base and the mobile device, that is, the mobile device is in a floating state, and the one or two holes are provided. The IC cannot detect the magnetic field of the permanent magnet, and power is not transmitted from the charger body to the portable device.
Thus, in the non-contact power transmission device according to the present invention, even if one Hall IC detects the magnetic field of the permanent magnet by combining a plurality of Hall ICs and permanent magnets to turn on and off the plurality of switch circuits. Unless the Hall ICs at other locations detect the magnetic field of the permanent magnet, the plurality of switch circuits are not turned on, and the power transmission circuit does not start operation. Therefore, heat is not generated by the metal piece without supplying unnecessary power. Increasing the number of combinations of Hall ICs and permanent magnets reduces the risk of malfunction, but the practicality due to the mounting of the support base and the portable device decreases. Depending on the configuration and application, the number of sets may be further increased.

図3に、本発明に係る非接触電力伝送装置の一実施形態おける図1に示したブロック図の充電装置本体10の実施例の回路図を示す。
図3は、自励発振回路を用いた電力伝送回路1と、電力伝送回路1の入力電源をオンオフする第1のスイッチ回路S1と第2のスイッチ回路S2を備える。第1のスイッチ回路S1はホールIC IC1の出力端子Outからの出力信号によってオンオフされ、第2のスイッチ回路S2はホールIC IC2の出力端子Outからの出力信号によってオンオフされる。
FIG. 3 shows a circuit diagram of an example of the charging device main body 10 of the block diagram shown in FIG. 1 in one embodiment of the non-contact power transmission apparatus according to the present invention.
3 includes a power transmission circuit 1 using a self-excited oscillation circuit, and a first switch circuit S1 and a second switch circuit S2 that turn on and off the input power source of the power transmission circuit 1. The first switch circuit S1 is turned on / off by an output signal from the output terminal Out of the Hall IC IC1, and the second switch circuit S2 is turned on / off by an output signal from the output terminal Out of the Hall IC IC2.

ここで、抵抗R10、R11はホールIC IC1の駆動電圧Vccを生成する分割抵抗であり、R6、R7はホールIC IC2の駆動電圧Vccを生成する分割抵抗である。また、第1のスイッチ回路S1はスイッチング素子としてMOSFETQ4を備え、抵抗R8とR9はバイアス抵抗である。第2のスイッチ回路S2はスイッチング素子としてMOSFETQ5を備え、抵抗R12とR13はQ5のバイアス抵抗である。   Here, the resistors R10 and R11 are divided resistors that generate the drive voltage Vcc of the Hall IC IC1, and R6 and R7 are divided resistors that generate the drive voltage Vcc of the Hall IC IC2. The first switch circuit S1 includes a MOSFET Q4 as a switching element, and the resistors R8 and R9 are bias resistors. The second switch circuit S2 includes a MOSFET Q5 as a switching element, and resistors R12 and R13 are Q5 bias resistors.

図4に、本発明に係る非接触電力伝送装置の他の実施形態おける図2に示したブロック図の充電装置本体10の実施例の回路図を示す。
図4は、自励発振回路を用いた電力伝送回路1と、電力伝送回路1の入力電源をオンオフする第1のスイッチ回路S1と電力伝送回路1のスイッチング素子Q1をオンオフする第2のスイッチ回路S2を備える。第1のスイッチ回路S1は第1のホールIC IC1の出力端子Outからの出力信号によってオンオフされ、第2のスイッチ回路S2は第2のホールIC IC2の出力端子Outからの出力信号によってオンオフされる。
FIG. 4 shows a circuit diagram of an example of the charging device main body 10 of the block diagram shown in FIG. 2 in another embodiment of the non-contact power transmission apparatus according to the present invention.
4 shows a power transmission circuit 1 using a self-excited oscillation circuit, a first switch circuit S1 for turning on / off an input power source of the power transmission circuit 1, and a second switch circuit for turning on / off a switching element Q1 of the power transmission circuit 1. S2 is provided. The first switch circuit S1 is turned on / off by an output signal from the output terminal Out of the first Hall IC IC1, and the second switch circuit S2 is turned on / off by an output signal from the output terminal Out of the second Hall IC IC2. .

ここで、抵抗R10、R11はホールIC IC1の駆動電圧Vccを生成する分割抵抗であり、R6、R7はホールIC IC2の駆動電圧Vccを生成する分割抵抗である。また、第1のスイッチ回路S1はスイッチング素子としてMOSFETQ4を備え、抵抗R8とR9はMOSFETQ4のバイアス抵抗である。第2のスイッチ回路S2はスイッチングトランジスタQ2を備え、抵抗R4とR5はスイッチングトランジスタQ2のバイアス抵抗である。   Here, the resistors R10 and R11 are divided resistors that generate the drive voltage Vcc of the Hall IC IC1, and R6 and R7 are divided resistors that generate the drive voltage Vcc of the Hall IC IC2. The first switch circuit S1 includes a MOSFET Q4 as a switching element, and resistors R8 and R9 are bias resistors of the MOSFET Q4. The second switch circuit S2 includes a switching transistor Q2, and resistors R4 and R5 are bias resistors for the switching transistor Q2.

上記のように、本発明に係る非接触電力伝送装置は携帯機器が支持台に載置されていない状態、即ち、スタンバイ状態の待機時には第1のスイッチング回路を制御する第1のホールICのみの小さな供給電力Vccであり、かつ、携帯機器が充電装置の支持台に正常にセットされた状態でなければ電力伝送(充電)を開始しないため、待機時における不要な電力損失および発熱等の危険がない。また、金属等が支持台に載ったとしても2組のホール素子と永久磁石の位置関係が異なり、電力伝送回路の動作は停止状態であり、不要な電力損失および発熱等を起こさない。   As described above, the non-contact power transmission apparatus according to the present invention includes only the first Hall IC that controls the first switching circuit in a state where the portable device is not placed on the support base, that is, in the standby state. Since power transmission (charging) is not started unless the power supply Vcc is small and the portable device is not normally set on the support base of the charging device, there is a risk of unnecessary power loss and heat generation during standby. Absent. Even if metal or the like is placed on the support base, the positional relationship between the two sets of Hall elements and the permanent magnets is different, and the operation of the power transmission circuit is in a stopped state, so that unnecessary power loss and heat generation do not occur.

なお、上記に用いたホールICは縦横3mm角、暑さ1mm程度と軽薄短小で組込みの自由度がある。また、永久磁石も径3mm以内の球形または厚みを小さくした楕円球体または角形を用いることができ組み込みの自由度が容易で、極めて軽量である。
また、2つのホールICおよび2つの永久磁石の位置関係は可能な限り離れた位置関係にすることが互いの磁界を誤って検出することをなくすことより好ましい。さらに、平面だけの位置関係でなく底面と側面(背面)等、2次元に配置することによりより誤り検出精度を上げることができ好ましい。
In addition, the Hall IC used above is 3 mm square in length and width, about 1 mm in heat, and is light, thin, small and flexible. Also, the permanent magnet can be a sphere having a diameter of 3 mm or less, an elliptical sphere having a reduced thickness, or a square, and can be easily incorporated and is extremely lightweight.
In addition, it is more preferable that the positional relationship between the two Hall ICs and the two permanent magnets be as far apart as possible so as not to erroneously detect each other's magnetic field. Furthermore, it is preferable that the error detection accuracy can be further improved by arranging two-dimensionally such as a bottom surface and a side surface (back surface) instead of only a plane.

上記ホールICは、図5(a)に示すように、ホール素子30、増幅器31、シュミット(Schmitt trigger)回路32、電源Vcc、出力側のトランジスタ33、出力抵抗34および出力端子VoutとグランドGNDで構成されている。上記ホール素子30には電流を流しており、永久磁石の磁界がホール素子30の電流と直角方向に加わるようにホールICと永久磁石とを配設する。ホール素子30には上記電流と加えられた磁界によって直角方向に電位差が生じる現象、即ち、ホール効果が生じる。この電位差を増幅器31によって増幅し、さらに、シュミット回路32で電位差にヒステリシス特性を持たせて出力端のトランジスタ33を駆動させて、ホールICの出力端子Voutから信号を出力し、この信号によってスイッチ回路を駆動するように構成されている。   As shown in FIG. 5A, the Hall IC includes a Hall element 30, an amplifier 31, a Schmitt trigger circuit 32, a power supply Vcc, an output-side transistor 33, an output resistor 34, an output terminal Vout, and a ground GND. It is configured. A current is passed through the Hall element 30, and the Hall IC and the permanent magnet are arranged so that the magnetic field of the permanent magnet is applied in a direction perpendicular to the current of the Hall element 30. The Hall element 30 has a phenomenon in which a potential difference is caused in the direction perpendicular to the current and the applied magnetic field, that is, a Hall effect. This potential difference is amplified by the amplifier 31, and further, the Schmitt circuit 32 gives hysteresis characteristics to the potential difference to drive the transistor 33 at the output end to output a signal from the output terminal Vout of the Hall IC. It is comprised so that it may drive.

図5(b)はホールICの磁電変換特性を示す図である。上記ホール素子30に流す電流を一定にすると、加える磁界とホール効果によって生ずる電位差とが比例関係にある。したがって、ホールICは、図に示すようにシュミット回路32で電位差にヒステリシス特性を持たせると、携帯機器20の着脱に応じて磁気スイッチとして働き、2箇所に設けたホールICと永久磁石が所定の位置に、即ち、携帯機器20が充電装置の支持台11の正常な位置に載置されたとき、第1のスイッチ回路および第2のスイッチ回路をオンして初めて電力伝送回路を作動させて、充電装置本体10から携帯機器20に電力が非接触で伝送する。   FIG. 5B is a diagram showing the magnetoelectric conversion characteristics of the Hall IC. When the current flowing through the Hall element 30 is constant, the applied magnetic field is proportional to the potential difference caused by the Hall effect. Therefore, if the Hall IC has a hysteresis characteristic in the potential difference by the Schmitt circuit 32 as shown in the figure, the Hall IC functions as a magnetic switch in accordance with the attachment / detachment of the portable device 20, and the Hall ICs and permanent magnets provided at two locations are predetermined. In the position, that is, when the portable device 20 is placed at the normal position of the support base 11 of the charging device, the power transmission circuit is activated only after the first switch circuit and the second switch circuit are turned on, Electric power is transmitted from the charging device body 10 to the portable device 20 in a contactless manner.

なお、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、上記実施例では、充電装置本体の電力伝送回路は自励発振回路を用いたが他例発振回路を用いてもよい。   In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, in the above embodiment, the self-excited oscillation circuit is used as the power transmission circuit of the charging device body, but another example oscillation circuit may be used.

本発明に係る非接触電力伝送装置の一実施形態を示すブロック図The block diagram which shows one Embodiment of the non-contact electric power transmission apparatus which concerns on this invention 本発明に係る非接触電力伝送装置の他の実施形態を示すブロック図The block diagram which shows other embodiment of the non-contact electric power transmission apparatus which concerns on this invention 本発明に係る非接触電力伝送装置の一実施例を示す回路図The circuit diagram which shows one Example of the non-contact electric power transmission apparatus which concerns on this invention 本発明に係る非接触電力伝送装置の他の実施例を示す回路図The circuit diagram which shows the other Example of the non-contact electric power transmission apparatus which concerns on this invention ホールICを示す構成図(a)と磁電変換特性を示すグラフ(b)Configuration diagram showing Hall IC (a) and graph showing magnetoelectric conversion characteristics (b) 非接触電力伝送装置における充電台本体と携帯機器の関係概略図Schematic diagram of the relationship between the main body of the charging stand and the portable device in the non-contact power transmission device

符号の説明Explanation of symbols

10 充電装置本体
20 携帯機器
1 電力伝送回路
2 充電回路
L1 送電コイル
L2 受電コイル
C1、C2 共振コンデンサ
B 二次電池
S1 第1のスイッチ回路
S2 第2のスイッチ回路
IC1 第1のホールIC
IC2 第2のホールIC
DESCRIPTION OF SYMBOLS 10 Charging apparatus main body 20 Portable apparatus 1 Electric power transmission circuit 2 Charging circuit L1 Power transmission coil L2 Power reception coils C1, C2 Resonance capacitor B Secondary battery S1 First switch circuit S2 Second switch circuit IC1 First hall IC
IC2 Second Hall IC

Claims (4)

充電用の送電コイルを内蔵した充電装置本体と、充電用の受電コイルを内蔵した携帯機器を着脱自在に搭載するための前記本体の一部に形成された支持台とを備え、前記送電コイルから前記受電コイルに電磁誘導を用いて非接触で電力伝送する非接触電力伝送装置において、
前記携帯機器に永久磁石を設け、前記支持台に前記永久磁石と対向する位置に磁界検出素子を設け、前期永久磁石と前期磁界検出素子を1組とし、複数組設け、複数の前期磁界検出素子が前記永久磁石の磁界を検出した時のみ、即ち、携帯機器が支持台の所定の位置に正しく載置されたことを検出し、前記送電コイルから前記受電コイルに電力伝送することを特徴とする非接触電力伝送装置。
A charging device main body with a built-in charging power transmission coil, and a support base formed on a part of the main body for detachably mounting a portable device with a built-in charging power receiving coil; In the non-contact power transmission device that transmits power in a non-contact manner using electromagnetic induction in the power receiving coil,
The portable device is provided with a permanent magnet, the support base is provided with a magnetic field detection element at a position facing the permanent magnet, the first permanent magnet and the first magnetic field detection element are set as one set, and a plurality of sets are provided. Only when detecting the magnetic field of the permanent magnet, that is, detecting that the portable device is correctly placed at a predetermined position of the support base, and transmitting power from the power transmission coil to the power reception coil. Non-contact power transmission device.
充電用の送電コイルを内蔵した充電装置本体と、充電用の受電コイルを内蔵した携帯機器を着脱自在に搭載するための前記本体の一部に形成された支持台とを備え、前記送電コイルから前記受電コイルに電磁誘導を用いて非接触で電力伝送する非接触電力伝送装置において、
前記携帯機器に第1と第2の永久磁石を設け、前記支持台に第1の永久磁石と対向する位置に第1の磁界検出素子を設け、第2の永久磁石と対向する位置に第2の磁界検出素子を設け、第1と第2の磁界検出素子がそれぞれ対向する永久磁石の磁界を検出した時のみ、即ち、携帯機器が支持台の所定の位置に正しく載置されたことを検出し、前記送電コイルから前記受電コイルに電力伝送することを特徴とする非接触電力伝送装置。
A charging device main body with a built-in charging power transmission coil, and a support base formed on a part of the main body for detachably mounting a portable device with a built-in charging power receiving coil; In the non-contact power transmission device that transmits power in a non-contact manner using electromagnetic induction in the power receiving coil,
The portable device is provided with first and second permanent magnets, the support base is provided with a first magnetic field detecting element at a position facing the first permanent magnet, and a second at a position facing the second permanent magnet. Only when the first and second magnetic field detection elements detect the magnetic fields of the opposing permanent magnets, that is, when the portable device is correctly placed at a predetermined position on the support base. And a non-contact power transmission device that transmits power from the power transmission coil to the power reception coil.
前記複数の永久磁石を携帯機器の底面および底面以外の他面に間隔を置いて配置し、前記支持台側には前記携帯機器の永久磁石と対向した位置に磁界検出素子を複数配置したことを特徴とする請求項1、2記載の非接触電力伝送装置。 The plurality of permanent magnets are arranged at intervals on the bottom surface of the portable device and other surfaces other than the bottom surface, and a plurality of magnetic field detecting elements are arranged on the support base at positions facing the permanent magnets of the portable device. The contactless power transmission device according to claim 1, wherein 前記磁界検出素子はホール素子を内蔵したホールICからなることを特徴とする請求項1乃至請求項3記載の非接触電力伝送装置。 The non-contact power transmission device according to claim 1, wherein the magnetic field detection element is a Hall IC including a Hall element.
JP2006354344A 2006-12-28 2006-12-28 Non-contact power transmission device Pending JP2008167582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354344A JP2008167582A (en) 2006-12-28 2006-12-28 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354344A JP2008167582A (en) 2006-12-28 2006-12-28 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2008167582A true JP2008167582A (en) 2008-07-17

Family

ID=39696286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354344A Pending JP2008167582A (en) 2006-12-28 2006-12-28 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2008167582A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110877A (en) * 2011-11-22 2013-06-06 Furukawa Electric Co Ltd:The Charging system and parking system
KR20140065396A (en) 2011-09-12 2014-05-29 소니 주식회사 Device and system for power transmission
KR20190020167A (en) 2011-09-12 2019-02-27 소니 주식회사 Device and system for power transmission
JP2020184879A (en) * 2015-03-04 2020-11-12 アップル インコーポレイテッドApple Inc. Inductive power transmitter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065396A (en) 2011-09-12 2014-05-29 소니 주식회사 Device and system for power transmission
EP3293849A1 (en) 2011-09-12 2018-03-14 Sony Corporation Device and system for power transmission
KR20190020167A (en) 2011-09-12 2019-02-27 소니 주식회사 Device and system for power transmission
US10530425B2 (en) 2011-09-12 2020-01-07 Sony Corporation Device and system for power transmission
KR20200010601A (en) 2011-09-12 2020-01-30 소니 주식회사 Device and system for power transmission
EP3661001A1 (en) 2011-09-12 2020-06-03 SONY Corporation Device and system for power transmission
US11063635B2 (en) 2011-09-12 2021-07-13 Sony Corporation Device and system for power transmission
JP2013110877A (en) * 2011-11-22 2013-06-06 Furukawa Electric Co Ltd:The Charging system and parking system
JP2020184879A (en) * 2015-03-04 2020-11-12 アップル インコーポレイテッドApple Inc. Inductive power transmitter

Similar Documents

Publication Publication Date Title
JP4256426B2 (en) Non-contact power transmission device
TWI459676B (en) Non-contact power feeding system and foreign metal matter detector for non-contact power feeding system
JP4815485B2 (en) Non-contact power transmission device
JP6963659B2 (en) Inductive power transmitter
JP4649430B2 (en) Non-contact power transmission device
KR101604600B1 (en) Wireless power transmission system
JPH10215530A (en) Non-contact power transmission device
JP5770556B2 (en) Wireless power transmission apparatus and relative position detection method
CN103875160B (en) Power-feed device and power-feed system
JP6003172B2 (en) Power supply device and power supply system
KR20120100217A (en) Wireless charging apparatus for mobile
JP2009022122A (en) Non-contact power transmission device
JP2013027076A (en) Non-contact power supply device
JP2008167582A (en) Non-contact power transmission device
JP2012060812A (en) Non-contact power transmission device
JP2011125137A (en) Charger
WO2012032946A1 (en) Non-contact power supply device
JP2013102665A (en) Power-feed device and power-feed system
JP2013219854A (en) Wireless power transmission device
KR20140039819A (en) Wireless induction type charger
JP2007206776A (en) Noncontact power transmission apparatus
JP2005276719A (en) Power generation switch
KR100863132B1 (en) Wireless mouse apparatus
JP2014003767A (en) Power receiving terminal, power transmitting device, power receiving method and power transmitting method
CN118137692A (en) Wireless charging equipment and intelligent toilet bowl

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512