WO2013178023A1 - 信号处理方法和装置 - Google Patents

信号处理方法和装置 Download PDF

Info

Publication number
WO2013178023A1
WO2013178023A1 PCT/CN2013/075914 CN2013075914W WO2013178023A1 WO 2013178023 A1 WO2013178023 A1 WO 2013178023A1 CN 2013075914 W CN2013075914 W CN 2013075914W WO 2013178023 A1 WO2013178023 A1 WO 2013178023A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
standard communication
signal
interference
interference signal
Prior art date
Application number
PCT/CN2013/075914
Other languages
English (en)
French (fr)
Inventor
施晓妍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013178023A1 publication Critical patent/WO2013178023A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a signal processing method and apparatus. Background technique
  • a fixed filtering method can be adopted. For example, the bandwidth of the receiving filter is reduced to remove the uplink interference of the shared spectrum, but if the interference is small, the bandwidth is still reduced, which will undoubtedly cause a large loss of uplink performance.
  • Embodiments of the present invention provide a signal processing method and apparatus to improve uplink receiving performance.
  • An aspect of the present invention provides a signal processing method, including: detecting an intensity of an interference signal of a second-standard communication system to a first-standard communication system, and determining whether a location of the interference signal is located in the first-standard communication system Excluding the effective bandwidth; and selecting a filter to perform filtering processing on the signal to be processed of the first standard communication system according to the location of the interference signal and the strength of the interference signal.
  • Another aspect of the present invention provides a signal processing apparatus, including: an interference detecting unit, configured to detect an intensity of an interference signal of a second standard communication system to the first standard communication system, and determine a location of the interference signal Whether it is outside the effective bandwidth of the first standard communication system; And a processing unit, configured to perform filtering processing on the to-be-processed signal of the first standard communication system according to the location of the interference signal and the strength of the interference signal.
  • an interference detecting unit configured to detect an intensity of an interference signal of a second standard communication system to the first standard communication system, and determine a location of the interference signal Whether it is outside the effective bandwidth of the first standard communication system
  • a processing unit configured to perform filtering processing on the to-be-processed signal of the first standard communication system according to the location of the interference signal and the strength of the interference signal.
  • FIG. 1 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of another signal processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a signal processing apparatus of a communication system according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another signal processing apparatus of a communication system according to an embodiment of the present invention. Schematic diagram of the signal processing device of the communication system. detailed description
  • a base station may refer to a device in an access network that communicates with a terminal over one or more sectors on an air interface.
  • the base station can be used to convert the received air frame and the IP packet into a router between the terminal and the rest of the access network, wherein the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (Base Transceiver Station, BTS) in a Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA) system, or may be a base station in WCDMA (NodeB).
  • BTS Base Transceiver Station
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • NodeB NodeB
  • the embodiment of the present invention may also be an evolved Node B (NodeB or eNB or e-NodeB) in a Long Term Evolution (LTE) or LTE Advanced (LTE-A) communication system.
  • the base station controller may be a base station controller in the GSM or CDMA system, or may be a radio network controller (RNC) in the WCDMA, which is not limited in the embodiment of the present invention.
  • RNC radio network controller
  • the terminal which may be a wireless terminal or a wired terminal, may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Remote Station, an Access Point, and a Remote Terminal.
  • Access Terminal, User Terminal > User Agent, User Device, or User Equipment.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association that describes the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, exist alone B these three situations.
  • the character '7,, in this article, generally means that the contextual object is an "or" relationship.
  • a signal processing method provided by an embodiment of the present invention is specifically as follows.
  • the executor of the method may be a base station, the base station being located within the first system communication system.
  • the bandwidth of the first standard communication system is greater than the bandwidth of the second standard communication system.
  • the first-standard communication system may be a Universal Mobile Telecommunications System (UMTS)
  • the second-standard communication system may be GSM
  • the first-standard communication system may be a 4G system (such as an LTE-A system)
  • the two-standard communication system is a 3G system (such as a UMTS system), or the first-standard communication system is a 4G system
  • the second-standard communication system is a GSM system.
  • the detecting the strength of the interference signal of the second standard communication system to the first standard communication system may be implemented by using method A1.
  • Method A1 Obtain a power spectral density of a signal to be processed of the first standard communication system; and determine an interference signal strength according to the power spectral density.
  • the signal to be processed of the first standard communication system is an interference signal
  • the interference signal strength is a signal strength in the power spectral density.
  • the preset threshold may be obtained by simulation and preset in the base station.
  • the first standard communication system uses a resource block (Resource Block)
  • the strength of detecting the interference signal of the second-standard communication system to the first-standard communication system may also be implemented by using the following method A2 or A3.
  • a resource block is used as a service resource scheduling unit, and the bandwidth is 180 kHz.
  • the number of RBs is related to the frequency bandwidth. When the frequency bandwidth is 20 MHz, the RB has 100; when the frequency bandwidth is 10 MHz, , then there are 50 RBs.
  • Method A2 Obtaining RB scheduling information of the first standard communication system and a power spectral density of a signal to be processed of the first standard communication system; and determining an interference signal strength according to the power spectral density and the RB scheduling information.
  • the signal in the power spectral density does not match the RB scheduling information, it may be determined that the signal to be processed of the first system communication system is a jamming signal.
  • the power spectrum density indicates that the signal is uplinked at a specific frequency, but the RB scheduling information indicates that the terminal is not notified to transmit data on the RB scheduling information block corresponding to the frequency, and the signal to be processed of the first standard communication system may be determined to be Interference signal.
  • the interference signal strength may be further determined according to the signal strength range in the power speech density.
  • the power density is displayed in the power frequency density, and the RB scheduling information display informs the terminal to send data on the frequency corresponding RB scheduling information block, and may further determine according to the signal strength range in the power i ridge density.
  • the signal strength of the disturbance may be further determined according to the signal strength range in the power i ridge density.
  • the uplink signal has an intensity range of [PI, P2] (eg, [-160, -150], unit dbm), and the uplink signal of the second standard communication system
  • the intensity range is [Ql, Q2] (for example, GSM system [-110, -48], unit dbm), in LTE
  • the intensity is X
  • the frequency 1 for example, 1780.1MHZ
  • the scheduling information block RB1 in the resource block RB scheduling information for example, the frequency range corresponding to RB1 is [1780, 1780.18JMHZ
  • the frequency 1 corresponds to the resource block RB1 in the RB scheduling information, it is judged that the signal on the frequency 1 is a useful signal, and the interference signal strength needs to be determined based on the signal strength X of the frequency 1.
  • Set X -75dbm.
  • X is greater than the maximum value P2 (-150dbm) in the intensity range of the uplink signal of the LTE system, that is, X>P2), then the signal of the frequency 1 has interference, and the interference signal strength is X is -75dbm.
  • the preset threshold value can be obtained through simulation or obtained based on the empirical value of the actual application of the live network.
  • Method A3 Obtain RB scheduling information of the first standard communication system, power density of a signal to be processed of the first standard communication system, and interference characteristic information of the second standard communication system; according to the power spectrum
  • the interference feature information includes an interference occurrence time, an interference duration, and an interference frequency.
  • the method for detecting the intensity of the interference signal provided by the above methods ⁇ 2 and A3 can improve the detection precision of the uplink interference signal, thereby more accurately filtering out the uplink interference. Words, further improve the uplink performance.
  • the effective bandwidth generally refers to the encoded, modulated bandwidth of the signal, capable of carrying most of the signal energy.
  • the effective bandwidth refers to the core 3.84 MHz bandwidth used to transmit data, ie 3.84 MHz in the 5 MHz bandwidth center of UMTS; in LTE systems, the effective bandwidth refers to the core 18 MHz used to transmit data. bandwidth.
  • the location of the interference signal can be obtained by two methods, B1 and B2, as follows.
  • Method B1 Obtain an interference signal frequency, and determine whether the interference signal is outside an effective bandwidth of the first standard communication system according to the interference signal frequency.
  • the frequency of the interference signal can be obtained through the frequency point configuration information of the second standard communication system delivered by the base station controller, or directly obtained in the base station when the different standards are carried on a carrier frequency board.
  • the interference signal frequency can be obtained from the power spectral density while determining the interference signal strength in the above method A1, A2 or A3.
  • determining whether the interference signal is outside the effective bandwidth of the first standard communication system according to the interference signal frequency may be implemented by:
  • the interference signal is located when the interference signal frequency is greater than an upper boundary of an effective bandwidth of the first standard communication system or the interference signal frequency is less than a lower boundary of an effective bandwidth of the first standard communication system. Said outside the effective bandwidth of the first system communication system.
  • the first-standard communication system is an LTE system
  • the second-standard communication system is GSM
  • the uplink frequency range of the GSM configuration is [1780, 1780.2] MHZ
  • the uplink frequency range of the LTE configuration is [1780, 1800] MHZ. Since the effective bandwidth of the LTE system is 18 MHz, the corresponding frequency range is [1781, 1799] MHZ, that is, the upper boundary value of the effective bandwidth is 1799 MHz, and the lower boundary of the effective bandwidth is 1781 MHz.
  • the uplink frequency of the GSM configuration is smaller than the lower boundary of the effective bandwidth of the LTE system, that is, the GSM system pairs the LTE system.
  • the interference signal is outside the effective bandwidth of the LTE system.
  • Method B2 receiving a configuration message to obtain a location of the interference signal; the configuration message indicating whether the interference signal is outside an effective bandwidth of the first standard communication system.
  • the location of the interference signal may be obtained by the base station controller or the core network according to the frequency point configuration information of the first standard communication system and the second standard communication system, and then sent to the base station by using a configuration message.
  • the signal to be processed may be an uplink signal received by a radio frequency module of a base station of the first standard communication system.
  • the filtering process of the signal to be processed of the first standard communication system by the selection filter may be: when the location of the interference signal is not located in the first When the effective bandwidth of the one-standard communication system is out, if the intensity of the interference signal is greater than the first threshold, the band rejection filter is selected to filter the signal to be processed of the first standard communication system. And if the intensity of the interference signal is less than or equal to the first threshold, selecting a first bandwidth low pass filter to perform filtering processing on the to-be-processed signal of the first standard communication system.
  • the filtering process of the signal to be processed of the first standard communication system by the selection filter may be: when the location of the interference signal is located in the If the intensity of the interference signal is greater than the second threshold, the band rejection filter is selected to filter the signal to be processed of the first standard communication system; The intensity of the 4th signal is less than or equal to the second threshold and greater than the third threshold, and the second bandwidth low pass filter is selected to filter the signal to be processed of the first standard communication system; if the strength of the interference signal Less than or equal to the third threshold, selecting the The first bandwidth low pass filter performs filtering processing on the to-be-processed signal of the first standard communication system.
  • the first threshold, the second threshold, and the third threshold are all preset values, and the second threshold is greater than the third threshold, and the first threshold may be equal to the second threshold. Both can be obtained by simulation, and can be configured by a base station controller or a base station, or preset in the base station.
  • the bandwidth of the first bandwidth low-pass filter is consistent with the bandwidth of the first standard communication system, and the bandwidth of the second bandwidth low-pass filter is smaller than the bandwidth of the first bandwidth low-pass filter.
  • the bandwidth of the first bandwidth low pass filter is 20 MHz
  • the bandwidth of the second bandwidth low pass filter is 19.6 MHz/19.2 MHz
  • the bandwidth of the bandwidth of the first low-pass filter is 5M
  • bandwidth of the second bandwidth of the low pass filter is 3.8MHZ / 4.2MHZ 0
  • the filter is selected to filter the signal to be processed of the first standard communication system, and different filtering modes are adopted for different uplink interference signals, thereby avoiding Improve the uplink performance by using the uplink performance loss caused by the fixed filtering method.
  • the first standard communication system uses the resource block as the service resource scheduling unit, the strength of the interference signal can be detected more accurately by combining the RB scheduling information, thereby effectively filtering out the interference signal and reducing the uplink interference.
  • a signal processing method provided by an embodiment of the present invention is specifically as follows.
  • the traffic situation may include at least one of traffic, traffic volume, traffic peak time period, and traffic volume time period.
  • the traffic refers to the product of the number of calls in a specific time and the average occupation time of each call; the larger the traffic, the greater the interference generated.
  • step 202 203 When the traffic condition satisfies the pre-set condition, step 202 203 is performed, otherwise, step 204 is performed, as follows:
  • steps 202 to 203 are performed; otherwise, the steps are performed. 204.
  • the preset threshold may be adjusted according to the traffic situation and the corresponding interference situation in the actual application process, and configured by the base station controller to the base station, or may be preset in the base station or the base station controller.
  • step 202 the strength of the interference signal is detected, the location of the interference signal is determined, and the specific implementation and description of the effective bandwidth is shown in step 101.
  • the filtering process is performed on the signal to be processed of the first standard communication system according to the location of the interference signal and the strength of the interference signal. For details, refer to the related description in step 102.
  • step 201 may be performed to continue monitoring the traffic condition of the second standard communication system.
  • step 201 may be performed to continue monitoring the traffic condition of the second standard communication system.
  • steps 201-204 are all performed by the base station.
  • step 201 is performed by a base station controller or a cloud baseband (cloud baseband, referred to as cloudBB).
  • cloudBB cloud baseband
  • the core network performs, and sends a message to inform the base station to perform steps 202-204, which may be triggered by a timer loop.
  • a signal processing device of a communication system is provided in an embodiment of the present invention.
  • the device may be a base station, and is located in a first-standard communication system, and includes: an interference detecting unit 301 and a filtering processing unit 302.
  • the interference detecting unit 301 is configured to detect an interference signal strength of the second standard communication system to the first standard communication system, and determine whether the location of the interference signal is outside an effective bandwidth of the first standard communication system.
  • the bandwidth of the first standard communication system is greater than the bandwidth of the second standard communication system.
  • the first system communication system may be UMTS
  • the second system communication system may be GSM
  • the first system communication system is a 4G system (such as an LTE-A system)
  • the second system communication system is a 3G system (such as a UMTS system).
  • the first system communication system is a 4G system
  • the second system communication system is a GSM system.
  • the filtering processing unit 302 is configured to perform filtering processing on the to-be-processed signal of the first standard communication system according to the position of the interference signal and the strength of the interference signal.
  • the signal to be processed may be an uplink signal received by a radio frequency module of a base station of the first standard communication system.
  • the filter processing unit 302 can also be used to:
  • the band rejection filter is selected to perform the signal to be processed of the first standard communication system. Filtering processing; if the interference signal strength is less than or equal to the first interpretation value, selecting a first bandwidth low-pass filter to filter the to-be-processed signal of the first standard communication system Reason; or,
  • the band rejection filter is selected to perform the signal to be processed of the first standard communication system. Filtering processing; if the interference signal strength d is equal to or equal to the second threshold and greater than the third threshold, selecting a second bandwidth low-pass filter to filter the to-be-processed signal of the first standard communication system; The interference signal strength is less than or equal to the third threshold, and the first bandwidth low-pass filter is selected to perform filtering processing on the to-be-processed signal of the first standard communication system;
  • the second threshold and the third threshold are preset values, the second threshold is greater than the third threshold, and the first threshold may be equal to the second threshold.
  • the first value, the second threshold, and the third value are preset values, can be obtained by simulation, and can be configured to the signal processing device by using a base station controller or a core network, or preset in The signal processing device is internal.
  • the bandwidth of the first bandwidth low-pass filter is consistent with the bandwidth of the first-standard communication system, and the bandwidth of the second bandwidth low-pass filter is smaller than the bandwidth of the first bandwidth low-pass filter.
  • the bandwidth is 20 MHz
  • the bandwidth of the first bandwidth low pass filter is 20 MHz
  • the bandwidth of the second bandwidth low pass filter is 19.6 MHz/19.2 MHz
  • the bandwidth is 5 MHz
  • the bandwidth of the first bandwidth low pass filter is 5 MHz
  • the bandwidth of the second bandwidth low pass filter is 3.8 MHz/4.2 MHz.
  • the interference detecting unit 301 includes: an interference strength detecting unit 3011 and an interference position acquiring unit 3012.
  • the interference intensity detecting unit 3011 is configured to acquire a power spectral density of the signal to be processed of the first standard communication system, and determine an intensity of the interference signal according to the power spectral density.
  • the interference strength detecting unit 3011 is to be processed by the first standard communication system.
  • the signal is sampled to obtain a time domain signal; the time domain signal is converted into a frequency domain signal to obtain a power chirp density of the signal to be processed.
  • the interference location acquiring unit 3012 is configured to obtain an interference signal frequency, determine, according to the interference signal frequency, whether the interference signal is outside an effective bandwidth of the first standard communication system, and notify the filter processing unit 302.
  • step 101 For the implementation of obtaining the interference signal frequency and determining whether the interference signal is outside the effective bandwidth of the first-standard communication system according to the interference signal frequency, refer to the related description in step 101.
  • the interference strength detecting unit 3011 is further configured to:
  • RB scheduling information of the first standard communication system Obtaining resource block (RB) scheduling information of the first standard communication system; determining an interference signal strength according to a power speech density of the to-be-processed signal of the first format communication system and the RB scheduling information.
  • the interference strength detecting unit 3011 is further configured to:
  • Obtaining interference characteristic information of the second standard communication system determining, according to a power spectral density of the to-be-processed signal of the first standard communication system, the RB scheduling information, and interference characteristic information of the second standard communication system Interference signal strength.
  • the interference feature information includes an interference occurrence time, an interference duration, and an interference frequency.
  • the dry location obtaining unit 3012 is further configured to:
  • the configuration message indicating whether the interference signal is outside an effective bandwidth of the first standard communication system.
  • the communication system signal processing apparatus further includes: a monitoring unit 303.
  • a monitoring unit 303 configured to monitor a traffic situation of the second standard communication system; when a traffic volume or a traffic volume level of the second standard communication system is greater than a preset threshold, or when the second The system communication system is in the peak traffic time period, or when the second system communication system is not
  • the interference detecting unit 301 is notified to detect the strength of the interference signal and acquire the position of the interference signal.
  • the interference detecting unit 301, the filtering processing unit 302 and the monitoring unit 303 can all be digital signal processors or other processors.
  • the signal processing apparatus detects the strength of the interference signal of the second standard communication system to the first standard communication system, and acquires the position of the interference signal; and selects a filter according to the position and intensity of the interference signal. Filtering the to-be-processed signal of the first-standard communication system, using different filtering methods for different uplink interference signals, reducing uplink performance loss, effectively filtering out interference signals, low uplink interference, and improving uplink performance.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • a medium that can store program codes such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号处理方法和装置,涉及通信系统。该方法包括:检测第二制式通信系统对第一制式通信系统的干扰信号的强度,并确定所述干扰信号的位置是否位于所述第一制式通信系统的有效带宽外;根据所述干扰信号的位置和所述干扰信号的强度,选择滤波器对所述第一制式通信系统的待处理信号进行滤波处理。釆用本发明实施例,能够有效消除异系统间的上行干扰,提高系统上行接收性能。

Description

本申请要求于 2012年 5月 30日提交中国专利局、 申请号为
201210173420.0. 发明名称为 "信号处理方法和装置" 的中国专利申请的优先 权, 全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动通信技术, 尤其涉及一种信号处理方法和装置。 背景技术
在异系统共存的网络中, 为了防止异系统间的相互干扰, 最理想的情况 是将异系统使用的频谱资源完全分开。 但是由于频谱资源的稀缺和网络容量 不断增长的需要, 异系统间频 有时不得不部分或全部共享。 频谱资源的共 享会引入异系统干扰。
为了消除异系统间的干扰可以采用固定的滤波方式, 例如釆用降低接收 滤波器的带宽来去除共享频谱的上行干扰, 但是如果干扰较小, 仍旧减小带 宽, 无疑会引起上行性能损失很大。 发明内容
本发明实施例提供一种信号处理方法和装置, 提高上行接收性能。
本发明一方面提供了一种信号处理方法, 包括: 检测第二制式通信系统 对第一制式通信系统的干扰信号的强度, 并确定所述干扰信号的位置是否位 于所述第一制式通信系统的有效带宽外; 根据所述干扰信号的位置和所述干 扰信号的强度, 选择滤波器对所述第一制式通信系统的待处理信号进行滤波 处理。
本发明另一方面提供了一种信号处理装置, 包括: 干扰检测单元, 用于 检测第二制式通信系统对所述第一制式通信系统的干扰信号的强度, 并确定 所述千扰信号的位置是否位于所述第一制式通信系统的有效带宽外; 滤波处 理单元, 用于根据所述干扰信号的位置和所述干扰信号的强度, 选择滤波器 对所述第一制式通信系统的待处理信号进行滤波处理。
由上述技术方案可知, 采用本发明实施例, 能够减小上行性能损失, 有 效消除异系统间的上行干扰, 提高系统上行接收性能。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图进行筒单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中一种信号处理方法的流程图;
图 2为本发明实施例中另一种信号处理方法的流程图;
图 3为本发明实施例中一种通信系统信号处理装置的结构示意图; 图 4为本发明实施例中另一种通信系统信号处理装置的结构示意图; 图 5为本发明实施例中又一种通信系统信号处理装置的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅是本发明一部分实施例, 而不 是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出 创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中结合基站和 /或基站控制器和 /或终端来描述各种方面。
基站, 可以是指接入网中在空中接口上通过一个或多个扇区与终端通信 的设备。 基站可用于将收到的空中帧与 IP分组进行相互转换, 作为终端与接 入网的其余部分之间的路由器, 其中接入网的其余部分可包括网际协议 ( Internet Protocol, IP ) 网络。 基站还可协调对空中接口的属性管理。 例如, 基站可以是全球移动通信系统 ( Global System for Mobile communications, GSM )或码分多址( Code Division Multiple Access, CDMA )系统中的基站( Base Transceiver Station, BTS ), 也可以是 WCDMA中的基站(NodeB ), 还可以 是长期演进( Long Term Evolution, LTE )或 LTE高级( LTE Advanced, LTE-A ) 通信系统中的演进型基站( evolved Node B, NodeB或 eNB或 e-NodeB ), 本 发明实施例中并不限定。
基站控制器(Base Station Controller, BSC ), 可以是 GSM或 CDMA系 统中的基站控制器, 也可以是 WCDMA 中的无线网络控制器(RNC, Radio Network Controller ), 本发明实施例中并不限定。
终端, 可以是无线终端也可以是有线终端, 无线终端可以是指向用户提 供语音和 /或数据连通性的设备, 具有无线连接功能的手持式设备、 或连接到 无线调制解调器的其他处理设备。 无线终端可以经无线接入网 (Radio Access Network, RAN )与一个或多个核心网进行通信, 无线终端可以是移动终端, 如移动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便 携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接 入网交换语言和 /或数据。 例 口, 个人通信业务 ( Personal Communication Service , PCS ) 电话、 无绳电话、 会话发起协议( Session Initiation Protocol, SIP )话机、 无线本地环路 ( Wireless Local Loop , WLL )站、 个人数字助理 ( Personal Digital Assistant , PDA )等设备。 无线终端也可以称为系统、 订户 单元 ( Subscriber Unit )、订户站( Subscriber Station ),移动站( Mobile Station )、 远程站( Remote Station )、接入点( Access Point )、远程终端( Remote Terminal )、 接入终端( Access Terminal )、用户终端( User Terminal )>用户代理( User Agent )、 用户设备(User Device )、 或用户装备( User Equipment )。
以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 接 口、 技术之类的具体细节, 以便透切理解本发明。 然而, 本领域的技术人员 应当清楚, 在没有这些具体细节的其它实施例中也可以实现本发明。 在其它 情况中, 省略对众所周知的装置、 电路以及方法的详细说明, 以免不必要的 细节妨碍本发明的描述。
另外, 本文中术语"系统"和"网络"在本文中常被可互换使用。本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例 如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三 种情况。 另夕卜, 本文中字符 '7,,,一般表示前后关联对象是一种 "或" 的关系。
如图 1所示, 本发明实施例提供的一种信号处理方法, 具体如下所述。 该 方法的执行主体可以是基站, 所述基站位于第一制式通信系统内。
101、 检测第二制式通信系统对第一制式通信系统的干扰信号的强度, 并 确定所述干扰信号的位置是否位于所述第一制式通信系统的有效带宽外。
其中, 所述第一制式通信系统的带宽大于所述第二制式通信系统的带宽。 例 如 , 第 一 制 式通信 系 统可 以 为 通用 移 动通信 系 统 ( Universal Mobile Telecommunications System , UMTS ) , 第二制式通信系统 可以为 GSM, 或者, 第一制式通信系统为 4G系统(如 LTE-A系统), 第二 制式通信系统为 3G系统(如 UMTS系统), 或者, 第一制式通信系统为 4G 系统, 第二制式通信系统为 GSM系统。
其中, 所述检测第二制式通信系统对所述第一制式通信系统的干扰信号 的强度, 可以采用方法 A1实现。
方法 A1 : 获得所述第一制式通信系统的待处理信号的功率谱密度; 根据 所述功率谱密度, 确定干扰信号强度。
例如, 对所述第一制式通信系统的待处理信号进行采样, 获得时域信号; 将所述时域信号转换成频域信号, 获得所述待处理信号的功率谱密度。 当所 述功率谱密度中的信号强度大于预先设置的门限时, 则所述第一制式通信系 统的待处理信号为干扰信号, 干扰信号强度为所述功率谱密度中的信号强度。
其中, 所述预先设置的门限可以通过仿真获得, 并预先设置在基站内部。 在本实施例中, 当所述第一制式通信系统是采用资源块( Resource Block, RB )作为业务资源调度单位时, 所述检测第二制式通信系统对所述第一制式 通信系统的干扰信号的强度, 还可以采用如下方法 A2或 A3实现。 例如, 在 LTE系统中, 就是采用资源块作为业务资源调度单位, 带宽为 180KHZ, RB 的数量与频点带宽相关, 当频点带宽为 20MHZ时, 则 RB有 100个; 当频点 带宽为 10MHZ, 则 RB有 50个。
方法 A2: 获得所述第一制式通信系统的 RB调度信息和所述第一制式通信 系统的待处理信号的功率谱密度; 根据所述功率谱密度和所述 RB调度信息, 确定干扰信号强度。
其中, 所述功率脊密度的获取与方法 A1中的相关描述一致。
其中,所述 RB调度信息指的是采用资源块 RB作为业务资源调度单位的 系统通知终端将上行数据承载在哪几个 RB上来发送。其中,根据所述功率谱 密度和所述 RB调度信息,确定干扰信号强度可以通过判断所述功率谱密度中 的信号与 RB调度信息是否匹配, 以及所述功率谱密度中的信号强度来实现, 可以 ^下:
若所述功率谱密度中的信号与 RB调度信息不匹配,可以确定所述第一制 式通信系统的待处理信号为千扰信号。 例如, 功率谱密度中显示特定频率上 行有信号,但 RB调度信息却显示并未通知终端在该频率对应 RB调度信息块 上发送数据, 则可以确定所述第一制式通信系统的待处理信号为干扰信号。
若所述功率谱密度中的信号与 RB调度信息匹配,可以进一步根据所述功 率语密度中的信号强度范围, 确定干扰信号强度。 例如, 功率语密度中显示 特定频率上行有信号,并且 RB调度信息显示通知终端在该频率对应 RB调度 信息块上发送数据, 则可以进一步 4艮据所述功率 i脊密度中的信号强度范围确 定千扰信号强度。
例如, 假设所述第一制式通信系统为 LTE系统, 上行信号的强度范围为 [PI , P2] (例如, [-160, -150] , 单位 dbm ), 所述第二制式通信系统的上行信 号的强度范围为 [Ql, Q2] (例如, GSM系统 [-110, -48] , 单位 dbm ), 在 LTE 系统的待处理信号的功率谱密度中, 频率 1上有信号, 强度为 X, 频率 1 (例 如, 1780.1MHZ )与资源块 RB调度信息中的调度信息块 RB1 (例如, RB1 对应的频率范围为 [1780, 1780.18JMHZ )对应。
由于频率 1与 RB调度信息中的资源块 RB1对应, 则判断出频率 1上的 信号为有用信号, 需要根据频率 1的信号强度 X来确定干扰信号强度。 设定 X=-75dbm, 此时, X 大于 LTE 系统上行信号的强度范围中的最大值 P2 ( -150dbm ), 即 X>P2 ), 则所述频率 1的信号存在干扰, 且干扰信号强度为 X为 -75dbm。
设定 X=-155dbm, 此时, X小于所述第一制式通信系统上行信号的强度 范围中的最大值 P2 ( -150dbm ), 即 X<P2, 则需要进一步判断频率 1 的信号 强度 X是否大于预先设置的阔值。 假设预先设置的阈值 T=-157dbm, X大于 所述预先设置的阈值 T, 即 X>T, 则所述频率 1的信号存在干扰, 干扰信号 强度为频率 1的信号强度 X (即 -155dbm ); 假设预先设置的阔值 T=-152dbm, X小于所述预先设置的阈值, 即 X<T, 则频率 1的信号为有用信号, 不存在 干扰, 干扰信号强度为 0。 其中, 预先设置的阔值可以通过仿真获得, 或者根 据现网实际应用的经验值获得。
方法 A3: 获得所述第一制式通信系统的 RB调度信息, 所述第一制式通信 系统的待处理信号的功率谙密度, 以及所述第二制式通信系统的干扰特征信 息; 根据所述功率谱密度和所述 RB调度信息, 以及所述第二制式通信系统的 干扰特征信息, 确定干扰信号强度。
其中, 所述干扰特征信息包括干扰发生时间、 干扰持续时长和干扰频率。 首先, 根据所述第二制式通信系统的干扰特征信息, 对所述第一制式通 信系统的待处理信号进行带阻滤波, 滤除第二制式通信系统对所述第一制式 通信系统的干扰信号; 然后, 根据带阻滤波输出信号的功率谱密度和所述 RB 调度信息, 确定干扰信号强度, 检测所述第一制式通信系统中经带阻滤波后 的千扰信号强度。 其中,根据带阻滤波输出信号的功率谱密度和所述 RB调度信息检测干扰 信号强度的具体实现方法参见上述方法 Α2。
需要指出的是, 当第一制式通信系统为 LTE时, 采用上述方法 Α2和 A3提 供的检测千扰信号强度的方法, 能够提高上行干扰信号的检测精度, 从而更 加准确的滤除上行干^ ί言号 , 进一步提升上行性能。
在步骤 101中, 所述有效带宽通常指的是信号经过编码、 调制后的带宽, 能够承载大部分的信号能量。 例如, 在 UMTS系统中, 有效带宽指的是用来 传输数据的核心 3.84MHZ带宽,即处于 UMTS的 5MHZ带宽中心的 3.84MHZ; 在 LTE系统中, 有效带宽指的是用来传输数据的核心 18MHZ带宽。
在本实施例中, 获取干扰信号的位置可以通过 B1和 B2两种方法实现, 具体如下。
方法 B1 : 获得干扰信号频率, 根据所述干扰信号频率确定所述干扰信号 是否位于所述第一制式通信系统的有效带宽外。
其中, 所述千扰信号频率可以通过基站控制器下发的第二制式通信系统 的频点配置信息获得, 或者, 当不同制式承载在一个载频单板上时, 在基站 内部直接获得,还可以在上述方法 Al、 A2或 A3中确定干扰信号强度的同时, 根据功率谱密度获得所述干扰信号频率。
具体的, 根据所述干扰信号频率确定所述干扰信号是否位于所述第一制 式通信系统的有效带宽外, 可以通过如下方法实现:
当所述干扰信号频率大于所述第一制式通信系统的有效带宽的上边界或 者所述千扰信号频率小于所述第一制式通信系统的有效带宽的下边界, 则确 定所述干扰信号位于所述第一制式通信系统的有效带宽外。
例如, 假设第一制式通信系统是 LTE系统, 第二制式通信系统是 GSM, 其中, 所述 GSM系统和 LTE系统存在相同覆盖区域, 且所述 GSM配置的上 行频率范围为 [1780, 1780.2] MHZ, 所述 LTE配置的上行频率范围为 [1780 , 1800]MHZ, 由于 LTE系统的有效带宽为 18MHZ, 对应频率范围为 [1781 , 1799]MHZ , 即有效带宽的上边界值为 1799MHZ , 有效带宽的下边界为 1781MHZ, 显而易见, 所述 GSM配置的上行频率小于 LTE系统有效带宽的 下边界, 即所述 GSM系统对所述 LTE系统的干扰信号处于所述 LTE系统的 有效带宽外。
方法 B2: 接收配置消息, 获取干扰信号的位置; 所述配置消息指示所述 干扰信号是否位于所述第一制式通信系统的有效带宽外。
其中, 所述干扰信号的位置可以由基站控制器或核心网根据所述第一制 式通信系统和所述第二制式通信系统的频点配置信息获取后, 通过配置消息 发送给基站。
102、 根据所述干扰信号的位置和所述千扰信号的强度, 选择滤波器对所 述第一制式通信系统的待处理信号进行滤波处理。
其中, 所述待处理信号可以是第一制式通信系统基站的射频模块接收的 上行信号。
在本发明实施例中, 根据所述干扰信号的位置和强度, 选择滤波器对所 述第一制式通信系统的待处理信号进行滤波处理可以为: 当所述干扰信号的 位置没有位于所述第一制式通信系统的有效带宽外时, 若所述干扰信号的强 度大于第一阈值, 选择带阻滤波器对所述第一制式通信系统的待处理信号进 行滤波处理。 若所述干扰信号的强度小于或等于所述第一阈值, 选择第一带 宽低通滤波器对所述第一制式通信系统的待处理信号进行滤波处理。
或者, 在本发明实施例中, 根据所述干扰信号的位置和强度, 选择滤波 器对所述第一制式通信系统的待处理信号进行滤波处理可以为: 当所述干扰 信号的位置位于所述第一制式通信系统的有效带宽外时, 若所述干扰信号的 强度大于第二阈值, 选择所述带阻滤波器对所述第一制式通信系统的待处理 信号进行滤波处理; 若所述干 4尤信号的强度小于或等于所述第二阈值且大于 第三阈值, 选择第二带宽低通滤波器对所述第一制式通信系统的待处理信号 进行滤波处理; 若所述干扰信号的强度小于或等于所述第三阈值, 选择所述 第一带宽低通滤波器对所述第一制式通信系统的待处理信号进行滤波处理。 其中, 所述第一阔值、 第二阔值和第三阔值均为预设值, 所述第二阔值 大于所述第三阈值, 所述第一阈值可以等于所述第二阈值, 均可以通过仿真 获得, 并且能够通过基站控制器或基站配置, 或者预先设置在基站内部。
其中, 第一带宽低通滤波器的带宽大小与所述第一制式通信系统的带宽 大小一致, 所述第二带宽低通滤波器的带宽小于所述第一带宽低通滤波器的 带宽。
例如, 若所述第一制式通信系统为 LTE系统时, 其带宽为 20MHZ, 则第 一带宽低通滤波器的带宽是 20MHZ, 第二带宽低通滤波器的带宽是 19.6MHZ/19.2MHZ;若所述第一制式通信系统为 UMTS系统时,其带宽为 5M, 则第一带宽低通滤波器的带宽是 5MHZ, 第二带宽低通滤波器的带宽是 3.8MHZ/4.2MHZ0
在本实施例中, 根据干扰信号的位置和强度, 选择滤波器对所述第一制 式通信系统的待处理信号进行滤波处理, 实现了针对不同的上行干扰信号, 采用不同的滤波方式, 避免了釆用固定滤波方式带来的上行性能损失问题, 提升上行性能。 此外, 当所述第一制式通信系统是采用资源块作为业务资源 调度单位时, 通过结合 RB调度信息能够更加准确的检测干扰信号的强度, 从 而更加有效的滤除干扰信号, 降低上行干扰。
如图 2所示, 本发明实施例提供的一种信号处理方法, 具体如下所述。
201、 监测第二制式通信系统的话务情况。
其中, 所述话务情况可以包括话务量、 话务量等级、 话务量高峰时间段 和话务量低谷时间段等信息中至少一种。 所述话务量指的是在特定时间内呼 叫次数与每次呼叫平均占用时间的乘积; 话务量越大, 产生的千扰越大。
当话务情况满足预设置的条件时, 执行步骤 202 203, 否则, 执行步骤 204, 具体如下:
当所述第二制式通信系统的话务量或话务量等級大于预设定阈值时, 或 者, 当所述第二制式通信系统处于话务量高峰时间段时, 或者, 当所述第二 制式通信系统未处于话务量低谷时间段时, 则执行步骤 202~203; 否则, 执行 步骤 204。
其中, 所述预设定阈值, 可以在实际应用过程中根据话务情况及其对应 的干扰情况进行调整, 并通过基站控制器配置给基站, 还可以预先设置在基 站或基站控制器内部。
202、 检测所述第二制式通信系统对第一制式通信系统的干扰信号的强 度, 并确定所述干扰信号的位置否位于所述第一制式通信系统的有效带宽外。
在步骤 202 中, 检测千扰信号的强度, 确定干扰信号的位置, 以及有效 带宽的具体实现和描述, 可以参见步骤 101。
203、 根据所述干扰信号的位置和所述千扰信号的强度, 选择滤波器对所 述第一制式通信系统的待处理信号进行滤波处理。
其中, 根据所述干扰信号的位置和所述干扰信号的强度, 选择滤波器对 所述第一制式通信系统的待处理信号进行滤波处理, 具体可以参见步骤 102 中的相关描述。
在步骤 203执行完毕后, 可以执行步骤 201 , 继续监测所述第二制式通信 系统的话务情况。
204、 选择第一带宽低通滤波器对所述第一制式通信系统的待处理信号进 行滤波处理。
在步骤 204执行完毕后, 可以执行步骤 201, 继续监测所述第二制式通信 系统的话务情况。
在本发明实施例的一种实施方式中, 步骤 201~204均由基站执行; 在本 发明实施例的另一种实施方式中,步骤 201由基站控制器或集中基带板 ( Cloud baseband, 简称 cloudBB ) 或核心网执行, 并发送消息通知基站执行步骤 202-204, 所述步骤 201可以通过定时器循环触发执行。
在本实施例中, 根据第二制式通信系统的话务情况, 确定基站是否需要 检测干扰信号的强度, 获取所述干 4无信号的位置, 以及根据所述干扰信号的 强度和位置, 选择滤波器对所述第一制式通信系统的待处理信号进行滤波处 理, 除了能够有效减小上行性能损失, 滤除干扰信号, 提升上行性能外, 还 能够在千扰较小的情况下, 保持原有的滤波方式, 减小上行信号处理时间, 更好地提升上行性能。 如图 3 所示, 本发明实施例提供的一种通信系统信号处理装置, 所述装 置可以是基站, 位于第一制式通信系统内, 包括: 干扰检测单元 301 和滤波 处理单元 302。
干扰检测单元 301,用于检测第二制式通信系统对所述第一制式通信系统 的干扰信号强度, 并确定所述干扰信号的位置是否位于所述第一制式通信系 统的有效带宽外。
其中, 所述第一制式通信系统的带宽大于所述第二制式通信系统的带宽。 例如,第一制式通信系统可以为 UMTS,第二制式通信系统可以为 GSM, 或者, 第一制式通信系统为 4G系统(如 LTE-A系统), 第二制式通信系统为 3G系统(如 UMTS系统), 或者, 第一制式通信系统为 4G系统, 第二制式 通信系统为 GSM系统。
滤波处理单元 302, 用于根据所述干扰信号的位置和所述干扰信号的强 度, 选择滤波器对所述第一制式通信系统的待处理信号进行滤波处理。
其中, 所述待处理信号可以是第一制式通信系统基站的射频模块接收的 上行信号。
所述滤波处理单元 302还可以用于:
当所述干扰信号没有位于所述第一制式通信系统的有效带宽外时, 若所 述干扰信号强度大于第一阔值, 选择带阻滤波器对所述第一制式通信系统的 待处理信号进行滤波处理; 若所述干扰信号强度小于或等于所述第一阐值, 选择第一带宽低通滤波器对所述第一制式通信系统的待处理信号进行滤波处 理; 或者,
当所述干扰信号位于所述第一制式通信系统的有效带宽外时, 若所述干 扰信号强度大于第二阈值, 选择所述带阻滤波器对所述第一制式通信系统的 待处理信号进行滤波处理; 若所述干扰信号强度 d、于或等于所述第二阈值且 大于第三阈值, 选择第二带宽低通滤波器对所述第一制式通信系统的待处理 信号进行滤波处理; 若所述千扰信号强度小于或等于所述第三阈值, 选择所 述第一带宽低通滤波器对所述第一制式通信系统的待处理信号进行滤波处 理;
所述第二阈值和第三阈值为预设值, 所述第二阈值大于所述第三阈值, 所述第―阔值可以等于所述第二阈值。
其中, 所述第一阁值、 第二阚值和第三阁值均为预设值, 可以通过仿真 获得, 并且能够通过基站控制器或核心网配置给所述信号处理装置, 或者预 先设置在所述信号处理装置内部。
其中, 第一带宽低通滤波器的带宽大小与所迷第一制式通信系统的带宽 大小一致, 所述第二带宽低通滤波器的带宽小于所述第一带宽低通滤波器的 带宽。
例如, 若所述第一制式通信系统为 LTE系统时, 其带宽为 20MHZ, 则第 一带宽低通滤波器的带宽是 20MHZ, 第二带宽低通滤波器的带宽是 19.6MHZ/19.2MHZ; 若所述第一制式通信系统为 UMTS 系统时, 其带宽为 5MHZ, 则第一带宽低通滤波器的带宽是 5MHZ, 第二带宽低通滤波器的带宽 是 3.8MHZ/4.2MHZ。
可选的, 如图 4所示, 所述干扰检测单元 301 包括: 干扰强度检测单元 3011和干扰位置获取单元 3012。
干扰强度检测单元 3011, 用于获取所述第一制式通信系统的待处理信号 的功率谱密度, 并才 据所述功率谱密度, 确定干扰信号的强度。
具体的, 所述干扰强度检测单元 3011对所述第一制式通信系统的待处理 信号进行采样, 获得时域信号; 将所述时域信号转换成频域信号, 获得所述 待处理信号的功率 Ϊ脊密度。
干扰位置获取单元 3012 , 用于获得干扰信号频率, 根据所述干扰信号频 率确定所述干扰信号是否位于所述第一制式通信系统的有效带宽外, 并通知 所述滤波处理单元 302。
其中, 所述获得干扰信号频率, 以及根据所述干扰信号频率确定所述干 扰信号是否位于所述笫一制式通信系统的有效带宽外的实现可以参见步骤 101中的相关描述。
可选的, 当所述第一制式通信系统是采用资源块 RB作为业务资源调度单 位的系统时, 所述干扰强度检测单元 3011还用于:
获取所述第一制式通信系统的资源块(RB )调度信息; 根据所述第一制 式通信系统的待处理信号的功率语密度和所述 RB调度信息, 确定干扰信号强 度。
可选的,当所述第一制式通信系统是采用资源块 RB作为业务资源调度单 位的系统时, 所述干扰强度检测单元 3011还用于:
获取所述第二制式通信系统的干扰特征信息; 根据所述第一制式通信系 统的待处理信号的功率谱密度和所述 RB调度信息, 以及所述第二制式通信系 统的干扰特征信息, 确定干扰信号强度。
其中, 所述干扰特征信息包括干扰发生时间、 干扰持续时长和干扰频率。 可选的, 所述干 位置获取单元 3012还用于:
接收配置消息, 并通知所述滤波处理单元; 所述配置消息指示所述干扰 信号是否位于所述第一制式通信系统的有效带宽外。
可选的,如图 5所示,所述通信系统信号处理装置还包括:监测单元 303。 监测单元 303, 用于监测所述第二制式通信系统的话务情况; 当所述第二 制式通信系统的话务量或话务量等级大于预设定阈值时, 或者, 当所述第二 制式通信系统处于话务量高峰时间段时, 或者, 当所述第二制式通信系统未 处于话务量低谷时间段时, 则通知所述干扰检测单元 301检测千扰信号的强 度, 并获取干扰信号的位置。
需要指出的是, 干扰检测单元 301 , 滤波处理单元 302和监测单元 303均可 以为数字信号处理器或其它处理器。
本发明实施例提供的信号处理装置, 检测第二制式通信系统对第一制式 通信系统的干扰信号的强度, 并获取所述干扰信号的位置; 根据所述干扰信 号的位置和强度, 选择滤波器对所述第一制式通信系统的待处理信号进行滤 波处理, 能够针对不同的上行干扰信号, 采用不同的滤波方式, 减小上行性 能损失, 有效滤除干扰信号, 低上行干扰, 提升上行性能。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取 存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的 存储介质包括: ROM、 RAM,磁碟或者光盘等各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要 求
1、 一种信号处理方法, 其特征在于, 包括:
检测第二制式通信系统对第一制式通信系统的干扰信号的强度, 并确定 所述干扰信号的位置是否位于所述第一制式通信系统的有效带宽外;
根据所述干扰信号的位置和所述干扰信号的强度, 选择滤波器对所述第 一制式通信系统的待处理信号进行滤波处理。
2、 根据权利要求 1所述的方法, 特征在于, 所述根据所述千扰信号的位 置和所述千扰信号的强度, 选择滤波器对所述第一制式通信系统的待处理信 号进行滤波处理, 包括:
当所述干扰信号的位置没有位于所述第一制式通信系统的有效带宽外 时, 若所述干扰信号的强度大于第一阈值, 选择带阻滤波器对所述第一制式 通信系统的待处理信号进行滤波处理; 若所述干扰信号的强度小于或等于所 述第一阐值, 选择第一带宽低通滤波器对所述第一制式通信系统的待处理信 号进行滤波处理; 或者,
当所述干扰信号的位置位于所述第一制式通信系统的有效带宽外时, 若 所述干扰信号的强度大于第二阈值, 选择所述带阻滤波器对所述第一制式通 信系统的待处理信号进行滤波处理; 若所述干扰信号的强度小于或等于所述 第二阈值且大于第三阚值, 选择第二带宽低通滤波器对所述第一制式通信系 统的待处理信号进行滤波处理; 若所述干扰信号的强度小于或等于所述第三 阈值, 选择所述第一带宽低通滤波器对所述第一制式通信系统的待处理信号 进行滤波处理; 所述第二阈值和所述第三阈值为预设值, 所述第二阈值大于 所述第三阈值。
3、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 监测所述第二制式通信系统的话务情况;
当所述话务情况包括话务量或话务量等级, 且所述大于预设定阈值时, 或者, 当所述话务情况包括话务量高峰时间段, 且所述第二制式通信系统处 于话务量高峰时间段时, 或者, 当所述话务情况指的是话务量低谷时间段, 且所述第二制式通信系统未处于话务量低谷时间段时, 执行所述检测第二制 式通信系统对第一制式通信系统的干扰信号的强度, 并确定所述干扰信号的 位置是否位于所述第一制式通信系统的有效带宽外。
4、 根据权利要求 1-3中任一项所述的方法, 其特征在于, 所述检测第二 制式通信系统对所述第一制式通信系统的干扰信号的强度, 包括:
获得所述第一制式通信系统的待处理信号的功率谱密度;
根据所述功率谙密度, 确定千扰信号强度。
5、 根据权利要求 1-3中任一项所述的方法, 其特征在于, 当所述第一制 式通信系统是采用资源块 RB作为业务资源调度单位的系统时,所述检测第二 制式通信系统对所述第一制式通信系统的干扰信号强度, 包括:
获得所述第一制式通信系统的待处理信号的功率谱密度和所述第一制式 通信系统的资源块 RB调度信息;
根据所述功率讲密度和所述 RB调度信息, 确定干扰信号强度。
6、 根据权利要求 1-3任一项所述的方法, 其特征在于, 当所述第一制式 通信系统是采用资源块 RB作为业务资源调度单位的系统时,所述检测第二制 式通信系统对所述笫一制式通信系统的干扰信号强度, 包括:
获得所述第一制式通信系统的待处理信号的功率谱密度, 所述第一制式 通信系统的 RB调度信息和所述第二制式通信系统的干扰特征信息;
根据所述功率谱密度和 RB调度信息, 以及所述第二制式通信系统的干扰 特征信息, 确定干尤信号强度。
7、 根据权利要求 6所述的方法, 其特征在于, 所述千扰特征信息包括干 扰发生时间、 千扰持续时长和千扰频率。
8、根据权利要求 1-7任一项所述的方法, 其特征在于, 所述获取所述干扰 信号的位置, 包括:
获得千扰信号频率, 根据所述干扰信号频率确定所述千扰信号是否位于 所述第一制式通信系统的有效带宽外; 或者,
接收配置消息, 获取干扰信号的位置; 所述配置消息指示所述干扰信号 是否位于所述第一制式通信系统的有效带宽外。
9、 一种信号处理装置, 其特征在于, 包括:
干扰检测单元, 用于检测第二制式通信系统对所述第一制式通信系统的 干扰信号的强度, 并确定所述干扰信号的位置是否位于所述第一制式通信系 统的有效带宽外; 和
滤波处理单元, 用于根据所述干扰信号的位置和所述千扰信号的强度, 选择滤波器对所述第一制式通信系统的待处理信号进行滤波处理。
10、根据权利要求 9所述的装置, 其特征在于, 所述滤波处理单元还用于: 当所述干扰信号的位置没有位于所述第一制式通信系统的有效带宽外 时, 若所述干扰信号的强度大于第一阈值, 选择带阻滤波器对所述第一制式 通信系统的待处理信号进行滤波处理; 若所述干扰信号的强度小于或等于所 述第一阔值, 选择第一带宽低通滤波器对所述第一制式通信系统的待处理信 号进行滤波处理; 或者,
当所述干扰信号的位置位于所述第一制式通信系统的有效带宽外时, 若 所述干扰信号的强度大于第二阐值, 选择所述带阻滤波器对所述第一制式通 信系统的待处理信号进行滤波处理; 若所述干扰信号的强度小于或等于所述 第二阈值且大于第三阈值, 选择第二带宽低通滤波器对所述第一制式通信系 统的待处理信号进行滤波处理; 若所述干扰信号的强度小于或等于所述第三 阈值, 选择所述第一带宽低通滤波器对所述第一制式通信系统的待处理信号 进行滤波处理; 所述第二阔值和第三阈值为预设值, 所述第二阈值大于所述 第三阈值。
11、 根据权利要求 10所述的装置, 其特征在于, 还包括:
监测单元, 用于监测所述第二制式通信系统的话务情况; 所述话务情况 包括话务量、 话务量等级、 话务量高峰时间段和话务量低谷时间段中任意一 种;
当所述第二制式通信系统的话务量或话务量等级大于或等于所述预设定 阈值时, 或者, 当所述第一制式通信系统处于所述第二制式通信系统的话务 量高峰时间段时, 或者, 当所述第一制式通信系统未处于所述第二制式通信 系统的话务量低谷时间段时 , 则通知所述千扰检测单元检测干扰信号的强度, 并获取干扰信号的位置。
12、根据权利要求 9-11中任一项所述的装置, 其特征在于, 所述干扰检测 单元包括:
千扰强度检测单元, 用于获取所述第一制式通信系统的待处理信号的功 率谱密度, 并根据所述功率谱密度, 确定干扰信号的强度; 和
千扰位置获取单元, 用于获得干扰信号频率, 根据所述干扰信号频率确 定所述千扰信号是否位于所述第一制式通信系统的有效带宽外, 并通知所述 滤波处理单元。
13、 根据权利要求 12所述的装置, 其特征在于, 当所述第一制式通信系 统是采用资源块 RB作为业务资源调度单位的系统时, 所述干扰强度检测单元 还用于:
获取所述第一制式通信系统的资源块 RB调度信息; 根据所述第一制式通 信系统的待处理信号的功率谙密度和所述 RB调度信息, 确定千扰信号强度。
14、 根据权利要求 13所述的装置, 其特征在于, 当所述第一制式通信系 统是采用资源块 RB作为业务资源调度单位的系统时, 所述干扰强度检测单元 还用于:
获取所述第二制式通信系统的干扰特征信息; 根据所述第一制式通信系 统的待处理信号的功率谱密度和所述 RB调度信息, 以及所述第二制式通信系 统的干扰特征信息, 确定干扰信号强度。
15、 根据权利要求 14所述的装置, 其特征在于, 所述千扰特征信息包括 干扰发生时间、 干扰持续时长和千扰频率。
16、 根据权利要求 12所述的装置, 其特征在于, 所述干扰位置获取单元 还用于:
接收配置消息, 获取干扰信号的位置, 并通知所述滤波处理单元; 所述 配置消息指示所述干扰信号是否位于所述第一制式通信系统的有效带宽外。
PCT/CN2013/075914 2012-05-30 2013-05-20 信号处理方法和装置 WO2013178023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210173420.0A CN102695191B (zh) 2012-05-30 2012-05-30 信号处理方法和装置
CN201210173420.0 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013178023A1 true WO2013178023A1 (zh) 2013-12-05

Family

ID=46860441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075914 WO2013178023A1 (zh) 2012-05-30 2013-05-20 信号处理方法和装置

Country Status (2)

Country Link
CN (1) CN102695191B (zh)
WO (1) WO2013178023A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121195A (zh) * 2017-06-23 2019-01-01 中兴通讯股份有限公司 一种频率复用控制方法、装置及设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695191B (zh) * 2012-05-30 2015-11-25 华为技术有限公司 信号处理方法和装置
WO2014169488A1 (zh) * 2013-04-19 2014-10-23 华为技术有限公司 一种异制式系统下的干扰协调方法、装置和设备
CN104243053B (zh) * 2013-06-19 2017-02-08 华为技术有限公司 一种输入信号的处理方法及相关装置
WO2015000124A1 (zh) * 2013-07-02 2015-01-08 华为技术有限公司 一种重用频谱方案中异系统干扰规避的方法和装置
CN104902505B (zh) * 2014-03-05 2019-01-01 中国移动通信集团公司 干扰检测方法及装置、干扰消除方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986573A (zh) * 2010-10-25 2011-03-16 中兴通讯股份有限公司 一种双模通信系统的频谱干扰抵消装置、系统及方法
CN102291840A (zh) * 2011-08-29 2011-12-21 中兴通讯股份有限公司 一种gsm与lte基带单元、双模系统及频谱调度方法
CN102695191A (zh) * 2012-05-30 2012-09-26 华为技术有限公司 信号处理方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8000649B2 (en) * 2003-10-23 2011-08-16 Yoni Shiff System and method for the reduction of interference in an indoor communications wireless distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986573A (zh) * 2010-10-25 2011-03-16 中兴通讯股份有限公司 一种双模通信系统的频谱干扰抵消装置、系统及方法
CN102291840A (zh) * 2011-08-29 2011-12-21 中兴通讯股份有限公司 一种gsm与lte基带单元、双模系统及频谱调度方法
CN102695191A (zh) * 2012-05-30 2012-09-26 华为技术有限公司 信号处理方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"IEEE Vehicular Technology Conference, UMTS900 Co-Existence with GSM900", 25 April 2007 (2007-04-25), pages 778 - 782, Retrieved from the Internet <URL:http://ieeexplore.orglxpls/absall/jsp?arnumber=4212598&tag=1> *
WEI, JINGLI ET AL.: "Interference Analysis in Radio Network Planning for the Coexist of 2G and 3G", 23 October 2009 (2009-10-23), Retrieved from the Internet <URL:http://www.paper.edu.cn> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121195A (zh) * 2017-06-23 2019-01-01 中兴通讯股份有限公司 一种频率复用控制方法、装置及设备

Also Published As

Publication number Publication date
CN102695191B (zh) 2015-11-25
CN102695191A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
US20200229075A1 (en) Dynamic network selection
CN102917406B (zh) 数据流量分流方法和设备
EP2827634B1 (en) Method and device for implementing report measurement and reporting measurement result
EP2824870B1 (en) Wireless local area network discovery and selection method, device and system, and terminal
WO2013178023A1 (zh) 信号处理方法和装置
EP3174338A1 (en) User terminal and base station
AU2012265470B2 (en) Power control method, device and system
EP3703338B1 (en) Data message transmission method and apparatus
CN107360600B (zh) 小区选择的方法及设备
US20150264597A1 (en) Communication Method, Base Station, and User Equipment
TW201517534A (zh) 用於減少從蜂巢網路到無線區域網路的干擾的通道選擇
CN108882321A (zh) 一种小区重选方法、终端及计算机可读存储介质
US20160338008A1 (en) Method for Indicating Cell Coverage Enhancement Mode and Base Station
JP2015526934A (ja) キャリアアグリゲーション可能無線通信装置におけるrfチェーン管理
TWM395314U (en) Wireless transmit/receive unit (WTRU) and network entity for detecting a home node-b or home (evolved) node-b (HNB), and base station
US9854586B2 (en) Method and apparatus for supporting user equipment in task execution
US9813964B2 (en) Signaling for mobility and mobility state estimation
WO2019024812A1 (zh) 一种邻区测量方法及装置
US9877244B2 (en) Inter-frequency neighboring cell proximity detection method, inter-frequency neighboring cell measurement method, radio network controller, and user equipment
WO2014205830A1 (zh) 信号测量方法、设备和系统
WO2013053327A1 (zh) 网络选择方法、移动终端及基站
US20130295928A1 (en) User terminal and communication method
CN112312462A (zh) 一种非授权频段小区切换方法、终端及网络侧设备
WO2014131176A1 (zh) 无线通信方法和设备
WO2013181946A1 (zh) 小区重选方法、资源释放方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797634

Country of ref document: EP

Kind code of ref document: A1