WO2014205830A1 - 信号测量方法、设备和系统 - Google Patents

信号测量方法、设备和系统 Download PDF

Info

Publication number
WO2014205830A1
WO2014205830A1 PCT/CN2013/078489 CN2013078489W WO2014205830A1 WO 2014205830 A1 WO2014205830 A1 WO 2014205830A1 CN 2013078489 W CN2013078489 W CN 2013078489W WO 2014205830 A1 WO2014205830 A1 WO 2014205830A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured
sector
base station
information
carrier
Prior art date
Application number
PCT/CN2013/078489
Other languages
English (en)
French (fr)
Inventor
姚霈
张岩强
郇海滨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13869851.9A priority Critical patent/EP2838218A4/en
Priority to PCT/CN2013/078489 priority patent/WO2014205830A1/zh
Priority to CN201380000745.1A priority patent/CN103650565A/zh
Priority to ARP140102445A priority patent/AR096768A1/es
Publication of WO2014205830A1 publication Critical patent/WO2014205830A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports

Definitions

  • the present invention relates to a mobile communication system, and more particularly to a signal measurement method, device and system. Background technique
  • the frequency band of the GSM system becomes narrower and narrower.
  • the existing GSM cells need to be merged, that is, the carrier control channel (BCCH) carrier frequencies of multiple cells are combined, and the traffic channel (TCH) is carried.
  • BCCH carrier control channel
  • TCH traffic channel
  • the combination of the foregoing cells has an impact on the network structure.
  • the user equipment on the TCH carrier frequency can measure the TCH carrier frequency of the serving sector in the super serving cell, the BCCH carrier frequency of the super serving cell, and the BCCH carrier frequency of the neighboring cell.
  • the downlink signal, but the downlink signal of the TCH carrier frequency in the adjacent sector cannot be measured, that is, the user equipment in the network cannot normally measure the downlink signal of the adjacent sector under the super cell, and the inter-sector handover decision cannot be performed, thereby
  • the mobility management of user equipment has an impact. Summary of the invention
  • the embodiment of the invention provides a signal measurement method, device and system, which can implement measurement of signal quality of each sector under the super-cell in the network side.
  • a first aspect of the present invention provides a signal measurement method, which is applicable to a wireless communication system, wherein the wireless communication system includes a super cell, the super cell includes two or more sectors, and the method includes The base station controller sends the information to be measured to the base station, where the information to be measured includes: a sector identifier of the to-be-measured sector in the super cell and radio resource information of the user equipment UE to be measured, so that the base station according to the The information to be measured measures the UE to be measured in the sector to be measured And performing, by the base station controller, the uplink signal measurement result reported by the base station; wherein the radio resource information is used to indicate the to-be-received Measuring radio resources occupied by the UE in a serving sector of the UE to be measured, where the to-be-measured sector and the serving sector belong to the same super cell.
  • the radio resource information includes: a time-frequency resource occupied by the UE to be measured in the serving sector, and the UE to be measured in the a training sequence number TSC in the serving sector; or, the time-frequency resource and the TSC, and the frequency hopping information and/or the discontinuous transmission DTX flag of the UE to be measured in the serving sector.
  • the information to be measured further includes: a measurement time and/or a user identifier of the UE to be measured.
  • the method before the base station controller sends the information to be measured to the base station, the method further includes: Determining, by the base station controller, at least one adjacent sector of the serving sector as the to-be-measured sector according to neighboring sector configuration information of the serving sector, and acquiring the to-be-measured sector Or the base station controller, selecting, according to the adjacent sector configuration information of the serving sector and an idle carrier of a neighboring sector of the serving sector, among the adjacent sectors The at least one sector including the idle carrier is used as the sector to be measured, and the sector identifier of the sector to be measured is obtained.
  • the information to be measured further includes a carrier identifier of a carrier to be measured in the to-be-measured sector, where the acquiring After the sector identifier of the sector to be measured, the method further includes: determining, by the base station controller, the to-be-measured carrier in the to-be-measured sector according to the idle carrier of the to-be-measured sector; Obtaining the carrier identifier of the carrier to be measured.
  • the method before the base station controller sends the information to be measured to the base station, the method further includes: the base station controller Acquiring the signal measurement result of the UE to be measured in the serving sector; the sending, by the base station controller, the information to be measured to the base station includes: the base station controller determining that the UE to be measured is in the service Whether the signal measurement result in the sector satisfies a preset condition, and if yes, transmitting the to-be-measured information to the base station.
  • the method further includes: if the base station controller determines to release the radio resource indicated by the radio resource information And sending a stop measurement message to the base station, so that the base station stops measuring the uplink signal of the UE to be measured according to the stop measurement message.
  • a second aspect of the present invention provides a signal measurement method, which is applicable to a wireless communication system, the wireless communication system including a super cell, the super cell including two or more sectors, and the method includes
  • the base station receives the to-be-measured information sent by the base station controller, where the to-be-measured information includes: a sector identifier of the to-be-measured sector in the super cell and radio resource information of the user equipment UE to be measured, where the radio resource information is used.
  • the base station And indicating, by the to-be-measured UE, the radio resource occupied by the UE to be measured in the serving sector of the UE to be measured; and the base station, according to the information to be measured, measuring an uplink signal of the UE to be measured in the to-be-measured sector, The obtained uplink signal measurement result is reported to the base station controller.
  • the radio resource information includes: a time-frequency resource occupied by the UE to be measured in the serving sector, and the UE to be measured a training sequence number TSC in the serving sector; or, the time-frequency resource and the TSC, and the frequency hopping information and/or the discontinuous transmission DTX flag of the UE to be measured in the serving sector.
  • the base station according to the information to be measured, the UE to be measured is in the to-be-measured sector
  • the uplink signal includes: determining, by the base station, a carrier to be measured according to the idle carrier in the to-be-measured sector indicated by the sector identifier; and determining, by the base station, the fan to be measured according to the radio resource information Configuring a radio resource for the UE to be measured on the to-be-measured carrier of the area; the base station measuring an uplink signal of the UE to be measured on the configured radio resource.
  • the information to be measured further includes a carrier identifier of a carrier to be measured in the to-be-measured sector; Determining, by the base station, the uplink information of the UE to be measured in the to-be-measured sector according to the to-be-measured information And the base station, according to the radio resource information, configuring, for the to-be-measured UE, wireless on the to-be-measured carrier indicated by the carrier identifier in the to-be-measured sector indicated by the sector identifier The base station measures an uplink signal of the UE to be measured on the configured radio resource.
  • the base station measures an uplink signal of the UE to be measured,
  • the method includes: measuring, in a measurement period, all frames or a specific frame or a slow associated control channel S ACCH frame on a channel corresponding to the configured radio resource.
  • the information to be measured further includes a measurement time, where the base station is configured on the configured radio resource.
  • the measuring the uplink signal of the UE to be measured includes: measuring, in the measurement period, all frames or a specific frame or a SACCH frame on a channel corresponding to the configured radio resource in a measurement period.
  • the method further includes: the base station receiving a stop measurement message sent by the base station controller; The stopping the measurement message stops the measurement of the uplink signal of the UE to be measured.
  • a third aspect of the present invention provides a base station controller, including: a processing unit, configured to acquire information to be measured, where the information to be measured includes: a sector identifier of a sector to be measured in a super cell, and a user equipment UE to be measured
  • the radio resource information, the super cell includes two or more sectors
  • the sending unit is configured to send the to-be-measured information acquired by the processing unit to the base station, so that the base station is to be measured according to the
  • the information is used to measure the uplink signal of the UE to be measured in the to-be-measured sector, and report the obtained uplink signal measurement result to the base station controller.
  • the receiving unit is configured to receive the uplink signal reported by the base station.
  • the radio resource information is used to indicate the radio resource occupied by the UE to be measured in the serving sector of the UE to be measured.
  • the radio resource information includes: a time-frequency resource occupied by the UE to be measured in the serving sector, and the UE to be measured in the a training sequence number TSC in the serving sector; or, the time-frequency resource and the TSC, and the to-be-tested The UE transmits frequency hopping information and/or discontinuous DTX flags within the serving sector.
  • the information to be measured further includes: a measurement time and/or a user identifier of the UE to be measured.
  • the processing unit includes: a first determining unit, configured to use, according to the serving sector The adjacent sector configuration information, the at least one adjacent sector of the serving sector is determined as the to-be-measured sector, the sector identifier of the to-be-measured sector is obtained, and sent to the sending Or selecting, according to the adjacent sector configuration information of the serving sector and a free carrier in a neighboring sector of the serving sector, selecting at least one of the adjacent sectors to include a free carrier. As the sector to be measured, the sector identifier of the sector to be measured is obtained and sent to the sending unit.
  • the information to be measured further includes a carrier identifier of a carrier to be measured in the to-be-measured sector
  • the processing unit further The second determining unit is configured to determine, according to the idle carrier in the to-be-measured sector that is determined by the first determining unit, the to-be-measured carrier in the to-be-measured sector, and obtain the to-be-measured carrier
  • the carrier identifier is sent to the sending unit.
  • the receiving unit is further configured to acquire, by the UE to be measured, in the serving sector.
  • the processing unit is further configured to determine whether the uplink signal measurement result of the UE to be measured in the serving sector meets a preset condition, and if yes, notify the sending unit to send the The information to be measured is sent to the base station.
  • the processing unit is further configured to: if it is determined to release the radio resource indicated by the radio resource information, Notifying the sending unit to send a stop measurement message to the base station, so that the base station stops measuring the uplink signal of the UE to be measured according to the stop measurement message.
  • a fourth aspect of the present invention provides a base station, including: a receiving unit, configured to receive information to be measured sent by a base station controller, where the information to be measured includes: a sector identifier of a sector to be measured in a super cell And the radio resource information of the user equipment UE to be measured, the radio resource information used to indicate the radio resource occupied by the UE to be measured in a serving sector of the UE to be measured, where the super cell includes two or two a measuring unit, configured to measure, according to the information to be measured received by the receiving unit, an uplink signal of the UE to be measured in the to-be-measured sector; and a sending unit, configured to: The uplink signal measurement result obtained by the measurement unit is reported to the base station controller.
  • the radio resource information includes: a time-frequency resource occupied by the UE to be measured in the serving sector, and the UE to be measured in the a training sequence number TSC in the serving sector; or, the time-frequency resource and the TSC, and the frequency hopping information and/or the discontinuous transmission DTX flag of the UE to be measured in the serving sector.
  • the base station further includes: a determining unit and a first configuration unit; Receiving, by the receiving unit, the idle carrier in the to-be-measured sector indicated by the sector identifier in the information to be measured, determining a carrier to be measured; the first configuration unit, configured to receive according to the receiving unit
  • the radio resource information in the to-be-measured information, the radio resource is configured for the to-be-measured UE on the to-be-measured carrier of the to-be-measured sector determined by the determining unit;
  • the uplink signal of the UE to be measured is measured on a radio resource configured by the first configuration unit.
  • the information to be measured further includes a carrier identifier of a carrier to be measured in the to-be-measured sector;
  • the base station further includes: a second configuration unit, configured to: according to the radio resource information in the to-be-measured information received by the receiving unit, the to-be-identified in the sector identifier Configuring a radio resource for the to-be-measured UE on the to-be-measured carrier indicated by the carrier identifier in the measurement unit; the measuring unit is further configured to measure the radio resource configured by the second configuration unit The uplink signal of the UE to be measured.
  • the measuring unit is specifically configured to::, in a measurement period, a channel corresponding to the configured radio resource All frames or specific frames or slow associated control channel SACCH frames are measured.
  • the information to be measured further includes a measurement time, where the measurement unit is specifically configured to: All the frames or specific frames or S ACCH frames on the channel corresponding to the configured radio resource are measured in units of measurement periods.
  • the receiving unit is further configured to receive a stop measurement message sent by the base station controller, in the sixth implementation manner of the fourth aspect, The measuring unit is further configured to stop the measurement of the uplink signal of the UE to be measured according to the stop measurement message received by the receiving unit.
  • the base station controller sends the information to be measured to the base station, so that the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the to-be-measured information, and obtains the uplink signal.
  • the measurement result is reported to the base station controller; the base station controller receives the uplink signal measurement result reported by the base station, and the base station controller obtains the measurement result of the uplink signal of the user equipment in each sector in the super cell, thereby enabling the base station controller to
  • the sector switching decision is performed according to the measurement result of the uplink signal, which ensures the call quality of the user equipment and improves the user experience.
  • FIG. 1 is a flowchart of a signal measurement method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another signal measurement method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a signal measurement method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another signal measurement method according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a base station controller according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of another base station controller according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of still another base station controller according to an embodiment of the present invention
  • FIG. 8 is a structural diagram of a base station according to an embodiment of the present disclosure.
  • Figure 8 (a) is a structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 8(b) is a structural diagram of still another base station according to an embodiment of the present invention.
  • FIG. 9 is a hardware structural diagram of a base station controller according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a hardware of a base station according to an embodiment of the present invention. detailed description
  • the user equipment which may be a wireless terminal or a wired terminal, may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Equipment Device ), or User Equipment.
  • a base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to translate received air frames and IP packets into a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • the base station controller may be a base station controller (BSC) in GSM or CDMA, or may be a radio network controller (RNC) in WCDMA, which is not limited in the present invention.
  • BSC base station controller
  • RNC radio network controller
  • a signal measurement method provided by an embodiment of the present invention is applicable to a wireless communication system, where the wireless communication system includes a super cell, where the super cell includes two or more sectors, The method is performed by a base station controller as described below.
  • the base station controller sends the information to be measured to the base station, where the information to be measured includes: a sector identifier of the sector to be measured in the super cell and radio resource information of the user equipment to be measured, so that the base station measures the to be measured according to the information to be measured.
  • the uplink signal of the UE in the sector to be measured is reported to the base station controller.
  • the sector identifier of the to-be-measured sector is used to indicate the to-be-measured sector.
  • the sector number of the base station controller may be the sector number of the super-cell, and the sector number of the super-cell is not described here.
  • the measurement sector may be all sectors except the serving sector under the super cell to which the serving sector of the UE to be measured belongs; or may be determined according to neighboring sector configuration information of the serving sector of the UE to be measured. , here is not limited. Specifically, the adjacent sector configuration information of the serving sector may be preset in the base station controller.
  • the foregoing radio resource information is used to indicate the radio resource occupied by the UE to be measured in the serving sector of the UE to be measured, and may include: the time-frequency resource occupied by the UE to be measured in the serving sector.
  • a training sequence code (TSC) of the UE to be measured in the serving sector where the time-frequency resource occupied by the UE to be measured in the serving sector may include: the UE to be measured occupied in the serving sector The frequency of the carrier, and the time slot information occupied by the UE to be measured in the serving sector.
  • the time slot information occupied by the UE to be measured includes the time slot number of the time slot; when the UE to be measured occupies one sub-time slot in one time slot
  • the time slot information occupied by the UE to be measured includes the time slot number of the time slot and the sub time slot number of the sub time slot.
  • the frequency of the carrier occupied by the UE to be measured includes all frequency points in the frequency hopping frequency point set.
  • the radio resource information may further include: frequency hopping information and/or a discontinuous transmission (DTX) flag of the UE to be measured in the serving sector of the UE to be measured, where the frequency hopping information may specifically Including: mobile allocation index offset (MAIO) and Hopping Sequence Number (HSN), or frequency hopping type, for example, baseband frequency hopping or radio frequency hopping.
  • the carrier identifier of the carrier to be measured includes a plurality of carrier identifiers of the carrier to be measured.
  • the service sector refers to a sector that currently serves the UE to be measured, and may belong to the same super cell as the sector to be measured, or may not belong to the same super cell.
  • the super cell may be obtained by combining multiple cells.
  • the information to be measured may further include at least one of the following information: a measurement time, a user identifier of the UE to be measured, and a carrier identifier of the carrier to be measured within the sector to be measured.
  • the carrier identifier is used to indicate the carrier to be measured, for example, the carrier number in the sector to be measured, or the carrier number in the super cell to which the sector to be measured belongs.
  • the start time and the end time which may also be the measured time length, the user identifier of the UE to be measured may be a temporary user identifier assigned to the UE to be measured by the BSC, or the temporary mobile station identifier of the UE to be measured only Mobile subscriber identity (TMSI) or international mobile subscribers only have an international mobile subscriber identity (IMSI), which is not limited here. 102.
  • the base station controller receives the uplink signal measurement result reported by the base station.
  • the uplink signal measurement result may include at least one of the following: a received signal level (RxLev), a received signal quality (RxQual), a carrier-to-interference ratio (CIR), and an average bit error rate (meanbep). , radio quality indication (RQI), timing advance (TA), which is not limited here.
  • RxLev received signal level
  • RxQual received signal quality
  • CIR carrier-to-interference ratio
  • meanbep average bit error rate
  • RQI radio quality indication
  • TA timing advance
  • the base station controller sends the information to be measured to the base station, so that the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the to-be-measured information, and measures the obtained uplink signal.
  • the result is reported to the base station controller; the base station controller receives the uplink signal measurement result reported by the base station, and the base station controller obtains the measurement result of the uplink signal of the user equipment in each sector in the super cell, so that the base station controller can
  • the measurement result performs a sector switching decision, which ensures the quality of the call of the user equipment and improves the user experience.
  • step 102 the foregoing method further includes:
  • the base station controller determines to release the radio resource indicated by the radio resource information, sending a stop measurement message to the base station;
  • the stop measurement message may include the sector identifier of the to-be-measured sector and the foregoing radio resource information. It should be noted that when the to-be-measured information includes the user identifier of the UE to be measured, the stop measurement message may include only the to-be-measured For the related description of the user identifier of the UE to be measured, refer to step 101.
  • the base station controller determines to release the radio resource indicated by the radio resource information, that is, determines to release the radio resource occupied by the UE to be measured in the serving sector. And sending the stop measurement message to the base station, to notify the base station to stop measuring the uplink signal of the UE to be measured in the to-be-measured sector.
  • the base station controller when it determines to release the radio resource indicated by the radio resource information, it sends a stop measurement message to the base station, to notify the base station to stop measuring the uplink signal of the UE to be measured in the to-be-measured sector, and release the to-be-measured The radio resources occupied by the UE in the sector to be measured.
  • the foregoing method further includes: The base station controller determines, according to the adjacent sector configuration information of the serving sector of the UE to be measured, at least one adjacent sector of the serving sector as a sector to be measured, and obtains a sector identifier of the sector to be measured; or, the base station The controller selects at least one sector including the idle carrier as the to-be-measured sector in the adjacent sector according to the adjacent sector configuration information of the serving sector and the idle carrier of the adjacent sector of the serving sector, and obtains the to-be-measured sector.
  • the sector identification of the sector is measured.
  • the at least one adjacent sector of the serving sector is determined as the to-be-measured sector, and specifically: the base station controller may use the adjacent sector configuration information of the serving sector to select the adjacent sector of the serving sector. All are determined as the sector to be measured; or the sector to be measured may be determined according to the adjacent sector configuration information of the serving sector, and the load condition in the adjacent sector, or the alarm state of the adjacent sector; No longer - enumeration.
  • selecting at least one sector including the idle carrier as the to-be-measured sector in the adjacent sector may be: when at least one sector in the adjacent sector of the serving sector of the UE to be measured has an idle carrier And determining the at least one sector as the to-be-measured sector, and then selecting one idle carrier as the to-be-measured carrier in the at least one sector. It is obvious that the load and the alarm can also be selected as selection conditions in the selection process of the sector to be measured.
  • the base station controller determines the number of carriers to be measured according to the number of frequency points of the baseband hopping.
  • the number of carriers to be measured may be The baseband frequency hopping frequency is the same; the to-be-measured sector and the to-be-measured carrier in the to-be-measured sector are further determined according to the number of carriers to be measured; when the UE to be measured uses radio frequency hopping in the monthly service cell In the manner of transmitting and receiving signals, the base station controller may determine only one carrier to be measured.
  • the information to be measured further includes a carrier identifier of the carrier to be measured in the to-be-measured sector. After obtaining the sector identifier of the sector to be measured, the method further includes:
  • the base station controller determines the carrier to be measured in the sector to be measured according to the idle carrier of the sector to be measured; and the base station controller acquires the carrier identifier of the carrier to be measured.
  • the carrier to be measured is an idle carrier in the sector to be measured, and may be preset according to a preset.
  • the selection condition is selected to obtain, for example, the idle carrier with the smallest carrier number in the sector to be measured can be selected according to the carrier number, and the idle carrier with the longest average idle time can be selected according to the average idle time of the carrier, where no longer— - enumeration.
  • the base station controller determines the sector to be measured according to the neighboring sector configuration information of the serving sector, and can avoid measuring the uplink signal in the sector in the super cell that does not meet the condition of the handover target sector.
  • the waste caused by the resource in addition, the base station controller combines the adjacent sector configuration information of the serving sector of the UE and the idle carrier in the adjacent sector to determine the sector to be measured, not only avoiding not in the super cell It is also possible to avoid the waste of resources caused by the measurement of the uplink signal in the sector as the condition of the handover target sector, and it is also possible to avoid identifying the sector in which the idle carrier is not present in the adjacent sector as the sector to be measured.
  • the method further includes: the base station controller acquiring a signal measurement result of the UE to be measured in the serving sector; and the step 101 may include:
  • the base station controller determines whether the signal measurement result of the UE to be measured in the serving sector satisfies a preset condition, and if yes, sends the to-be-measured information to the base station.
  • the signal measurement result may include an uplink signal measurement result and/or a downlink signal measurement result.
  • the measurement result of the uplink signal may be used to measure an uplink signal of the UE to be measured in the serving sector by the base station where the serving sector is located, and send the uplink signal to the base station.
  • the measurement result of the downlink signal may be obtained by the UE to measure the downlink signal of the serving sector and sent to the base station controller, where the measurement result of the downlink signal may specifically include at least one of the following information: a received signal level, Received signal quality, carrier to interference ratio, average bit error rate, wireless quality indication.
  • the foregoing preset condition may be preset in the base station controller, or may be configured to the base station controller through the device according to the user's needs.
  • the determining, by the base station controller, whether the signal measurement result of the UE to be measured in the serving sector meets the preset condition may include:
  • the base station controller determines whether the uplink signal measurement result of the UE to be measured in the serving sector satisfies a preset condition of the uplink signal, and whether the downlink signal measurement result satisfies a preset condition of the downlink signal, and if yes, sends the to-be-measured information to Base station; or,
  • the base station controller determines whether the downlink signal measurement result of the UE to be measured in the serving sector satisfies a preset condition of the downlink signal, and if yes, sends the to-be-measured information to the base station.
  • the base station controller may also determine whether to send the information to be measured to the base station according to the current state of the serving sector. For example, according to the load of the serving sector, when the load is greater than a preset threshold, the information to be measured is sent. The base station can also be based on the alarm status of the serving sector, and will not be described here.
  • FIG. 2 another signal measurement method provided by an embodiment of the present invention is applicable to a wireless communication system, where the wireless communication system includes a super cell, where the super cell includes two or more sectors. The details are as follows.
  • the base station receives the information to be measured sent by the base station controller, where the to-be-measured information includes: a sector identifier of the to-be-measured sector in the super cell and radio resource information of the UE to be measured, where the radio resource information is used to indicate that the UE to be measured is in The radio resources occupied in the serving sector of the UE to be measured.
  • radio resource information is consistent with the related description in step 101, and details are not described herein.
  • the information to be measured may further include at least one of the following information: a measurement time, a user identifier of the UE to be measured, and a carrier identifier of the carrier to be measured in the sector to be measured.
  • the measurement time, the user identifier of the UE to be measured, and the carrier to be measured are consistent with the related description in the embodiment shown in FIG. 1.
  • the service sector refers to a sector that currently serves the UE to be measured, and may belong to the same super cell as the sector to be measured, or may not belong to the same super cell.
  • the super cell may be obtained by combining multiple cells.
  • the base station measures an uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured.
  • the obtained uplink signal measurement result is reported to the base station controller.
  • the base station according to the information to be measured, the uplink signal of the UE to be measured in the to-be-measured sector may include:
  • the base station determines the to-be-measured carrier according to the idle carrier in the to-be-measured sector indicated by the sector identifier; the base station configures the radio resource for the to-be-measured UE on the to-be-measured carrier of the to-be-measured sector according to the foregoing radio resource information;
  • the base station measures the uplink signal of the UE to be measured on the configured radio resource.
  • the base station measures, according to the information to be measured, the UE to be measured in the sector to be measured.
  • the uplink signal may specifically include:
  • the base station configures a radio resource for the UE to be measured on the to-be-measured carrier indicated by the carrier identifier of the to-be-measured sector indicated by the sector identifier, according to the radio resource information of the UE to be measured;
  • the base station measures the uplink signal of the UE to be measured on the configured radio resource.
  • the base station receives the information to be measured sent by the base station controller, and the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and obtains the uplink signal measurement result. Reporting to the base station controller, the base station controller obtains the measurement result of the uplink signal of the user equipment in each sector in the super cell, so that the base station controller can perform the sector switching decision according to the measurement result, and the user equipment is ensured. The call quality is improved, and the user is optional.
  • the foregoing method further includes:
  • the base station receives a stop measurement message sent by the base station controller, where the stop measurement message includes the sector identifier of the to-be-measured sector and the foregoing radio resource information of the UE to be measured, or the stop measurement message includes a user identifier of the UE to be measured. .
  • step 101 For a description of the user identifier of the UE to be measured, refer to step 101.
  • the base station stops measuring the uplink signal of the UE to be measured according to the stop measurement message.
  • the step 204 may include: the base station obtaining the to-be-measured sector according to the sector identifier, and determining, according to the radio resource information of the UE to be measured, the radio resource occupied in the to-be-measured sector; Measure the radio resources occupied in the sector.
  • the base station may perform wireless according to the UE to be measured carried in the stop measurement message.
  • the slot number in the resource information determines the UE that stops the uplink signal measurement; if the uplink signal of two UEs to be measured is simultaneously measured on the same time slot of a carrier to be measured in a certain to-be-measured sector, the base station may stop according to The TSC in the radio resource information of the UE to be measured carried in the measurement message determines the UE that stops the uplink signal measurement. Further, when the base station determines that the measurement of the uplink signal of the UE to be measured is stopped on the to-be-measured carrier, the base station restores the to-be-measured carrier to the configuration before the foregoing step 202.
  • the step 204 may specifically include: determining, according to the user identifier of the UE to be measured, the to-be-measured sector of the UE to be measured, and the radio resource occupied in the to-be-measured sector, when the measurement information of the UE to be measured is stopped.
  • the base station releases the radio resources occupied by the UE to be measured in the sector to be measured.
  • the stop measurement message includes the user identifier of the UE to be measured, the premise that the information to be measured in step 201 includes the user identifier of the UE to be measured, and the base station records the user identifier and the to-be-measured sector of the UE to be measured.
  • the radio resource allocated by the base station to the UE to be measured in the sector to be measured As shown in FIG. 3, another method for measuring a signal according to an embodiment of the present invention is described by taking a BSC as an example, and is specifically as follows.
  • the BSC sends the information to be measured to the base station, where the information to be measured includes: a sector identifier of the to-be-measured sector and radio resource information of the UE to be measured.
  • the base station receives the to-be-measured information sent by the BSC, and determines the carrier to be measured according to the idle carrier in the to-be-measured sector indicated by the sector identifier.
  • the carrier to be measured may be selected according to a preset selection condition, and the preset selection bar is obtained.
  • the device may be configured by the user to the base station through the BSC, or may be preset in the base station. For example, the idle carrier with the smallest carrier number in the sector to be measured may be selected, and the idle carrier with the longest average idle time may be selected, which is not limited herein.
  • the base station configures a radio resource for the UE to be measured on the to-be-measured carrier of the to-be-measured sector according to the radio resource information of the UE to be measured.
  • the radio resource information of the UE to be measured includes only the time-frequency resource and the TSC occupied by the UE to be measured in the serving sector of the UE to be measured, and the time-frequency resource includes the UE to be measured occupied in the monthly service sector.
  • the frequency of the carrier, and the time slot information to be measured by the UE in the serving sector first, the base station configures the frequency of the carrier to be measured as the frequency of the carrier occupied by the UE to be measured in the serving sector. Then, the base station configures the TSC of the UE to be measured in the serving sector to the time slot indicated by the time slot information of the carrier to be measured, so that the base station uses the TSC to analyze the uplink signal of the UE to be measured.
  • the base station configures the DTX identifier to the time slot indicated by the slot information of the to-be-measured carrier, so that the base station determines, according to the DTX identifier, whether the base station only measures the time slot.
  • a specific frame which is a frame with a specific frame number, is not described in the prior art.
  • the frequency hopping information is configured to the time slot indicated by the time slot information of the carrier to be measured, so that the base station obtains the frequency hopping algorithm of the UE to be measured according to the frequency hopping information, Therefore, the uplink signal of the UE to be measured is measured according to the frequency hopping algorithm.
  • the base station configures the frequency points of the multiple to-be-measured carriers indicated by the carrier identifier as the frequency of the carrier occupied by the UE to be measured in the serving sector, in multiple Configuring a radio resource for the UE to be measured on the to-be-measured carrier; when the frequency hopping is radio frequency hopping, the base station may
  • the base station measures, on the configured radio resource, an uplink signal of the UE to be measured, and obtains an uplink signal measurement result.
  • the step 304 may include: all frames or a specific frame or a slow associated control channel on the channel corresponding to the configured radio resource in the measurement period.
  • the SACCH) frame is measured.
  • all frames, specific frames, and SACCH frames are Time Division Multiple Access (TDMA) frames.
  • the measurement period may be a period of the SACCH measurement report.
  • the channel corresponding to the configured radio resource is a traffic channel
  • a complete SACCH message block exists in four 26 multiframes, and the time interval of the 26 multiframes is 120 ms. Therefore, the SACCH measurement period is 480 ms, which belongs to the prior art and will not be described here.
  • the base station measures a specific frame on the channel corresponding to the configured radio resource, where the specific frame includes a SACCH frame and has The voice frame of a specific frame number belongs to the prior art and will not be described here.
  • the base station when the information to be measured further includes frequency hopping information, and the hopping type indicated in the hopping information is radio frequency hopping, the base station obtains a frequency hopping algorithm according to the hopping information, so that the base station can adopt the UE to transmit the signal to be measured.
  • the frequency used is used to receive the uplink signal of the UE to be measured.
  • step 304 may include: performing, in the measurement time, all the frames on the channel corresponding to the configured radio resource in the measurement period or Measurements are made for specific frames or SACCH frames.
  • the base station reports the obtained uplink signal measurement result to the BSC.
  • the uplink signal measurement result may be carried in the SACCH measurement report message weight, and reported to the BSC according to the period of the SACCH measurement report.
  • the BSC determines to release the radio resource indicated by the radio resource information, send a stop measurement message to the base station.
  • the stop measurement message may include the sector identifier of the sector to be measured and the radio resource information of the UE to be measured in step 301.
  • the stop measurement message may only include the user identifier of the UE to be measured.
  • the base station receives the stop measurement message sent by the BSC, and stops the measurement of the uplink signal of the UE to be measured according to the stop measurement message. For details, refer to the related description in the embodiment shown in FIG. 1 .
  • the BSC sends the information to be measured to the base station, and the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and reports the obtained uplink signal measurement result to the BSC;
  • the BSC receives the uplink signal measurement result reported by the base station, and implements the measurement result of the uplink signal of the user equipment in each sector in the BSC under the super cell, so that the BSC can perform the sector switching decision according to the measurement result, and the user equipment is ensured.
  • the quality of the call improves the user experience; in addition, the base station determines the carrier to be measured according to the idle carrier in the sector to be measured indicated by the sector identifier, not only can reduce the BSC operation load, but also can more accurately determine the currently available idle carrier. , thereby selecting the carrier to be measured more efficiently.
  • FIG. 4 another method for measuring a signal according to an embodiment of the present invention is described by taking a BSC as an example, as follows.
  • the BSC determines, according to the neighboring sector configuration information of the serving sector of the UE to be measured, at least one adjacent sector of the serving sector as a to-be-measured sector, and obtains a sector identifier of the to-be-measured sector.
  • the neighboring sector configuration information of the serving sector may be preset in the BSC, which is a prior art and will not be described again.
  • the BSC determines the carrier to be measured in the sector to be measured according to the idle carrier of the sector to be measured, and obtains the carrier identifier of the carrier to be measured.
  • step 101 For details about the sector identifier and the carrier identifier, refer to the related description in step 101.
  • the BSC sends the information to be measured to the base station, where the to-be-measured information includes: a sector identifier of the to-be-measured sector, a carrier identifier of the to-be-measured carrier in the to-be-measured sector, and radio resource information of the UE to be measured.
  • the base station receives the to-be-measured information sent by the BSC, and configures a radio resource for the UE to be measured on the to-be-measured carrier of the to-be-measured sector according to the radio resource information of the UE to be measured.
  • the base station measures, on the configured radio resource, an uplink signal of the UE to be measured, and obtains an uplink signal. No. Measurement results.
  • step 304 For details, refer to the related description in step 304 above.
  • the base station reports the obtained uplink signal measurement result to the BSC.
  • the BSC sends a stop measurement message to the base station if it is determined to release the radio resource indicated by the radio resource information.
  • the base station receives the stop measurement message sent by the BSC, and stops the measurement of the uplink signal of the UE to be measured according to the stop measurement message.
  • the BSC sends the information to be measured to the base station, and the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and reports the obtained uplink signal measurement result to the BSC;
  • the BSC receives the uplink signal measurement result reported by the base station, and implements the measurement result of the uplink signal of the user equipment in each sector in the BSC under the super cell, so that the BSC can perform the sector switching decision according to the measurement result, and the user equipment is ensured.
  • a base station controller 500 includes: a sending unit 501, a receiving unit 502, and a processing unit 503, which are specifically described below.
  • the processing unit 503 is configured to obtain information to be measured, where the information to be measured includes: a sector identifier of a sector to be measured in the super cell and radio resource information of the user equipment UE to be measured, where the super cell includes two or more Sector
  • the sending unit 501 is configured to send the to-be-measured information to the base station, so that the base station measures the uplink signal of the to-be-measured UE in the to-be-measured sector according to the to-be-measured information, and reports the obtained uplink signal measurement result to the base station controller 500. ;
  • the receiving unit 502 is configured to receive an uplink signal measurement node reported by the base station;
  • the foregoing radio resource information is used to indicate the radio resource occupied by the UE to be measured in the serving sector of the UE to be measured, and the method may include: the UE to be measured accounts for the service sector of the UE to be measured. The time-frequency resource used and the TSC of the UE to be measured in the monthly service sector;
  • the time-frequency resource and the TSC, and the frequency hopping information and/or the DTX flag of the UE to be measured in the serving sector can be measured in the serving sector.
  • the information to be measured may further include: measuring time and/or a user identifier of the UE to be measured.
  • the base station controller 500 can be used to perform the steps in the embodiment shown in FIG. 1, FIG. 3 or FIG. 4, the time-frequency resources, the frequency hopping information, and the user identifier.
  • the base station controller 500 can be used to perform the steps in the embodiment shown in FIG. 1, FIG. 3 or FIG. 4, the time-frequency resources, the frequency hopping information, and the user identifier.
  • the base station controller 500 can be used to perform the steps in the embodiment shown in FIG. 1, FIG. 3 or FIG. 4, the time-frequency resources, the frequency hopping information, and the user identifier.
  • the processing unit 503 may include:
  • the first determining unit 5031 is configured to determine, according to the adjacent sector configuration information of the serving sector of the UE to be measured, at least one adjacent sector of the serving sector as a sector to be measured, and obtain a sector of the sector to be measured.
  • the area identifier is sent to the sending unit 501; or
  • the information to be measured further includes a carrier identifier of the carrier to be measured in the sector to be measured, and the processing unit 503 further includes:
  • the second determining unit 5032 is configured to determine, according to the idle carrier in the to-be-measured sector that is determined by the first determining unit 5031, the carrier to be measured in the to-be-measured sector, obtain the carrier identifier of the carrier to be measured, and send the identifier to the transmitting unit 501. .
  • the receiving unit 502 is further configured to obtain an uplink signal measurement result of the UE to be measured in a serving sector of the UE to be measured.
  • the processing unit 503 is further configured to determine whether the uplink signal measurement result of the UE to be measured in the serving sector of the UE to be measured satisfies a preset condition, and if yes, notify the sending unit 501 to send the to-be-measured information to the base station.
  • the processing unit 503 is further configured to: If it is determined that the radio resource indicated by the radio resource information is released, the notification sending unit 501 sends a stop measurement message to the base station, so that the base station stops the measurement of the uplink signal of the UE to be measured according to the stop measurement message;
  • the stop measurement message may include the sector identifier of the sector to be measured and the radio resource information of the UE to be measured, or when the information to be measured includes the user identifier of the UE to be measured, the stop measurement message may include the user identifier of the UE to be measured. .
  • the base station controller is configured to send the information to be measured to the base station, so that the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and reports the obtained uplink signal measurement result.
  • the base station controller receives the uplink signal measurement result reported by the base station, and implements, in the super cell, the base station controller obtains the measurement result of the uplink signal of the user equipment in each sector, so that the base station controller can perform the measurement according to the base station controller.
  • the sector switching decision is performed to ensure the quality of the call of the user equipment and improve the user experience.
  • a base station according to an embodiment of the present invention includes: a receiving unit 801, a measuring unit 802, and a sending unit 803, which are specifically described below.
  • the receiving unit 801 is configured to receive information to be measured sent by the BSC, where the information to be measured includes: a sector identifier of a to-be-measured sector in the super cell and radio resource information of the UE to be measured, where the radio resource information is used to indicate the UE to be measured a radio resource occupied in a serving sector of the UE to be measured, the super cell including two or more sectors;
  • the measuring unit 802 is configured to measure, according to the information to be measured received by the receiving unit 801, an uplink signal of the UE to be measured in the sector to be measured;
  • the sending unit 803 is configured to report the uplink signal measurement result obtained by the measurement unit 802 to the BSC.
  • the radio resource information of the UE to be measured may include: a time-frequency resource occupied by the UE to be measured in the serving sector and a TSC of the UE to be measured in the monthly service sector;
  • the time-frequency resource and the TSC, and the frequency hopping information and/or the DTX flag of the UE to be measured in the serving sector can be used to perform the steps in the embodiment shown in FIG. 2 to FIG. 4, the time-frequency resource, the frequency hopping information, the user identifier, and the like. For details, refer to the embodiment shown in FIG. 2 to FIG. 4. The related description is not repeated here.
  • the base station 800 may further include: a determining unit 804 and a first configuration unit 805:
  • the determining unit 804 is configured to determine, according to the idle carrier in the sector to be measured indicated by the sector identifier in the information to be measured received by the receiving unit 801, the carrier to be measured;
  • the first configuration unit 805 is configured to: according to the radio resource information in the to-be-measured information received by the receiving unit 801, the to-be-measured carrier of the to-be-measured sector determined by the determining unit 804 Measuring UE configuration radio resources;
  • the measuring unit 802 is further configured to measure an uplink signal of the UE to be measured on the radio resource configured by the first configuration unit 805.
  • the information to be measured may further include a carrier identifier of the carrier to be measured in the sector to be measured; as shown in FIG. 8(b), the base station 800 may further include a second configuration unit 806:
  • the second configuration unit 806 is configured to configure a radio resource for the UE to be measured on the to-be-measured carrier indicated by the carrier identifier in the to-be-measured sector indicated by the sector identifier according to the radio resource information in the to-be-measured information received by the receiving unit 801. ;
  • the measuring unit 802 is further configured to measure an uplink signal of the UE to be measured on the radio resource configured by the second configuration unit 806.
  • the measuring unit 802 is specifically configured to:
  • the information to be measured may further include a measurement time, and the measuring unit 802 is specifically configured to: in the measurement time, in the measurement period, all frames or specific frames or S ACCH frames on the channel corresponding to the configured radio resource. Make measurements.
  • the receiving unit 801 is further configured to receive a stop measurement message sent by the base station controller, where the stop The measurement message includes a sector identifier of the sector to be measured and radio resource information of the UE to be measured, or a user identifier of the UE to be measured;
  • the measuring unit 802 is further configured to stop the measurement of the uplink signal of the UE to be measured according to the stop measurement message received by the receiving unit 801.
  • the base station is configured to receive the information to be measured sent by the base station controller, and measure the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and report the obtained uplink signal measurement result to the base station.
  • the controller implements the measurement result of the uplink signal of the user equipment in each sector in the super cell, so that the base station controller can perform the sector switching decision according to the measurement result, and the call quality of the user equipment is ensured. , improve user experience.
  • a base station controller 900 according to an embodiment of the present invention includes: a transmitter 901 and a receiver 902, which are specifically described below.
  • the processor 903 is configured to obtain information to be measured, where the information to be measured includes: a sector identifier of a to-be-measured sector in the super cell, and radio resource information of the UE to be measured, where the super cell includes two or more sectors. ;
  • the transmitter 901 is configured to send the information to be measured acquired by the processor 903 to the base station, so that the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and reports the obtained uplink signal measurement result.
  • the base station controller 900 To the base station controller 900;
  • the receiving unit 902 is configured to receive an uplink signal measurement result reported by the base station.
  • the radio resource information is used to indicate the radio resource occupied by the UE to be measured in the serving sector of the UE to be measured, and may include: the time-frequency resource occupied by the UE to be measured in the serving sector of the UE to be measured, and the The TSC of the UE to be measured within the above service sector;
  • the time-frequency resource and the TSC, and the frequency hopping information and/or the DTX flag of the UE to be measured in the serving sector are considered the time-frequency resource and the TSC, and the frequency hopping information and/or the DTX flag of the UE to be measured in the serving sector.
  • the information to be measured may further include: measuring time and/or a user identifier of the UE to be measured.
  • the base station controller 900 can be used to perform the steps in the embodiment shown in FIG. 1, FIG. 3 or FIG. 4, the time-frequency resource, the frequency hopping information, and the user identifier. For details, refer to FIG. 1 and FIG. 3. Or the related description in the embodiment shown in FIG. 4, and details are not described herein again.
  • processor 903 is further configured to:
  • processor 903 is further configured to:
  • the receiver 902 is further configured to obtain a signal measurement result of the UE to be measured in a serving sector of the UE to be measured.
  • the processor 903 is further configured to determine whether the signal measurement result of the UE to be measured in the serving sector of the UE to be measured meets a preset condition, and if yes, send the to-be-measured information to the base station by using the transmitter 901.
  • processor 903 is further configured to:
  • the stop measurement message is sent to the base station by the transmitter 901, so that the base station stops the measurement of the uplink signal of the UE to be measured according to the stop measurement message.
  • the stop measurement message may include the sector identifier of the sector to be measured and the radio resource information of the UE to be measured, or when the information to be measured includes the user identifier of the UE to be measured, the stop measurement message may include the user identifier of the UE to be measured. .
  • the base station controller is configured to send the information to be measured to the base station, so that the base station measures the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and reports the obtained uplink signal measurement result.
  • the base station controller receives the uplink signal reported by the base station As a result, the base station controller obtains the measurement result of the uplink signal of the user equipment in each sector in the super cell, so that the base station controller can perform the sector handover decision according to the measurement result, thereby ensuring the call quality of the user equipment. , improve user experience.
  • a base station 1000 according to an embodiment of the present invention includes: a receiver 1001, a processor 1002, and a transmitter 1003, which are specifically described below.
  • the receiver 1001 is configured to receive information to be measured sent by the base station controller, where the information to be measured includes: a sector identifier of a to-be-measured sector in the super cell and radio resource information of the UE to be measured, where the radio resource information is used to indicate to be Measuring radio resources occupied by the UE in a serving sector of the UE to be measured, the super cell including two or more sectors;
  • the processor 1002 is configured to measure, according to the information to be measured received by the receiver 1001, an uplink signal of the UE to be measured in the sector to be measured;
  • the transmitter 1003 is configured to report the uplink signal measurement obtained by the processor 1002 to the base station controller.
  • the foregoing radio resource information may include: a time-frequency resource occupied by the UE to be measured in the serving sector and a TSC of the UE to be measured in the service sector;
  • the time-frequency resource and the TSC, and the frequency hopping information and/or the DTX flag of the UE to be measured in the service sector.
  • the base station 1000 can be used to perform the steps in the embodiment shown in FIG. 2 to FIG. 4, the time-frequency resource, the frequency hopping information, the user identifier, and the like. For details, refer to the embodiment shown in FIG. 2 to FIG. 4. The related description is not repeated here.
  • the processor 1002 is specifically configured to:
  • the uplink signal of the UE to be measured is measured on the configured radio resource.
  • the information to be measured may further include a carrier identifier of the carrier to be measured in the sector to be measured; the processor 1002 is specifically configured to:
  • the uplink signal of the UE to be measured is measured on the configured radio resource.
  • processor 1002 is further configured to:
  • the information to be measured may further include a measurement time
  • the processor 1002 is further configured to: perform, in the measurement time, all the frames or the specific frame or the SACCH frame on the channel corresponding to the configured radio resource in the measurement period. measuring.
  • the receiver 1001 is further configured to receive a stop measurement message sent by the base station controller, where the processor 1002 is further configured to stop the measurement of the uplink signal of the UE to be measured according to the stop measurement message received by the receiver 1001.
  • the stop measurement message includes the sector identifier of the sector to be measured and the radio resource information of the UE to be measured, or the user identifier of the UE to be measured.
  • the base station is configured to receive the information to be measured sent by the base station controller, and measure the uplink signal of the UE to be measured in the to-be-measured sector according to the information to be measured, and report the obtained uplink signal measurement result to the base station.
  • the controller implements the measurement result of the uplink signal of the user equipment in each sector in the super cell, so that the base station controller can perform the sector switching decision according to the measurement result, and the call quality of the user equipment is ensured. , improve user experience.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号测量方法、设备和系统。该方法适用于无线通信系统,该无线通信系统中包括超级小区,该超级小区包括两个或两个以上的扇区,该方法包括:基站控制器发送待测量信息给基站,所述待测量信息包括:待测量扇区的扇区标识、所述待测量扇区内的待测量载波的载波标识和待测量用户设备UE的无线资源信息,以使得所述基站根据所述待测量信息测量所述待测量UE在所述待测量扇区内的上行信号,并将获得的上行信号测量结果上报给所述基站控制器;所述基站控制器接收所述基站上报的所述上行信号测量结果。采用本发明实施例,能够实现在超级小区下基站对用户设备在扇区内的上行信号的测量,以便基站控制器根据测量结果进行移动性管理等操作。

Description

信号测量方法、 设备和系统 技术领域
本发明涉及移动通信系统, 尤其涉及一种信号测量方法、 设备和系统。 背景技术
随着全球移动通信系统 (Global System for Mobile Communications , GSM) 频谱重整(refarming )的进行, GSM系统的频带越来越窄。 为了降低 GSM系统 的干扰、 改善网络质量, 需要对现有 GSM小区进行合并, 即把多个小区的广播 控制信道(broadcast control channel, BCCH )载频合并, 而业务信道( traffic channel, TCH )载频不合并, 从而形成超级小区, 且合并后的超级小区包含有 多个覆盖区域不同的扇区。
上述小区的合并对网络结构带来了影响, TCH载频上的用户设备可测量到 超级服务小区中服务扇区的 TCH载频、 超级服务小区的 BCCH载频和相邻小区 的 BCCH载频的下行信号, 但无法测量相邻扇区中 TCH载频的下行信号, 即网 络中的用户设备无法正常测量超级小区下相邻扇区的下行信号, 导致无法进行 扇区间的切换判决, 从而对网络中用户设备的移动性管理带来影响。 发明内容
本发明实施例提供一种信号测量方法、设备和系统, 能够实现网络侧对超 级小区下各扇区信号质量的测量。
本发明的第一方面提供了一种信号测量方法,该方法适用于无线通信系统, 所述无线通信系统中包括超级小区,所述超级小区包括两个或两个以上的扇区, 该方法包括: 基站控制器发送待测量信息给基站, 所述待测量信息包括: 所述 超级小区中待测量扇区的扇区标识和待测量用户设备 UE的无线资源信息, 以使 得所述基站根据所述待测量信息测量所述待测量 UE在所述待测量扇区内的上 行信号, 并将获得的上行信号测量结果上报给所述基站控制器; 所述基站控制 器接收所述基站上报的所述上行信号测量结果; 其中, 所述无线资源信息用于 指示所述待测量 UE在所述待测量 UE的服务扇区内占用的无线资源, 所述待测 量扇区和所述服务扇区属于同一超级小区。
结合第一方面,在第一方面的第一种实现方式中,所述无线资源信息包括: 所述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服 务扇区内的训练序列号 TSC; 或者, 所述时频资源和所述 TSC, 以及所述待测 量 UE在所述服务扇区内的跳频信息和 /或非连续性发射 DTX标志。
结合第一方面或者第一方面的第一种实现方式, 在第一方面的第二种实现 方式中, 所述待测量信息还包括: 测量时间和 /或所述待测量 UE的用户标识。
结合第一方面或者第一方面的第一种实现方式或第二种实现方式, 在第一 方面的第三种实现方式, 在所述基站控制器发送待测量信息给基站之前, 还包 括: 所述基站控制器根据所述服务扇区的相邻扇区配置信息, 将所述服务扇区 的至少一个相邻扇区确定为所述待测量扇区, 获取所述待测量扇区的所述扇区 标识; 或者, 所述基站控制器根据所述服务扇区的所述相邻扇区配置信息和所 述服务扇区的相邻扇区的空闲载波, 在所述相邻扇区中选择至少一个包含有空 闲载波的扇区作为所述待测量扇区, 获取所述待测量扇区的所述扇区标识。
结合第一方面的第三种实现方式, 在第一方面的第四种实现方式中, 所述 待测量信息还包括所述待测量扇区内的待测量载波的载波标识, 所述获取所述 待测量扇区的所述扇区标识之后, 还包括: 所述基站控制器根据所述待测量扇 区的空闲载波, 确定所述待测量扇区内的所述待测量载波; 所述基站控制器获 取所述待测量载波的所述载波标识。
结合第一方面或者第一方面的上述任一种实施方式, 在第一方面的第五种 实现方式中, 在所述基站控制器发送待测量信息给基站之前, 还包括: 所述基 站控制器获取所述待测量 UE在所述服务扇区内的信号测量结果; 所述基站控制 器发送待测量信息给基站包括: 所述基站控制器判断所述待测量 UE在所述服务 扇区内的所述信号测量结果是否满足预设条件, 若是, 则发送所述待测量信息 给所述基站。
结合第一方面或者第一方面的上述任一种实施方式, 在第一方面的第六种 实现方式中, 该方法还包括: 所述基站控制器若确定释放所述无线资源信息指 示的无线资源, 则发送停止测量消息给所述基站, 以使得所述基站根据所述停 止测量消息, 停止对所述待测量 UE的上行信号的测量。
本发明的第二方面提供了一种信号测量方法,该方法适用于无线通信系统, 所述无线通信系统中包括超级小区,所述超级小区包括两个或两个以上的扇区, 该方法包括: 基站接收基站控制器发送的待测量信息, 所述待测量信息包括: 所述超级小区中待测量扇区的扇区标识和待测量用户设备 UE的无线资源信息, 所述无线资源信息用于指示所述待测量 UE在所述待测量 UE的服务扇区内占用 的无线资源; 所述基站根据所述待测量信息, 测量所述待测量 UE在所述待测量 扇区内的上行信号, 并将获得的上行信号测量结果上报给所述基站控制器。
结合第二方面,在第二方面的第一种实现方式中,所述无线资源信息包括: 所述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服 务扇区内的训练序列号 TSC; 或者, 所述时频资源和所述 TSC, 以及所述待测 量 UE在所述服务扇区内的跳频信息和 /或非连续性发射 DTX标志。
结合第二方面或第二方面的第一种实现方式, 在第二方面的第二种实现方 式中, 所述基站根据所述待测量信息, 测量所述待测量 UE在所述待测量扇区内 的上行信号, 包括: 所述基站根据所述扇区标识指示的所述待测量扇区内的空 闲载波, 确定待测量载波; 所述基站根据所述无线资源信息, 在所述待测量扇 区的所述待测量载波上为所述待测量 UE配置无线资源; 所述基站在所述配置的 无线资源上测量所述待测量 UE的上行信号。
结合第二方面或第二方面的第一种实现方式, 在第二方面的第三种实现方 式中, 所述待测量信息还包括所述待测量扇区内的待测量载波的载波标识; 所 述基站根据所述待测量信息,测量所述待测量 UE在所述待测量扇区内的上行信 号, 包括: 所述基站根据所述无线资源信息, 在所述扇区标识指示的所述待测 量扇区内的所述载波标识指示的所述待测量载波上为所述待测量 UE配置无线 资源; 所述基站在所述配置的无线资源上测量所述待测量 UE的上行信号。
结合第二方面的第二种实现方式或第三种实现方式, 在第二方面的第四种 实现方式中, 所述基站在所述配置的无线资源上测量所述待测量 UE的上行信 号, 包括: 在测量周期内, 对所述配置的无线资源对应的信道上的所有帧或特 定帧或慢随路控制信道 S ACCH帧进行测量。
结合第二方面的第二种实现方式或第三种实现方式, 在第二方面的第五种 实现方式中, 所述待测量信息还包括测量时间, 所述基站在所述配置的无线资 源上测量所述待测量 UE的上行信号, 包括: 在所述测量时间内, 以测量周期为 单位,对所述配置的无线资源对应的信道上的所有帧或特定帧或 SACCH帧进行 测量。
结合第二方面或者第二方面的上述任一种实现方式, 在第二方面的第六种 实现方式中, 还包括: 所述基站接收所述基站控制器发送的停止测量消息; 所 述基站根据所述停止测量消息, 停止对所述待测量 UE的上行信号的测量。
本发明的第三方面提供了一种基站控制器, 包括: 处理单元, 用于获取待 测量信息, 所述待测量信息包括: 超级小区中待测量扇区的扇区标识和待测量 用户设备 UE的无线资源信息, 所述超级小区包括两个或两个以上的扇区; 发送 单元, 用于发送所述处理单元获取的所述待测量信息给基站, 以使得所述基站 根据所述待测量信息测量所述待测量 UE在所述待测量扇区内的上行信号,并将 获得的上行信号测量结果上报给所述基站控制器; 接收单元, 用于接收所述基 站上报的所述上行信号测量结果; 其中, 所述无线资源信息用于指示所述待测 量 UE在所述待测量 UE的服务扇区内占用的无线资源。
结合第三方面,在第三方面的第一种实现方式中,所述无线资源信息包括: 所述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服 务扇区内的训练序列号 TSC; 或者, 所述时频资源和所述 TSC, 以及所述待测 量 UE在所述服务扇区内的跳频信息和 /或非连续性发射 DTX标志。 结合第三方面或第三方面的第一种实现方式, 在第三方面的第二种实现方 式中, 所述待测量信息还包括: 测量时间和 /或所述待测量 UE的用户标识。
结合第三方面或第三方面的第一种或第二种实现方式, 在第三方面的第三 种实现方式中, 所述处理单元包括: 第一确定单元, 用于根据所述服务扇区的 相邻扇区配置信息, 将所述服务扇区的至少一个相邻扇区确定为所述待测量扇 区, 获取所述待测量扇区的所述扇区标识, 并发送给所述发送单元; 或者, 根 据所述服务扇区的所述相邻扇区配置信息和所述服务扇区的相邻扇区中的空闲 载波, 在所述相邻扇区中选择至少一个包含有空闲载波的扇区作为所述待测量 扇区, 获取所述待测量扇区的所述扇区标识, 并发送给所述发送单元。
结合第三方面的第三种实现方式, 在第三方面的第四种实现方式中, 所述 待测量信息还包括所述待测量扇区内的待测量载波的载波标识, 所述处理单元 还包括: 第二确定单元, 用于根据所述第一确定单元确定的所述待测量扇区内 的空闲载波, 确定所述待测量扇区内的所述待测量载波, 获取所述待测量载波 的所述载波标识, 并发送给所述发送单元。
结合第三方面或第三方面的上述任一种实现方式, 在第三方面的第五种实 现方式中, 所述接收单元, 还用于获取所述待测量 UE在所述服务扇区内的上行 信号测量结果; 所述处理单元, 还用于判断所述待测量 UE在所述服务扇区内的 所述上行信号测量结果是否满足预设条件, 若是, 则通知所述发送单元发送所 述待测量信息给所述基站。
结合第三方面或第三方面的上述任一种实现方式, 在第三方面的第六种实 现方式中, 所述处理单元还用于: 若确定释放所述无线资源信息指示的无线资 源, 则通知所述发送单元发送停止测量消息给所述基站, 以使得所述基站根据 所述停止测量消息, 停止对所述待测量 UE的上行信号的测量。
本发明的第四方面提供了一种基站, 包括: 接收单元, 用于接收基站控制 器发送的待测量信息, 所述待测量信息包括: 超级小区中待测量扇区的扇区标 识和待测量用户设备 UE的无线资源信息,所述无线资源信息用于指示所述待测 量 UE在所述待测量 UE的服务扇区内占用的无线资源, 所述超级小区包括两个 或两个以上的扇区; 测量单元, 用于根据所述接收单元接收的所述待测量信息, 测量所述待测量 UE在所述待测量扇区内的上行信号; 发送单元, 用于将所述测 量单元获得的上行信号测量结果上报给所述基站控制器。
结合第四方面,在第四方面的第一种实现方式中,所述无线资源信息包括: 所述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服 务扇区内的训练序列号 TSC; 或者, 所述时频资源和所述 TSC, 以及所述待测 量 UE在所述服务扇区内的跳频信息和 /或非连续性发射 DTX标志。
结合第四方面或第四方面的第一种实现方式, 在第四方面的第二种实现方 式中, 该基站还包括: 确定单元和第一配置单元; 所述确定单元, 用于根据所 述接收单元接收的所述待测量信息中的所述扇区标识指示的所述待测量扇区内 的空闲载波, 确定待测量载波; 所述第一配置单元, 用于根据所述接收单元接 收的所述待测量信息中的所述无线资源信息, 在所述确定单元确定的所述待测 量扇区的所述待测量载波上为所述待测量 UE配置无线资源; 所述测量单元, 还 用于在所述第一配置单元配置的无线资源上测量所述待测量 UE的上行信号。
结合第四方面或第四方面的第一种实现方式, 在第四方面的第三种实现方 式中, 所述待测量信息还包括所述待测量扇区内的待测量载波的载波标识; 所 述基站还包括: 第二配置单元; 所述第二配置单元, 用于根据所述接收单元接 收的所述待测量信息中的所述无线资源信息, 在所述扇区标识指示的所述待测 量扇区内的所述载波标识指示的所述待测量载波上为所述待测量 UE配置无线 资源; 所述测量单元, 还用于在所述第二配置单元配置的无线资源上测量所述 待测量 UE的上行信号。
结合第四方面的第二种或第三种实现方式, 在第四方面的第四种实现方式 中, 所述测量单元具体用于: 在测量周期内, 对所述配置的无线资源对应的信 道上的所有帧或特定帧或慢随路控制信道 SACCH帧进行测量。 结合第四方面的第二种或第三种实现方式, 在第四方面的第五种实现方式 中, 所述待测量信息还包括测量时间, 所述测量单元具体用于: 在所述测量时 间内, 以测量周期为单位, 对所述配置的无线资源对应的信道上的所有帧或特 定帧或 S ACCH帧进行测量。
结合第四方面或第四方面的上述任一种实现方式, 在第四方面的第六种实 现方式中, 所述接收单元, 还用于接收所述基站控制器发送的停止测量消息; 所述测量单元, 还用于根据所述接收单元接收的所述停止测量消息, 停止对所 述待测量 UE的上行信号的测量。
由上述技术方案可知, 采用本发明实施例, 基站控制器发送待测量信息给 基站, 以使得基站根据该待测量信息测量待测量 UE在待测量扇区内的上行信 号, 并将获得的上行信号测量结果上报给基站控制器; 基站控制器接收基站上 报的上行信号测量结果, 实现了在超级小区下基站控制器获得用户设备在各扇 区内的上行信号的测量结果, 从而使得基站控制器能够根据该上行信号的测量 结果进行扇区切换判决, 保证了用户设备的通话质量, 提升用户感受。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图进行简单地介绍, 显而易见地, 下面描述中的附图是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种信号测量方法的流程图;
图 2为本发明实施例提供的另一种信号测量方法的流程图;
图 3为本发明实施例提供的一种信号测量方法的示意图;
图 4为本发明实施例提供的另一种信号测量方法的示意图;
图 5为本发明实施例提供的一种基站控制器的结构图;
图 6为本发明实施例提供的另一种基站控制器的结构图; 图 7为本发明实施例提供的又一种基站控制器的结构图;
图 8为本发明实施例提供的一种基站的结构图;
图 8 ( a )为本发明实施例提供的另一种基站的结构图;
图 8 ( b )为本发明实施例提供的又一种基站的结构图;
图 9为本发明实施例提供的一种基站控制器的硬件结构图;
图 10为本发明实施例提供的一种基站的硬件结构图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅是本发明一部分实施例, 而不是全 部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中结合用户设备和 /或基站和 /或基站控制器来描述各种方面。
用户设备, 可以是无线终端也可以是有线终端, 无线终端可以是指向用户 提供语音和 /或数据连通性的设备, 具有无线连接功能的手持式设备、 或连接到 无线调制解调器的其他处理设备。 无线终端可以经无线接入网 (例如, RAN, Radio Access Network )与一个或多个核心网进行通信, 无线终端可以是移动终 端, 如移动电话 (或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以 是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线 接入网交换语言和 /或数据。例如,个人通信业务(PCS, Personal Communication Service ) 电话、 无绳电话、 会话发起协议(SIP )话机、 无线本地环路 ( WLL, Wireless Local Loop )站、 个人数字助理 ( PDA, Personal Digital Assistant )等 设备。无线终端也可以称为系统、订户单元( Subscriber Unit )、订户站( Subscriber Station ),移动站 ( Mobile Station )、移动台 ( Mobile )、远程站 ( Remote Station )、 接入点 (Access Point )、 远程终端 (Remote Terminal )、 接入终端 (Access Terminal )、用户终端( User Terminal )、用户代理( User Agent )、用户设备 ( User Device )、 或用户装备 ( User Equipment )。
基站 (例如, 接入点)可以是指接入网中在空中接口上通过一个或多个扇 区与无线终端通信的设备。 基站可用于将收到的空中帧与 IP 分组进行相互转 换, 作为无线终端与接入网的其余部分之间的路由器, 其中接入网的其余部分 可包括网际协议(IP ) 网络。 基站还可协调对空中接口的属性管理。 例如, 基 站可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ), 还可以是 LTE中的演进型基站( NodeB或 eNB 或 e-NodeB, evolutional Node B ), 本发明并不限定。
基站控制器, 可以是 GSM或 CDMA中的基站控制器(BSC, base station controller ), 也可以是 WCDMA 中的无线网络控制器 (RNC, Radio Network Controller ), 本发明并不限定。
如图 1所示, 本发明实施例提供的一种信号测量方法, 该方法适用于无线 通信系统, 该无线通信系统中包括超级小区, 该超级小区包括两个或两个以上 的扇区, 该方法由基站控制器执行, 具体如下所述。
101、基站控制器发送待测量信息给基站, 该待测量信息包括: 超级小区中 待测量扇区的扇区标识和待测量用户设备的无线资源信息, 以使得基站根据该 待测量信息测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行信号 测量结果上报给基站控制器。
其中, 待测量扇区的扇区标识用于指示该待测量扇区, 例如, 具体可以是 基站控制器下的扇区编号, 还可以是超级小区的扇区编号, 此处不再赘述; 待 测量扇区可以是待测量 UE的服务扇区所属的超级小区下的除了该服务扇区之 外的所有扇区; 也可以是根据待测量 UE的服务扇区的相邻扇区配置信息来确 定, 此处不予限制。 具体地, 该服务扇区的相邻扇区配置信息可以预先设置在 基站控制器内部。
其中, 上述无线资源信息用于指示待测量 UE在待测量 UE的服务扇区内 占用的无线资源, 具体可以包括: 该待测量 UE在服务扇区内占用的时频资源 和该待测量 UE在服务扇区内的训练序列号( training sequence code, TSC ), 其 中, 待测量 UE在服务扇区内占用的时频资源可以包括: 待测量 UE在服务扇 区内占用的载波的频点, 以及待测量 UE在服务扇区内占用的时隙信息。 例如, 当待测量 UE在服务扇区内占用了一个时隙, 则待测量 UE 占用的时隙信息包 括该时隙的时隙号; 当待测量 UE 占用了一个时隙中的一个子时隙, 则待测量 UE占用的时隙信息包括该时隙的时隙号和该子时隙的子时隙号。再例如, 当待 测量 UE在服务小区内采用跳频方式收发信号时, 待测量 UE 占用的载波的频 点包括跳频频点集中的所有频点。
进一步地, 无线资源信息还可以包括: 该待测量 UE的服务扇区内的待测 量 UE的跳频信息和 /或非连续性发射( discontinuous transmission, DTX )标志, 其中, 该跳频信息具体可以包括: 移动分配指针偏移 (mobile allocation index offset, MAIO )和跳频序列号(Hopping Sequence Number, HSN ), 或者跳频类 型, 例如, 基带跳频或射频跳频。 需要说明的是, 当待测量 UE在服务扇区内 采用基带跳频方式收发信号时, 上述待测量载波的载波标识包括多个待测量载 波的载波标识。
需要指出的是, 上述服务扇区指的是当前为待测量 UE提供服务的扇区, 可以与待测量扇区属于同一个超级小区,也可以不属于同一个超级小区。其中, 该超级小区可以由多个小区合并获得。
可选地, 待测量信息还可以包括以下信息的至少一种: 测量时间、 待测量 UE的用户标识和待测量扇区内的待测量载波的载波标识。其中,该载波标识用 于指示该待测量载波, 例如, 具体可以是待测量扇区内的载波编号, 也可以是 该待测量扇区所属超级小区内的载波编号; 该测量时间具体可以为测量的起始 时间和终止时间, 还可以为测量的时间长度, 该待测量 UE的用户标识可以为 BSC分配给该待测量 UE的临时用户标识, 或者该待测量 UE的临时移动台标 只 ( temporary mobile subscriber identity, TMSI ) 或国际移动用户 只另 'J码 ( international mobile subscriber identity, IMSI ), 此处不予限制。 102、 基站控制器接收基站上报的上行信号测量结果。
其中,上行信号测量结果可以包括以下至少一种:接收信号电平(RxLev ) , 接收信号质量 ( RxQual ) , 载干比 (carrier-to-interference ratio, CIR ) , 平均比 特误码率 (meanbep ) , 无线质量指示( radio quality indication, RQI ) , 时间提 前量(timing advance, TA ), 此处不予限制。
本发明实施例提供的上行信号测量方法, 基站控制器发送待测量信息给基 站, 以使得基站根据该待测量信息测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行信号测量结果上报给基站控制器; 基站控制器接收基站上报的 上行信号测量结果, 实现了在超级小区下基站控制器获得用户设备在各扇区内 的上行信号的测量结果, 从而使得基站控制器能够根据该测量结果进行扇区切 换判决, 保证了用户设备的通话质量, 提升用户感受。
可选地, 在一种实施场景下, 步骤 102之后, 上述方法还包括:
基站控制器若确定释放上述无线资源信息指示的无线资源, 则发送停止测 量消息给上述基站;
其中, 停止测量消息可以包括上述待测量扇区的扇区标识和上述无线资源 信息; 需要指出的是, 当上述待测量信息包括待测量 UE的用户标识时, 该停止 测量消息可以仅包括待测量 UE的用户标识, 其中, 该待测量 UE的用户标识的 相关描述参见步骤 101。
例如, 当待测量 UE在服务扇区内掉话, 或者主动结束业务时, 基站控制 器确定释放上述无线资源信息指示的无线资源, 即确定释放该待测量 UE在服 务扇区内占用的无线资源, 发送该停止测量消息给上述基站, 以通知上述基站 停止测量该待测量 UE在上述待测量扇区内的上行信号。
在本实施场景下,在基站控制器确定释放无线资源信息指示的无线资源时, 发送停止测量消息给基站, 以通知基站停止测量待测量 UE在待测量扇区内的 上行信号, 释放该待测量 UE在待测量扇区内占用的无线资源。
可选地, 在另一种实施场景下, 步骤 101之前, 上述方法还包括: 基站控制器根据待测量 UE的服务扇区的相邻扇区配置信息, 将服务扇区 的至少一个相邻扇区确定为待测量扇区, 获取待测量扇区的扇区标识; 或者, 基站控制器根据服务扇区的相邻扇区配置信息和服务扇区的相邻扇区的空 闲载波, 在相邻扇区中选择至少一个包含有空闲载波的扇区作为待测量扇区, 获取待测量扇区的所述扇区标识。
其中, 将服务扇区的至少一个相邻扇区确定为待测量扇区, 具体可以为: 基站控制器可以根据服务扇区的相邻扇区配置信息, 将该服务扇区的相邻扇区 全部确定为待测量扇区; 也可以根据上述服务扇区的相邻扇区配置信息, 以及 该相邻扇区中的负荷情况, 或者相邻扇区的告警状态, 确定待测量扇区; 此处 不再——列举。
其中, 在相邻扇区中选择至少一个包含有空闲载波的扇区作为待测量扇区 具体可以为: 当待测量 UE的服务扇区的相邻扇区中存在至少一个扇区有空闲 载波时, 则可以将该至少一个扇区确定为待测量扇区, 然后在该至少一个扇区 内分别选择一个空闲载波作为待测量载波。 显而易见的是, 在该待测量扇区的 选择过程中同样可以将负荷以及告警作为选择条件。
例如, 当待测量 UE在服务小区内采用基带跳频的方式收发信号时, 基站 控制器根据该基带跳频的频点数确定待测量载波的个数, 具体地, 待测量载波 的个数可以与基带跳频的频点个数相同; 根据该待测量载波的个数来进一步确 定待测量扇区以及待测量扇区内的待测量载波; 当待测量 UE在月良务小区内采 用射频跳频的方式收发信号时, 则基站控制器可以仅确定一个待测量载波。
其中, 待测量扇区的扇区标识可以参见步骤 101中的相关描述。
进一步地,上述待测量信息还包括待测量扇区内的待测量载波的载波标识, 在获取待测量扇区的扇区标识之后, 上述方法还包括:
基站控制器根据待测量扇区的空闲载波,确定待测量扇区内的待测量载波; 基站控制器获取待测量载波的载波标识。
其中, 该待测量载波是待测量扇区内的一个空闲载波, 具体可以根据预设 选择条件进行选择获得, 例如, 可以根据载波编号, 选择待测量扇区内载波编 号最小的空闲载波, 还可以根据载波的平均空闲时间, 选择平均空闲时间最长 的空闲载波, 此处不再——列举。
在本实施场景下, 基站控制器根据服务扇区的相邻扇区配置信息, 确定待 测量扇区, 能够避免对超级小区中不符合作为切换目标扇区条件的扇区中的上 行信号进行测量而造成的资源浪费; 此外, 基站控制器结合量 UE的服务扇区 的相邻扇区配置信息和该相邻扇区中的空闲载波, 确定待测量扇区, 不但能够 避免对超级小区中不符合作为切换目标扇区条件的扇区中的上行信号进行测量 而造成的资源浪费, 还能够避免将相邻扇区中不存在空闲载波的扇区确定为待 测量扇区。
可选地, 在又一种实施场景下, 在上述步骤 101之前, 上述方法还包括: 基站控制器获取待测量 UE在服务扇区内的信号测量结果; 则上述步骤 101可 以包括:
基站控制器判断待测量 UE在服务扇区内的信号测量结果是否满足预设条 件, 若是, 则发送上述待测量信息给基站。
其中, 信号测量结果可以包括上行信号测量结果和 /或下行信号测量结果; 具体地, 上行信号的测量结果可以通过服务扇区所在基站测量待测量 UE在服 务扇区内的上行信号并发送给基站控制器获得; 下行信号的测量结果可以通过 待测量 UE测量服务扇区的下行信号并发送给基站控制器获得, 该下行信号的 测量结果具体可以包括以下信息的至少一种:接收信号电平,接收信号质量, 载 干比, 平均比特误码率, 无线质量指示。此外, 上述预设条件可以预先设置在基 站控制器内部, 也可以根据用户需要通过设备配置给基站控制器。
具体地,上述基站控制器判断待测量 UE在服务扇区内的信号测量结果是否 满足预设条件可以包括:
基站控制器判断待测量 UE在服务扇区内的上行信号测量结果是否满足上 行信号的预设条件, 若是, 则发送待测量信息给基站; 或者, 基站控制器判断待测量 UE在服务扇区内的上行信号测量结果是否满足该 上行信号的预设条件, 且下行信号测量结果是否满足下行信号的预设条件, 若 是, 则发送上述待测量信息给基站; 或者,
基站控制器判断待测量 UE在服务扇区内的下行信号测量结果是否满足该 下行信号的预设条件, 若是, 则发送上述待测量信息给基站。
显而易见的是, 基站控制器也可以根据服务扇区的当前状态确定是否发送 待测量信息给基站, 例如, 可以根据服务扇区的负荷, 当负荷大于预设阔值时, 则发送上述待测量信息给基站; 还可以根据服务扇区的告警状态, 此处不再赘 述。 如图 2所示, 本发明实施例提供的另一种信号测量方法, 该方法适用于无 线通信系统, 该无线通信系统中包括超级小区, 该超级小区包括两个或两个以 上的扇区, 具体如下所述。
201、基站接收基站控制器发送的待测量信息, 该待测量信息包括: 超级小 区中待测量扇区的扇区标识和待测量 UE的无线资源信息,该无线资源信息所用 于指示待测量 UE在待测量 UE的服务扇区内占用的无线资源。
其中, 该无线资源信息的具体描述与步骤 101中的相关描述一致, 此处不 再赘述。
可选地, 待测量信息还可以包括以下信息的至少一种: 测量时间、 待测量 UE的用户标识和待测量扇区内的待测量载波的载波标识。 其中, 该测量时间、 该待测量 UE的用户标识, 以及该待测量载波与图 1所示实施例中的相关描述 一致。
需要指出的是, 上述服务扇区指的是当前为待测量 UE提供服务的扇区, 可以与待测量扇区属于同一个超级小区,也可以不属于同一个超级小区。其中, 该超级小区可以由多个小区合并获得。
202、 基站根据待测量信息, 测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行信号测量结果上报给基站控制器。
可选地, 步骤 202中, 基站根据待测量信息, 测量待测量 UE在待测量扇区 内的上行信号具体可以包括:
基站根据扇区标识指示的待测量扇区内的空闲载波, 确定待测量载波; 基站根据上述无线资源信息,在待测量扇区的待测量载波上为待测量 UE配 置无线资源;
基站在配置的无线资源上测量待测量 UE的上行信号。
可选地,当上述步骤 201中的待测量信息还包括待测量扇区内的待测量载波 的载波标识时, 步骤 202中, 基站根据待测量信息, 测量待测量 UE在待测量扇 区内的上行信号具体可以包括:
基站根据待测量 UE的无线资源信息,在扇区标识指示的待测量扇区的载波 标识指示的待测量载波上为待测量 UE配置无线资源;
基站在配置的无线资源上测量待测量 UE的上行信号。
本发明实施例提供的上行信号测量方法, 基站接收基站控制器发送的待测 量信息; 基站根据待测量信息, 测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行信号测量结果上报给基站控制器, 实现了基站控制器获得在超 级小区下用户设备在各扇区内的上行信号的测量结果, 从而使得基站控制器能 够根据该测量结果进行扇区切换判决, 保证了用户设备的通话质量, 提升用户 可选地, 在一种实施场景下, 上述方法还包括:
203、基站接收基站控制器发送的停止测量消息,该停止测量消息包括上述 待测量扇区的扇区标识和待测量 UE的上述无线资源信息, 或者, 该停止测量 消息包括待测量 UE的用户标识。
其中, 该待测量 UE的用户标识的相关描述参见步骤 101。
204、 基站根据停止测量消息, 停止对待测量 UE的上行信号的测量。
其中, 当停止测量消息包括上述待测量扇区的扇区标识和待测量 UE的上述 无线资源信息时, 步骤 204具体可以包括: 基站根据扇区标识获得待测量扇区, 并根据待测量 UE的无线资源信息确定在待测量扇区内占用的无线资源;基站释 放待测量 UE在待测量扇区内占用的无线资源。
需要指出的是, 若某一个待测量扇区内的一个待测量载波的不同时隙上同 时分别测量两个待测量 UE的上行信号,那么基站可以根据停止测量消息中携带 的待测量 UE的无线资源信息中的时隙号确定停止进行上行信号测量的 UE; 若 某一个待测量扇区内的一个待测量载波的相同时隙上同时测量两个待测量 UE 的上行信号,那么基站可以根据停止测量消息中携带的待测量 UE的无线资源信 息中的 TSC确定停止进行上行信号测量的 UE。 进一步地, 当基站确定待测量载 波上均停止对待测量 UE上行信号的测量,那么基站将该待测量载波恢复为上述 步骤 202之前的配置。
其中, 当停止测量消息包括待测量 UE的用户标识时, 步骤 204具体可以包 括: 根据待测量 UE的用户标识确定该待测量 UE的待测量扇区, 以及在待测量 扇区内占用的无线资源; 基站释放待测量 UE在待测量扇区内占用的无线资源。 需要指出的是, 停止测量消息包括待测量 UE的用户标识的前提是步骤 201的待 测量信息中包含该待测量 UE的用户标识, 基站记录该用户标识、 该待测量 UE 的待测量扇区, 以及基站在待测量扇区内配置给该待测量 UE的无线资源。 如图 3所示, 本发明实施例提供的又一种信号测量方法, 以 BSC为例进行 说明, 具体如下所述。
301、 BSC 发送待测量信息给基站, 该待测量信息包括: 待测量扇区的扇 区标识和待测量 UE的无线资源信息。
其中, 待测量 UE的无线资源信息具体可以参见步骤 101中的相关描述。
302、 基站接收 BSC发送的待测量信息, 根据扇区标识指示的待测量扇区 内的空闲载波, 确定待测量载波。
具体地, 待测量载波可以根据预设选择条件进行选择获得, 该预设选择条 件可以由用户通过 BSC配置给基站, 还可以预先设置在基站内部。 例如, 可以 选择待测量扇区内载波编号最小的空闲载波, 还可以选择平均空闲时间最长的 空闲载波, 此处不予限制。
303、基站根据待测量 UE的无线资源信息, 在待测量扇区的待测量载波上 为待测量 UE配置无线资源。
例如,当待测量 UE的无线资源信息仅包括待测量 UE在该待测量 UE的服 务扇区内占用的时频资源和 TSC, 且该时频资源包括待测量 UE在月良务扇区内 占用的载波的频点, 以及待测量 UE在服务扇区内占用的时隙信息时, 首先, 基站将待测量载波的频点配置为该待测量 UE在服务扇区内占用的载波的频点, 然后, 基站将待测量 UE在服务扇区内的 TSC配置给待测量载波的上述时隙信 息所指示的时隙, 以便基站在该时隙上采用该 TSC来解析待测量 UE的上行信 号。
进一步地, 当无线资源信息还包括 DTX标识时, 基站将该 DTX标识配置 给待测量载波的上述时隙信息所指示的时隙, 以便基站根据 DTX标识,确定基 站是否仅测量该时隙上的特定帧, 该特定帧指的是具有特定帧号的帧, 属于现 有技术不再赘述。
进一步地, 当无线资源信息包括跳频信息时, 将该跳频信息配置给待测量 载波的上述时隙信息所指示的时隙, 以便基站根据该跳频信息获得待测量 UE 的跳频算法, 从而根据该跳频算法对该待测量 UE的上行信号进行测量。 具体 地, 当该跳频为基带跳频时, 基站将载波标识所指示的多个待测量载波的频点 分别配置为该待测量 UE在服务扇区内占用的载波的频点, 在多个待测量载波 上为待测量 UE配置无线资源; 当该跳频为射频跳频时, 基站可以
304、基站在配置的无线资源上测量待测量 UE的上行信号, 获得的上行信 号测量结果。
具体地, 步骤 304可以包括: 在测量周期内, 对上述配置的无线资源对应的 信道上的所有帧或特定帧或曼随路控制信道 ( slow associated control channel, SACCH ) 帧进行测量。 在 GSM系统中, 所有帧、 特定帧以及 SACCH帧均是时 分多址 ( Time Division Multiple Access, TDMA ) 帧。
其中, 上述测量周期可以 SACCH测量报告的周期, 当上述配置的无线资 源对应的信道是业务信道时,一个完整的 SACCH消息块存在于 4个 26复帧中, 26复帧的时间间隔为 120ms, 因此 SACCH测量^艮告周期为 480ms, 属于现有 技术, 此处不再赘述。
例如, 当待测量信息还包括 DTX标识,且该 DTX标识指示待测量 UE的 DTX 处于开启状态时, 则基站测量上述配置的无线资源对应的信道上的特定帧, 该 特定帧包括 SACCH帧和具有特定帧号的语音帧,属于现有技术,此处不再赘述。
再例如, 当待测量信息还包括跳频信息, 且跳频信息中指示的跳频类型为 射频跳频时, 基站根据该跳频信息获得跳频算法, 从而使得基站能够采用待测 量 UE发射信号所使用的频点来接收该待测量 UE的上行信号。
需要指出的是, 当步骤 301中的待测量信息还包括测量时间时, 步骤 304可 以包括: 在上述测量时间内, 以测量周期为单位, 对上述配置的无线资源对应 的信道上的所有帧或特定帧或 SACCH帧进行测量。
305、 基站将获得的上行信号测量结果上报给 BSC。
其中,在 GSM系统中,上行信号测量结果可以携带在 SACCH测量报告消 息重, 并以上述 SACCH测量报告的周期为周期上报给 BSC。
306、 BSC 若确定释放上述无线资源信息指示的无线资源, 则发送停止测 量消息给上述基站。
其中, 停止测量消息可以包括步骤 301 中的待测量扇区的扇区标识和待测 量 UE的无线资源信息。
需要指出的是, 当步骤 301 中的待测量信息还包括待测量 UE的用户标识 时, 该停止测量消息可以仅包括待测量 UE的用户标识。
307、 基站接收 BSC发送的停止测量消息, 并根据该停止测量消息, 停止 对待测量 UE的上行信号的测量。 其中, 步骤 307具体可以参见图 1所示实施例中的相关描述。
本发明实施例提供的信号测量方法, BSC发送待测量信息给基站, 基站根 据该待测量信息测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行 信号测量结果上报给 BSC; BSC接收基站上报的上行信号测量结果, 实现了在 超级小区下 BSC 获得用户设备在各扇区内的上行信号的测量结果, 从而使得 BSC能够根据该测量结果进行扇区切换判决, 保证了用户设备的通话质量, 提 升用户感受; 此外, 基站根据扇区标识指示的待测量扇区内的空闲载波, 确定 待测量载波, 不但能够减小 BSC运算负荷, 还能够更加准确地确定当前可用的 空闲载波, 从而更加有效地选择待测量载波。 如图 4所示, 本发明实施例提供的又一种信号测量方法, 以 BSC为例进行 说明, 具体如下所述。
401、 BSC根据待测量 UE的服务扇区的相邻扇区配置信息,将服务扇区的 至少一个相邻扇区确定为待测量扇区, 获取待测量扇区的扇区标识。
其中, 服务扇区的相邻扇区配置信息可以预先设置在 BSC内部, 属于现有 技术, 不再赘述。
402、 BSC才艮据待测量扇区的空闲载波, 确定待测量扇区内的待测量载波, 获取待测量载波的载波标识。
其中, 扇区标识以及载波标识具体可以参见步骤 101中的相关描述。
403、 BSC 发送待测量信息给基站, 该待测量信息包括: 待测量扇区的扇 区标识、待测量扇区内的待测量载波的载波标识和待测量 UE的无线资源信息。
404、 基站接收 BSC发送的待测量信息, 并根据待测量 UE的无线资源信 息, 在待测量扇区的待测量载波上为待测量 UE配置无线资源。
其中, 根据待测量 UE的无线资源信息, 在待测量扇区的待测量载波上为 待测量 UE配置无线资源具体可以参见步骤 303中的相关描述。
405、基站在配置的无线资源上测量待测量 UE的上行信号, 获得的上行信 号测量结果。
步骤 405具体可以参见上述步骤 304中的相关描述。
406、 基站将获得的上行信号测量结果上报给 BSC。
407、 BSC 若确定释放上述无线资源信息指示的无线资源, 则发送停止测 量消息给上述基站。
408、 基站接收 BSC发送的停止测量消息, 并根据该停止测量消息, 停止 对待测量 UE的上行信号的测量。
本发明实施例提供的信号测量方法, BSC发送待测量信息给基站, 基站根 据该待测量信息测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行 信号测量结果上报给 BSC; BSC接收基站上报的上行信号测量结果, 实现了在 超级小区下 BSC 获得用户设备在各扇区内的上行信号的测量结果, 从而使得 BSC能够根据该测量结果进行扇区切换判决, 保证了用户设备的通话质量, 提 升用户感受; 此外, BSC确定待测量扇区和待测量载波, 能够避免将相邻扇区 中不存在空闲载波的扇区确定为待测量扇区。 如图 5所示,本发明实施例提供的一种基站控制器 500,包括:发送单元 501、 接收单元 502和处理单元 503, 具体如下所述。
处理单元 503, 用于获取待测量信息, 该待测量信息包括: 超级小区中待测 量扇区的扇区标识和待测量用户设备 UE的无线资源信息,该超级小区包括两个 或两个以上的扇区;
发送单元 501, 用于发送待测量信息给基站, 以使得基站根据该待测量信 息测量该待测量 UE在待测量扇区内的上行信号, 并将获得的上行信号测量结 果上报给基站控制器 500;
接收单元 502, 用于接收基站上报的上行信号测量结;
其中, 上述无线资源信息用于指示待测量 UE在待测量 UE的服务扇区内 占用的无线资源, 具体可以包括: 该待测量 UE在待测量 UE的服务扇区内占 用的时频资源和该待测量 UE在月良务扇区内的 TSC;
或者, 上述时频资源和上述 TSC, 以及该待测量 UE在服务扇区内的跳频 信息和 /或 DTX标志。
进一步地, 上述待测量信息还可以包括: 测量时间和 /或待测量 UE的用户 标识。
需要说明的是, 基站控制器 500可以用于执行图 1、 图 3或图 4所示实施 例中的步骤, 上述时频资源, 跳频信息以及用户标识等, 具体可以参见图 1、 图 3或图 4所示实施例中的相关描述, 此处不再赘述。
可选地, 如图 6所示, 处理单元 503可以包括:
第一确定单元 5031, 用于根据待测量 UE 的服务扇区的相邻扇区配置信 息,,将服务扇区的至少一个相邻扇区确定为待测量扇区,获取待测量扇区的扇 区标识, 并发送给发送单元 501 ; 或者,
根据服务扇区的相邻扇区配置信息和该服务扇区的相邻扇区的空闲载波, 在相邻扇区中选择至少一个包含有空闲载波的扇区作为待测量扇区, 获取待测 量扇区的扇区标识。
进一步地, 如图 7所示, 待测量信息还包括待测量扇区内的待测量载波的 载波标识, 处理单元 503还包括:
第二确定单元 5032, 用于根据第一确定单元 5031确定的待测量扇区内的空 闲载波, 确定待测量扇区内的待测量载波, 获取待测量载波的载波标识, 并发 送给发送单元 501。
可选地, 接收单元 502, 还用于获取待测量 UE在待测量 UE的服务扇区内的 上行信号测量结果;
处理单元 503, 还用于判断待测量 UE在待测量 UE的服务扇区内的上行信号 测量结果是否满足预设条件,若是, 则通知发送单元 501发送待测量信息给上述 基站。
可选地, 处理单元 503还用于: 若确定释放无线资源信息指示的无线资源, 则通知发送单元 501发送停止 测量消息给基站, 以使得基站根据停止测量消息, 停止对待测量 UE的上行信 号的测量;
其中, 停止测量消息可以包括待测量扇区的扇区标识和待测量 UE的无线 资源信息, 或者, 当待测量信息包括待测量 UE的用户标识时, 停止测量消息 可以包括待测量 UE的用户标识。
本发明实施例提供的基站控制器, 用于发送待测量信息给基站, 以使得基 站根据该待测量信息测量待测量 UE在待测量扇区内的上行信号, 并将获得的 上行信号测量结果上报给基站控制器; 基站控制器接收基站上报的上行信号测 量结果, 实现了在超级小区下基站控制器获得用户设备在各扇区内的上行信号 的测量结果, 从而使得基站控制器能够根据该测量结果进行扇区切换判决, 保 证了用户设备的通话质量, 提升用户感受。 如图 8所示, 本发明实施例提供的一种基站, 其特征在于, 包括: 接收单元 801、 测量单元 802和发送单元 803, 具体如下所述。
接收单元 801, 用于接收 BSC发送的待测量信息, 该待测量信息包括: 超级 小区中待测量扇区的扇区标识和待测量 UE的无线资源信息,该无线资源信息用 于指示待测量 UE在待测量 UE的服务扇区内占用的无线资源, 该超级小区包括 两个或两个以上的扇区;
测量单元 802, 用于根据接收单元 801接收的待测量信息, 测量待测量 UE在 待测量扇区内的上行信号;
发送单元 803, 用于将测量单元 802获得的上行信号测量结果上报给 BSC。 其中, 待测量 UE的无线资源信息具体可以包括: 待测量 UE在服务扇区 内占用的时频资源和待测量 UE在月良务扇区内的 TSC;
或者, 上述时频资源和上述 TSC, 以及待测量 UE在服务扇区内的跳频信息 和 /或 DTX标志。 需要说明的是, 基站 800可以用于执行图 2-图 4所示实施例中的步骤, 上 述时频资源, 跳频信息以及用户标识等, 具体可以参见图 2-图 4所示实施例中 的相关描述, 此处不再赘述。
可选地, 如图 8 ( a )所示, 基站 800还可以包括: 确定单元 804和第一配置 单元 805:
确定单元 804, 用于根据接收单元 801接收的待测量信息中的扇区标识指示 的待测量扇区内的空闲载波, 确定待测量载波;
第一配置单元 805, 用于根据接收单元 801接收的所述待测量信息中的所述 无线资源信息,在确定单元 804确定的所述待测量扇区的所述待测量载波上为所 述待测量 UE配置无线资源;
测量单元 802,还用于在第一配置单元 805配置的无线资源上测量待测量 UE 的上行信号。
可选地, 待测量信息还可以包括待测量扇区内的待测量载波的载波标识; 如图 8 ( b )所示, 基站 800还可以包括第二配置单元 806:
第二配置单元 806, 用于根据接收单元 801接收的待测量信息中的无线资源 信息, 在扇区标识指示的待测量扇区内的载波标识指示的待测量载波上为待测 量 UE配置无线资源;
测量单元 802,还用于在第二配置单元 806配置的无线资源上测量待测量 UE 的上行信号。
可选地, 测量单元 802具体用于:
在测量周期内, 对配置的无线资源对应的信道上的所有帧或特定帧或 SACCH帧进行测量。
可选地, 待测量信息还可以包括测量时间, 测量单元 802具体用于: 在测量时间内, 以测量周期为单位, 对配置的无线资源对应的信道上的所 有帧或特定帧或 S ACCH帧进行测量。
可选地, 接收单元 801, 还用于接收基站控制器发送的停止测量消息, 该停 止测量消息包括待测量扇区的扇区标识和待测量 UE的无线资源信息, 或者, 待 测量 UE的用户标识;
测量单元 802, 还用于根据接收单元 801接收的停止测量消息, 停止对待 测量 UE的上行信号的测量。
本发明实施例提供的基站, 用于接收基站控制器发送的待测量信息; 根据 待测量信息, 测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行信 号测量结果上报给基站控制器, 实现了基站控制器获得在超级小区下用户设备 在各扇区内的上行信号的测量结果, 从而使得基站控制器能够根据该测量结果 进行扇区切换判决, 保证了用户设备的通话质量, 提升用户感受。 如图 9所示, 本发明实施例提供的一种基站控制器 900, 包括: 发射器 901 和接收器 902, 具体如下所述。
处理器 903, 用于获取待测量信息, 该待测量信息包括: 超级小区中待测量 扇区的扇区标识和待测量 UE的无线资源信息,该超级小区包括两个或两个以上 的扇区;
发射器 901, 用于发送处理器 903获取的待测量信息给基站, 以使得基站 根据该待测量信息测量该待测量 UE在待测量扇区内的上行信号, 并将获得的 上行信号测量结果上报给基站控制器 900;
接收单元 902, 用于接收基站上报的上行信号测量结果。
其中, 该无线资源信息用于指示待测量 UE在待测量 UE的服务扇区内占 用的无线资源, 具体可以包括: 待测量 UE的服务扇区内的该待测量 UE 占用 的时频资源和该待测量 UE在上述服务扇区内的 TSC;
或者, 上述时频资源和上述 TSC, 以及该待测量 UE在上述服务扇区内的 跳频信息和 /或 DTX标志。
进一步地, 上述待测量信息还可以包括: 测量时间和 /或待测量 UE的用户 标识。 需要说明的是, 基站控制器 900可以用于执行图 1、 图 3或图 4所示实施 例中的步骤, 上述时频资源, 跳频信息以及用户标识等, 具体可以参见图 1、 图 3或图 4所示实施例中的相关描述, 此处不再赘述。
可选地, 处理器 903还用于:
根据待测量 UE的服务扇区的相邻扇区配置信息, 将服务扇区的至少一个 相邻扇区确定为待测量扇区, 获取待测量扇区的扇区标识; 或者, 根据服务扇 区的相邻扇区配置信息和服务扇区的相邻扇区中的空闲载波, 在相邻扇区中选 择至少一个包含有空闲载波的扇区作为待测量扇区, 获取待测量扇区的扇区标 识。
进一步地, 处理器 903还用于:
根据待测量扇区中的空闲载波, 确定待测量扇区内的待测量载波, 获取待 测量载波的载波标识。
可选地, 接收器 902, 还用于获取待测量 UE在待测量 UE的服务扇区内的信 号测量结果;
处理器 903, 还用于判断待测量 UE在待测量 UE的服务扇区内的信号测量结 果是否满足预设条件, 若是, 则将待测量信息通过发射器 901发送给上述基站。
可选地, 处理器 903还用于:
若确定释放无线资源信息指示的无线资源, 则将停止测量消息通过发射器 901发送给基站,以使得基站根据停止测量消息停止对待测量 UE的上行信号的 测量。
其中, 停止测量消息可以包括待测量扇区的扇区标识和待测量 UE的无线 资源信息, 或者, 当待测量信息包括待测量 UE的用户标识时, 停止测量消息 可以包括待测量 UE的用户标识。
本发明实施例提供的基站控制器, 用于发送待测量信息给基站, 以使得基 站根据该待测量信息测量待测量 UE在待测量扇区内的上行信号, 并将获得的 上行信号测量结果上报给基站控制器; 基站控制器接收基站上报的上行信号测 量结果, 实现了在超级小区下基站控制器获得用户设备在各扇区内的上行信号 的测量结果, 从而使得基站控制器能够根据该测量结果进行扇区切换判决, 保 证了用户设备的通话质量, 提升用户感受。 如图 10所示, 本发明实施例提供的一种基站 1000, 包括: 接收器 1001、 处 理器 1002和发射器 1003, 具体如下所述。
接收器 1001,用于接收基站控制器发送的待测量信息,该待测量信息包括: 超级小区中待测量扇区的扇区标识和待测量 UE的无线资源信息,该无线资源信 息用于指示待测量 UE在待测量 UE的服务扇区内占用的无线资源, 该超级小区 包括两个或两个以上的扇区;
处理器 1002, 用于根据接收器 1001接收的待测量信息, 测量待测量 UE在待 测量扇区内的上行信号;
发射器 1003, 用于将处理器 1002获得的上行信号测量结果上报给基站控制 器。
其中, 上述无线资源信息具体可以包括: 待测量 UE在上述服务扇区内占 用的时频资源和待测量 UE在上述服务扇区内的 TSC;
或者, 上述时频资源和上述 TSC, 以及待测量 UE在上述服务扇区内的跳频 信息和 /或 DTX标志。
需要说明的是,基站 1000可以用于执行图 2-图 4所示实施例中的步骤,上 述时频资源, 跳频信息以及用户标识等, 具体可以参见图 2-图 4所示实施例中 的相关描述, 此处不再赘述。
可选地, 处理器 1002具体用于:
根据扇区标识指示的待测量扇区内的空闲载波, 确定待测量载波; 根据待测量 UE的无线资源信息, 在待测量扇区的待测量载波上为待测量 UE配置无线资源;
在配置的无线资源上测量待测量 UE的上行信号。 可选地, 待测量信息还可以包括待测量扇区内的待测量载波的载波标识; 处理器 1002具体用于:
根据待测量 UE的无线资源信息,在扇区标识指示的待测量扇区的载波标识 指示的待测量载波上为待测量 UE配置无线资源;
在配置的无线资源上测量待测量 UE的上行信号。
可选地, 处理器 1002还用于:
在测量周期内, 对上述配置的无线资源对应的信道上的所有帧或特定帧或 SACCH帧进行测量。
进一步地, 待测量信息还可以包括测量时间, 处理器 1002还用于: 在测量时间内, 以测量周期为单位, 对上述配置的无线资源对应的信道上 的所有帧或特定帧或 SACCH帧进行测量。
可选地, 接收器 1001, 还用于接收基站控制器发送的停止测量消息; 处理器 1002, 还用于根据接收器 1001接收的停止测量消息, 停止对待测 量 UE的上行信号的测量。
其中,,该停止测量消息包括待测量扇区的扇区标识和待测量 UE的无线资 源信息, 或者, 待测量 UE的用户标识。
本发明实施例提供的基站, 用于接收基站控制器发送的待测量信息; 根据 待测量信息, 测量待测量 UE在待测量扇区内的上行信号, 并将获得的上行信 号测量结果上报给基站控制器, 实现了基站控制器获得在超级小区下用户设备 在各扇区内的上行信号的测量结果, 从而使得基站控制器能够根据该测量结果 进行扇区切换判决, 保证了用户设备的通话质量, 提升用户感受。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取存储 介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介 质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种信号测量方法, 其特征在于, 所述方法适用于无线通信系统, 所述 无线通信系统中包括超级小区, 所述超级小区包括两个或两个以上的扇区, 所 述方法包括:
基站控制器发送待测量信息给基站, 所述待测量信息包括: 所述超级小区 中待测量扇区的扇区标识和待测量用户设备 UE的无线资源信息, 以使得所述 基站根据所述待测量信息测量所述待测量 UE在所述待测量扇区内的上行信号, 并将获得的上行信号测量结果上报给所述基站控制器;
所述基站控制器接收所述基站上报的所述上行信号测量结果;
其中, 所述无线资源信息用于指示所述待测量 UE在所述待测量 UE的服 务扇区内占用的无线资源,所述待测量扇区和所述服务扇区属于同一超级小区。
2、 根据权利要求 1所述的方法, 其特征在于, 所述无线资源信息包括: 所 述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服务 扇区内的训练序列号 TSC;
或者, 所述时频资源和所述 TSC, 以及所述待测量 UE在所述服务扇区内 的跳频信息和 /或非连续性发射 DTX标志。
3、根据权利要求 1或 2所述的方法,其特征在于,所述待测量信息还包括: 测量时间和 /或所述待测量 UE的用户标识。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 在所述基站控制器 发送待测量信息给基站之前, 还包括:
所述基站控制器根据所述服务扇区的相邻扇区配置信息, 将所述服务扇区 的至少一个相邻扇区确定为所述待测量扇区, 获取所述待测量扇区的所述扇区 标识 或者
所述基站控制器根据所述服务扇区的所述相邻扇区配置信息和所述服务扇 区的相邻扇区的空闲载波, 在所述相邻扇区中选择至少一个包含有空闲载波的 扇区作为所述待测量扇区, 获取所述待测量扇区的所述扇区标识。
5、根据权利要求 4所述的方法, 其特征在于, 所述待测量信息还包括所述 待测量扇区内的待测量载波的载波标识, 所述获取所述待测量扇区的所述扇区 标识之后, 还包括:
所述基站控制器根据所述待测量扇区的空闲载波, 确定所述待测量扇区内 的所述待测量载波;
所述基站控制器获取所述待测量载波的所述载波标识。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 在所述基站控制器 发送待测量信息给基站之前, 还包括:
所述基站控制器获取所述待测量 UE在所述服务扇区内的信号测量结果; 所述基站控制器发送待测量信息给基站包括:
所述基站控制器判断所述待测量 UE在所述服务扇区内的所述信号测量结 果是否满足预设条件, 若是, 则发送所述待测量信息给所述基站。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 还包括: 所述基站控制器若确定释放所述无线资源信息指示的无线资源, 则发送停 止测量消息给所述基站, 以使得所述基站根据所述停止测量消息, 停止对所述 待测量 UE的上行信号的测量。
8、 一种信号测量方法, 其特征在于, 所述方法适用于无线通信系统, 所述 无线通信系统中包括超级小区, 所述超级小区包括两个或两个以上的扇区, 所 述方法包括:
基站接收基站控制器发送的待测量信息, 所述待测量信息包括: 所述超级 小区中待测量扇区的扇区标识和待测量用户设备 UE的无线资源信息,所述无线 资源信息用于指示所述待测量 UE在所述待测量 UE的服务扇区内占用的无线资 源;
所述基站根据所述待测量信息,测量所述待测量 UE在所述待测量扇区内的 上行信号, 并将获得的上行信号测量结果上报给所述基站控制器。
9、 根据权利要求 8所述的方法, 其特征在于, 所述无线资源信息包括: 所 述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服务 扇区内的训练序列号 TSC;
或者, 所述时频资源和所述 TSC, 以及所述待测量 UE在所述服务扇区内的 跳频信息和 /或非连续性发射 DTX标志。
10、 根据权利要求 8或 9所述的方法, 其特征在于, 所述基站根据所述待测 量信息, 测量所述待测量 UE在所述待测量扇区内的上行信号, 包括:
所述基站根据所述扇区标识指示的所述待测量扇区内的空闲载波, 确定待 测量载波;
所述基站根据所述无线资源信息, 在所述待测量扇区的所述待测量载波上 为所述待测量 UE配置无线资源;
所述基站在所述配置的无线资源上测量所述待测量 UE的上行信号。
11、 根据权利要求 8或 9所述的方法, 其特征在于, 所述待测量信息还包括 所述待测量扇区内的待测量载波的载波标识; 所述基站根据所述待测量信息, 测量所述待测量 UE在所述待测量扇区内的上行信号, 包括:
所述基站才艮据所述无线资源信息, 在所述扇区标识指示的所述待测量扇区 内的所述载波标识指示的所述待测量载波上为所述待测量 UE配置无线资源; 所述基站在所述配置的无线资源上测量所述待测量 UE的上行信号。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述基站在所述配置 的无线资源上测量所述待测量 UE的上行信号, 包括:
在测量周期内, 对所述配置的无线资源对应的信道上的所有帧或特定帧或 慢随路控制信道 SACCH帧进行测量。
13、 根据权利要求 10或 11所述的方法, 其特征在于, 所述待测量信息还包 括测量时间, 所述基站在所述配置的无线资源上测量所述待测量 UE的上行信 号, 包括:
在所述测量时间内, 以测量周期为单位, 对所述配置的无线资源对应的信 道上的所有帧或特定帧或 SACCH帧进行测量。
14、 根据权利要求 8-13任一项所述的方法, 其特征在于, 还包括: 所述基站接收所述基站控制器发送的停止测量消息;
所述基站根据所述停止测量消息, 停止对所述待测量 UE的上行信号的测 量。
15、 一种基站控制器, 其特征在于, 包括:
处理单元, 用于获取待测量信息, 所述待测量信息包括: 超级小区中待测 量扇区的扇区标识和待测量用户设备 UE的无线资源信息,所述超级小区包括两 个或两个以上的扇区;
发送单元, 用于发送所述处理单元获取的所述待测量信息给基站, 以使得 所述基站根据所述待测量信息测量所述待测量 UE在所述待测量扇区内的上行 信号, 并将获得的上行信号测量结果上报给所述基站控制器;
接收单元, 用于接收所述基站上报的所述上行信号测量结果;
其中, 所述无线资源信息用于指示所述待测量 UE在所述待测量 UE的服 务扇区内占用的无线资源。
16、根据权利要求 15所述的基站控制器, 其特征在于, 所述无线资源信息 包括: 所述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在 所述 务扇区内的训练序列号 TSC;
或者, 所述时频资源和所述 TSC, 以及所述待测量 UE在所述服务扇区内 的跳频信息和 /或非连续性发射 DTX标志。
17、 根据权利要求 15或 16所述的基站控制器, 其特征在于, 所述待测量 信息还包括: 测量时间和 /或所述待测量 UE的用户标识。
18、 根据权利要求 15-17任一项所述的基站控制器, 其特征在于, 所述处 理单元包括:
第一确定单元, 用于根据所述服务扇区的相邻扇区配置信息, 将所述服务 扇区的至少一个相邻扇区确定为所述待测量扇区, 获取所述待测量扇区的所述 扇区标识, 并发送给所述发送单元; 或者, 根据所述服务扇区的所述相邻扇区 配置信息和所述服务扇区的相邻扇区中的空闲载波, 在所述相邻扇区中选择至 少一个包含有空闲载波的扇区作为所述待测量扇区, 获取所述待测量扇区的所 述扇区标识, 并发送给所述发送单元。
19、根据权利要求 18所述的基站控制器, 其特征在于, 所述待测量信息还 包括所述待测量扇区内的待测量载波的载波标识, 所述处理单元还包括:
第二确定单元, 用于根据所述第一确定单元确定的所述待测量扇区内的空 闲载波, 确定所述待测量扇区内的所述待测量载波, 获取所述待测量载波的所 述载波标识, 并发送给所述发送单元。
20、 根据权利要求 15-19任一项所述的基站控制器, 其特征在于,
所述接收单元,还用于获取所述待测量 UE在所述服务扇区内的上行信号测 量结果;
所述处理单元,还用于判断所述待测量 UE在所述服务扇区内的所述上行信 号测量结果是否满足预设条件, 若是, 则通知所述发送单元发送所述待测量信 息给所述基站。
21、 根据权利要求 15-20任一项所述的基站控制器, 其特征在于, 所述处 理单元还用于:
若确定释放所述无线资源信息指示的无线资源, 则通知所述发送单元发送 停止测量消息给所述基站, 以使得所述基站根据所述停止测量消息, 停止对所 述待测量 UE的上行信号的测量。
22、 一种基站, 其特征在于, 包括:
接收单元,用于接收基站控制器发送的待测量信息,所述待测量信息包括: 超级小区中待测量扇区的扇区标识和待测量用户设备 UE的无线资源信息,所述 无线资源信息用于指示所述待测量 UE在所述待测量 UE的服务扇区内占用的无 线资源, 所述超级小区包括两个或两个以上的扇区;
测量单元, 用于根据所述接收单元接收的所述待测量信息, 测量所述待测 量 UE在所述待测量扇区内的上行信号; 发送单元, 用于将所述测量单元获得的上行信号测量结果上报给所述基站 控制器。
23、 根据权利要求 22所述的基站, 其特征在于, 所述无线资源信息包括: 所述待测量 UE在所述服务扇区内占用的时频资源和所述待测量 UE在所述服 务扇区内的训练序列号 TSC;
或者, 所述时频资源和所述 TSC, 以及所述待测量 UE在所述服务扇区内的 跳频信息和 /或非连续性发射 DTX标志。
24、 根据权利要求 22或 23所述的基站, 其特征在于, 所述基站还包括: 确 定单元和第一配置单元;
所述确定单元, 用于根据所述接收单元接收的所述待测量信息中的所述扇 区标识指示的所述待测量扇区内的空闲载波, 确定待测量载波;
所述第一配置单元, 用于根据所述接收单元接收的所述待测量信息中的所 述无线资源信息, 在所述确定单元确定的所述待测量扇区的所述待测量载波上 为所述待测量 UE配置无线资源;
所述测量单元, 还用于在所述第一配置单元配置的无线资源上测量所述待 测量 UE的上行信号。
25、 根据权利要求 22或 23所述的基站, 其特征在于, 所述待测量信息还包 括所述待测量扇区内的待测量载波的载波标识; 所述基站还包括: 第二配置单 元;
所述第二配置单元, 用于根据所述接收单元接收的所述待测量信息中的所 述无线资源信息, 在所述扇区标识指示的所述待测量扇区内的所述载波标识指 示的所述待测量载波上为所述待测量 UE配置无线资源;
所述测量单元, 还用于在所述第二配置单元配置的无线资源上测量所述待 测量 UE的上行信号。
26、 根据权利要求 24或 25所述的基站, 其特征在于, 所述测量单元具体用 于: 在测量周期内, 对所述配置的无线资源对应的信道上的所有帧或特定帧或 慢随路控制信道 S ACCH帧进行测量。
27、 根据权利要求 24或 25所述的基站, 其特征在于, 所述待测量信息还包 括测量时间, 所述测量单元具体用于:
在所述测量时间内, 以测量周期为单位, 对所述配置的无线资源对应的信 道上的所有帧或特定帧或 S ACCH帧进行测量。
28、 根据权利要求 22-27任一项所述的基站, 其特征在于,
所述接收单元, 还用于接收所述基站控制器发送的停止测量消息; 所述测量单元, 还用于根据所述接收单元接收的所述停止测量消息, 停止 对所述待测量 UE的上行信号的测量。
PCT/CN2013/078489 2013-06-29 2013-06-29 信号测量方法、设备和系统 WO2014205830A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13869851.9A EP2838218A4 (en) 2013-06-29 2013-06-29 METHOD, DEVICE AND SYSTEM FOR SIGNAL MEASUREMENT
PCT/CN2013/078489 WO2014205830A1 (zh) 2013-06-29 2013-06-29 信号测量方法、设备和系统
CN201380000745.1A CN103650565A (zh) 2013-06-29 2013-06-29 信号测量方法、设备和系统
ARP140102445A AR096768A1 (es) 2013-06-29 2014-06-30 Sistema, dispositivo y método de medición de señales

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078489 WO2014205830A1 (zh) 2013-06-29 2013-06-29 信号测量方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2014205830A1 true WO2014205830A1 (zh) 2014-12-31

Family

ID=50253442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078489 WO2014205830A1 (zh) 2013-06-29 2013-06-29 信号测量方法、设备和系统

Country Status (4)

Country Link
EP (1) EP2838218A4 (zh)
CN (1) CN103650565A (zh)
AR (1) AR096768A1 (zh)
WO (1) WO2014205830A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158002A1 (zh) * 2014-04-18 2015-10-22 华为技术有限公司 一种跳频序列规划方法及装置
CN104168600A (zh) * 2014-08-01 2014-11-26 电信科学技术研究院 一种信号发送方法、测量方法、通信控制方法及装置
CN105704762A (zh) * 2014-11-26 2016-06-22 电信科学技术研究院 一种移动通信方法、设备及系统
CN107205246B (zh) * 2016-03-18 2020-07-14 华为技术有限公司 一种用于超级小区间切换的方法和装置
WO2018045572A1 (zh) * 2016-09-09 2018-03-15 深圳前海达闼云端智能科技有限公司 终端接入方法及网络设备
CN108270475B (zh) * 2016-12-30 2020-10-23 华为技术有限公司 一种波束训练方法及通信设备
US11096107B2 (en) 2017-04-11 2021-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Uplink triggered cell handover control
CN109756923B (zh) * 2017-11-02 2021-06-22 华为技术有限公司 移动性管理方法、装置及系统
CN115334565A (zh) * 2021-05-11 2022-11-11 华为技术有限公司 通信方法以及相关联的装置、介质和芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191013A1 (en) * 2004-03-30 2007-08-16 Fredrik Gunnarsson Methods of and apparatuses for cell-differentiated handover in a mobile communications systems
CN102148668A (zh) * 2011-01-04 2011-08-10 华为技术有限公司 处理方法与设备
CN102696185A (zh) * 2009-10-07 2012-09-26 瑞典爱立信有限公司 复杂度降低的协同多点接收

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256486B1 (en) * 1999-09-09 2001-07-03 Nortel Networks Limited Method and apparatus for measuring co-channel interference
DE60334034D1 (de) * 2003-09-30 2010-10-14 Ericsson Telefon Ab L M System und verfahren zum melden von messungen in einem kommunikationssystem
US7280828B1 (en) * 2004-05-24 2007-10-09 Cingular Wireless Ii, Llc Service grant for GSM wireless networks based on signal strength
ATE486473T1 (de) * 2008-08-28 2010-11-15 Alcatel Lucent Messung in funkkommunikationssystemen
US20100067604A1 (en) * 2008-09-17 2010-03-18 Texas Instruments Incorporated Network multiple antenna transmission employing an x2 interface
CN102595625B (zh) * 2011-01-17 2014-12-31 中兴通讯股份有限公司 一种实现超级小区下的空分多址接入的方法及基站
CN102916732B (zh) * 2011-08-02 2017-10-03 南京中兴软件有限责任公司 一种实现超级小区数据传输的方法、系统及控制站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191013A1 (en) * 2004-03-30 2007-08-16 Fredrik Gunnarsson Methods of and apparatuses for cell-differentiated handover in a mobile communications systems
CN102696185A (zh) * 2009-10-07 2012-09-26 瑞典爱立信有限公司 复杂度降低的协同多点接收
CN102148668A (zh) * 2011-01-04 2011-08-10 华为技术有限公司 处理方法与设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2838218A4 *

Also Published As

Publication number Publication date
EP2838218A1 (en) 2015-02-18
CN103650565A (zh) 2014-03-19
AR096768A1 (es) 2016-02-03
EP2838218A4 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
US10454649B2 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
US12004036B2 (en) SCG-side service processing method and apparatus in dual connectivity scenario
US9877218B2 (en) Method and apparatus for implementing report measurement and reporting measurement result
WO2014205830A1 (zh) 信号测量方法、设备和系统
US10805814B2 (en) Signal measurement method and apparatus
KR101838205B1 (ko) 무선 통신 시스템에서 신호 측정 방법 및 장치
JP6505940B2 (ja) 無線リソース管理測定方法および装置
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
US11616625B2 (en) Wireless communication method, terminal, and network device
US20200313991A1 (en) Service receiving or transmitting method and device, and communication system
WO2014131159A1 (zh) 小区切换方法、用户设备及基站
WO2017054128A1 (zh) 一种载波聚合技术中载波选择方法和设备
WO2016106563A1 (zh) 一种测量方法和设备
CN112312462A (zh) 一种非授权频段小区切换方法、终端及网络侧设备
WO2017028055A1 (zh) 一种无线局域网络wlan的测量上报方法及相关设备
KR20140105357A (ko) 무선랜 연결 상태 관리를 위한 방법 및 장치
CN106664683B (zh) 一种数据传输方法及装置
WO2013182001A1 (zh) 载波测量方法及装置
WO2013107261A1 (zh) 一种在用户终端异频切换前的测量方法及装置
CN105284147B (zh) 一种确定kpi下降原因的方法及装置
CN114071768B (zh) 一种时间同步方法、装置及存储介质
CN105264969B (zh) 一种控制方法、设备及系统
CN112105031A (zh) 测量方法、终端及网络侧设备
WO2024026897A1 (zh) 信息处理方法、信息发送方法和装置
JP6029964B2 (ja) 物理ハイブリッド自動再送要求指示チャネル情報の伝送方法およびその装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2013869851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013869851

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021062

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014021062

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140826