WO2013177895A1 - 虚子载波动态设置方法、接收方法和装置及系统 - Google Patents

虚子载波动态设置方法、接收方法和装置及系统 Download PDF

Info

Publication number
WO2013177895A1
WO2013177895A1 PCT/CN2012/083754 CN2012083754W WO2013177895A1 WO 2013177895 A1 WO2013177895 A1 WO 2013177895A1 CN 2012083754 W CN2012083754 W CN 2012083754W WO 2013177895 A1 WO2013177895 A1 WO 2013177895A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
subcarriers
subcarrier
spectrum
transmission system
Prior art date
Application number
PCT/CN2012/083754
Other languages
English (en)
French (fr)
Inventor
蒋伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12877747.1A priority Critical patent/EP2858397B1/en
Publication of WO2013177895A1 publication Critical patent/WO2013177895A1/zh
Priority to US14/555,780 priority patent/US9319885B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation

Definitions

  • Virtual subcarrier dynamic setting method receiving method, device and system
  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a virtual subcarrier dynamic setting method, a receiving method, apparatus, and system.
  • the multi-carrier transmission system can effectively suppress multipath fading, realize high-speed data transmission, and is simple in implementation and high in spectrum efficiency.
  • OFDM Orthogonal frequency-division multiplexing
  • the multi-carrier system divides the frequency selective fading channel into several flat fading sub-carriers that are orthogonal to each other; according to the dynamic change of the spectrum, by simply zeroing some sub-carriers, these sub-carriers can be transmitted without transmitting data.
  • Multi-carrier system spectrum adaptive function so multi-carrier transmission becomes the most promising physical layer transmission technology of dynamic spectrum sharing (DSS) and cognitive radio (Cognitive Radio).
  • DSS dynamic spectrum sharing
  • cognitive radio Cognitive Radio
  • Multi-carrier transmission system including but not limited to OFDM system, Filter-bank Based Multicarrier (FBMC), Multi-carrier Code-Division-Multiple-Access (Multicarrier Code-Division-Multiple-Access, Referred to as MC-CDMA), etc.
  • FBMC Filter-bank Based Multicarrier
  • MC-CDMA Multi-carrier Code-Division-Multiple-Access
  • DFT Discrete Fourier Transform
  • the system sampling frequency ie, the bandwidth of the baseband signal
  • the signal transmission bandwidth includes the protection subcarrier, the data subcarrier, and the DC.
  • Subcarriers and pilot subcarriers, etc., and the virtual subcarrier occupies a spectral width of approximately the same bandwidth minus the signal transmission bandwidth.
  • Embodiments of the present invention provide a virtual subcarrier dynamic setting method, a receiving method, a device, and a system, which are used to adaptively dynamically set the number and location of virtual subcarriers, and better adapt to a dynamic spectrum application scenario.
  • the embodiment of the present invention provides a virtual subcarrier dynamic setting method, which is applied to a multicarrier transmission system, and includes:
  • the transmitter of the multi-carrier transmission system acquires dynamic spectrum information of a geographical location where it is located;
  • the number of left edge virtual subcarriers and right edge virtual subcarriers of the multicarrier transmission system on the left and right edges of the working spectrum of the transmitter so that the left
  • the sum of the number of edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than a discrete Fourier transform dimension of the baseband signal; aliasing of baseband signals
  • the guard band is the minimum number of virtual subcarriers required for the spectral aliasing of the baseband signal not exceeding the first preset threshold;
  • the transmitter sets the virtual subcarrier of the multicarrier transmission system according to the determined left edge virtual subcarrier and the right edge virtual subcarrier.
  • the embodiment of the present invention further provides a virtual subcarrier dynamic setting apparatus, which is applied to a multi-carrier transmission system, and includes:
  • a spectrum acquisition module configured to acquire dynamic frequency information of a geographic location where the virtual subcarrier dynamic setting device is located
  • the virtual subcarrier determining module is configured to determine, according to the dynamic spectrum information, the number of the left edge virtual subcarrier and the right edge virtual subcarrier of the multicarrier transmission system on the left and right edges of the working spectrum of the virtual subcarrier dynamic setting device So that the sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than a discrete Fourier transform dimension of the baseband signal
  • the aliasing guard band of the baseband signal is the minimum number of virtual subcarriers required for the spectral aliasing of the baseband signal not exceeding the first predetermined threshold;
  • an embodiment of the present invention provides a method for receiving a dynamic virtual subcarrier, which is applied to a multi-carrier transmission system, and includes:
  • the receiver receives the virtual subcarrier adjustment indication sent by the transmitter, where the virtual subcarrier adjustment indication includes the number of left edge virtual subcarriers of the multicarrier transmission system, the number of right edge virtual subcarriers, and the adjustment time of the virtual subcarrier of the multicarrier transmission system. And a sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than a discrete Fourier transform dimension of the baseband signal; The aliasing guard band of the signal is the minimum number of virtual subcarriers required for the spectral aliasing of the baseband signal not exceeding the first preset threshold;
  • the receiver starts from a first subcarrier of a left edge of a working spectrum of the receiver, and determines, in the working spectrum, a number of consecutive subcarriers that are the number of the left edge virtual subcarriers as a first group of virtual subcarriers. And the receiver starts from a last subcarrier of a right edge of the working spectrum, and selects, in the working spectrum, a consecutive number of consecutive subcarriers that are the number of the right edge virtual subcarriers as a second group of virtual subcarriers;
  • the receiver sets the virtual subcarrier of the multicarrier transmission system according to the number of the first group of virtual subcarriers and the number of the second group of virtual subcarriers.
  • an embodiment of the present invention provides a device for receiving a dynamic virtual subcarrier, which is applied to a multi-carrier transmission system, and includes:
  • an indication receiving module configured to receive a virtual subcarrier adjustment indication sent by the transmitter, where the virtual subcarrier adjustment indication includes a number of left edge virtual subcarriers of the multicarrier transmission system, a number of right edge virtual subcarriers, and a virtual subcarrier of the multicarrier transmission system
  • the adjustment time of the carrier the sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and is not greater than the discrete Fourier of the baseband signal Transforming the dimension;
  • the aliasing guard band of the baseband signal is the minimum number of virtual subcarriers required when the working spectrum aliasing of the baseband signal does not exceed the first preset threshold;
  • a determining module configured to start from a first subcarrier of a left edge of the receiving device of the dynamic virtual subcarrier, and determine, in the working spectrum, a consecutive number of consecutive subcarriers that are the number of the left edge virtual subcarriers as the first group a virtual subcarrier, starting from a last subcarrier of a right edge of the working spectrum, selecting, in the working spectrum, a consecutive number of consecutive subcarriers that are the number of the right edge virtual subcarriers as a second set of virtual subcarriers;
  • a setting module configured to set a virtual subcarrier of the multicarrier transmission system according to the number of the first group of virtual subcarriers and the number of the second group of virtual subcarriers at an adjustment moment of the virtual subcarrier.
  • an embodiment of the present invention provides a method for receiving a dynamic virtual subcarrier, which is applied to a multicarrier transmission system, and includes:
  • the receiver After receiving the signal from the transmitter, the receiver starts from the first subcarrier of the left edge of the working spectrum of the receiver, and determines that the consecutive subcarriers whose received signal strength is lower than the second preset threshold are the first group. a zero subcarrier, the receiver, after removing the first guard subcarrier in the first group of zero subcarriers, determining the first group of zero subcarriers that are to be removed from the first guard subcarrier as a left edge virtual subcarrier;
  • the receiver starts from the last subcarrier of the right edge of the working spectrum, and determines that the consecutive subcarriers whose received signal strength is lower than the third preset threshold are the second group of zero subcarriers, and the receiver is in the After the second protection subcarrier is removed from the second group of zero subcarriers, the second group of zero subcarriers that are removed from the second guard subcarrier is determined as a right edge virtual subcarrier; the number of the left edge virtual subcarriers and the The sum of the number of right edge virtual subcarriers is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the discrete Fourier transform dimension of the baseband signal; the aliasing guard band of the baseband signal is the baseband The minimum number of virtual subcarriers required when the spectrum aliasing of the signal does not exceed the first preset threshold.
  • the embodiment of the present invention provides a device for receiving a dynamic virtual subcarrier, which is applied to a multi-carrier transmission system, and includes:
  • a receiving module configured to receive a signal from a transmitter
  • a parsing module configured to: after receiving a signal from the transmitter, start from a first subcarrier of a left edge of a working spectrum of the receiving device of the dynamic virtual subcarrier, and determine that the received signal strength is lower than a second preset threshold
  • the contiguous subcarrier is a first group of zero subcarriers, and after the first guard subcarrier is removed from the first group of zero subcarriers, the first group of zero subcarriers that are removed from the first guard subcarrier is determined as a left edge imaginary Carrier wave
  • the parsing module is further configured to: determine, from a last subcarrier of a right edge of the working spectrum, a continuous subcarrier whose received signal strength is lower than a third preset threshold as a second group of zero subcarriers, where After the second guard subcarrier is removed from the second group of zero subcarriers, the second group of zero subcarriers that are removed from the second guard subcarrier is determined as a right edge virtual subcarrier; and the number of the left edge virtual subcarriers is determined.
  • the sum of the quantity and the number of the right edge virtual subcarriers is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the discrete Fourier transform dimension of the baseband signal; the aliasing guard band of the baseband signal The minimum number of virtual subcarriers required when the spectrum aliasing of the baseband signal does not exceed the first preset threshold;
  • a setting module configured to set a virtual subcarrier of the multicarrier transmission system according to the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers.
  • the embodiment of the present invention further provides a multi-carrier transmission system for dynamically setting a virtual subcarrier, including:
  • a transmitter configured to acquire dynamic spectrum information of a geographical location of the multi-carrier transmission system, and determine, according to the dynamic spectrum information, the number of left-side virtual sub-carriers of the multi-carrier transmission system on two left and right edges of the working spectrum of the transmitter And a number of virtual subcarriers on the right edge, such that the sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and is not greater than a discrete Fourier transform dimension of the baseband signal; the transmitter sets a virtual subcarrier of the multicarrier transmission system according to the determined number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers;
  • the stack guard band is the minimum number of virtual subcarriers required when the spectral aliasing of the baseband signal does not exceed the first preset threshold;
  • the transmitter is further configured to: after determining the number of left edge virtual subcarriers and the number of right edge virtual subcarriers of the multicarrier transmission system, send a virtual subcarrier adjustment indication to the receiver, where the virtual subcarrier adjustment indication includes the The number of virtual subcarriers on the left edge and the number of virtual subcarriers on the right edge and the adjustment timing of the virtual subcarriers of the multicarrier transmission system;
  • the receiver after receiving the virtual subcarrier adjustment indication sent by the transmitter, starting from a first subcarrier of a left edge of a working spectrum of the receiver, determining a quantity in the working spectrum as described
  • the consecutive subcarriers of the number of virtual subcarriers on the left edge are the first set of virtual subcarriers, and the receiver starts from the last subcarrier of the right edge of the working spectrum, and selects the number of the right edge in the working spectrum.
  • the contiguous subcarriers of the number of carriers are the second group of virtual subcarriers; at the time of adjustment of the virtual subcarriers, the multicarrier transmission system is set according to the number of the first group of virtual subcarriers and the number of the second group of virtual subcarriers Virtual subcarrier.
  • the transmitter adjusts the aliasing protection of the baseband signal of the multi-carrier transmission system according to the obtained dynamic spectrum information and the total number of virtual subcarriers is not less than With and without the DFT dimension of the baseband signal, the number and location of the two sets of virtual subcarriers are determined at the left and right edges of the active spectrum. Therefore, the transmitter can adaptively change the number and position of the virtual subcarriers of the baseband signal according to the dynamic spectrum information while ensuring that the baseband signal of the multicarrier transmission system does not generate spectral aliasing, thereby obtaining flexible and efficient dynamic spectrum utilization, and Good for application scenarios of dynamic spectrum.
  • FIG. 1 is a schematic diagram of subcarrier configuration of an OFDM system provided by the prior art
  • FIG. 2A is a flowchart of a virtual subcarrier dynamic setting method according to an embodiment of the present invention
  • FIG. 2B is a flowchart of another virtual subcarrier dynamic setting method according to an embodiment of the present invention
  • FIG. 3B is a schematic diagram of virtual subcarrier selection according to an embodiment of the present invention
  • FIG. 3C is a schematic diagram of static periodic spectrum and dynamic periodic spectrum comparison of a baseband signal according to an embodiment of the present invention.
  • 3D is a schematic diagram of covering a 60M target frequency band by using three sets of LTE channels according to an embodiment of the present invention
  • FIG. 3E is a schematic diagram of covering a 60 MHz target frequency band by using two sets of LTE channels according to an embodiment of the present invention.
  • FIG. 4A is a flowchart of a method for receiving a dynamic virtual subcarrier according to an embodiment of the present invention
  • FIG. 4B is a schematic diagram of selecting a virtual subcarrier by a terminal according to an embodiment of the present invention
  • FIG. 5 is a flowchart of another method for receiving a dynamic virtual subcarrier according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a virtual subcarrier dynamic setting apparatus according to an embodiment of the present invention.
  • FIG. 6B is a schematic structural diagram of another virtual subcarrier dynamic setting apparatus according to an embodiment of the present invention.
  • 6C is a schematic structural diagram of still another virtual subcarrier dynamic setting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device for receiving a dynamic virtual subcarrier according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another apparatus for receiving a dynamic virtual subcarrier according to an embodiment of the present invention. Figure. detailed description
  • the method and apparatus provided by the embodiments of the present invention are applicable to a multi-carrier transmission system.
  • an OFDM system, an FBMC system, and an MC-CDMA system can also be applied to a peer-to-peer network, such as a plurality of communication nodes in an Ad hoc network.
  • the transmitter in the embodiment of the present invention may be located in the base station or in the terminal. Accordingly, the receiver can be located within the terminal or within the base station. The transmitter and receiver are located on two communication nodes, respectively.
  • FIG. 2A is a flowchart of a method for dynamically setting a virtual subcarrier according to an embodiment of the present invention. As shown in FIG. 2A, the method provided in this embodiment includes:
  • Step 21 The transmitter obtains dynamic spectrum information of its geographical location.
  • the transmitter obtains the dynamic spectrum information of the geographical location of the current location through the built-in local spectrum sensing module, or the transmitter can also obtain the dynamic spectrum information of the current geographical location by accessing the remote spectrum database.
  • the spectrum corresponding to the dynamic spectrum information acquired by the transmitter may be a blank frequency.
  • the frequency from xMHz to yMHz is a blank spectrum
  • the spectrum from aMHz to bMHz is a spectrum already occupied by other systems.
  • Step 22 The transmitter determines, according to the dynamic spectrum information, the number of virtual subcarriers on the left edge of the multicarrier transmission system and the number of virtual subcarriers on the right edge at the left and right edges of the working spectrum of the transmitter, so that the number of virtual subcarriers on the left edge is The sum of the number of right edge virtual subcarriers is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the discrete Fourier transform dimension of the baseband signal.
  • the alias guard band of the baseband signal is the minimum number of virtual subcarriers required when the spectrum aliasing of the baseband signal does not exceed the first preset threshold.
  • the transmitter After obtaining the dynamic spectrum information, the transmitter needs to perform dynamic virtual subcarrier adjustment, for example, when the acquired dynamic spectrum information changes, or periodically determines when the time of the virtual subcarrier arrives, according to the acquired dynamic spectrum information, The two left and right edges of the working spectrum of the machine determine two sets of virtual subcarriers.
  • the number of the bandwidth of the multi-carrier transmission system is equal to the sampling frequency of the baseband signal of the multi-carrier transmission system. It should be noted that, because the spectrum occupied by the multi-carrier transmission system is relatively large, and the transmitter only works on a part of the spectrum, the part of the spectrum is called the working spectrum, and the bandwidth of the working spectrum is equal to that of the multi-carrier transmission system.
  • the frequency of the baseband signal Normally, the working spectrum and receiver of the transmitter in a multi-carrier transmission system The working spectrum is the same.
  • the transmitter determines the left edge virtual carrier wavelet and the right edge virtual subcarrier at the left and right edges of its own working spectrum. That is, the transmitter determines a set of virtual subcarriers on the left edge of its working spectrum based on the dynamic spectrum information, and another set of virtual subcarriers on the right edge of its working spectrum.
  • the transmitter re-determines the virtual subcarrier according to the acquired dynamic spectrum information, the DFT dimension of the aliasing guard band of the baseband signal and the baseband signal is also considered, so that the total number of the two sets of virtual subcarriers that are re-determined is not less than the aliasing protection of the baseband signal.
  • the aliasing guard band of the baseband signal is the minimum number of virtual subcarriers required when the spectral aliasing of the baseband signal does not exceed the first preset threshold, that is, the spectrum aliasing of the baseband signal does not generate the minimum required for spectral aliasing.
  • the discrete Fourier transform (DFT) dimension can be used for multi-carrier transmission system multi-carrier baseband signal modulation, single inverse discrete Fourier transform (IDFT) or single inverse fast Fourier transform (Inverse fast Fourier transform, referred to as IFFT) The number of sampled signal points processed.
  • Step 23 The transmitter sets the virtual subcarrier of the multicarrier transmission system according to the determined number of left edge virtual subcarriers and the number of right edge virtual subcarriers.
  • the method may further include:
  • Step 20 The transmitter sends a virtual subcarrier adjustment indication to the receiver, where the virtual subcarrier adjustment indication includes the number of left edge virtual subcarriers and the number of right edge virtual subcarriers and the adjustment time of the virtual subcarrier of the multicarrier transmission system, so that the receiver When the adjustment time of the virtual subcarrier arrives, the virtual subcarrier of the multicarrier transmission system is set according to the determined left edge virtual subcarrier and the right edge virtual subcarrier.
  • the transmitter may send a virtual subcarrier adjustment indication to the receiver after determining the virtual subcarrier of the multicarrier transmission system according to the dynamic spectrum information, to notify the receiver of the number of left edge virtual subcarriers and the number of right edge virtual subcarriers and the multicarrier transmission system.
  • the adjustment time of the virtual subcarrier When the receiver arrives at the adjustment time of the virtual subcarrier, the virtual subcarrier of the multicarrier transmission system is set according to the determined left edge virtual subcarrier and the right edge virtual subcarrier.
  • the transmitter according to the acquired dynamic spectrum information, under the condition that the total number of virtual subcarriers is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the DFT dimension of the baseband signal, The left and right edges of the transmitter operating spectrum are determined The number and location of the two sets of virtual subcarriers. Therefore, the transmitter can adaptively change the number and position of the virtual subcarriers of the baseband signal according to the dynamic spectrum information while ensuring that the baseband signal of the multicarrier transmission system does not generate spectral aliasing, thereby obtaining flexible and efficient dynamic spectrum utilization, and Good for application scenarios of dynamic spectrum.
  • FIG. 3 is a flowchart of a method for dynamically setting a virtual subcarrier according to an embodiment of the present invention.
  • step 22 may specifically include:
  • Step 221 The transmitter starts according to the acquired dynamic spectrum information, starting with the first subcarrier at the left edge of the working spectrum of the transmitter, and determining, in the working spectrum, multiple consecutive and unavailable subcarriers to form the first subcarrier. Ul group, and last sub-carrier in the right edge of the spectrum starts working, and not available to determine a plurality of consecutive subcarriers constituting the second sub carrier group u 2 in the above working spectrum.
  • the subcarriers that are not available are the subcarriers of the subcarriers corresponding to the unavailable spectral positions of the transmitter.
  • the first subcarrier group and the second subcarrier group are respectively part of the subcarriers in the corresponding subcarriers of the unavailable spectrum position of the transmitter.
  • Step 222 a transmitter starting from the right edge of the first sub carrier group Ul selection right third consecutive sub-carriers a l first subcarrier group and the third group of subcarriers ai - from the left edge of the virtual sub-carriers constituting Vl, and Selecting a continuous fourth subcarrier group from the left edge of the second subcarrier group u 2 to the left, the second subcarrier group u 2 and the fourth subcarrier group a 2 together forming a right edge virtual subcarrier v 2 , the left edge
  • the sum of the number of virtual subcarriers and the number of right edge virtual subcarriers is not less than the aliasing guard band G of the baseband signal and not greater than the DFT dimension N of the baseband signal, and G is not greater than N.
  • the transmitter selects a continuous third subcarrier group ai from the right edge of the first subcarrier group to the right in its working frequency spectrum, and the first subcarrier group ⁇ and the third subcarrier group ai together form a left edge virtual subcarrier V1 .
  • Spectrum transmitter within its working u 2 of the left edge leftward to select contiguous fourth sub-carrier groups from a 2 second sub carrier group, the second sub carrier group and the 2 u fourth sub-carrier group a 2 - starting configuration The right edge virtual subcarrier v 2 .
  • the transmitter obtains the DFT dimension N of the baseband signal, and selects the aliasing guard band G of the baseband signal, and the selected aliasing guard band ensures that the spectral aliasing of the baseband signal is not obtained in the over-sense or product parameters.
  • Different application systems have different preset thresholds.
  • the first number of sub-carriers, the number of the third sub-carrier group 1, the second dummy sub-carrier group a 2 u number and the number 2 fourth virtual sub-carriers are non-negative integers.
  • the first sub carrier group Vl, group AI third sub-carrier, the second dummy sub-carrier group and the fourth tentative u a 2 set of subcarriers are contiguous subcarriers, the number of Vl equals 2 and the number of Ul
  • the sum of the numbers of ai , the number of v 2 is equal to the sum of the number of u 2 and the number of a 2 .
  • Vl and v 2 satisfy the following condition: Number of Number of Vl and v 2 is less than the sum is equal to and greater than or equal to N G.
  • the transmitter adaptively sets the number of virtual subcarriers at two edges of the working spectrum according to the dynamic spectrum information, while avoiding the spectral aliasing of the baseband signal exceeding the first preset threshold.
  • the position makes the bandwidth and occupied spectrum of the baseband signal change aptly, which expands the spectral dynamic range of the baseband signal, thereby reducing the hardware and software equipment required to cover a given spectrum, reducing cost and power consumption.
  • FIG. 3C is a schematic diagram of static periodic spectrum and dynamic periodic spectrum comparison of a baseband signal according to an embodiment of the present invention.
  • the virtual subcarrier configuration vector of the static spectrum and the virtual subcarrier configuration vectors of the dynamic frequency in three arbitrary moments are as follows: static spectrum (0.5G, 0.5G); Snapshot #1 (0, G); Snapshot #2 (0.75G, 0.25G): Snapshot #3 (0.75G, 0.75G).
  • the part of the A-line box represents the spectrum of the multi-carrier baseband analog signal after digital-analog conversion, that is, the spectrum of the actual transmitted analog baseband signal.
  • the signal transmission bandwidth can be The sample bandwidth varies adaptively with the wireless environment, indicating a bandwidth, indicating the signal transmission bandwidth.
  • FIG. 3D is a schematic diagram of covering a 60 MHz target frequency band using three sets of LTE channels according to an embodiment of the present invention.
  • the LTE#1 channel, the LTE#2 channel, and the LTE#3 channel cover the 60MHz target frequency band
  • the virtual subcarriers of the LTE#1 channel, the LTE#2 channel, and the LTE#3 channel actually cover the frequency bands of the adjacent channels. Because the virtual subcarrier does not transmit data, it will not cause interference. In the case where the number and location of virtual subcarriers are fixed.
  • the non-contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM) mode may be used to disable the data subcarriers and pilot subcarriers of the corresponding frequency band of the primary user, that is, as shown in FIG. 3D.
  • a single LTE channel can cover a frequency band of about 30 MHz, and only two sets of dynamic LTE channels can cover a target frequency band of 60 MHz.
  • the above-mentioned NC-OFDM method may be used to construct zero data subcarriers and pilot subcarriers in the signal transmission bandwidth, and the virtual subcarrier may be used to cover the primary user frequency. Segments, while avoiding the closure of useful data and pilot subcarriers, improve spectral efficiency. As shown in FIG.
  • the number of virtual subcarriers on the left edge of the Dynamic LTE#1 channel is reduced, and the number of virtual subcarriers on the right edge is increased accordingly, so that the signal transmission bandwidth is shifted to the left overall, thereby avoiding the interference of the primary user. Avoid turning off useful subcarriers.
  • FIG. 4 is a flowchart of a method for receiving a dynamic virtual subcarrier according to an embodiment of the present invention. This embodiment mainly describes how the receiver sets the virtual subcarrier according to the virtual subcarrier adjustment indication sent by the transmitter. As shown in FIG. 4A, the method provided in this embodiment includes:
  • Step 41 The receiver receives the virtual subcarrier adjustment indication sent by the transmitter, where the virtual subcarrier adjustment indication includes the number of left edge virtual subcarriers of the multicarrier transmission system, the number of right edge virtual subcarriers, and the adjustment time of the virtual subcarrier of the multicarrier transmission system.
  • the sum of the number of virtual subcarriers on the left edge and the number of virtual subcarriers on the right edge is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the discrete Fourier transform dimension of the baseband signal; the aliasing guard band of the baseband signal is a baseband signal
  • the adjustment time of the virtual subcarrier includes a frame number and/or a subframe number of the multicarrier transmission system in the time dimension.
  • the multi-carrier transmission system includes an orthogonal frequency division multiplexing system, a filter bank based multi-carrier system or a multi-carrier code division multiple access system.
  • the discrete Fourier transform dimension of the baseband signal is the number of signal samples included in a single discrete Fourier transform or a single fast Fourier transform when the multicarrier transmission system performs baseband signal modulation of a multicarrier signal.
  • Step 42 The receiver starts from the first subcarrier of the left edge of the working spectrum of the receiver, and determines, in the working spectrum, the number of consecutive subcarriers of the number of left edge virtual subcarriers as the first group of virtual subcarriers, and the receiver The last subcarrier of the right edge of the working spectrum begins, and the number of consecutive subcarriers in the working spectrum that are the number of right edge virtual subcarriers is selected as the second group of virtual subcarriers.
  • the receiver starts from the first subcarrier of the left edge of its working spectrum, and selects a continuous subcarrier whose number is the number of left edge virtual subcarriers V1 in the working spectrum as the first virtual subcarrier ⁇ ;
  • the terminal starts from the last subcarrier ⁇ 2 of the right edge of its working spectrum, and selects the number of consecutive subcarriers in the working spectrum as the number of right edge virtual subcarriers ⁇ 2 as the second set of virtual subcarriers ⁇ , 2 .
  • Step 43 At the adjustment moment of the virtual subcarrier, the receiver according to the number of the first group of virtual subcarriers And setting the virtual subcarrier of the multicarrier transmission system by the number of the second group of virtual subcarriers.
  • the receiver dynamically adjusts the number and position of the virtual subcarriers of the received signal according to the virtual subcarrier adjustment indication sent by the transmitter, and expands the spectrum dynamic range of the baseband signal, thereby reducing coverage.
  • the hardware and software equipment required for the spectrum is reduced, reducing cost and power consumption.
  • FIG. 5 is a flowchart of another method for receiving a dynamic virtual subcarrier according to an embodiment of the present invention.
  • the transmitter obtains the dynamic spectrum information in real time, after determining two sets of virtual subcarriers of the multicarrier transmission system, the transmitter does not need to send a virtual subcarrier adjustment indication to the receiver, and the receiver performs blind detection on the received signal to determine which subcarriers are virtual sub-carriers. Carrier.
  • the method provided in this embodiment includes:
  • Step 51 After receiving the signal from the transmitter, the receiver starts from the first subcarrier of the left edge of the working spectrum of the receiver, and determines that the continuous subcarrier whose received signal strength is lower than the second preset threshold is the first After the first protection subcarrier is removed from the first group of zero subcarriers, the receiver determines the first group of zero subcarriers of the first guard subcarrier to be the left edge virtual subcarrier.
  • Step 52 The receiver starts from the last subcarrier of the right edge of the working spectrum, determines that the continuous subcarrier whose received signal strength is lower than the third preset threshold is the second group of zero subcarriers, and the receiver is in the second group of zeros. After the second guard subcarrier is removed from the subcarrier, the second group of zero subcarriers from which the second guard subcarrier is removed is determined as a right edge virtual subcarrier.
  • the sum of the number of virtual subcarriers on the left edge and the number of virtual subcarriers on the right edge is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and is not greater than the discrete Fourier transform dimension of the baseband signal; the aliasing guard band of the baseband signal is The spectral aliasing of the baseband signal does not exceed the minimum number of virtual subcarriers required for the first predetermined threshold.
  • Step 53 The receiver sets the virtual subcarrier of the multicarrier transmission system according to the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers.
  • the receiver After receiving the signal, the receiver determines the received signal strength on each subcarrier. If the received signal strength of the left edge is lower than the second preset threshold, the received data on the subcarrier is considered to be 0. If the received signal strength of the right edge is lower than the third preset threshold, the received data on the subcarrier is considered to be 0. As shown in FIG. 1, the received data on the data subcarrier and the pilot subcarrier are not 0, and the received data of the virtual subcarrier and the guard subcarrier is 0.
  • the protection subcarrier is used to prevent out-of-band radiation; the data subcarrier is used to transmit user data and signaling; the pilot subcarrier transmission pilot is used for channel estimation and measurement; and the DC subcarrier is used to prevent local oscillator leakage. Second preset threshold and number To, different application systems have different preset thresholds.
  • the number and location of the protection subcarriers in the multi-carrier transmission system are fixed and can be easily obtained through public data, and the received signal strength of the protection sub-carriers is also lower than the above-mentioned preset threshold.
  • the positions of the two sets of guard subcarriers are respectively adjacent to the subcarriers whose transmit data is 1. After the receiver removes the guard subcarrier from the subcarrier with the received signal strength lower than the preset threshold, the remaining subcarrier with the received signal strength lower than the preset threshold is the virtual subcarrier.
  • the multi-carrier transmission system includes an orthogonal frequency division multiplexing system, a filter bank based multi-carrier system or a multi-carrier code division multiple access system.
  • the discrete Fourier transform dimension of the baseband signal is the number of signal samples included in a single discrete Fourier transform or a single fast Fourier transform when the multicarrier transmission system performs baseband signal modulation for a multicarrier signal.
  • the receiver does not receive the virtual subcarrier adjustment indication of the transmitter, but performs blind detection after receiving the signal, and determines which received signal strength is lower than a preset threshold according to the received signal strength on each carrier.
  • the subcarriers of the value are removed from the subcarriers whose received signal strength is lower than the preset threshold, and the remaining subcarriers are virtual subcarriers.
  • FIG. 6 is a schematic structural diagram of a virtual subcarrier dynamic setting apparatus according to an embodiment of the present invention.
  • the apparatus provided in this embodiment includes: a spectrum acquisition module 61, an imaginary subcarrier determination module 62, and an imaginary subcarrier setting module 63.
  • the spectrum acquisition module 61 is configured to acquire dynamic spectrum information of a geographic location where the virtual subcarrier dynamic setting device is located.
  • the spectrum acquisition module is specifically configured to obtain dynamic spectrum information of a geographical location by using a spectrum sensing module built in the device or accessing a spectrum database of the remote end.
  • the virtual subcarrier determining module 62 is configured to determine, according to the dynamic spectrum information acquired by the spectrum acquiring module 61, the number of the left edge virtual subcarriers and the right edge of the multicarrier transmission system on the left and right edges of the working spectrum of the virtual subcarrier dynamic setting device.
  • the number of edge virtual subcarriers such that the sum of the number of left edge virtual subcarriers and the number of right edge virtual subcarriers is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the discrete Fourier transform dimension of the baseband signal; baseband signal
  • the aliasing guard band is the minimum number of virtual subcarriers required for the spectral aliasing of the baseband signal to not exceed the first predetermined threshold.
  • the virtual subcarrier setting module 63 is configured to set the virtual subcarrier of the multicarrier transmission system according to the left edge virtual subcarrier and the right edge virtual subcarrier determined by the virtual subcarrier determining module 62.
  • the timing of adjusting the virtual subcarrier includes a frame number and/or a subframe number of the multicarrier transmission system in the time dimension.
  • each module in FIG. 6A can be referred to in the corresponding implementation column of FIG. 2A, and details are not described herein again.
  • the virtual subcarrier determining module 62 includes a determining unit 621 and a selecting unit 622 on the basis of FIG. 6A.
  • a determining unit 621 configured to determine, according to the dynamic spectrum information acquired by the spectrum acquiring module 61, from the first subcarrier of the left edge of the working spectrum of the virtual subcarrier dynamic setting device, and determine multiple consecutive in the working spectrum
  • the unavailable subcarriers constitute a first subcarrier group, and start at the last subcarrier of the right edge of the working spectrum, and determine a plurality of consecutive and unavailable subcarriers in the working spectrum to form a second subcarrier. Carrier group.
  • the selecting unit 622 is configured to select a plurality of consecutive subcarriers to the right from the right edge of the first subcarrier group to form a third subcarrier group, where the first subcarrier group and the third subcarrier group are together Forming the left edge virtual subcarrier, and starting to select a plurality of consecutive subcarriers to the left at the left edge of the second subcarrier group to form a fourth subcarrier group, the second subcarrier group and the fourth subcarrier
  • the carrier groups together constitute a right edge virtual subcarrier, and the sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than the aliasing guard band of the baseband signal and is not greater than the discrete Fourier of the baseband signal Transform dimensions.
  • each module in FIG. 6B can be referred to in the corresponding implementation column of FIG. 2C, and details are not described herein again.
  • the transmitter actively informs the receiver of the adjusted number of virtual subcarriers. As shown in FIG. 6C, FIG. 6A or FIG.
  • 6B may further include: an adjustment indication module 64, after the determining module 62 determines the number of left edge virtual subcarriers of the multicarrier transmission system and the number of right edge virtual subcarriers, The receiver sends a virtual subcarrier adjustment indication, where the virtual subcarrier adjustment indication includes the number of the left edge virtual subcarriers, the number of the right edge virtual subcarriers, and the adjustment time of the virtual subcarrier of the multicarrier transmission system, so that the When the receiver arrives at the adjustment time of the virtual subcarrier, the virtual subcarrier of the multicarrier transmission system is set according to the determined left edge virtual subcarrier and the right edge virtual subcarrier.
  • an adjustment indication module 64 after the determining module 62 determines the number of left edge virtual subcarriers of the multicarrier transmission system and the number of right edge virtual subcarriers.
  • the function of each module in FIG. 6C can be referred to in the corresponding implementation column of FIG. 2B, and details are not described herein again.
  • the above multi-carrier transmission system may be an orthogonal frequency division multiplexing system, a filter bank based multi-carrier system or a multi-carrier code division multiple access system, but is not limited to the above system.
  • FIG. 7 is a schematic structural diagram of a device for receiving a dynamic virtual subcarrier according to an embodiment of the present invention.
  • the apparatus provided in this embodiment sets the virtual subcarrier according to the virtual subcarrier adjustment indication provided by the transmitter.
  • the apparatus provided in this embodiment includes: an indication receiving module 71, a determining module 72, and a setting module 73.
  • the indication receiving module 71 is configured to receive the virtual subcarrier adjustment indication sent by the transmitter, where the virtual subcarrier adjustment indication includes the number of left edge virtual subcarriers of the multicarrier transmission system, the number of right edge virtual subcarriers, and the adjustment of the virtual subcarrier of the multicarrier transmission system.
  • the sum of the number of virtual subcarriers on the left edge and the number of virtual subcarriers on the right edge is not less than the aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the discrete Fourier transform dimension of the baseband signal; the aliasing guard band of the baseband signal is The spectral aliasing of the baseband signal does not exceed the minimum number of virtual subcarriers required for the first predetermined threshold.
  • the adjustment time of the virtual subcarrier includes a frame number and/or a subframe number of the multicarrier transmission system in the time dimension.
  • the discrete Fourier transform dimension is used to demodulate the baseband signal of a multi-carrier transmission system, the number of signal samples included in a single discrete Fourier transform or a single fast Fourier transform.
  • a determining module 72 configured to start, from a first subcarrier of a left edge of a working spectrum of the receiving device of the dynamic virtual subcarrier, to determine, in the working spectrum, a number of consecutive subcarriers of the number of the left edge virtual subcarriers For the first set of virtual subcarriers, starting from the last subcarrier of the right edge of the working spectrum, select a consecutive number of consecutive subcarriers in the working spectrum that are the number of the right edge virtual subcarriers as the second set of virtual subcarriers.
  • the number of virtual subcarriers on the left edge and the number of virtual subcarriers on the right edge are information indicating the virtual subcarrier adjustment indication received by the receiving module 71.
  • the setting module 73 is configured to set the virtual subcarrier of the multicarrier transmission system according to the number of the first set of virtual subcarriers determined by the determining module 72 and the number of the second group of virtual subcarriers at the adjustment moment of the virtual subcarrier.
  • the above multi-carrier transmission system may be an orthogonal frequency division multiplexing system, a filter bank based multi-carrier system or a multi-carrier code division multiple access system, but is not limited to the above system.
  • the function of each module in FIG. 7 can be referred to in the corresponding implementation column of FIG. 4, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of another apparatus for receiving a dynamic virtual subcarrier according to an embodiment of the present invention.
  • the apparatus provided in this embodiment includes: a receiving module 81, a parsing module 82, and a setting module 83.
  • the receiving module 81 is configured to receive a signal from the transmitter.
  • the parsing module 82 is configured to: after receiving the signal, the receiving module 81 starts from the first subcarrier of the left edge of the working spectrum of the receiving device of the dynamic virtual subcarrier, and determines that the received signal strength is lower than the second preset threshold.
  • the contiguous subcarriers are the first group of zero subcarriers, and after the first guard subcarriers are removed from the first group of zero subcarriers, the first group of zero subcarriers from which the first guard subcarriers are removed are determined as the left edge Virtual subcarrier.
  • the parsing module 82 is further configured to: after receiving the signal, the receiving module 81 starts from the last subcarrier of the right edge of the working spectrum, and determines that the continuous subcarrier whose received signal strength is lower than the third preset threshold is the second a group of zero subcarriers, after removing the second guard subcarrier in the second group of zero subcarriers, determining that the second group of zero subcarriers of the second guard subcarrier are removed as a right edge virtual subcarrier;
  • the sum of the number of virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than a discrete Fourier transform dimension of the baseband signal; a mixture of the baseband signals
  • the stack guard band is the minimum number of virtual subcarriers required when the spectral aliasing of the baseband signal does not exceed the first predetermined threshold.
  • the setting module 83 is configured to set the virtual subcarrier of the multicarrier transmission system according to the number of the left edge virtual subcarriers parsed by the parsing module 82 and the number of the right edge virtual subcarriers.
  • the above multi-carrier transmission system may be an orthogonal frequency division multiplexing system, a filter bank based multi-carrier system or a multi-carrier code division multiple access system, but is not limited to the above system.
  • the function of each module in FIG. 8 can be referred to in the corresponding implementation column of FIG. 5, and details are not described herein again.
  • the embodiment of the invention further provides a multi-carrier transmission system for dynamically setting a virtual subcarrier.
  • the transmitter dynamically sets the virtual subcarrier, it will notify the receiver of the number of virtual subcarriers.
  • the specific functions of the transmitter and receiver in the system are as follows:
  • a transmitter configured to obtain dynamic spectrum information of a geographical location of the transmitter; and determining, according to the dynamic spectrum information, the number of virtual subcarriers on the left edge of the multicarrier transmission system at the left and right edges of the working spectrum of the transmitter The number of virtual subcarriers on the right edge, such that the sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and not greater than the baseband Discrete Fourier a leaf transform dimension; the transmitter sets a virtual subcarrier of the multicarrier transmission system according to the determined number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers; the alias guard band of the baseband signal is The minimum number of virtual subcarriers required when the spectral aliasing of the baseband signal does not exceed the first predetermined threshold.
  • the transmitter is specifically configured to obtain dynamic spectrum information of a geographical location by using a built-in spectrum sensing module or accessing a remote spectrum database.
  • the transmitter is further configured to: after determining the number of left edge virtual subcarriers and the number of right edge virtual subcarriers of the multicarrier transmission system, send a virtual subcarrier adjustment indication to the receiver, where the virtual subcarrier adjustment indication includes the The number of virtual subcarriers on the left edge and the number of virtual subcarriers on the right edge and the adjustment timing of the virtual subcarriers of the multicarrier transmission system;
  • the receiver after receiving the virtual subcarrier adjustment indication sent by the transmitter, starting from the first subcarrier of the left edge of the working spectrum of the receiver, determining the quantity in the working spectrum of the receiver
  • the consecutive subcarriers of the number of virtual subcarriers of the left edge are the first set of virtual subcarriers, and the receiver starts from the last subcarrier of the right edge of the working spectrum of the receiver, and the working spectrum of the receiver Continuing subcarriers in which the number of virtual subcarriers of the right edge is selected as a second set of virtual subcarriers; and at the timing of adjusting the virtual subcarriers, according to the number of the first set of virtual subcarriers and the second set of virtual subcarriers
  • the number of virtual subcarriers of the multicarrier transmission system is set.
  • the above-mentioned transmitter can be described in the corresponding embodiment of FIG. 2A, FIG. 2B or FIG. 2C, and the receiver can be described in the corresponding embodiment of FIG.
  • the embodiment of the invention further provides a multi-carrier transmission system for dynamically setting a virtual subcarrier.
  • the difference between the system and the above system is that after the virtual subcarrier is dynamically set, the transmitter does not set the number of virtual subcarriers by signaling, and the receiver determines the position and number of the virtual subcarriers by blind detection after receiving the signal of the transmitter.
  • the specific functions of the transmitter and receiver in this system are as follows:
  • a transmitter configured to obtain dynamic spectrum information of a geographical location of the transmitter; and determining, according to the dynamic spectrum information, left and right virtual subcarriers of the multicarrier transmission system at two left and right edges of the working spectrum of the transmitter
  • the number and the number of right edge virtual subcarriers such that the sum of the number of the left edge virtual subcarriers and the number of the right edge virtual subcarriers is not less than an aliasing guard band of the baseband signal of the multicarrier transmission system and is not greater than a discrete Fourier transform dimension of the baseband signal
  • the transmitter according to the determined number and location of the left edge virtual subcarriers
  • the number of virtual subcarriers on the right edge is set, and the virtual subcarrier of the multicarrier transmission system is set; the aliasing guard band of the baseband signal is required when the spectrum aliasing of the baseband signal does not exceed the first preset threshold.
  • a receiver configured to receive a signal transmitted by the transmitter, starting from a first subcarrier of a left edge of a working spectrum of the receiver, and determining a contig that receives a signal strength lower than a second preset threshold
  • the carrier is a first group of zero subcarriers, and after the first guard subcarrier is removed from the first group of zero subcarriers, the first group of zero subcarriers that are removed from the first guard subcarrier is determined as a left edge virtual subcarrier; Starting from the last subcarrier of the right edge of the working spectrum of the receiver, determining that the received sub-carrier whose received signal strength is lower than the third preset threshold is the second set of zero subcarriers, in the second group of zeros After the second guard subcarrier is removed from the subcarrier, the second group of zero subcarriers that are removed from the second guard subcarrier is determined as a right edge virtual subcarrier; according to the number of left edge virtual subcarriers and the right edge virtual subcarrier The number of
  • the above-mentioned transmitter can be described in the corresponding embodiment of FIG. 2A, FIG. 2B or FIG. 2C, and the receiver can be described in the corresponding embodiment of FIG. 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供的一种虚子载波动态设置方法、接收方法和装置及系统。该设置方法包括:发射机获取自身所在地理位置的动态频谱信息;根据动态频谱信息,在发射机的工作频谱的左右两个边缘,确定多载波传输系统的左边缘虚子载波和右边缘虚子载波的数量,以使得左边缘虚子载波的数量和右边缘虚子载波的数量的总和不小于多载波传输系统的基带信号的混叠保护带且不大于基带信号的离散傅立叶变换维度;根据确定的左边缘虚子载波的数量和右边缘虚子载波的数量,设置多载波传输系统的虚子载波。本发明动态设置虚子载波使得基带信号的带宽和占用频谱可自适地改变,扩展了基带信号的频谱动态范围,减少了覆盖给定频谱所需的软硬件设备。

Description

虚子载波动态设置方法、 接收方法和装置及系统
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种虚子载波动态设置方 法、 接收方法和装置及系统。
背景技术
多载波传输系统能有效抑制多径衰落, 实现高速的数据传输, 并且实 现简单、 频谱效率高。 例如, 正交频分复用 ( Orthogonal frequency-division multiplexing, 简称 OFDM )技术。 多载波系统将频率选择性衰落信道, 划分成相互正交的若干个平坦衰落子载波; 根据频谱的动态变化, 通过简 单地置零某些子载波, 使这些子载波不传输数据, 就可实现多载波系统频 谱自适应功能,因此多载波传输成为动态频谱共享( dynamic spectrum sharing , 简称 DSS )和感知无线电 ( Cognitive Radio )最有潜力的物理层传输技术。
多载波传输系统, 具有的实现方式包括但不限于 OFDM 系统、 基于 滤波器组的多载波(Filter-bank Based Multicarrier, 简称 FBMC ) 、 多载 波码分多址( Multicarrier Code-Division-Multiple-Access ,简称 MC-CDMA ) 等等, 这些技术的共同特点在于都基于离散傅立叶变换 (Discrete Fourier Transform, 简称 DFT ) 来调制和解调多载波信号。 根据釆样定理, 数字 信号的频谱具有周期性, 可能造成频谱混叠, 会严重影响性能; 因此, 实 际的多载波系统都在基带信号釆样带宽的两个边缘设置了虚子载波,虚子 载波不传输信号。 例如, 图 1 为现有技术提供的 OFDM系统的子载波配 置示意图, 系统釆样频率 (即基带信号的釆样带宽) 大于信号传输带宽, 信号传输带宽内包括保护子载波、 数据子载波、 直流子载波和导频子载波 等等, 而虚子载波所占频谱宽度约为釆样带宽减去信号传输带宽。
现有的多载波系统均以静态频谱场景为前提, 即所使用的信号传输带 宽是预先划分并且固定不变的。 在系统设计和产品实现时, 虚子载波的数 量和位置已固化, 难以应用在动态频谱的场景中。 发明内容 本发明实施例提供一种虚子载波动态设置方法、接收方法和装置及系 统, 用以自适应地动态设置虚子载波的数量和位置, 更好地适应动态频谱 的应用场景。
一方面, 本发明实施例提供一种虚子载波动态设置方法, 应用于多载 波传输系统, 包括:
所述多载波传输系统的发射机获取自身所在地理位置的动态频谱信 息;
所述发射机根据所述动态频谱信息, 在所述发射机的工作频谱的左右 两个边缘, 确定所述多载波传输系统的左边缘虚子载波和右边缘虚子载波 的数量, 以使得所述左边缘虚子载波的数量和所述右边缘虚子载波的数量 的总和不小于所述多载波传输系统的基带信号的混叠保护带且不大于所 述基带信号的离散傅立叶变换维度; 基带信号的混叠保护带为基带信号的 频谱混叠不超过第一预设门限值所需的最小虚子载波数量;
所述发射机根据确定的所述左边缘虚子载波和所述右边缘虚子载波, 设置所述多载波传输系统的虚子载波。
一方面, 本发明实施例还提供一种虚子载波动态设置装置, 应用于多 载波传输系统, 包括:
频谱获取模块, 用于获取所述虚子载波动态设置装置所在地理位置的 动态频语信息;
虚子载波确定模块, 用于根据所述动态频谱信息, 在所述虚子载波动 态设置装置的工作频谱的左右两个边缘, 确定所述多载波传输系统的左边 缘虚子载波和右边缘虚子载波的数量, 以使得所述左边缘虚子载波的数量 和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统的基带 信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 基带信 号的混叠保护带为基带信号的频谱混叠不超过第一预设门限值所需的最 小虚子载波数量;
虚子载波设置模块, 用于所述发射机根据确定的所述左边缘虚子载波 的数量和所述右边缘虚子载波的数量, 设置所述多载波传输系统的虚子载 波。 另一方面, 本发明实施例提供一种动态虚子载波的接收方法, 应用于 多载波传输系统, 包括:
接收机接收发射机发送的虚子载波调整指示, 所述虚子载波调整指示 包括多载波传输系统的左边缘虚子载波的数量和右边缘虚子载波的数量 以及所述多载波传输系统的虚子载波的调整时刻; 所述左边缘虚子载波的 数量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统的 基带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 基 带信号的混叠保护带为基带信号的频谱混叠不超过第一预设门限值所需 的最小虚子载波数量;
所述接收机从所述接收机的工作频谱的左边缘的第一个子载波开始, 在所述工作频谱内确定数量为所述左边缘虚子载波的数量的连续子载波 为第一组虚子载波, 所述接收机从所述工作频谱的右边缘的最后一个子载 波开始, 在所述工作频谱内选择数量为所述右边缘虚子载波的数量的连续 子载波为第二组虚子载波;
在所述虚子载波的调整时刻, 所述接收机根据所述第一组虚子载波的 数量和所述第二组虚子载波的数量设置所述多载波传输系统的虚子载波。
另一方面, 本发明实施例提供一种动态虚子载波的接收装置, 应用于 多载波传输系统, 包括:
指示接收模块, 用于接收发射机发送的虚子载波调整指示, 所述虚子 载波调整指示包括多载波传输系统的左边缘虚子载波的数量和右边缘虚 子载波的数量以及所述多载波传输系统的虚子载波的调整时刻; 所述左边 缘虚子载波的数量和所述右边缘虚子载波的数量的总和不小于所述多载 波传输系统的基带信号的混叠保护带且不大于所述基带信号的离散傅立 叶变换维度; 所述基带信号的混叠保护带为所述基带信号的工作频谱混叠 不超过第一预设门限值时所需的最小虚子载波数量;
确定模块, 用于从所述动态虚子载波的接收装置的左边缘的第一个子 载波开始, 在所述工作频谱内确定数量为所述左边缘虚子载波的数量的连 续子载波为第一组虚子载波, 从所述工作频谱的右边缘的最后一个子载波 开始, 在所述工作频谱内选择数量为所述右边缘虚子载波的数量的连续子 载波为第二组虚子载波; 设置模块, 用于在所述虚子载波的调整时刻, 根据所述第一组虚子载 波的数量和所述第二组虚子载波的数量, 设置所述多载波传输系统的虚子 载波。
又一方面, 本发明实施例提供一种动态虚子载波的接收方法, 应用于 多载波传输系统, 包括:
接收机从发射机接收到信号后, 从所述接收机的工作频谱的左边缘的 第一个子载波开始, 确定接收信号强度低于第二预设门限值的连续子载波 为第一组零子载波, 所述接收机在所述第一组零子载波中去除第一保护子 载波后, 将去除所述第一保护子载波的第一组零子载波确定为左边缘虚子 载波;
所述接收机从所述工作频谱的右边缘的最后一个子载波开始, 确定接 收信号强度低于第三预设门限值的连续子载波为第二组零子载波, 所述接 收机在所述第二组零子载波中去除第二保护子载波后, 将去除所述第二保 护子载波的第二组零子载波确定为右边缘虚子载波; 所述左边缘虚子载波 的数量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统 的基带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 所述基带信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设 门限值时所需的最小虚子载波数量。
又一方面, 本发明实施例提供一种动态虚子载波的接收装置, 应用于 多载波传输系统, 包括:
接收模块, 用于从发射机接收信号;
解析模块, 用于从发射机接收到信号后, 从所述动态虚子载波的接收 装置的工作频谱的左边缘的第一个子载波开始, 确定接收信号强度低于第 二预设门限值的连续子载波为第一组零子载波, 在所述第一组零子载波中 去除第一保护子载波后, 将去除所述第一保护子载波的第一组零子载波确 定为左边缘虚子载波;
解析模块, 还用于从所述工作频谱的右边缘的最后一个子载波开始, 确定接收信号强度低于第三预设门限值的连续子载波为第二组零子载波, 在所述第二组零子载波中去除第二保护子载波后, 将去除所述第二保护子 载波的第二组零子载波确定为右边缘虚子载波; 所述左边缘虚子载波的数 量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统的基 带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 所述 基带信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设门限 值时所需的最小虚子载波数量;
设置模块, 用于根据所述左边缘虚子载波的数量和所述右边缘虚子载 波的数量设置所述多载波传输系统的虚子载波。
再一方面, 本发明实施例还提供的一种动态设置虚子载波的多载波传 输系统, 包括:
发射机, 用于获取自身所在地理位置的动态频谱信息; 根据所述动态 频谱信息, 在所述发射机的工作频谱的左右两个边缘, 确定所述多载波传 输系统的左边缘虚子载波的数量和右边缘虚子载波的数量, 以使得所述左 边缘虚子载波的数量和所述右边缘虚子载波的数量的总和不小于所述多 载波传输系统的基带信号的混叠保护带且不大于所述基带信号的离散傅 立叶变换维度; 所述发射机根据确定的所述左边缘虚子载波的数量和所述 右边缘虚子载波的数量, 设置所述多载波传输系统的虚子载波; 所述基带 信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设门限值时 所需的最小虚子载波数量;
所述发射机, 还用于在确定所述多载波传输系统的左边缘虚子载波的 数量和右边缘虚子载波的数量之后, 向接收机发送虚子载波调整指示, 所 述虚子载波调整指示包括所述左边缘虚子载波的数量和所述右边缘虚子 载波的数量以及所述多载波传输系统的虚子载波的调整时刻;
所述接收机, 用于接收所述发射机发送的虚子载波调整指示后, 从所 述接收机的工作频谱的左边缘的第一个子载波开始, 在所述工作频谱内确 定数量为所述左边缘虚子载波的数量的连续子载波为第一组虚子载波, 所 述接收机从所述工作频谱的右边缘的最后一个子载波开始, 在所述工作频 谱内选择数量为所述右边缘虚子载波的数量的连续子载波为第二组虚子 载波; 在所述虚子载波的调整时刻, 根据所述第一组虚子载波的数量和所 述第二组虚子载波的数量设置所述多载波传输系统的虚子载波。
本发明实施例通过以上技术方案, 发射机根据获取的动态频谱信息、 在满足虚子载波的总数量不小于多载波传输系统的基带信号的混叠保护 带且不大于基带信号的 DFT 维度的条件下, 在工作频谱的左右两个边缘 确定两组虚子载波的数量和位置。 因此, 发射机可在保证多载波传输系统 的基带信号不产生频谱混叠的前提下, 根据动态频谱信息自适应地改变基 带信号虚子载波的数量和位置, 进而获取灵活高效的动态频谱利用, 更好 地适用于动态频谱的应用场景。 附图说明 图 1为现有技术提供的 OFDM系统的子载波配置示意图;
图 2A为本发明实施例提供的一种虚子载波动态设置方法流程图; 图 2B为本发明实施例提供的另一种虚子载波动态设置方法流程图; 图 3 A为本发明实施例提供的又一种虚子载波动态设置方法流程图; 图 3B为本发明实施例提供的虚子载波选择示意图;
图 3C为本发明实施例提供的基带信号的静态周期性频谱和动态周期 性频谱对比示意图;
图 3D为本发明实施例提供的使用 3套 LTE通道覆盖 60M 目标频段 的示意图;
图 3E为本发明实施例提供的使用 2套 LTE通道覆盖 60MHz 目标频 段的示意图
图 4A本发明实施例提供的一种动态虚子载波的接收方法流程图; 图 4B为本发明实施例提供的终端选择虚子载波的示意图;
图 5为本发明实施例提供的另一种动态虚子载波的接收方法流程图; 图 6A 为本发明实施例提供的一种虚子载波动态设置装置结构示意 图;
图 6B为本发明实施例提供的另一种虚子载波动态设置装置结构示意 图;
图 6C为本发明实施例提供的又一种虚子载波动态设置装置结构示意 图;
图 7 为本发明实施例提供的一种动态虚子载波的接收装置结构示意 图;
图 8为本发明实施例提供的另一种动态虚子载波的接收装置结构示意 图。 具体实施方式
本发明实施例提供的方法和装置可应用于多载波传输系统。 例如, OFDM系统、 FBMC 系统和 MC-CDMA系统等, 也可应用于对等网络, 例如 Ad hoc网络中的连个通信节点。 本发明实施例中的发射机可位于基 站内, 也可位于终端内。 相应地, 接收机可位于终端内, 也可位于基站内。 发射机和接收机分别位于两个通信节点上。
图 2A为本发明实施例提供的一种虚子载波动态设置方法流程图。 如 图 2A所示, 本实施例提供的方法包括:
步骤 21 : 发射机获取自身所在地理位置的动态频谱信息。
发射机通过内置在本地的频谱感知模块获取自身当前所在地理位置 的动态频谱信息, 或者发射机也可通过访问远端的频谱数据库获取当前所 在地理位置的动态频谱信息。 发射机获取的动态频谱信息对应的频谱可以 是空白频语,例如 ,从 xMHz至 yMHz的频语为空白频谱 ,从 aMHz至 bMHz 的频谱为已被其它系统占用的频谱。
步骤 22: 发射机根据动态频谱信息, 在发射机的工作频谱的左右两个 边缘, 确定多载波传输系统的左边缘虚子载波的数量和右边缘虚子载波的 数量, 使得左边缘虚子载波的数量和右边缘虚子载波的数量的总和不小于 多载波传输系统的基带信号的混叠保护带且不大于基带信号的离散傅立 叶变换维度。 其中, 基带信号的混叠保护带为基带信号的频谱混叠不超过 第一预设门限值时所需的最小虚子载波数量。
发射机获取动态频谱信息后,在需要进行动态虚子载波调整时,例如, 在获取的动态频谱信息发生变化时, 或周期性确定虚子载波的时间到达 时, 根据获取到的动态频谱信息, 在发射机的工作频谱的左右两个边缘确 定两组虚子载波。 其中, 多载波传输系统的釆样带宽数量上等于多载波传 输系统的基带信号的釆样频率。 需要说明的是, 由于多载波传输系统占用 的频谱比较大, 而发射机只工作在其中的一部分频谱上, 这一部分频谱就 称为工作频谱, 且所述工作频谱的带宽等于多载波传输系统的基带信号的 釆样频率。 通常情况下, 多载波传输系统中的发射机的工作频谱与接收机 的工作频谱相同。
发射机分别在自身工作频谱的左边缘和右边缘, 确定左边缘虚载子波 和右边缘虚子载波。 也就是说, 发射机根据动态频谱信息在其工作频谱的 左边缘确定一组虚子载波, 在其工作频谱的右边缘确定另一组虚子载波。 发射机根据获取的动态频谱信息重新确定虚子载波时, 还考虑到基带信号 的混叠保护带和基带信号的 DFT 维度, 使得重新确定的两组虚子载波的 总数量不小于基带信号的混叠保护带且不大于基带信号的 DFT 维度。 其 中, 基带信号的混叠保护带为基带信号的频谱混叠不超过第一预设门限值 时所需的最小虚子载波数量, 即基带信号的频谱混叠不产生频谱混叠所需 的最小虚子载波数量。 其中, 离散傅立叶变换( discrete Fourier transform, 简称 DFT )维度可为多载波传输系统进行多载波基带信号调制时, 单次逆 离散傅立叶变换 ( Inverse discrete Fourier transform, 简称 IDFT )或单次逆 快速傅立叶变换 ( Inverse fast Fourier transform, 简称 IFFT ) 所处理的釆 样信号点的数量。
步骤 23 :发射机根据确定的左边缘虚子载波的数量和右边缘虚子载波 的数量, 设置多载波传输系统的虚子载波。
进一步, 如图 2B所示, 在步骤 22之后, 还可包括:
步骤 20: 发射机向接收机发送虚子载波调整指示, 虚子载波调整指示 包括左边缘虚子载波的数量和右边缘虚子载波的数量以及多载波传输系 统的虚子载波的调整时刻, 以使所述接收机在所述虚子载波的调整时刻到 达时, 根据确定的左边缘虚子载波和右边缘虚子载波, 设置所述多载波传 输系统的虚子载波。
发射机可在根据动态频谱信息确定多载波传输系统的虚子载波之后, 向接收机发送虚子载波调整指示, 以通知接收机左边缘虚子载波的数量和 右边缘虚子载波的数量以及多载波传输系统的虚子载波的调整时刻。 接收 机在虚子载波的调整时刻到达时, 根据确定的左边缘虚子载波和右边缘虚 子载波, 设置多载波传输系统的虚子载波。
本实施例提供的方法, 发射机根据获取的动态频谱信息、 在满足虚子 载波的总数量不小于多载波传输系统的基带信号的混叠保护带且不大于 基带信号的 DFT 维度的条件下, 在发射机工作频谱的左右两个边缘确定 两组虚子载波的数量和位置。 因此, 发射机可在保证多载波传输系统的基 带信号不产生频谱混叠的前提下, 根据动态频谱信息自适应地改变基带信 号虚子载波的数量和位置, 进而获取灵活高效的动态频谱利用, 更好地适 用于动态频谱的应用场景。
图 3A为本发明实施例提供的一种虚子载波动态设置方法流程图。 图
3B为本发明实施例提供的虚子载波选择示意图。 如图 3A所示, 步骤 22 具体可包括:
步骤 221 : 发射机根据获取的动态频谱信息, 在发射机的工作频谱的 左边缘的第一个子载波开始, 在上述工作频谱内确定多个连续的且不可用 的子载波构成第一子载波组 Ul , 并在上述工作频谱的右边缘的最后一个子 载波开始, 在上述工作频谱内确定多个连续的且不可用的子载波构成第二 子载波组 u2
此处, 不可用的子载波是发射机的不可用频谱位置对应子载波的子载 波。 相应地, 第一子载波组和第二子载波组分别为发射机的不可用频谱位 置对应子载波中的部分子载波。
步骤 222: 发射机从第一子载波组 Ul的右边缘开始向右选择连续的第 三子载波组 al 第一子载波组 和第三子载波组 ai—起构成左边缘虚子 载波 Vl,并从第二子载波组 u2的左边缘开始向左选择连续的第四子载波组 , 第二子载波组 u2和第四子载波组 a2—起构成右边缘虚子载波 v2, 左边 缘虚子载波的数量和右边缘虚子载波的数量的总和不小于基带信号的混 叠保护带 G且不大于基带信号的 DFT维度 N, G不大于 N。
发射机在其工作频谱内从第一子载波组 的右边缘开始向右选择连 续的第三子载波组 ai , 第一子载波组 ^和第三子载波组 ai—起构成左边 缘虚子载波 Vl。发射机在其工作频谱内从第二子载波组 u2的左边缘开始向 左选择连续的第四子载波组 a2, 第二子载波组 u2和第四子载波组 a2—起 构成右边缘虚子载波 v2
在步骤 221之前,发射机获取基带信号的 DFT维度 N, 并且选择基带 信号的混叠保护带 G, 选取的混叠保护带要保证基带信号的频谱混叠不超 义或产品参数中获取到, 不同的应用系统具有不同的预设门限值。 第一子载波组 的数量、 第三子载波组 1的数量、 第二虚子载波组 u2的数量和第四虚子载波组 a2的数量均为非负整数。 如图 3B所示, 第一 子载波组 Vl、 第三子载波组 ai、 第二虚子载波组 u2和第四虚子载波组 a2 均为连续的子载波, Vl的数量等于 Ul的数量与 ai的数量之和, v2的数量 等于 u2的数量与 a2的数量之和。 Vl和 v2满足以下条件: Vl的数量与 v2 的数量的之和小于等于 N且大于等于 G。
本实施例提供的方法, 发射机根据动态频谱信息, 在避免基带信号的 频谱混叠超过第一预设门限值的情况下, 在其工作频谱的两个边缘自适应 设置虚子载波的数量和位置, 使得基带信号的带宽和占用频谱可自适地改 变, 扩展了基带信号的频谱动态范围, 因而减少了覆盖给定频谱所需的软 硬件设备, 降低了成本和功耗。
图 3C 为本发明实施例提供的基带信号的静态周期性频谱和动态周期性 频谱对比示意图。如图 3C所示,静态频谱的虚子载波配置向量与三个任意时 刻动态频语的虚子载波配置向量如下: 静态频谱 (0.5G,0.5G) ; Snapshot #1 (0,G); Snapshot #2 (0.75G, 0.25G): Snapshot #3 ( 0.75G, 0.75G )。 A线框中 部分表示经过数模变换后的多载波基带模拟信号的频谱 , 也就是系统实际发 射模拟基带信号的频谱, 从图 3C可以看出, 动态设置虚子载波后, 信号传输 带宽可在釆样带宽 范围内随无线环境自适应变化, 表示釆样带宽, 表示信号传输带宽。
图 3D为本发明实施例提供的使用 3套 LTE通道覆盖 60MHz 目标频 段的示意图。 如图 3D所示, LTE#1通道、 LTE#2通道和 LTE#3通道覆盖 60MHz目标频段, LTE#1通道、 LTE#2通道和 LTE#3通道的虚子载波实 际覆盖了相邻通道的频段, 由于虚子载波不传输数据, 不会造成干扰。 在 虚子载波的数量和位置是固定不变的情况下。 如果出现主用户, 可以釆用 非连续正交频分复用 (Non-Contiguous OFDM, 简称 NC-OFDM)方式, 关 闭主用户对应频段的数据子载波和导频子载波,即关闭如图 3D中 LTE # 3 的空白部分。
如图 3E所示, 釆用本发明的动态设置虚子载波的方法, 单个 LTE通 道可以覆盖约 30MHz频段, 仅需 2套动态 LTE通道可以覆盖 60MHz 目 标频段。 当出现主用户干扰时, 可以釆用上述 NC-OFDM方式在信号传输 带宽内置零数据子载波和导频子载波, 也可以利用虚子载波覆盖主用户频 段, 而避免关闭有用的数据和导频子载波, 提高频谱效率。 如图 3E所示, 减少 Dynamic LTE#1通道左边缘的虚子载波数量,而相应地增加右边缘的 虚子载波的数量, 使得信号传输带宽整体左移, 从而既避开了主用户的干 扰, 也避免了关闭有用子载波 。
图 4A为本发明实施例提供的一种动态虚子载波的接收方法流程图。 本实施例主要说明接收机如何根据发射机发送的虚子载波调整指示设置 虚子载波。 如图 4A所示, 本实施例提供的方法包括:
步骤 41 : 接收机接收发射机发送的虚子载波调整指示,虚子载波调整 指示包括多载波传输系统的左边缘虚子载波的数量和右边缘虚子载波的 数量以及多载波传输系统的虚子载波的调整时刻; 左边缘虚子载波的数量 和右边缘虚子载波的数量的总和不小于多载波传输系统的基带信号的混 叠保护带且不大于基带信号的离散傅立叶变换维度; 基带信号的混叠保护 带为基带信号的频谱混叠不超过第一预设门限值所需的最小虚子载波数 量。
其中, 虚子载波的调整时刻包括多载波传输系统在时间维度上的帧号 和 /或子帧号。 多载波传输系统包括正交频分复用系统、基于滤波器组的多 载波系统或多载波码分多址系统。 基带信号的离散傅立叶变换维度为多载 波传输系统进行多载波信号的基带信号调制时, 进行单次离散傅立叶变换 或单次快速傅立叶变换的包含的信号釆样点数量。
步骤 42: 接收机从接收机的工作频谱的左边缘的第一个子载波开始, 在该工作频谱内确定数量为左边缘虚子载波的数量的连续子载波为第一 组虚子载波, 接收机从该工作频谱的右边缘的最后一个子载波开始, 在该 工作频谱内选择数量为右边缘虚子载波的数量的连续子载波为第二组虚 子载波。
如图 4B所示,接收机从其工作频谱的左边缘的第一个子载波 开始, 在该工作频谱内选择数量为左边缘虚子载波 Vl的数量的连续子载波为第 一组虚子载波 νΊ ; 同样, 终端从其工作频谱的右边缘的最后一个子载波 Ε2开始,在其工作频谱内选择数量为右边缘虚子载波 ν2的数量的连续子载 波为第二组虚子载波 ν,2
步骤 43: 在虚子载波的调整时刻,接收机根据第一组虚子载波的数量 和第二组虚子载波的数量设置多载波传输系统的虚子载波。
本实施例提供的动态虚子载波的接收方法, 接收机根据发射机发送的 虚子载波调整指示, 动态调整接收信号的虚子载波的数量和位置, 扩展了 基带信号的频谱动态范围, 因而减少了覆盖给定频谱所需的软硬件设备, 降低了成本和功耗。
图 5为本发明实施例提供的另一种动态虚子载波的接收方法流程图。 发射机根据实时获取动态频谱信息, 确定多载波传输系统的两组虚子载波 后, 不需要向接收机发送虚子载波调整指示, 由接收机对接收到的信号进 行盲检, 确定哪些子载波是虚子载波。 如图 5所示, 本实施例提供的方法 包括:
步骤 51 : 接收机从发射机接收到信号后, 从接收机的工作频谱的左边 缘的第一个子载波开始, 确定接收信号强度低于第二预设门限值的连续子 载波为第一组零子载波, 接收机在第一组零子载波中去除第一保护子载波 后, 将去除第一保护子载波的第一组零子载波确定为左边缘虚子载波。
步骤 52: 接收机从工作频谱的右边缘的最后一个子载波开始, 确定接 收信号强度低于第三预设门限值的连续子载波为第二组零子载波, 接收机 在第二组零子载波中去除第二保护子载波后, 将去除第二保护子载波的第 二组零子载波确定为右边缘虚子载波。 其中, 左边缘虚子载波的数量和右 边缘虚子载波的数量的总和不小于多载波传输系统的基带信号的混叠保 护带且不大于基带信号的离散傅立叶变换维度; 基带信号的混叠保护带为 基带信号的频谱混叠不超过第一预设门限值所需的最小虚子载波数量。
步骤 53 :接收机根据所述左边缘虚子载波的数量和所述右边缘虚子载 波的数量设置多载波传输系统的虚子载波。
接收机接收到信号后, 判断每个子载波上的接收信号强度, 如果左边 缘的接收信号强度低于第二预设门限,即可认为该子载波上接收数据为 0。 如果右边缘的接收信号强度低于第三预设门限, 即可认为该子载波上接收 数据为 0。 如图 1所示, 数据子载波和导频子载波上的接收数据均不为 0 , 而虚子载波和保护子载波的接收数据为 0。 其中, 保护子载波用于防止带 外辐射; 数据子载波用于传输用户数据和信令; 导频子载波传输导频, 用 于信道估计和测量; 直流子载波用于防止本振泄漏。 第二预设门限值和第 到, 不同的应用系统具有不同的预设门限值。
通常情况下, 多载波传输系统中保护子载波的数量和位置是固定的, 可通过公开资料轻易获取, 保护子载波的接收信号强度也低于上述预设门 限值。 如图 1所示, 两组保护子载波的位置分别与发射数据为 1的子载波 相邻。 接收机从接收信号强度低于上述预设门限值的子载波中去除保护子 载波后, 剩余的接收信号强度低于上述预设门限值的子载波即为虚子载 波。
其中, 多载波传输系统包括正交频分复用系统、 基于滤波器组的多载 波系统或多载波码分多址系统。 基带信号的离散傅立叶变换维度为多载波 传输系统进行多载波信号的基带信号调制时, 单次离散傅立叶变换或单次 快速傅立叶变换的包含的信号釆样点数量。
本实施例提供的方法, 接收机没有接收到发射机的虚子载波调整指 示, 而是接收到信号后进行盲检, 根据各载波上的接收信号强度确定哪些 是接收信号强度低于预设门限值的子载波, 再从在接收信号强度低于预设 门限值的子载波中去除保护子载波, 剩余的子载波即为虚子载波。
图 6A 为本发明实施例提供的一种虚子载波动态设置装置结构示意 图。 如图 6A所示, 本实施例提供的装置包括: 频谱获取模块 61、 虚子载 波确定模块 62和虚子载波设置模块 63。
频谱获取模块 61 ,用于获取所述虚子载波动态设置装置所在地理位置 的动态频谱信息。
具体地, 频谱获取模块, 具体用于通过所述装置内置的频谱感知模块 或访问远端的频谱数据库获取所在地理位置的动态频谱信息。
虚子载波确定模块 62 , 用于根据频谱获取模块 61获取的动态频谱信 息, 在所述虚子载波动态设置装置的工作频谱的左右两个边缘, 确定多载 波传输系统的左边缘虚子载波的数量和右边缘虚子载波的数量, 以使得左 边缘虚子载波的数量和右边缘虚子载波的数量的总和不小于多载波传输 系统的基带信号的混叠保护带且不大于基带信号的离散傅立叶变换维度; 基带信号的混叠保护带为基带信号的频谱混叠不超过第一预设门限值所 需的最小虚子载波数量。 虚子载波设置模块 63 , 用于发射机根据虚子载波确定模块 62确定的 左边缘虚子载波和右边缘虚子载波, 设置多载波传输系统的虚子载波。 其 中,调整虚子载波的时刻包括多载波传输系统在时间维度上的帧号和 /或子 帧号。
图 6A中各模块的功能可参见图 2A对应实施列中描述, 在此不再赘 述。
具体地, 如图 6B所示, 在图 6A的基础上虚子载波确定模块 62包括 确定单元 621和选择单元 622。
确定单元 621 , 用于根据频谱获取模块 61获取的动态频谱信息,从所 述虚子载波动态设置装置的工作频谱的左边缘的第一个子载波开始, 在所 述工作频谱内确定多个连续的且不可用的子载波构成第一子载波组, 并在 所述工作频谱的右边缘的最后一个子载波开始, 在所述工作频谱内确定多 个连续的且不可用的子载波构成第二子载波组。
选择单元 622, 用于从所述第一子载波组的右边缘开始向右选择多个 连续的子载波构成第三子载波组, 所述第一子载波组和所述第三子载波组 一起构成所述左边缘虚子载波, 并在所述第二子载波组的左边缘开始向左 选择多个连续的子载波构成第四子载波组, 所述第二子载波组和所述第四 子载波组一起构成右边缘虚子载波, 且所述左边缘虚子载波的数量和所述 右边缘虚子载波的数量的总和不小于所述基带信号的混叠保护带且不大 于所述基带信号的离散傅立叶变换维度。
图 6B中各模块的功能可参见图 2C对应实施列中描述,在此不再赘述。 进一步, 发射机在动态设置虚子载波后, 主动通知接收机调整后的虚 子载波的数量。 如图 6C所示, 在图 6A或图 6B上还可包括: 调整指示模 块 64 , 用于在确定模块 62确定多载波传输系统的左边缘虚子载波的数量 和右边缘虚子载波的数量之后, 向接收机发送虚子载波调整指示, 所述虚 子载波调整指示包括所述左边缘虚子载波的数量和所述右边缘虚子载波 的数量以及所述多载波传输系统的虚子载波的调整时刻, 以使所述接收机 在所述虚子载波的调整时刻到达时, 根据确定的左边缘虚子载波和右边缘 虚子载波, 设置所述多载波传输系统的虚子载波。
图 6C中各模块的功能可参见图 2B对应实施列中描述,在此不再赘述。 上述多载波传输系统可以是正交频分复用系统、基于滤波器组的多载 波系统或多载波码分多址系统, 但不限于以上系统。
图 7 为本发明实施例提供的一种动态虚子载波的接收装置结构示意 图。 本实施例提供的装置根据发射机提供的虚子载波调整指示设置虚子载 波。 如图 7所示, 本实施例提供的装置包括: 指示接收模块 71、 确定模块 72和设置模块 73。
指示接收模块 71 , 用于接收发射机发送的虚子载波调整指示, 虚子载 波调整指示包括多载波传输系统的左边缘虚子载波的数量和右边缘虚子 载波的数量以及多载波传输系统的虚子载波的调整时刻; 左边缘虚子载波 的数量和右边缘虚子载波的数量的总和不小于多载波传输系统的基带信 号的混叠保护带且不大于基带信号的离散傅立叶变换维度; 基带信号的混 叠保护带为基带信号的频谱混叠不超过第一预设门限值所需的最小虚子 载波数量。 其中, 虚子载波的调整时刻包括多载波传输系统在时间维度上 的帧号和 /或子帧号。离散傅立叶变换维度为多载波传输系统的基带信号进 行解调时, 单次离散傅立叶变换或单次快速傅立叶变换包含的信号釆样点 的数量。
确定模块 72 ,用于从所述动态虚子载波的接收装置的工作频谱的左边 缘的第一个子载波开始, 在所述工作频谱内确定数量为所述左边缘虚子载 波的数量的连续子载波为第一组虚子载波, 从所述工作频谱的右边缘的最 后一个子载波开始, 在所述工作频谱内选择数量为所述右边缘虚子载波的 数量的连续子载波为第二组虚子载波。 其中, 左边缘虚子载波的数量和右 边缘虚子载波的数量为指示接收模块 71 接收到的虚子载波调整指示中的 信息。
设置模块 73 , 用于在虚子载波的调整时刻, 根据确定模块 72确定的 第一组虚子载波的数量和第二组虚子载波的数量, 设置多载波传输系统的 虚子载波。
上述多载波传输系统可以是正交频分复用系统、基于滤波器组的多载 波系统或多载波码分多址系统, 但不限于以上系统。 图 7中各模块的功能 可参见图 4对应实施列中描述, 在此不再赘述。
图 8为本发明实施例提供的另一种动态虚子载波的接收装置结构示意 图。 如图 8所示, 本实施例提供的装置包括: 接收模块 81、 解析模块 82 和设置模块 83。
接收模块 81 , 用于从发射机接收信号。
解析模块 82 , 用于接收模块 81接收到信号后, 从所述动态虚子载波 的接收装置的工作频谱的左边缘的第一个子载波开始, 确定接收信号强度 低于第二预设门限值的连续子载波为第一组零子载波, 在所述第一组零子 载波中去除第一保护子载波后, 将去除所述第一保护子载波的第一组零子 载波确定为左边缘虚子载波。
解析模块 82 , 还用于接收模块 81接收到信号后, 从所述工作频谱的 右边缘的最后一个子载波开始, 确定接收信号强度低于第三预设门限值的 连续子载波为第二组零子载波, 在所述第二组零子载波中去除第二保护子 载波后, 将去除所述第二保护子载波的第二组零子载波确定为右边缘虚子 载波; 所述左边缘虚子载波的数量和所述右边缘虚子载波的数量的总和不 小于所述多载波传输系统的基带信号的混叠保护带且不大于所述基带信 号的离散傅立叶变换维度; 所述基带信号的混叠保护带为所述基带信号的 频谱混叠不超过第一预设门限值时所需的最小虚子载波数量。
设置模块 83 , 用于根据解析模块 82解析出的所述左边缘虚子载波的 数量和所述右边缘虚子载波的数量, 设置所述多载波传输系统的虚子载 波。
上述多载波传输系统可以是正交频分复用系统、基于滤波器组的多载 波系统或多载波码分多址系统, 但不限于以上系统。 图 8中各模块的功能 可参见图 5对应实施列中描述, 在此不再赘述。
本发明实施例还提供的一种动态设置虚子载波的多载波传输系统。 在 该系统中发射机在动态设置虚子载波后, 会通知接收机设置后虚子载波的 数量, 该系统中发射机和接收机的具体功能如下:
发射机, 用于获取发射机所在地理位置的动态频谱信息; 根据所述动 态频谱信息, 在发射机的工作频谱的左右两个边缘, 确定所述多载波传输 系统的左边缘虚子载波的数量和右边缘虚子载波的数量, 以使得所述左边 缘虚子载波的数量和所述右边缘虚子载波的数量的总和不小于所述多载 波传输系统的基带信号的混叠保护带且不大于所述基带信号的离散傅立 叶变换维度; 所述发射机根据确定的所述左边缘虚子载波的数量和所述右 边缘虚子载波的数量, 设置所述多载波传输系统的虚子载波; 所述基带信 号的混叠保护带为所述基带信号的频谱混叠不超过第一预设门限值时所 需的最小虚子载波数量。
发射机具体用于, 通过内置的频谱感知模块或访问远端的频谱数据库 获取所在地理位置的动态频谱信息。
所述发射机, 还用于在确定所述多载波传输系统的左边缘虚子载波的 数量和右边缘虚子载波的数量之后, 向接收机发送虚子载波调整指示, 所 述虚子载波调整指示包括所述左边缘虚子载波的数量和所述右边缘虚子 载波的数量以及所述多载波传输系统的虚子载波的调整时刻;
所述接收机, 用于接收所述发射机发送的虚子载波调整指示后, 从所 述接收机的工作频谱的左边缘的第一个子载波开始, 在所述接收机的工作 频谱内确定数量为所述左边缘虚子载波的数量的连续子载波为第一组虚 子载波, 所述接收机从所述接收机的工作频谱的右边缘的最后一个子载波 开始, 在所述接收机的工作频谱内选择数量为所述右边缘虚子载波的数量 的连续子载波为第二组虚子载波; 在所述虚子载波的调整时刻, 根据所述 第一组虚子载波的数量和所述第二组虚子载波的数量设置所述多载波传 输系统的虚子载波。
其中, 上述发射机可参见图 2A、 图 2B或图 2C对应实施例中描述, 接收机可参见图 4对应实施例中描述。
本发明实施例还提供一种动态设置虚子载波的多载波传输系统。 该系 统与上述系统的区别在于, 发射机在动态设置虚子载波后, 没有通过信令 通知设置虚子载波的数量, 接收机接收到发射机的信号后通过盲检确定虚 子载波的位置和数量。 该系统中发射机和接收机的具体功能如下:
发射机, 用于获取发射机所在地理位置的动态频谱信息; 根据所述动 态频谱信息, 在所述发射机的工作频谱的左右两个边缘, 确定所述多载波 传输系统的左边缘虚子载波的数量和右边缘虚子载波的数量, 以使得所述 左边缘虚子载波的数量和所述右边缘虚子载波的数量的总和不小于所述 多载波传输系统的基带信号的混叠保护带且不大于所述基带信号的离散 傅立叶变换维度; 所述发射机根据确定的所述左边缘虚子载波的数量和所 述右边缘虚子载波的数量, 设置所述多载波传输系统的虚子载波; 所述基 带信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设门限值 时所需的最小虚子载波数量;
接收机, 用于接收所述发射机发射的信号后, 从所述接收机的工作频 谱的左边缘的第一个子载波开始, 确定接收信号强度低于第二预设门限值 的连续子载波为第一组零子载波, 在所述第一组零子载波中去除第一保护 子载波后, 将去除所述第一保护子载波的第一组零子载波确定为左边缘虚 子载波; 从所述接收机的工作频谱的右边缘的最后一个子载波开始, 确定 接收信号强度低于第三预设门限值的连续子载波为第二组零子载波, 在所 述第二组零子载波中去除第二保护子载波后, 将去除所述第二保护子载波 的第二组零子载波确定为右边缘虚子载波; 根据所述左边缘虚子载波的数 量和所述右边缘虚子载波的数量设置所述多载波传输系统的虚子载波。
其中, 上述发射机可参见图 2A、 图 2B或图 2C对应实施例中描述, 接收机可参见图 5对应实施例中描述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相 应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种虚子载波动态设置方法, 应用于多载传输系统, 其特征在于, 包括:
所述多载波传输系统的发射机获取自身所在地理位置的动态频谱信 息;
所述发射机根据所述动态频谱信息, 在所述发射机的工作频谱的左右 两个边缘, 确定所述多载波传输系统的左边缘虚子载波的数量和右边缘虚 子载波的数量, 以使得所述左边缘虚子载波的数量和所述右边缘虚子载波 的数量的总和不小于所述多载波传输系统的基带信号的混叠保护带且不 大于所述基带信号的离散傅立叶变换维度; 所述基带信号的混叠保护带为 所述基带信号的频谱混叠不超过第一预设门限值时所需的最小虚子载波 数量;
所述发射机根据确定的所述左边缘虚子载波的数量和所述右边缘虚 子载波的数量, 设置所述多载波传输系统的虚子载波。
2、 根据权利要求 1 所述方法, 其特征在于, 在确定所述多载波传输 系统的左边缘虚子载波的数量和右边缘虚子载波的数量之后, 还包括: 所述发射机向所述多载波传输系统的接收机发送虚子载波调整指示, 所述虚子载波调整指示包括所述左边缘虚子载波的数量和所述右边缘虚 子载波的数量以及所述多载波传输系统的虚子载波的调整时刻, 以使所述 接收机在所述虚子载波的调整时刻到达时, 根据确定的左边缘虚子载波和 右边缘虚子载波, 设置所述多载波传输系统的虚子载波。
3、 根据权利要求 1或 2所述方法, 其特征在于, 所述发射机根据所 述动态频谱信息, 在所述发射机的工作频谱的左右两个边缘, 确定所述多 载波传输系统的左边缘虚子载波的数量和右边缘虚子载波的数量, 具体包 括:
所述发射机根据所述动态频谱信息, 从所述发射机的工作频谱的左边 缘的第一个子载波开始, 在所述工作频谱内确定多个连续的且不可用的子 载波构成第一子载波组, 并在所述工作频谱的右边缘的最后一个子载波开 始, 在所述工作频谱内确定多个连续的且不可用的子载波构成第二子载波 组; 从所述第一子载波组的右边缘开始向右选择多个连续的子载波构成 第三子载波组, 所述第一子载波组和所述第三子载波组一起构成所述左边 缘虚子载波, 并在所述第二子载波组的左边缘开始向左选择连续的第四子 载波组, 所述第二子载波组和所述第四子载波组一起构成右边缘虚子载 波, 且所述左边缘虚子载波的数量和所述右边缘虚子载波的数量的总和不 小于所述基带信号的混叠保护带且不大于所述基带信号的离散傅立叶变 换维度。
4、 根据权利要求 2所述方法, 其特征在于, 所述虚子载波的调整时 刻包括所述多载波传输系统在时间维度上的帧号和 /或子帧号。
5、 根据权利要求 1或 2所述方法, 其特征在于, 所述发射机获取自 身所在地理位置的动态频谱信息, 具体包括: 所述发射机通过内置的频谱 感知模块或访问远端的频谱数据库获取自身所在地理位置的动态频谱信 息。
6、 根据权利要求 3 所述方法, 其特征在于, 所述第一子载波组和所 述第二子载波组分别为所述发射机的不可用频谱位置对应子载波中的部 分子载波。
7、 根据权利要求 1、 2或 3所述方法, 其特征在于, 所述动态频谱信 息对应的动态频谱为所述发射机支持的目标频段上, 未被其它系统占用的 空白频谱, 或被其它系统占用的频谱。
8、 根据权利要求 1或 2所述方法, 其特征在于, 所述多载波传输系 统包括正交频分复用系统、基于滤波器组的多载波系统或多载波码分多址 系统。
9、 根据权利要求 1或 2所述方法, 其特征在于, 所述基带信号的离 散傅立叶变换维度为对所述多载波传输系统的基带信号调制时, 进行单次 逆离散傅立叶变换或单次逆快速傅立叶变换所包含的信号釆样点的数量。
10、 一种动态虚子载波的接收方法, 应用于多载波传输系统, 其特征 在于, 包括:
多载波传输系统的接收机接收所述多载波传输系统的发射机发送的 虚子载波调整指示, 所述虚子载波调整指示包括所述多载波传输系统的左 边缘虚子载波的数量和右边缘虚子载波的数量以及所述多载波传输系统 的虚子载波的调整时刻; 所述左边缘虚子载波的数量和所述右边缘虚子载 波的数量的总和不小于所述多载波传输系统的基带信号的混叠保护带且 不大于所述基带信号的离散傅立叶变换维度; 所述基带信号的混叠保护带 为所述基带信号的频谱混叠不超过第一预设门限值时所需的最小虚子载 波数量;
所述接收机从所述接收机的工作频谱的左边缘的第一个子载波开始, 在所述工作频谱内确定数量为所述左边缘虚子载波的数量的连续子载波 为第一组虚子载波, 所述接收机从所述工作频谱的右边缘的最后一个子载 波开始, 在所述工作频谱内选择数量为所述右边缘虚子载波的数量的连续 子载波为第二组虚子载波;
在所述虚子载波的调整时刻, 所述接收机根据所述第一组虚子载波的 数量和所述第二组虚子载波的数量设置所述多载波传输系统的虚子载波。
11、 根据权利要求 10所述方法, 其特征在于, 所述虚子载波的调整 时刻包括所述多载波传输系统在时间维度上的帧号和 /或子帧号。
12、 根据权利要求 10或 11所述方法, 其特征在于, 所述多载波传输 系统包括正交频分复用系统、基于滤波器组的多载波系统或多载波码分多 址系统。
13、 根据权利要求 10或 11所述方法, 其特征在于, 所述基带信号的 离散傅立叶变换维度为对所述多载波传输系统的基带信号解调时, 进行单 次离散傅立叶变换或单次快速傅立叶变换包含的信号釆样点的数量。
14、 一种动态虚子载波的接收方法, 应用于多载波传输系统, 其特征 在于, 包括:
所述多载波传输系统的接收机从所述多载波传输系统的发射机接收 到信号后, 从所述接收机的工作频谱的左边缘的第一个子载波开始, 确定 接收信号强度低于第二预设门限值的连续子载波为第一组零子载波, 所述 接收机在所述第一组零子载波中去除第一保护子载波后, 将去除所述第一 保护子载波的第一组零子载波确定为左边缘虚子载波;
所述接收机从所述工作频谱的右边缘的最后一个子载波开始, 确定接 收信号强度低于第三预设门限值的连续子载波为第二组零子载波, 所述接 收机在所述第二组零子载波中去除第二保护子载波后, 将去除所述第二保 护子载波的第二组零子载波确定为右边缘虚子载波; 所述左边缘虚子载波 的数量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统 的基带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 所述基带信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设 门限值时所需的最小虚子载波数量。
15、 根据权利要求 14所述方法, 其特征在于, 所述多载波传输系统 包括正交频分复用系统、基于滤波器组的多载波系统或多载波码分多址系 统。
16、 根据权利要求 14或 15所述方法, 其特征在于, 所述基带信号的 离散傅立叶变换维度为对所述多载波传输系统的基带信号解调时, 进行单 次离散傅立叶变换或单次快速傅立叶变换包含的信号釆样点的数量。
17、 一种虚子载波动态设置装置, 应用于多载波传输系统, 其特征在 于, 包括:
频谱获取模块, 用于获取所述虚子载波动态设置装置所在地理位置的 动态频谱信息;
虚子载波确定模块, 用于根据所述动态频谱信息, 在所述虚子载波动 态设置装置的工作频谱的左右两个边缘, 确定所述多载波传输系统的左边 缘虚子载波的数量和右边缘虚子载波的数量, 使得所述左边缘虚子载波的 数量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统的 基带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 所 述基带信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设门 限值时所需的最小虚子载波数量;
虚子载波设置模块, 用于所述发射机根据确定的所述左边缘虚子载波 的数量和所述右边缘虚子载波的数量, 设置所述多载波传输系统的虚子载 波。
18、 根据权利要求 17所述装置, 其特征在于, 还包括:
调整指示模块, 用于在确定所述多载波传输系统的左边缘虚子载波的 数量和右边缘虚子载波的数量之后, 向接收机发送虚子载波调整指示, 所 述虚子载波调整指示包括所述左边缘虚子载波的数量和所述右边缘虚子 载波的数量以及所述多载波传输系统的虚子载波的调整时刻, 以使所述接 收机在所述虚子载波的调整时刻到达时, 根据确定的左边缘虚子载波和右 边缘虚子载波, 设置所述多载波传输系统的虚子载波。
19、 根据权利要求 17或 18所述装置, 其特征在于, 所述虚子载波确 定模块包括:
确定单元, 用于根据所述动态频谱信息, 从所述工作频谱的左边缘的 第一个子载波开始, 在所述工作频谱内确定多个连续的且不可用的子载波 构成第一子载波组, 并在所述工作频谱的右边缘的最后一个子载波开始, 在所述工作频谱内确定多个连续的且不可用的子载波构成第二子载波组: 选择单元,用于从所述第一子载波组的右边缘开始向右选择多个连续的子 载波构成第三子载波组,所述第一子载波组和所述第三子载波组一起构成所述 左边缘虚子载波,并在所述第二子载波组的左边缘开始向左选择连续的第四子 载波组, 所述第二子载波组和所述第四子载波组一起构成右边缘虚子载波, 且 所述左边缘虚子载波的数量和所述右边缘虚子载波的数量的总和不小于所述 基带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度。
20、 根据权利要求 18 所述装置, 其特征在于, 所述调整虚子载波的 时刻包括所述多载波传输系统在时间维度上的帧号和 /或子帧号。
21、 根据权利要求 17或 18所述装置, 其特征在于, 所述频谱获取模 块, 具体用于通过所述装置内置的频谱感知模块或访问远端的频谱数据库 获取所述装置所在地理位置的动态频谱信息。
22、 根据权利要求 19所述装置, 其特征在于, 所述第一子载波组和 所述第二子载波组分别为所述发射机的不可用频谱位置对应子载波中的 部分子载波。
23、 根据权利要求 17、 18或 19所述装置, 其特征在于, 所述动态频 谱信息对应的动态频谱为所述发射机支持的目标频段上, 未被其它系统占 用的空白频谱, 或被其它系统占用的频谱。
24、 根据权利要求 17或 18所述装置, 其特征在于, 所述多载波传输系统 包括正交频分复用系统、 基于滤波器组的多载波系统或多载波码分多址系统。
25、 根据权利要求 17或 18所述装置, 其特征在于, 所述基带信信号 的离散傅立叶变换维度为所述多载波传输系统进行多载波信号的基带信 号解调时, 进行单次离散傅立叶变换或单次快速傅立叶变换包含的信号釆 样点的数量。
26、 一种动态虚子载波的接收装置, 应用于多载波传输系统, 其特征 在于, 包括:
指示接收模块, 用于接收发射机发送的虚子载波调整指示, 所述虚子 载波调整指示包括多载波传输系统的左边缘虚子载波的数量和右边缘虚 子载波的数量以及所述多载波传输系统的虚子载波的调整时刻; 所述左边 缘虚子载波的数量和所述右边缘虚子载波的数量的总和不小于所述多载 波传输系统的基带信号的混叠保护带且不大于所述基带信号的离散傅立 叶变换维度; 所述基带信号的混叠保护带为所述基带信号的频谱混叠不超 过第一预设门限值时所需的最小虚子载波数量;
确定模块, 用于从所述动态虚子载波的接收装置的工作频谱的左边缘 的第一个子载波开始, 在所述工作频谱内确定数量为所述左边缘虚子载波 的数量的连续子载波为第一组虚子载波, 所述接收机从所述工作频谱的右 边缘的最后一个子载波开始, 在所述工作频谱内选择数量为所述右边缘虚 子载波的数量的连续子载波为第二组虚子载波;
设置模块, 用于在所述虚子载波的调整时刻, 根据所述第一组虚子载 波的数量和所述第二组虚子载波的数量, 设置所述多载波传输系统的虚子 载波。
27、 根据权利要求 26所述装置, 其特征在于, 所述虚子载波的调整 时刻包括所述多载波传输系统在时间维度上的帧号和 /或子帧号。
28、 根据权利要求 25或 26所述装置, 其特征在于, 所述多载波传输系统 包括正交频分复用系统、 基于滤波器组的多载波系统或多载波码分多址系统。
29、 根据权利要求 25或 26所述装置, 其特征在于, 所述基带信号的 离散傅立叶变换维度为多载波传输系统进行多载波信号的基带信号解调 时, 进行单次离散傅立叶变换或单次快速傅立叶变换包含的信号釆样点的 数量。
30、 一种动态虚子载波的接收装置, 应用于多载波传输系统, 其特征 在于, 包括:
接收模块, 用于从发射机接收信号;
解析模块, 用于从发射机接收到信号后, 从所述动态虚子载波的接收 装置的工作频谱的左边缘的第一个子载波开始, 确定接收信号强度低于第 二预设门限值的连续子载波为第一组零子载波, 在所述第一组零子载波中 去除第一保护子载波后, 将去除所述第一保护子载波的第一组零子载波确 定为左边缘虚子载波;
解析模块, 还用于从所述工作频谱的右边缘的最后一个子载波开始, 确定接收信号强度低于第三预设门限值的连续子载波为第二组零子载波, 在所述第二组零子载波中去除第二保护子载波后, 将去除所述第二保护子 载波的第二组零子载波确定为右边缘虚子载波; 所述左边缘虚子载波的数 量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统的基 带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度; 所述 基带信号的混叠保护带为所述基带信号的频谱混叠不超过第一预设门限 值时所需的最小虚子载波数量;
设置模块, 用于根据所述左边缘虚子载波的数量和所述右边缘虚子载 波的数量设置所述多载波传输系统的虚子载波。
31、 根据权利要求 30所述装置, 其特征在于, 所述多载波传输系统 包括正交频分复用系统、 基于滤波器组的多载波系统或多载波码分多址系 统。
32、 根据权利要求 30或 31所述装置, 其特征在于, 所述基带信号的 离散傅立叶变换维度为多载波传输系统进行多载波信号的基带信号解调 时, 进行单次离散傅立叶变换或单次快速傅立叶变换包含的信号釆样点的 数量。
33、 一种动态设置虚子载波的多载波传输系统, 其特征在于, 包括: 发射机, 用于获取自身所在地理位置的动态频语信息; 根据所述动态频谱 信息, 在所述发射机的工作频谱的左右两个边缘, 确定所述多载波传输系统的 左边缘虚子载波的数量和右边缘虚子载波的数量,以使得所述左边缘虚子载波 的数量和所述右边缘虚子载波的数量的总和不小于所述多载波传输系统的基 带信号的混叠保护带且不大于所述基带信号的离散傅立叶变换维度;所述发射 机根据确定的所述左边缘虚子载波的数量和所述右边缘虚子载波的数量,设置 所述多载波传输系统的虚子载波;所述基带信号的混叠保护带为所述基带信号 的频谱混叠不超过第一预设门限值时所需的最小虚子载波数量; 所述发射机, 还用于在确定所述多载波传输系统的左边缘虚子载波的 数量和右边缘虚子载波的数量之后, 向接收机发送虚子载波调整指示, 所 述虚子载波调整指示包括所述左边缘虚子载波的数量和所述右边缘虚子 载波的数量以及所述多载波传输系统的虚子载波的调整时刻;
所述接收机, 用于接收所述发射机发送的虚子载波调整指示, 从所述 接收机的工作频谱的左边缘的第一个子载波开始, 在所述工作频谱内确定 数量为所述左边缘虚子载波的数量的连续子载波为第一组虚子载波, 所述 接收机从所述工作频谱的右边缘的最后一个子载波开始, 在所述工作频谱 内选择数量为所述右边缘虚子载波的数量的连续子载波为第二组虚子载 波; 在所述虚子载波的调整时刻, 根据所述第一组虚子载波的数量和所述 第二组虚子载波的数量设置所述多载波传输系统的虚子载波。
34、 根据权利要求 33 所述的系统, 其特征在于, 所述发射机具体用 于, 通过内置的频谱感知模块或访问远端的频谱数据库获取所在地理位置 的动态频谱信息。
PCT/CN2012/083754 2012-05-28 2012-10-30 虚子载波动态设置方法、接收方法和装置及系统 WO2013177895A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12877747.1A EP2858397B1 (en) 2012-05-28 2012-10-30 Virtual subcarrier dynamically setting method, receiving method, device and system
US14/555,780 US9319885B2 (en) 2012-05-28 2014-11-28 Method for dynamically setting virtual subcarriers, receiving method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210167944.9 2012-05-28
CN201210167944.9A CN103458415B (zh) 2012-05-28 2012-05-28 虚子载波动态设置方法、接收方法和装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/555,780 Continuation US9319885B2 (en) 2012-05-28 2014-11-28 Method for dynamically setting virtual subcarriers, receiving method, apparatus and system

Publications (1)

Publication Number Publication Date
WO2013177895A1 true WO2013177895A1 (zh) 2013-12-05

Family

ID=49672344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083754 WO2013177895A1 (zh) 2012-05-28 2012-10-30 虚子载波动态设置方法、接收方法和装置及系统

Country Status (4)

Country Link
US (1) US9319885B2 (zh)
EP (1) EP2858397B1 (zh)
CN (1) CN103458415B (zh)
WO (1) WO2013177895A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165539B2 (en) 2016-04-20 2018-12-25 At&T Intellectual Property I, L.P. Spectrum admission control
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714525A (zh) * 2002-11-20 2005-12-28 株式会社Ntt都科摩 通信系统、通信方法、发送装置、接收装置以及控制程序
CN101336534A (zh) * 2005-12-07 2008-12-31 法国电信公司 用于动态交织的方法和设备
CN101385271A (zh) * 2006-02-21 2009-03-11 高通股份有限公司 用于在通信系统中选择cdm或ofdm的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254301B1 (en) * 1998-01-06 2013-06-19 Mosaid Technologies Incorporated Multicarrier modulation system with variable symbol rates
CN1816027B (zh) 2005-02-06 2010-05-05 北京邮电大学 多天线多载波无线通信系统中的迭代信道估计方法
CN101378371B (zh) 2007-08-27 2012-11-14 株式会社Ntt都科摩 在宽带无线移动通信系统中信道估计的方法及信道估计器
US7986738B2 (en) * 2007-10-19 2011-07-26 Redpine Signals, Inc Peak to average power ratio reduction apparatus and method for a wireless OFDM transmitter
JP2011525758A (ja) * 2008-07-07 2011-09-22 聯發科技股▲ふん▼有限公司 マルチバンド直交周波数分割多重接続(ofdma)通信システム中のデータ送受信方法とそれを用いた通信装置
US7848221B2 (en) 2008-07-14 2010-12-07 Motorola Mobility, Inc. Method and system for detecting adjacent channel interference from OFDM/OFDMA based broadband wireless access
KR100967058B1 (ko) * 2008-11-21 2010-06-29 성균관대학교산학협력단 무선통신 시스템에서의 개량된 채널 추정 방법 및 채널 추정기
CN102143099B (zh) 2010-12-22 2013-10-02 无锡物联网产业研究院 一种信道估计方法及装置
US20120275354A1 (en) * 2011-04-26 2012-11-01 Nxp B.V. Asymmetric white space communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714525A (zh) * 2002-11-20 2005-12-28 株式会社Ntt都科摩 通信系统、通信方法、发送装置、接收装置以及控制程序
CN101336534A (zh) * 2005-12-07 2008-12-31 法国电信公司 用于动态交织的方法和设备
CN101385271A (zh) * 2006-02-21 2009-03-11 高通股份有限公司 用于在通信系统中选择cdm或ofdm的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858397A4 *

Also Published As

Publication number Publication date
US20150124896A1 (en) 2015-05-07
EP2858397A1 (en) 2015-04-08
EP2858397B1 (en) 2023-11-29
EP2858397A4 (en) 2015-08-19
CN103458415B (zh) 2016-12-28
CN103458415A (zh) 2013-12-18
US9319885B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
CN108289021B (zh) 参考信号的传输方法和设备
KR101561156B1 (ko) 서비스 데이터 전송 방법, 수신기, 이동단말, 송신기 및 기지국
CN110445596B (zh) 同步信号的发送方法、接收方法及装置
EP3427434B1 (en) Access point (ap), station (sta) and method for subcarrier scaling
CN107409028B (zh) 发射设备、接收设备及其方法
US10756878B2 (en) Communication method and communications apparatus
EP3619901A1 (en) Coexistence of ofdm and on-off keying (ook) signals in wlan
WO2019052494A1 (zh) 传输方法和传输装置
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
US10491445B2 (en) Data modulation for use in multi-carrier system, demodulation method, frame generation method, and node
CN111726311B (zh) 数据信道的传输方法及装置
CN114884634A (zh) 一种通信方法、装置及设备
WO2018063855A1 (en) Reference signal-free transmission for wireless systems
US11528705B2 (en) Signal transmission method and device
CN107438041B (zh) 一种发送信号和接收信号的方法及装置
WO2018112933A1 (zh) 传输信息的方法、网络设备和终端设备
WO2013177895A1 (zh) 虚子载波动态设置方法、接收方法和装置及系统
US10833906B2 (en) Method of configuring symbols and device using the same and method of demodulating data and device using the same
CN109150374B (zh) 一种控制信道的资源指示、检测方法、设备及存储介质
CN113015245A (zh) 数据发送处理方法、数据接收处理方法及设备
CN107210878B (zh) 用于wifi ofdma的导频图案
EP4333529A1 (en) Multi-user communication method and related communication apparatus
CN110612687A (zh) 无线局域网中的sta和方法
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
KR20170049379A (ko) 협대역 무선통신 셀률러 시스템을 위한 동기신호를 구성하는 방법 및 장치, 그리고 이를 송신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012877747

Country of ref document: EP